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ABSTRACT 

SATELLITE CONSTRAINTS ON SURFACE CONCENTRATIONS OF PARTICULATE 

MATTER 

Because of the increasing evidence of the widespread adverse effects on human health 

from exposure to poor air quality and the recommendations of the World Health Organization to 

significantly reduce PM2.5 in order to reduce these risks, better estimates of surface air quality 

globally are required. However, surface measurements useful for monitoring particulate exposure 

are scarce, especially in developing countries which often experience the worst air pollution. 

Therefore, other methods are necessary to augment estimates in regions with limited surface 

observations.   

The prospect of using satellite observations to infer surface air quality is attractive; 

however, it requires knowledge of the complicated relationship between satellite-observed 

aerosol optical depth (AOD) and surface concentrations. This dissertation explores how satellite 

observations can be used in conjunction with a chemical transport model (GEOS-Chem) to better 

understand this relationship. 

First, we investigate the seasonality in aerosols over the Southeastern United States using 

observations from several satellite instruments (MODIS, MISR, CALIOP) and surface network 

sites (IMPROVE, SEARCH, AERONET). We find that the strong summertime enhancement in 

satellite-observed aerosol optical depth (factor 2-3 enhancement over wintertime AOD) is not 

present in surface mass concentrations (25-55% summertime enhancement). Goldstein et al. 

[2009] previously attributed this seasonality in AOD to biogenic organic aerosol; however, 

surface observations show that organic aerosol only accounts for ~35% of PM2.5 mass and 

exhibits similar seasonality to total surface PM2.5. The GEOS-Chem model generally reproduces 

these surface aerosol measurements, but under represents the AOD seasonality observed by 
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satellites. We show that seasonal differences in water uptake cannot sufficiently explain the 

magnitude of AOD increase. As CALIOP profiles indicate the presence of additional aerosol in 

the lower troposphere (below 700 hPa), which cannot be explained by vertical mixing; we 

conclude that the discrepancy is due to a missing source of aerosols above the surface layer in 

summer.   

Next, we examine the usefulness of deriving premature mortality estimates from 

“satellite-based” PM2.5 concentrations. In particular, we examine how uncertainties in the model 

AOD-to-surface-PM2.5 relationship, satellite retrieved AOD, and particulars of the concentration-

response function can impact these mortality estimates. We find that the satellite-based estimates 

suggest premature mortality due to chronic PM2.5 exposure is 2-16% higher in the U.S. and 4-

13% lower in China compared to model-based estimates. However, this difference is 

overshadowed by the uncertainty in the methodology, which we quantify to be on order of 20% 

for the model-to- surface-PM2.5 relationship, 10% for the satellite AOD and 30-60% or greater 

with regards to the application of concentration response functions.  

Because there is a desire for acute exposure estimates, especially with regards to extreme 

events, we also examine how premature mortality due to acute exposure can be estimated from 

global models and satellite-observations. We find similar differences between model and 

satellite-based mortality estimates as with chronic exposure. However the range of uncertainty is 

much larger on these shorter timescales. This work suggests that although satellites can be useful 

for constraining model estimates of PM2.5, national mortality estimates from the two methods are 

not significantly different. In order to improve the efficacy of satellite-based PM2.5 mortality 

estimates, future work will need to focus on improving the model representation of the regional 
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AOD-to-surface-PM2.5 relationship, reducing biases in satellite-retrieved AOD and advancing 

our understanding of personal and population-level responses to PM2.5 exposure. 
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1 Introduction 

 

Atmospheric aerosols, or small particles suspended in the air (or other gas), are important 

for two main reasons: (1) they can impact climate through interactions with radiation and clouds 

and (2) they can have negative impacts on human health. Additionally, aerosols can degrade 

visibility and impact ecosystem health. Further discussion on the health impacts is given in 

Chapter 3, but because of the strong associations of premature mortality and exposure to 

particulate matter (PM, specifically those with radii of less than 2.5µm, PM2.5), the World Health 

Organization (WHO) guidelines suggest that annual (24-hour) concentrations should not exceed 

10 µgm
-3

 (25 µgm
-3

). In response to the harmful impacts on health, many countries have enacted 

their own regulations, although typically not as strict as the WHO guidelines.  

Particles can vary by size (orders of magnitude), shape, and composition. They have both 

natural and anthropogenic sources and can be directly emitted or formed in the atmosphere. 

Although anthropogenic emissions have increased dramatically over the last century, natural 

sources still dominate aerosol mass loading globally. Tropospheric aerosols typically have 

lifetimes on the order of days to a week [Roelofs, 2013; Tasić et al., 2006] and can be removed 

both through wet deposition (washout or forming ice/cloud condensation nuclei) and dry 

deposition (impaction or settling).   

Aerosols can absorb and/or scatter solar radiation (large particles can also interact with 

terrestrial radiation). The specifics of this process depend on particle size and optical properties, 

which are functions of the chemical composition and formation mechanism. The amount of 

radiation that is depleted by aerosols along a path can be described by the extinction coefficient 

(bext), which captures the combined effect of scattering and absorption and is given in Equation 

1.1.  

http://www.sciencedirect.com/science/article/pii/S1352231014002453#bib70
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                             (1.1) 

 

The aerosol extinction has units of inverse length and is a function of the wavelength ( ), particle 

size (D), number of particles (n), and the extinction efficiency (Qext, which is a function of the 

size parameter x and refractive index, m). The column integrated extinction (over depth z) is 

referred to as the aerosol optical depth (AOD, τ), which is a unitless measure given by Equation 

1.2. It is the most common parameter determined by satellite retrievals of aerosols.  

       
    

  
           (1.2) 

Because of the aforementioned impacts on human health, climate and the environment, 

monitoring of atmospheric aerosols has become more prevalent. Surface-based mass 

measurements are preferable for health studies, but for climate effects, we are also interested in 

aerosols throughout the atmospheric column. Because of the short lifetime of aerosols, to 

accurately represent the temporal and spatial variability requires dense surface coverage. 

Information on the vertical distribution can also be useful in regards to health impacts by 

indicating how and where pollutants are transported. Airborne measurements are extremely 

useful for this purpose, but are not a viable option for long-term widespread monitoring. 

Therefore, there has been increased reliance on exploiting aerosols’ interactions with radiation 

through remote sensing to provide information on atmospheric loading. Space-borne instruments 

in particular can provide global coverage on multi-year to multi-decadal timescales that can help 

us better understand climate impacts. Additionally, the potential to translate these observations 

into information on surface air quality can be beneficial for studying health impacts associated 

with particulate exposure in regions where surface-based measurements are not available. 
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However, because aerosol properties can vary dramatically (temporally, spatially, and 

vertically), it can be difficult to use a remotely sensed column-integrated observation as a proxy 

for surface air quality.  This issue of relating satellite optical measurements to surface mass 

concentrations is the main focus of this dissertation. One of the methods employed herein is to 

use a chemical transport model (CTM, GEOS-Chem) to help interpret these satellite observations 

by examining different processes and variables that can impact the mass loading and the 

simulated AOD. CTMs such as GEOS-Chem can represent the temporally and spatially varying 

physics and chemistry of the atmosphere; however, they rely on meteorological and emission 

inventory datasets as input. Therefore, the satellite observation can provide insight into missing 

sources or processes in the model. This method however requires a delicate balance to use the 

information from both the satellites and the model, while being cognizant of the limitations of 

both. 

This dissertation is divided into two topics that reflect the two-fold motivation for 

studying atmospheric aerosols, climate and air quality. In the first part, satellite observations are 

used in conjunction with a global model (GEOS-Chem) in order to investigate aerosol loading in 

the Southeastern United States, a region that has experienced cooling over recent decades, 

potentially driven by changes in atmospheric aerosol loading. In the second part, PM exposure 

and the associated premature mortality are estimated using model simulated and satellite-based 

PM2.5. The goal is to better understand how satellite observations can be used for these types of 

investigations and how to temper interpretation by their limitations. 
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2  Aerosol loading in the Southeastern United States: Reconciling surface and satellite 

observations 

 

Bonne Ford and Colette L. Heald 

This chapter is a published article in Atmospheric Chemistry and Physics, 13, 9269–9283, 2013.  

 

2.1 Introduction 

Portmann et al. [2009] suggest that increases in atmospheric aerosols of biogenic origin 

associated with regional reforestation may have caused cooling over the Southeastern United 

States (SEUS) in recent decades. This theory is supported by the strong winter to summer 

seasonality in satellite-derived aerosol optical depth (AOD) that spatially and temporally 

matches biogenic volatile organic compound (BVOC) emissions in the region [Goldstein et al., 

2009]. A potential source of this summertime aerosol could be enhanced production of secondary 

organic aerosols (SOA) formed from the oxidation of volatile organic compounds (VOC) emitted 

from vegetation in the presence of anthropogenic pollutants from urban areas [Volkamer et al., 

2006; Hoyle et al., 2011]. The SEUS could be particularly susceptible to such an effect [Weber et 

al., 2007], which could augment summertime aerosol loading in the region.  

The SEUS is densely forested and primarily a rural environment, although there are also 

several major urban centers in the region. Previous studies have shown that PM2.5 concentrations 

in the region are dominated by ammonium sulfate and organic matter (OM), which together 

account for 60-90% of the surface PM2.5 concentrations [Edgerton et al., 2005; Weber et al., 

2007; Hand et al., 2012; Zhang et al., 2012a]. Throughout most of the year, organic carbon is 

produced from wood combustion and diesel exhaust; secondary production dominates in the 

summertime [Zheng et al., 2002]. Lim and Turpin [2002] suggest that SOA generally makes up 

half of the measured organic carbon. Although urban centers often have higher PM2.5 
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concentrations and their emissions can have a regional impact; water soluble organic carbon 

concentrations, which are often used as a marker for SOA, appear to have a more widespread 

homogenous source over the region [Peltier et al., 2007].  

Several studies have also suggested that aerosol loading over the Southeastern U.S. has 

decreased over the last decade. Edgerton et al. [2005] note a 15-20% decrease in surface PM2.5 

mass in the region over the five-year period from 1999-2003, mainly attributable to declines in 

sulfate and organic matter. Using satellite measurements of AOD and surface PM2.5 

measurements over Georgia, Alston et al. [2012] also suggest that aerosol loading over the 

Southeastern U.S. declined from 2000-2009. Additionally, Leibensperger et al. [2012] suggest 

that anthropogenic aerosols are responsible for regional cooling over the Eastern U.S. over the 

last century, but that this radiative forcing has declined since 1990 mainly due to decreases in 

domestic emissions of sulfur dioxide. However, given limitations in both our measurement and 

understanding of BVOC emissions and SOA formation [Hallquist et al., 2012], it is unclear 

whether biogenic emissions, and the aerosols produced upon oxidation of these emissions, have 

also changed over this same time period. The evolution of these biogenic emissions is difficult to 

predict [e.g. Heald et al., 2009], representing a significant hurdle for future air quality 

management efforts and the prediction of climate forcing. 

 In this study, we use a suite of satellite and surface observations with a global model to 

explore the origin of the observed enhancement of summertime AOD in the SEUS. We aim to 

provide insight relevant to the Southeastern Atmosphere Study (SAS) campaign in 2013, whose 

primary objective is to investigate the impact of biogenic aerosol on regional climate and air 

quality.  
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2.2 Description of Observations and Model 

 

2.2.1 Satellite Observations 

For this study, we use a variety of satellite instruments and products to analyze aerosol 

and cloud distributions and variability along with fire activity.  

The Multi-imaging Spectroradiometer (MISR) instrument was launched into sun-

synchronous orbit aboard the EOS-Terra satellite in 1999 and provides global measurements of 

AOD with an equator crossing of ~10:30am local time [Diner et al., 2005; Martonchik et al., 

2009]. MISR employs nine different cameras to make multi-angle radiance measurements in four 

spectral bands (visible to near infrared). Here we use the version 22 Level 3 (gridded) global 

aerosol product which provides daily averaged AOD at 555 nm gridded and filter to remove any  

grid boxes wherein the standard deviation of the averaged  Level 2 (ungridded) AOD data are 

greater than 2.5 [Ridley et al., 2012].  

The Moderate Resolution Imaging Spectroradiometer (MODIS) measures radiances at 36 

wavelengths to characterize a variety of land and atmospheric properties. We use observations 

here from the MODIS instrument launched aboard the EOS-Aqua platform in 2002, which flies 

as part of the A-Train constellation, making simultaneous measurements at an equator crossing 

time of ~13:30 local time. AOD from MODIS is retrieved separately over the ocean and land to 

account for differences in surface properties [e.g. Remer et al., 2005]. While some studies have 

found a high AOD bias in the western U.S. due to the use of an estimated surface reflectance 

over the bright land surface [Drury et al., 2010], the SEUS has dense vegetation that provides 

good dark targets and greater confidence in the MODIS aerosol retrieval [Roy et al., 2007]. For 

this work, we use Collection 5, Level 3 daily measurements and combine land and ocean optical 

depth retrievals. We filter the MODIS data to include only grid boxes with cloud fractions below 
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0.5 and aerosol optical depths less than 1.5. We note that the magnitude of AOD observed by 

MODIS is sensitive to the cloud fraction filtering [Zhang et al., 2005]; however, the spatial 

distribution and relative increase from winter to summer remain the same when cloud fraction 

filtering is varied from 0.1 to 0.8. To investigate the impact of biomass burning on aerosol 

loading, we also examined MODIS fire counts. For this, we use V005 MODIS Aqua 1°x1° 

monthly gridded active fire counts, which have frequently been used as an estimate of biomass 

burning activity [Duncan et al., 2003; Zeng et al., 2008; Zhang et al., 2010].  

