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ABSTRACT 
 

QUANTIFYING THE ECONOMIC HEALTH COST OF EXPOSURE TO WILDFIRE 

SMOKE: FOUR ESSAYS IN NON-MARKET VALUATION, METHODOLOGICAL 

COMAPARISONS, AND ECONOMETRIC METHODS TO ADDRESS 

ENDOGENEITY 

 

Wildfires and their proximity to urban areas have become more frequent, yet few 

economic studies have looked closely at the welfare implications exposure to wildfire 

smoke has on affected individuals. Further, there is a growing concern that human health 

impacts resulting from this exposure are ignored in estimates of the monetized damages 

from a given wildfire. Current research highlights the need for better data collection and 

analysis of these impacts.  

Using unique primary data, this dissertation quantifies the economic health cost of 

exposure to wildfire smoke using non-market valuation techniques including the 

contingent valuation and defensive behavior methods. The individual willingness to pay 

for a reduction in symptom days as well as perceived pollution levels are quantified and 

compared to a simple cost of illness estimate. Results indicate that many residents 

surveyed did not seek medical attention for major health effects, but rather suffered from 

minor health impacts whose cost is not captured in a cost of illness estimate. As a result, 
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expenditures on defensive activities and the disutility associated with symptoms and lost 

leisure are found to be substantial for the case of wildfire smoke exposure.  
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CHAPTER ONE  

Introduction 

 

The occurrence of wildfires represents both a tragic natural disaster to those 

negatively affected as well as a necessary ecological process which sustains healthy 

forest growth and habitat vitality. U.S. federal fire policy, which for much of the 20th 

century focused on suppressing all fires on national forests to protect nearby 

communities, has shifted to a new focus of balancing fire suppression with fire 

management and prevention practices. The updated Federal Wildland Fire Management 

Policy of 2001 recommends that federal fire management activities provide public safety, 

protect land management objectives and human welfare, integrate programs, emphasize 

the natural ecological role of fire, and contribute to ecosystem sustainability (NWCG, 

2001).  

Increased fire management practices such as prescribed fire, forest thinning, and 

community awareness and education can improve forest health and decrease the risk of 

wildfire to surrounding communities. As populations expand and individuals move closer 

to the forest fringe, there will undoubtedly be a push for better state and federal fire 

management and prevention practices. However, implementation is often constrained by 

funding and determining the appropriate amount of investment into these programs is a 

challenge.  
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As pointed out by Abt et al. (2008), while federal wildfire policy is often 

scrutinized, there is very little literature quantifying the economic costs and benefits 

resulting from wildfire, making accurate evaluation of wildfire programs extremely 

difficult. One of the nine guiding principles of the updated 2001 Policy is that “fire 

management programs and activities are economically viable, based upon values to be 

protected, costs, and land and resource management objectives” (NWCG, 2001). 

However, Butry et al. (2001) explain that there is no organization in the United States 

which attempts to quantify these complete economic impacts for a given wildfire. 

There is a growing literature citing the need to incorporate critical impacts other 

than suppression costs and loss of property in damage assessments of a given wildfire, 

one of which is the cost of damages to human health from exposure to wildfire smoke 

(Abt et al., 2008; Butry et al., 2001; Dale, 2009; Zybach et al., 2009). Kochi et al. (2010) 

conducted an extensive review of the literature on the economic cost of health damages 

from wildfire smoke exposure and concluded that while this cost should be considered in 

wildfire management policy, the available research is scarce and incomplete.  

While a number of studies have attempted to quantify the economic cost of the 

health effects of wildfire smoke exposure from wildfires throughout the world (Hon, 

1999; Ruitenbeek, 1999; Shahwahid and Othman, 1999; Butry et al., 2001; Cardoso de 

Mendonça et al., 2004; Rittmaster et al., 2006; Martin et al., 2007), they have heavily 

relied on a cost of illness (COI) approach to monetize these damages, which has been 

found to largely underestimate the true economic cost of health damages from exposure 

to a pollutant. As explained by Freeman (2003), a pollutant that affects human health 

impacts well-being in four ways: incurred medical expenses and lost wages (also referred 
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to as mitigating activities), expenditures on averting activities taken to avoid the health 

effects, and the disutility associated with symptoms or lost leisure. The cost of illness 

approach ignores these last two components.  

If accurate evaluations of fire management programs are to be made, the 

theoretically correct measure of the cost of damages to human health from exposure to 

wildfire smoke should be monetized. This value is the individual willingness to pay 

(WTP) to avoid this damage, which can be calculated using two common approaches in 

the field of non-market valuation, the contingent valuation method (CVM) and the 

defensive behavior method (DBM), also referred to as the averting behavior method. It 

should be noted that a few of the above studies did adjust their cost of illness estimate 

using an assumed WTP: COI ratio, but this ratio has never been calculated for the 

specific case of wildfire smoke as no studies have attempted to quantify the willingness 

to pay to avoid this damage. Figure 1.1 visually shows the components that comprise the 

willingness to pay to avoid the health damages associated with exposure to a pollutant. 

 

 
FIGURE 1.1 

Components of Willingness to Pay to Avoid Health Damages 

Cost of Illness (i.e. 
expenditures on 

mitigating 
activities)

Expenditures on 
Averting Activities

Disutility 
Associated with 

Symptoms or Lost 
Leisure/Recreation

WTP 

(Contingent 
Valuation Method 

or Defensive 
Behavior Method)
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Branches of the U.S. EPA such as the National Center for Environmental 

Economics are responsible for analyzing the economic impacts, i.e. costs and benefits, of 

environmental regulations and policies. They recognize the inadequacies of relying on 

cost of illness estimates but explain that they continue to be used by the EPA due to the 

fact that many health effects are simply not studied from the willingness to pay 

perspective (U.S. EPA, NCEE).  

This study applies both the contingent valuation and the defensive behavior 

method to calculate the willingness to pay for a reduction in symptom days and perceived 

pollution levels from wildfire smoke for the first time to our knowledge. Theory tells us 

that the cost of illness will provide a lower bound to this value, and here we attempt to 

quantify this discrepancy for the specific case of wildfire smoke. By conducting a survey 

of residents impacted by smoke during the largest wildfire in Los Angeles Counties’ 

modern history, we look at the health effects experienced as a direct result of exposure to 

the wildfire smoke and all of the associated costs of this exposure. We quantify 

expenditures on medical care and the opportunity cost of time spent in obtaining it. The 

defensive actions individuals took to minimize their exposure to the smoke and the 

associated investments of time and money made are given considerable attention to 

determine whether the defensive behavior method is an appropriate application to 

wildfire smoke exposure. By comparing willingness to pay values with cost of illness 

estimates and expenditures on defensive activities, the value of the disutility associated 

with this exposure is quantified. In addition, we statistically compare willingness to pay 

estimates across both stated and revealed preference approaches, which provides a test of 

convergent validity. Finally, we explore econometric models to address endogeneity in a 
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nonlinear framework, a common challenge to implementing the defensive behavior 

method. 
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CHAPTER TWO 

The Hidden Cost of Wildfires: Health Effects and Associated Costs from 
California’s Station Fire of 2009 

 

I. INTRODUCTION 

As wildfire seasons increase in intensity and length in many parts of the western 

United States, it is becoming increasingly important to include the full cost of wildfire 

damages in any evaluation of future fire management policies. Nowhere does this issue 

seem more relevant than California, a state that has seen over three million acres of its 

land burned by wildfires since 2007 (CalFire). Increased levels of fire management and 

prevention practices are often proposed in California as a way to mitigate future losses 

from wildfires. These practices include vegetation management activities such as 

prescribed fire and forest thinning, community awareness and education, the creation of 

local and community Fire Safe Councils, and participation in the national Firewise/USA 

program. Although these practices may help to prevent losses from future wildfires, their 

implementation is often constrained by funding.  

In determining whether increased funds for these practices are justified, policy 

makers need to be able to accurately evaluate the tradeoffs being made using sound 

economic analyses. At the federal level, The Federal Wildland Fire Management Policy 

of 1995 stresses the need to address economic efficiency of fire management and inform 

the public of the economic benefits of fuel treatment projects and the risks associated 

with not undertaking them (USDI-USDA, 1995). One of the nine guiding principles of 
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the updated 2001 Policy is that “fire management programs and activities are 

economically viable, based upon values to be protected, costs, and land and resource 

management objectives” (NWCG, 2001). At the state level, California’s 2010 Strategic 

Fire Plan calls for the use of economically efficient fuels treatment projects such as 

prescribed fire and forest thinning.  

However, the only way for policy makers to accurately evaluate fire management 

actions on an economic efficiency based criterion is to be fully aware of the economic 

benefits of each management action, which includes the economic costs associated with 

not taking the management action. While suppression costs and insured damages to 

homeowners are often reported as the main economic costs of wildfires, there is a 

growing concern that this represents a very incomplete measure of the cost of the 

damages from wildfires (Butry et al., 2001; Morton et al., 2003; Dale, 2009; Zybach et 

al., 2009). One of the main issues is that human health impacts from wildfire smoke are 

typically ignored in estimates of monetized damages. 

Human health effects from wildfire smoke exposure have been talked about for 

decades but rarely quantified. Back in 1979 Gorte and Gorte in a USDA Forest Service 

technical report explained that economic justification of fire management expenditures 

have been called for since the 1920’s. They outline economic guidelines for determining 

how much should be spent to protect forests from fire and explain that the economically 

optimal level of funding for fire management based on a least-cost-plus-loss method are 

those that minimize the sum of wildfire suppression costs, presuppression costs, and 
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resource losses, which includes damages to human health.1 Twenty-two years later, Butry 

et al. (2001) explained that while this criterion outlined by Gorte and Gorte (1979) 

requires systematic calculations of the associated costs, losses and gains of a given 

wildfire, there is no organization in the United States which attempts to quantify these 

complete economic impacts.  

More recently, Abt et al. (2008) suggested immediate improvements in data 

collection to be used in economic impact assessments for U.S. Forest Service wildfire 

programs. They call for more research to achieve consistent estimation of the various 

resource losses associated with wildfires, including human health impacts. The authors 

cited two studies which have attempted to quantify the economic cost of the health 

impacts of wildfire smoke, Butry et al. (2001) and Rittmaster et al. (2006), and concluded 

that further research needs to be done to allow estimation of health impacts from wildfire 

program activities. Kochi et al. (2010) conducted an extensive review of the literature on 

the economic cost of health damages from wildfire smoke exposure and concluded that 

while this cost should be considered in wildfire management policy, the available 

research is scarce and incomplete.  

This study seeks to address this gap in the literature by outlining an empirical 

method to quantify the economic cost of health effects associated with wildfire smoke 

exposure which can be utilized in damage assessments of future wildfires. This method is 

demonstrated with a case study that quantifies the cost of health damages from exposure 

to wildfire smoke from California’s Station Fire of 2009. The remainder of this paper is 

organized as follows: Section II presents the methods that can be adapted to calculate the 
                                                           
1 Now referred to as the least-cost-plus-net-value-change method to recognize the fact that wildfires can 
also provide significant benefits. 
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economic cost of human health damages from exposure to wildfire smoke; Section III 

outlines the specific application of these methods to California’s Station Fire of 2009, 

including a description of the study area, an explanation of the primary data collected for 

the study, pollution levels and descriptive statistics of the sample; Section IV presents an 

econometric approach to the analysis; Section V reports results of the analysis; Section 

VI outlines implications of this analysis. 

 

II. METHODS FOR QUANTIFYING THE ECONOMIC COST OF 
HEALTH DAMAGES  

 
The majority of studies that have attempted to quantify the cost of damages to 

human health from exposure to wildfire smoke have been limited to a cost of illness 

(COI) or damage function approach. The cost of illness approach sums resource and 

opportunity costs of being sick to arrive at a final cost of illness from exposure to a 

pollutant. These costs include individual’s expenditures on medical care and medications, 

the opportunity cost of time spent in obtaining medical care, and lost wages from not 

being able to work. The damage function approach uses data to estimate how various 

levels of a particular pollutant will affect human health outcomes (called dose-response 

functions) and then connects these health outcomes with previously obtained associated 

costs to arrive at a final cost of illness. 

These two approaches have been applied to several wildfires around the world. 

Hon (1999), Shahwahid and Othman (1999) and Ruitenbeek (1999) calculated the 

economic cost associated with heath effects from the 1997 haze in Southeast Asia. Hon 

(1999) and Shahwahid and Othman (1999) estimated original dose-response functions to 
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obtain predicted health outcomes caused by wildfires in Singapore and Malaysia and then 

connected these outcomes with country-specific costs of treatment to arrive at a final cost 

of illness. Ruitenbeek (1999) applied the estimated dose-response function from 

Shahwahid and Othman (1999) to translate the haze density in Indonesia into predicted 

health outcomes. The author then used economic costs from World Bank studies to 

calculate associated medical costs and the value of lost wages resulting from the wildfires 

and haze. Butry et al. (2001) used results obtained from Sorenson et al. (1999) on the 

health effects experienced during the 1998 Florida fires (asthma and bronchitis) and 

connected these with previously obtained estimates of medical expenditures to estimate 

the total cost of illness from these fires.  

However, it has been well understood and documented for many years in the 

economics literature that the cost of illness and damage function methods underestimate 

the economic costs associated with health effects from exposure to a pollutant (Dickie, 

2003; Freeman, 2003), including those contained in wildfire smoke. First, health effects 

resulting from wildfire smoke may cause disutility to their recipient, such as pain, 

discomfort, or a loss of recreation days and this would not be captured in a simple cost of 

illness approach. Second, many residents in wildfire-prone areas know of the potential 

risks associated with wildfire smoke and take costly defensive actions to protect 

themselves against it. During the 2003 Southern California wildfires, Kunzli et al. (2006) 

found that children with asthma were more likely to take preventative actions such as 

wearing masks and staying indoors to minimize their exposure to the smoke. Mott et al. 

(2002) found that during a 1999 wildfire in northern California near the Hoopa Valley 

National Indian Reservation, residents took actions such as wearing face masks, 
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evacuating, running high-efficiency particulate air cleaners in the home and following 

public service announcements. Even if they do not know the potential risks, residents in 

areas exposed to wildfire smoke are often issued smoke advisory warnings which inform 

them of actions they can and should take to avoid health damages. As explained by 

Cropper (1981), an improvement in air quality will decrease the preventative actions that 

will be taken, and this cost savings needs to be included when valuing the benefits of 

pollution control. In a review of the literature on the economic cost of health damages 

from wildfire smoke, Kochi et al. (2010) concluded that a better understanding of 

preventative actions taken during wildfires is needed when evaluating the health related 

cost of wildfire smoke exposure.   

If agencies are evaluating policies on an economic efficiency based criterion, the 

appropriate measure of the cost of health damages from exposure to wildfire smoke 

would be the full economic cost of these damages. The theoretically correct measure of 

this cost is the individual willingness to pay (WTP) to avoid this damage because it will 

include all costs individuals face when exposed to wildfire smoke: medical expenditures, 

lost wages, investments of time or money in taking preventative actions to decrease 

exposure, and the disutility associated with symptoms or lost leisure (Freeman, 2003). 

The cost of illness and damage function approaches ignore these last two components.  

Only a handful of studies that estimate the economic cost of health effects from 

wildfire smoke exposure incorporate WTP values into their estimates. However, none of 

these WTP values were estimated for health damages avoided from wildfire smoke 

specifically. Martin et al. (2007) and Rittmaster et al. (2006) both used dose-response 

functions estimated in prior studies and connected estimated health outcomes with a mix 
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of COI and WTP estimates from prior research to calculate the economic cost of health 

damages from a hypothetical prescribed fire in the Kaibab National Forest and the 2001 

Chisholm Fire in Canada, respectively. Cardoso de Mendonça et al. (2004) estimated an 

original dose-response function and calculated the economic cost of health damages from 

fire used by farmers in the Amazon, applying WTP values transferred from Seroa de 

Motta et al. (2000a,b). Finally, the Hon (1999) and Ruitenbeek (1999) studies adjusted 

cost of illness estimates using an assumed WTP: COI ratio of 2:1. This ratio was taken 

from a range of WTP and COI estimates from the Asian Development Bank Workbook 

(1996) specifically for asthma symptoms.   

To date, there have not been any studies that have estimated the theoretically 

correct economic cost of health damages from wildfire smoke using primary data. There 

are two common approaches which can be used to calculate this WTP value: the 

contingent valuation method and the defensive behavior method. This study will apply 

the defensive behavior method to calculate the value of a reduction in health damages 

from smoke released by California’s Station Fire of 2009 and compare this to a cost of 

illness estimate. 

  

Defensive Behavior Method 

The defensive behavior method, also referred to as the averting behavior method, is a 

revealed preference approach based on the health production function first outlined by 

Grossman (1972) with extensions to the model undertaken by Cropper (1981) and 

Harrington and Portney (1987). The framework of the model is based on the premise that 

an individual experiences some health output, such as a number of days spent sick which 
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enters into his utility function, causing disutility. This health output is in turn influenced 

by various factors, such as pollution levels, the individual’s overall stock of health, 

demographic factors, lifestyle factors and finally, defensive actions taken by the 

individual to decrease the chance he experiences a negative health outcome. Defensive 

actions are broken down into what are referred to as averting and mitigating actions, 

which are somewhat different.  The former are actions taken to decrease the chance of 

being exposed to the pollutant that causes the negative health outcome, such as staying 

indoors or using an air cleaner in the home. The latter represent actions that are taken 

after experiencing the health outcome in an effort to mitigate its negative effects, such as 

going to the doctor or taking medications. The sum of expenditures on mitigating 

activities and lost wages due to illness represents the cost of illness typically measured as 

the cost of health damages from wildfire smoke exposure.  

This model can be used to calculate the individual WTP to avoid a pollutant in 

general, or the symptoms that result from exposure to the pollutant. This method and the 

theoretical framework underlying it are explained in great detail in Dickie (2003) and 

Freeman (2003). Here we present a simple one period framework to set the stage for our 

empirical analysis. An individual produces some health output according to a health 

production function (also referred to as a symptom production function) as follows: 

S = S (P, A, M, Z)        (2.1) 

This health output S is a function of P which represents exposure to a pollutant, A 

represents averting activities that can be taken to reduce exposure to the pollutant or time 

spent sick, M represents mitigating activities that can be taken to reduce the time spent 

sick and Z represents a set of exogenous factors that can affect the time spent sick, such 
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as demographics and health status prior to exposure. It can be assumed that sick time is 

increasing in exposure to the pollutant and decreasing in averting and mitigating actions. 

This information can then be used to calculate the individual marginal value of reduced 

pollution equal to (see Freeman, 2003 for a full derivation): 

-pA [(∂S/∂P) / (∂S/∂A)]       (2.2a)  

or 

 -pM [(∂S/∂P) / (∂S/∂M)]       (2.2b)  

The price of any averting or mitigating activity multiplied by the marginal rate of 

technical substitution between pollution and that averting or mitigating activity in 

producing a given number of sick days. The marginal value of reduced time spent sick 

equals: 

-pA / (∂S/∂A)         (2.3a)  

or 

-pM / (∂S/∂M)         (2.3b)  

The marginal willingness to pay for a reduction in time spent sick can be calculated as the 

price of any averting or mitigating activity divided by the marginal effect of the use of 

that averting or mitigating activity on time spent sick. We will illustrate adaption of this 

model to wildfire smoke emissions by calculating the individual willingness to pay for a 

reduction in wildfire smoke induced symptom days. A simple cost of illness estimate will 

be compared to this marginal willingness to pay value to quantify the magnitude of 

underestimation. In addition, we will calculate the ratio of WTP: COI to contribute 

another ratio to the literature for others that may be able to measure the cost of illness but 

desire willingness to pay estimates.  
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III. THE STATION FIRE 

Study Area 

The Station Fire began on Wednesday, August 26, 2009 in the Angeles National 

Forest, located adjacent to the Los Angeles, California metropolitan area. The wildfire 

became extremely difficult to contain due to hot weather conditions, thick brush, as well 

as rugged and steep terrain faced by firefighters. By the time the Station fire was fully 

contained on October 16, 2009 it had burned 160,577 acres, killed two firefighters, 

injured 22 people, and destroyed 209 structures, 89 of which were homes. While the fire 

burned, it threatened 12,000 residences and forced the evacuation of thousands of 

residents in surrounding communities from their homes (InciWeb, 2009). During the 

Station Fire, a number of surrounding communities faced unhealthy air quality levels and 

were issued smoke advisory warnings by the South Coast Air Quality Management 

District and the Los Angeles County Department of Public Health. These warnings 

advised residents in all areas where smoke could be seen or smelled to avoid unnecessary 

outdoor activities, keep windows and doors closed and run the air conditioner. Sensitive 

populations such as those with heart or lung disease, the elderly and children were 

advised to stay indoors. The Station Fire provides a unique natural experiment to analyze 

health effects and defensive actions taken in response to the wildfire smoke for two 

reasons. First, it was the largest wildfire in Los Angeles County’s modern history. 

Second, it occurred near one of the largest metropolitan areas in the United States. 

Wildfires rarely affect large urban populations given that they typically occur in rural 

areas (Vedal, 2006). Figure 2.1 is a NASA image of the location of the wildfire smoke 

taken mid-morning on August 30, 2009. 
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FIGURE 2.1 

Smoke from the Station Fire 
 

Image Credit: NASA/GSFC/LaRC/JPL, MISR Team 

 

Data Collection 

To gather data to implement this study, a survey was initially created in the 

summer of 2009 and focus groups were held in Anaheim, California during the same 

summer to pretest the survey. The survey was also reviewed by experts in the field of 

health economics. Approximately six weeks after the Station Fire began the survey was 

mailed to a random sample of one thousand residents in five cities in the vicinity of the 

Station Fire. These cities included Duarte, Monrovia, Sierra Madre, Burbank and 

Glendora, California. They were chosen based on having had a smoke advisory warning 

issued and the availability of air quality monitoring data to confirm that the cities were 

indeed impacted by the wildfire smoke (air quality monitoring stations are located within 

the cities of Burbank and Glendora, while the others have stations close by).  The cities 

were also far enough away from the fire that it was unlikely residents’ homes were 

damaged or destroyed, allowing survey respondents to focus on the health effects from 

the wildfire smoke rather than the damages from the fire itself. Resident contact 
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information was obtained through Survey Sampling International. The first round of mail 

surveys included a cover letter explaining the purpose of the survey as well as a $1 bill 

attached to the front. A reminder postcard was then sent to all non-respondents followed 

by a second round of survey mailing.  

Three hundred individuals who had not yet responded to either of these first two 

mailings were split into three groups of one hundred. The first group received a third 

survey by regular mail, the second group received a third survey by priority mail, and the 

final group received a third survey by regular mail in an envelope which also included 

one Ghirardelli Squares chocolate. Given the high cost of survey implementation, this 

was done as a means to test whether spending more money on incentives for survey 

respondents is worth the increased response rate. For the group that received the survey 

by regular mail, each survey cost $4.04 to mail, accounting for the cost of survey 

printing, stamps, and envelopes. There was a response rate of 12% from this group. 

Taking the total cost of this survey mailing divided by the number of surveys completed 

and returned, results in a cost per completed survey of $33.67. For the second group 

which received the survey by priority mail, each survey cost $7.30 and there was a 

response rate of 19%, resulting in a cost per completed survey of around $38.42. Finally, 

mailing the survey with chocolate to the third group cost $4.33 per survey and had a 

response rate of 16%, resulting in a cost per completed survey of around $27.06. While 

this represents a small sample, it indicates that incentives such as including a piece of 

chocolate in the survey envelope may be more cost-efficient than more expensive 

methods such as sending surveys by priority mail.  
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Including all three survey mailings, the initial sample size was one thousand 

individuals, forty surveys were not deliverable, and four hundred and fifty-eight complete 

surveys were returned for an overall response rate of 48%. After removing incomplete 

surveys and respondents who were not home during the fire, there remained a total of 

four hundred and thirteen usable surveys. The cover letter, survey, and reminder postcard 

can all be found in the ‘Survey Instrument’ section at the end of this dissertation.  

To measure the type and severity of health effects experienced as a direct result of 

exposure to smoke and ash during the Station Fire, respondents were asked a series of 

questions. First, they were asked whether or not they experienced ear, nose or throat 

symptoms such as cough, sore throat, burning eyes, runny nose, sinus problems, etc.; 

breathing problems such as shortness of breath, aggravation of asthma, bronchitis or 

emphysema; heart problems such as rapid heartbeat or chest pain; or other symptoms 

such as anxiety, nausea, or dizziness. In addition, respondents were asked to report the 

total number of days symptoms were experienced as well as the level of pain experienced 

from all symptoms on a scale of 1-5.  

To measure the mitigating actions respondents took as a direct result of these 

reported health effects, respondents were asked whether or not they went to a physician, 

urgent care, emergency room or hospital for symptoms, or took prescribed medications. 

They were also asked whether or not they took nonprescription medications or visited a 

non-traditional healthcare provider as a result of symptoms. Individuals were asked to 

report any monetary expenditures made on these mitigating actions, as well as the time 

spent in commuting and obtaining any medical care. In addition, individuals were asked 

whether or not they missed work or recreation days as a direct result of symptoms.  
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Averting activities can reduce health effects by decreasing exposure to the 

wildfire smoke. These activities include evacuating the area, covering the face with a 

mask, running the air conditioner more, using an air cleaner in the home, removing ashes 

from property, avoiding going to work, staying indoors and avoiding normal outdoor 

recreation activities. These activities were chosen based on focus groups, 

recommendations from the Centers for Disease Control and Prevention, the 

Environmental Protection Agency and the South Coast Air Quality Management District 

on what to do during a fire to decrease exposure to the smoke, as well as what previous 

studies have found in regards to the actions individuals take when exposed to health risks 

from wildfire smoke (Mott et al., 2002; Kunzli et al., 2006). Individuals were asked to 

report the length of time averting actions were taken as a direct result of exposure to 

smoke from the Station Fire from a choice of never, 1-5 days, 6-10 days, and 11 or more 

days. Respondents were also asked to report their monetary expenditures on these 

activities where appropriate.      

In regards to pollution concentrations, given recent findings that subjective, 

within-community pollution measures can be quite different from objective, community-

wide measures from air quality monitoring stations (Kunzli et al., 2006), the survey first 

questioned respondents about whether or not they could smell smoke and/or ash both 

inside and outside their home during the fire and the weeks following. If they indicated 

that they could, they were asked to choose from a series of ranges the number of days 

they noticed the smell; 1-5 days, 6-10 days, 11-15 days, or more than 15 days.  

Finally, respondents were asked a series of questions about exogenous factors 

which could affect their production of health or their decision to undertake defensive 
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actions during the Station Fire. These include the respondent’s health history, lifestyle 

factors and demographic information, as well as information obtained and beliefs about 

the effects of wildfire smoke on health, as recommended by Dickie (2003) and Freeman 

(2003). A description of all study variables and their sample statistics can be found in 

Table 2.1. 

TABLE 2.1 
Variable Definitions  

 

 

Variable Coding Mean Std. Dev. Min Max

Perceived Pollution Levels

Days smoke smelled indoors 0=no days; 3=1-5 days; 8=6-10 days; 13=11-15 days; 16=more than 15 days 3.43 4.21 0 16
Smelled smoke indoors 1-5 days 1= yes, 0= no 0.33 0.47 0 1
Smelled smoke indoors > 5 days 1= yes, 0= no 0.24 0.43 0 1
Days smoke smelled outdoors 0=no days; 3=1-5 days; 8=6-10 days; 13=11-15 days; 16=more than 15 days 7.77 4.91 0 16

Smelled smoke outdoors 1-5 days 1= yes, 0= no 0.33 0.47 0 1
Smelled smoke outdoors > 5 days 1= yes, 0= no 0.62 0.49 0 1

Illness Information

Symptom days count 3.28 6.06 0 45
Level of pain from symptoms scale of 1-5: 1=no pain or discomfort; 5=severe pain or discomfort 1.02 1.42 0 5
Ear, nose or throat symptoms 1= yes, 0= no 0.36 0.48 0 1

Breathing symptoms 1= yes, 0= no 0.18 0.39 0 1
Heart symptoms 1= yes, 0= no 0.04 0.20 0 1
Other symptoms 1= yes, 0= no 0.09 0.28 0 1

Mitigating Actions

Doctor/prescription meds. 1= yes, 0= no 0.06 0.24 0 1
Non-prescription meds. 1= yes, 0= no 0.13 0.33 0 1

Non-traditional healthcare provider 1= yes, 0= no 0.01 0.11 0 1
Missed work 1= yes, 0= no 0.04 0.19 0 1
Missed recreation 1= yes, 0= no 0.28 0.45 0 1

Averting Actions

Evacuated 1= yes, 0= no 0.06 0.23 0 1
Wore a face mask 1= yes, 0= no 0.07 0.26 0 1
Home air cleaner 1= yes, 0= no 0.21 0.41 0 1

Avoided going to work 1= yes, 0= no 0.05 0.21 0 1
Removed ashes from property 1= yes, 0= no 0.57 0.50 0 1
Ran the air conditioner more 1= yes, 0= no 0.60 0.49 0 1
Stayed indoors 1= yes, 0= no 0.73 0.44 0 1
Avoided normal outdoor recreation/exercise 1= yes, 0= no 0.78 0.42 0 1

Health History

Current respiratory condition 1= yes, 0= no 0.12 0.32 0 1
Current heart condition 1= yes, 0= no 0.09 0.28 0 1
Experienced health effects from wildfire smoke in past 1= yes, 0= no 0.24 0.42 0 1

Health and Lifestyle

Times per week of exercise 0=0 times/week; 1=1-2 times/week; 2=3-5 times/week; 3=more than 5 times/week1.62 0.92 0 3
Smoker 1= yes, 0= no 0.08 0.28 0 2

Alcoholic drinks per week 0=none; 1=1-7 drinks/week; 2=8-14 drinks/week; 3=more than 14 drinks/week 0.60 0.73 0 3
Current health is excellent 1= yes, 0= no 0.29 0.45 0 1
Current health is good 1= yes, 0= no 0.55 0.50 0 1
Current health is fair 1= yes, 0= no 0.14 0.35 0 1
Current health is poor 1= yes, 0= no 0.02 0.14 0 1
Hours per week of indoor recreation continuous 2.95 5.89 0 91

Hours per week of outdoor recreation continuous 4.95 7.11 0 77
Has a regular doctor 1= yes, 0= no 0.89 0.31 0 1
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TABLE 2.1 
Variable Definitions, cont. 

