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Abstract 

A continuous data assimilation method based on short-term four-dimensional variational data 

assimilation ( 4D-Var) is proposed. This method consists of forecast and analysis steps. The analysis 

increment (analyzed value minus forecasted value) is assumed to be proportional to the gradient of 

a cost function , which measures the misfit between model prediction and observations over a period 

of time. The gradient of the cost function is calculated with the adjoint method and is updated 

cyclically. This technique is a kind of retrospective analysis and can continuously assimilate data in 

an infinite time period. Different forecast model versions ( or models) can be used in the forecast 

and analysis steps. 

A two-dimensional shallow-water system with h rizontal diffusion, Rayleigh friction and external 

forcing is used to test the proposed method through identical-twin numerical experiments. The 

control run represents a typical mesoscale case with energy cascaded in two ways (upscale and 

downscale). The influence of model error and resolution of the analysis grid on the assimilated 

results is examined. Results show that when model error is small or moderate, the assimilated 

wind and geopotential fields correlate well with the true fields. When model error is large, the 

proposed method can still recover a large portion of small-scale motions which are not resolved by 

observations. Model error can lead to the generation of spurious small-scale gravity waves because 

of the inconsistency between model and observations. Numerical experiments show that bounding 

wind divergence and its time tendency can considerably suppress high-frequency spurious gravity 

waves and improve the assimilated results. 



1. Introduction 

With the advent of new observing systems, such as NEXRAD network (Telesetsky 1995) and 

GOES-NEXT satellites (Menzel and Purdom 1994n the atmosphere can be consistently monitored 

with very high temporal and spatial resolution. B r example , GOES-I snapshots the United Sates 

continent every hour and every 15 minutes during severe weather episodes in a mesoscale area. 

Unfortunately, data provided by such observing systems are incomplete in terms of atmospheric 

wind and thermodynamic parameters. Analysis is needed to reconstruct four-dimensional fields of 

atmospheric state variables. To better understand synoptic and climatic phenomena, analysis has to 

e performed continuously over a long period of time from hours to years. Several data assimilation 

methods have been developed and are still undergoing intensive investigations, some of these are the 

method of four-dimensional variational data assimilation (4D-Var) (e.g., Talagrand 1981; Navon et 

al. 1992; Courtier et al. 1993; Verlinde and Cotton 1993; Zupanski 1993; Courtier et al. 1994; Sun 

and Crook 1994; Zou et al. 1995; Jarvinen et al. 1996; Xu 1996a,b; Yang and Xu 1996) , nudging 

assimilation (e.g., Anthes 1974; Walko et al. 1989; Staufer and Seaman 1990) , Kalman (KF) and 

extended Kalman filters (EKF) (e.g., Kalman 1960; Ghil et al. 1982; Cohn and Parrish 1991; Daley 

and Menard 1993; Cohn et al. 1994), and intermittent assimilation (e.g., Mahfouf 1991; Ruggiero et 

al. 1996). 

Among these data assimilation methods, 4D-Var technique is the most promising method as it 

obtains an optimal model initial condition by min:mizing a cost function that measures the misfit 

between model forecasts and observations over a period of time. However, 4D-Var is not suitable 

for assimilating data continuously over a long period (say, one week) because the assimilation period 

of 4D-Var is controlled by many factors such as accuracy of linearizations, model error, weather 

predictability, and the huge computational cost involved. For example, using a barotropic ,B-plane 

model and without introducing model and observational errors, Tanguay et al. (1995) showed that 

for a given model resolution , exact initial conditions cannot be recovered if the assimilation period 

is much larger than the validity timescale ( of an upper limit of about 3 days) of the tangent linear 

model. Motivated by the capability of 4D-Var method for assimilating data from diverse sources, we 
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describe an assimilation algorithm [referred to as gradient-descent data assimilation (GDDA)] that 

can continuously assimilate data in an infinite time period using the concepts of 4D-Var technique 

and Kalman filter or nudging assimilation. 

The computation of a cost function and its gradient is very computationally expensive, this is 

the major factor that makes operational application of 4D-Var method very difficult. To reduce total 

computational cost, Courtier et al. (1994) proposed an incremental approach as an approximation 

to the full 4D-Var problem. This strategy obtains the analyzed increment of initial value for a model 

through a 4D-Var analysis performed on a coarse grid with a linearized prediction model. To reduce 

the peak computation task, Jarvinen et al. (1996) proposed a scheme of quasi-continuous variational 

data assimilation. This scheme divides the 4D-Var assimilation task into smaller parts of which only 

the last one is time and memory critical, and can reduce about 40% of peak computational work for a 

24-h assimilation using primitive equations and real observations. While maintaining the capability 

of assimilating data from a variety of observation systems like Doppler radar and GOES-next series, 

the proposed GDDA scheme is also designed to reduce both total and peak computational tasks when 

compared with the standard 4D-Var method. 

This paper is organized as follows. Section 2 shows how the GDDA scheme is formulated by using 

a cost functional and its gradient (calculated with an adjoint method). To examine the efficiency 

of the GDDA scheme, identical-twin· numerical experiments were performed using a two-dimensional 

shallow water model, which is described in Section 3. The proposed method includes forecast and 

analysis steps. Different forecast models (or model grid) can be used in the forecast and analysis 

steps. Subsection 4b reports the results assimilated with different analysis grids. The proposed 

method does not explicitly handle model error, which is one of the challenging issues faced by the 

4D-Var technique (Thepaut et al. 1993; Menard and Daley 1996). The influence of model error on 

the assimilated results is discussed in Subsection 4c. In Section 5, we investigate methods to damp 

spurious gravity waves in the assimilated fields, which can be caused by the inconsistency between 

model and data. In Section 6, we summarize the findings and results of this paper. 