The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) was launched aboard 

the CALIPSO satellite in 2006 as part of the A-Train constellation. The instrument detects the 

intensity and orthogonally polarized components of backscattered radiation at two wavelengths, 

532 nm and 1064 nm [Winker, 2003]. Through extensive comparisons between CALIOP and the 

airborne NASA Langley Research Center High Spectral Resolution Lidar (HSRL), Rogers et al. 

[2011] have demonstrated the high accuracy of CALIOP’s 532 nm attenuated backscatter 

calibration, finding that total attenuated backscatter from the two instruments agrees within 2.7% 

± 2.1% at night and 2.9% ± 3.9% during the day. Other studies have also found good agreement 

between CALIOP and ground-based lidar measurements [e.g. Mamouri et al., 2009; Mona et al., 

2009].  

A vertical profile of aerosol extinction is estimated from the measurement of backscattered 

radiation, but relies on a lidar ratio for the conversion [Young and Vaughan, 2009]. This value 

can be derived from layer transmittance, or the aerosol classification scheme (which relies on the 

two wavelength backscatter measurements, approximate volume depolarization ratios, surface 

type, geographic location and layer altitude) can specify a lidar ratio based on the assumed 

aerosol type [Omar et al., 2009]. The six aerosol types used are defined from cluster analysis of 



8 

 

AERONET datasets [Omar et al., 2005]. While the CALIOP algorithm uses the mean lidar ratio 

for each aerosol type, the associated standard deviations suggest that the uncertainty in these 

values could be 30-50%. The correct classification of cloud and aerosols and selection of an 

appropriate lidar ratio is the largest source of the uncertainty in the retrieved extinction profile 

[Young et al., 2013].    

We use the Level 2 Version 3.01 5-km Aerosol Profiles and filter the CALIOP 

observations  using cloud aerosol distinction (CAD) scores, extinction uncertainty values, 

atmospheric volume descriptors, extinction quality control (QC) flags and total column optical 

depths. We make the approximation that all extinction observations with a corresponding 

atmospheric volume descriptor that indicates clear air have zero aerosol extinction. For 

comparisons of simulated extinction profiles with observed profiles, we match clear sky 

CALIOP profiles with the corresponding grid box and apply a simple detection limit to the 

model profile following Ford and Heald [2012]. For further information on the impact of our 

filtering and sampling methods, we refer the reader to Ford and Heald [2012]. Although the 

nighttime data have a greater signal-to-noise ratio (SNR) due to the lack of noise from 

background solar illumination [Hunt et al., 2009]; in Figure 2.1, we use daytime observations to 

coincide with the MODIS observations. For the rest of our analysis (Figure 2.5 and Figure 2.6), 

we use the more reliable nighttime profiles. Previous comparisons of seasonally averaged AOD 

from CALIOP show that daytime observations have only a slight low bias compared to the night 

observations in source and outflow regions, and a slight high bias over remote marine regions 

[Ford and Heald, 2012]. We re-grid the satellite AOD observations to a 2ºx2.5º resolution and 

calculate daily averages. In order to preserve the amount of data, we do not co-sample all the 
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data. However, co-sampling the data does not change the spatial distributions or the magnitude 

of seasonality reported in Section 3. 

For seasonal cloud fraction over the SEUS, we compare observations from MODIS Aqua 

and MODIS Terra with observations from the CloudSat Cloud Profiling Radar. In particular, we 

use the CloudSat Level 2 Radar-Lidar GEOPROF Product for profiles of cloud fraction and the 

Cloudsat Auxiliary Data to convert above ground altitude to pressure coordinates for December 

2008-2009. The GEOPROF product combines observations from both CALIOP, which is useful 

for observing thin cirrus clouds but is completely attenuated in deep clouds (optical depths >3), 

and the CloudSat Cloud Profiling Radar, which has a millimeter wavelength and is able to 

penetrate through most non-precipitating clouds [Stephens et al., 2002, 2008]. To compare with 

two-dimensional spatial distributions of cloud fractions observed by MODIS, we use the 

maximum cloud fraction from each profile observed by CloudSat/CALIOP.  

 

2.2.2 Ground-based Data 

We use observations from the global AERosol Robotic NETwork (AEORONET) of sun 

photometers in the SEUS [Holben et al., 1998]. AERONET sites record AOD and aerosol 

properties at several wavelengths in the visible and near IR, and have been used for validation 

studies of satellite measurements [e.g. Remer et al., 2002a]. For this work, we use hourly 

Version 2, Level 2 measurements from the Walker Branch and UA Huntsville sites for months in 

2008-2009. 

We also use surface measurements of PM2.5 concentrations from both the Interagency 

Monitoring of Protected Visual Environments (IMPROVE) and Southeastern Aerosol Research 

and Characterization (SEARCH) networks. Surface measurements of atmospheric composition 
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from the IMPROVE network are taken over a 24-hour period once in three days and are analyzed 

for the concentration of fine, total, and speciated particle mass [Malm et al., 1994]. Ammonium 

mass is determined by assuming that sulfate and nitrate are fully neutralized, which means that 

this is an upper bound for the dry mass of ammonium.  The IMPROVE network PM2.5 values 

used in this study are the reconstructed fine mass (RCFM) determined by adding the values of 

ammonium sulfate, ammonium nitrate, soil, sea salt, elemental carbon and organic matter. We 

use 1.8 as the organic carbon to organic matter multiplier following Hand et al. [2012]; though 

we note that this could be too high or too low at specific sites as Malm and Hand [2007] have 

given a range of 1.2 to 2.6.  

The SEARCH network is composed of eight sites consisting of pairs of urban and 

rural/suburban locations in four states (AL, FL, GA, MS) which all measure meteorological 

parameters, gas phase pollutants and major PM2.5 components (organic carbon, elemental carbon, 

sulfate, nitrate, ammonium, and trace metals) [Hansen et al., 2003; Edgerton et al., 2005, 2006]. 

These sites have both continuous and 24-hour integrated filter-based measurements of PM2.5, and 

the sample frequency is every 3 days, except for at the sites located in Atlanta and Birmingham 

which report daily. However, we sample the data from these two sites to the same measurement 

days as the other sites.  

SEARCH network PM2.5 concentrations are calculated as the sum of sulfate, nitrate, 

ammonium, organic matter (using 1.8[OC]), elemental carbon, and major metal oxides (MMO). 

MMO is the sum of aluminum, calcium, iron, potassium, silica, and titanium in the highest 

oxidation state and is almost equivalent to the soil concentrations reported by the IMPROVE 

network. However, the soil equation used for the IMPROVE network makes corrections to 

account for a lower oxidation state of iron, contributions from other elements, and potassium 
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from non-soil sources; so that [SOIL] = (2.20[Al] + 2.49[Si] + 1.63[Ca] + 2.42[Fe] + 1.94[Ti]) 

[Malm et al., 1994].  We also note that this standard calculation of PM2.5 for SEARCH sites does 

not include sea salt as included with the IMPROVE data (calculated as 1.8[Cl]), and chlorine has 

only been reported since 2009. To estimate species contributions to the total PM2.5 from the 

SEARCH sites, we use the assumptions for the IMPROVE measurements to include a modified 

soil concentration and a value for sea salt using chlorine measurements from 2009. We also use 

hourly TEOM measurements of total PM2.5 mass concentrations to characterize the diurnal 

variation.  

All eight of the SEARCH sites and several IMPROVE sites are co-located with 

nephelometers, which provide measurements of ambient relative humidity (RH). For 

comparisons of vertical profiles of RH, we also use ground based soundings from 8 NOAA sites 

(http://weather.uwyo.edu/upperair/sounding.html). Locations of these IMPROVE, SEARCH, and 

NOAA sounding sites are shown in Figure 2.1 and Figure 2.4.  

 

2.2.3 GEOS-Chem 

We use v9.01.01 of the GEOS-Chem chemical transport model, driven by GEOS-5 

meteorology, in the nested grid configuration over North America (0.5°x0.667° horizontal 

resolution). The GEOS-Chem aerosol simulation includes sulfate, nitrate, ammonium (Park et 

al., 2004), primary carbonaceous aerosols [Park et al., 2003], dust [Fairlie et al., 2007; Ridley et 

al., 2012], sea salt [Alexander et al., 2005], and secondary organic aerosols (SOA) [Henze et al., 

2008]. Aerosols and gases are removed by both wet and dry deposition in the model. The wet 

deposition scheme includes scavenging in convective updrafts, rainout and washout (Liu et al., 

2001), while dry deposition of gases and aerosols is dependent on surface characteristics and 
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meteorological conditions [Wesely, 1989; Wang et al., 1998]. The EPA NEI05 inventory  

inventory (scaled to be year-specific) is used for most anthropogenic and biofuel emissions over 

the USA [Hudman et al., 2007, 2008]; however, anthropogenic emissions of black and organic 

carbon follow Cooke et al. [1999] with the seasonality from Park et al. [2003]. Biogenic VOC 

emissions are calculated interactively following MEGAN [Guenther et al., 2006], while year-

specific biomass burning is specified according to the GFED2 inventory [van der Werf et al., 

2006]. We implement a fix for artificially low nighttime boundary layer heights in the GEOS-5 

product as well as a 25% reduction in the HNO3 concentrations, both of which improve 

comparisons with surface nitrate observations in the United States as described by Heald et al. 

[2012]. 

We calculate surface PM2.5 in the model by combining sulfate, nitrate, ammonium, 

elemental carbon, organic matter (organic carbon scaled by a factor of 1.8 to account for total 

organic matter, consistent with IMPROVE and SEARCH measurements), fine dust, and 

accumulation mode sea salt concentrations in the lowest grid box. For comparison with 

IMPROVE and SEARCH daily PM2.5 measurements, we compute 24 hour averages and sample 

the data to site locations and measurement days.  

Aerosol optical depth in the model is calculated for a specific wavelength using the 

extinction efficiency (Qext), the column mass loading (M), effective radius (reff), and particle 

mass density (ρ), such that the AOD (τ) is calculated by the following equation [Tegen and 

Lacis, 1996]: 

τ = 
      

      
  = αM         

 (2.1) 
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The aerosol mass extinction efficiency (α) is calculated with Mie code based on wavelength-

resolved optical and size parameters at 7 relative humidity values (0, 50%, 70%, 80%, 90%, 

95%, 99%) for various aerosol types from the Global Aerosol Data Set (GADS) [Koepke et al., 

1997], with recent updates based on Drury et al. [2010], Jaeglé et al. [2011], Ridley et al. [2012]. 

The extinction efficiency (α) for each grid box is calculated from local relative humidity 

conditions [Martin et al., 2003]. In order to determine whether the observed seasonality in AOD 

can be attributed to changes in mass loading or mass extinction efficiency, we explore the 

sensitivity of the mass extinction efficiency to the observed seasonal changes in relative 

humidity (Section 3.2).  For this purpose, we use the properties of sulfate aerosol (Table 2.1), 

which exhibits the strongest relationship with relative humidity (i.e. the largest hygroscopicity).   

Table 2.1 Mass extinction efficiency values used in GEOS-Chem for sulfate 

aerosols at given relative humidity values. 

Relative Humidity 

(%) 

Mass Extinction Efficiency 

(m
2
g

-1
) 

0 2.24 

50 6.12 

70 8.90 

80 11.90 

90 19.09 

95 32.75 

99 104 

 

2.3 Results 

 

2.3.1 Seasonality in AOD and Surface Concentrations 

We mimic the seasonal AOD comparisons of Goldstein et al. [2009] in Figure 2.1 for 

2007-2009 using observations from MODIS Aqua, MISR, and CALIOP. Figure 2.1 also shows 

the seasonal mean AOD measured by ground-based sun photometers at two AERONET sites in 

the SEUS.  
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Figure 2.1 Seasonally averaged total column AOD for winter (DJF, top row) and 

summer (JJA, middle row) for December 2006-August 2009 as observed by 

MODIS (column 1), MISR (column 2), and CALIOP (daytime, column 3) gridded 

to 2x2.5° and compared to simulated AOD from GEOS-Chem (column 4). 

Concentrations of surface PM2.5 simulated by GEOS-Chem are overlaid with 

concentrations measured at IMPROVE and SEARCH network sites (circles) in 

column 5. Bottom row shows the relative enhancement of summer over winter for 

observed and simulated AOD and surface concentrations. Average AOD observed 

at the University of Alabama, Huntsville and Walker Branch AERONET sites for 

2008-2009 is overlaid (circles) on the MISR maps. 