 

 

Pollution Levels 

While wildfire smoke is made up of a number of pollutants, particulate matter 

poses the most serious threat to human health from short-term exposure (Lipsett et al., 

2008). According to the U.S. Environmental Protection Agency, problematic particles are 

those that are ten micrometers in diameter and smaller because these can easily enter the 

lungs and cause serious health impacts. Wildfire smoke contains particles which are 2.5 

micrometers in diameter and smaller, referred to as PM2.5, as well as particles which are 

10 micrometers in diameter and smaller, referred to as PM10 (U.S. EPA, Particulate 

Matter).  Exposure to low levels of carbon monoxide (CO) released during a wildfire can 

cause fatigue in healthy individuals and more serious health effects such as chest pain in 

individuals with preexisting heart conditions (U.S. EPA, Indoor Air Quality).   

Variable Coding Mean Std. Dev. Min Max

Demographics

Male 1=male, 0=female 0.60 0.49 0 1
Married 1=yes, 0=no 0.69 0.46 0 1
Age continuous 59.11 15.37 24 94
White 1=yes, 0=no 0.79 0.41 0 1
Graduate school graduate 1= yes, 0= no 0.20 0.40 0 1
College graduate 1= yes, 0= no 0.62 0.49 0 1

Employed full-time 1= yes, 0= no 0.48 0.50 0 1
Employed part-time 1= yes, 0= no 0.08 0.27 0 1
Not employed 1= yes, 0= no 0.42 0.49 0 1
Has health insurance 1=yes, o=no 0.92 0.27 0 1
Months at current zip code continuous 258.66 184.96 7 816
Number of children under 18 years old in household continuous 0.43 0.83 0 4
Lives in Duarte 1= yes, 0= no 0.13 0.34 0 1
Lives in Monrovia 1= yes, 0= no 0.20 0.40 0 1
Lives in Sierra Madre 1= yes, 0= no 0.08 0.26 0 1
Lives in Burbank 1= yes, 0= no 0.19 0.40 0 1
Lives in Glendora 1= yes, 0= no 0.40 0.49 0 1
Income 15= < 19,999; 25=20,000-29,999; 35=30,000-39,999; 45=40,000-49,999; 55=50,000-

59,999; 65=60,000-69,999; 75-70,000-79,999; 85=80,000-89,999; 95=90,000-99,999; 
125=100,000-149,999; 175=150,000-199,999; 200= > 200,000 83.52 53.50 15 200

Beliefs

Heard or read about possible health effects 1= yes, 0= no 0.86 0.35 0 1
Believes smoke can affect health 1= yes, 0= no 0.90 0.31 0 1
Believes that averting actions were very or somewhat 
effective at reducing symptoms from smoke

1= yes, 0= no
0.46 0.50 0 1
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Data on concentrations of particulate matter and carbon monoxide released during 

the Station Fire were taken from the California Environmental Protection Agency Air 

Resources Board. Of the five cities surveyed for the study, Burbank and Glendora are the 

only two which have air quality monitoring stations within city limits, while the others 

have stations close by. Data on PM2.5 concentrations during the weeks the wildfire 

burned were available for the cities of Burbank and Glendora, while data on PM10 

concentrations were available for the city of Glendora only. Data on carbon monoxide 

(CO) were directly available from monitoring stations in Burbank and Glendora. While 

there are no monitoring stations in Duarte, Monrovia or Sierra Madre, there are stations 

very close by which reported levels of CO during the weeks the Station Fire burned. CO 

concentrations from the Azusa monitoring station were used as a proxy for levels in 

Duarte and Monrovia, as the station is located four miles from the former and six miles 

from the latter. CO concentrations from the Pasadena monitoring station were used as a 

proxy for levels in Sierra Madre, as these cities are located six and a half miles apart.  

Table 2.2 presents six-day averages of daily maximum and daily average 

concentrations of PM2.5, PM10 and CO where data were available, as well as the number 

and percentage of survey respondents in each surveyed city who smelled smoke both 

inside and outside of their home for a given range of days. 

TABLE 2.2 
Objective and Subjective Pollution Levels during the Station Fire 

 

           CO (ppm)       PM2.5 (μg/m3 )        PM10 (μg/m3) Smelled Smoke Inside of Home Smelled Smoke Outside of Home

average    

(6-d 

mean)

peak              

(6-d 

mean)

average    

(6-d 

mean)

peak              

(6-d 

mean)

average    

(6-d 

mean)

peak              

(6-d 

mean) None 1-5 days 6-10 days 11-15 days > 15 days None 1-5 days 6-10 days 11-15 days > 15 days

City

Duarte (n=54) 0.68 1.4 18 (33%) 20 (37%) 8 (15%) 5 (9%) 3 (6%) 2 (4%) 15 (28%) 13 (24%) 10 (19%) 14 (26%)

Monrovia (n=84) 0.68 1.4 29 (35%) 29 (35%) 16 (19%) 7 (8%) 3 (4%) 2 (2%) 24 (29%) 32 (38%) 14 (17%) 12 (14%)

Sierra Madre (n=31) 0.48 1.8 16 (52%) 9 (29%) 6 (19%) 0 (0%) 0 (0%) 3 (10%) 9 (29%) 11 (35%) 3 (10%) 5 (16%)

Burbank (n=80) 0.64 1.57 25.18 93.5 37 (46%) 24 (30%) 15 (19%) 3 (4%) 1 (1%) 4 (5%) 28 (35%) 24 (30%) 13 (16%) 11 (14%)

Glendora (n=164) 0.65 1.42 46.83 120.83 53.82 133.12 75 (46%) 56 (34%) 21 (13%) 8 (5%) 4 (2%) 11 (7%) 61 (37%) 53 (32%) 27 (16%) 12 (7%)
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During the Station Fire, daily average levels of PM2.5 reached as high as 82.9 

µg/m3 in Glendora and 38 µg/m3 in Burbank, and exceeded national standards of 35 

µg/m3 for three days in Glendora and one day in Burbank during the first week the fire 

burned. Daily peak one hour concentrations of PM2.5 were as high as 223 µg/m3 in 

Glendora and 189 µg/m3 in Burbank. Daily average concentrations of PM10 reached 93.8 

µg/m3 in Glendora and one hour peak concentrations reached 214.4 µg/m3. These 

elevated levels of particulate matter are very similar to estimates reported for other large 

wildfires. During Colorado’s Hayman fire of 2002, Sutherland et al. (2005) reported a 24-

hour mean PM2.5 concentration of 63.1 µg/m3 during two spike days following the 

wildfire. For the same wildfire, Vedal and Dutton (2006) reported 24-hour mean 

concentrations of PM2.5 of 44-48 µg/m3 and peak one hour concentrations of 200 µg/m3. 

Wu et al. (2006) estimated PM2.5 concentrations of 75-90 µg/m3 during the 2003 

Southern California wildfires.  

Figure 2.2 shows daily average and daily maximum levels of PM 2.5 and CO in 

the cities of Glendora and Burbank during the two weeks following the start of the 

Station Fire. Approximately one week after the fire began all five of the cities surveyed 

for this study were warned that air quality levels would likely reach unhealthy levels by 

the South Coast Air Quality Management District. 
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                Daily Average Data                         Daily Maximum 1 Hour Avg. Hourly Data 

  
 

   Daily Average Data                Daily Maximum 1 Hour Avg. Hourly Data 

           
FIGURE 2.2 

Concentration of PM2.5 and CO in Glendora and Burbank – 8/24-9/9, 2009 
 

Data retrieved from: CA EPA Air Resources Board, Air Quality Data Query Tool. 
http://www.arb.ca.gov/aqmis2/aqdselect.php 

 

Health Effects   

Of the 413 survey respondents, 156 experienced at least one symptom from 

exposure to the Station Fire smoke. Of these 156 individuals who experienced symptoms, 

the average length of time symptoms lasted was for 8.7 days. The Centers for Disease 

Control and Prevention and U.S. Environmental Protection Agency report that 

individuals with heart or lung disease are at greater risk for experiencing health effects 

from wildfire smoke. Table 2.3 outlines the number and percentage of all 413 survey 

respondents who experienced each type of health symptom, as well as the number and 
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percentage of those individuals both with and without a preexisting heart or respiratory 

condition who experienced each type of symptom.  

TABLE 2.3 
Health Symptoms of Survey Respondents 

 

Averting and Mitigating Actions  

The defensive, or averting, behavior method is based on the assumption that 

individuals respond to threats of pollution and other environmental contaminants by 

taking defensive actions. If this information is to be used to calculate the economic value 

of a reduction in an environmental contaminant, a few assumptions underlying the 

method should be confirmed in the data. First, individuals need to believe that the 

pollutant at hand can affect their health in order for them to choose to invest time and 

money in taking actions to defend themselves against exposure. Second, we need to know 

if the majority of individuals are actually taking these defensive actions in response to 

exposure (Dickie, 2003; Freeman, 2003) and that they believe these actions are effective 

(Freeman, 2003). 

Results of the Station Fire survey show that 90% of all survey respondents believe 

that exposure to wildfire smoke can affect a person’s health and 89% reported taking 

some defensive action as a direct result of exposure to the wildfire smoke. Of these 

respondents who took at least one action, 77% thought they were at least a little effective 

at reducing or eliminating the health effects from exposure, 4% thought they were not 

All Respondents (n=413) Preexisting Condition  (n=77) No Preexisting Condition (n=336)

At least one symptom 156 (38%) 47 (61%) 109 (32%)
Ear, nose or throat symptoms 147 (36%) 43 (56%) 104 (31%)
Breathing symptoms 76 (18%) 30 (39%) 46 (14%)
Heart symptoms 18 (4%) 7 (9%) 11 (3%)
Other symptoms (anxiety, nausea, etc.) 36 (9%) 12 (16%) 24 (7%)
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effective at all, and the rest reported that they did not know the effectiveness of the 

actions taken.  

Dickie (2003) summarizes defensive behavior method studies and finds that 15-

98% of survey respondents take defensive actions in response to an environmental 

contaminant, with the majority reporting somewhere in the middle. We feel that our 

finding of 89% represents a high enough percentage of survey respondents to be able to 

accurately apply the defensive behavior method. Table 2.4 outlines the number and 

percentage of survey respondents who reported taking each averting or mitigating action, 

along with the average cost reported by those who took that action. Four respondents 

reported averting expenditures well above the mean, so any expenditure from these four 

respondents greater than 3 standard deviations from the sample mean was re-coded to the 

highest value without the outlier. Table 2.4 with these outliers not recoded can be found 

in the Appendix, Table 2.A.  
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TABLE 2.4 
Averting and Mitigating Actions Taken by Respondents and Average Expenditure on 

Each (n=413) 

Averting Actions 

Number of 
Survey 

Respondents  

Percentage of 
Survey 

Respondents 
Average 

Expenditure  

Evacuated 23 5.6% $257.95 
Wore a mask 29 7.0% $6.04  
Used an air cleaner, filter or humidifier 88 21.3% $26.93  
Avoided going to work 19 4.6% $219.412  

Removed ashes from property 237 57.4% $8.67  
Ran air conditioner more than usual 249 60.3% $27.663  

Stayed indoors more than usual 302 73.1% N/A 
Avoided normal outdoor recreation/exercise 321 77.7% N/A 

Mitigating Actions       

Obtained medical care/prescription 
medications 26 6.3% $77.874  
Took non-prescription medicines 52 12.6% $16.86  
Went to non-traditional healthcare provider 5 1.2% $33.00  
Missed work 15 3.6% $691.76 
Lost days of recreation activities 114 27.6% NA 
        

 
 
 
 

                                                           
2 Lost earnings reported by respondent.  

3 Respondents were not asked to report this cost. The price was calculated as the kilowatt hours per day 
used in running the air conditioner*the cost per kilowatt hour*the average number of days respondents took 
this averting action. According to the California Energy Commission, the average California resident uses 
27 kilowatt hours to run their central air conditioning for 12 hours/day (assuming the air conditioner is run 
for 120 days of the year). According to the U.S. Energy Information Administration, residents in California 
in September of 2009 were charged 15.76 cents per kilowatt hour used. Respondents who ran the air 
conditioning more as a result of the wildfire smoke ran it for an average of 6.5 days. This results in a value 
of $27.66. 
 
4 Includes the opportunity cost of time spent traveling to and receiving medical care, calculated as the 
number of hours spent in these activities*the hourly wage rate reported by that respondent. 
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IV. MAXIMUM SIMULATED LIKELIHOOD ESTIMATION OF A HEALTH 
PRODUCTION FUNCTION 

 
To calculate the full economic cost of the health effects from exposure to the 

smoke from the Station Fire, a health production function such as that outlined in 

equation (2.1) is estimated using regression analysis. The number of symptom days 

experienced by survey respondents is the dependent variable of interest, regressed on the 

independent variables that would be expected to influence this. This includes everything 

on the right hand side of the health production function, including pollution levels, 

averting and mitigating actions, the individual’s health history, lifestyle factors and 

demographic factors.   

Previous findings show that averting and mitigating action variables are often 

jointly determined with health outcomes and correcting for this endogeneity is important 

for consistent estimation of regression parameters (Joyce et al., 1989; Alberini et al., 

1996; Dickie, 2005). The endogeneity typically arises due to correlation between 

unobserved factors that affect both the health outcome as well as the choice of averting 

and mitigating actions (Dickie, 2003). A typical solution to the endogeneity problem is to 

employ an instrumental variables approach, such as two-stage least squares. However, 

given that the dependent variable in our analysis is a count variable (the number of 

symptom days experienced) and the potentially endogenous averting and mitigating 

action variables are binary (whether or not the action was undertaken), simple two-stage 

approaches will not provide consistent estimators (Wooldridge, 2002; Terza et al., 2008; 

Staub, 2009). To control for potential endogeneity in this nonlinear framework, we apply 

a maximum simulated likelihood estimation model developed by Partha Deb and Pravin 
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Trivedi.5 Following Deb and Trivedi (2006a,b) the model has the following equations for 

the health outcome and the endogenous binary regressor: 

Pr [Yi = yi | xi, di, li] = f (x i´β + γdi + λl i)     (2.4) 

 Pr [di  = 1 | zi, li] = g (zi´α + δl i)      (2.5) 

For our purposes, in the outcome equation (2.4), yi represents the total number of 

days symptoms from the wildfire smoke were experienced and xi represents a vector of 

exogenous variables influencing symptom days, such as objective or perceived pollution 

levels, type of symptom experienced, health history, demographics and lifestyle factors, 

with associated parameters β. These represent the exogenous variables that have been 

found to influence an individual’s health outcome (see Dickie, 2003; Freeman, 2003). 

Higher actual or perceived pollution levels are expected to result in a greater number of 

expected symptom days, all else constant. Individuals with chronic health conditions or a 

less healthy lifestyle overall are expected to have more symptom days. It is uncertain 

what effect type of symptom experienced and various demographic factors will have on 

expected symptom days. The potentially endogenous binary regressor (i.e. averting and 

mitigating actions) is represented by di, with associated parameter γ. These variables are 

expected to have a negative effect on expected symptom days. The error term in each 

equation is partitioned into a vector of latent factors l i and an independently distributed 

random error term. The latent factors represent unobserved individual specific 

characteristics which affect both the choice of averting/mitigating actions as well as the 

health outcome. They have associated parameters λ in the health outcome equation, 

referred to as factor loadings. 
                                                           
5 We graciously thank Partha Deb for providing access to his Stata program treatreg2. 
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In equation (2.5), which models the binary endogenous regressor, zi represents a 

vector of exogenous variables which could affect the use of the endogenous averting or 

mitigating action variable, with associated parameters α. These could be pollution levels, 

type of symptom experienced, health history, demographics, lifestyle factors, as well as 

beliefs about the effects of wildfire smoke on health. Higher pollution levels are expected 

to have a positive effect on the probability of undertaking a given averting or mitigating 

activity, as are beliefs that wildfire smoke can affect human health. It is uncertain what 

the effect of other variables will be. Equations (2.4) and (2.5) can contain the exact same 

set of exogenous variables, however, for more robust identification, instrumental 

variables which are included in the binary endogenous variable equation but excluded 

from the outcome equation can be used. Again, the error term is partitioned into latent 

factors l i with associated parameters δ and an independently distributed random error 

term.  

The observed random outcome variable yi and the observed endogenous treatment 

variable di are modeled using appropriate distribution functions f (for a count variable) 

and g (for a binary variable). Following Deb and Trivedi (2006a,b), the joint distribution 

of the health outcome and binary endogenous variable, conditional on common latent 

factors, can then be specified as follows: 

 Pr [Yi = yi, di  = 1 | xi, zi, li] = f (x i´β + γdi + λl i) * g (zi´α + δl i)  (2.6) 

Although the latent factors l i are unknown, it is assumed that their distribution is known 

and can be integrated out of the joint density. The method of maximum simulated 

likelihood (Gourieroux et al., 1984) is then applied to evaluate the integral. The latent 

factors are estimated by taking a certain number of draws of a pseudo-random number 
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from an assumed standard normal distribution. The estimator then maximizes the average 

simulated log likelihood function, which is equivalent to maximizing the log-likelihood 

function if enough simulation draws are used. 

 

V. RESULTS 

To calculate the full economic cost of the health effects from exposure to the 

smoke from the Station Fire using equation (2.3a) or (2.3b), the researcher needs to 

estimate the marginal effect of any averting or mitigating action on expected symptom 

days, along with the full cost of this action. Preliminary analyses indicate that “Home air 

cleaner” is the only endogenous averting or mitigating action variable and the only 

variable that has a negative and statistically significant effect on expected symptom 

days.6 As a result, this variable is focused on in the maximum simulated likelihood 

estimation and used to calculate equation (2.3a). Air cleaners and purifiers are 

recommended and often used in the home during wildfires to help reduce indoor particle 

levels (Lipsett et al., 2008; U.S. EPA, Indoor Air Quality) and this is the case for the 21% 

of survey respondents who used an air cleaner to prevent health damages from the Station 

Fire smoke. Results from the maximum simulated likelihood regression model of 

symptom days, including only those variables which had a statistically significant effect 

on expected symptom days, can be found in Table 2.5.  

                                                           
6 A version of the Hausman specification error test is used to test for endogeneity of the averting and 
mitigating action variables in the health production function equation. See Hausman, 1976 and Gujarati, 
2003. Preliminary analysis shows that only three averting actions, “Home air cleaner”, “Ran the air 
conditioner more”, and “Avoided normal outdoor recreation/exercise” could be explained by an appropriate 
set of instrumental variables, which is a required feature to employ this test. These instrumental variables 
include “Employed full-time,” “Months at current zip code,” “Income”, and “Believes smoke can affect 
health.” 
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TABLE 2.5 
Defensive Behavior Model 

 
*: p<0.10, **: p<0.05, ***: p<0.01 

Variable Coefficient Robust Std. Error

SYMPTOM DAYS - Negative Binomial Regression

Smelled smoke indoors > 5 days 0.394*** 0.142

Smelled smoke outdoors > 5 days 0.953*** 0.168

Ear, nose or throat symptoms 3.630*** 0.232

Breathing symptoms 0.789*** 0.183

Other symptoms 0.719*** 0.221

Home air cleaner -0.848*** 0.163

Hours per week of outdoor recreation -0.023* 0.012

Male -0.341** 0.151

Married -0.345** 0.153

Age 0.012** 0.005

College graduate 0.479*** 0.141

Employed part-time 0.625** 0.305

Lives in Duarte 0.539** 0.225

Lives in Burbank 0.460** 0.185

Lives in Glendora 0.406** 0.174

Constant -3.701*** 0.476

HOME AIR CLEANER - Probit Regression

Smell smoke inside > 5 days 0.362 0.259

Smell smoke outside > 5 days 0.336 0.282

Ear, nose or throat symptoms 0.672*** 0.242

Breathing symptoms 0.168 0.265

Other symptoms 1.374*** 0.333

Hours per week of outdoor recreation -0.017 0.021

Male -0.183 0.246

Married 0.437 0.268

Age -0.006 0.010

College graduate 0.375 0.248

Income -0.005** 0.003

Employed full-time 0.560** 0.284

Employed part-time 0.519 0.461

Lives in Duarte -0.220 0.400

Lives in Burbank 0.411 0.307

Lives in Glendora 0.496* 0.272

Believes smoke can affect health 1.426** 0.703

Constant -3.481*** 1.096

/lambda 0.858*** 0.072

/lnalpha -13.657*** 2.491

N = 377

Log Likelihood = -672.066

Wald chi2 (24) = 424.71

Prob > chi2 = 0.0000001
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Expected symptom days were modeled with a negative binomial count data 

distribution and the endogenous binary treatment variable, “Home air cleaner,” was 

assumed to follow a normal distribution. Two thousand simulation draws were used 

based on recommendations from Deb and Trivedi (2006a) and robust standard errors 

which take simulation error into account are reported.  

 

Determinants of Expected Symptom Days 

The results of the regression model in Table 2.5 show that respondents who 

smelled smoke inside or outside the home for greater than five days were more likely to 

experience a greater number of symptom days, holding all other variables constant. 

Similarly, Kunzli et al. (2006) found that the number of days wildfire smoke was smelled 

indoors was an important determinant of health effects from the 2003 Southern California 

wildfires. We initially included actual pollution levels in the model, however, similar to 

findings by Kunzli et al. (2006) these were not found to have a significant effect on 

expected symptom days. If the respondent experienced ear, nose, or throat symptoms, 

breathing symptoms, or other symptoms such as nausea or anxiety, this also has a 

positive effect on the expected number of symptom days experienced, compared to heart 

symptoms. In addition, using an air cleaner has a negative and statistically significant 

effect on the expected number of symptom days experienced. This supports previous 

findings. Mott et al. (2002) also found that greater use of high-efficiency air cleaners in 

the home was associated with reduced odds of reporting adverse health effects during a 

1999 wildfire.  
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Similarly, Mott et al. (2002) found that during a 1999 wildfire in northern 

California, greater use of high-efficiency air cleaners in the home was associated with 

reduced odds of reporting adverse health effects. This beneficial effect of using air 

cleaners during wildfire events is further supported by a study which took place 

throughout Colorado during the 2002 wildfire season by Henderson et al., 2005. The 

authors conducted a study on the effectiveness of air cleaners during wildfires and 

prescribed burns and found that homes with air cleaners experienced 63-88% less 

particulate matter in their home than those without air cleaners. A variety of health, 

lifestyle and demographic factors also have a significant effect on the expected number of 

symptom days.  

 

Determinants of Air Cleaner Use 

All variables included in the symptom production function, as well as any 

additional explanatory variables which may influence the use of a home air cleaner, were 

included in the probit model for the endogenous averting action variable “Home air 

cleaner.” The discussion here will be limited to those variables which had a statistically 

significant effect on the use of an air cleaner. If the respondent experienced ear, nose or 

throat symptoms or other symptoms such as nausea or anxiety, this has a positive effect 

on the probability of using an air cleaner, compared to other types of symptoms. Higher 

income levels are associated with a decreased probability of using an air cleaner in the 

home. This runs contrary to previous findings that higher income levels are associated 

with an increased probability of taking averting actions (Akerman et al., 1991; Smith et 

al., 1995; Abrahams et al., 2000; Um et al., 2002). In addition, individuals who believe 
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that smoke can affect a person’s health were more likely to use an air cleaner in the home 

to minimize exposure to the smoke, all else constant.  

Finally, the positive and significant coefficient on the latent factor, lambda, 

suggests that individuals who are more likely to use an air cleaner, based on unobserved 

characteristics, are more likely to experience symptom days. This could reflect some 

predisposition to getting sick. For instance, individuals who are more likely to experience 

symptoms from smoke may realize this, and as a result they may be more likely to take 

averting actions, such as using an air cleaner in their home during a wildfire.  

 

WTP for a Reduction in One Wildfire Smoke Induced Symptom Day 

Given that using a home air cleaner has a negative and statistically significant 

effect on expected symptom days and an observable cost, this is the averting action used 

to calculate the individual willingness to pay for a decrease in symptom days from 

wildfire smoke. The incremental effect of this endogenous input on output is -0.31, 

meaning the use of an air cleaner is expected to reduce symptom days by 0.31.7 Taking 

the average of the cost reported by those respondents who used an air cleaner during the 

Station Fire and reported a cost (including zero) results in an estimated price of $26.93 

for this averting action. From equation (2.3a) the average respondent’s marginal value of 

a reduction in one symptom day from exposure to wildfire smoke is equal to -$26.93/-

0.31 = $86.87. This result falls within the range for avoiding one day of various 

symptoms found in the literature. For example, by combining a meta-analysis of 

                                                           
7 The discrete change in expected count outcome resulting from a change in binary variable Xk from 0 to 1 
can be calculated as: [µi|X

k=0][exp(βk)-1] where µ=exp(Xβ), with all variables except Xk set at their sample 
mean. 
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morbidity valuation studies with a health status index, Johnson et al. (1997) estimated 

values ranging from $36-$68 to avoid one day of mild cough, $110 to avoid one day of 

shortness of breath, and $91-$129 to avoid one day of severe asthma.8 

Including the full sample of respondents, an average of 3.3 symptom days were 

experienced. For the 38% of respondents who reported experiencing symptoms, an 

average of 8.7 symptom days were reported. This marginal value of reduced illness 

includes avoidance of the full cost of medical care and medications, lost wages from 

being unable to work, expenditures on preventative actions taken to avoid exposure to the 

smoke, as well as the disutility associated with symptoms or lost leisure.  

 

Cost of Illness 

A simple cost of illness for one symptom day was calculated using a formula from 

Alberini and Krupnick (2000). First, probit regression models are estimated for four 

mitigating actions: visiting a doctor or taking prescribed medications, taking 

nonprescription medications, missing work, and losing days of recreation activities.9 In 

each model the dependent variable is coded with a 1 if the action was taken and 0 

otherwise. Results of these full regression models can be found in the Appendix, Table 

2.B. After removing variables that were not significant at standard significance levels, the 

models are re-estimated. For each action, the predicted probability that the action is 

taken, with independent variables set at their mean and symptom days set at 1, is 

multiplied by its average in-sample cost. These are the same average costs reported in 

                                                           
8 All estimates were converted to 2009 U.S. dollars using the Consumer Price Index. 

9 Due to the fact that only five individuals went to a non-traditional healthcare provider, a regression model 
was not estimated for this mitigating action.  
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Table 2.4 except for work days lost, which is adjusted to represent the lost wages from 

one work day lost due to illness. Summing costs across all actions results in a cost of 

illness for one symptom day of $9.32.  

The willingness to pay estimate of $86.87 exceeds this in-sample cost of illness 

estimate by a factor of about nine. This ratio is larger than that found in some previous 

studies of health damages which compare the two estimates but smaller than others. For 

instance, Rowe and Chestnut (1985) estimated a WTP: COI ratio ranging from 1.6-3.7 for 

asthma symptoms due to ozone exposure. Alberini and Krupnick (2000) estimated a 

WTP: COI ratio ranging from 1.61-2.26 for symptoms associated with various levels of 

air quality in Taiwan. However, Berger et al. (1987) found much greater differences 

when comparing willingness to pay and cost of illness estimates for seven light health 

symptoms. Mean daily willingness to pay values to avoid one day of various symptoms 

were always found to exceed daily cost of illness estimates, but the difference  ranged 

from willingness to pay estimates about three times larger than cost of illness estimates to 

about thirty times larger, depending on the health symptom.  

Our WTP: COI ratio of about nine raises some interesting points as this ratio has 

never been calculated for the specific case of health damages from wildfire smoke 

exposure. While 156 of the 413 respondents in this study experienced symptoms from 

smoke from the Station Fire, only 15 sought medical attention and an additional 11 took 

prescription medications. This suggests that overall health effects were relatively minor 

and the majority of individuals who experienced health symptoms did not require medical 

attention with a high associated cost. However, our results do show that of those 156 

respondents who experienced health symptoms, 110 of them missed recreation days as a 
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result of these symptoms. This suggests that the disutility associated with symptoms or 

lost leisure captured in the WTP estimate but not the COI estimate may be substantial for 

individuals exposed to wildfire smoke. In addition, 366 individuals in our sample took 

some preventative, averting action to minimize their exposure to smoke from the Station 

Fire, and these actions were costly. 