2 



2. The algorithm of gradient-descent data assimilation 

a. Basic formulation 

Without loss of generality and for the sake of simplicity, we assume the observation grid is the 

same as the model grid, and the observed variables are model state variables. Like the KF ( or EKF) 

and nudging method , the proposed method can be written as: 

Forecast step: 

(1) 

Analysis step: 

(2) 

where X represents model state variable, F is t he forecast model, superscripts f and a indicate 

forecasted and analyzed values respectively, subscript n indicates time step, and d is the analysis 

increment (i.e. , analyzed value minus forecasted value). In the KF and nudging methods, analysis 

increment d n is constructed as a linear function of the misfit between observation ( denoted with 

superscript o) and forecast: 

(3) 

where Gn is a weighting matrix (gain matrix in KF). The analysis increment in (3) can generally be 

written as follows 

(4) 

where v' is a gradient operator with respect to xt and J is a cost function measuring the discrepancy 

between the model forecast and observations at time tn , 

J(Xf) = ~(Xf _ x o)T(Xf _ x o) n 2 n n n n, (5) 

where T stands for transpose. In ( 4) , the analysis increment is proportional to the gradient of a cost 

function. Since a cost function can be constructed with considerable freedom depending upon the 
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problems of interest, this makes it feasible to assimilate a variety of observations that are complicated 

functions of model state, such as satellite-derived radiances, and to use future data in the analysis 

steps. 

An analysis that uses future data to analyze a current model state is termed retrospective analysis 

(e.g., Cohn et al. 1994). Using a fixed-lag Kalman smoother and as allow-water model , Cohn et al. 

(1994) demonstrated that retrospective analysis is very efficient in reconstructing model states. To 

make use of future data in the analysis steps, the cost function J is redefined in a form commonly 

used in 4D-Var, 
tn+T 

J(X!) = L [X1 (t') - X 0 (t')fw- 1 [:xf (t') - X 0 (t')] , (6) 
t'=tn 

where Tis the length of a time period after tn, Wis the covariance matrix of observational and model 

errors, and :xJ is the model state predicted with 

(7) 

starting from an initial condition 

x1 = X 1 when r = 0, r n, (8) 

where F is the forecast model used in the analysis steps. It can be different from the one used in 

the forecast steps. The gradient of J in (6) with respect to X! can be calculated with the adjoint 

method used in 4D-Var. For 4D-Var, Tis termed as assimilation period (or time window). Since 

the proposed scheme can assimilate data indefinitely, to avoid confusion , in this paper r is referred 

to as the assimilation period (time window) of future data. Also, in the remainder of this paper, 

the quoted cost function J is the one defined by (6). In this paper , a data assimilation algorithm 

formulated with (1), (2), (4) and (6) is referred to as a scheme of gradient-descent data assimilation 

(GDDA). 

b. Determination of the weighting matrix 

In this paper, Gn is assumed to be 
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(9) 

where I is an identity matrix, and On is a parameter which changes with time. As a necessary 

condition of a good analysis, Gn should make J decrease after an analysis step , i.e., 

(10) 

According to (4), this condition requires O n be pos:tive and bounds On to a finite value. From (4) 

and (9), one can estimate On as 

(11) 

where C is a proportional parameter, and Jmin is the value of J. Since (11) is an approx-

imate formula, there is no need to find the exact minimum of J. In practical applications , Jmin can 

be estimated based on observational errors in data. In this paper, Jmin is set to zero. 

Theoretically speaking, if the observed data contain sufficient information to give an optimal 

solution (by minimizing J) that are very close to the "true" state, then the optimal solution can be 

directly taken as the analyzed value - X~. However, this is not the case for the real situation. For 

this reason we require the cost function decreases only a fraction after an analysis step. In general, 

one may expect that O < C < l. 

For a four-dimensional assimilation problem, calculating the gradient of J is very time-consuming. 

It is not practical to compute the gradient of J at every ana ysis step. In this paper, the gradient 

of J is updated periodically with a time period of th . According to (4), (9), and (11) , the analysis 

increment is thus modified to 

for n = 0, M, 2M, ... , (12) 

d _ d ( l _ {3 tn+m - tn ') c M n+m - n t , 1or m = 1, .. . , - 1, 
h . 

(13) 

where M = [th/ .6.t], (3 is a positive parameter. In (13) , the term in the braces is introduced to reduce 
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the norm of the analysis increment because cost function J decreases in the updating cycles. Cyclical 

updating of the analysis increment acts like a low-pass filter (in the time domain) for the analysis 

increment (Bloom et al. 1996) with oscillations of periods smaller than th being heavily damped. 

However, if small-scale features exist in the analysis increment, high-frequency oscillation can still 

be generated in the forecast fields through the spatial for:cing of the analysis increment. For C , it is 

assigned a value so that J may approach to Jmin after a period of th, i.e., 

(14) 

where C0 is a proportional parameter near unity in magnitude. 

To give a clear picture of the GDDA method, the GDDA method is schematically illustrated in 

Fig. 1. In Fig. 1, an analysis is performed at time t = t0 . The analysis is done through two steps: 1) 

B 

----
- - - -I - - - - - A' ,-- I --, 

.- I I 

________________ ....__ __________ Time 
to to+r 

Figure 1: Schematic diagram of the GDDA scheme. At time t0 , analysis increment is updated by 
performing 4D-Var analysis (Forward integration - thin solid line AA' , backward adjoint integration 
- dotted line under AA'). Forecast (thick solid line) continues until time to+ th. At time t0 + th, 
analysis increment is updated again through 4D-Var analysis (BB') and data assimilation continues. 

6 



integrate the forecast model used in the analysis step for a period of timer ( solid line AA'), and 2) 

integrate the adjoint model backward ( dash line under AA'). After these two steps, the gradient of 

J , and therefore the analysis increment can be obtained. Then data assimilation continues without 

updating the gradient of J until t = t0 + th. In the time interval (to, t0 + th), the forecast model 

state follows curve AB due to the modification of analysis, otherwise it will evolve along AA'. At 

time t0 + th a new analysis begins at point B and 'VJ is updated. Data assimilation is thus executed 

continuously by updating 'VJ cyclically at time t =to+ £th (£ = 0, 1, 2, ... ). 

The computation efficiency of the GDDA method can be estimated as follows. Assume that 

adjoint integration costs as about 2 times of CPU time as the forward integration, it can be proved 

that the total CPU time ( C PUt) cost by the proposed method can be approximated as 

(15) 

where CPUs is the CPU time cost by the forecast model used in the forecast steps, and CPU; is the 

CPU time required by a single integration of the forecast model used in the analysis steps. CPU; 

equals CPUs if the forecast models used in the forecast and analysis steps are the same. C PU; will 

be much smaller than CPUs if the forecast model used the analysis steps has a lower grid/temporal 

resolution (or simpler parameterization schemes of microphysics) than the one used in the forecast 

steps. 