 

Figure 2.1 shows that observed summertime AOD is consistently a factor of 2-3 higher 

than wintertime values in the SEUS. This is consistent with Alston et al. [2012] who find a 

threefold increase in summertime AOD over wintertime, although they use a finer resolution 

product and therefore show greater spatial variability. The magnitude of both the seasonal mean 

and the relative enhancement differs among instruments as shown in the figure, but is spatially 
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consistent. Similar summertime enhancements are reported at AERONET sites in 2008-2009. 

Furthermore, AOD measurements at the two AERONET sites show little variability during 

daylight hours (<20% in summertime) and suggest that this enhancement is consistent 

throughout the day. Four independent observations, made with four different measurement 

techniques all indicate a large regional enhancement in summertime AOD.  

We contrast these observations with the GEOS-Chem chemical transport model 

simulation. Simulated summertime enhancements in AOD through the Eastern U.S. range from 

15 to 40%. While the model does show a summertime maximum in AOD over the Ohio River 

Valley and northeastern U.S. associated with increases in sulfate via SO2 oxidation [Chin et al., 

2000] and stagnation events, it does not reproduce the strong observed seasonality in column 

AOD over the SEUS.  

 The fourth column of Figure 2.1 shows the GEOS-Chem simulated surface 

concentrations of PM2.5 overlaid with observations from the SEARCH and IMPROVE networks. 

Comparison with surface observations indicates that GEOS-Chem generally captures the spatial, 

seasonal, and diurnal (Figure 2.2) variation of PM2.5 in the Eastern U.S., as will be discussed in 

further sections and consistent with previous studies [e.g. Heald et al., 2012; Leibensperger et 

al., 2012]. However, Figure 2.1 shows that the measured surface concentrations exhibit only a 

fraction of the seasonality in the column AOD observed by the satellite instruments, suggesting 

that changes in surface concentrations do not dictate the seasonality observed in AOD. This is in 

agreement with Alston et al. [2012], who show that the summertime enhancement in surface 

PM2.5 in Georgia is considerably less than the AOD enhancement over the region. This presents 

an intriguing disconnect between surface and column measurements of aerosol loading in the 

SEUS.  
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Figure 2.2 Diurnal cycles of monthly mean PM2.5 concentrations as simulated by 

GEOS-Chem (a) and as measured by TEOM filters at SEARCH network sites (b), 

color coded by month in 2009 over which the averaging was done. 

 

 In Figure 2.3, we explore the chemical composition of surface PM2.5 over the SEUS in 

winter and in summer. Overall, the model captures the chemical speciation and the seasonality of 

IMPROVE surface concentrations in the region (Figure 2.3a), but somewhat underestimates the 

observed summertime enhancement (mean PM2.5 concentration is ~55% greater in the 

summertime). The observed surface seasonality is mainly due to inorganic species. Both 

observed and simulated nitrate concentrations are higher in the wintertime, consistent with more 

favorable formation of ammonium nitrate at cooler temperatures, while the increase in observed 

summertime sulfate is the result of enhanced SO2 oxidation [Chin et al., 2000]. The model 

simulation underestimates the doubling in sulfate concentrations from winter to summer seen at 

IMPROVE sites (specifically the Appalachian sites), but does capture the summertime 

enhancement associated with dust transport from North Africa [Ridley et al., 2012].  
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Figure 2.3 Mean seasonally averaged surface mass concentrations of PM2.5 (a) 

observed at the 13 IMPROVE network sites in the SEUS and as simulated by 

GEOS-Chem (sampled to the IMPROVE sampling days and corresponding model 

grid boxes). (b) Same as (a) for SEARCH network sites. All data are for 

December 2006-2009, except for SEARCH sea salt, which only uses data from 

2009. 

 

Observed OM at IMPROVE sites in the SEUS is consistently ~2-4µgm
-3

, making up less 

than 35% of mean observed PM2.5, consistent with the analysis of Hand et al. [2012].  Zhang et 

al. [2012b] find slightly higher OM/PM2.5 fractions (40-50%) in urban areas in the SEUS; 

however, when biomass burning events are removed, the fraction of water soluble OM/PM2.5 that 

they observe is reduced to ~25%. GEOS-Chem under predicts OM concentrations by about a 

factor of two, consistent with other regions of the world [Heald et al., 2011]. However, the 

magnitude of OM seasonality is similar between the observations and model with very little 

variation in OM throughout the year (a 35% increase in summer over winter), in agreement with 

values reported by Zhang et al. [2012b]. The seasonality in OM (and consequently PM2.5) might 

be enhanced if we used a varying OM/OC ratio, as studies have shown that the ratio is greater in 

the summer than in the winter [e.g. Simon et al., 2011]. However, the ratio would be applied to 

both the model simulation and observations; and, as GEOS-Chem is already able to simulate the 
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OM seasonality, would therefore not explain the model discrepancy. We also compare these OM 

concentrations and seasonality with IMPROVE sites in the Northeastern U.S., where there is less 

of an increase in summertime AOD, and find similar values at the surface.  

Observations from the SEARCH network show less seasonal variability in PM2.5 than the 

IMPROVE sites, as shown in Figure 2.3b, which also highlights the differences between rural 

and urban sites. As expected, PM2.5 concentrations are greater at urban sites and in particular, 

sulfate and elemental carbon concentrations are higher. Additionally, although GEOS-Chem is 

able to simulate dust concentrations and seasonality at IMPROVE sites; it slightly overpredicts 

summertime dust at SEARCH sites, especially rural sites. There are also higher concentrations 

and more seasonality in the OM at urban sites, consistent with Yan et al. [2009]. Overall, the OM 

fraction at these SEARCH sites is greater than observed at the IMPROVE sites (Figure 2.3a). 

Thus the model underestimate of OM is also greater.  However, even more so than the 

IMPROVE comparisons, both the SEARCH observations and the simulation of concentrations at 

these sites, show very little seasonal variation in the OM at both rural and urban sites. 

Additionally, there is little diurnal variability in PM2.5 (Figure 2.2, relative standard deviation of 

~10% throughout the year), which confirms that the seasonality in surface concentrations is 

consistent throughout the day and that using a 24-hour average PM2.5 concentration rather than a 

one-hour average PM2.5 concentration sampled to the satellite overpass times does not bias the 

comparison with satellite observations provided at two snapshots.  

We conclude that the seasonality in satellite AOD over the SEUS does not match the 

surface concentrations, or more specifically, organic aerosol at the surface. This weaker 

correlation between column AOD and PM2.5 (R=0.2-0.31, for daily matched pairs across the 

region) in the SEUS contrasts other regions where previous studies have found strong correlation 
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between satellite-observed column AOD and surface concentrations throughout the year 

(R=0.39-0.9, e.g. Engel-Cox et al., 2004; Al-Saadi et al., 2005; van Donkelaar et al., 2006, 2010; 

Paciorek and Liu, 2009; Zhang et al., 2009a). These previous studies note that discrepancies 

often arise in comparing surface concentrations and column AOD due to inaccurate assumptions 

or lack of information about the hygroscopicity of the aerosols, the composition, size 

distributions, the vertical distribution of aerosols, the presence of transported aerosols above the 

surface layer, and the meteorological environment, especially with regards to clouds. 

Correlations are highest when the aerosol is near the surface, uniformly mixed, relative humidity 

is moderate, and coarse mode aerosol fraction is small [Al-Saadi et al., 2005; van Donkelaar et 

al., 2006]. Therefore, in the following sections we investigate several of these factors in an 

attempt to determine what, other than surface concentrations, could be driving the seasonality in 

AOD. 

 

2.3.2 Effect of Relative Humidity 

 Changes in aerosol water uptake could play a role in the seasonality of AOD in the 

SEUS. This is briefly examined by Goldstein et al. [2009], who find that the AOD and relative 

humidity (RH) at a single AERONET site (Walker Branch) are only weakly correlated across 

seasons. We investigate this further at several locations to better represent the effect of RH on a 

broader region of the SEUS. In addition, given that water uptake is already included in the 

simulation of AOD, we explore whether there is any evidence of a bias in RH in the GEOS-5 

meteorology which could degrade the model simulation of AOD.  

 Hourly surface RH values used in GEOS-Chem are highly correlated with observations 

from the IMPROVE and SEARCH network nephelometer sites (R=0.6-0.83, across sites and 
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seasons) with a mean bias of less than 5%. Correlations are highest during the morning and 

afternoon hours and degrade during the nighttime and at coastal sites (where GEOS-Chem has a 

low RH bias). Figure 2.4a demonstrates that there is little seasonality in mean surface RH in the 

SEUS, and that the model reproduces both the magnitude and consistency of RH year-round. 

Monthly RH values averaged over all the sites vary less than 10% throughout the year at the 

13:30 satellite overpass and less than 20% when all hours are used to construct monthly means.  

 

Figure 2.4 (a) Average 2009 monthly surface RH recorded at IMPROVE and 

SEARCH network nephelometer sites (black) using 24 hour averages (dashed 

line) and sampled to the afternoon overpass time (solid line). These are compared 

with values used in GEOS-Chem (red lines) sampled to observational site 

locations and converted to mass extinction efficiency values (for sulfate aerosols, 

blue lines).  (b) Fractional increase in surface mass extinction efficiency of 

summer over winter simulated with GEOS-Chem and overlaid with values 

calculated from surface RH observed at IMPROVE nephelometer (blue circles), 

SEARCH (green circles) and sounding (black circles) sites for 2009. GEOS-

Chem, SEARCH and IMPROVE data are sampled for the afternoon satellite 

overpass time (13-15LT) and the sounding data are an average from 0000 and 

1200 UTC. (c) mean profile of RH measured at the 8 sounding sites (black lines) 

at 0000 and 1200 UTC and the corresponding RH in GEOS-Chem (red line) 

sampled to the site locations and times for winter (dashed) and summer (solid) 

2009. 

 

 In order to examine the impact of these modest seasonal differences in RH on AOD, we 

use the optical properties applied to aerosols in GEOS-Chem to convert these differences in RH 

to differences in aerosol mass extinction efficiency. For simplicity, we use sulfate aerosol 
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properties, which have the highest hygroscopicity (other than NaCl which is not a significant 

contributor to aerosol mass in the region) [Petters and Kreidenweis, 2007], and would be the 

most affected by changes in RH. At the surface, seasonal differences in mass extinction 

efficiency due to water uptake account for less than a 25% increase in aerosol extinction from 

winter to summer over the SEUS (Figure 2.4b). 

 The seasonality in the vertical profile of RH measured at the 8 NOAA sounding sites in 

the region is larger, with about a 20% absolute increase in mean RH from winter to summer 

throughout the troposphere (Figure 2.4c). However, the seasonal difference in aerosol extinction 

resulting from water uptake (40% when integrated over the column assuming sulfate aerosol) can 

account for only a fraction of the 100-300% difference in AOD observed by the satellite 

instruments over the SEUS (Figure 2.1). While this increase in summertime RH is generally 

captured by the model (and thus reflected in the simulated AOD seasonality), RH values in the 

lower troposphere (900-700hPa) are slightly underestimated in summertime (<5%). This 

translates to a 5-12% underestimate in sulfate extinction efficiency in GEOS-Chem at these 

altitudes; however, the effect is likely to be more modest for the mix of ambient aerosol with 

lower hygroscopicity. Therefore, aerosol water uptake cannot explain the observed seasonality in 

AOD, nor can biases in RH explain the model underestimate of this seasonality. 

 Although we only show the sensitivity of the mass extinction efficiency to RH here, we 

also note that changes to the aerosol size distribution not accounted for in the model could 

impact the observed AOD. Heald et al. [2011] use Mie code to estimate that uncertainty in mass 

extinction efficiency associated with the size of OM (associated with a doubling or halving of the 

assumed mean geometric radius and varying the geometric standard deviation from values of 1.4 

to 1.8) is ~50%. Therefore, a seasonal shift towards larger particles in summertime could account 
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for some of the model-measurement discrepancy. However, measurements of the geometric 

mean diameters for ambient SOA dominated aerosol and fresh smoke are similar [Levin et al., 

2009, 2010]. Additionally, the fraction of total AOD accounted for by organics in the model is 

on average less than 15% in the summertime, and substantial seasonal changes in the size of 

inorganic aerosol are less likely [e.g. Stanier et al., 2004; Zhang et al., 2008], so it is unlikely 

that shifts in the fine aerosol size distribution are a dominant source of model error.  

 

2.3.3 The vertical profile of aerosol 

 The lack of strong seasonality in surface aerosol concentrations and aerosol water content 

throughout the vertical column suggests that summertime increases in AOD over the SEUS must 

be associated with an increase in aerosol mass above the surface layer that is not accounted for in 

GEOS-Chem, potentially consistent with the hypothesis of Goldstein et al. [2009] which 

suggests a missing source of aerosols aloft.  

Winter and summer vertical distributions of all the nighttime aerosol extinction values 

reported by CALIOP for three years (2007-2009) over the SEUS are shown in Figure 2.5. 

Separating profiles based on aerosol type indicates broadly what sources are likely to contribute 

to the mass loading in each season, although the CALIOP algorithm is based on physical 

properties and does not distinguish aerosol by chemical composition.  