The cost of illness is an underestimate of the economic cost of health effects from 

exposure to a pollutant because it ignores the value of averting expenditures as well as 

the disutility associated with symptoms or lost leisure that results from illness (Freeman, 

2003). Our results support this finding and indicate that these two components of the 

economic cost of health damages from exposure to wildfire smoke are substantial.  

 

VI. IMPLICATIONS 

While there is a growing literature citing the need to incorporate the cost of 

damages to human health from exposure to wildfire smoke in assessments of the damages 

caused by wildfires, there is a lack of literature available to policy makers to assist them 

in obtaining these costs. In areas such as California where wildfires are prevalent and 

suppression costs are high, policy makers will continue to have to make informed 

decisions about the appropriate level of investment in future fire management and 

prevention practices. If these practices are to be evaluated on an economic efficiency 

based criterion, it is important to follow past recommendations of Gorte and Gorte (1979) 

as well as Butry et al. (2001) and include more than just suppression costs and insured 

losses in damage assessments of wildfires. Any proactive, consistent and thorough 
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evaluation of fire management policies needs to focus on inclusion of all associated 

economic costs and benefits of a given wildfire.  

This study used unique primary data during one of California’s largest wildfires to 

date to explore the health damages experienced during the Station Fire of 2009 along 

with all associated economic costs. We confirm that concentrations of particulate matter 

and carbon monoxide were elevated in the cities surveyed during the Station Fire and find 

that 38% of survey respondents experienced at least one symptom as a result of exposure 

to the wildfire smoke. The majority of survey respondents indicated that they are aware 

that wildfire smoke can be damaging to their health, which is evident given that 89% 

made some expenditure of time or money in taking preventative actions to decrease their 

exposure to smoke from the Station Fire. 

Estimation of a health production function reveals that the number of symptom 

days experienced was influenced by factors such as the number of days wildfire smoke 

was smelled outside of the home, demographic factors such as age, sex and marital status, 

as well as the use of a home air cleaner. This finding that increased use of air cleaners in 

the home is associated with reduced adverse health effects from wildfire smoke is 

consistent with findings by Mott et al. (2002) and Henderson et al. (2005) and provides 

additional support to suggestions by Henderson et al. (2005) that agencies may want to 

change recommendations during wildfires by advising individuals to use home air 

cleaners to avoid health damages from nearby wildfires rather that just staying indoors.   

In terms of the cost of damages to health from the Station Fire smoke, we 

calculate a simple daily cost of illness estimate of $9.32. While policy makers may be 

comfortable using methods such as this due to the observable nature of medical 



42 

 

expenditure data, it is widely understood that this method will underestimate the true 

economic cost of damages to human health. Applying the defensive behavior method 

reveals that individuals exposed to wildfire smoke during the Station Fire were willing to 

pay on average $86.87 to avoid one day of wildfire smoke induced symptoms. The 

discrepancy between the cost of illness and willingness to pay estimates confirm 

theoretical predictions that averting expenditures and the disutility associated with 

symptoms or lost leisure account for a large part of the economic cost of health damages 

from wildfire smoke. 

While this is the first study to apply the defensive behavior method to the specific 

application of wildfire smoke exposure, we feel that it is a viable option to be used for 

calculating the economic cost of health damages from exposure to wildfire smoke to be 

included in damage assessments. Although this method is not flawless and concerns have 

been raised over issues such as joint production which are beyond the scope of this paper 

(see Bartik, 1988; Bresnahan and Dickie, 1994; Dickie, 2003), the framework provides an 

economically consistent approach to calculating a comprehensive estimate of this cost. 

This is beneficial for a number of reasons. First, while a handful of studies valuing health 

damages from wildfire smoke have attempted to transfer willingness to pay estimates 

from other studies or adjust cost of illness estimates into comprehensive willingness to 

pay estimates using assumed ratios, none of the willingness to pay estimates or 

calibration factors were originally estimated for the health damages associated with 

wildfires specifically. This study calculates both measures and estimates a WTP: COI 

ratio of nine. These findings reveal that a higher calibration factor may be warranted for 

the case of wildfire smoke.  Second, while time and money constraints may make it 
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difficult for agencies to collect primary data to undertake the defensive behavior method 

after each wildfire, the more estimates there are available in the literature, the easier it 

will be to accurately apply benefit transfer techniques and include all relevant costs of a 

given wildfire in damage assessments. 
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APPENDIX 

TABLE 2.A 
Averting and Mitigating Actions Taken by Respondents and Average Expenditure on 

Each with Outliers Included (n=413) 

Averting Actions 

Number of 
Survey 

Respondents  

Percentage of 
Survey 

Respondents 
Average 

Expenditure  

Evacuated 23 5.6% $471.59  
Wore a mask 29 7.0% $16.04  
Used an air cleaner, filter or humidifier 88 21.3% $36.19 
Avoided going to work 19 4.6% $390.00  
Removed ashes from property 237 57.2% $18.91  
Ran air conditioner more than usual 249 60.1% $27.66  
Stayed indoors more than usual 302 72.9% N/A 
Avoided normal outdoor recreation/exercise 321 77.5% N/A 

Mitigating Actions       

Obtained medical care/prescription 
medications 23 5.6% $77.87 
Took non-prescription medicines 51 12.3% $16.86  
Went to non-traditional health provider 5 1.2% $33.00  
Missed work 14 3.4% $691.76 
Lost days of recreation activities 114 27.5% NA 
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TABLE 2.B 
Determinants of Mitigating Activities (Probit)10 

*: p≤0.10, **: p≤0.05, ***: p≤0.01 

 

 

 

 

 

                                                           
10 A two-stage residual inclusion approach is used to test the endogeneity of ‘Symptom days’ in each 
mitigating action model. This results in a failure to reject the null hypothesis of exogeneity of this variable 
in each model.  

Doctor/Prescription Meds. Non-prescription Meds. Missed Work Missed Recreation 

Variable Coeff. Std. Error Coeff. Std. Error Coeff. Std. Error Coeff. Std. Error

Days smoke smelled indoors

                    1-5 DAYS -0.103 0.437 0.457* 0.278 1.229 0.929 0.412* 0.224

                    6-10 DAYS -0.596 0.575 0.475 0.337 1.775* 0.972 0.544** 0.276

                   11-15 DAYS 0.958 0.694 -0.157 0.565 1.353 1.231 0.701* 0.418

                    > 15 DAYS (empty) 1.512** 0.592 (empty) -0.109 0.524

Average daily maximum CO concentration -1.155 2.111 -0.515 1.296 0.946 2.081 0.675 0.972

Symptom days 0.136*** 0.032 0.064*** 0.017 0.041 0.037 0.132*** 0.020

Current respiratory condition 0.798* 0.408 -0.404 0.321 -0.861 0.742 0.305 0.283

Current heart condition -0.530 0.854 -0.577 0.512 1.027 1.003 -0.466 0.379

Experienced health effects from wildfire smoke in past -0.236 0.448 0.757*** 0.258 0.684 0.672 0.821*** 0.225

Times per week of exercise 0.019 0.234 -0.108 0.148 0.585 0.388 0.246** 0.121

Smoker 0.937 0.648 -1.172 0.888 0.498 0.993 0.550 0.339

Alcoholic drinks per week -0.120 0.317 0.194 0.170 -0.119 0.435 0.157 0.135

Current health is excellent -1.834 1.241 -1.038 0.917 3.671 327.915 -0.037 1.179

Current health is good -1.828 1.202 -1.039 0.887 3.774 327.915 -0.189 1.160

Current health is fair -1.906* 1.149 -0.867 0.869 (omitted) 0.295 1.155

Hours per week of indoor recreation 0.021 0.052 0.020 0.030 -0.322** 0.164 0.011 0.028

Hours per week of outdoor recreation -0.048 0.041 0.018 0.023 0.020 0.055 -0.012 0.020

Has a regular doctor (omitted) 0.033 0.376 -0.557 0.695 0.216 0.325

Male -1.452*** 0.512 -0.542** 0.260 -1.619** 0.655 -0.288 0.215

Married 1.208** 0.521 -0.081 0.274 0.673 0.725 0.547** 0.247

Age -0.006 0.016 -0.008 0.010 -0.010 0.026 -0.021** 0.009

White -0.342 0.464 -0.046 0.304 -1.120* 0.665 -0.187 0.263

Graduate school graduate 0.174 0.499 -0.172 0.293 0.567 0.542 0.553** 0.261

College graduate 0.183 0.404 0.264 0.265 1.048 0.803 0.017 0.226

Employed full-time -0.088 0.526 0.301 0.324 1.073 0.739 0.078 0.275

Employed part-time 0.074 0.733 -0.827 0.617 0.332 1.024 0.195 0.389

Has health insurance 0.500 0.773 0.537 0.495 -0.039 0.985 -0.639 0.394

Lives in Duarte -0.264 0.631 -0.415 0.449 (omitted) -0.597* 0.339

Lives in Monrovia 0.033 0.476 0.150 0.301 0.191 0.637 0.372 0.268

Lives in Burbank 0.165 0.483 0.131 0.307 (omitted) -0.125 0.257

Income -0.006 0.005 0.000 0.003 0.000 0.006 -0.002 0.002

Heard or read about possible health effects 0.356 0.625 -0.340 0.312 0.482 0.852 -0.207 0.274

Believes smoke can affect health (omitted) (omitted) (omitted) 0.179 0.411

Constant 1.124 3.477 0.020 2.280 -8.732 327.951 -1.586 1.972

N = 287 339 187 373

Log Likelihood -43.666 -94.202 -27.330 -130.874

LR chi2 82.460 91.690 44.840 190.690

Prob > chi2 0.000001 0.000001 0.022900 0.000001
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CHAPTER THREE 

A Comparison of Defensive Expenditures and Willingness to Pay for 
Wildfire Smoke Reduction: How Different are These Two Methods? 

 

I. INTRODUCTION 

As wildfires near urban areas have become more common, the health effects 

associated with exposure to wildfire smoke have also become more prevalent. It is widely 

understood that exposure to the pollutants released in wildfire smoke, such as particulate 

matter and carbon monoxide, can be damaging to human health (CDC; U.S. EPA). While 

statistics on the number of individuals who seek medical care as a result of exposure to 

these pollutants are sometimes released, in general, little is known about the full range of 

health effects the majority of residents exposed to wildfire smoke experience (Kunzli et 

al., 2006; Vedal, 2006; Morgan, 2010). Likewise, little is known about the costs imposed 

on individuals as a result of exposure to wildfire smoke and the associated health effects 

(Dale, 2009; Kochi et al., 2010). Recent studies such as Pinto-Prades et al. (2009) point 

out the need for attaching monetary values to health effects if proper decision-making 

based on cost-benefit analyses are to be made.  

The epidemiological studies which have conducted surveys after wildfire events 

to measure acute health effects have found a positive correlation between wildfire smoke 

and a range of health damages (Mott et al., 2002; Kunzli et al., 2006). Further, these 

studies found that many individuals exposed to wildfire smoke change their behavior in 

an effort to defend themselves against the potential health damages that could result from 
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exposure. When wildfires occur near residences, local air quality reports and public 

service announcements will often advise individuals exposed to the smoke to take 

particular actions to minimize their exposure, such as staying indoors and running the air 

conditioner. During the 2003 Southern California wildfires, Kunzli et al. (2006) found 

that children with asthma were more likely to take preventative actions such as wearing 

masks and staying indoors to minimize their exposure to the smoke. Mott et al. (2002) 

found that during a 1999 wildfire in northern California near the Hoopa Valley National 

Indian Reservation, residents took actions such as wearing face masks, evacuating, 

running high-efficiency particulate air cleaners in the home and following public service 

announcements which advised them to take these actions.  

While these epidemiological studies confirm that individuals experience minor 

health effects from exposure to wildfire smoke and many individuals change their 

behavior to defend themselves from these damages, there is a lack of economic research 

on the cost imposed on individuals as a result of this exposure. The majority of the 

literature which has attempted to capture the economic cost of health damages from 

wildfire smoke has relied on secondary data and benefit transfer methods based on low 

levels of long-term exposure to urban air pollution. The few studies which have used 

primary data to calculate these costs have ignored behavioral responses to wildfire smoke 

exposure as well as the disutility associated with health effects or lost leisure. Neidell 

(2004) notes that while numerous studies attempt to capture the effects of pollution on 

health, many neglect to properly account for these behavioral responses. This information 

is important not only from a human welfare standpoint, but also plays a role in public 
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policy debates about the appropriate level of fire management practices given the effects 

of wildfires on exposed individuals.  

Economic theory and non-market valuation techniques highlight the importance 

of incorporating into the individual utility maximization process the behavioral responses 

to and disutility of exposure to an environmental contaminant. Information on the 

investments of time and money made on defensive actions can be used to infer the true 

economic cost of pollution from wildfire smoke, or equivalently, the value an individual 

places on reductions in pollution, i.e., the individual willingness to pay (WTP). Neidell 

(2004) rightfully argues that the cost of these defensive actions individuals take when 

exposed to a pollutant cannot be ignored in a welfare analysis. Economic theory tells us 

that ignoring these behavioral responses and the value of disutility will result in an 

underestimate of the true value of a reduction in pollution. However, to our knowledge, 

this information has never been collected and analyzed after a major wildfire.   

Using primary data from over 400 residents exposed to unhealthy levels of air 

quality during California’s Station Fire of 2009, this study looks at 1) the full range of 

health effects experienced as a result of exposure to the wildfire smoke; 2) the defensive 

actions taken in response to this exposure, as well as the major determinants that 

motivates these actions and the expenditures made on these actions; 3) the individual 

willingness to pay for a reduction in pollution levels from wildfire smoke; and 4) the 

relationship between expenditures on defensive actions and willingness to pay.  
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II. THEORETICAL FRAMEWORK 

The fact that individuals can choose to invest in defensive inputs which affect 

their production of some health output when exposed to an environmental contaminant is 

an underlying assumption of the defensive behavior method, commonly referred to as the 

averting behavior method. This is a revealed preference approach to non-market 

valuation which combines information about behavioral responses to pollution exposure 

with household production theory to infer the value of reducing the risk associated with 

exposure to a pollutant. When faced with exposure, it is assumed that individuals will 

choose to invest in defensive actions that reduce the health damages they could 

experience as long as the benefits of doing so exceed the costs (Dickie, 2003). While the 

defensive behavior method has been applied to a wide range of environmental 

contaminants, including but not limited to various air pollutants (Cropper, 1981; Gerking 

and Stanley, 1986; Joyce et al., 1989; Dickie, 2005), contaminated water supplies 

(Harrington et al., 1989; Um et al., 2002; Dasgupta, 2004); and nuisance pests (Jakus, 

1994), to our knowledge it has never been applied to wildfire smoke specifically.  

The basic framework underlying the defensive behavior method stems from a 

health production function first put forth by Grossman (1972) with extensions made by 

Cropper (1981) and Harrington and Portney (1987). Grossman’s original model outlined 

an individual’s demand for good health as a function of an inherited stock of health 

which depreciates over time and choice variables representing investments individuals 

make in their health. Here we present a simple one period model where an individual 

chooses his optimal level of health as a function of exogenous factors such as pollution, 

health status, lifestyle and demographic factors, as well as choice variables. These choice 
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variables include investments of time and money in taking defensive actions to reduce his 

exposure to wildfire smoke or minimize the health effects experienced as a result of 

exposure. Defensive actions are broken down into what are referred to as averting and 

mitigating actions. Averting actions are those taken to decrease exposure to the pollutant 

that causes the negative health outcome, such as staying indoors or using an air cleaner in 

the home to reduce pollution concentrations. Mitigating actions represent those that are 

taken after experiencing the health outcome in an effort to mitigate its negative effects, 

such as going to the doctor or taking medications. This method and the theoretical 

framework underlying it are explained in great detail in Dickie (2003) and Freeman 

(2003), so here we just summarize. An individual is assumed to maximize his level of 

utility, which is given by: 

U = U (X, L, S)        (3.1)  

where X represents consumption of a composite market good, L represents leisure time, 

and S represents some negative health outcome. We can assume that utility is increasing 

in consumption and leisure and decreasing in sick time. An individual ‘produces’ this 

negative health outcome S according to a health production function as follows: 

S = S (P, A, M, Z)        (3.2)  

where P represents exposure to a pollutant, A represents averting actions that can be 

taken to reduce exposure to the pollutant and thus the negative health outcome, M 

represents mitigating actions that can be taken to reduce the negative health outcome and 

Z represents a set of exogenous factors that can affect the health outcome, such as 

demographics and health status prior to exposure. It can be assumed that S is increasing 
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in exposure to the pollutant and decreasing in averting and mitigating actions. Individuals 

are also subject to a budget constraint: 

I + w [T – L – S (P, A, M, Z)] = X + pAA + pMM    (3.3)  

where I represents non-labor income, w represents labor income, and the individual is 

assumed to allocate his total time available for work T between work, leisure and S. 

Averting activities have a price of pA, mitigating activities a price of pM, and the price of X 

is normalized to 1. This can be solved as a utility maximization problem as well as an 

expenditure minimization problem. Focusing on the latter, the individual faces the 

following cost minimization problem:  

min X + pAA + pMM 

s.t. S* = S (P, A, M, Z)      (3.4)  

which can be re-written as the Lagrangian: 

 L = X + pAA + pMM + λ(S* - S (P, A, M, Z))     (3.5) 

Through first order conditions, we can solve for the values of A, M and λ that will 

produce a given level of sick time S* at a minimum cost. These values will be a function 

of pA, pM, S, P, and Z. Following Bartik (1988) and Dickie (2003), these functions can be 

used to define the defensive expenditure function as follows: 

D (pA, pM,, S*, P, Z) = pAA* + pMM*      (3.6) 

This function represents the minimum expenditure that must be made on defensive 

actions to achieve a given amount of sick time at a specific pollution level and set of 

prices for averting and mitigating actions. Using the envelope theorem, the benefits of, or 

willingness to pay for, a small reduction in pollution equals: 

 ∂ D(·) / ∂P         (3.7) 
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This is the savings in defensive expenditures needed to achieve the original level of S 

given a change in pollution levels. It should be noted that equation (3.7) assumes that S 

stays constant. However, this may not equal the actual, or observed, change in defensive 

expenditures due to the fact that as individuals adjust their defensive expenditures in 

response to a change in pollution, sick days will also likely change. If that is the case, the 

observed change in defensive expenditures provides a lower bound on compensating 

variation (see Courant and Porter, 1981; Harrington and Portney, 1987; Bartik, 1988). As 

derived in Harrington and Portney (1987), Alberini and Krupnick (2000), Freeman 

(2003) and others, the willingness to pay for a small decrease in pollution can be broken 

down into four components:  

(a) Incurred medical expenses due to health effects from exposure to pollution  

(b) Lost wages due to health effects from exposure to pollution 

(c) Expenditures on averting actions taken to avoid health effects 

(d) The disutility associated with symptoms or lost leisure 

Therefore, the willingness to pay for a reduction in pollution levels includes the 

individual value of savings on all four of these components. Component (a) represents 

mitigating actions taken to alleviate health effects from pollution and components (a) and 

(b) together are referred to as the cost of illness (COI) resulting from exposure to a 

pollutant. Component (c) is referred to as averting expenditures. As concluded in 

Harrington and Portney (1987), the sum of the cost of illness components and the 

expenditures on averting actions will typically underestimate “true benefits” of pollution 

reduction in that they will include everything except for the value of disutility associated 

with symptoms or lost leisure, component (d). In this study, we explore this relationship 
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for the specific application of wildfire smoke exposure. First, the cost of illness and 

averting expenditures associated with exposure to the smoke will be quantified. Second, 

the willingness to pay for a reduction in pollution levels from the smoke will be measured 

by applying equation (3.7). While theory tells us willingness to pay will be larger, we 

attempt to quantify the magnitude of this difference to capture the value of disutility 

associated with exposure to wildfire smoke. Since the observed change in defensive 

expenditures given a change in pollution levels may provide a lower bound on 

compensating variation, this will provide insights into the proportion and magnitude of 

the minimum value of the monetary loss associated with the disutility of symptoms and 

lost leisure.  

 
III. EMPIRICAL APPLICATION: WILDFIRE SMOKE FROM THE STATION  

FIRE 
 

California’s Station Fire of 2009 was the focus for this study. Residents in 

surrounding communities were exposed to unhealthy concentrations of pollution during 

this wildfire and many individuals took defensive actions to minimize their exposure to 

the wildfire smoke or the health effects that could result. See Chapter 2 for a complete 

description of the study area, survey design, data collection, and sample statistics. 

 

IV. ESTIMATING THE COST OF ILLNESS AND AVERTING EXPENDITUR ES 

Econometric Models 

Given that the mitigating and averting actions individuals undertake when 

exposed to a pollutant are an important component of the defensive behavior method, 

probit regression models are estimated to identify the determinants of each mitigating and 
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averting action taken by respondents during the Station Fire and then used to calculate the 

predicted probability that each action is taken. As explained in Section 2, these decisions 

will be a function of prices, the negative health outcome, pollution levels, as well as any 

other exogenous factors that could influence the decision to undertake these actions. The 

reported costs of actions taken could not be included in the regression models given that 

anytime the price is greater than zero this variable predicts the outcome of undertaking 

the associated action perfectly. The number of symptoms and the level of pain 

experienced are included as the measure of the negative health outcome, and both 

objective and subjective pollution levels are included. Given high correlation between the 

number of days smoke was smelled both inside and outside the home and findings by 

Kunzli et al. (2006) that the number of days smoke was smelled indoors was a very 

important determinant of health effects experienced and mitigating actions taken during 

the 2003 Southern California wildfires, we focus on this measure for subjective pollution 

levels. Given the relatively small number of individuals who smelled smoke indoors for 

more than ten days, respondents were categorized into those smelling smoke indoors for 

1-5 days and those smelling smoke indoors for greater than five days. For objective 

pollution levels, since measures of PM10 concentrations were available for the city of 

Glendora only and PM2.5 concentrations were available for the cities of Glendora and 

Burbank only, we chose to include six day averages of daily maximum carbon monoxide 

concentrations as the measure of objective pollution levels during the Station Fire.  

These probit regression models will control for factors that influence an 

individual’s decision to undertake each mitigating or averting action. By setting 

independent variables at their mean, the predicted probability that each action is taken 
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can then be calculated. An estimate of the average household’s predicted cost of illness 

and averting expenditures due to wildfire smoke can then be quantified using a simple 

formula similar to one presented in Alberini and Krupnick (2000) as follows:   

 ∑ ��� � ��	
 � ���� ]        (3.8)  

where d represents each possible averting or mitigating action, pd represents the average 

in-sample reported cost of taking each action, and Φ represents the predicted probability 

that the action is taken, based on all households, with independent variables set at their 

mean (based on the standard normal cdf). Recall that for averting actions, respondents 

were asked to report the range of days that each action was taken. As a result, the in-

sample reported cost of taking each averting action will be averaged based on the range 

of days the action was taken. Summing across all mitigating actions gives an estimate of 

the predicted cost of illness and summing across all averting actions gives an estimate of 

the predicted averting expenditures for the average household during the Station Fire. 

 

Results: Regression Models  

Table 3.1 presents the results of regression analyses identifying the factors that 

influence the decision to take four mitigating actions as a direct result of symptoms 

experienced from exposure to smoke from the Station Fire: visiting a doctor or taking 

prescribed medications, taking nonprescription medications, missing work, and losing 

days of recreation activities.11 In each regression, the dependent variable is coded with a 

1 if the mitigating action was taken and 0 otherwise. 

                                                           
11 Given the very small number of respondents who went to a non-traditional healthcare provider as a result 
of symptoms (5 individuals), a model was not estimated for this mitigating activity.  
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TABLE 3.1 
Determinants of Mitigating Actions (Probit) 

*: p < 0.10, **: p < 0.05, ***: p < 0.01 

 

A few observations from Table 3.1 should be noted. These models show that the 

greater the number of symptoms or the higher the level of pain experienced from 

symptoms, the more likely it is that the individual went to the doctor or took prescribed 

medications, took nonprescription medications, and lost recreation, all else constant. This 

                                                                                                                                                                             
 

 

Doctor/Prescription Meds. Non-prescription Meds. Missed Work Missed Recreation 

Variable Coeff. Std. Error Coeff. Std. Error Coeff. Std. Error Coeff. Std. Error

Days smoke smelled indoors

                    1-5 DAYS -0.065 0.521 0.342 0.298 1.416 1.020 0.319 0.273

                    > 5 DAYS -0.957 0.654 0.250 0.346 1.607 1.114 0.292 0.305

Average daily maximum CO concentration -1.290 2.220 -0.797 1.331 1.786 2.373 1.126 1.110

Number of symptoms 0.773** 0.308 0.341* 0.185 0.765 0.505 0.594*** 0.196

Level of pain from symptoms 0.670*** 0.227 0.348*** 0.129 0.096 0.389 0.580*** 0.145

Current respiratory condition 0.806* 0.420 -0.717** 0.341 -1.019 0.849 -0.230 0.343

Current heart condition -0.419 0.679 -0.753 0.522 0.227 1.115 -1.017** 0.442

Experienced health effects from wildfire smoke in past -1.266** 0.551 0.423 0.272 0.021 0.862 0.423 0.270

Times per week of exercise -0.261 0.273 -0.152 0.155 0.455 0.429 0.297** 0.149

Smoker 0.875 0.608 -0.984 0.737 0.244 1.225 0.563 0.409

Alcoholic drinks per week -0.047 0.331 0.137 0.172 -0.296 0.578 0.189 0.160

Current health is excellent -1.343 1.168 -1.212 1.051 2.708 375.690 -0.610 1.345

Current health is good -0.777 1.120 -1.206 1.018 2.433 375.689 -0.768 1.308

Current health is fair -1.192 1.059 -1.209 0.998 (omitted) -0.115 1.272

Hours per week of indoor recreation -0.052 0.074 -0.009 0.035 -0.449** 0.212 -0.024 0.039

Hours per week of outdoor recreation -0.051 0.045 0.010 0.025 0.042 0.057 -0.025 0.026

Has a regular doctor (omitted) -0.114 0.402 -0.893 0.792 0.217 0.390

Male -1.404*** 0.526 -0.535* 0.274 -1.973*** 0.756 -0.517** 0.261

Married 0.699 0.502 -0.130 0.294 0.900 0.942 0.703** 0.308

Age -0.011 0.017 0.001 0.011 0.003 0.031 -0.025** 0.010

White 0.119 0.497 -0.027 0.318 -1.307 0.830 -0.167 0.316

Graduate school graduate -0.012 0.522 -0.237 0.312 0.668 0.643 0.786** 0.319

College graduate 0.569 0.461 0.317 0.280 0.537 0.831 -0.053 0.279

Employed full-time -0.428 0.579 0.221 0.351 1.465 0.913 -0.041 0.328

Employed part-time 0.196 0.862 -0.989 0.686 0.427 1.165 0.321 0.472

Has health insurance 1.198 0.772 0.675 0.503 -0.093 1.007 -0.433 0.513

Lives in Duarte 0.050 0.659 -0.423 0.447 (omitted) -0.713* 0.408

Lives in Monrovia -0.414 0.566 -0.050 0.322 -0.364 0.794 0.383 0.331

Lives in Burbank -0.164 0.522 0.100 0.327 (omitted) -0.140 0.309

Income -0.004 0.005 0.002 0.003 0.004 0.007 -0.001 0.003

Heard or read about possible health effects 0.047 0.624 -0.377 0.337 1.134 0.877 -0.377 0.324

Believes smoke can affect health (omitted) (omitted) (omitted) 0.261 0.527

Constant -0.207 3.377 0.048 2.357 -10.046 375.730 -2.076 2.324

N = 339 338 193 372

Log Likelihood -39.694 -88.036 -23.254  -94.263

LR chi2 99.080 103.710 53.910 263.210

Prob > chi2 0.000001 0.000001 0.002300 0.000001
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is not surprising given that mitigating actions are taken as direct result of symptoms 

experienced, so it would be assumed that as the number of symptoms or their severity 

increases, so does the probability that mitigating actions are taken. In terms of variables 

that capture an individual’s health history, those respondents who have a chronic 

respiratory disease that was present in the last year are more likely to visit the doctor or 

take prescribed medications for smoke-related symptoms but less likely to take non-

prescription medications. Individuals who have a current heart condition that was present 

in the last year are less likely to miss recreation as a result of symptoms. In addition, 

individuals who have previous experience with health effects from wildfire smoke are 

less likely to visit the doctor or take prescribed medications for symptoms.  

Turning to lifestyle factors, the more an individual exercises per week, the more 

likely they are to lose days of recreation as a result of symptoms. An increase in the hours 

per week spent in indoor recreation activities has a negative and statistically significant 

effect on the likelihood of missing work days due to symptoms. Various demographic 

factors such as sex, marital status, age, education level, and location are also found to 

have a significant effect on the decision to undertake certain mitigating actions. Similar to 

Kunzli et al. (2006) we find no clear association between objective, community-wide 

pollution concentrations and mitigating activities due to symptoms from wildfire smoke 

exposure. This could be due to the lack of variation in this variable, as well as Kunzli et 

al.’s (2006) explanation that objective measures do not account for spatial differences in 

smoke dispersion within the community.   

Table 3.2 presents the results of regression analyses identifying the factors that 

influence the decision to undertake eight averting actions to reduce exposure to smoke 
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from the Station Fire: evacuating the area, wearing a face mask, running the air 

conditioner more in the home, using an air cleaner in the home, removing ashes from 

property, avoiding going to work, staying indoors, and avoiding normal outdoor 

recreation activities. In each regression, the dependent variable is coded with a 1 if the 

averting action was taken and 0 otherwise. 