It is also worth pointing out that model variables should be properly scaled when calculating the 

gradient of J as is done in many 4D-Var schemes. Otherwise, the analysis increment will seriously 

deviate from the optimal descent direction of J and the efficiency of the proposed algorithm will be 

low. 

3. The shallow-water model and statistics 

a. Experimental design 

The prototype test bed model is a two-dimensional shallow-water model with horizontal diffusion , 

Rayleigh friction and external forcing: 
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(16) 

(17) 

(18) 

where u, v are eastward and northward wind components respectively; ¢> is the geopotential height; 

f is the Coriolis parameter (f = 1.0-4s-1 ); Km is the horizontal diffusion coefficient , Dm is an 

iterated Laplacian (e.g., Tanguay et al. 1995), Dm = (v'2)µ. (unless otherwise specified, µ = l); Cr 

is the Rayleigh friction coefficient ( Cr = 1/14 day-1) , Fx and Fy represent external forces along the 

x and y directions, respectively. 

Double periodic boundary conditions are assumed for the model domain. The model is discretized 

with a potential-enstrophy conserving method (Sadourny 1975; Washington and Parkinson 1986) and 

is initialized with 

(19) 

8'1f; 
v = Bx - Acos(l + 41rx/ L) cos(-1 + 41ry/ L) , (20) 

where u 0 is the mean (basic) flow , A=2ms-1 , L is the model domain dimension , 0 x L and 

0 y L, and 'If; is defined by 

(21) 

where kt and kt are dimensionless wave-numbers of 'ljJ, kt= kt = 2, and B = 4 x 106m2s-1 • The 

initial value of geopotential height is given by 

<P = <Po+ f 'ljJ , at t = 0, (22) 
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where ¢0 is the mean geopotential height; <Po = 7500m2s-2 • T he model domain is set to a mesoscale 

area, 1600 x 1600km2• The number of grid points (Nx x Ny) is set to 32 x 32. Accordingly, the grid 

spacing (d) is 50km. For this grid spacing, K is set to 4 x 104 m 2s-1 , and 6.t is set to 100s. In this 

2D shallow water system, energy cascades in two ways in wavenumber space. Small-scale features 

with wavelength smaller than or equaling 4d are fai rly quickly {with dissipation time scales less than 

45h) dissipated by horizontal diffusion. In order for the flow to maintain a wide energy spectrum in 

the assimilation period, the external forcing is set as 

(23) 

(24) 

where p is a multiplier used to specify the strength of external forcing , Ax = 8.10 x 10-4ms-2 , 

Ay = 6.94 x 10-4ms-2 , and kx and ky are the dimensionless wave-numbers, kx = 4, and ky = 3. 

Unless otherwise stated, p is set to 1.0. The first term in (24) balances the Coriolis force of the 

mean flow. In dimensionless wavenumber space, the external forcing has two components with wave-

numbers of zero and 5. Note that initial u, v and </> are not in a balanced state. Consequently, 

gravity waves exist in the model solution. This is to let the model to represent asynoptic processes 

occurring on mesoscales (Holton 1992, p.266). 

Although this shallow-water system is driven by external forcing (23) and (24), numerical in-

tegrations (not shown) demonstrate that the model solution is very sensitive to initial conditions. 

Therefore, the above-described modeling system is appropriate for testing data assimilation schemes. 

We assume that the observed quantities are u and v. The observed u and v are simulated 

by adding a random noise to the "true" values of u and v, which is generated by running the 

shallow-water model from a given initial condition (control run). The random noise has a Gaussian 

distribution with a standard deviation c, = l.0ms- 1. Data noise is assumed uncorrelated in space. 

Data coverage ( denoted as R) is expressed a fraction of total model grid points and observation 

stations are randomly distributed on the model grid. R is assumed to be 6.2%. This corresponds 
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to an average spatial resolution of 200km for the observation stations. In the wavenumber space 

associated with the model grid, these data can only resolve spatial structures with wave-numbers of 

0-3 with reasonable accuracy. 

Data temporal resolution (denoted as td) is set to 3h. The assimilation time window of future 

data (r) is set to 4h. Because td=3h, the assimilation time interval (tn, tn + r) in (6) may cover 

either one or two levels of observations, depending upon tn. Accordingly, the actual assimilation time 

window of future data may vary between lh and 4h, with an average of 2.5h. 

The initial values of analyzed u, v, and ¢ are the domain averages of the true initial values. The 

gradient of J is updated every 1200s; th = 1200s. Because of data errors and low data coverage, the 

gradient field of J contains short-wave components that cannot properly be resolved by the model 

grid and may cause wave-aliasing problems. In 4D-Var numerical experiments without data noise, 

Tanguay et al. (1995) showed that during early iterations, spurious short-wave components appear 

in retrieved initial fields, implying spurious short-wave components exist in the gradient field of the 

cost function when the cost function is not very close to its minimum. In this paper, when the 

analysis increment is updated , it is smoothed with a five-point filter , which can be written as 

(25) 

where q can represent any one of the analysis increment fields of wind and geopotential height, q is 

the filtered value of q, 1 is the filter coefficient. In order to filter out only those components having 

very short wavelength,, is set to a small value of 0.05, and (25) is iterated 3 times. 

b. Definitions of statistics 

In order to assess the quality of assimilated products, the following statistics are introduced for 

a variable q, which can represent any one of u, v and ¢: 

(26) 
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CR _ (qa _ q")(qt _ qt) 
~"</ - ----1/2---==--l/2' (qa _ qa)2 (qt_ qt)2 

(27) 

where RMSq is the root-mean square error (RMS) of q, CR.q is the correlation coefficient (CR) 

between assimilated and true values, qt is the true value of q. The overbar represents an average 

taken over the model domain. For velocity field , we also define the rms error of wind ( denoted as 

RMSw) and the correlation coefficient (denoted as CRw) between the assimilated and true winds as 

follows: 

( )
1/2 

RMSw = II ya - yt 11
2112 = RMS~+ RMS~ ) (28) 

(Va - ya) . (Vt - Vt) 
CRw = -----1-'2-----_--1/2 ' 

II ya_ ya 11 2 1 
JJ yt -Vt 112 

(29) 

where Vis the wind vector, V = (u, v). 