Figure 2.5 shows that there are larger aerosol extinction observations at higher altitudes 

during the summer months. There is little seasonal difference in GEOS-5 nighttime boundary 

layer height (coincident with CALIOP measurements); but the deeper daytime mixed layers in 

summer may vertically distribute aerosol to higher altitudes. We investigate the impact of the 

mixing heights on the vertical profile in the next section. 
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In the final panels of Figure 2.5, we compare the average nighttime profiles of aerosol 

extinction observed over the region by CALIOP with the average profile simulated by GEOS-

Chem. First, these profiles confirm that the mean observed extinction profile over the SEUS is 

higher in the summer than in winter. The integrated mean AOD from these profiles increases 

more than 3-fold from winter to summer (0.07 to 0.25), consistent with the picture presented in 

Figure 2.1. Second, these profiles demonstrate that the model underestimate of summertime 

AOD shown in Figure 2.1 is associated with above-surface aerosols.  The simulated and 

observed profile shapes are similar in the wintertime, but the model greatly under predicts 

aerosol extinction above the surface layer in summer. While there might be a bias in the 

CALIOP measurements near the surface due to interference of clouds, lower sensitivity, and/or 

inclusion of clear air retrievals below aerosol layers [Winker et al., 2013], surface extinction 

values are  generally reproduced by the model throughout the year, consistent with our PM2.5 

surface comparisons in Figures 2.1 and 2.3. Additionally, the retrieval sensitivity of CALIOP 

increases with altitude [Winker et al., 2009], and Sheridan et al. [2012] suggest that if there is a 

bias in the free troposphere, it is a low bias (particularly under cloud-free conditions, as shown 

here), which suggests that the discrepancy in extinction above the surface layer between the 

simulated and measured profile is unlikely to be due to systematic observational errors.     

Mean summertime AOD calculated by integrating the model profile in Figure 2.5 is 0.12, 

less than half the mean CALIOP values. While these profiles do not suggest that there is a 

distinct lofted layer of aerosol, they do indicate that the seasonality in AOD is primarily 

associated with an increase in aerosol mass above the surface layer, in the lower troposphere 

(below 700hPa), which is not captured by the GEOS-Chem model. This discrepancy is 

inconsistent with Heald et al. [2011] who show that the GEOS-Chem model generally captures 
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the profiles of sulfate and organic aerosol in the Northern Hemisphere, even when concentrations 

are significantly underestimated.   

 

 

Figure 2.5 Density plots of all nighttime aerosol extinction values observed by 

CALIOP for winter and summer seasons of 2007-2009 over the SEUS (30.5°N to 

37.5°N and 90°W to 81.5°W), classified by aerosol type. The color denotes the 

number of observations with given extinction values at a given altitude. There are 

~ 70,000 extinction values for the winter and ~200,000 for the summer from 

December 2006-2009, including values below the detection limit. Panels 1 and 2 

show observations with all aerosol types noted, and panels 3-10 separate values 

based on aerosol type with seasonally averaged boundary layer heights from 

GEOS-Chem for nighttime (solid black horizontal lines) and daytime (dashed 

lines) overlaid. Bottom right panels show average aerosol extinction profiles as 

observed by CALIOP (black) and the corresponding profiles simulated by GEOS-

Chem and sampled to the CALIOP overpasses (red) for the two seasons applying 

detection limits as in Ford and Heald [2012]. 
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We distinguish these CALIOP profiles by the observed aerosol types to understand the 

source of these aerosols, and Figure 2.5 shows that the majority of aerosols observed in the 

SEUS are classified as polluted dust, polluted continental, and smoke. The maximum in dust 

above the boundary layer in the winter is likely due to dust transport from the western U.S. while 

increases in the summer are associated with transport of African dust.  

 

2.3.4 Effect of planetary boundary layer height 

One possible explanation of a large seasonal enhancement in AOD with modest change 

to surface PM2.5 is a summertime aerosol source with a coincident deepening of the mixed layer. 

As shown in Figure 2.5, this deepening of the daytime planetary boundary layer (PBL) is 

simulated in the GEOS-Chem model, with an increase of more than 60 hPa from winter to 

summer on average. The CALIOP average summer profile suggests that the higher 

concentrations above the surface are relatively uniform over a deep layer (up to 800 hPa), which 

could indicate that the GEOS-Chem simulation does not mix pollutants through a deep enough 

layer of the atmosphere, although we note that this altitude is similar to the mean summertime 

PBL depths used in the model (shown in Figure 2.5). If the PBL heights used in the model are 

too shallow, pollutants could be trapped and more easily removed before being mixed upward.  

 The diurnal cycle of surface concentrations can provide some information about vertical 

mixing. For relatively constant emissions, surface concentrations generally increase at night with 

a shallow boundary layer and then as the PBL height grows throughout the day, pollutants are 

diluted and surface concentrations decline.  Thus, a shallow bias in summertime afternoon mixed 

layer would reduce the diurnal variability in simulated PM2.5 concentrations. However, the 

diurnal cycle of simulated and observed PM2.5 at SEARCH sites are relatively similar (Figure 

2.2), with observations showing slightly more consistency throughout the day, especially in the 
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summer months. The observations shown here are consistent with Weber et al. [2003] who show 

that on average PM2.5 concentrations in Atlanta during August generally vary less than 20% 

through the day due to sulfate peaking in the afternoon while OM, EC, and nitrate tend to peak in 

the early morning. Thus, while the contribution of the timing of different sources and mixing 

depths to the diurnal profile can be a challenge to untangle, the ability of the model to capture a 

relatively flat profile in surface PM2.5, as well as the overall seasonality and composition of that 

PM2.5 (Figure 2.3), provides evidence of a relatively unbiased simulation of mixing depth. 

 It remains a challenge to validate the PBL heights used in the model simulation as there 

are several different approaches used to estimate the height of the PBL, all of which can produce 

differing results [e.g. Berman et al., 1997]. As shown in Marsik et al. [1995], various 

measurement systems can at some times differ on the height of the PBL over Atlanta by almost 

1km. Therefore, we examine the sensitivity of the vertical profile and summertime AOD to 

changes in mixing depth in model simulations. We performed four simulations for summer 2009, 

in which (1) PBL heights are raised by 100 hPa at all hours of the day, (2) PBL heights are raised 

by 100 hPa only during the daytime hours of 7:00 AM and 7:00 PM LST, (3) SO2 emissions in 

North America are doubled, and (4) SO2 emissions are doubled and the daytime PBL heights 

were raised.  The impact of these simulations on the average regional profile is shown in Figure 

2.6. 

 Raising the PBL for all hours of the day increases extinction values throughout most of 

the profile, particularly at the top of the PBL, as concentrations are mixed throughout a deeper 

layer. However, values near the surface decrease as aerosols are mixed away from the surface 

into the deeper PBL, particularly at night. In the simulation where the PBL was only raised 

during the day, aerosol extinction values near the surface are similar to the original profile, but 
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greater above the nighttime PBL, in the daytime residual layer. However, both of these 

simulations continue to substantially under predict the extinction values compared to CALIOP 

(AOD increases by only 0.02 over the region), suggesting that a potential bias in the PBL height 

would not be enough to explain the discrepancy in AOD.  

  

 

Figure 2.6 Aerosol extinction profiles over the SEUS for JJA 2009 as observed 

by CALIOP (black) and as simulated by GEOS-Chem with original PBL heights 

(red), PBL heights raised by 100 hPa at all hours (blue), raised by 100 hPa during 

daytime hours (green), doubled SO2 emissions (orange), and doubled SO2 

emissions and PBL heights raised during daytime hours (purple). Average PBL 

heights are shown in red for original simulation and blue for simulations with 

raised PBL heights, with dashed lines for nighttime and dotted lines for daytime. 
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 Finally, we verify whether the aerosol profile measured by CALIOP is consistent with an 

increase in existing sources. We test increasing the sources of sulfate, which would be consistent 

with both the surface underestimate shown in Figure 2.3, as well as the possibility of formation 

aloft via in-cloud processing. The profiles in Figure 2.6 demonstrate that doubling SO2 emissions 

effectively scales up the entire simulated profile, but in doing so, significantly degrades the 

comparison with both CALIOP and the speciated surface concentrations (not shown). 

Simultaneously increasing the daytime PBL heights produces virtually the same profile, but 

produces an overestimate of observed aerosol extinction from 800 to 700 hPa. We therefore 

conclude that an increase in mixing depth, with or without a coincident increase in an existing 

aerosol source, cannot explain the observed CALIOP profile. This implies that the underestimate 

in aerosol mass aloft is due to an additional above-surface source. Using the average 

summertime mass extinction efficiency and the difference between the satellite estimated and 

simulated extinction profile, we roughly estimate that this additional source is equivalent to three 

times the current sulfate mass (above the surface only). 

 

2.4 Discussion 

Satellite observations show a strong summertime enhancement in AOD over the SEUS, 

previously linked with biogenic activity, which is not observed in surface PM2.5 concentrations. 

By determining here that there is little agreement between surface concentrations and column 

AOD in the Southeastern U.S., we surmise that changes in surface mass concentrations do not 

control the seasonality of AOD in the region. Furthermore, the GEOS-Chem model generally 

captures observed surface concentrations (with the exception of a modest underestimate of 

summertime sulfate, and year-round underestimate of OA), but it does not reproduce the 
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observed AOD seasonality, indicating an underestimation of aerosol extinction above the surface 

layer in the model. We show that neither a bias in model RH (and hence aerosol water uptake) 

nor summertime mixing depths can explain this discrepancy. Zhang et al. [2012a] show that 

GEOS-Chem reproduces wet deposition measurements in the U.S. This suggests that this 

discrepancy is also not due to a bias in aerosol removal, but rather a missing source of aerosol 

above the surface layer. 

 CALIOP measurements provide additional evidence of aerosol production above the 

surface; however, our interpretation is limited by the lack of aerosol chemical speciation. Ervens 

et al. [2011] suggest that in regions where there are large biogenic VOC and anthropogenic 

emissions, high RH, and cloudiness, yields from aqueous formation of SOA can be significant. 

Carlton et al. [2008] show that including SOA formation through cloud processing modestly 

improves model simulations of airborne OA observations in the Northeastern U.S. Sorooshian et 

al. [2007] also observe elevated organic aerosol layers above clouds during field campaigns over 

Texas and California due to the formation of organic acids from aqueous phase reactions which 

subsequently undergo droplet evaporation.  Cloudy conditions, as well as enhanced oxidant 

concentrations in summertime, could also augment sulfate production, which we show is 

moderately underestimated at the surface in summertime in our simulation. It has also been 

suggested that including reactions of stabilized Criegee intermediates with sulfur dioxide in 

models can produce a 10-25% increase in sulfuric acid (H2SO4) annually, and a 100% increase in 

July [Pierce et al., 2013].  

 GEOS-5 meteorology does show higher cloud fractions over the SEUS in the summer 

compared to the winter, which is corroborated by observations from MODIS Aqua and Terra 

(Figure 2.7). If clouds are indeed serving as a medium for chemical production, this could 
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explain the increased aerosol loading above the surface layer that is seen in the cloud-free 

CALIOP profiles shown here. However, observations from the CloudSat Cloud Profiling Radar 

suggest that mid to low troposphere cloud cover is highest in the region in winter (Figure 2.7).  

 

Figure 2.7 Differences (summer-winter) between average cloud fraction for 

2006-2009 from (a) GEOS-5 sampled to afternoon overpass, (b) observed by 

MODIS onboard Terra and (c) Aqua, and (d) observed by CloudSat/CALIOP. 

Black outline shows region for profiles of average cloud fraction over the SEUS 

for winter (black) and summer (red) observed by CloudSat/CALIOP in 2009 

shown in panel (e). 

 

Furthermore, we see no evidence of a correlation in daily cloud optical depth and aerosol 

extinction reported by CloudSat and CALIOP over the region. These conflicting 

characterizations of cloud seasonality, and a lack of correspondence between cloud cover and 

aerosol loading, suggest that cloud liquid water may not be the limiting factor in summertime 
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aerosol production, but rather that the oxidation of biogenic VOCs whose emission peaks in 

summertime, is required to explain the observed aerosol enhancement above the surface layer.  

It is vital, therefore, to have in situ vertical measurements of aerosol composition in order to fully 

investigate this hypothesis of increased aqueous aerosol production aloft and determine whether 

it is organic or inorganic in nature. The upcoming SAS campaign aircraft data will be critical for 

resolving this issue and determining the aerosol characteristics in the SEUS, thus enabling a 

better prediction of how aerosol in this region is likely to evolve. 
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3 Exposure and Premature Mortality Estimates from Model and Satellite-based PM2.5 

 

3.1 Introduction 

 

3.1.1 PM2.5 and Health 

Air pollution is the leading environmentally-related cause of premature mortality 

worldwide [oecd.org]. The World Health Organization (WHO) estimated that outdoor air 

pollution caused 3.7 million premature deaths in 2012 and indoor air pollution was responsible 

for about 4.3 million premature deaths. Many epidemiological studies have shown that chronic 

exposure to particulate matter is associated with an increase in the risk of mortality from 

respiratory diseases, lung cancer, and cardiovascular disease, with the underlying assumption 

that a causal relationship exists between PM and health outcomes  [Dockery et al., 1993; Jerrett 

et al., 2005; Krewski et al., 2000; Pope et al., 1995; 2002; 2004; 2006]. This has been shown 

through single and multi-population time series analyses, long-term cohort studies, and meta-

analyses, which combine data from several other studies. The range of the effects found in some 

of these studies is given in Figure 3.1 (not an exhaustive list), which shows the relative risk (RR) 

of mortality from different diseases due to a 10µg/m
3
 increase in PM2.5. The RR is a ratio of the 

probability of mortality occurring in a population exposed to a certain level of pollution to the 

probability occurring in a population that is not exposed. Values greater than one suggest an 

increased risk, while a value of one would suggest no change in risk.  