TABLE 3.2 
Determinants of Averting Actions (Probit) 

*: p < 0.10, **: p < 0.05, ***: p < 0.01 

 

 

Evacuated Wore a face mask Ran air conditioner Used home air cleaner

Variable Coeff. Std. Error Coeff. Std. Error Coeff. Std. Error Coeff. Std. Error

Days smoke smelled indoors

                    1-5 DAYS 0.847** 0.423 0.398 0.295 0.572*** 0.176 -0.003 0.208

                    > 5 DAYS 0.389 0.492 0.115 0.364 0.508** 0.214 0.307 0.230

Average daily maximum CO concentration 3.354** 1.472 0.483 1.316 0.138 0.802 -0.088 0.917

Number of symptoms -0.300 0.263 0.558*** 0.194 -0.073 0.165 0.4533*** 0.158

Level of pain from symptoms 0.659*** 0.201 -0.096 0.155 0.232* 0.119 0.000 0.113

Current respiratory condition 0.366 0.444 -0.252 0.373 0.219 0.269 -0.067 0.258

Current heart condition 1.086** 0.539 -0.313 0.515 0.135 0.293 -0.105 0.322

Experienced health effects from wildfire smoke in past -0.109 0.411 -0.060 0.319 0.402* 0.224 0.113 0.224

Hours per week of indoor recreation 0.058 0.048 -0.0050.032 0.014 0.020 -0.035 0.026

Hours per week of outdoor recreation -0.001 0.032 0.014 0.019 -0.014 0.014 -0.003 0.017

Has a regular doctor -0.532 0.462 0.260 0.428 0.084 0.233 0.329 0.282

Male -0.377 0.373 -0.090 0.274 -0.057 0.178 -0.132 0.195

Married 0.835* 0.450 -0.070 0.287 0.397** 0.188 0.407* 0.223

Age -0.039** 0.017 -0.009 0.013 0.002 0.008 -0.010 0.009

White 0.654 0.446 -0.189 0.318 -0.034 0.198 0.078 0.231

Graduate school graduate 0.381 0.378 -0.251 0.354 0.217 0.210 0.174 0.232

College graduate 0.598 0.443 0.114 0.266 -0.343** 0.174 0.145 0.197

Employed full-time 0.457 0.501 0.119 0.341 -0.034 0.220 0.556** 0.253

Employed part-time -0.714 0.946 -0.388 0.558 -0.150 0.326 0.397 0.373

Has health insurance -0.718 0.529 -0.291 0.404 -0.055 0.319 0.490 0.348

Months at current zip code 0.001 0.001 0.001 0.001 0.0000.000 0.000 0.001

Number of children under 18 years old in household 0.273 0.184 0.125 0.151 0.172* 0.101 -0.063 0.107

Lives in Duarte 0.801 0.573 -0.052 0.407 -0.338 0.258 -0.419 0.305

Lives in Monrovia 0.572 0.456 0.224 0.318 -0.159 0.216 -0.404 0.262

Lives in Burbank -0.503 0.469 -0.339 0.382 -0.118 0.212 0.042 0.232

Income -0.003 0.004 -0.003 0.003 0.002 0.002 -0.006*** 0.002

Heard or read about possible health effects 0.030 0.503 0.352 0.404 0.162 0.217 0.299 0.266

Believes smoke can affect health (omitted) -0.310 0.429 0.523** 0.257 0.943* 0.504

Constant -7.013*** 2.717 -2.270 2.193 -1.250 1.381 -2.441 1.600

N = 335 369 369 369

Log Likelihood -47.964 -76.304 -202.946 -156.796

LR chi2 61.050 40.570 76.510 79.820

Prob > chi2 0.000 0.059 0.000001 0.000001
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TABLE 3.2 
Determinants of Averting Actions (Probit), cont. 

*: p < 0.10, **: p < 0.05, ***: p < 0.01 

 

These models show some similarities with respect to the variables found to 

influence the demand for averting actions. Perceived pollution levels as measured by the 

number of days smoke is smelled indoors has a positive and significant effect on the 

predicted probability that households engaged in all averting activities except wearing a 

face mask and using a home air cleaner, compared to not smelling smoke inside the home 

at all. This is similar to previous findings that perceived pollution levels can have a 

Removed ashes Avoided going to work Stayed indoors Avoided recreation

Variable Coeff. Std. Error Coeff. Std. Error Coeff. Std. Error Coeff. Std. Error

Days smoke smelled indoors

                    1-5 DAYS 0.442*** 0.169 0.618 0.408 0.447** 0.199 0.437** 0.214

                    > 5 DAYS 0.634*** 0.203 1.033** 0.457 0.680** 0.269 0.631** 0.292

Average daily maximum CO concentration -1.294 0.805 -0.933 1.753 0.770 0.992 1.642 1.255

Number of symptoms 0.200 0.153 -0.144 0.260 0.536* 0.312 -0.021 0.264

Level of pain from symptoms -0.028 0.108 0.132 0.202 0.097 0.174 0.379** 0.189

Current respiratory condition -0.245 0.251 -0.220 0.437 0.189 0.356 0.148 0.392

Current heart condition 0.518* 0.289 0.736 0.506 0.156 0.336 0.909** 0.418

Experienced health effects from wildfire smoke in past 0.036 0.207 0.525 0.408 0.046 0.282 0.147 0.305

Hours per week of indoor recreation -0.030 0.020 0.022 0.034 0.023 0.023 0.003 0.025

Hours per week of outdoor recreation 0.026** 0.013 0.035 0.025 0.011 0.015 0.034** 0.017

Has a regular doctor 0.112 0.231 -0.516 0.433 -0.030 0.275 -0.473 0.318

Male -0.161 0.173 0.044 0.350 -0.378* 0.215 -0.369 0.233

Married -0.134 0.181 0.119 0.397 0.812*** 0.218 0.553** 0.234

Age -0.019*** 0.007 0.009 0.014 -0.018* 0.009 -0.027*** 0.010

White 0.197 0.191 -0.051 0.429 -0.322 0.243 0.047 0.244

Graduate school graduate 0.116 0.201 -0.164 0.398 0.318 0.244 0.012 0.254

College graduate -0.061 0.166 0.650* 0.384 -0.184 0.201 -0.103 0.219

Employed full-time -0.072 0.215 0.099 0.413 -0.321 0.260 -0.005 0.277

Employed part-time -0.456 0.306 (omitted) -0.413 0.383 -0.390 0.397

Has health insurance 0.010 0.300 -0.004 0.530 0.261 0.397 0.522 0.409

Months at current zip code 0.001 0.000 -0.003** 0.001 0.000 0.001 0.000 0.001

Number of children under 18 years old in household -0.032 0.092 -0.330 0.231 0.207 0.128 0.175 0.136

Lives in Duarte 0.050 0.252 (omitted) -0.082 0.301 -0.203 0.307

Lives in Monrovia -0.153 0.209 -0.063 0.403 -0.027 0.252 0.053 0.270

Lives in Burbank 0.028 0.206 -0.020 0.447 0.086 0.259 -0.156 0.292

Income -0.002 0.002 -0.002 0.004 0.001 0.002 -0.004* 0.002

Heard or read about possible health effects 0.709*** 0.218 0.518 0.630 0.317 0.249 0.245 0.258

Believes smoke can affect health 0.081 0.251 (omitted) 0.228 0.265 0.723*** 0.269

Constant 2.178 1.373 -1.452 2.951 -0.672 1.713 -1.330 2.054

N = 369 274 369 369

Log Likelihood -217.776 -51.443 -147.685 -128.511

chi2 63.010 29.920 107.690 104.380

Prob > chi2 0.0002 0.227 0.000001 0.000001
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positive impact on the decision to take averting actions. Abdalla et al. (1992) and 

Abrahams et al. (2000) found that perception of risk from tap water was an important 

determinant of averting actions taken in response to contamination. In a survey of U.S. 

citizens facing arsenic contamination in their drinking water, Jakus et al. (2009) found 

that perceived water quality played a large role in the decision to buy bottled water.  

Objective pollution concentrations of carbon monoxide have a positive and 

significant effect on the predicted probability of evacuating during the Station Fire. This 

is similar to previous findings that the probability of mitigation increases with actual 

pollution concentrations (Akerman et al., 1991; Doyle et al., 1991; Smith et al., 1995). 

The greater the number of symptoms experienced, the more likely it is that the individual 

will wear a face mask, use an air cleaner in the home, and stay indoors. In addition, the 

higher the level of pain experienced, the more likely the individual is to evacuate, run the 

air conditioner more, and avoid recreation activities. Similarly, Berger et al. (1987) found 

that individuals who experienced various health symptoms in the year prior to being 

surveyed were more likely to buy air conditioners and air purifiers for health reasons.   

Previous literature finds that individuals with preexisting conditions as well as 

those who have had prior experience with health damages from the pollutant at hand are 

more likely to engage in defensive activities to protect themselves from health damages. 

For instance, Kunzli et al. (2006) found that during the 2003 Southern California 

wildfires, children with asthma were more likely to take preventative actions such as 

wearing masks and staying indoors to avoid the exposure to the smoke. Similarly, we find 

that individuals who had a heart disease within the last 12 months are more likely to 

engage in averting activities such as evacuating the area impacted by smoke during the 
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fire, removing ashes from their property, as well as avoiding normal outdoor recreation 

activities. In addition, individuals who have experienced health effects as a result of 

exposure to wildfire smoke in the past are more likely to run their air conditioner more to 

avoid health damages from smoke from the Station Fire. Similarly, Bresnahan et al. 

(1997) found that households who had previously experienced symptoms in smoggy 

conditions were more likely to engage in defensive activities when pollution levels were 

high.  

Variables that capture lifestyle factors were also found to influence the decision to 

engage in certain averting activities. For instance, the number of hours an individual 

spends in a typical week engaging in outdoor recreation activities is found to have a 

positive and statistically significant effect on removing ashes from property and avoiding 

normal outdoor recreation activities in an effort to minimize exposure to the smoke from 

the Station Fire. Finally, various demographic factors such as sex, marital status, age, 

education level, income, employment status, and presence of children in the household 

are found to have a significant effect on the decision to undertake certain averting 

actions.  

Individuals who heard or read about the health effects of wildfire smoke from 

public service announcements, news articles or local air quality reports are more likely to 

remove ashes from their property and individuals who believe that exposure to wildfire 

smoke can affect a person’s health are more likely to run their air conditioner more, use 

an air cleaner in their home and avoid normal outdoor recreation activities as a result of 

the smoke from the Station Fire. These results are not surprising given that information 

received, as well as attitudes and beliefs about the health effects of a particular pollutant 



67 

 

have been repeatedly found to significantly impact the decision to take defensive actions 

(Smith and Desvousges, 1986; Abdalla et al., 1992; Abrahams et al., 2000). Variables 

such as having a current chronic respiratory disease, race, having health insurance, and 

location do not have a statistically significant effect on the decision to undertake any 

averting action.  

 

Results: Cost of Illness and Averting Expenditures  

The predicted cost of illness and averting expenditures are calculated by applying 

equation (3.8). The predicted probability that each mitigating and averting action is taken 

is calculated from the regression models in Tables 3.1 and 3.2. Each model is re-

estimated including only those independent variables which were found to have a 

significant effect on the decision to undertake each activity in order to reduce the 

variance in the predicted cost estimate. Given the small number of respondents who 

reported taking certain averting actions for more than ten days, the predicted probability 

of taking each averting action is multiplied by the average in-sample cost of taking each 

action for 1-5 days and greater than 5 days. Table 3.3 presents results for the predicted 

cost of illness and Table 3.4 presents results for predicted averting expenditures.  

TABLE 3.3 
Predicted Cost of Illness 

 

 

Mitigating Action

Predicted 
Probability Action 

is Taken
Average 

Expenditure Predicted  Expenditure

Obtained medical care/prescription medications 0.0084 $77.87 $0.65
Took non-prescription medicines 0.0602 $16.86 $1.01
Missed work 0.0140 $691.76 $9.68
Lost days of recreation activities 0.1515 N/A N/A
Average Cost of Illness $11.34
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TABLE 3.4 
Predicted Averting Expenditures 

 

 

A cost of illness estimate for an average household during the Station Fire is 

$11.34. This cost measure is conservative in that there is no assumed cost to the 

individual of lost days of recreation activities due to symptoms. Averting activities cost 

an average household $24.53 if they are taken for 1-5 days and $54.89 if they are taken 

for more than 5 days.12 This expenditure measure is also conservative in that there is no 

assumed cost to the individual of staying indoors or avoiding normal outdoor recreation 

activities/exercise to reduce exposure to the smoke. The sum of the cost of illness and 

averting expenditures account for all aspects of the individual value of a reduction in 

pollution from the Station Fire smoke except for the value of disutility associated with 

symptoms and lost leisure.  

 

 

                                                           
12 Taking a simple in-sample average results in a cost of illness estimate of $13.79 for the average 
household and a cost of averting activities estimate of $32.96 for the average household. Calculating these 
in-sample averages may be more appealing to policy-makers than the approach taken here due to the fact 
that they do not require any regression analysis.   

            Average Expenditure            Predicted Expenditure

Averting Action

Predicted 
Probability Action 

is Taken 1-5 days > 5 days 1-5 days > 5 days

Evacuated 0.0136 $204.41 $440.00 $2.78 $5.98
Wore a mask 0.0515 $3.95 $12.00 $0.20 $0.62
Ran air conditioner more than usual 0.6219 $12.78 $34.08 $7.95 $21.19
Used an air cleaner, filter or humidifier 0.1843 $15.17 $33.48 $2.80 $6.17
Removed ashes from property 0.5871 $6.10 $13.48 $3.58 $7.91

Avoided going to work 0.0407 $177.50 $320.00 $7.22 $13.02
Stayed indoors more than usual 0.8125 N/A N/A N/A N/A
Avoided normal outdoor recreation/exercise 0.8638 N/A N/A N/A N/A
Average Averting Expenditures $24.53 $54.89
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V. ESTIMATING THE WILLINGNESS TO PAY FOR A REDUCTION IN 
PERCEIVED POLLUTION LEVELS  

 
Econometric Model 

Those individuals who took some defensive action in response to the Station Fire 

smoke had to make a decision about the intensity of these actions. Defensive 

expenditures are the sum of all expenditures the individual makes on both averting and 

mitigating actions, and they are often used to proxy this decision about the intensity of 

defensive actions (Abdalla et al., 1992; Um et al., 2002). As shown in equation (3.6), 

these expenditures will be a function of anything that averting and mitigating actions are 

a function of, including prices, the negative health outcome, pollution levels, as well as 

any exogenous factors that could affect the level of expenditures made. Regression 

analysis is used to model the determinants of these expenditures. Again, the number of 

symptoms and the level of pain experienced are included as the measure of the negative 

health outcome, and both objective and subjective pollution levels are included in the 

model. Given that the data on defensive expenditures is censored at $0, a tobit regression 

model is estimated to determine the factors that significantly influence defensive 

expenditures. As shown in equation (3.7) the marginal effect of pollution levels on 

defensive expenditures gives an estimate of the individual willingness to pay for a 

decrease in pollution levels, assuming the negative health outcome stays constant. If 

individuals adjust their health outcome, the observed change in defensive expenditures 

will provide a lower bound on compensating variation.  
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Results: Regression Model 

The results of the regression analysis are presented in Table 3.5.  

TABLE 3.5 
Determinants of Defensive Expenditures (Tobit) 

 
*: p < 0.10, **: p < 0.05, ***: p < 0.01 
 

Full Reduced 

Variable Coefficient Std. Error Coefficient Std. Error

Days smoke smelled indoors

                    1-5 DAYS 53.460* 32.308 60.652** 29.743

                    > 5 DAYS 99.646*** 37.175 106.002*** 33.843

Average daily maximum CO concentration 67.138 140.074

Number of symptoms 12.671 25.491

Level of pain from symptoms 54.745*** 18.465 60.704*** 9.314

Current respiratory condition -73.118* 42.834 -64.094 38.940

Current heart condition 62.820 50.413

Experienced health effects from wildfire smoke in past 2.117 36.025

Heard or read about possible health effects 68.951* 41.770 46.435 38.195

Believes smoke can affect health 18.300 55.951

Hours per week of indoor recreation 0.574 3.770

Hours per week of outdoor recreation 0.497 2.393

Has a regular doctor 5.889 42.051

Male -26.656 31.614

Married 33.491 34.822

Age -1.566 1.400

White -63.265* 36.670 -50.058 32.024

Graduate school graduate 30.255 37.507

College graduate 16.916 31.241

Income 0.243 0.330

Employed full-time -6.893 39.336

Employed part-time -67.428 59.224

Number of children under 18 years old in household 3.147 16.895

Months at current zip code 0.034 0.093

Has health insurance 79.953 54.400

Lives in Duarte -122.763** 48.337 -123.302*** 41.393

Lives in Monrovia -18.379 38.765

Lives in Burbank -6.790 37.776

Constant -227.183 244.576 -70.552 49.300

sigma 223.252*** 9.828 224.834*** 9.650

N = 333 361

Log Likelihood -1832.037 -1938.756

LR chi2 86.250 76.410

Prob > chi2 0.0000001 0.000001
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Only those variables which were found to have a statistically significant effect on 

defensive expenditures are retained in the reduced version of the model in the right-hand 

column. Individuals who smelled smoke inside their home for one to five days or greater 

than five days have higher defensive expenditures than those who did not smell smoke 

inside their home during the Station Fire, all else constant. Similarly, a questionnaire 

administered to Korean households by Um et al. (2002) showed that individuals 

perceived water quality was a significant determinant of the intensity of expenditures 

made on averting actions to avoid polluted tap water. In addition, from a survey of U.S. 

residents, Jakus et al. (2009) found that those individuals who perceived their risk from 

drinking tap water to be high had greater expenditures on bottled water than those with 

lower perceived risk. Table 3.5 also shows that objective, community-wide measures of 

carbon monoxide do not have a significant effect on defensive expenditures.  

The level of pain from symptoms experienced has a positive and statistically 

significant effect on defensive expenditures, all else constant. Having a respiratory 

condition that was present in the last year has a negative and statistically significant effect 

on defensive expenditures at the 10% level in the full model however, in the reduced 

version of the model which includes more data points this variable is no longer 

statistically significant. Individuals who heard or read about the health effects of wildfire 

smoke from public service announcements, news articles or local air quality reports spent 

more on defensive expenditures than those who did not in the full model. In addition, 

being white has a negative and statistically significant effect on defensive expenditures in 

the full model. However, while both of these variables are statistically significant at the 

10% level in the full model they are no longer significant at standard significance levels 
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in the reduced model. Finally, living in the city of Duarte has a negative and significant 

effect on the level of defensive expenditures.  

 

Results: Willingness to Pay  

Given that only perceived pollution levels as measured by the number of days 

wildfire smoke was smelled inside the home is found to be a significant determinant of 

defensive expenditures, we estimate the willingness to pay for a decrease in perceived 

pollution levels similar to the approach taken by Um et al. (2002). From Table 3.5, 

focusing on the best fit reduced model, defensive expenditures are shown to be $60.65 

higher when smoke is smelled indoors for 1-5 days compared to zero days, so this 

represents the individual value of, i.e. the willingness to pay for, a reduction in smoky 

days from 1-5 to zero. The individual willingness to pay for a reduction in smoky days 

from greater than five days to zero is $106.00. This represents a lump-sum willingness to 

pay given that the wildfire is a one-time event. Recall that if individuals adjust their 

negative health outcome in response to a change in pollution levels, this observed value 

represents a lower bound on compensating variation.  

There are no previous studies which have attempted to capture this value for the 

pollutants associated with wildfire smoke specifically, but a few have applied the 

defensive behavior method to value decreases in other air pollutants. Using a health 

production function approach, Gerking and Stanley (1986) estimated marginal 

willingness to pay for the average employed person to be between $18-24 per year for a 

30% reduction in ambient ozone in 1986 dollars. A few years later, Dickie and Gerking 

(1991) estimated willingness to pay for a uniform one part per ten million reduction in 
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ozone, nitrogen dioxide and carbon monoxide to be $1.20 and $1.22 per person per day 

for impaired and normal subsamples, respectively.   

 

VI. COMPARISON OF PREDICTED COST OF ILLNESS AND AVERTING 
EXPENDITURES WITH WILLINGNESS TO PAY 

 
The sum of the cost of illness and averting expenditures include all components of 

the willingness to pay for a small decrease in pollution levels except for the disutility 

associated with symptoms or lost leisure. To explore this relationship in the data 

presented here, Figure 3.1 presents a comparison of total predicted cost of illness and 

averting expenditures from Tables 3.3 and 3.4 with willingness to pay estimates for a 

small decrease in perceived pollution levels from Table 3.5. Recall that averting 

expenditures are estimated for a given range of days they are taken (1-5 days and greater 

than five days) and similarly, willingness to pay is estimated for a given range of days 

that smoke is smelled indoors (1-5 days and greater than five days). The cost of illness is 

not broken down into a range of days, as respondents were simply asked to report their 

total expenditure on each mitigating action. The predicted cost of illness of $11.34 is 

added to each range of averting expenditures. It appears that during the Station Fire, 

theory underlying the defensive behavior method is supported and the sum of cost of 

illness and averting expenditures provides a lower bound to the true economic value of a 

reduction in pollution levels. Theory tells us that willingness to pay should exceed the 

sum of these two components due to the disutility associated with symptoms and lost 

leisure. Taking the difference of these two measures results in an estimate of the value of 

disutility of $24.78 for 1-5 days of exposure to wildfire smoke and $39.77 for greater 
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than five days. Our empirical analysis shows that the disutility of symptoms and lost 

leisure represents at least 38-41% of total willingness to pay for the case of wildfire 

smoke. In a study valuing changes in health risks, Berger et al. (1987) found that when 

asked to rank their reasons for valuing symptom relief, 66% of respondent’s ranked 

comfort as the most important, suggesting that the value of disutility associated with 

symptoms is high for many people.  

 

 

FIGURE 3.1 
Cost of Illness and Averting Expenditures vs. WTP for a Reduction in Perceived 

Pollution Levels 
 

VII. CONCLUSIONS  

Wildfire smoke will continue to be a source of concern in the public health arena, 

however, little is known about the full range of health effects the majority of residents 

exposed to wildfire smoke experience and all of their associated costs. This study 

contributes to the scarce amount of published survey data which questions individuals 

directly about the health damages experienced and behavioral responses taken during a 

$0.00

$20.00

$40.00

$60.00

$80.00

$100.00

$120.00

1-5 Days > 5 Days

Cost of Illness + Averting 

Expenditures

WTP



75 

 

major wildfire event. Our study shows that 89% of individuals chose to take defensive 

actions to protect themselves from potential health damages resulting from exposure to 

wildfire smoke and to mitigate the health damages experienced. The majority took 

preventative, averting actions to minimize their exposure to the smoke, such as using a 

home air cleaner or running their air conditioner more, removing ashes from their 

property, and staying indoors or avoiding recreation activities during the wildfire event. 

A smaller proportion took mitigating actions to alleviate the health effects experienced 

during the Station Fire. For the first time, we explore the  determinants of whether these 

averting and mitigating actions are taken during a wildfire and find that factors such as 

the number of days smoke was smelled indoors is a good predictor of whether certain 

actions are taken. 

In addition, this unique natural experiment is used to explore the investments of 

time and money individuals are making on these defensive actions during a major 

wildfire event. We estimate predicted averting expenditures for the average household to 

be $24.53 and $54.89 depending on the number of days they are taken. Predicted cost of 

illness for the average household is estimated to be $11.34. Theory and past literature 

(Wu and Huang, 2001; Pattanayak et al., 2005) show that these expenditures provide a 

lower bound to the true economic value of decreased pollution levels.  

Based on a tobit regression model of defensive expenditures, we find that 

individuals would be willing to pay $60.65 for 1-5 less days of smoke smelled indoors 

and $106.00 for greater than five less days. The discrepancy between the cost of illness 

and averting expenditure components and willingness to pay values supports the 

theoretical finding that the former lack the value of disutility associated with exposure to 
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a pollutant, such as those contained in wildfire smoke. We estimate this value of disutility 

to be at least 38-41% of total willingness to pay depending on the number of days the 

individual is exposed to the wildfire smoke. Thus, the sum of the cost of illness and 

averting expenditures associated with exposure to wildfire smoke yields a substantial 

underestimate of willingness to pay.  

As explained in Pattanayak et al. (2005), comparison of both defensive 

expenditures and willingness to pay values can shed light on calibration factors which 

can be used to adjust defensive expenditures into comprehensive economic values 

associated with decreased pollution levels. Given that this is the first study to estimate 

either for the specific case of exposure to wildfire smoke, we hope this is the first of 

many future studies to explore this relationship. The defensive behavior method is not 

without its problems and the willingness to pay estimates derived from it should be used 

cautiously (see Dickie, 2003; Freeman, 2003). However, the information collected to 

apply the defensive behavior method provides valuable insight into the behavioral 

responses to wildfire smoke exposure and the associated investments of time and money 

individuals are making on defensive actions. In addition, calculating the change in 

observed defensive expenditures given a change in pollution levels provides a relatively 

simple extension to arrive at a lower bound on compensating variation, a value much 

closer to the true benefits of a reduction in pollution levels than the sum of cost of illness 

and averting expenditures. Given expectations of more intense wildfire events near urban 

areas in the future, human exposure to wildfire smoke and interest in the resulting welfare 

implications will likely become more prevalent. 
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CHAPTER FOUR 

Valuing Morbidity from Wildfire Smoke Exposure: A Methodological Comparison 
of Revealed and Stated Preference Techniques 

 

I. INTRODUCTION 

A variety of environmental contaminants can negatively affect human health and 

a major mission of agencies such as the U.S. Environmental Protection Agency (EPA) is 

to protect human health by reducing human exposure to contaminants in the air, water 

and land (U.S.EPA, Human Health). Branches of the U.S. EPA such as the National 

Center for Environmental Economics are responsible for analyzing the economic 

impacts, i.e. costs and benefits, of environmental regulations and policies. However, the 

challenge of accurately monetizing the economic cost of the health damages associated 

with exposure to pollution has remained pervasive in the economics literature, as well as 

the policy realm.  

In the past, economists relied on a simple cost of illness (COI) approach to 

estimate the economic cost of morbidity from pollution exposure. This is often calculated 

based on a damage function, which translates pollution concentrations into health 

outcomes and connects these outcomes with associated medical expenditures and lost 

wages to arrive at a final cost of illness. However, it is now widely documented that this 

approach will underestimate the true economic cost of health damages from exposure to a 

pollutant. According to Freeman (2003), a pollutant that affects human health impacts 

well-being in four ways: incurred medical expenses, lost wages, expenditures on 
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activities taken to avoid the health effects, and the disutility associated with symptoms or 

lost leisure. The cost of illness approach ignores these last two components. The 

theoretically correct measure of the cost of health damages from exposure to a pollutant 

is the individual willingness to pay (WTP) to avoid this damage (Freeman, 2003).  

Agencies such as the U.S. EPA recognize the inadequacies of relying on a cost of 

illness approach. As highlighted in the agency’s National Center for Environmental 

Economics “The practical problem [with this approach] is that unit costs for morbidity 

effects usually are measured in terms of avoided medical outlays and wages, which likely 

underestimate what people would be willing to pay to avoid the adverse health effects in 

question” (U.S. EPA, NCEE). For this reason, researchers have turned to the defensive, 

or averting, behavior method (DBM), a revealed preference approach, as well as the 

contingent valuation method (CVM), a stated preference approach, in an effort to 

monetize the true cost of damages to human health from various pollutants. While 

numerous studies (reviewed below) have compared estimates across two of these 

methods, very few have compared across all three methods common to valuing the health 

damages associated with exposure to a pollutant: COI, DBM and CVM.   

In addition, there are various pollutants for which no studies have estimated 

theoretically correct willingness to pay values, meaning policy-makers must rely on 

lower bound cost of illness estimates in damage assessments. The U.S. EPA reports that 

“Even now, many important morbidity effects are poorly studied from the willingness to 

pay perspective. The cost of illness approach is much more common in valuing chronic 

illness. Consequently, benefit estimates based on a damage function approach continue to 

be used in many applications by EPA” (U.S. EPA, NCEE). A clear example of where this 
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information is lacking is the health damages experienced from exposure to the pollutants 

released by wildfire smoke. 

The Centers for Disease Control and Prevention and the U.S. EPA report that 

exposure to wildfire smoke can cause various ear, nose and throat symptoms as well as 

heightened symptoms in individuals with heart or lung disease. In addition, children and 

the elderly are considered sensitive populations whose health is at greater risk to be 

affected by exposure to wildfire smoke. Evidence of these morbidity effects has been 

supported by studies such as Duclos et al. (1990), CDC (1999), Johnston et al. (2002 a,b), 

Mott et al. (2002) Kunzli et al.(2006), CDC (2008) and others, which all find a positive 

correlation between wildfire smoke exposure and various adverse health effects and 

hospital admissions. Recent studies have called for the inclusion of their associated costs 

in damage assessments of a given wildfire (Butry et al., 2001; Morton et al., 2003; Abt et 

al., 2008; Dale, 2009). However, the costs imposed on society as a result of these 

potential health effects are often unknown or underestimated. 