More detailed comparison can be made in the dimensionless wavenumber (k) space associated 

with the model grid. The correlation coefficient between the assimilated and true fields at wave 

number k is defined as 

(30) 

where k is the wave vector, k = lkl ; q(k) indicates the Fourier coefficients of q-ij, a star indicates the 

complex conjugate, q( k) is the sum of q(k') in k-space rings of unit thickness centered on wavenumber 

k, 

q(k) = L q(k') exp (2; ik' · x), 
k-1/2$lk'l9+1/2 

(31) 

where i = y'-1. In (30) , Q(k) is the power (energy) spectrum of q - ij, 

Q(k) = q(k)q*(k) = q(k')q*(k'). (32) 

It can be proven that CRq is related to rk through 
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(33) 

where fk is defined as 

(34) 

and Q(k) is the normalized energy spectrum of q - ij , 

Q(k) = Q(k) . 
LQ(k) 

(35) 

k 

We refer to f k as the spectrum (spectral density) of the correlation coefficient CR9 • Equations (33)-

(34) show that the contribution of a component of wavenumber k to the total correlation coefficient 

CR9 is weighted by the square-root of normalized energy spectra of the two fields. If the spatial 

pattern of the assimilated field is identical to that of the true field , both rk and CR9 equal unity and 

Qa(k) equals cjt(k). In that case, (34) becomes 

(36) 

Equation (36) indicates that for two perfectly correlated fields , the spectrum of correlation coefficient 

is the same as the normalized power spectrum (of true field). In this paper , we refer to an assimilation 

as a perfect assimilation when the assimilated fields are the same as the true ones. 

4. Numerical results 

In this section, ident ical-twin numerical experiments are performed to test the proposed method. 

Sensitivities of the assimilated results to C0 and /3 are presented and the affect of model error on 

assimilated results is examined. Results using different grids in the forecast and analysis steps are 

also presented. In the remainder of the paper, the model grid used the forecast steps is referred to as 

forecast grid and that used in the analysis steps is referred to as analysis grid ( denoted as N; x N; ). 

The forecast grid is the same as the model grid used to produce true fields and has 32 x 32 grid points. 

If not specifically stated, the analysis grid is the same as the forecast grid . 

12 



a. Control run and assimilation without model error 

The normalized power spectra of true fields are shown in Fig. 2. For the case studied here, the 

power spectral density of u , v and ¢ are negligible for wave-r.umbers greater than 10. Therefore, 

we plot the spectrum of a quantity for k :S 10, although the maximum resolvable wavenumber is 

16-/2 for a forecast grid of 32x32 grid points. Fig. 2 shows that energy cascades in two directions: 

downscale and upscale. At the initial time, the spectra of perturbation winds (wind minus the basic 

flow) a.nd perturbation geopotential height (¢ - ¢ 0 ) concentrate at wavenumber 3 [not shown, see 

(19)-(22)]. With the evolution of time, the power spectra of true fields broaden. At 24h, the power 

spectra of u - u 0 , v and ¢- ¢ 0 cover more than one wavenumber, especially the spectrum of¢- ¢ 0 , 

which has a significant part distributed at wave-numbers different from wavenumber 3. At 120h, the 

power spectra of the true fields spread in the range k E [1 , 7), and the spectral density of¢ - ¢0 is 

fairly large at k = 1 and 2, indicating that part of the small-scale kinetic energy is transferred to 

large-scale geopotential energy. 

The upscale cascading of energy raises a challenging issue for data assimilation (Tanguay et al. 

1995) since small-scale flow features cannot be retrieved from observations on large-scales. It is 

possible, however, that small-scale features can be inferred through the inherent nonlinear dynamic 

relationship between small-scale and large-scale flows and/or {horizontal) advection of information. 

The following results show that this is achievable for the shallow-water system investigated in this 

paper. 

Fig. 3 shows the RMS and CR of the assimilated results obtained with C0 = 1 and (3 = 0.8. It can 

be seen in Fig. 3 that the root-mean square errors (RMS) of wind and geopotential height decrease 

considerably with the evolution of time. RMSu and RMSv are larger than l0ms-1 at the initial time. 

After about a 40h assimilation period, they drop below l.0ms- 1, which equals the sta~dard deviation 

of the observed u and v. At 120h, RMSu and RMSv are 0.3m/s, indicating that the assimilated fields 

can be more accurate than the observed values. Consistently, the improvement of the assimilated 

results with time is reflected in the improved correlation between the assimilated and true fields. At 

120h, CR reaches 0.99 or larger for all assimilated fields. As one can be seen in Fig. 3, ¢ is not 
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Figure 2: Normalized power spectra of perturbations of true wind ( u - u0 , v) and geopotential height 
(<P - <Po) at time t=24h (solid line) and 120h (dotted line) . 
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Figure 3: Root-mean square error (RMS) of the assimilated fields and correlation coefficients (CR) 
between the assimilated and true fields. Curves are plotted with a time interval of 40min. Solid line 
- u, dash-dotted line - v , dotted line - ef>. In panel (a) , the unit of RMS is ms- 1 for the wind 
(left labels), and 10m2s-2 for the geopotential height (right labels) . C0 = l , and /3 = 0.8. 
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recovered as quickly as the wind, this is because of the high-frequency oscillation (with a period as 

small as about lh) of</>. 

Results (not shown) show that when t > 72h, the spectra of correlation coefficients between 

the assimilated and true fields are very close to those for a perfect assimilation. The above results 

demonstrate that the full spectra of wind and geopotential height fields can be accurately recovered 

by assimilating wind data which can only accurately resolve spatial features of wave-numbers 0-3. 

b. Sensitivity to C0 and {3 

It is impossible to determine, a prior, the optimal values of the parameters C0 and /3. Therefore 

experiments were conducted to check the sensitivity of the assimilated results to C0 and (3. Table 1 

lists the RMS and CR of the assimilated results at time 120h and the time after which both RMSu 

Table 1: Root-mean square error of the assimilated wind components (RMSu and RMSv, in ms-1) and 
geopotential height (RMS¢, , in 10m2s-2 ) and correlation coefficient (CRu, CRv and CR,t,) between 
the assimilated and true fields at time t=120h. 