While it seems reasonable that long-term exposure to high pollutant concentrations could 

have negative impacts on human health and lung and heart function, it may seem implausible 

that short-term exposure (on the scale of 1-2 days) would lead to a statistically significant 

increase in a population’s mortality. One might instead expect that the physiological effects 
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would be limited or temporary, such as asthma attacks [Nastos et al., 2010] and noted increases 

in same day hospital admissions [Schwartz, 1999; Wellenius et al., 2005; Dominici et al., 2006; 

Bell et al., 2008, 2009]. However, studies have also shown increased risk of mortality from 

cardiovascular disease [COMEAP, 2006; Ostro et al., 2006], ischemic heart disease [Schwartz et 

al., 1996; Klemm and Mason, 2003], and respiratory disease [Klemm and Mason, 2003; Pope 

and Dockery, 2006] associated with acute exposure; although the increased risk of mortality due 

to short-term exposure is usually much less than for long-term exposure (Figure 3.2, not 

exhaustive). Generally, the highest risks are for vulnerable populations, i.e. children, the elderly, 

people without access to proper healthcare, and people with pre-existing conditions [Sacks et al., 

2011].  

To estimate the burden of mortality associated with exposure to particulate matter requires 

information on atmospheric concentrations and health impacts on both daily and annual 

timescales.  It is beyond the scope of this study to assess the short-term and long-term health 

impacts of air pollution on a person-level, using specific hospital and mortality information and 

personal air quality monitoring. Instead, here we use “satellite-based” PM2.5 for attributing health 

outcomes in the U.S. and China. These satellite-based estimates offer much needed observational 

constraints for population-level exposure estimates in regions where surface air quality 

monitoring is limited [Crouse et al., 2012; Hystad et al., 2012; Evans et al., 2013]. We also 

compare our calculations of the burden of premature mortality using relative risk ratios derived 

from short-term events and long-term average concentrations. 
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Figure 3.1 Relative risk ratios from select previous studies for mortality due to chronic exposure to PM2.5 (given as per 10µgm
-3

 

increase) colored by cause of death. 
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Figure 3.2 Relative risk ratios from select previous studies for mortality due to 

acute exposure to PM2.5 (given as per 10µgm
-3

 increase) colored by cause of 

death. 

 

3.1.2 Scarcity of daily long-term surface measurements 

 One of the main obstacles in attributing health impacts of PM2.5 is determining personal 

exposure. Jerrett et al. [2005] suggest personal monitors would be the optimal method, but point 

out that the financial costs and time-intensiveness limit widespread use. Many studies have 

instead relied on fixed-site monitors within a certain radius to estimate exposure. However, these 
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monitoring networks are generally located in urban regions (Figure 3.3) and provide no 

information on concentration gradients between sites. Fixed-site monitoring networks can also be 

costly to operate and maintain, and the sampling time period for many of these monitors is often 

only every third or sixth day. Due to the high spatial and temporal variability in aerosol 

concentrations, this makes it difficult to determine exposure and widespread health impacts.  In 

an environmental justice study by Miranda et al. [2011], the authors highlight that less than 20% 

of counties in the U.S. currently have daily PM2.5 measurements, and data availability is often 

skewed away from populations that are potentially at greater risks for negative health effects due 

to particulate exposure (elderly and people without sufficient health care). Worldwide, 

monitoring networks are even scarcer with many developing countries lacking any long-term 

measurement.  

 

Figure 3.3 IMPROVE (purple) and AQS (blue) PM2.5 monitoring sites in the U.S. 

active during 2004-2011. 

 

3.1.3 Potential to Use Remote Sensing of Aerosols 

Satellites can provide a consistent measure of atmospheric constituents with near-global 

coverage and provide information on gradients between fixed-site monitors. However, these 

instruments measure the entire atmospheric column and therefore require additional information 
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in order to be useful for diagnosing surface air quality. “Satellite observations of aerosols” refers 

to remote measurements of aerosol optical depth (AOD), or the integrated vertical extinction. 

The relationship between extinction and mass depends on more than simply the amount of 

aerosols in the atmospheric column.  

AOD (τ) can be calculated for a specific wavelength using the extinction efficiency 

(Qext), the column mass loading (M), effective radius (reff), and particle mass density (ρ) in the 

following equation [Tegen and Lacis, 1996]: 

  
      

      
 =Mα         (3.1) 

These variables depend on the aerosol type, aerosol size, and water uptake, and are typically 

calculated for spherical particles using Mie scattering code. Yet for air quality and exposure 

assessments, we are most interested in the amount of aerosol mass at the surface. Therefore, in 

order to use AOD as a measure for changes in the mass concentration at the surface, we need to 

properly account for the vertical distribution and aerosol optical and physical properties which 

can be highly variable.  

 

3.1.3.1 Empirical relationships of AOD and PM2.5 

There have been many previous attempts to translate satellite aerosol optical depth 

measurements into surface concentrations. The earliest of these used regression coefficients and 

simple correlations between measurements of aerosol optical depth and available ground 

observations [e.g. Wang and Christopher, 2003; Engel-Cox et al., 2004, 2006; Schaap et al., 

2009]. However, as these studies found, there is substantial temporal and spatial variability in the 

relationship between AOD and surface PM2.5, and the relationship is location-specific. The 

relationship between the column AOD and surface concentration is influenced by the vertical 
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distribution of aerosols, the aerosol optical properties, meteorology, and other factors which 

make it difficult to apply any locally-derived relationship to a different region (or time period) 

where (when) ground-based measurements are lacking.  

Therefore rather than attempting to determine unique time- and space-dependent AOD-

PM2.5 relationships from measurements, several recent studies have instead relied on models to 

derive surface concentrations from satellite measurements of AOD [Liu et al., 2004, 2007; van 

Donkelaar et al., 2006, 2010, 2011]. This method uses a chemical transport model to simulate 

the spatially and temporally varying relationship between AOD and surface PM2.5 by accounting 

for all the aerosol properties and variables and then constraining these results by “real” (i.e. 

satellite) measurements of AOD. The following sections describe this method and its potential 

usefulness for exposure assessments. 

 

3.1.3.2 Introduction of Eta (ƞ) 

The method which has been previously used to derive surface PM2.5 from satellite 

observations of AOD relies on the following relationship [van Donkelaar et al., 2006, 2010]:  

PM2.5,surface = ƞ x AODsatellite        (3.2) 

Where the satellite-derived PM2.5 is estimated by multiplying the satellite observed AOD by the 

value ƞ, which is the ratio of model simulated surface PM2.5 to simulated AOD at the time of the 

satellite overpass. For a polar orbiting satellite, this reflects sampling at approximately the same 

local time world-wide. The ƞ value encompasses the aerosol size, type, extinction efficiency, 

water uptake and vertical distribution. Figure 3.4 shows an example of this process using the 

GEOS-Chem model (geos-chem.org).  
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Figure 3.4 GEOS-Chem aerosol simulation of (a) AOD, (b) simulated PM2.5, (c) 

resulting simulated ƞ for July 3, 2011. Also shown are (d) MODIS satellite AOD, 

(e) and the resulting satellite-based PM2.5 for the same day. 

 

3.1.3.3 Previous Studies methods and results 

  This method of using GEOS-Chem to “scale” satellite AOD to a surface concentration 

was first introduced by Liu et al. [2004] and relied on MISR observations over the U.S. Their 

resulting annual MISR PM2.5 concentrations are strongly correlated (r=0.79, slope of 0.91) with 

PM2.5 concentrations measured at EPA sites.  The method was further developed by van 

Donkelaar et al. [2006] to include observations from MODIS and then extended to produce a 

global map of satellite-based PM2.5 [van Donkelaar et al., 2010]. Several iterations of this 

product have been created, for example to: examine extreme events with relaxed cloud filtering 

in MODIS retrievals, include climatological bias corrections to improve daily estimates [van 

Donkelaar et al., 2012], reduce biases by including vertical profiles from the CALIOP 
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instrument in an optimal estimation framework [van Donkelaar et al., 2013], and include 

SeaWIFS observations to determine long-term trends in global PM2.5 [van Donkelaar et al., 

2014].  

  The combined conclusions from these studies suggest that while we could rely solely on 

model estimates of PM2.5 for exposure assessment, using the satellite to constrain the results is 

extremely useful in regions where emissions inventories and model processes are potentially less 

certain. However, although the satellite-based approach relieves some of the reliance on the 

model, the derived PM2.5 is still dependent on the assumed aerosol distributions and properties. 

In Chapter 4, we discuss how some of these assumptions can impact the resulting satellite-based 

PM2.5 concentrations and exposure estimates and the sensitivity of the AOD-PM2.5 relationship.  

This dataset of satellite-derived PM2.5 [van Donkelaar et al., 2010] has been made 

publicly available and been used in a variety of epidemiology and health-related studies. 

Fleischer et al. [2014] use it in conjunction with hospital birth records to show that outdoor 

PM2.5 concentrations are associated with low birth weights. In Weichenthal et al. [2014], 

satellite-derived PM2.5 is used along with mortality data from the Agricultural Health Study 

Cohort to show positive associations with cardiovascular mortality among men (but not women) 

while Evans et al. [2013] use it to estimate global mortality attributable to exposure. Other 

studies that use this dataset as a proxy for long-term exposure, show that PM2.5 enhances the risk 

of developing diabetes [Chen et  al., 2013a] and is associated with hypertension [Chen et al., 

2013b], but is not associated with childhood asthma (at the community-level) [Anderson et al., 

2012]. 
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3.2 Descriptions of Model and Datasets 

 

3.2.1 GEOS-Chem Model 

To determine ƞ values for this analysis, we use simulated AOD and surface 

concentrations from the global GEOS-Chem model (geos-chem.org). We use v9.01.03 of the 

chemical transport model, driven by GEOS-5 meteorology, in the nested grid configuration over 

North America and Asia (0.5°x0.667° horizontal resolution) for 2004-2011. The GEOS-Chem 

aerosol simulation includes sulfate, nitrate, ammonium [Park et al., 2004], primary carbonaceous 

aerosols [Park et al., 2003], dust [Fairlie et al., 2007; Ridley et al., 2012], sea salt [Alexander et 

al., 2005], and secondary organic aerosols (SOA) [Henze et al., 2008]. Most anthropogenic and 

biofuel emissions over the USA are from the EPA NEI05 inventory [Hudman et al., 2007, 2008] 

and from Streets et al. [2006] over Asia [Streets et al., 2003, 2006; Zhang et al., 2007, 2009b]; 

although anthropogenic emissions of black and organic carbon over North America follow 

Cooke et al. [1999] with the seasonality from Park et al. [2003]. Biogenic VOC emissions are 

calculated interactively following MEGAN [Guenther et al., 2006], while year-specific biomass 

burning is specified according to the GFED2 inventory [van der Werf et al., 2006]. Surface dry 

PM2.5 is calculated by combining sulfate, nitrate, ammonium, elemental carbon, organic matter, 

fine dust, and accumulation mode sea salt concentrations in the lowest grid box.  

 

3.2.2 Satellite Observations 

We compare results of derived PM2.5 using AOD observations from different space-borne 

instruments. The Moderate Resolution Imaging Spectroradiometer (MODIS) measures radiances 

at 36 wavelengths and flies on both the EOS-Terra and EOS-Aqua platforms. MODIS-Terra has 
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a morning overpass of ~10:30 LT while MODIS-Aqua flies as part of the A-Train constellation 

with an equator crossing time of ~13:30 LT. There are two different algorithms to separately 

retrieve AOD over the ocean and land in order to account for differences in surface properties  

[Remer et al., 2002b, 2005; Levy et al., 2013]. Because surface characteristics are determined 

from a look up table and not directly from measurements, specific regions (such as bright 

deserts, mountainous regions, highly urbanized areas, and snow fields) have known biases. For 

this work we use Level 2, Collection 6, Atmosphere Products for Aqua as well as Level 2, 

Collection 5 for Terra and Aqua, as has been used in previous studies. These Level 2 products 

are calculated along the orbit of the MODIS swath with a 10 km x 10 km resolution. We filter 

these data for observations of high quality and low cloud fraction and remove observations with 

high AOD (>2.0), as cloud contamination causes known biases in the AOD.  