While numerous studies have applied a cost of illness approach to calculate the 

economic cost of health effects from wildfire smoke exposure specifically, to date, none 

have applied either the defensive behavior method or the contingent valuation method to 

calculate the willingness to pay for a reduction in associated health damages. Kochi et al. 

(2010) conducted a literature review on studies estimating the economic cost of health 

damages from wildfire smoke and one conclusion was that understanding defensive 

actions taken to avoid exposure to the smoke should be studied as their associated costs 

may be substantial.    
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The contribution of this study is twofold. First, using unique primary data from 

the largest wildfire in Los Angeles County’s modern history, we apply the defensive 

behavior method and contingent valuation method to estimate the willingness to pay for a 

reduction in one wildfire smoke induced symptom day for the first time to our 

knowledge. Second, using the same primary data, we compare estimates across all three 

common approaches used to value the economic cost of health damages from a pollutant: 

the cost of illness approach, the defensive behavior method and the contingent valuation 

method. To statistically test for a significant difference in the three estimates, we apply a 

bootstrap resampling technique to test for overlapping confidence intervals as well as to 

carry out a complete combinatorial test.  

The study results add to the scarce literature comparing across all three methods 

and provide a test of convergent validity on willingness to pay values derived from the 

contingent valuation and defensive behavior methods. In addition, this can help shed light 

on appropriate WTP: COI calibration factors for the health damages associated with 

wildfire smoke specifically. The remainder of this article is organized as follows: Section 

II provides a review of the relevant literature; Section III outlines the theoretical models 

motivating the analysis; Section IV discusses the sample frame and data used in the 

analysis; Section V presents the econometric estimation; Section VI compares values for 

a reduction in one wildfire smoke induced symptom day across methods; Section VII 

outlines conclusions and areas for future research.    
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II. LITERATURE REVIEW 

The defensive behavior method has been used to calculate the value of a reduction 

in a number of air and water pollutants and the health damages associated with exposure 

to them, including but not limited to sulfur dioxide (Cropper, 1981; Joyce et al., 1989), 

nitrogen dioxide (Dickie and Gerking, 1991a), carbon monoxide (Dickie and Gerking, 

1991a), ozone (Dickie et al., 1986; Gerking and Stanley, 1986; Dickie et al., 1987; Dickie 

and Gerking, 1991a,b) and contaminated water supplies (Harrington et al., 1989; Um et 

al., 2002; Dasgupta, 2004). In addition, numerous studies have applied the contingent 

valuation method to estimate the willingness to pay to avoid the health damages 

associated with various pollutants (Rowe and Chestnut, 1985; Chestnut et al., 1996; 

Dickie et al., 1986; Tolley et al., 1986; Berger et al., 1987; Dickie et al., 1987; Alberini 

and Krupnick, 2000).  

A number of the above studies have also looked at the relationship between cost 

of illness estimates and willingness to pay values for a reduction in health effects from 

exposure to a pollutant and the majority of empirical findings support theoretical 

predictions that the cost of illness underestimates willingness to pay values. For instance, 

Rowe and Chestnut (1985) interviewed a panel of asthmatics in Glendora, California and 

found that CVM willingness to pay estimates for reductions in the severity of asthma 

symptoms were 1.6 to 3.7 times the comparable cost of illness estimates. Dickie and 

Gerking (1991b) interviewed residents in Glendora and Burbank, California and found 

that willingness to pay for decreased ozone levels exceeded medical expenses by a factor 

of two to four. Chestnut et al. (1996) found that small changes in angina frequency were 

associated with minor changes in costs of illness but significant changes in willingness to 
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pay. Alberini and Krupnick (2000) estimated a WTP: COI ratio of 1.61 to 2.26 for 

symptoms associated with air pollution in Taiwan. Berger et al. (1987) interviewed a 

sample of 131 individuals in Denver and Chicago and found that for seven light health 

symptoms, mean daily consumer surplus estimates were always greater than mean daily 

cost of illness estimates, by a factor of 3.1 to 79 times. In contrast to all of these findings, 

Guh et al. (2008) conducted a survey in a rural area in China and found that respondents 

cost of illness for shigellosis, a bacterial infection caused by water contamination, 

actually approximated an upper bound estimate of willingness to pay to avoid the illness. 

The authors explain that this may be due to the fact that preventative expenditures and 

disutility from pain and suffering are low for this illness.  

In addition, a handful of studies have studied the relationship between willingness 

to pay estimates derived from both the defensive behavior and contingent valuation 

methods, which can serve as a test of convergent validity. Dickie et al. (1986) collected 

data from a sample of 229 residents in the cities of Burbank and Glendora, California to 

implement both the contingent valuation and defensive behavior method and compared 

willingness to pay results across the two. The authors found that willingness to pay 

estimates derived from the contingent valuation method were always larger than their 

defensive behavior method counterparts, by a factor of up to ten times. However, a year 

later, Dickie et al. (1987) compiled a new data set of residents in the same cities. In this 

survey, respondents were asked their willingness to pay to avoid one day of recently 

experienced ozone related symptoms. Each bid was then multiplied by the number of 

times symptoms occurred in a one month period and totaled across symptoms. 

Respondents then had a chance to revise their bid after seeing this total. Results from this 



86 

 

study showed that average revised bids were much lower than original bids, and revised 

willingness to pay estimates from the contingent valuation method were found to be 

smaller than their defensive behavior method counterparts. Dickie et al. (1987) explained 

that this result is to be expected given that defensive goods used in calculations of 

willingness to pay from the defensive behavior method may provide direct utility to the 

individuals employing them, which should lead to larger benefit estimates than those 

derived from the contingent valuation method. Chestnut et al. (1996) found that CVM 

willingness to pay estimates to avoid increases in angina were directly comparable to 

willingness to pay estimates based on the defensive behavior method.  

As evident from the literature, there is still uncertainty on the relationship 

between the estimates produced by the methods commonly used to value a reduction in 

health effects associated with exposure to an environmental contaminant. Most 

importantly, very few studies have attempted to compare estimates across all three 

methods using the same primary data and those that have tend to compare point estimates 

of benefit measures. These comparisons can be made even more rigorous and accurate by 

evaluating statistical tests of their differences.  

 

III. THEORETICAL FRAMEW ORK  

Defensive Behavior Method 

As explained in previous chapters, the defensive behavior method is a revealed 

preference method that has been used in the field of health and environmental economics 

for many years. The method is based off of a health production function first outlined by 

Grossman (1972). The basic idea of the defensive behavior method in this health 
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production function framework is that if an individual experiences some health output, 

such as a number of days spent sick or some occurrence of symptoms, it enters into his 

utility function, causing disutility. This health output is in turn influenced by various 

factors, such as pollution levels, the individual’s overall stock of health, demographic 

factors, lifestyle factors and finally, both averting and mitigating actions taken by the 

individual to decrease the chance they experience a negative health outcome. This 

information can then be used to calculate the WTP to avoid a pollutant in general, or the 

symptoms that result from exposure to the pollutant. A simple one period illustration is 

outlined as follows: an individual’s utility can be expressed by: 

 U = U (X, L, S)        (4.1)  

where X represents consumption of a composite market good with price normalized to 1, 

L represents leisure time, and S represents time spent sick. We can assume that utility is 

increasing in consumption and leisure and decreasing in sick time. An individual 

‘produces’ this sick time according to a health production function as follows: 

 S = S (P, A, M, Z)        (4.2) 

where P represents exposure to a pollutant, A represents averting activities that can be 

taken to decrease exposure to the pollutant, M represents mitigating activities that can be 

taken to reduce the time spent sick and Z represents a set of exogenous factors that can 

affect the time spent sick, such as demographic factors and health status prior to 

exposure. It can be assumed that sick time is increasing in exposure to the pollutant and 

decreasing in averting and mitigating actions. Individuals are also subject to a budget 

constraint: 

I + w [T – L – S (P, A, M, Z)] = X + pAA + pMM    (4.3)  
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where I represents non-labor income, w represents labor income, and the individual is 

assumed to allocate her total time available for work T between work, leisure and time 

spent sick. Averting activities have a price of pA, mitigating activities a price of pM, and 

the price of X is normalized to 1. Therefore, the individual’s utility maximization 

problem becomes:  

Max U = U (X, L, S (P, A, M, Z))      (4.4) 

s.t.  I + w [T – L – S (P, A, M, Z)] = X + pAA + pMM 

After solving for the first order conditions for a maximum and through substitution we 

can arrive at the marginal value of reduced time spent sick equal to (see Dickie, 2003 or 

Freeman, 2003 for a full derivation): 

 -pA / (∂S/∂A)         (4.5a)  

or 

 -pM / (∂S/∂M)         (4.5b)  

The marginal willingness to pay for a reduction in time spent sick can be calculated as the 

price of any averting or mitigating activity divided by the marginal effect of the use of 

that averting or mitigating activity on time spent sick.  

 

Contingent Valuation Method 

Unlike the defensive behavior method which questions individuals about their 

actions to arrive at a measure of the economic value of a decrease in symptom days or the 

pollutant that causes them, the contingent valuation method uses a stated preference 

approach to estimate this value. In a contingent valuation framework, individuals are 

asked directly about the value they place on a specific change in a non-market good, 
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which in this case would be a decrease in the number of symptom days experienced as a 

result of exposure to wildfire smoke.  

Following equation (4.4) the individual can solve his dual problem of minimizing 

expenditures subject to a given level of utility, say u*. This expenditure minimization 

problem can be solved to obtain the minimum expenditure function as follows: 

 e = e (pM, pA, P, Z, S0, u*)       (4.6) 

This is the minimum expenditure required to remain at utility level u* given sick time S0, 

a set of prices, a particular pollution level and exogenous characteristics of the individual. 

The willingness to pay for a reduction in sick time from S0 to S1 can be expressed as: 

 WTP = e (pM, pA, P, Z, S0, u*) - e (pM, pA, P, Z, S1, u*)   (4.7) 

This shows the maximum amount of money the individual would pay to enjoy less sick 

days while maintaining the same level of utility. 

 

Cost of Illness Approach 

The cost of illness (COI) approach sums resource and opportunity costs of being 

sick to arrive at a final cost of damages to human health from a particular pollutant. The 

costs include individuals’ expenditures on medical care and medications, the opportunity 

cost of time spent in obtaining medical care, as well as lost wages from not being able to 

work. This measure ignores expenditures on averting actions as well as the disutility 

associated with symptoms or lost leisure that will be captured in a WTP measure. From 

the theory underlying the defensive behavior method, we assume that mitigating activities 

are chosen by individuals to maximize her level of utility subject to a budget constraint. 

Therefore, given a particular health outcome, the decision to engage in any of these 
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mitigating activities will likely be a function of pollution levels, prices, time spent sick, 

and any other exogenous factors which may influence the decision to undertake each 

action as follows: 

 M = M (pA, pM, P, S,* Z)       (4.8) 

Once a model is estimated to control for these variables, the predicted probability that 

each action is taken can be multiplied by the average cost of that specific action. The sum 

of these values results in a final cost of illness.  

 

Hypothesis 

In this study, we compare the value of decreased morbidity from wildfire smoke 

based on estimates from three different estimation approaches; the cost of illness 

approach, the defensive behavior method, and the contingent valuation method. As 

explained above, theory and empirical studies consistently find that the cost of illness 

approach underestimates the true economic cost of health effects from exposure to 

various pollutants (with the exception of Guh et al, 2008). However, the expected 

relationship between willingness to pay values for reduced morbidity estimated by the 

defensive behavior and contingent valuation methods remains unclear. Therefore, the 

hypothesis we would like to test is as follows: 

  Ho: COI = WTPDBM = WTPCVM 

  Ha: COI < WTPDBM ≠ WTPCVM 

Given that these values will be calculated as either the product or ratio of two 

numbers, they will not have straightforward statistical properties that allow for statistical 

comparison of the measures. Therefore, two approaches are implemented to test this 
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hypothesis. First, the bootstrapping method (see Efron, 1979, 1982; Efron and Tibshirani, 

1993) will be applied to draw a new sample with replacement from each original dataset. 

This process will be repeated 1,000 times to generate a distribution of 1,000 values from 

each of the three methods.13 Percentile confidence intervals will then be constructed. To 

do so, the distribution of values is first ordered from the lowest to the highest value and 

then to form, for example, the 95% confidence interval, 2.5% of the observations at each 

tail are dropped from the distribution. As explained in Loomis, Creel and Park (1991), 

while benefit estimates obtained using different valuation methods may appear to be quite 

different, applying simulation techniques to look for overlapping confidence intervals is a 

rigorous way to statistically test for a difference.   

If the confidence intervals for two of the distributions of values do not overlap, it 

can be concluded that the null hypothesis of equality for that comparison can be rejected 

at the specified level of confidence. If the confidence intervals of any two distributions of 

values do overlap at the desired level of confidence, a second approach will be applied. 

Following Poe et al. (1994, 2005), we use a complete combinatorial approach based on 

the method of convolutions. This unbiased, nonparametric test is used to evaluate the 

statistical difference between two distributions by generating a third distribution 

consisting of all possible differences between the two distributions of interest. For 

instance, if comparing WTPDBM with WTPCVM, this third distribution is constructed by 

calculating ((WTPDBM)i – (WTPCVM)z) where i = 1,000 bootstrapped WTP values from 

the defensive behavior method and z = 1,000 bootstrapped WTP values from the 

                                                           
13 While other simulation methods including the jackknife, Cameron (1991), Krinsky and Robb (1986), and 
delta methods could also be applied, studies comparing across methods have found that they are all 
relatively accurate and will produce similar results. See Cooper (1994) and Hole (2007) for these findings 
and an explanation of when the methods will differ.  
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contingent valuation method. This results in a 1,000,000 by 1 vector of differences. The 

proportion of negative values from this third distribution of differences represents the 

probability for the two willingness to pay distributions to be overlapping (if this value is 

greater than 0.5, it should be subtracted from 1). This probability represents the one-sided 

p-value associated with the hypothesis test of equality for the two distributions. 

Multiplying this value by two gives the two-sided p-value associated with this test. If this 

p-value is less than a particular level of significance, say α = 0.05, the null hypothesis of 

equality of the two willingness to pay estimates can be rejected at the 0.05 significance 

level.  

 

IV. SAMPLING FRAME AND DATA COLLECTION 

See Chapter 2 for a complete description of the study area, survey design, data 

collection, and sample statistics for this study. For the contingent valuation model, only 

those respondents who had household members experiencing health symptoms from the 

Station Fire smoke were asked an additional question about their willingness to pay to 

reduce the health symptoms their household experienced by 50%. Before the actual 

question was asked, respondents were asked to take into consideration all associated costs 

of the illness, including the actual health effects experienced, the averting actions taken to 

avoid these health effects, as well as work and recreation lost as a direct result of smoke 

from the fire. Respondents were specifically asked not to consider any costs associated 

with the actual fire itself, such as damage to the home. A dichotomous choice question 

format was used with ten different bid amounts ranging from $10 to $750 based on focus 

groups and acute morbidity values from various studies summarized in Dickie and 
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Messman (2004). Table 4.1 indicates the percentage of yes responses to the willingness 

to pay question at each bid amount. 

TABLE 4.1 
Percentage of Respondents Indicating Yes to the Specified Bid Amount 

 

 

 

V. ECONOMETRIC ESTIMATION 

Cost of Illness Model 

An estimate of the cost of illness from exposure to wildfire smoke is simply the 

sum of expenditures made on all mitigating actions as a direct result of health symptoms 

experienced. While some studies have estimated econometric models of the intensity of 

expenditures made on these actions, we choose to model whether or not these actions 

were taken. Probit regression models are estimated to determine the factors that influence 

the probability that each mitigating action was taken, including whether or not a doctor 

was seen or prescription medications were taken, whether non-prescription medications 

were taken, whether or not work was lost and whether recreation was missed as a direct 

Bid Amount N Percentage Yes

$10 22 59%
$25 21 67%
$50 18 44%
$75 18 11%
$100 14 50%
$150 12 25%
$200 7 29%
$300 11 18%
$500 19 11%
$750 15 13%
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result of symptoms.14 These mitigating action variables are regressed on all independent 

variables that could influence the probability that they were taken. Results of these 

models can be found in the Chapter 2 Appendix, Table 2.B. The total daily cost of illness 

is estimated by applying a formula from Alberini and Krupnick (2000) as follows:  

∑ ��
 � ��	
 � �
�
 �       (4.9) 

where M represents each mitigating action, Φ is the standard normal cdf, x bar is the 

mean of the independent variables in the model, which are multiplied by their respective 

model coefficients, except for symptom days, which is set at 1 to reflect the daily cost of 

illness. The predicted probability that each action is taken is multiplied by its associated 

in-sample average cost reported by respondents, pM. These are the same average costs 

reported in Chapter 2, Table 2.4 except for work days lost, which is adjusted to represent 

the lost wages from one work day lost due to health symptoms. The predicted probability 

is calculated by re-estimating the regression models retaining only those variables which 

were found to have a statistically significant effect on the probability of undertaking each 

mitigating activity. This is done to minimize the variance in the model and increase the 

precision of the estimate. Summing across all mitigating actions results in an estimate of 

the predicted cost of illness for the average household. 

 

Defensive Behavior Model 

To implement the defensive behavior method to calculate the mean willingness to 

pay for a reduction in symptom days, a health production function such as that in 

equation (4.2) is estimated. The health outcome experienced is the dependent variable of 
                                                           
14 A model was not estimated for the mitigating action of going to a non-traditional healthcare provider 
given that only five individuals undertook this action.  
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interest, which in this case is the number of days that health symptoms were experienced 

as a direct result of exposure to wildfire smoke. The independent variables include 

everything that enters the right hand side of the health production function, including 

exposure to the pollutant, the averting and mitigating actions taken, the individual’s 

health history, lifestyle factors and demographic factors.  

Estimating this model has proven somewhat difficult in practice. A major 

complication that arises in empirical estimation, explained thoroughly by Dickie (2003) is 

the fact that averting and mitigating actions variables are often endogenous, jointly 

determined with the health outcome. These endogenous regressors will be correlated with 

the disturbance of the health production function equation they appear in, meaning least 

squares estimators will be both biased and inconsistent. Numerous studies that have 

estimated health production function regression models over the years have expressed the 

importance of this issue (Gerking and Stanley, 1986; Joyce et al., 1989; Alberini et al., 

1996; Bresnahan et al., 1997; Dasgupta, 2004; Dickie, 2005).  

The dependent variable in this analysis is count in nature (the number of days 

symptoms were experienced) and the potentially endogenous averting and mitigating 

action variables are binary, meaning nonlinear estimation techniques to address this issue 

of endogeneity must be employed. To estimate the health production function and 

address the issue of endogeneity in a nonlinear framework, we use a maximum simulated 

likelihood estimation procedure developed by Deb and Trivedi (2006a,b) which was 

explained in detail in Chapter 2, Section IV. The results of this model, including only 

those variables which had a statistically significant effect on expected symptom days can 
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be found in Table 4.2. The results of this regression analysis are also explained in detail 

in Chapter 2, Section V. 

TABLE 4.2 
Defensive Behavior Model 

 
                        *: p≤0.10, **: p≤0.05, ***: p≤0.01 

 Variable Coefficient Robust Std. Error

SYMPTOM DAYS - Negative Binomial Regression

Smelled smoke indoors > 5 days 0.394*** 0.142

Smelled smoke outdoors > 5 days 0.953*** 0.168

Ear, nose or throat symptoms 3.630*** 0.232

Breathing symptoms 0.789*** 0.183

Other symptoms 0.719*** 0.221

Home air cleaner -0.848*** 0.163

Hours per week of outdoor recreation -0.023* 0.012

Male -0.341** 0.151

Married -0.345** 0.153

Age 0.012** 0.005

College graduate 0.479*** 0.141

Employed part-time 0.625** 0.305

Lives in Duarte 0.539** 0.225

Lives in Burbank 0.460** 0.185

Lives in Glendora 0.406** 0.174

Constant -3.701*** 0.476

HOME AIR CLEANER - Probit Regression

Smell smoke inside > 5 days 0.362 0.259

Smell smoke outside > 5 days 0.336 0.282

Ear, nose or throat symptoms 0.672*** 0.242

Breathing symptoms 0.168 0.265

Other symptoms 1.374*** 0.333

Hours per week of outdoor recreation -0.017 0.021

Male -0.183 0.246

Married 0.437 0.268

Age -0.006 0.010

College graduate 0.375 0.248

Income -0.005** 0.003

Employed full-time 0.560** 0.284

Employed part-time 0.519 0.461

Lives in Duarte -0.220 0.400

Lives in Burbank 0.411 0.307

Lives in Glendora 0.496* 0.272

Believes smoke can affect health 1.426** 0.703

Constant -3.481*** 1.096

/lambda 0.858*** 0.072

/lnalpha -13.657*** 2.491

N = 377

Log Likelihood = -672.066

Wald chi2 (24) = 424.71

Prob > chi2 = 0.0000001
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Contingent Valuation Model  

In applying a contingent valuation framework to value a decrease in the number 

of symptom days experienced from exposure to a pollutant, willingness to pay will be a 

function of the bid amount and any variables that would enter the health production 

function. Freeman (2003) explains that technically you do not need to include variables 

other than the bid amount in the model, but if willingness to pay does vary with other 

characteristics such as health status and demographics, this information should be known 

if the values from this study are to be used to value the benefits of pollution control in 

other contexts. The contingent valuation portion of the survey questioned respondents 

about whether any members of their household experienced health symptoms from the 

smoke from the Station Fire. If they indicated that they had, the respondents were asked 

if they would be willing to pay a specified bid amount to reduce the symptoms 

experienced by all members of the household by 50%.   

Ultimately, we would like to know the actual willingness to pay distribution of all 

respondents, but given the dichotomous choice question format used here, the only 

known information is whether a respondent responded “yes” to a specified bid amount, in 

which case their actual willingness to pay is greater than or equal to this value, or 

responded “no,” in which case their actual willingness to pay is less than this value. Thus, 

the actual underlying willingness to pay distribution of interest, which we refer to as 

WTP*, is unknown. Following closely the work of Alberini (1995), the willingness to 

pay model can be specified as: 

 WTPi* = x i’β + ε        (4.10) 
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where xi’ represents a vector of independent variables which could influence the 

individual’s willingness to pay, and ε is a normally distributed error term. Whether or not 

an individual was willing to pay a specified bid amount is observed, so the probability 

that the individual responds “yes” to a specified bid amount “bidi” is: 

 Pr (WTP*i ≥ bidi | xi’) = 1 – F (bidi | xi’)      (4.11) 

where F is the cumulative distribution function of WTPi* . This model is estimated by the 

method of maximum likelihood, which requires that a distribution is specified for the 

underlying willingness to pay. Various probability distributions were considered to model 

willingness to pay, however, a log-normal functional form is chosen for two main 

reasons. First, while a logistic distribution is frequently assumed, it has been noted that a 

logit regression model should have a sample size of at least 500 observations 

(Studenmund, 1992). However, in this study, only 157 respondents were eligible to 

respond to the contingent valuation question. Giraud, Loomis and Cooper (2001) cite less 

need for a large sample size as an advantage of the probit model over the logit model in 

estimating willingness to pay values. Second, assuming a non-negative distribution for 

willingness to pay seems reasonable for the case of valuing a decrease in symptom days 

from exposure to wildfire smoke. It seems implausible that individuals would hold 

negative values for a decrease in a health outcome whose presence is expected to reduce 

their utility. As Alberini and Cooper (2000) point out, a negative willingness to pay value 

would indicate that the average individual would actually pay to be sick. The log of the 

bid amount is included in the regression model to restrict willingness to pay values to lie 

between zero and infinity. Assuming willingness to pay follows this log-normal 
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distribution, the probability of individual i responding “yes” to a specified bid amount 

“bid i” becomes: 

 Pr (WTP*i ≥ bidi | xi’) = 1 - F(bidi | xi’)  = 1 – Φ((ln(bidi) - xi’β) / σ)  (4.12) 

where Φ is the standard normal cumulative distribution function, and σ is the standard 

deviation of the log transformation of willingness to pay. Assuming WTPi = 1 if the 

respondent is willing to pay the specified bid amount and 0 otherwise, the log likelihood 

function can be written as: 

 lnL = ∑ ����� � ln �1 �����  Φ(
�� ���������′  

! ) + (1-����� ln Φ(
�� ���������′  

! )] (4.13) 

A probit regression model is estimated to model the determinants of the predicted 

probability that the individual was willing to pay the specified bid amount. Additional 

variables added to this model include the total medical costs incurred by all household 

members, the total cost of averting activities taken by the household, as well as the 

number of people in the household who experienced symptoms. Finally, given that the 

respondent was valuing a 50% reduction in all symptom days experienced in the 

household, the duration of the illness is captured by a variable representing half of all 

symptom days experienced in the household. The results of this regression model, 

including only those variables which had a statistically significant effect on the predicted 

probability that the individual was willing to pay the specified bid amount can be found 

in Table 4.3 below. The results of the full model including all independent variables can 

be found in the Appendix, Table 4.A.  
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TABLE 4.3 
Probit Regression of WTP for 50% Reduction in Symptom Days 

 
                    *: p≤0.10, **: p≤0.05, ***: p≤0.01 
 

The bid coefficient in this model is negative and statistically significant at the 1% 

level, meaning that the higher the bid amount, the less likely the individual was willing to 

pay, all else constant. This provides evidence of theoretical construct validity to the 

contingent valuation question responses. The natural log of half of all household 

symptom days is positive and statistically significant at the 5% level. The coefficient on 

this variable is less than one, implying that willingness to pay increases with household 

symptom days, but at a decreasing rate. Similarly, previous contingent valuation studies 

estimating the willingness to pay for symptom relief, such as Alberini et al. (1997), 

Johnson et al. (1997), Liu et al. (2000), and Dickie and Messman (2004), all found that 

the increase in willingness to pay is less than proportionate to the increase in the duration 

of the illness as measured by symptom days.  

In addition, the more money the individual spent on averting activities, the higher 

the probability they were willing to pay the specified bid amount to reduce symptoms 

Variable Coefficient Std. Error

ln (Bid amount) -0.473*** 0.097

ln (Half of household symptom days) 0.342** 0.161

Cost of averting activities 0.0006*** 0.000

Times per week of exercise -0.232* 0.141

College graduate 0.486* 0.271

Has health insurance -1.088*** 0.388

Lives in Glendora, CA -0.596** 0.268

Constant 2.191*** 0.669

N = 157

Log Likelihood = -75.802

LR chi2 (7) = 51.760

Prob > chi2 = 0.0000001
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experienced in their household. This variable is significant at the 1% level and this 

finding is consistent with theory, which says that one of the four main components of the 

true value of a reduction in symptom days will be expenditures on averting activities.  

Turning to lifestyle and demographic factors, similar to Liu et al. (2000) we find 

that exercise has a negative and statistically significant effect on the probability that the 

individual is willing to pay a specified bid amount, all else constant. Being a college 

graduate has a positive and significant effect on willingness to pay compared to those 

respondents without college degrees. Having health insurance has a negative effect on the 

probability that the individual is willing to pay the specified bid amount, and this variable 

is significant at the 1% level. Finally, living in the city of Glendora has a negative and 

significant effect on willingness to pay compared to living in Duarte, Monrovia, Sierra 

Madre, or Burbank.  

Interestingly, a variable controlling for the number of individuals in the household 

who experienced symptoms was included in the full model but did not have a significant 

effect on willingness to pay.  

 
 

VI. COMPARISON OF VALUES FOR A REDUCTION IN ONE WILDFIRE 
SMOKE INDUCED SYMPTOM DAY 

 
Cost of Illness 

Following equation (4.9), the predicted cost of illness for one symptom day for 

the average household estimated to be $9.32 as shown in Table 4.4. This cost can be 

viewed as conservative in that there is no assumed cost for a loss in recreation days or 

utility due to symptoms from exposure to the smoke from the Station Fire.  
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TABLE 4.4 
Predicted Cost of Illness for One Symptom Day 

 
 

Defensive Behavior Method WTP 

In the defensive behavior regression model, the individual willingness to pay for a 

given change in illness can be calculated as [-pa / (∂S/∂A)] from equation (4.5a). Given 

that using an air cleaner is the only averting action that is found to have a statistically 

significant and negative effect on expected symptom days, the willingness to pay 

measure is based on this action. The incremental effect of this endogenous input on 

output is -0.31, meaning the use of an air cleaner is expected to reduce symptom days by 

0.31.15 Taking the average cost reported by those respondents who used an air cleaner 

during the Station Fire results in an estimated price of $26.93 for this averting action. The 

average respondent’s willingness to pay for a reduction in one symptom day from 

exposure to wildfire smoke is equal to -26.93/-0.31 = $86.87.  

 

Contingent Valuation Method WTP 

A goal of this study is to compare the willingness to pay value estimated by 

applying the defensive behavior method to the willingness to pay value estimated by 

applying the contingent valuation method. Therefore, the mean willingness to pay value 
                                                           
15 The discrete change in expected count outcome resulting from a change in binary variable Xk from 0 to 1 
can be calculated as: [µi|X

k=0][exp(βk)-1] where µ=exp(Xβ), with all variables except Xk are set at their 
sample mean. 

Mitigating Action

Predicted Probability 
Action is Taken Average ExpenditurePredicted  Expenditure

Obtained medical care/prescription medications 0.0127 77.87 $0.99
Took non-prescription medicines 0.0621 16.86 $1.05
Missed work 0.0252 288.88 $7.28
Missed recreation 0.1300 N/A N/A
Cost of Illness $9.32
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derived from the contingent valuation method is the statistic of interest. Given the 

assumed log-normal distribution of willingness to pay, this expected value can be 

calculated as:      

E(WTP) = exp (µ + 0.5σ2)       (4.14) 

where µ and σ are the mean and standard deviation of the logged willingness to pay. 