ExperimentC0 /3 RMSu CRu RMSv CRv RMS,t, CR,t, t~v (h) 
ESl 0.2 0.0 0.6 0.9947 0.6 0.9945 2.0 0.9789 112.0 
ES2 0.5 0.0 0.3 0.9985 0.4 0.9982 1.4 0.9890 42.0 
ES3 1.0 0.0 0.3 0.9989 0.3 0.9988 1.4 0.9892 37.0 
ES4 2.0 0.0 0.3 0.9987 0.3 0.9986 1.6 0.9859 33.7 
ES5 5.0 0.0 0.4 0.9980 0.4 0.9978 2.3 0.9729 36.3 
ES6 0.2 0.8 1.8 0.9595 1.7 0.9600 3.2 0.9429 
ES7 0.5 0.8 0.5 0.9972 0.5 0.9968 1.5 0.9878 60.0 
ES8 1.0 0.8 0.3 0.9987 0.3 0.9985 1.4 0.9894 40.3 
ES9 2.0 0.8 0.3 0.9989 0.3 0.9988 1.4 0.9896 36.7 
ESl0 5.0 0.8 0.3 0.9985 0.3 0.9985 1.7 0.9845 35.7 
* tuv - time after which both RMSu and RMSv are below l.0ms-1. 

and RMSv are below the standard deviation of errors in the observed wind (l.0ms- 1). As can be 

seen in Table 1, the assimilated results at t=120h are not very sensitive to C0 and /3. When /3 is 

fixed at 0.0 or 0.8, RMSu and RMSv vary in the range of 0.3-0.5ms-1 when C0 is changed from 

0.5 to 5. When /3 = 0, the assimilated geopotential height is a little more sensitive to C0 than the 

assimilated wind. CR,t, changes by 0.01 when C0 changes from 0.5 to 5.0, whereas CRu and CRv 
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change by less than 0.05. Although the accuracy of the assimilated fields at 120h are not sensitive to 

C0 and (3, the results in Table 1 do indicate that the convergence rate of the assimilated fields to the 

true ones is affected by C0 and (3. Overall, the results in Table 1 show that the assimilated products 

are more sensitive to the factor of C0 [l - f3(tn+m - tn)/th] derived from (12)-(14). When this factor 

does not significantly deviate from unity, the assimilated fields converge quickly to the true ones and 

have high accuracy. 

Because the cost function decreases in each updating cycle of its gradient , one may therefore 

expect the analysis increment also decreases. Based on this consideration and the results in Table 1, 

we set C0 = 1 and (3 = 0.8 in the remainder of this paper. 

c. Mixed use of models with different grid resolution 

Although the adjoint method is efficient in calculating the gradient of a cost function , the compu-

tational cost is very large when compared with a single forecast integration. Courtier et al. (1994) 

proposed to reduce the grid resolution of gradient fields so that computational cost can be reduced. 

This approach can be used in the proposed method. From (1) , (2), (4) , and (6)- (8) , one can see 

that the forecast models used in the forecast and analysis ste?S can have different grids if the ana-

lysis increment (forecasted fields) is properly interpolated into the forecast (analysis) grid. Linear 

interpolation is used in mapping data from one grid to another. 

Fig. 4 shows the RMS and CR of the assimilated fields obtained with N; x N; = 20 x 20. As 

can be seen in Fig. 4, the assimilated results are still very good . Over the period from 72h to 120h, 

RMSu and RMSv are close to the standard deviation (1.0ms- 1) of errors in the observed u and v , and 

CR,.. and CRv are larger than 0.98. Comparing Fig. 3 and 4, one can find that owing to the reduction 

of the resolution of the analysis grid, the results assimilated with N; x N; = 20 X 20 is degraded , 

especially the assimilated geopotential height. This degradation is caused by the truncation error 

in the forecast model used in the analysis steps. For a grid of 20 x 20 points, it cannot accurately 

resolve spatial patterns with wave-numbers greater than about 5, which exist in the true fields (see 

Fig. 2). 
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When the resolution of the analysis grid is further reduced , truncation error is more severe and 

the quality of the assimilated results degrades further. Results show that when N'; X N; = 16 x 16, 

CR,p oscillates around 0.83 when t > 72h. In the next subsection, the influence of model error on the 

assimilated results is investigated in association with different N'; X N; . 

d. Affect of model error 

The atmosphere and other fluids (say, oceans) are continuums, the scales of motions in these 

fluid systems may range over several or tens of orders of magnitude. For example, the atmosphere 

may simultaneously contain eddies of sizes of 10-2m and planetary waves of horizontal scale of 

107 m (Holton 1992, p.5). For the simulation of motions over such a wide range of scales, numerical 

models inevitably have model errors due to limited spatial resolution (truncation error) and inaccurate 

parameterizations of various subgrid processes. Dealing with model errors is still a challenging issue 

faced by 4D-Var techniques. In this subsection, the influence of model error on the assimilated 

fields with the proposed method was investigated by introducing an error in the external forcing in 

(16)-(17). 

The shallow-water system defined by (16)-(24) with p = 1 is treated as an actual or a perfect 

system, and used to generate simulated observations of wind according to the method described in 

Section 3. With the other terms being the same as those in (16)-(18), (23) and (24), an imperfect 

forecast model used in the forecast and analysis steps is formulated by changing p to a value different 

from unity. The model error of an imperfect model can be assessed by RMS and CR of the forecasts 

produced by the imperfect model from the same init~al conditi n as used in the perfect system. Fig. 5 

shows the RMS and CR of a forecast made with p = 0.5. As one can see in Fig. 5, the wind and 

geopotential field simulated with the imperfect model exhibit very large error after 48h integration; 

RMS of u and v can be larger than about 8ms-1 . After 72h , the CRs of wind and geopotential height 

averaged over the period from 72h to 120h are only 0.02 and -0.03 , respectively, indicating that u, v 

and </> forecasted by the imperfect model becomes totally unc rrelated with the true fields. 