 Also onboard EOS-Terra is the Multi-angle Imaging SpectroRadiometer (MISR) 

instrument [Martonchik et al., 2002, 2009; Diner et al., 2005]. MISR employs nine different 

cameras to make multi-angle radiance measurements in four spectral bands (visible to near 

infrared). Retrievals have a nominal spatial resolution of 17.6 km and provide global coverage in 

approximately 4-7 days. Additionally, the MISR algorithm can provide information on particle 

size, shape (spherical vs. non-spherical), and type. 

 

3.2.3 Surface Observations 

For surface-based observations of AOD, we use measurements from the global AErosol 

RObotic NETwork (AERONET) of sun photometers. AOD and aerosol properties are recorded 

at eight wavelengths in the visible and near-infrared (0.34-1.64µm) and are often used to validate 

satellite measurements [e.g. Remer et al., 2005]. AERONET AOD has an uncertainty of 0.01-
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0.015 [Holben et al., 1998]. For this work, we use hourly Version 2 Level 2 measurements 

sampled to two hour windows around the times of the satellite overpasses. We also perform a 

least-square polynomial fit in order to interpolate measurements to 550 nm.  

We also use surface measurements of PM2.5 mass from both the Interagency Monitoring 

of Protected Visual Environments (IMPROVE) and the EPA Air Quality System (AQS) 

database. The IMPROVE network measures PM2.5 over a 24-hour period every third day and 

these measurements are then analyzed for concentrations of fine, total, and speciated particle 

mass [Malm et al., 1994]. We use the reconstructed fine mass (RCFM) values (unlike in Chapter 

2), which are the sum of ammonium sulfate, ammonium nitrate, soil, sea salt, elemental carbon 

and organic matter. While water can contribute significantly to aerosol mass in the atmosphere, 

filters are equilibrated at 35% relative humidity prior to weighing so that the RCFM is generally 

considered a measure of the dry particle mass. However, aerosols can still contain water even at 

this humidity, with water accounting for up to 20% of the particle mass [Khylstov et al., 2005]. 

This could explain some of the discrepancy between the model-simulated concentrations and 

surface measurements.  

 

3.2.4 Method and Datasets for Determining Attributable Premature Mortality 

To estimate the burden of premature mortality due to PM2.5 exposure, we rely on 

equations (3.3) and (3.4), where the change in relative risk (RR, given as per 10 µg/m
3
) linearly 

depends on the concentration (C, in µg/m
3
). Here we assume that this concentration represents 

dry aerosol mass. The attributable fraction of mortality due to PM2.5 exposure then depends on 

this relative risk value and the baseline mortality (Mb). In this equation C0 is the background or 

“threshold” concentration, or the concentration below which there is no effect. As studies have 
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shown that there is no concentration level below which there is no adverse health effect for PM 

(e.g. Pope et al., 2002), in our initial analysis, we assume this value is zero. However, other 

studies often set C0 to the value of the lowest measured concentration observed in the 

epidemiology study from which the RRs are derived [e.g. Evans et al., 2013]. We will discuss 

the impact of using a threshold on our results. 

ΔRR= (RR-1) x (C-C0)/10      (3.3) 

ΔM=Mb x ΔRR / (ΔRR+1)      (3.4) 

To determine baseline mortalities in the U.S. for cardiovascular disease, lung cancer, and 

respiratory disease, we use crude death rates for all ages from the Center for Disease Control 

(cdc.gov) for each year and each state which we then multiply by the population to obtain the 

total baseline mortality. An example of Mb for the year 2004 is given in Appendix 1, with noted 

variability in death rates between states.  

 Mortality values are not as readily available for China, so instead of using province-level 

baseline mortality, we rely on country-wide values. Therefore, variations in Mb (Appendix 1) are 

due to variations in population and not death rates. Because studies have shown variability in 

death rates in different locations, this method of using country-wide averages could also be a 

source of error in our estimates. In order to account for some variability, we use a population 

threshold in order to distinguish between urban and rural region for lung cancer mortality [Chen 

et al., 2013c].  

For population data, we use the Gridded Population of the World, Version 3 (GPWv3), 

created by Center for International Earth Science Information Network (CIESIN) and available 

from the Socioeconomic Data and Applications Center (SEDAC). This gridded dataset has a 
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native resolution of 2.5 arc-minutes (~5km at the equator) and provides population estimates for 

1990, 1995, and 2000, and projections (made in 2004) for 2005, 2010, and 2015.  

We temporally interpolate between available years to get population estimates for years 

not provided. Population density for China and the United States for the year 2000 are shown in 

Figure 3.5 along with the projected change in population density by the year 2015, illustrating 

continued growth of urbanized areas (at the expense of rural regions in China). From these 

population estimates, we are then able to estimate the number of people exposed to certain 

pollution levels by comparing to concentration data that we grid to the same resolution as the 

population data.  

 

Figure 3.5 Population density [per km
2
] for the year 2000 from the GPWv3 data 

for (a) the continental U.S. and (c) China. The projection for increase in 

population density by the year 2015 for (b) the continental U.S. and (d) China. 
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 As we are using population and concentration data from the past decade, the results we 

will show here are the estimates of deaths incurred as opposed to deaths avoided if 

concentrations are reduced to some future value. 

3.3 Unconstrained model simulations 

We begin our analysis by comparing the unconstrained model simulations to 

observations. This provides examples of where and when satellite observations could potentially 

help improve model representations of surface air quality. Additionally, because ƞ depends on 

the model simulation of AOD and PM2.5, it is important to determine if the model skills are 

similar for both. 

3.3.1 Comparisons with surface PM2.5 at AQS and IMPROVE sites 

Previous studies have generally shown good agreement between measurements and 

GEOS-Chem simulations of PM2.5 [e.g. Park et al., 2003, 2004]. In Figure 3.6, we show the 

long-term average of PM2.5 at AQS and IMPROVE sites in the U.S. overlaid on simulated 

values. We focus our analysis here on the United States, where long-term observations are more 

readily available to test our simulation. In general, GEOS-Chem agrees better with 

measurements at IMPROVE sites, possibly because these are located in rural regions where 

simulated values will not be as impacted by the coarse model resolution. There are noted 

discrepancies in California (as also noted by Schiferl et al., 2014) and the Appalachia/Ohio River 

Valley region where the model is biased low. These discrepancies in the long-term average can 

impact chronic exposure estimates. However, because we are also interested in short-term 

exposure, it is important to note that there can be larger discrepancies at daily timescales. We 

also show the 95
th

 percentile PM2.5 concentrations in Figure 3.6, which show that the highest 

observations are often much higher than the model, suggesting that the model does not capture 
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extreme events which are potentially associated with elevated health risks. The greatest 

discrepancies in the 95
th

 percentile comparisons are generally in urban regions, but the model 

also fails to capture extremes at some sites in the northwest likely due to fires. In general, 

although the model often simulates slightly higher mean concentrations (Figure 3.6), the 

distribution of daily concentrations in the observations has longer tails, in part due to the model 

resolution’s inability to capture very fine scale features. 

  

Figure 3.6 GEOS-Chem simulated (a) average and (b) 95
th

 percentile in surface 

PM2.5 mass for years 2004-2011 overlaid with measurements at IMPROVE and 

AQS sites. 

 

We also compare the composition of aerosol mass simulated in the model and measured 

at different network sites in the United States. In Figure 3.7, we see that GEOS-Chem model 

captures much of the variability in different dominant aerosol types across regions. It does 

underestimate organic matter [Heald et al., 2011; Pye et al., 2010; Chen et al., 2014], but tends 

to overestimate nitrate, especially in the Midwest [Heald et al., 2012]. The discrepancies in the 

specific components often compensate for each other, so that the mean difference in the total 
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mass is closer to zero. Using satellite observations to constrain the model could potentially 

reduce the bias in total PM2.5 mass; however, if the model simulation of a specific species is 

incorrect and it has a different vertical profile, this could bias the ƞ used to derive the satellite-

based PM2.5.  

 

Figure 3.7 Box and whisker plots of the difference between simulated and 

measured PM2.5 mass for different regions of the U.S. Whiskers denote the 5
th

 and 

95
th

 percentiles, box outlines 25
th

 and 75
th

 percentiles, middle line denotes the 

median and the dot represents the mean.The location of sites and the long-term 

average PM2.5 at the sites is shown in the middle map. 

 

Robust long-term measurements of PM2.5 speciation are not routinely (publicly) available 

for China in order to repeat these comparisons for that region [Chan and Yao, 2008]. However, 

previous studies have shown that in general the model is able to capture the spatial distributions 
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and seasonality in sulfate, nitrate, ammonium, and black carbon; although there is a slight low 

bias in annual sulfate concentrations, a low bias in ammonia, and a high bias in nitrate, especially 

in East Asia [Yang et al., 2013a; 2013b, 2014]. These discrepancies have been attributed to 

model underestimates in deposition (specifically with regards to large precipitation events), poor 

representation of pollution plumes, and uncertainties in NOx, SO2, and NH3 emissions [Wang et 

al., 2013a; 2013b, 2014].  Additionally, Wang et al. [2013a; 2014] show that comparisons are 

much worse on shorter timescales, and the model has significant difficulties simulating high 

concentrations on days with extreme pollution.  

 

3.3.2 Comparisons of AOD 

 For AOD, we compare the simulation to that of observations from the MISR and MODIS 

spaceborne instruments as shown in Figure 3.8 (using spatially interpolated values, see Appendix 

II for original). Here we show the normalized mean bias (Equation 3.5) in daily values, where M 

is the model value and O is the observation (in grid box i).  

NMB =  
     
 
    

   
 
 

                                                (3.5) 

In the U.S., the model often over predicts AOD over the Ohio River Valley, and under predicts 

AOD in the west (although the satellite observations could also be biased high in the western 

U.S. due to high surface reflectivities). In China, results are similar, in that the model often under 

predicts AOD over the desert regions of the west and over predicts AOD in the urbanized 

central, North China Plain, and east (Sichuan Basin). While the magnitude of AOD differs 

between instruments, the spatial pattern of AOD and the differences compared to GEOS-Chem 

are similar. These differences provide us with insight into where the satellite-based PM2.5 will 
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also be different, although we point out that these are the normalized mean biases of daily values 

and are different than comparisons of annual means. 

 

Figure 3.8 Normalized mean bias [%] between daily GEOS-Chem simulated 

AOD and (a, c) MODIS Collection 6 Aqua and (b, d) MISR  for 2004-2011 over 

the U.S. and China, respectively. 

 

 We also compare the trend in AOD over the time period of 2004-2011 simulated in the 

model and compared to the satellite observations (Figure 3.9). GEOS-Chem simulates a 

significant decreasing trend in AOD over the eastern U.S. which is also noticeable in the satellite 

observations. This decreasing trend can be attributed to declining SO2 emissions in the U.S. as 

noted in Leibensperger et al. [2012]. The AOD from MODIS Aqua tends to suggest some 

increasing trends in the western U.S. (as with IMPROVE concentrations, not shown); however, 
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AOD has greater uncertainty in this region (larger biases compared to AERONET) and can be 

heavily influenced by large fires in the time series. Additionally, due to the limited time period, 

the only significant trend in the satellite observations is in the northeastern U.S. 

 

Figure 3.9 Trends in AOD [AOD/year] for 2004-2011 (a,c) as simulated by 

GEOS-Chem and as observed by (b,e) MODIS Aqua and (c,f) MISR over the 

U.S. and China, respectively. 

 

In China, GEOS-Chem suggests AOD is decreasing over the northeast (Jilin, Liaoning) 

and in central China (Hunan and Hubei) while increasing over the northwest (Xinjiang and Inner 

Mongolia) and the region surrounding Shanghai. The satellites agree with the increasing AOD 

simulated in the model over the northwest (due to dust), but suggest a stronger increase in AOD 

over the East (Shandong, Henan, etc.) and a strong decrease over southeast China (Pearl River 

Delta Region). However, again because this only covers a time period of eight years, most of 

these trends over China are not significant with the exception of the satellite observed trend over 
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the southeast. Luo et al. [2014] also examine trends in AOD from MODIS, but for the time 

period of 2000-2010 and note the increase in AOD over eastern and central China, however, they 

find a strong positive trend in AOD over the Pearl Delta Region. This discrepancy is likely due 

to the different time periods as Zhong et al. [2013] found increases in AOD from 2000 to 2007, 

followed by a decrease through 2011 over the Pearl River Delta Region, corresponding to similar 

trends in regional SO2 emissions. If only 2004-2008 is used to determine a trend, the satellites 

suggest widespread positive trends over China. Additionally, emissions in China have been 

variable over this period in general [Lu et al., 2011; Zhao et al., 2013] and AOD is strongly 

variable between years, with some regions experiencing interannual variability in AOD of 

greater than 20% [Luo et al., 2014].  It is difficult to represent the rapidly changing emissions in 

China in the model, which could suggest that it is an ideal place to employ satellite constraints. 

 

3.3.3 Reducing Sampling biases 

 Estimating daily satellite-derived PM2.5 for short term exposure estimates is hindered by 

the lack of available satellite AOD observations. MODIS provides 1-2 day coverage in the 

absence of clouds while MISR takes approximately 4-7 days for global coverage. Filtering for 

quality assurance can also reduce available data. Therefore, it has been previously suggested that 

interpolation schemes can help fill in data gaps. We assess here the impact of these different 

methods on both the column AOD and surface PM2.5.  