Estimates of µ and σ are recovered as follows:  

 E (WTP) = exp [���′  
 "#$�%

 + 0.5�� �
 "#$�%

�)]     (4.15)  

By setting all independent variables at their sample mean, we can estimate the mean 

willingness to pay to avoid an average number of symptom days experienced in the 

household. This results in a mean willingness to pay value of $339.34 to avoid an average 

of around seven symptom days, or $48.48 per day. Plugging in one symptom day and 

setting all other independent variables at their mean value results in a mean willingness to 

pay value of $82.82 for a reduction in one wildfire smoke induced symptom day.16 This 

is the value focused on for the comparison across methods. Due to the fact that 

willingness to pay is increasing at a decreasing rate in symptom days, the willingness to 

pay to avoid one symptom day is much higher than the willingness to pay per day to 

avoid an average of seven symptom days. This is consistent with previous studies such as 

Alberini et al. (1997) who conducted a contingent valuation survey of residents in Taiwan 

exposed to particulate matter and ozone. The authors found that willingness to pay per 

day to avoid a five day illness was about one-third the willingness to pay to avoid a one 

day illness.  

                                                           
16 One last approach would be to estimate the mean willingness to pay to move from an average of 7 
symptom days to 6 symptom days. This results in a value of $35.57. 



104 

 

 While these estimates represent the willingness to pay for a reduction in 50% of 

the symptom days that all members of the household experienced, recall that a covariate 

controlling for the number of people in the household with symptoms was included in the 

full regression model but was not found to be a significant determinant of the probability 

that the individual was willing to pay the specified bid amount (as seen in the Appendix, 

Table 4.A).  

 

Comparison of Values 

As expected from theoretical predictions and the majority of empirical studies, the 

cost of illness point estimate is considerably lower than the willingness to pay values for 

a reduction in one symptom day from exposure to wildfire smoke. The contingent 

valuation and defensive behavior willingness to pay values are around nine times larger 

than the cost of illness estimate, respectively. The daily willingness to pay values of 

$82.82 and $86.87 fall within those estimated in the literature for other air pollutants. 

Johnson et al. (1997) summarized a number of studies estimating willingness to pay 

values for a reduction in various health symptoms over the years and found that they 

ranged from about $5 for a reduction in one day of chest congestion up to about $194 for 

a reduction in one day of angina symptoms. By combining a meta-analysis of morbidity 

valuation studies with a health-status index, the authors themselves estimated values from 

$36 to $68 to avoid one day of mild cough, $110 to avoid one day of shortness of breath, 

and $91 to $129 to avoid one day of severe asthma.17  

                                                           
17 All values were converted to 2009 U.S. dollars using the consumer price index 
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In addition, the fact that the willingness to pay value of $82.82 using a contingent 

valuation stated preference elicitation method is slightly smaller than the value of $86.87 

which is based on a defensive behavior revealed preference elicitation method is also 

consistent with theory and previous findings. The defensive goods used in the defensive 

behavior method WTP calculation may provide a direct source of utility to the individual 

using them, meaning benefit estimates based on this method may be higher than their 

contingent valuation counterparts. In addition, Carson et al. (1996) conducted a meta-

analysis consisting of 83 studies and 616 comparisons of contingent valuation (CV) and 

revealed preference (RP) willingness to pay estimates for quasi-public goods. They found 

an average sample mean CV: RP ratio of 0.89, providing evidence that contingent 

valuation willingness to pay estimates are on average smaller than their revealed 

preference willingness to pay estimate counterparts.  

Given these results, it appears that the null hypothesis of equality between the cost 

of illness estimate and either of the willingness to pay values can be rejected, but further 

analysis is needed to statistically test this hypothesis. Whether the two point estimates of 

willingness to pay are statistically different is less clear. To explore these relationships, 

Table 4.5 presents the average estimates of the value for a reduction in one wildfire 

smoke induced symptom day, along with the 95% percentile confidence intervals around 

these values estimated from 1,000 bootstrapped coefficients for each of the three models.  
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TABLE 4.5 
Values for Reduction in One Wildfire Smoke Induced Symptom Day 

 

 

It is clear that the 95% confidence interval of $3.80 to $12.78 around the cost of 

illness estimate does not overlap the 95% confidence intervals around the willingness to 

pay values estimated from the other two methods. As expected, the null hypothesis that 

the cost of illness estimate equals either of the willingness to pay values can be rejected at 

the 95% confidence level. Turning to the comparison of the two willingness to pay point 

estimates, Figure 4.1 graphically shows the lower and upper bounds of the 95% 

confidence interval around the two values.  

 

 

FIGURE 4.1 
95% Confidence Intervals for WTP Values 

 

The confidence interval around the willingness to pay values overlap at the 95% 

level of confidence, which would imply that the null hypothesis of equality between the 

two values cannot be rejected. However, this result should be confirmed with the 

Method Point Estimate 95% CI

Cost of Illness $9.32 [$3.80-$12.78]

Defensive Behavior WTP $86.87 [$70.99-$814.10]

Contingent Valuation WTP $82.82 [$21.12-$1022.49]

$1,022.49 

$814.10 

$21.12 $70.99 0 
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complete combinatorial convolutions approach. Comparing confidence intervals to 

statistically test this difference has been shown to result in a higher likelihood of type II 

error due to overstated significance levels than the method of convolutions (Poe et al., 

2005). This test results in a one-sided p-value of 0.38 and a two-sided p-value of 0.76. 

This confirms the comparison of confidence intervals and we conclude that the null 

hypothesis of equality of the two willingness to pay point estimates cannot be rejected at 

standard significance levels. 

 

VII. CONCLUSIONS  

There is considerable concern over the health effects individuals experience from 

exposure to the pollutants contained in wildfire smoke and agencies such as the U.S. EPA 

often attempt to quantify the cost imposed on individuals as a result of this exposure. 

While they realize that methods such as the cost of illness and damage function 

approaches ignore important components of this cost and will likely underestimate the 

associated economic cost of the damages to human health, they will continue to be used if 

there are no correct value estimates in the literature.  

This study attempts to fill this gap by quantifying the theoretically correct 

individual value of a reduction in one wildfire smoke induced symptom day by applying 

two common non-market valuation approaches. Using data on the defensive actions 

individuals reported taking during California’s Station Fire of 2009 along with their 

associated costs, the defensive behavior method application reveals that individuals are 

willing to pay an average of $86.87 for a reduction in one symptom day. Asking 

individuals a contingent valuation question based on a scenario about reducing half of all 
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symptom days experienced in their households reveals that individuals are willing to pay 

on average $82.82 for a reduction in one symptom day. These values fall within the range 

found in the literature. Comparing these values to a commonly monetized cost of illness 

reveals that for the case of wildfire smoke, willingness to pay values can be up to nine 

times a cost of illness estimate. This confirms theoretical predictions that willingness to 

pay values incorporate significant factors that represent a loss to the affected individual 

but are typically ignored in estimates of monetized health damages used by agencies.  

While this ratio of WTP: COI is higher than that found in the majority of previous 

studies which have compared the two (with the exception of Berger et al. (1987)), a few 

points should be noted. First, this is the only study which has calculated this ratio for the 

specific case of wildfire smoke using primary data. Second, this discrepancy is not 

surprising once the data required to implement the defensive behavior method is given a 

close look. For instance, while only 6.3% of survey respondents sought medical attention 

or took prescribed medications for symptoms, 89% took averting actions to protect 

themselves from exposure to the wildfire smoke. The costs of these actions would not be 

included in a cost of illness estimate. Further, of the 156 respondents who experienced 

health symptoms from exposure to the wildfire smoke, 110 of them missed recreation 

days as a result of these symptoms. This suggests that the disutility associated with 

symptoms or lost recreation captured in the willingness to pay estimate but not the cost of 

illness estimate may be substantial for individuals exposed to wildfire smoke. 

  Analysis of confidence intervals reveals that while the willingness to pay values 

are statistically different from the cost of illness estimate, the two willingness to pay 

values are not statistically different from one another as shown by the 95% confidence 
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intervals obtained from the bootstrap method. The complete combinatorial test further 

confirms this finding. This result is promising for future applications of both the 

contingent valuation and defensive behavior method in the realm of valuation of health 

damages, as it provides a test of convergent validity between the two measures. While 

both non-market valuation techniques appear to provide a valid estimate of the health 

damages associated with wildfire smoke exposure, if a primary survey is being conducted, 

we do feel there is a considerable advantage to collecting the data needed to implement 

the defensive behavior method and estimate the associated health production function.  

Future studies should also compare willingness to pay values to a cost of illness 

estimate for the specific case of wildfire smoke to test whether the ratio estimated here of 

nine is fairly consistent across wildfires. This could provide agencies with an estimate of 

the degree of inaccuracy associated with using a cost of illness estimate. Further, 

collecting data on attitudes about the most important components of an individual’s 

willingness to pay for symptom reduction could be valuable. This information could 

confirm whether defensive actions and disutility components of symptoms and lost 

leisure represent a very significant economic cost to them, as suggested by the substantial 

difference between willingness to pay and cost of illness estimates found in this study. 

This information will likely become even more important in areas such as California 

where large wildfires are moving closer to city centers and are no longer confined to rural 

areas. 
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APPENDIX  

TABLE 4.A 
Full Probit Regression of WTP for 50% Reduction in Symptom Days 

 
   *: p≤0.10, **: p≤0.05, ***: p≤0.0 

Variable Coefficient Std. Error

ln (Bid amount) -0.573*** 0.124

Smelled smoke indoors > 5 days -0.113 0.360

Smelled smoke outdoors > 5 days -0.060 0.399

Average daily maximum CO concentration -0.330 1.428

Household medical costs 0.000 0.002

Cost of averting activities 0.0006* 0.000

Number of household members with symptoms 0.143 0.190

ln (Half of household symptom days) 0.354 0.268

Current respiratory condition -0.094 0.380

Current heart condition 0.200 0.537

Past health effects from wildfire smoke -0.029 0.333

Times per week of exercise -0.153 0.184

Smoker 0.103 0.574

Alcoholic drinks per week 0.201 0.203

Current health is excellent -0.366 0.584

Current health is good 0.019 0.476

Hours per week of indoor recreation 0.060 0.048

Hours per week of outdoor recreation -0.027 0.036

Has a regular doctor 0.000 0.528

Male -0.338 0.333

Married 0.368 0.390

Age 0.000 0.016

White -0.124 0.380

Graduate school graduate 0.194 0.400

College graduate 0.623* 0.374

Employed full-time -0.570 0.411

Has health insurance -1.386*** 0.522

Number of children under 18 years old in household -0.158 0.192

Lives in Duarte 0.483 0.479

Lives in Burbank 0.189 0.415

Lives in Glendora -0.677 0.424

Income 0.005 0.004

Heard or read about possible health effects -0.285 0.399

Constant 2.983 2.553

N = 151

Log Likelihood = -65.870

LR chi2 (33) = 65.170

Prob > chi2 = 0.0007
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CHAPTER FIVE 

 
Econometric Approaches to Estimation of a Jointly Determined Health Production 

Function 
 
 

I. INTRODUCTION 

In health economics studies, the researcher is often interested in the effect of one 

or more treatment or choice variables on a particular health outcome of interest. Often 

times, estimating an econometric model to capture this effect is complicated by the fact 

that the treatment variable may be endogenous, correlated with the error term of the 

health outcome equation it appears in. For instance, it has been shown that an individual’s 

level of health is endogenous to their demand for health care (Windmeijer and Silva, 

1997); an individual’s choice of health insurance is endogenous to health care utilization 

(Deb and Trivedi, 2006a; Hidayat and Pokhrel, 2010; Zimmer, 2010); and the advice of a 

physician is endogenous to the number of alcoholic drinks consumed (Kenkel and Terza, 

2001), to name just a few empirical applications.  

Endogeneity in econometric models stems from a variety of sources. A common 

cause is omitting a variable that is correlated with both an independent variable in the 

model as well as the dependent variable. This omitted variable is also referred to as a 

confounding variable. In observational data there are often many nonrandom differences 

across observations which cannot be directly measured. This unobserved heterogeneity is 

typically captured in the error term of the outcome equation; however, if it is correlated 
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with an independent variable in the equation, it acts as a confounding variable (Zohoori 

and Savitz, 1997). Endogeneity may also arise due to simultaneity, where the dependent 

variable is affected by an independent variable, which is in turn affected by the dependent 

variable. Both the dependent variable and one of the independent variables are 

simultaneously determined, or codetermined. Other sources of endogeneity include 

sample selection error and measurement error, and it is possible to have numerous 

sources of endogeneity in one econometric model.  

Correcting for the endogeneity of explanatory treatment variables is complicated 

in the case where the treatment variable is binary and the health outcome of interest is a 

count variable (takes on a nonnegative integer value) meaning nonlinear estimation 

techniques must be employed. This scenario is quite common in the field of health 

economics where the health outcome of interest may be the number of visits to a 

physician or the number of days spent sick and the endogenous explanatory variable is 

whether or not some treatment or choice was undertaken. See Windmeijer and Silva 

(1997), Kenkel and Terza (2001), Schellhorn (2001) and Hidayat and Pokhrel (2010) for 

examples. However, as explained by Winkelmann (2008) “An important example where 

the issue of endogeneity is a major worry is related to the effect of a (binary) treatment on 

a count outcome variable.”  

If the endogeneity of the treatment variable is not accounted for, the coefficient 

estimates will be biased and inconsistent and inference can be misleading; however, 

correcting for binary endogenous regressors in a nonlinear framework is not always a 

straightforward matter. The endogenous binary treatment variable cannot be corrected for 

using standard two-stage instrumental variables approaches because of their nonlinear 
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nature. While this issue of endogeneity comes up frequently in econometric applications 

to health, models to correct for nonlinear endogenous regressors in count data regression 

models may not seem readily available, making it difficult for the applied researcher to 

correctly address this issue. However, depending on the assumptions that are made, there 

are econometric approaches that the researcher can undertake.  

This paper provides a guide for researchers facing this issue in empirical work. 

We summarize current econometric methods which can be used to address the specific 

challenge of estimating an econometric model with a count outcome and binary 

endogenous treatment variable. We present various approaches and outline the 

underlying assumptions, advantages and disadvantages, and empirical applications of 

each. These methods are then applied to estimate a health production function, where the 

number of days an individual spends sick as a result of exposure to wildfire smoke 

depends on pollution levels, various exogenous factors, as well as an endogenous binary 

treatment variable, specifically whether or not a home air cleaner was used to minimize 

exposure to the wildfire smoke. This study addresses endogeneity stemming from the 

common cause of unobserved heterogeneity. 

In Section II we present three classes of econometric approaches that can be 

employed to address endogeneity in this framework; Section III presents the specific 

application of these approaches and comparisons across models in the context of a health 

production function using primary data from California’s Station Fire of 2009; Section IV 

outlines conclusions.  
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II. ECONOMETRIC APPROACHES  

The dependent variable in the model is assumed to take on only nonnegative 

integer values (yi = 0,1,2,…), so we start with a count data regression model. Unobserved 

heterogeneity is represented by specifying a multiplicative error term in addition to a 

random error component. An additive error term could also be specified however, the 

multiplicative error term treats unobserved and observed heterogeneity symmetrically, 

which is likely an accurate treatment if the endogeneity is assumed to stem from 

unobserved variables. Taking the ith individual from random sample I = {1…n}, this 

model has conditional mean: 

 yi = E[yi | xi, di, l i] = exp(xi´β + γdi + ln(l i))+ei = exp(xi´β + γdi)l i + ei  (5.1) 

where xi is a vector of observed exogenous covariates, di  is the endogenous treatment 

variable, l i is the multiplicative error term, ei is the random error term, and β and γ are the 

parameter coefficients to be estimated.18 Following Winkelmann (2008), endogeneity of 

the binary treatment variable di implies that this variable is correlated with the 

unobserved multiplicative error term so E[l i | di] is not a constant but rather a function of 

di. We have:  

 corr (di , l i) ≠ 0 and        (5.2) 

 E [yi | xi , di] ≠ exp (xi’β + γdi) 

Ignoring the correlation between di and l i and estimating a standard count data regression 

model such as Poisson or negative binomial would bias the estimated parameters of the 

model. 

 
                                                           
18 For ease of notation, we assume a single endogenous regressor throughout. 
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Two Stage Estimation Approaches   

The applied researcher faced with the issue of estimating an econometric model 

with a binary endogenous treatment variable and a count health outcome may be tempted 

to employ a standard two-stage instrumental variables approach. This nonlinear analogue 

to two-stage least squares would involve: (a) estimating a reduced form binary 

probability regression model (such as a probit or logit) by regressing the endogenous 

variable on a set of appropriate instrumental variables and all other exogenous variables 

in the model and (b) replacing the endogenous variable with its predicted value from this 

reduced form equation in the second stage nonlinear model for the count health outcome 

(such as a Poisson or negative binomial).19  

However, while this approach has been widely used in empirical research, 

especially health economic studies (see Terza et al., 2008 for a complete list of these 

applications), in general it will not produce consistent results (Windmeijer and Silva, 

1997; Wooldridge, 2002; Terza et al., 2008; Winkelmann, 2008). Replacing a nonlinear 

endogenous covariate with the predicted values from first stage estimation of the same 

nonlinear function in a second stage estimation has been referred to as a forbidden 

regression (Wooldridge, 2002).   

Terza et al. (2008) refer to this method as two-stage predictor substitution (2SPS) 

and outline why applying this approach will typically result in inconsistent parameter 

estimates in a general parametric framework. To see why, it helps to start with an 

                                                           
19 While there is a whole literature dedicated to what constitutes a good set of instrumental variables, they 
should generally satisfy three conditions: 1. They should not be correlated with the error term of the 
outcome equation. 2. They should be sufficiently correlated with the endogenous variable. 3. For 
identification purposes, there should be at least as many instrumental variables as there are endogenous 
covariates. 
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explanation of how and why two-stage least squares does result in consistent parameter 

estimates in a linear framework. Assume we begin with the following model: 

 

yi = E[yi | xi, wi, l i] = x i´β + γwi +l i + ei     (5.3) 

and corr (wi , l i) ≠ 0 

where yi and wi are continuous variables and the correlation between wi and l i is the 

source of endogeneity. Simple OLS would cause the error term to be (l i+ei) which is 

correlated with the endogenous variable, thus introducing bias in all estimated 

coefficients. To address this endogeneity in a two stage least squares framework, the first 

stage reduced form model would be: 

 wi = xi´δ +  zi´α + l i        (5.4) 

where xi represents a vector of observed exogenous covariates in the entire system of 

equations, zi represents an appropriate set of instrumental variables and l i the random 

error term. OLS estimation results in residuals from this first stage regression that are 

uncorrelated with the endogenous variable and all other covariates in the system. Thus, 

wi = *+ i + ,-i          (5.5) 

The endogenous variable in the outcome equation is replaced by its predicted value from 

this first stage regression model, which includes a random error component (everything 

that affects the endogenous variable but is omitted). The second stage regression would 

be: 

yi = 	.i´β + γ (*+ i + ,-i) + (l i + ei)      (5.6) 

Since this equation is linear, this becomes: 

yi = 	.i´β + γ *+ i + (γ,-i +l i + ei)      (5.7) 
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Two stage least squares results in an additively separable error term for the outcome 

equation that is no longer correlated with the endogenous variable or the exogenous 

covariates. The endogenous variable has been purged of the influence of the outcome 

equation error term, the unobserved heterogeneity component l i, resulting in unbiased and 

consistent coefficient estimates.  

 However, directly applying two stage least squares reasoning when either the 

outcome equation or the endogenous variable is nonlinear will typically result in biased 

coefficient estimates and the bias does not dissipate as the sample gets larger. For 

instance, if the outcome variable yi is a count, we start with equation (5.1). As explained 

in Terza et al. (2008), the general problem with applying this reasoning to a nonlinear 

framework is that neither γ,-i nor li would be additive because they would be inside the 

exponential function. They could not simply be pulled out of the function to become part 

of the error term in the outcome equation, these error components are not additively 

separable like they are in the linear case.    

Winkelmann (2008) outlines a very specific situation where estimation in stages 

may result in consistent second stage parameter estimates for the count model. This 

requires the strong assumptions of a recursive system of equations, a linear reduced form 

regression model for the endogenous variable, and full independence of the first stage 

residuals (l i) and the instrumental variables (/̂i). These assumptions are ruled out if the 

endogenous variable of interest is binary (Wooldridge, 1997; Winkelmann, 2008), 

meaning two stage predictor substitution will never result in consistent estimates of 

second stage coefficients in the case of a count outcome and binary endogenous 
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covariate.20 See Terza et al. (2008) for a formal treatment of the consistency properties of 

this estimator and the degree of biasedness that can result from its application.  

However, Terza et al. (2008) outline a two stage estimation approach referred to 

as two-stage residual inclusion (2SRI) which will provide consistent parameter estimates 

in a general nonlinear framework. To see why, begin with the model for a dependent 

count variable, yi and endogenous binary regressor, di.   

yi = E[yi | xi, wi, l i] = exp(xi´β + γdi +l i)+ei     (5.8) 

and corr (di , l i) ≠ 0 

Given an appropriate set of instrumental variables, the reduced form of the endogenous 

binary variable is as follows: 

 di = Φ(xi´δ + zi´α) + l i        (5.9) 

where Φ is the standard normal pdf. This model can be estimated as a probit regression 

and the predicted value of di can be calculated. The residuals of this model can be defined 

as: 

  ,-i = di - Φ(	.i´δ + /̂i´α)        (5.10) 

By maintaining the original endogenous covariate in the second stage regression and 

incorporating the first stage residuals from equation (5.10) the second stage becomes: 

 yi = exp(xi´β + γdi + λ,-i) + e2SRI      (5.11) 

where e2SRI is the error term from this two-stage estimator. Estimating equation (5.11) as 

a standard count data model will result in consistent parameter estimates given this model 

                                                           
20 Another approach is to ignore the count nature of the dependent variable in the outcome equation and 
estimate a linear second stage with the endogenous covariate replaced with the fitted values from the first 
stage regression. This will result in consistent parameter estimates for the second stage even if the first 
stage is nonlinear (see Heckman, 1978; Dubin and McFadden, 1984; Mullahy and Portney, 1990 for 
examples for the specific case of a binary endogenous regressor). However, little can be said for accurate 
inferences in this situation.  
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specification. The first stage predicted residuals ,-i provide a consistent estimate of the 

unobserved variables whose correlation with di was the cause of the endogeneity. Since l i 

shows up directly in equation (5.8), substituting these predicted residuals in for the 

unobservable confounders corrects for the endogeneity and will result in consistent 

parameter estimates. This requires that the instrumental variables zi’ are uncorrelated with 

l i. Terza et al. (2008) shows this in a general nonlinear framework and outlines the formal 

consistency properties of this estimator. This method has been applied in a number of 

studies with a nonlinear econometric framework (Burnett, 1997; Shea et al., 2007; Fang 

et al., 2010). Due to the two stage approach, standard errors will be underestimated and 

should be corrected.  

However, it has been noted that the 2SRI approach may not always estimate 

consistent parameter estimates in the specific model that consists of a count dependent 

variable and binary endogenous covariate (Staub, 2009), depending on the form of the 

model. In Terza et al.’s (2008) specification, the first stage residuals l i show up directly in 

the outcome equation (5.8), however, Wooldridge (2002) and others outline the same 

model with different assumptions, namely that the error term in equation (5.9)  does not 

show up directly in equation (5.8). For instance we may have: 

 di = Φ(xi´δ + zi´α) + vi       (5.12) 

In this case, correcting for endogeneity and estimating consistent model coefficients 

requires full independence of the instrumental variables zi’ and the random error term vi 

(Wooldridge, 2002), a much stronger assumption than that of uncorrelatedness required 

in the model of Terza et al. (2008). This assumption of full independence would never be 

satisfied for a binary endogenous variable since any type of binary model for the 
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endogenous covariate would produce an error term that is heteroskedastic, not fully 

independent of the instrumental variables. If this model is followed, any two stage 

approach, be it 2SPS or 2SRI, will not result in consistent estimates of second stage 

coefficients in the case of a count outcome variable and binary endogenous covariate.21  

Thus, the 2SRI method may produce consistent parameter estimates for the 

specific case of a count dependent and binary endogenous covariate depending on what 

assumptions of the model are made. Regardless, the 2SRI method was originally 

proposed by Hausman (1978) as a means of testing for endogeneity and will still provide 

a valid test of endogeneity in this framework (Staub, 2009)    

 

Nonlinear Instrumental Variables Estimation Approach (GMM) 

A second approach to addressing endogeneity in a count data regression model 

with a binary endogenous regressor is to implement a nonlinear instrumental variables 

estimation approach based on the work of Mullahy (1997). Again assuming a 

multiplicative error term to represent the unobserved heterogeneity term that is 

potentially correlated with a binary covariate we have: 

 yi = E [yi | xi, di, l i] = exp(xi´β + γdi)l i + ei      (5.13) 

and corr (di , l i) ≠ 0  

This approach requires that there exist a set of instrumental variables such that: 

 E [ei | xi, di, zi] = 0  and       (5.14) 

 E [l i | zi] = 1  (normalized to 1, the key is that it is not a function of zi) 

                                                           
21 We graciously thank Dr. Rainer Winkelmann for his assistance on clarifying this matter. 
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Recall, any solution to the endogeneity issue that results in consistent parameter estimates 

of the outcome equation will purge the endogenous variable of the influence of the 

outcome equation error term. Mullahy (1997) proposes a transformation of equation 

(5.13) to obtain a residual function where the unobserved heterogeneity term l i is 

additively separable from (and thus not correlated with) the binary endogenous covariate 

di. This results in the following moment condition: 

E[l i | zi] = 1, i.e. E [� 1� 
2�3���´  5 6���� - 1 | zi] = 0    (5.15) 

Nonlinear instrumental variables estimation techniques can then be applied to this 

transformed residual function to obtain consistent parameter estimates. Mullahy (1997) 

and Windmeijer and Silva (1997) recommend a generalized method of moments (GMM) 

estimator. This approach adequately corrects for the endogenous treatment variable and 

requires very few assumptions, only that the model has an exponential mean and there 

exists a strong set of instrumental variables. In addition, if there are more instruments 

than endogenous variables, tests for over-identification can be applied. Wooldridge 

(1997) explains that to implement this method, no assumptions about the distribution of 

the endogenous covariate given the instrumental variables, other than a standard rank 

condition for identification, need to be met. Thus, the researcher does not need to assume 

independence of the error term and the instruments in the reduced form for the 

endogenous variable.   

This model can also be specified with an additive unobserved heterogeneity 

component (see Windmeijer and Silva, 1997 and Winkelmann, 2008). Windmeijer and 

Silva (1997) explain that when endogeneity is present, the instrumental variables used in 

estimation will not in general be orthogonal to both a multiplicative and additive error 
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term specification. Determining which specification should be implemented can be tested 

using a standard test of overidentifying restrictions when there are more instruments than 

endogenous variables (Windmeijer and Silva).22 In addition, the predicted value of the 

endogenous variable from a reduced form first stage binary model can be used as an 

additional instrument in the GMM estimation.  

Applications of this approach addressing endogeneity of a continuous covariate in 

a count data framework include Mullahy (1997), who looks at the effect of the stock of 

smoking habits over time, a lagged endogenous variable, on the demand for cigarettes 

and estimates a birthweight production function where maternal smoking during 

pregnancy is assumed to be endogenous. Dickie (2005) estimates a health production 

function for school absences due to illness where the number of school absences and 

doctor visits in the past year, as well as the months since the child’s last checkup and the 

number of children in the household, are endogenous. Other examples include Andersson 

et al. (2009) who estimate the effect of the number of university-based researchers on 

productivity and innovation in local areas.  

Examples with a binary endogenous covariate and a count dependent variable 

include Windmeijer and Silva (1997) who estimate a model of the number of visits to a 

doctor in the last month which includes an endogenous binary regressor of self-reported 

health status, Vera-Hernández (1999) who models the demand for doctor visits where the 

choice of duplicate insurance coverage is endogenous and Schellhorn (2001), who looks 

at the effect of the choice of health insurance deductable on physician visits. Unlike two 

                                                           
22 See Terza (2006) for an explanation of the potential bias that can arise from applying GMM based on a 
wrongly specified non-symmetric model.  
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stage approaches, this nonlinear instrumental variable approach is flexible enough to 

accommodate binary endogenous regressors in a count data model. There is a user written 

Stata command, ivpois, based on this method and written by Nichols (2007) which can be 

used to estimate any exponential regression model with endogenous regressor and can be 

specified with a multiplicative or additive error term. However, the flexibility of GMM 

can lead to some drawbacks such as a loss of efficiency in parameter estimates. Further, 

there has been a significant amount of literature on the need for a large sample size for 

consistent GMM estimation. 