Fig. 6 displays the error statistics of the resu ts assimilated with the imperfect model having 
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p = 0.5. As shown in Fig. 6, the assimilated wind and geopotential fields still correlate well with 

the true fields although the forecast model used in the assimilation has very large error . Comparing 

Fig. 3 and 6, one can find that CR¢, is affected more severely by model error than that of wind. In 

Fig. 6, CR¢, is smaller and fluctuates more violently with time than those of wind. This is caused 

by high-frequency oscillation of inertia-gravity waves, which result from the imbalance between the 

observed wind and forecasts made by the imperfect model. Since the imperfect model has error, 

a balanced flow in the perfect model (which is used to generate observations) is unbalanced in the 

imperfect model and gravity waves are triggered in the imperfect model after each analysis step. 

The prediction equation of </> has no horizontal diffusion to damp small-scale and high-frequency 

(with a time period of about lh) components of</> and observations are made every 3h, therefore 

the assimilated ¢; is not as accurate as the assimilated wind. In Fig. 7, the assimilated ¢; has more 

small-scale features than the true¢;, especially at t=120h. 

Fig. 6 also demonstrates that unlike the results obtained with the perfect model (see Fig. 3), the 

results assimilated with an imperfect model cannot be progressively improved with time. In Fig. 6, 

the accuracy of the fields assimilated with the imperfect model does not increase and remains the 

same (statistically) with time when t > 48h. This was verified by a 30-day assimilation (not shown). 

Fig. 8 shows the true wind field and that assimilated with an imperfect model having p = 0. As 

shown in Fig. 8, although the external forcing is zero in the imperfect model , small-scale features 

of the true velocity field are largely recovered in the assimilated field. This example demonstrates 

that. even if large model error exists and energy cascades in two ways, the proposed method can 

still partially recover the small-scale (wavenumber k = 4 - 6) motions from data that can only 

approximately resolve motions with wave-numbers of 0-3. 

Fig. 8 also shows that the recovered small-scale motions are not as strong as the true ones, 

therefore the contribution of small-scale motions to CR is lower than that of perfect assimilation. 

This can be seen in Fig. 9, in which the spectral densities of CRu and CRv are smaller than those 

of a perfect assimilation when wave-numbers are larger than 3. For the geopotential height, due to 

spurious high-frequency oscillation of small-scale gravity waves the spectral density of the correlation 
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coefficient is about one half or one third of that of perfect assimilation when t = 120h and k 2. 

This indicates that small-scale features of geopotential fields cannot be recovered when model error 

is too large. However, the assimilated results could be significantly improved (see the next section) 

if gravity waves are properly controlled. The good retrieval of ¢ at t = 60h results from a smaller 

model error as the external forcing is relatively smaller in the early stage of forecast than in the late 

stage of forecast (see also Fig.5) . 

A series of numerical experiments were conducted for different model errors and N; x N; . Results 

are listed in Table 2. Since RMS and CR change with time (see Fig. 6) , results listed in Table 2 

Table 2: Time-averaged root-mean square error of the assimilated wind (RMSw , in ms- 1) and 
geopotential height (RMS¢, in 10m2s-2 ) and time-averaged correlation coefficient (CRw and CR¢) 
between the assimilated and true fields. The time period used for averaging is from 72h to 120h. 
Experiment p 32x32* 20 x 20* 16 x 16* 

RMSw (CRw) RMS¢ (CR¢) RMSw (CRw) RMS¢ (CR¢) RMSw (CRw) RMS ¢ (CR¢) 
ERl 0.0 4.3 (0.89) 9.1 (0.65) 4.4 (0.88) 9.7 (0.51) 4.6 (0 .87) 13.2 (0.51) 
ER2 0.5 2.3 (0.97) 4.9 (0.87) 2.6 (0.96) 6.1 (0 .83) 2.8 (0 .95) 8.7 (0 .71) 
ER3 0.75 1.4 (0.99) 3.0 (0 .95) 1.8 (0.98) 4.5 (0.90) 2.2 (0 .97) 7.3 (0 .79) 
ER4 1.0 0.6 (1.00) 2.0 (0 .98) 1.4 (0.99) 4.1 (0 .92) 1.9 (0.98) 6.6 (0 .83) 
ER5 1.25 1.4 (0 .99) 3.3 (0 .96) 1.9 (0 .98) 5.3 (0 .89) 2.3 (0.97) 7.4 (0.81) 
ER6 1.5 2.3 (0.98) 5.2 (0.91) 2.7 (0 .97) 7.3 (0.83) 3.1 (0 .96) 9.3 ( .76) 
ER7 2.0 4.3 (0 .95) 9.5 (0 .80) 4.8 (0 .93) 11.8 (0 .70) 5.5 (0 .89) 14.8 (0 .62) 
• - Number of grid points of analysis grid (N; x N;). 

are averaged from 72h to 120h. As truncation error can generally be considered as a model error, 

results in Table 2 show that in general, the assimilated results degrade with an increase in model 

errors. When the relative error of external forcing is not greater than 50% (i.e, 0.5 p 1.5) , the 

assimilated products have very high accuracy if N; x N; is not below 20x20. When N; x N; is 

16x16, the analysis grid can not accurately resolve the external forcing (k = 5) and the small-scale 

features ( k = 4 - 7) embedded in the true flow. Therefore the assimilated fields have a lower accuracy 

than those obtained with a finer analysis grid. In Table 2, the quality of assimilated products by 

a perfect model with N; x N; = 16 x 16 (in Experiment ER4) is close to that obtained with an 

imperfect model with N; x N; = 32 x 32 and p = 0.5 or 1.5 (in Experiments ER2 and ER6). 
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5. Treatment of spurious gravity "'-aves and effect of data configur-
ation 

As seen in the above section, model error can lead to the generation of spurious gravity waves and 

thus reduces the accuracy of the assimilated variables. Generally speaking, inconsistency between 

model and data can cause the generation of spuri us gravity waves in the assimilated fields. In 

addition , even if there is no model and data errors, spurious gravity waves can also be generated if 

the analysis increment, which acts like a forcing term for the model used in the forecast steps, is not 

smooth in space. This can arise from low temporal and spatial resolution of the observed data. To 

control spurious high-frequency small-scale gravity waves, one has to use certain methods to reduce 

the source strength of small-scale gravity waves and to damp these waves in the forecast steps, or 

increase data temporal and spatial resolution so tha.t high-frequency oscillation can be identified. 