For this analysis, we rely on the model simulation. We first sample the model to the time 

and location of satellite observations, then apply the interpolation scheme and finally compare 

these new values to the original model simulation in order to determine the method that best 

represents the “real” values. We test 5 different methods. The first and second methods are 
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simply grid area means, where a missing value is replaced by the average of available 

“observations” in the (1) 8 surrounding (3x3 region) grid boxes or (2) 24 surrounding (5x5 

region) grid boxes. We also test using an inverse distance weighted mean (IDW, data points 

closer to the grid points have more effect than those which are further away) [Shepard, 1968] 

with a search cutoff of a four grid box radius, a kriging method (where both data points and the 

spatial variance are used to determine trends) [Isaaks and Srivastava, 1989], and a triangulation 

method in which each interpolant is a linear combination of the three vertices of its enclosing 

Delaunay triangle and their vertices [Lee and Schachter, 1980]. We also compare using the full 

interpolated map generated from these three methods against only using interpolated values 

when there are no valid observations. 

Our goal is to find a method which reduces the sampling bias and increases data volume. 

Simply sampling to available MODIS observation days leads to an underestimate of the annual 

average AOD over much of the U.S., due to the cloud filtering and the removal of observations 

with high AOD values from MODIS. The interpolation methods reduce the overall sampling bias 

in the yearly AOD as shown in Table 3.1. Regionally, there is still a low bias in the Great Plains 

and Great Lakes regions and a high bias in the Western U.S. is introduced (due to the limited 

number of observations and the available observations occurring over regions of high AOD, ie. 

California). For calculating the annual average AOD, the kriging, IDW, and triangulation 

methods produce very similar results. Because interpolation methods can smooth out finer scale 

variability, we find that using the full interpolated maps produces larger biases than using 

interpolated values only when there are no valid observations. We find the lowest average bias 

when using simple area means. However, we note that this method increases the amount of 

available days by much less than the other methods.   
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Table 3.1 Normalized Mean Biases (NMB) in annual average AOD and PM2.5 for 

different interpolation/data filling methods over the GEOS-Chem North America 

nested grid region and the resulting number of available days for 2009. 

Method Yearly NMB [%] 
# Observation 

Days (Average) 

 AOD PM2.5  

Sampled -4 2.2 91 

3x3 Simple Mean 0 0.3 132 

5x5 Simple Mean 0 0.6 148 

Inverse Distance Weighted Mean 4.0 15.6 261 

Kriging 4.5 14.4 249 

Triangulation 5.2 18.7 327 

Original values + IDW 3.5 14.7 262 

Original values + Kriging 3.8 13.5 251 

Original values + Triangulation 4.8 14.2 327 

 

We also compare interpolation schemes for PM2.5. From a methodology standpoint, this 

allows us to assess whether it is better to interpolate AOD before deriving PM2.5 values or 

interpolate derived PM2.5 to provide greater coverage. In general, there is greater temporal and 

spatial variability in PM2.5 compared to AOD, thus, interpolating PM2.5 concentrations creates 

greater biases than interpolating AOD.  From these comparisons, we determine that using an 

inverse distance weighted mean is a good balance between reducing the bias and increasing the 

amount of available days.  

We determine the impact this data filling method has on satellite-derived PM2.5, by using 

the new (interpolated) AOD values from the model along with the original model ƞ value to 

compute a derived PM2.5 value which we then compare to the original PM2.5 value. The resulting 

uncertainty in derived PM2.5 due to both sampling and interpolating the AOD over the U.S. is 

shown in Figure 3.10 along with the original uncertainty just due to sampling. We see that 

interpolating the AOD generally reduces the bias associated with satellite sampling, particularly 
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in the Northern U.S.  When translated to mortality estimates from chronic exposure, this 

interpolation can lead to a ~1% difference in our estimates.  

 

Figure 3.10 Bias in annual average PM2.5 from sampling to satellite observation 

days (a) and the bias from sampling AOD to satellite observation days, 

interpolating AOD, and then deriving PM2.5 (b). 

 

3.4 Satellite-derived PM2.5 estimates 

In Figure 3.11, we show the long-term average of satellite-derived PM2.5 for the U.S. and 

China using MODIS Aqua Collection 6. In the following sections, most of our results will be 

determined using Collection 6; but reference and comparisons will be made to other instruments 

as a measure of uncertainty.  We sample GEOS-Chem to days and grid boxes with valid satellite 

observations to calculate the ƞ used to translate the AOD to surface PM2.5. Compared to the 

unconstrained model, the satellite-based estimate suggests that concentrations should be higher 

over much of the western U.S., particularly over California, Nevada, and Arizona. In China, the 

satellite-derived PM2.5 is higher in Eastern China, around Beijing, Tianjin, and Shanghai, but less 

in many of the central provinces. Yang et al. [2013b] noted that the model underestimates PM2.5 

in the Sichuan basin, suggesting that the satellite-based estimate could reduce the bias in this 

province. 
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Figure 3.11 Long-term average (2004-2011) unconstrained model simulation of 

PM2.5 for the (a) continental U.S. and (b) China, along with the satellite-derived 

PM2.5 for the (c) continental U.S. and (d) China. 

 

3.4.1 Estimates of Chronic Exposure to PM2.5 and associated Premature Mortality 

 We compare PM2.5 exposure estimates using both model and satellite-based approaches 

and in the U.S. and China. Figure 3.12 shows the distribution of population exposed to different 

long-term average concentrations. Not only are concentrations higher in China, but a greater 

fraction of the population is exposed to harmful concentrations.  This figure suggests that 12% 

(with model concentrations, 18% with MODIS-Aqua, 14% with MISR) of the U.S. population 

has experienced a long-term average concentrations above 12 µgm
-3 

(national air quality 

standard), but 0% has experienced average concentrations of 35µgm
-3

 or greater. In China, 75% 

(with model concentrations, 78% with MODIS-Aqua, 50% with MISR) of the population was 

exposed to average concentrations of 35 µgm
-3 

(proposed national standard for China) or greater, 
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which suggests that should these standards go into effect in 2016 as anticipated, many regions 

will be out of compliance. However, this also emphasizes the greater need for significant 

measures to reduce poor air quality as it affects such a large percentage of the population.  The 

lower exposure estimates for China obtained with MISR are due to a low bias (compared to 

MODIS) in AOD over the northeast (around Beijing) where the population is high [Cheng et al., 

2012].  

   

Figure 3.12 Estimates of the percent of the population of the (a) U.S. and (b) 

China that are exposed to different annual PM2.5 concentrations. Colors denote 

method for calculating concentrations and dashed lines denote national air quality 

standards.  

 

 We also calculate the fraction of mortality associated with heart disease, lung cancer, and 

respiratory disease attributable to chronic exposure determined using annual average 

concentrations.  Results are shown in Figure 3.13 with error bars denoting the range determined 

from the confidence intervals of the risk ratios. For our initial comparisons, we use risk ratios for 

cardiovascular and lung cancer premature mortality due to chronic exposure determined in 

Krewski et al. [2009], which is an extended analysis of the American Cancer Society study, and 

for respiratory disease, from Laden et al. [2006] which is an updated and extended analysis of 

the Harvard Six Cities study. We use the Krewski et al. [2009] risk ratios as they are widely used 

in similar studies due to the large study population with national coverage, 18 year time span, 
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and extensive analysis of confounding variables (ecological covariates, gaseous pollutants, 

weather, medical history, age, smoking, etc.). Using these same risk ratios makes our results 

more directly comparable to these other studies. Chronic exposure to PM2.5 is most strongly 

associated with premature mortality due to heart disease. Additionally, baseline mortality rates 

are also higher for heart disease, resulting in most of the premature mortalities attributed here to 

exposure being linked to heart disease in both the U.S. and China. 

 

Figure 3.13 Time series for (a) the U.S. and (b) China using the unconstrained 

model estimates and the MODIS Collection 6 satellite-derived PM2.5 to determine 

the annual mortality due to chronic exposure. Colors denote cause of death: 

cardiovascular (red), respiratory (blue), and lung cancer (green). Overlaid black 

lines are the population-weighted mean concentration from the unconstrained 

model (solid) and satellite based (dashed). Whiskers denote the confidence 

intervals associated with the risk ratios. 
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In Figure 3.13, we overlaid the country-wide population-weighted PM2.5 concentrations. 

In the U.S., the model suggests that concentrations have generally decreased over time following 

declines in anthropogenic emissions, and consequently, the premature mortality rates have also 

decreased.  This is less obvious with the satellite-based PM2.5 concentrations, where high 

exposures in 2007 associated with large dust storms in the spring and a long stagnation event in 

the winter interrupt this downward trend.  

 In China, the trend in the population-weighted PM2.5 is more complicated. Emissions of 

SO2 in China steadily increased until about 2010, when they began to decline. However, 

emissions of black and organic carbon have continued to increase [Lu et al., 2011] along with 

nitrogen oxides [Zhao et al., 2013], and potentially ammonia, although ammonia emissions 

trends in China are fairly uncertain [Wang et al., 2013b]. Even though sulfate contributes a 

significant portion of the aerosol mass in China, the decline in SO2 emissions has not been 

reflected as strongly in surface PM2.5, likely due to increases in the sources of these other 

pollutants. Wang et al. [2013b] suggest that in many places in China the decrease in sulfate 

aerosols has simply been met with an increase in nitrate aerosols. Additionally, the population 

has continued to grow (by 5% from 2004 to 2011), especially in urban regions with high PM2.5 

concentrations, which can also impact the population-weighted mean.   

Maps of the average annual mortalities attributable to chronic PM2.5 exposure are shown 

in Figure 3.14 (total number of deaths in a grid box). In conjunction with population density 

shown in Figure 3.5 and concentrations shown in Figure 3.11, these mortality estimates highlight 

the significant risk facing growing urban areas. The difference between mortality estimates using 

model or satellite concentrations is approximately 9% for the U.S. and 4% for China on a 

nationwide basis, although this figure shows that regionally the difference can be much greater.  
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These values suggest that chronic PM2.5 could be responsible for 2-3% of the mortalities in the 

U.S. and 15-20% in China. We test the sensitivity of these estimates in Chapter 4. 

 

Figure 3.14 Maps of premature mortality (total deaths per grid box) due to PM2.5 

exposure using (a, d) GEOS-Chem  and (b ,e) MODIS Aqua satellite-based 

concentrations  and the difference (model-satellite, c, f) for the U.S. and China, 

respectively. 

 

3.4.2 Premature Mortality due to Acute Exposure 

We also calculate the fraction of the mortality burden attributable to acute exposure from 

daily concentrations. For acute exposure risk ratios, values are taken from Ostro et al. [2006], 

which uses data from the CALFINE study. These values are shown in Figure 3.2 and are mid-

range estimates among the studies shown. We show results as the total number of deaths that 

occur throughout the year in Figure 3.15 with the error bars denoting the confidence intervals of 
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the risk ratios. For acute exposure, the risk ratio for mortality from respiratory disease is higher 

than for heart disease.  

To determine the mortality burden attributable to acute exposure we use the spatial 

interpolated satellite observations. Additionally, we scale the final results by the ratio of the 

results calculated using the model sampled to the satellite observations to the unsampled model 

concentrations to account for missing daily observations.  

   

 

Figure 3.15 Time series for (a) the U.S. and (b) China using the unconstrained 

model estimates and the satellite-derived (hatched bars) PM2.5 to determine the 

annual mortality due to acute exposure. Colors denote cause of death and 

whiskers denote the confidence intervals associated with the risk ratios. 
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In China, the fraction of premature mortality rates attributable to acute exposure is 10-

12% of the estimates for chronic mortality, whereas in the U.S., acute exposure accounts for 

~5% of total deaths from PM2.5 exposure.  Because the mortality estimates for chronic exposure 

have been decreasing over time in the U.S., and the mortality estimates due to acute exposure do 

not, this percentage increases over time. This suggests that while improvements in air quality in 

the U.S. have led to overall health improvements and should continue to do so; extreme events 

(defined as days with 24-hour concentrations over the daily standard of 35 µgm
-3

 in the U.S. or 

75 µgm
-3

 in China, shown in Appendix 3), which are potentially harder to control, can still cause 

a significant number of premature deaths. Additionally, if these extreme events are removed 

from the annual average, the number of deaths from chronic exposure decreases by 3% (9%) in 

the U.S. using model (satellite) concentrations and 22% (19%) in China (although in China this 

removes a significant amount of data due to several regions in China which have annual average 

concentrations greater than the 75 µgm
-3

 proposed national daily standard. 

Comparing the satellite-based estimates to the model-based estimates suggest that the 

model might produce mortality estimates that are too low by 2-16% in the U.S. and too high by 

4-13% in China. However, while these datasets can provide potentially useful mortality 

estimates, it is important to understand the limitations of this method and properly constrain the 

potential uncertainties before suggesting that the satellite-based estimates are superior. 
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4 Uncertainties in estimates of the mortality burden using satellite-based and model 

PM2.5 concentrations 

 

Previous studies that have relied on satellite-based PM2.5 datasets acknowledge that there is 

uncertainty in the estimated health impacts, partly due to the uncertainty in satellite-derived 

PM2.5. However, the uncertainty is assumed to be rather small, such as in Evans et al. [2013] 

which suggests the uncertainty in their PM2.5 contributes 5-28% of the uncertainty in their 

mortality estimates based on the error analysis performed in van Donkelaar et al. [2006]. 