 

Full Information Maximum Likelihood (FIML) Approaches  

Maximum Simulated Likelihood  

Another econometric method which can be applied to look at the effect of an 

endogenous treatment variable on a count outcome of interest is a full information 

maximum simulated likelihood approach, based on stronger assumptions than a GMM 

approach. Deb and Trivedi (2006a,b) develop a joint model of count outcome and binary 

treatment (a special case of their multinomial treatment example) which accounts for 

endogeneity arising from correlated unobserved heterogeneity in the outcome and 

treatment equation. They generate correlated errors by incorporating latent factors into 

both the treatment and outcome equations, thus obtaining an appropriate joint 

distribution. Their model has the following outcome and treatment equations: 

 yi* = 	�7β + γdi + λl i + ei       (5.16) 

di* = /�7α + δl i + ηi        (5.17) 
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where 	�7 is a vector of exogenous variables and di is the endogenous treatment variable in 

the outcome equation, with associated parameters β and γ. /�7 is a vector of exogenous 

variables in the treatment equation, with associated parameters α . The error term in each 

equation is partitioned into latent factors l i and an independently distributed random error 

term. The latent factors represent unobserved individual specific characteristics which 

affect both choice of treatment and health outcome. They have associated parameters λ 

and δ, referred to as factor loadings. The observed random outcome variable yi and the 

observed endogenous treatment variable di can then be modeled using appropriate 

distribution functions f and g as follows: 

 Pr [Yi = yi | xi, di, li] = f (	�7β + γdi + λl i)     (5.18) 

Pr [di  = 1 | zi, li] = g (/�7α + δl i)      (5.19) 

While the random error terms, ei and ηi are assumed to be uncorrelated, incorporating the 

unknown latent factors results in correlated composite error terms (λl i + ei) and (δl i + ηi). 

The joint distribution of treatment and outcome variables can then be specified as 

follows: 

Pr [Yi = yi, di  = 1 | xi, zi, li] = f (	�7β + γdi + λl i) * g (/�7α + δl i)  (5.20) 

Although the latent factors l i are unknown, the authors assume their distribution h is 

known and integrate it out of the joint density as follows: 

Pr [Yi = yi, di  = 1 | xi, zi] = ∫ [ f (	�7β + γdi + λl i) * g (/�7α + δl i)] * h(l i) dli (5.21) 

The unknown parameters of this model could be estimated by maximum likelihood. 

However, the integral does not have a closed form solution, so the authors apply 

simulation-based estimation to evaluate the integral (Gourieroux and Monfont, 1996), 

replacing the expectation with a simulated sample analogue such that: 
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Pr� [Yi = yi, di  = 1 | xi, zi] ≈ 
�
8   ∑ �9 �	�7� : ;<� : =,>�?� � @�/�7A : B,>�?�� 8?��  (5.22) 

where Pr� is the simulated probability and l�is is the sth draw from a total of S draws of a 

pseudo-random number from density h. The simulated log-likelihood function becomes: 

 ln L(yi, di  | xi, zi) ≈ ∑ ln ��
C  ∑ D9�x´F� : ;<� : =,G �?�CH��I���  � @�z´FA : δ,>�?�L� (5.23) 

The estimator maximizes the average simulated log likelihood function, which is 

equivalent to maximizing the log-likelihood function if enough simulation draws are 

used. In order to increase the speed of simulation, the model uses quasi-random draws 

based on Halton sequences.  

This approach is more parametric and based on stronger assumptions of 

maximum likelihood than the GMM approach. Full information maximum likelihood 

methods are also more efficient than two stage approaches and do not require adjustment 

of standard errors. Deb and Trivedi (2006a,b) explain the benefits of using a latent factor 

structure to generate correlated errors. These include being able to generate a joint 

distribution of treatment and outcome variables despite them not having a closed-form 

representation, and the ease of interpreting the factor loadings in the same way a 

coefficient on an observed covariate is (Deb and Trivedi, 2006a,b). The statistical 

significance of the coefficients on the latent factors confirms whether unobserved 

heteroegenity is present.    

Deb and Trivedi (2006a) apply this model to estimate the effect of health 

insurance plan, an endogenous treatment variable, on the utilization of health care 

services. Deb and Seck (2009) apply it to measure the effects of migration on a wide 

range of variables. The downside of this approach lies in the difficulty of estimation 

compared to other approaches (Cameron and Trivedi, 2005). Another potential 
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disadvantage is that the correlation between the endogenous covariate and the error term 

of the outcome equation due to latent factors is restricted to be less than one (Deb and 

Trivedi, 2006b). There is a user written Stata command treatreg2 (Deb and Trivedi, 2006 

a,b) to estimate this model. The dependent variable can be specified as negative binomial 

or gamma distributed with an endogenous binary treatment variable. 

 

Endogenous Switching Models 

A second full information maximum likelihood approach is the endogenous 

switching model, first outlined in Roy (1951) and later presented in Maddala (1983) and 

Amemiya (1985). Endogenous switching models are typically applied to address two 

common challenges in econometric models – sample selection and binary endogenous 

variables. The focus of this paper is on the latter, the effect of a binary treatment (regime 

switch variable) on a count health outcome in the presence of correlated unobserved 

factors which affect both treatment and outcome, i.e. the endogeneity problem. Terza 

(1998) and Miranda (2004) outline this full information maximum likelihood approach 

where a count dependent variable, yi, is dependent on a potentially endogenous binary 

variable, di, a vector of exogenous explanatory variables, xi, and a random error 

component, ei. Assuming the model has a count outcome and following closely the work 

of Winkelmann (2008), the conditional mean of yi is:  

 yi = exp(xi´β + γdi + l i)+ei        (5.24)  

The error term l i represents the unobserved heterogeneity component, incorporating 

omitted variables. The binary treatment variable di is observed as follows: 

<� M N1 O9 /�´A : P�  Q 0 
0 RSTUV*OWU X       (5.25) 
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where zi represents a set of exogenous variables with associated parameters α, and vi  is 

the random error term. The error terms l i and vi are independent of xi and zi but correlated 

with one another (thus the endogeneity). The joint conditional pdf of yi and di can be 

specified as: 

 f (yi , di | xi , zi) = f (yi | di , xi , zi) f (di | xi , zi) 

    = Y  9�Z� |<�, 	�, /� , ,�� 9�<� |	�, /�, ,�� @�,��<,∞

�∞
  (5.26) 

The joint distribution of l i and vi is assumed to be normal with mean 0 and covariance 

matrix:  

∑ = ]σ) σρ
σρ 1 _         (5.27) 

The correlation parameter ρ incorporates the dependence of equations (5.24) and (5.25) 

and will take on a value between -1 and 1. Next, a conditional distribution needs to be 

specified for the outcome and treatment variables. For instance, f (yi | di , xi , zi, li) can be 

specified as having a Poisson distribution. We know f (di | xi , zi , li) will be a binary 

model which is now conditional on l i and determined by f (li | vi). Lastly, g(li) has a 

normal distribution with mean 0 and variance σ2. The joint pdf of yi and di can be re-

written as: 

 f (yi , di | xi , zi) =Y 9�Z� |<� , 	� , ,�� ���,�, /����1 � �� �,�, /������@�,��<,`
�`    (5.28) 

where ��� �li, zi� M Φ�  b�c65 de�/!
g��dh � 

The integral in equation (5.28) can be approximated using Gauss-Hermite quadrature (see 

Abramowitz and Stegun, 1972; Butler and Moffitt, 1982). This model is fully parametric 

and the log-likelihood function for sample size n is as follows: 
 ln L = ∑ lnD9�Z�, <� | 	� , /��L����       (5.29) 
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This full information maximum likelihood method allows for joint determination of the 

endogenous treatment and outcome variables. It is based on information about the entire 

system of equations, and given normally distributed error terms, full information 

maximum likelihood will be efficient among all estimators (Greene, 2003 p. 407). The 

drawback of this approach is again the burden of estimation (Terza, 1998). However, 

with increased computing power this is no longer such a problem. Applications of 

endogenous switching models can be found in Kenkel and Terza (2001) and Schellhorn 

(2002). Miranda (2004) has written a Stata command, espoisson, which will estimate this 

model assuming a Poisson distribution for the outcome variable.  

 

Other Approaches 

Other approaches to addressing endogeneity of a binary variable in a count data 

model which will not be applied in this study include a two-stage pseudo-likelihood 

approach where the binary endogenous covariate is assumed to be some proxy for an 

unobserved continuous latent variable (see Heckman, 1978; Windmiejer and Silva, 1997). 

In addition, Terza (1998) implements a two-stage method of moments and a nonlinear 

weighted least squares procedure which are both also applied in Schellhorn (2002). 

Further, the endogeneity could arise due to sample selection in addition to unobserved 

heterogeneity. While this paper does not go into detail about potential remedies in this 

situation, see Bratti and Miranda (2010) for a good discussion on methods to address both 

types of endogeneity simultaneously. 
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III. EMPIRICAL APPLICATION: ESTIMATION OF A HEALTH 
PRODUCTION FUNCTION 

 
Theoretical Model 

Beginning with the work of Grossman (1972), there is a widely accepted notion in 

the field of health economics that individuals act as “producers” of their own good health. 

While a negative health outcome is assumed to enter an individual’s utility function 

directly, this outcome is often not exogenous, but rather depends in part on the 

investments of time and money individuals make in activities that can affect its 

production. This health production framework provides a basis for the defensive behavior 

method, a revealed preference approach often used in the field of non-market valuation to 

infer the individual value of a reduction in the health symptoms that result from exposure 

to an environmental contaminant. To derive this value, the researcher needs to estimate a 

health production function as follows: 

S = S (P, D, Z)         (5.30)  

The negative health output S is often modeled as the number of days an individual spends 

sick and is a function of pollution levels P, exogenous factors that could affect the time 

spent sick such as the individual’s stock of health, lifestyle factors and demographic 

factors Z, as well as any defensive actions taken by the individual to decrease this time 

spent sick D. Defensive actions include those that are taken to decrease the chance of 

being exposed to some pollutant that causes the negative health outcome or the health 

outcome itself, such as staying indoors or using an air cleaner in the home, as well as 

those that are taken after experiencing the health outcome in an effort to mitigate its 

negative effects, such as going to the doctor or taking medications. It can be assumed that 
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sick time is increasing in exposure to the pollutant and decreasing in defensive actions. 

The researcher is often interested in calculating the individual willingness to pay for a 

reduction in time spent sick, which can be calculated as follows: 

 -pD / (∂S/∂D)        (5.31)  

The marginal value of reduced time spent sick is equivalent to the price of any defensive 

action divided by the marginal effect of the use of that defensive action on symptom days.  

The main econometric challenge to estimating this model lies in the potential 

endogeneity of the defensive action variables. As explained by Dickie (2003, p.425) 

“Unobserved factors affecting health outcomes will be correlated with unobserved factors 

affecting choices of health input. Ignoring this simultaneity results in biased and 

inconsistent estimators of parameters of the health production function.” Numerous 

studies estimating health production functions in the context of the defensive behavior 

method have expressed the importance of this issue (Gerking and Stanley, 1986; Joyce et 

al., 1989; Alberini et al., 1996; Bresnahan et al., 1997; Dasgupta, 2004; Dickie, 2005).  

 

Data and Econometric Model 

A survey of residents exposed to unhealthy levels of air quality during 

California’s Station Fire of 2009 provided the data for this study. We refer the reader to 

Chapter 2 for a complete description of the study area, survey design, data collection, and 

sample statistics for this study. The negative health outcome experienced is modeled as 

the number of symptom days experienced as a direct result of exposure to the wildfire 

smoke, which is a count variable. The defensive action variable is modeled as a binary 

variable, leading to the following model specification: 
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 yi = E[yi | xi, wi, l i] = exp(xi´β + γdi +l i)+ei    (5.32) 

and corr (di , l i) ≠ 0 

where yi is the number of symptom days experienced, di is the potentially endogenous 

binary defensive action covariate, and xi
’ is a vector of all exogenous variables which 

could affect the number of symptom days experienced.  

Preliminary analyses of the data indicate a few things. First, the mean of the 

dependent variable is 3.28 and the variance is 36.67, meaning the raw data suffers from 

over-dispersion. The presence of over-dispersion is confirmed by comparing the log-

likelihood from both a Poisson and negative binomial model. A likelihood-ratio chi-

square test is used to test whether the dispersion parameter is equal to zero. This test 

statistic has a value of 157.26 and is statistically significant at the 1% level, suggesting 

that over-dispersion is present.  

Second, the only defensive action variable that has a negative and statistically 

significant effect on the number of symptom days experienced is using a home air cleaner, 

a potentially endogenous variable. There are possible unobserved factors that partially 

affect the choice to use a home air cleaner and simultaneously affect the occurrence of 

symptom days resulting from exposure to the wildfire smoke, meaning the choice to use a 

home air cleaner is likely correlated with the error term of the symptom day equation. 

This unobserved heterogeneity may cause positive or negative correlation and could 

reflect un-captured effects such as risk preferences or possibly some predisposition to 

getting sick. For instance, those individuals who are more risk-averse or may have more 

experience with wildfires could be more likely to use an air cleaner to minimize exposure 

to the wildfire smoke but in addition, they may take many precautions that are not 
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captured in the model, causing them to also experience less symptom days. This would 

reflect negative correlation. On the other hand, there may be unobservable factors that 

increase the likelihood of using a home air cleaner and simultaneously increase the 

number of symptom days experienced. This could reflect some underlying and un-

captured predisposition to getting sick. If individuals know that they tend to experience 

health effects when exposed to a pollutant like wildfire smoke, they may be more 

inclined to use a home air cleaner to prevent this but may also be more likely to 

experience a greater number of symptom days. Therefore, it is not clear whether 

estimates of the partial effect of using an air cleaner on symptom days will be biased 

upward or downward in the health production function if the endogeneity of this choice 

variable is not accounted for.  The data used to estimate the health production function 

can be found in Table 5.1.  

TABLE 5.1 
Variables and Summary Statistics 

 

Variable Coding Mean Std. Dev. Min Max

Pollution Levels

Days smoke smelled outdoors 3=1-5 days; 8=6-10 days; 13=11-15 days; 16=more than 15 days 7.77 4.91 0 16
Days smoke smelled indoors 3=1-5 days; 8=6-10 days; 13=11-15 days; 16=more than 15 days 3.43 4.21 0 16

Illness Information

Symptom days count 3.28 6.06 0 45
Ear, nose or throat symptoms 1= yes, 0= no 0.36 0.48 0 1
Breathing Symptoms 1= yes, 0= no 0.18 0.39 0 1

Heart Symptoms 1= yes, 0= no 0.04 0.20 0 1
Other symptoms 1= yes, 0= no 0.09 0.28 0 1

Health History

Current respiratory condition 1= yes, 0= no 0.12 0.32 0 1
Experienced health effects from wildfire 
smoke in past 1= yes, 0= no 0.24 0.42 0 1

Health and Lifestyle

Hours per week of outdoor recreation continuous 4.95 7.11 0 77

Demographics

Male 1=male, 0=female 0.60 0.49 0 1

Married 1=yes, o=no 0.69 0.46 0 1
Age continuous 59.11 15.37 24 94
Graduate school graduate 1= yes, 0= no 0.20 0.40 0 1
College graduate 1= yes, 0= no 0.62 0.49 0 1
Employed part-time 1= yes, 0= no 0.08 0.27 0 1
Lives in Duarte 1= yes, 0= no 0.13 0.34 0 1
Lives in Burbank 1= yes, 0= no 0.19 0.40 0 1
Lives in Glendora 1= yes, 0= no 0.40 0.49 0 1

Defensive Action

Home air cleaner 1= yes, 0= no 0.21 0.41 0 1
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Choice of Instrumental Variables 

To test for the endogeneity of using a home air cleaner, as well as to implement 

many of the econometric remedies, there first needs to exist a set of appropriate 

instrumental variables that directly affect the decision to use a home air cleaner, but do 

not directly affect the number of symptom days experienced. The choice of these 

variables is somewhat subjective, but Dickie (2003) recommends variables such as wage, 

income, prices of defensive activities, and other demographic or attitudinal variables that 

could affect the decision to undertake a defensive action. Five variables are found to be 

potentially sufficient instrumental variables in this framework and are outlined in Table 

5.2.   

TABLE 5.2 
Potential Instrumental Variables for the Reduced Form Probit Model 

 

 

The potentially endogenous variable “Home air cleaner” is regressed on all 

exogenous variables in the system, as well as the five potential instrumental variables in a 

probit regression model. Instrumental variables should be sufficiently correlated with the 

endogenous variable but orthogonal to the error process of the outcome equation. To test 

the first requirement, t-tests of statistical significance as well as an F-test of the joint 

significance of the potential instrumental variables can be implemented. A good rule of 

thumb is that for a single endogenous regressor, an F test statistic on the instrumental 

Variable Coding

Believes that smoke can affect health 1= yes, 0= no
Believes that defensive actions are effective at reducing health effects 1= yes, 0= no
Heard or read about health effects of wildfire smoke 1= yes, 0= no
Income continuous
Employed full-time 1= yes, 0= no
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variable coefficients of less than ten signifies the presence of weak instruments (Staiger 

and Stock, 1997; Stock and Yogo, 2005). Four of the five potential instrumental variables 

(all but “Heard or read about health effects of wildfire smoke”) are found to be 

individually significant in determining the predicted probability of “Home air cleaner” at 

standard significance levels. A likelihood ratio test of the joint significance of these four 

instruments is 13.43 with a p-value of 0.009, indicating that weak identification is not an 

issue.23 

Testing whether the instrumental variables are orthogonal to the error process can 

be done if the model is over-identified. This test is referred to as the J statistic of Hansen 

(1982) in a GMM framework and based on Sargan (1958) in an instrumental variable 

framework. An informal test of this requirement is to regress the dependent variable 

“Symptom days” on all exogenous variables including the excluded instrumental 

variables and test the joint significance of the instrumental variables. This results in a 

likelihood ratio test statistic of the joint significance of these variables of 2.91 with a p-

value of 0.57, with none being individually significant. This test indicates that while these 

instrumental variables directly affect the use of a home air cleaner, they do not directly 

affect the expected number of symptom days experienced and thus they make good 

instruments.  

 

Results 

The results of a negative binomial model uncorrected for endogeneity, the two-

stage predictor substitution and two-stage residual inclusion models, the generalized 
                                                           
23 It should be noted that the presence of weak identification can result in biased parameter estimates 
(Bound et al., 1995; Staiger and Stock, 1997)  
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method of moments instrumental variable estimator, and the two FIML techniques 

including the maximum simulated likelihood and endogenous switching models, are 

shown in Table 5.3. Standard errors were adjusted by bootstrapping for the two stage 

approaches. For the maximum simulated likelihood model, two thousand simulation 

draws were used based on recommendations from Deb and Trivedi (2006a) and robust 

standard errors which take simulation error into account are reported. For the endogenous 

switching model, forty quadrature points were used in the numerical approximation of the 

integral, as allowing for more did not change the log likelihood or estimated parameters. 

The negative binomial model 1, uncorrected for potential endogeneity of using a 

home air cleaner, results in a positive coefficient on “Home air cleaner.” However, this 

variable does not have an actual effect on expected symptom days in this model as its 

coefficient is not significant at standard significance levels with a p-value of 0.407. In the 

two-stage predictor substitution model 2, which includes the predicted value of “Home 

air cleaner” but has been shown to be inconsistent in a general nonlinear framework 

(Terza et al., 2008), the sign on “Home air cleaner” changes to a negative with a 

coefficient of -1.138 but this variable has a p-value of 0.112 so it is not quite significant 

at the 10% level.  
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TABLE 5.3 
Health Production Function Estimates for Number of Symptom Days 

 

*: p≤0.10, **: p≤0.05, ***: p≤0.01 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Variable

Negative 
Binomial 2SPS 2SRI GMM

Maximum 
Simulated 

Likelihoodb

Endogenous 

Switchingc

Constant -3.333*** -3.27*** -3.277*** -3.359*** -3.627*** -3.608* **

(standard error) (0.392) (0.565) (0.581) (0.394) (0.549) (0.437)

Days smoke smelled outdoors 0.082*** 0.091*** 0.093*** 0.088*** 0.094*** 0.098***

(0.014) (0.020) (0.018) (0.018) (0.014) (0.016)

Days smoke smelled indoors 0.018 0.028* 0.027* 0.029** 0.024 0.028*

(0.014) (0.015) (0.014) (0.014) (0.020) (0.016)

Ear, nose or throat symptoms 3.201*** 3.290*** 3.285*** 2.917*** 3.487*** 3.439***

(0.177) (0.362) (0.326) (0.405) (0.310) (0.211)

Breathing symptoms 0.856*** 0.840*** 0.831*** 0.569*** 0.705*** 0.728***

-(0.141) -(0.212) -(0.215) -(0.153) -(0.183) -(0.156)

Other symptoms 0.303* 0.711** 0.739** 0.443* 0.564** 0.619***

(0.163) (0.338) (0.313) (0.264) (0.270) (0.189)

Current respiratory condition -0.267 -0.290 -0.270 -0.202 0.041 -0.189

(0.166) (0.205) (0.200) (0.146) (0.154) (0.174)

Experienced health effects from wildfire smoke in past 0.200 0.284 0.277 0.132 0.180 0.234

(0.132) (0.193) (0.195) (0.120) (0.213) (0.151)

Hours per week of outdoor recreation -0.033*** -0.037** -0.037*** -0.010 -0.030** -0.027**

(0.012) (0.014) (0.015) (0.010) (0.014) (0.012)

Male -0.321** -0.367** -0.358** -0.248 -0.329** -0.391**

(0.142) (0.166) (0.170) (0.175) (0.154) (0.153)

Married -0.430*** -0.348** -0.328** -0.400*** -0.362** -0.279*

(0.139) (0.167) (0.156) (0.121) (0.157) (0.156)

Age 0.014*** 0.013** 0.013** 0.018*** 0.012** 0.012**

(0.004) (0.006) (0.006) (0.004) (0.006) (0.005)

Graduate school graduate -0.264* -0.223 -0.204 -0.135 -0.204 -0.196

(0.155) (0.176) (0.166) (0.133) (0.156) (0.170)

College graduate 0.488*** 0.509*** 0.510*** 0.526*** 0.471*** 0.489***

(0.143) (0.168) (0.174) (0.158) (0.159) (0.154)

Employed part-time 0.547** 0.590 0.597 0.322 0.494 0.460*

(0.224) (0.392) (0.390) (0.215) (0.486) (0.262)

Lives in Duarte 0.493*** 0.450 0.450 0.102 0.399* 0.306

(0.190) (0.292) (0.292) (0.297) (0.217) (0.218)

Lives in Glendora 0.281* 0.434** 0.424** 0.305* 0.346* 0.357**

(0.152) (0.176) (0.188) (0.165) (0.178) (0.168)

Lives in Burbank 0.207 0.363** 0.368** 0.360** 0.338** 0.357**

(0.167) (0.183) (0.191) (0.169) (0.166) (0.181)

Home air cleaner
a

0.108 -1.138 -1.215* -0.404 -0.729*** -0.960***

(0.130) (0.716) (0.682) (0.617) (0.169) (0.273)

Home air cleaner residuals 1.414**

(0.703)

N = 402 376 376 376 376 376

Log Likelihood -522.96 -506.27 -505.19 -653.25 -653.29

lamda (latent factor) 0.757***

lnalpha -13.589**

sigma 0.787***

rho 0.833***

a
 - potentially endogenous variable

b 
- estimated using Stata 11.0 command treatreg2 (Deb and Trivedi, 2006b)

c
 - estimated using Stata 11.0 command espoisson (Miranda, 2004)
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The two-stage residual inclusion estimation procedure may result in consistent 

parameter estimates depending on how the unobserved heterogeneity enters the system of 

equations, as described in Section II. However, it will definitely provide a consistent and 

relatively simple test of endogeneity in this nonlinear framework (Staub, 2009). If the 

included residuals of the reduced form equation for the endogenous variable are 

significant, this is an indication of the presence of endogeneity of that variable. The 

coefficient on “Home air cleaner” in model 3 has a p-value of 0.075 and the coefficient 

on the residual has a p-value of 0.044. Thus, while it appears that the variable is 

endogenous, it is significant at only the 10% level. A Hausman specification test if 

carried out to further test whether “Home air cleaner” is endogenous by comparing the 

coefficients of the uncorrected negative binomial model 1 with those of the two-stage 

residual inclusion model 3. The null hypothesis of this test is that both estimators are 

consistent but only the uncorrected negative binomial model is efficient. This results in a 

test statistic, distributed chi-square, of 93.52, with a p-value of 0.00001, confirming that 

endogeneity is present and the uncorrected model is inconsistent.  

The two-step generalized method of moments nonlinear instrumental variables 

model 4 results in a negative but insignificant coefficient on the endogenous variable. 

The Hansen J test for over-identifying restrictions tests for correct model specification as 

well as the othogonality conditions. Rejecting the null hypothesis implies that the 

instrumental variables do not satisfy the orthogonality conditions necessary for their use 

(Baum et al., 2002). This results in a test statistic of 3.34 (p-value of 0.34) in the additive 

model and 13.40 (p-value of 0.004) in the multiplicative model, indicating that the set of 

instruments used are appropriate for the former and not the latter. Therefore, model 4 
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represents the additive specification. This test statistic indicates that the null hypothesis 

that all instrumental variables are uncorrelated with the error term cannot be rejected at 

standard significance levels. The lack of significance of the endogenous variable “Home 

air cleaner” in this model is a consequence of the larger standard errors produced by this 

estimation procedure. Recall, this model specifies very few assumptions about the 

distribution of the data, and therefore, there will be a loss of efficiency and less precise 

parameter estimates. In addition, there is also a tendency for two-step GMM to perform 

poorly in small samples (Altonji and Segal, 1996; Wooldridge, 2001; Cameron and 

Trivedi 2005), which could also cause misleading results.  

In the two full information maximum likelihood models “Home air cleaner” is 

negative and statistically significant at the 1% level. In model 5, the positive and 

statistically significant coefficient on the latent factor, lambda, indicates that individuals 

who are more likely to use an air cleaner, based on unobserved characteristics, are also 

more likely to experience symptom days. This coefficient is valuable in that it confirms 

the presence and the direction of the unobserved heterogeneity. This explains why failing 

to account for the unobserved heterogeneity in model 1 makes it appear that using a home 

air cleaner has a positive effect on the expected number of symptom days. Once the 

underlying latent factors in both the outcome and treatment equation are accounted for, 

the accurate effect of using a home air cleaner on the expected number of symptom days 

becomes clear. This allows accurate measurement of the impact of those who use an air 

cleaner and those who don’t on sick days. It is quite common for the sign of the 

potentially endogenous variable to switch once the bias is corrected for (see Vera-

Hernández, 1999; Kenkel and Terza, 2001). 
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In the endogenous switching model 6, the statistical significance of the 

coefficients on sigma and rho indicate the presence of unobserved heterogeneity and thus 

support for the endogenous switching estimation procedure. It is also relatively easy to 

compare these results to an exogenous switching model, which can be found in the 

Appendix, Table 5.A.  The coefficient on “Home air cleaner” changes considerably in the 

two model specifications and the endogenous specification results in a slightly smaller 

AIC value, suggesting superiority of the endogenous switching model over the exogenous 

switching model. It should be noted that this model is estimated with the Stata command 

espoisson, which assumes the dependent variable “Symptom days” is Poisson distributed, 

for comparison purposes. However, as mentioned previously, the data appears to suffer 

from over-dispersion, which can result in overstated significance levels.  

 When applying the defensive behavior method to value a marginal reduction in 

symptom days using equation (5.31), the researcher needs to calculate the marginal effect 

of the use of the defensive action variable on expected symptom days. Since these models 

assume the dependent variable has an exponential mean, the discrete change in expected 

count outcome resulting from a change in a binary variable Xk from 0 to 1 can be 

calculated as: [µi|X
k=0][exp(βk)-1] where µ=exp(Xβ), with all variables except Xk set at 

their sample mean. Dividing the full price of the defensive action variable by this 

marginal effect gives the resulting willingness to pay value for a reduction in one 

symptom day. Taking the average of the in-sample reported cost of those individuals who 

used a home air cleaner results in a price of $26.93 for this defensive action. The 

marginal effect of using a home air cleaner on expected symptom days is calculated for 

each model and the resulting willingness to pay value for a reduction in one symptom day 
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is calculated for only those marginal effects which were significant at standard 

significance levels. These values are shown in Table 5.4 below. As can be seen, the 

marginal effects vary depending on the chosen model. The negative binomial model 

uncorrected for endogeneity of this variable results in a positive marginal effect. The 

2SPS and 2SRI models result in smaller (more negative) marginal effects than the GMM 

and FIML models, and thus smaller willingness to pay values. The two FIML models and 

the GMM estimator have similar marginal effects. Thus, it appears that the choice of 

model used to correct for the endogeneity of the defensive action variable can make a 

large difference for policy recommendations. Figure 5.1 visually shows the 95% 

confidence intervals around the marginal effects for each econometric model.    