a. Controlling gravity waves 

A method to control gravity waves is to damp the divergence rate (D = 8u/8x + 8v/8y) of the 

wind. Through scaling analysis of (18) (e.g., Von Hinkelmann 1969; Browning et al. 1980) , one can 

find that the temporal rate of gravity mode of</> is controlled by the divergence term (the last term) 

in (18). For high-frequency gravity waves, the time derivatives of D - 8D1/ 8t1 (l = 0, 1, 2, .. ) have 

large amplitudes. In this paper, the analyzed value is adjusted by bounding the amplitudes of D and 

its time tendency at each analysis step. We define a penalty function Jd as follows: 

(37) 

where Di,j is the divergence at grid point (i,j) at an analysis step, and E and Et are the upper 

bounds set for D and 8D/8t, respectively; Et= E/Tn where Tn is the minimum time scale set for 

D. The analyzed value is modified into 

(38) 

where ad is a weighting coefficient which can be determined like an used in (9) . Writing (37) in a 
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continuous form, it can be shown that if ad is a constant and E = 0 and Et-+ oo, the modification 

made in (38) is equivalent to adding a diffusion term in the momentum equations, i.e. , 

(39) 

8v 8D 
8t = ... + Kd [)y ' (40) 

where Kd = ad/ b..t. Equations (39) and (40) are the linear dissipation form for divergence proposed 

by Sadourny (1975). Note that other diagnostic weak constraints can be similarly transformed into 

linear dissipation terms in the prognostic equations. 

To demonstrate the efficacy of the above method for controlling gravity waves, data assimilation 

was performed for a case in which the true fields are generated us·ng Cr = 0, Fx = 0, Fy = fu 0 , 

Km = 300m2s-2 , and Dm = ('v'2) 8 (Tanguay et al. 1995). The high-order iterated Laplacian is 

used to damp motions of scales of about two and three grid spacings. These motions result from 

the equilibrium distribution mechanism of enstrophy in the wavenumber space, which is determined 

by the dynamic nature of a two-dimensional shallow water model (Sadourny 1975). For this set of 

model parameters, high-frequency gravity waves, once generated , can last a very long time. To see 

clearly the spurious high-frequency oscillations generated in the assimilated fields , the true fields 

are generated in such a way that no high-frequency oscillations (with period of about 1-2h) exist. 

This is achieved using the bounded derivative method (e.g. , Browning et al. 1980). A variational 

approach to the bounded derivative method is presented in the Appendix. The true flow contains a 

substantial amount of small-scale motions (see Fig. 10 and the Appendix) which cannot be resolved 

by observations. The observed u and v are simulated in the same way as described in Section 4b, 

except that the temporal resolution of the observed data is assumed to be lh. Data assimilation is 

performed with a perfect model. 

Numerical experiments showed that for the case described above. strong spurious gravity waves 

are generated in the assimilated fields and the forecast is numerically unstable if the penalty for D 

and 8D/8t is not imposed. Controlling D can ensure the numerical stability of the model solution, 
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but controlling D only cannot very efficiently eliminate spurious gravity waves, controlling both D 

and 8D/8t gives better results (Fig. 11). 

The assimilated results obtained using E = 1.0 x 10-5 s-1 and Tn = 6h are very accurate. At 

t=l20h, RMSu and RMSv are l.lms-1 and l.lms-1, respectively; RMS4> is 10m2s - 2 , and (CRu , 

CRv , CR4>) = (0.981, 0.971, 0.996). Spectral analyses for correlation coefficients and rms error 

show that errors in the assimilated fields mainly arise from the underestimation of the strength of 

small-scale features with wave-numbers k 2:: 10. 

Results (not shown) demonstrate that adding a diffusion term into the prognostic equation of 

¢ and increasing the diffusion coefficient Km can ensure the numerical stability of the assimilated 

solution and increase the accuracy of the assimilated results, but this method is not as effective as 

controlling the divergence rate of the wind; a large diffusion coefficien: (Km~ 106m2s-2 ) is required. 

b. Influence of data configuration 

The amount of information contained in a data set is determined by its coverage and temporal 

resolution. Increasing data coverage and temporal resolution will certainly increase the ability of 

assimilation algorithms to detect small-scale features. We repeated the assimilation experiment ERl 

in Table 2 with different data configurations. Results are listed ir:. Table 3. From Table 3, one 

can see that results obtained with high spatial and temporal resolutions are much better than those 

with lower data coverage and temporal resolution. With gravity waves being controlled, the results 

Table 3: As in Table 2, but for different data coverage (R) and temporal resolution (td) and different 
observed quantities. Data assimilations are performed using an imperfect model with p = 0 and 
N; x N; = 33 x 33. Gravity waves are controlled with equations (37) and (38). 
Experiment Observations R (%) td (h) RMSw (CRw) RMS4> (CR4>) 
EDl u, v 6.2 3 4.0 (0.91) 4.9 (0.87) 
ED2 u, v 6.2 1 3.1 (0.95) 4.2 (0.91) 
ED3 u, v 25 3 1.7 (0.98) 3.2 (0.95) 
ED4 v 25 1 2.3 (0.97) 4.0 (0.92) 
ED5 v 50 3 2.1 (0.98) 3.7 (0.93) 
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of experiment EDl are much better than those of experiment ERl in Table 1, especially for the 

geopotential field. CR4> is 0.87 in EDl, while it is only 0.63 in ERl for the case N; x N; = 33 x 33. 

Experiments ED4 and EDS have only one observed velocity co:nponent v. This is designed to 

simulate the radial velocity observed by Doppler radars. Although only vis observed and model error 

is large (p = 0), the assimilated fields are very accurate. Experiment ED4 and ED5 also indicate 

that increasing data coverage is more effective in improving the assimilated results than increasing 

data temporal resolution. ED4 uses more data than EDS, but the assimilated results of ED4 is not 

as accurate as those of EDS. Other experiments (not shown) also support the above finding. 

Experiments in Table 3 demonstrate that model error is not a big problem for the proposed GDDA 

method if data spatial and temporal resolutions are sufficiently high and inertia-gravity waves are 

properly controlled. The data coverage and temporal resolution used in Table 3 have already been 

achieved in the observations of WRS-88D Doppler radars and GOES-Next satellites. 