TABLE 5.4 
Marginal Effect of Air Cleaner Use on Expected Symptom Days 

 

 
FIGURE 5.1 

95% Confidence Intervals for Marginal Effects 
 

Marginal Effect Willingness to Pay

Negative Binomial 0.067
2SPS -0.547
2SRI     -0.584** $46
GMM -0.265
Maximum Simulated Likelihood      -0.283*** $95
Enodgenous Switching      -0.275*** $98

0.257 0.243
0.107

0.985

-0.179 -0.154
-0.080

-0.742 -0.765
-0.638

-0.357 -0.346

-1.00

-0.80

-0.60

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

Uncorrected 2SPS 2SRI GMM Max. Sim. 
Likelihood

Endogenous 
Switching
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Comparison of Models 

In comparing results across model specifications, there are some considerable 

differences that should be noted. First, failing to correct for the endogeneity of “Home air 

cleaner” results in serious bias in the estimated coefficients, as evident by the positive 

(but insignificant) coefficient on this variable in the negative binomial model. While it 

has been shown that a two-stage predictor substitution method will in general not result in 

consistent parameter estimates in a nonlinear framework, two-stage approaches such as 

two-stage residual inclusion can produce consistent parameter estimates in many 

nonlinear models (Terza et al., 2008). In addition, this approach allows for simple testing 

of the endogeneity of variables, even in the case of a count dependent variable with 

potentially endogenous binary covariates. However, a major drawback to two-stage 

remedies to endogeneity lies in the loss of efficiency in the parameter estimates, as 

evident by the considerably larger standard error on “Home air cleaner” in Table 5.3. In 

addition, given the very large difference in the marginal effect produced by the 2SRI 

model compared to the two FIML models, further research should be done to test whether 

this model is appropriate for the specific case of a count dependent variable and binary 

endogenous covariate.  

Generalized method of moments’ approaches to addressing endogeneity in a 

nonlinear framework have gained considerable popularity and can be quite desirable in 

that the researcher does not need to impose hardly any distributional assumptions to 

obtain a consistent estimator. The estimator used here just assumed that the dependent 

variable had an exponential mean. This estimator is also desirable in that it can handle 

multiple endogenous regressors, of any distributional form, and easily implements tests 



148 

 

of over-identifying restrictions. However, the lack of information used in estimation will 

result in a loss of precision in the estimated coefficients, especially of the endogenous 

variable of interest, which has been found in other empirical applications (Windmeijer 

and Silva, 1997; Schellhorn, 2002). Another drawback of this approach is that the 

endogenous variable of interest is not modeled separately.  

The full information maximum likelihood approaches are more parametric than 

the GMM procedure and require the imposition of greater distributional assumptions 

about the data, but the result is considerable gains in efficiency. Both the maximum 

simulated likelihood model and the endogenous switching model allow for correlated 

error terms of the endogenous and dependent variable in the model specification and 

jointly estimate both equations in the system. Both of these models are identified through 

functional form, which means no additional instrumental variables are necessary for 

identification, although it is recommended to include at least one. Table 5.3 shows that 

the endogenous variable “Home air cleaner” in these two models has a negative and 

significant effect on the expected number of symptoms days. This indicates that there are 

not only efficiency, but also information gains to using a full information maximum 

likelihood estimation procedure. These methods are also very robust to changes in 

instrumental variables. Finally, these two approaches produced very similar marginal 

effects of the defensive action variable on expected symptom days and thus willingness 

to pay values, even though one assumed a negative binomial distribution for the 

dependent variable and the other a Poisson distribution.  
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IV. CONCLUSIONS 

This study has looked at econometric methods used to address the endogeneity of 

a binary choice variable in a count data regression model. It is shown both theoretically 

and empirically the bias in parameter estimates that can result from ignoring the 

endogeneity of covariates. Results from this study indicate that a two-stage residual 

inclusion approach may not result in consistent parameter estimates for the specific case 

of a count data regression model with a binary endogenous covariate. However, this 

approach will provide a simple test of endogeneity in this nonlinear framework. A 

generalized method of moments’ estimator was also implemented, which can be specified 

with an additive or multiplicative error term and provides a useful approach if the 

researcher is unsure of the exact distribution of the outcome or endogenous variable and 

may be best applied with a large sample size. While two-stage residual inclusion and 

generalized method of moments’ approaches can achieve consistent parameter estimates, 

they will nonetheless result in a loss of efficiency compared to standard maximum 

likelihood approaches.  

By imposing additional distributional assumptions about the data at hand, full 

information maximum likelihood methods will achieve the statistically most efficient 

estimator (Miranda, 2004). These methods may also be desirable with a relatively small 

sample size as they utilize all the information given and result in more precise parameter 

estimates than two-stage residual inclusion or generalized method of moments’ 

approaches. While the burden of estimation due to lack of computing power has 

prevented use of these methods in the past, this is no longer a problem. This study looked 

at two full information maximum likelihood estimation procedures, both of which have 
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user-written Stata programs that make them simple to implement. If the dependent 

variable is Poisson distributed, we recommend the simple espoisson Stata command and 

if it has a negative binomial or gamma distribution, we recommend the treatreg2 

command. These models also provide coefficient estimates which confirm the presence 

of unobserved heterogeneity.  

Depending on the distributional assumptions that the researcher is comfortable 

making, sample size, and the desired efficiency of parameter estimates, there are a variety 

of estimation approaches to address endogeneity of a binary regressor in count data 

models. However, the choice of model used to address this endogeneity should be given 

considerable attention, as policy recommendations may change substantially depending 

on which is estimated. While this study looked at one sample of data, future studies could 

compare across models using Monte Carlo simulation to gain greater insight into model 

differences for varying sample sizes.   
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APPENDIX 

TABLE 5.A 
Exogenous Switching Model 

 
          *: p≤0.10, **: p≤0.05, ***: p≤0.01 

 

 

Variable Coefficient Std. Error

Constant -3.767*** 0.421

Days smoke smelled outdoors 0.091*** 0.015

Days smoke smelled indoors 0.021 0.015

Ear, nose or throat symptoms 3.333*** 0.207

Breathing symptoms 0.755*** 0.141

Other symptoms 0.307* 0.163

Current respiratory condition -0.200 0.165

Experienced health effects from wildfire smoke in past 0.189 0.139

Hours per week of outdoor recreation -0.028** 0.012

Male -0.308** 0.146

Married -0.431*** 0.146

Age 0.016*** 0.004

Graduate school graduate -0.256 0.164

College graduate 0.467*** 0.148

Employed part-time 0.496** 0.233

Lives in Duarte 0.390* 0.205

Lives in Glendora 0.31* 0.159

Lives in Burbank 0.290 0.177

Home air cleaner
a

0.030 0.140

N = 376

Log Likelihood -656.260

Wald chi
2

460.630

Prob > chi
2

0.000001

sigma -0.451***

a
 - potentially endogenous variable
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CHAPTER SIX  

Concluding Remarks 

 

This study sought to monetize the full economic cost of health effects from 

exposure to wildfire smoke using theoretically correct non-market valuation techniques. 

Data from a mail survey of residents exposed to smoke from California’s Station Fire of 

2009 indicates that individuals do indeed experience a range of health effects from 

wildfire smoke and while a small percentage sought medical care as a result of these 

damages, a large portion, 89% in this sample, took preventative actions to defend 

themselves from this exposure. As a result, the defensive behavior method is found to be 

applicable in the case of wildfire smoke exposure. We find that on average, the 

expenditures individuals make on actions taken to defend themselves from exposure to 

wildfire smoke are larger than the medical costs and lost wages that a commonly reported 

cost of illness estimate consists of.  

As explained by Freeman (2003), a pollutant that affects human health impacts 

well-being in four ways: incurred medical expenses and lost wages (the sum of which is 

the cost of illness), expenditures on averting activities taken to avoid the health effects, 

and the disutility associated with symptoms or lost leisure. The true value of a reduction 

in a pollutant or the associated health symptoms should consist of all four of these 

components. This study attempted to measure as many of these components as possible 

for the specific case of reductions in unhealthy levels of air quality produced by wildfire 
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smoke. Specifically, by applying the defensive behavior method we measure the 

willingness to pay for a reduction in perceived pollution levels as measured by the 

number of days wildfire smoke was smelled indoors. Table 6.1 decomposes willingness 

to pay values for avoiding 1-5 days of wildfire smoke and avoiding greater than five days 

of wildfire smoke into the various components that make up this value.  

TABLE 6.1 
Components of Willingness to Pay for Decreased Pollution (DBM) 

 

 

While the value of reduced pollution levels is an interesting measure, it is often 

less policy relevant than the value of reduced symptom days from exposure to a pollutant. 

A health production function used to implement the defensive behavior method is 

estimated and shows that factors such as the number of days wildfire smoke was smelled 

inside or outside the home as well as using an air cleaner in the home are important 

determinants of the number of symptom days experienced. Information on the defensive 

actions individuals took during the wildfire along with the associated expenditures on 

market goods was used to infer the value of a reduction in one wildfire smoke induced 

symptom day. This is calculated to be $86.87. While endogeneity in a nonlinear 

framework is a common challenge to estimating health production functions for the 

defensive behavior method, this study explored a variety of econometric approaches to 

address the specific case of a binary endogenous regressor in a count data model. 

Value of Avoiding 1-5 Smoky Days Value of Avoiding > 5 Smoky Days

Cost of illness 11.34 Cost of illness 11.34

Averting expenditures +24.53 Averting expenditures +54.89

Value of disutility +24.78 Value of disutility +39.77

Willingness to pay 60.65 Willingness to pay 106.00
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Responses to a contingent valuation question were also used to infer the value of a 

reduction in one wildfire smoke induced symptom day, which is estimated to be $82.82. 

Statistical tests comparing these two willingness to pay values indicate that they are not 

statistically different, providing a test of convergent validity between the two methods. 

Comparing these values to a simple daily cost of illness estimate reveals that the       

WTP: COI ratio of about two often used in the literature for the specific case of health 

damages from wildfire smoke exposure may be inaccurate. We estimate this ratio to be 

much higher at around nine to one.  

This information on appropriate calibration factors may be valuable to agencies 

and policy makers who are interested in capturing the full economic cost of health 

damages from exposure to wildfire smoke but have access to simple cost of illness 

estimates only. In addition, when evaluating fire prevention programs, an accurate 

analysis would require inclusion of the economic cost of human health damages from a 

wildfire that could be prevented by implementing these programs. Omitting these health 

benefits of fire prevention programs in a benefit cost analysis of such programs would 

result in too small an investment in prevention measures such as prescribed burns or 

forest thinning. There will undoubtedly be uncertainty surrounding the nature of fires that 

“could have been.” However, if agencies could estimate certain components of the 

avoided wildfires resulting from prevention, such as size, intensity, and the number of 

people that would have potentially been affected, they could determine whether the 

Station Fire used in this study is an appropriate representation. They could then multiply 

the willingness to pay value for a reduction in one symptom day from wildfire smoke 

exposure obtained in this study by the average number of symptom days experienced and 
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the number of individuals that would have been affected to arrive at an estimate of the 

cost of health damages avoided by the prevention measure. Further, as more willingness 

to pay estimates become available in the literature, these benefit transfer practices can 

become increasingly accurate.  

In conclusion, this study adds to the scarce literature comparing the economic cost 

of exposure to a pollutant across all of the commonly used methodologies. Further, this is 

the first study to use primary data to apply non-market valuation methods to estimate the 

individual willingness to pay for a reduction in symptom days and perceived pollution 

levels from exposure to wildfire smoke. Wildfires will continue to occur and decisions 

about the appropriate amount of resources to put towards fire management will likely 

remain an important debate. The economic cost of human health effects from exposure to 

wildfire smoke represents one economic impact of wildfires where data and research fall 

short. We present methods and applications to monetize this value and hope this provides 

an important contribution to the literature.  
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SURVEY INSTRUMENT 

 
COVER LETTER 
 

 

Department of Agricultural and 
Resource Economics

Fort Collins, Colorado 80523-1172
(970) 491-6325

FAX: (970) 491-2067
http://dare.agsci.colostate.edu

Name 
Street Address 
City State, Zip Code 
 
Dear Name:  
 
As the largest fire in Los Angeles County’s history, the recent Station Fire affected the residents of 
Southern California in many ways. Homes were destroyed, some residents evacuated their homes, and 
smoke filled the air. We know that the experience of having a wildfire occur near your home can be 
extremely stressful.  
 
While fires such as this one can have many different effects, something that is often overlooked is the 
health effects that result from the smoke and ash.  
 
We are conducting the enclosed survey in an effort to assess your household’s experience with wildfire 
smoke and ash from the Station Fire. We would like to know about any effects it has had on your health 
and the health of other members of your household. We would also like to know about any preventative 
actions you may have taken in response to the smoke and ash.  It is important to hear from each and 
every person who lives in your area, whether you were affected or not. 
 
The information you provide will be given to wildfire management agencies to help them decide on the 
best way to manage future wildfires in an effort to minimize the health effects from wildfire smoke and 
ash.  
 
You are one of a small number of households being asked about the effects of the Station Fire on you and 
your family’s health. In order for the results of this study to truly represent the effects on Southern 
California residents such as yourself, it is important that each questionnaire be completed and returned. 
The survey booklet contains all of the information you need to complete the survey. There are no right or 
wrong answers!  
 
A stamped return envelope has been provided to make it easy to mail your survey back to us.  
Your responses are confidential and you will not be individually identified in our results.  
 
If you have any questions, please call me at 970-491-2485 or email me at: John.Loomis@colostate.edu.  I 
will be happy to answer any questions you have.  We look forward to receiving your survey in the days 
ahead. 
 
Sincerely, 
 
Dr. John Loomis, Professor 
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SURVEY 

 

 

 

Your Health During the Station Fire  
 
 
 
 
 

 
 
 
 

 

Tell Us What You Think 
 
 

 
          
 

       
 

 
 



163 

 

 

 

 

 

 

 

 

1. During the time period Wednesday, August 26 until Wednesday, September 9 were you at the address where  
    this survey was sent? (Check one box) 

 □ Yes, all of the time    

 □ Yes, I was at the address where this survey was sent some of the time  

� How many days? __________ 

 □ No  � Thank you for your time, there is no need to complete the rest of the survey.      
Please return the survey in the postage paid envelope.   

  

2. Could you smell smoke and/or ash outside your home during the fire and the weeks following?  
    (Check one box)  

 □ Yes  � How many days did you notice the smell? (Check one box) 

        □ 1-5 days            □ 6-10 days            □ 11-15 days            □ more than 15 days 

 □ No  

 

3. Could you smell smoke and/or ash inside your home during the fire and the weeks following?  
    (Check one box) 

 □ Yes  � How many days did you notice the smell? (Check one box) 

             □ 1-5 days            □ 6-10 days            □ 11-15 days            □ more than 15 days 

 □ No  

Section A: Experience During the Station Fire 

Smoke and ash from the Station Fire caused air-quality problems during the period from Wednesday, August 
26 until Wednesday, September 9. While the costs of fire-fighting are easy to calculate, the effect on you and 
your household’s health are not known. Therefore, the purpose of this survey is to learn about possible health 
effects related to smoke and/or ash during the time of the fire. You and your household may or may not have 
had any health problems, or you may have taken preventative actions to reduce the chance that you would have 
problems. Understanding the various ways smoke and ash affected your household is important to help policy-
makers assess the overall impact of the fire.  
 
Your responses are completely confidential. Please answer questions to the best of your ability. 
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4. In the table below, we list some actions you might have taken to reduce the possibility of health effects from           
    exposure to the smoke and/or ash from the Station Fire. For each action taken, please check the box for the     
    length of time you took the action and fill in the box with the cost of taking the action. If you did not take the  
    action, please check the box “never.”  
 

Possible Actions Never 
1-5 
days 

6-10 
days 

11 or 
more 
days Cost of Action 

Evacuated / left area affected by smoke 
        

$ 

Covered face with a mask (dust, surgical, etc.)  
        

$ 

Used an air filter, air cleaner, or humidifier 
        

$ 

Avoided going to work 
        

$__________of lost income 

Removed ashes from property (yard, car, 
pool, etc.)         

$ 

Ran air conditioner more than usual 
          

Stayed indoors more than usual 
          

Avoided normal outdoor recreation 
activities/exercise           

 
 
5. Overall, how effective do you think the actions you identified in Question #4 were at reducing or eliminating the  
    health effects from exposure to the wildfire smoke and/or ash? (Check one box) 

□ Very effective           □ Not at all effective       

 □ Somewhat effective    □ Don’t know     

 □ A little effective          □ Not applicable 

 
6. During the Station Fire, did you hear or read about the health effects of wildfire smoke and/or ash from  
    any news articles, public service announcements, or local air quality reports? (Check one box)  

 □ Yes  � Did you change your normal routine based on this information? (Check one box) 

                    □ Yes            □ No 

 □ No 

7. Do you think exposure to the smoke and/or ash from the Station Fire could affect a person’s health?  
    (Check one box)  

 □ Yes         

 □ No 

 □ Don’t know 
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1. During the Station Fire did you or any other members of your household experience symptoms or health effects   
    from exposure to the smoke and/or ash? These include ear, nose and throat symptoms, breathing problems, heart  
    problems and any other symptom due to exposure to the smoke and/or ash. (Check one box) 

□ Yes � How many? _______________ number of household members with symptoms or health effects 

□ No  � Please go to Section C 

 

2. What are the ages of up to three members of your household plus yourself who experienced symptoms or  
     health effects from exposure to the smoke and/or ash from the wildfire? (Fill in the blanks) 

__________ your age  

 __________ age of person 1  

 __________ age of person 2  

 __________ age of person 3  

 
Please respond to the rest of the questions in this section such that person 1 is the same person whose age you 
reported for person 1 in Question #2 above.  Likewise for persons 2 and 3.   
 
3. For each symptom or health effect listed below, please check the appropriate box if you and/or up to three     
    members of your household experienced it during the Station Fire.  
 

 You Person 1 Person 2 Person 3 
Ear, nose and throat symptoms 
(cough, sore throat, burning eyes, 
runny nose, sinus problems, etc.)  □ □ □ □ 
 
Breathing problems (shortness of 
breath, aggravation of asthma, 
bronchitis, emphysema, etc.) □ □ □ □ 
 
Heart problems (rapid heartbeat, 
chest pain, etc.) □ □ □ □ 
 
Other symptoms related to exposure 
to smoke and/or ash (anxiety, 
nausea, dizziness, etc.) □ □ □ □ 

 

Section B: Specific Health Effects During the Station Fire 
 

In this section we focus on how exposure to the smoke and/or ash from the Station Fire affected your health and 
the health of up to three other members of your household. Members of your household include all people 
living in your home who share possessions, money, and make major decisions together (including children). 
Throughout the rest of the survey when you see the term “up to three members of your household” please 
respond with the same people in mind.  
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4. What was the total number of days that you and/or up to three members of your household experienced  
    at least one of the symptoms or health effects listed in Question #3 from exposure to the smoke and/or ash?  
    (Fill in the blanks) 

__________ total number of days you experienced symptoms or health effects 

 __________ total number of days person 1 experienced symptoms or health effects 

 __________ total number of days person 2 experienced symptoms or health effects 

 __________ total number of days person 3 experienced symptoms or health effects 

 

5. On a scale of 1-5, how would you rate the overall level of pain or discomfort from the symptoms or health   
    effects listed in Question #3? (Circle one number for each household member that had symptoms) 
 

 
No pain or 
discomfort    

Severe pain or 
discomfort 

You 1 2 3 4 5 

Person 1 1 2 3 4 5 

Person 2 1 2 3 4 5 

Person 3 1 2 3 4 5 

 
 
6. Now we are interested in medical care that may have been received for the breathing problems or heart problems   
    you and/or up to three members of your household suffered. If none of you suffered either of these health     
    effects, please go to Question #8.   
 
   Please check all medical visits taken by you and/or up to three members of your household. Please only include     
   medical visits made as a result of symptoms or health effects from exposure to the wildfire smoke and/or ash: 
 

 You Person 1 Person 2 Person 3 
Physician visit due to:  
     Breathing Problems 
     Heart Problems 

□ 
□ 

□ 
□ 

□ 
□ 

□ 
□ 

 
Urgent care visit due to: 
     Breathing Problems 
     Heart Problems 

□ 
□ 

□ 
□ 

□ 
□ 

□ 
□ 

 
Emergency room visit due to:  
     Breathing Problems 
     Heart Problems 

□ 
□ 

□ 
□ 

□ 
□ 

□ 
□ 

 
Admitted to hospital due to:  
     Breathing Problems 
     Heart Problems 

□ 
□ 

□ 
□ 

□ 
□ 

□ 
□ 
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7. How much time did you and/or up to three members of your household spend traveling to, waiting for and       
    receiving medical care for symptoms or health effects related to exposure to smoke and/or ash from the Station      
    Fire? (Fill in the blanks) 

__________ total number of hours you spent traveling, waiting for and receiving medical care 

 __________ total number of hours person 1 spent traveling, waiting for and receiving medical care  

 __________ total number of hours person 2 spent traveling, waiting for and receiving medical care   

 __________ total number of hours person 3 spent traveling, waiting for and receiving medical care 

 

8. How much money did you and/or up to three members of your household spend on the following items due to  
    symptoms or health effects related to exposure to smoke and/or ash from the Station Fire? (Please enter the  
    dollar amount. If you spent nothing on an item, please enter $0) 
 

 You Person 1 Person 2 Person 3 
Medical visits and prescribed 
medicines $_______   $_______   $_______ $_______ 
 
Non-prescription medicines (e.g. 
antihistamines, eye or cough drops, 
etc.) 

 
$_______ 

 
$_______ 

 
$_______ 

 
$_______ 

 
Visits to a non-traditional health 
provider (e.g. chiropractor, herbalist, 
acupuncturist, etc.) $_______ $_______ $_______ $_______ 
     

 

9. How many days of work did you and/or up to three members of your household lose as a result of the  
    symptoms or health effects from exposure to the smoke and/or ash from the Station Fire? (Fill in the blanks)  

__________ total number of days of work you missed  

__________ total number of days of work person 1 missed  

__________ total number of days of work person 2 missed  

__________ total number of days of work person 3 missed  

 

10. How many days of recreational activities did you and/or up to three members of your household lose as  
      a result of symptoms or health effects from exposure to the smoke and/or ash from the Station Fire?  
      (Fill in the blanks)  

__________ total number of days of recreation you missed  

__________ total number of days of recreation person 1 missed  

__________ total number of days of recreation person 2 missed  

__________ total number of days of recreation person 3 missed  
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1. Did you or any other members of your household experience any of the effects listed in numbers 1-4 above? 

□ Yes   

□ No  � Please go to Section D 

 

2.  Knowing what you now know about the Station Fire, would you have paid $___________ one time to reduce  
     in half the number of days of  health effects, days of preventative actions you took to avoid health effects, and    
     days of lost work or recreation you and/or other members of your household experienced during the Station  
     Fire? (Check one box) 

□ Yes   

□ No 

 
3. Please tell us how certain you are that you would actually pay (if you said yes) or not pay (if you said no) the  
    stated amount in Question #2 on a scale of 1-10, where 1 means “very uncertain” and 10 means “very certain.”  
    
 1 2 3 4 5 6 7 8 9 10 

very         very 
 uncertain        certain 

 

4. Please tell us why you answered Question #2 the way you did.   

_____________________________________________________________________________________ 
 
_____________________________________________________________________________________ 
 
_____________________________________________________________________________________ 
 

Section C: Reducing the Effects of Wildfire Smoke and Ash on You & Your Family 
 
Next we are going to ask you a question about what it would have been worth to you to reduce some of the 
effects your household may have experienced due to exposure to the smoke and/or ash from the Station Fire. 
The Station Fire damaged and destroyed homes, resulted in the evacuation of families and pets, and the smoke 
and ash affected the health of some people. When responding to the question below, please consider: 
 

1) The health effects experienced from the smoke and/or ash. 

2) Preventative actions you took to avoid health effects from the smoke and/or ash. 

3) Lost work you or your household experienced to deal with the smoke and/or ash. 

4) Lost recreation you or your household experienced to deal with the smoke and/or ash. 

 
Do not consider what it would have been worth to you to avoid some of the other effects of the Station Fire 
(such as damage to your home, etc.) 
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1. On average, how many times per week do you exercise (include any form of exercise such walking, biking,  
    yoga, etc.)? (Check one box) 

 □ 0 times per week  � Please go to Question #3 

 □ 1-2 times per week 

 □ 3-5 times per week 

 □ More than 5 times per week 

          

2. On average, how many hours per week do you spend in indoor and outdoor recreation activities/exercise    
    (including walking, bike-riding, etc.)? (Fill in the blank)         
    
 __________ hours per week of indoor recreation 

 __________ hours per week of outdoor recreation 

 

3. Have you smoked at least 100 cigarettes in your entire life? (Check one box) 

 □ Yes  � Are you currently a smoker? (Check one box) 

        □ Yes            □ No  

 □ No 

 
4. On average, how many alcoholic drinks do you have per week? (Check one box) 

 □ None 

 □ 1-7 

 □ 8-14 

 □ More than 14 

Section D: Your Health History 

In this section, we ask about your general health. As with the rest of the information in this survey, all responses 
are completely confidential. 
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5. How would you rate your overall health? (Check one box) 

 □ Excellent 

 □ Good  

        □ Fair 

 □ Poor 

 
6. Do you visit a physician once every year or two for general check-ups? (Check one box) 

□ Yes 

  □ No 

 
7. Has a physician ever diagnosed you with a chronic respiratory disease (e.g. asthma, respiratory allergies,  
    emphysema, chronic bronchitis, chronic obstructive pulmonary disease, etc.)? (Check one box) 

 □ Yes  � Was it still present in the last 12 months? (Check one box) 

            □ Yes            □ No 

 □ No 

   

8. Has a physician ever diagnosed you with a heart disease (e.g., coronary artery disease, congestive  
    heart failure, ischemic heart disease, etc.)? (Check one box) 

 □ Yes  � Was it still present in the last 12 months? (Check one box) 

      □ Yes            □ No 

 □ No 

 

9. Before the Station Fire, have you ever noticed a temporary increase in health problems as a result of exposure  
    to smoke and/or ash from a wildfire? (Check one box) 

 □ Yes 

  □ No        
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1. Are you (Check one box) 

 □ Male 

  □ Female     

2. Are you married? (Check one box) 

 □ Yes 

  □ No        

3. In what year were you born? (Fill in the blank) 19__________  

 

4. What was the zip code where you lived between August 26, 2009 and September 9, 2009? (Fill in  
    the blank) 

            _________ zip code  

 
5. How long have you lived in this zip code? (Fill in the blank) __________ years __________ months 
  
6. Do you have health insurance? (Check one box) 

 □ Yes    

□ No        

7. Which category best describes your racial or ethnic identification? (Check all that apply) 

 □ Black             □ White        

 □ Hispanic/Latino             □ American Indian or Alaska Native      

 □ Asian                  □ Other  

 □ Native Hawaiian/Other Pacific Islander 
 

8. What is your highest level of education? (Check one box) 

 □ Eighth Grade or Less    □ College or Technical School Graduate        

 □ Some High School            □ Some Graduate School 

 □ High School Graduate           □ Advanced Degree (M.D., M.A., Ph.D., etc.)  

 □ Some College or Technical School         

Section E: Please Tell Us About Yourself 

In this section we ask about your background. As with the rest of the information in this survey, all responses 
are completely confidential.  
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9. How many total members are in your household? (Fill in the blanks) 

 __________ number of people in your household under 18 years of age 

 __________ number of people in your household 18 to 60 years of age 

__________ number of people in your household over 60 years of age 

 

10. Which of the following best describes your current employment situation? (Check one box) 

 □ Employed full-time  

□ Employed part-time 

□ Not employed  � Please go to Question #12 

□ Retired  � Please go to Question #12  

 

11. Are you paid hourly or are you on salary? (Check one box) 

 □ Hourly � What is your hourly wage (before taxes)? $__________ 

       � How many hours per month do you typically work? __________ hours 

 □ Salary  � What is your current monthly salary (before taxes)? $__________ 

             
12. How many members of your household contribute to paying the household expenses?  
      (Fill in the blank) 

 __________ number of household members who help pay household expenses 

 

13. Including these people, what was your approximate household income from all sources in 2008 
      (before taxes)? (Check one box) 

 □ less than $19,999  □ $50,000-$59,999  □ $90,000-$99,999 

□ $20,000-$29,999  □ $60,000-$69,999  □ $100,000-$149,999 

□ $30,000-$39,999  □ $70,000-$79,999  □ $150,000-$199,999  

□ $40,000-$49,999  □ $80,000-$89,999  □ More than $200,000 
 

14. Was your home damaged or destroyed as a result of the Station Fire? (Check one box) 

 □ Yes, damaged 

 □ Yes, destroyed 

 □ Neither 
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Comments 

 

If the return envelope was misplaced, please send the completed survey to: 

 
Professor John Loomis  
Department of Agricultural and Resource Economics 
Clark B-320 
Colorado State University 
Fort Collins, CO 80523-1172 

Thank you for completing the survey! 

If you have any additional comments please feel free to write them in the space below. When you are finished, 

please place the survey in the postage paid return envelope and mail it back to us. 
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REMINDER POSTCARD 

 

 
Department of Agricultural and  
Resource Economics 

Fort Collins, Colorado 80523-1172 
(970) 491-6325 
FAX: (970) 491-2067 
http://dare.agsci.colostate.edu 
 
 
 

Last week a questionnaire asking about your household’s experience with the smoke and ash from the 
Station Fire was mailed to you. 
                                                                                                       
If you have already completed and returned the questionnaire, please accept our sincere thanks. If you 
have not, please complete the survey and mail it back to us in the postage paid return envelope.  
 
Because this questionnaire has been sent to only a small, but representative sample of Los Angeles 
County residents, your responses will be very useful to wildfire management agencies.  
 
If your questionnaire has been misplaced, please call me at (970) 491-7307 or email me at  
John.Loomis@colostate.edu and I will mail you one today.  
 
Sincerely,  

 
Dr. John Loomis 
Colorado State University 