6. Summary and conclusions 

A continuous data assimilation method based on short-term 4D-Var analysis is described. This 

method is termed as gradient-descent data assimilation (GDDA). It consists of forecast and analysis 

steps. The analysis increment (analyzed value minus forecast value) is proportional to the gradient of 

a cost function, which measures the misfit between model prediction and observations over a period 

of time. The gradient of the cost function is calculated with the adjoint method and is updated 

periodically. This technique is a kind of retrospective analysis as it uses future data to analyze 

current model state. Unlike standard 4D-Var algorithms (e.g., Jarvinen et al. 1996) that can only 

assimilate data in a limited time window, the proposed method can continuously assimilate data in 

an infinite time period and is less computer intensive than the standard 4D-Var technique. Moreover, 

the proposed method can use different forecast models (or different grids) in the forecast and analysis 

steps. 

A two-dimensional shallow-water model with horizontal diffusion , Rayleigh friction and external 

forcing is used to test the GDDA method through identical-twin numerical experiments. The model 
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domain has a mesoscale size of 1600km x 1600km and 32 x 32 grid cells. Energy in this system 

cascades two-ways (upscale and downscale). Simulated observations of wind with a coverage of 

6.2% are made every 3h. The observed wind components have random observational errors with a 

standard deviation of lm/s and observation stations are randomly distributed on the model grid. The 

influence of model error and resolution of the analysis grid on the assimilated results is examined. 

Results show that when the relative error of external forcing is not greater than 50% and the analysis 

grid is not coarser than 20 x 20, the correlation coeificients between the assimilated and true fields 

are above 0.96 for the wind and above 0.83 for the geopotential height. When the relative error of 

external forcing is 100%, the proposed method can still recover a large portion of the small-scale 

motions. 

Model error causes the generation of spurious small-scale inertia-gravity waves because of the 

inconsistency between the model and data. A penalty function is constructed to bound the time 

derivatives of the divergence rate of wind [see (37)] 2.,nd thus to control inertia-gravity waves. Such a 

controlling procedure for gravity waves ensures the numerical stability of the assimilated fields (see 

subsection 5a) when horizontal diffusion is very small. When model error is larger, the assimilated 

results obtained with such a penalty function are improved considerably, especially for the geopo-

tential field (see subsection 5b). Results also show that the influence of model error can be further 

reduced by increasing data spatial and temporal resolution. 

When the GDDA method is applied to three dimensional (3D) mesoscale and large scale prob-

lems, spurious small-scale inertia-gravity waves will also exist in the assimilated fields. These spuri-

ous waves can be partially eliminated by controlling the divergence field of the wind and using a 

balance constraint (Parrish and Derber 1992). In addition , spurious small-scale gravity waves will 

be heavily dissipated by diffusion because mesoscale and large scale models use large horizontal 

diffusion coefficients. For example, the Regional Atmospheric Modeling System (RAMS) developed 

at Colorado State University uses a horizontal eddy diffusion coefficient of K m 2: 0.075d413m 2 s-1 

(Robert Walko, private communication) , where dis the horizontal grid spacing in meters. Prelimin-

ary st udies show that artificial gravity waves are negligible in the assimilated fields when the GDDA 
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scheme and the adjoint of RAMS are used to assimilate operational weather data and Doppler radar 

winds. These results will be reported elsewhere. 
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Appendix A 
A variational approach to the bounded derivative method 

The bounded derivative (BD) method (Browning et al. 1980; Kreiss 1980) is based on the 

observation that a solution of a hyperbolic system which varies slowly with respect to time must 

have a number of time derivatives on the order of the slow time scale. In the BD method, temporal 

derivatives of dependent variables at the initial time are const rained to the order of the slow time 

scale so that the amplitudes of the ensuing high-frequency motions remain small in a fixed time 

interval(~ 1 day). Alternatively, to achieve the same results one can bound the temporal derivatives 

of dependent variables to the order of the slow time scale in a short period of time. This can be 

fulfilled with a 4D-Var algorithm. For this particular problem, the cost function should be defined 

as the difference between observation and dependent variables at the initial time, 

(Al) 

An optimal solution of X can be found through minimizing Jb subject to the constraints of 

(A2) 

81x · 
t < I 

8tl - 9i , l = 1, 2, .. . ,K, (A3) 

where (A2) is the prediction model of X , g! is the upper bound set for the Ith derivative of the 

ith element (xi) of X , and tb is the time period in which time derivatives are bounded. Jb can be 

minimized using penalty or augmented Lagrangian methods (e.g., Zou et al. 1993). 

Using a two-dimensional shallow-water model, Zou et al. (1993) showed that constraining the 

first-order temporal derivative of geopotential can effectively remove spurious gravity waves in a 

4D-Var numerical experiment for recovering large scale flows. They also found that treating the first-

order time derivative of geopotential as a penalty term in the cost function is suffucient to remove 
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spurious gravity waves. In this paper, (A3) is imposed as a weak constraint, and Jb is modified into 

K (iJiX)T EYX 
Jb = Jb + L L atz G1 atz , 

099b l=l 
(A4) 

where G1 is a weighting matrix for the lth order of time derivative 

(A5) 

where Oij is the Kroneckle symbole. 

For the case described in section 5b, the initial values of the true solution is generated using 

the above 4D-Var approach to the BD method. The observed initial geopotential field is produced 

with (21) and (22) except that kf = 3 and kf = 4 and the observed initial wind is assumed to be 

in geostrophic balance. An optimal initial condition is then obtained by minimizing Jb. The upper 

bounds of time derivatives are given as 

for wind, 
for geopotential, (A6) 

where U (=lOms- 1) and b.¢ (=300m2s-2 ) are the characteristic scales of wind and geopotential 

deviation from mean geopotential, respectively; and Tc is the minimum time scale set for the problem. 

In order to remove only those high-frequency oscillations with a period less than about two hours, Tc 

is set to 2h. The shallow-water model is integrated 3 time steps (i.e., tb = 3!::.t) . Results show that 

if K=l, oscillations with a period of one or two hours are heavily damped, but still visible. When 

K = 2, 1-2h oscillations are eliminated. This result is consistent with that obtained by Browning 

et al. (1980). We also found that the difference between the results obtained with K = 2 and those 

with K = 3 is negligible for t < 60h. The true solution for the case in section 5b is obtained with 

K=3. 
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