However, these are also the error estimates in the long-term mean which can potentially average 

out greater daily errors. Here our goal is to conduct a more thorough analysis of the potential 

errors in using satellite-based PM2.5 and estimate the range in premature mortality that can be 

attributed to acute and chronic exposure as in the previous chapter. In addition, this work will 

help to explain some differences in mortality burden estimates from previous studies. In the 

following sections, we explore the range of mortality burden estimates that can be determined 

using satellite-based PM2.5 concentrations due to potential uncertainties in the model 

representation of the AOD-PM2.5 relationship and the satellite AOD, along with the choices used 

for the mortality response function and choice of risk ratio. 

 

4.1 Uncertainties in Model ƞ 

It behooves us to understand the limitations and uncertainties associated with a model-based 

ƞ when applying it to the calculation of PM2.5 exposure. Therefore, we perform multiple 

sensitivity tests in order to determine the impact that different aerosol properties, grid-size 

resolution and time scales will have on ƞ and, ultimately, on the resulting satellite-based PM2.5. 

These sensitivity tests are performed solely with model output, which can provide a complete 



64 

 

spatial and temporal record, and results from the modified simulations are compared to the 

standard model simulation. Thus these can be considered in the framework of an Observing 

System Simulation Experiment (OSSE), comparing results with a baseline “truth”. Our analysis 

focuses on regions of the United States and China. 

Because our goal is to better estimate surface PM2.5, our error analyses in this section are 

calculated against the standard model daily simulated PM2.5 concentrations. However, we 

calculate these values using a modified ƞ to better understand how this ƞ relationship impacts the 

derived PM2.5. We note that these are errors with respect to our baseline simulation; we do not 

characterize how each sensitivity simulation may be “better” or “worse” compared to true 

concentrations of surface PM2.5, but rather how different they are from the baseline, thus 

characterizing the uncertainty in derived PM2.5 resulting from the model estimates of ƞ. The 

timescale of the estimated PM2.5 influences the error metric we choose for this analysis. We use 

the NMB (Equation 3.5) for estimating error associated with annual PM2.5 exposure. This allows 

for the possibility that day-to-day errors may compensate, resulting in a more generally unbiased 

annual mean value. However when estimating errors for daily PM2.5 estimates, we rely on the 

mean normalized gross error (MNGE) metric which is calculated using Equation 4.1, where O is 

the original model simulated concentration (at a location x and time t) and P is the concentration 

derived using the modified simulation.  

MNGE = 
 

 
  

           

    
       

                                           (4.1) 

We note that this metric characterizes the absolute error, which we choose to emphasize that both 

positive and negative biases constitute daily errors and should not be averaged out (such as in the 

NMB metric for example) when estimating the error associated with daily PM2.5. These gross 

error comparisons are summarized in the figures on an annual basis (averaging daily values), but 
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we also discuss results on a seasonal basis to stress that influencing factors also vary with season. 

In the figures, we show the box and whisker plots of the normalized gross error but provide the 

MNGE in the text. In Section 4.1.1 we show only the “daily” gross errors, but we apply mean 

and gross errors to annual and daily PM2.5 exposure respectively in Section 4.4. 

4.1.1 Model Sensitivity Studies  

In Figure 4.1and Figure 4.2 we show the MNGE and range of normalized gross errors in 

derived PM2.5 for each of the sensitivity tests for 10 different regions over the U.S. and nine 

regions in China for 2006. The figures also include maps of the annual mean surface PM2.5 to 

highlight geographical variability.   

Our first sensitivity tests relate specifically to the methodology. To derive a satellite-

based PM2.5 with this method requires that model simulations are run for every day and that there 

are valid satellite observations. Running a model can be labor intensive and there are specific 

regions and time periods with poor satellite coverage. Therefore, it might be beneficial to be able 

to use a climatological ƞ, climatological satellite AOD, or climatological satellite-based PM2.5. In 

order to assess the usefulness of these methods, the first 3 tests simply use seasonally averaged 

PM2.5, AOD and ƞ model values instead of daily varying values.  For using a seasonally averaged 

PM2.5, we compute the error in derived PM2.5 that results if we assume that the model PM2.5 

concentration is consistent throughout the season when calculating ƞ. In some regions this is not 

a poor approximation. In the Southeast and Ohio RV/Appalachia during winter and the 4 Corners 

in summer and fall, surface concentrations are fairly consistent and the MNGE is ~35-50%. 

Conversely, the Great Lakes region, the Northeast in summertime, and the Great Plains in winter 

and spring have greater variability, and therefore potential errors are greater with MNGE values 

often greater than 100%. In the Great Plains (note that concentrations are low and therefore while 
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the percentage change is large, the absolute error is smaller), this variability can often be 

attributed to transported sources, while in the Northeast this is mainly due to local emission 

sources and meteorology (PBL, wind, etc.). In the Great Lakes region, variability can be driven 

by local sources and transport. Therefore, using seasonal averages of PM2.5 can produce large 

MNGE (90-130%). However, as evident from the figures, this mean error is often weighted 

strongly by the outliers. While on most days, the error may be only 2-5 µgm
-3

, there is a larger 

range of errors (sometimes >35 µgm
-3

) in the estimated PM2.5 that could lead to very erroneous 

short-term exposure estimates. 

 

Figure 4.1 Box and whisker plots showing the mean and range of differences in 

derived daily PM2.5 associated with the different sensitivity tests described in the 

text for different regions in the U.S. for the year 2009. Boxes outline the 25
th

 and 

75
th

 percentiles, while whiskers show the 5
th

 and 95
th

 percentiles, dots show the 

mean, and the middle line shows the median. Absolute differences are given as a 
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percent different from the base case. Map shows annual average concentrations 

for the base case. 

 

 

Figure 4.2 Similar to Figure 4.1 but for regions in China in 2006. 

 

Because mass concentrations in China are generally much higher, the absolute value of 

potential errors can also be much greater. Additionally, the normalized error from using a mean 

PM2.5 has a wider distribution as seen by the length of the whiskers on the box plots (Figure 4.2). 
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The largest potential errors are generally in the eastern urbanized region, especially around 

Beijing and the Heibei province, where there are many anthropogenic sources of aerosols. 

Absolute errors are greatest in the winter, when China often experiences strong stagnation events 

that lead to several days of very high surface concentrations. However, the MNGE is generally 

greater in the west where transport (specifically of dust) can cause significant magnitudes of 

variability in surface concentrations.   

To test the importance of daily variability in AOD, we compute daily ƞ values and then 

solve for daily surface PM2.5 values using a seasonally averaged model simulated AOD. This 

mimics the error introduced by using seasonally averaged satellite observations, an attractive 

proposition to overcome limitations in coverage. This approximation often produces the greatest 

error. It produces smaller errors in regions with less variability in AOD (spring and fall in the 

Northwest and spring and summer in the Southeast U.S.). However, in regions where AOD 

varies more dramatically and specifically where transported layers aloft can significantly 

increase AOD (Four Corners, Great Plains, Great Lakes), using a seasonally averaged AOD, can 

lead to much larger errors. With few exceptions, these errors are often greater than those 

determined by using an average PM2.5 concentration. 

For China, the mean absolute errors using a seasonally averaged AOD are greater than 

using an average PM2.5 value in all regions and seasons except in summer. This suggests strong 

caution in using AOD to constrain PM2.5 estimates, because using incorrect AOD values can lead 

to extremely large daily errors in China (mean errors >60 µgm
-3

).  Similar to using an average 

PM2.5, largest errors occur for winter in eastern China. These tests suggest the importance of 

high-time resolution satellite observations for constraining surface PM2.5. 
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For the seasonally averaged ƞ test, we estimate daily PM2.5 values from the seasonally 

averaged ƞ and daily AOD values. This test evaluates the necessity of using daily model output 

to define the ƞ relationship. Regional ƞ relationships can be more consistent over time than PM2.5 

or AOD. Therefore, using a seasonally averaged ƞ generally produces less error than using a 

seasonally averaged AOD, and often less than a seasonally averaged PM2.5 as well. This is 

especially true in summer where the mean and range of errors are smaller. Because the model ƞ 

also inherently prescribes a vertical distribution of aerosol, this suggests that there is less 

variability in the vertical distribution in summer, either from lofted plumes (increase AOD but 

not PM2.5) or boundary layer trapping (increase PM2.5 and little impact on AOD).  Using a 

seasonally averaged ƞ appears to lead to the greatest errors in the winter, notably in the 

Southeast, Great Lakes, and Northwest U.S. (MNGE 60-80%). Much like the U.S., using a 

seasonally averaged ƞ for regions in China generally produces a lower mean normalized error 

(50-100%) than using a seasonally averaged AOD or PM2.5 and the absolute error is generally 

also greater in winter.  

We further test the importance of the vertical distribution in the ƞ relationship for 

predicting surface PM2.5 concentrations by comparing values from the standard simulation 

against using an ƞ resulting from a seasonally averaged vertical distribution. For this comparison, 

we allow the column mass loading to vary day-to-day, but we assume that the profile shape does 

not change (i.e. we re-distribute the simulated mass to the same seasonally averaged vertical 

profile). We note that this is not the same as assuming a constant ƞ, as relative humidity and 

relative aerosol composition vary day-to-day. From Figure 4.1, we see that using a seasonally 

averaged vertical distribution often leads to large errors in surface concentrations in a similar 

manner to the sensitivity to ƞ comparisons. However, because we do allow the mass (and 
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composition) to change, errors are generally not as great. This suggests that even if we lack 

information on the aerosol composition, information on how the pollutants are distributed is 

extremely important. While changes in AOD can be driven by changes in surface mass loading; 

elevated AOD can also be produced by layers of lofted aerosols that result from production aloft 

or transport.  These can be infrequent so as not to strongly impact the seasonally averaged 

vertical profile, but when they are not accounted for can lead to significant overestimations in 

daily surface PM2.5 concentrations as shown by the length of the whiskers. We see this is of 

greater concern across the northern U.S., in areas that are occasionally impacted by transported 

elevated biomass burning plumes. Additionally, we see that there are larger errors across most 

regions in the winter, which is likely again associated with trapping of pollutants near the surface 

compared to seasons where pollutants are more likely to be mixed out of the boundary layer.  

Much like the normalized errors associated with a seasonally averaged ƞ, the distribution 

of errors across seasons associated with using a seasonally averaged vertical profile is very 

similar in the U.S. and China, although the absolute errors vary across seasons due to seasonal 

variations in mass loading. In Beijing, Eastern and Southeastern China, the largest errors are 

found in winter. In the NW and Inner Mongolia, the lowest errors are found in winter and highest 

in spring. This is due to the fact that these regions are often influenced by transported dust from 

the Taklamakan and Gobi Deserts, from which emissions are generally greatest in spring [Wang 

et al., 2008].   

We also test the sensitivity of derived PM2.5 related to aerosol water uptake. This is done 

by recalculating ƞ using a seasonally averaged relative humidity (RH) profile. This generally 

reduces the seasonally averaged AOD (less water uptake) in every season (because hygroscopic 

growth of aerosols is non-linear with RH). This leads to an overestimate of ƞ that when applied 
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to the AOD values from the standard simulation, generally overestimates surface PM2.5. This is 

because, for the same AOD, a higher ƞ value would suggest more mass at the surface in order to 

compensate for optically smaller particles aloft. We see from Figure 4.1, this is particularly an 

issue in regions with potentially higher RH (Southeast and Ohio RV/Appalachia) and more 

hygroscopic aerosols (Northeast). In China, the largest errors are again in urban regions 

dominated by inorganics and in the summertime when the average RH is high (Figure 4.2, RH in 

Appendix 4). In wintertime, the tails on the error distributions are much greater in these regions, 

suggesting that there are several days where the RH deviates enough from the mean to 

significantly impact the assumed water uptake and AOD. However, the MNGE for all regions 

and seasons is generally 20-30% for the U.S. and 25-50% for China, less than errors associated 

with seasonally averaged AOD, PM2.5, ƞ, and the vertical profile.  

We also compute two more sensitivity analyses related to assumptions about the aerosol 

type and water uptake. For these, we take the simulated mass concentrations and compute the 

AOD assuming that the entire aerosol mass is sulfate or, alternatively, hydrophobic black carbon. 

This test mimics a mischaracterization of the aerosol composition in the model. Black carbon has 

a high mass extinction efficiency, which is constant with RH given its hydrophobic nature; while 

sulfate is very hygroscopic, resulting in much higher extinction efficiencies at higher relative 

humidity values. Overall, assuming that all the mass is sulfate does not lead to large errors in the 

U.S. (MNGE 15-35%) as the AOD in many regions in the U.S. is dominated by inorganics. 

Errors are largest in regions and seasons with larger contributions of less hygroscopic aerosols 

(organic carbon and dust) and/or high relative humidity. In China, the normalized errors are also 

only 10-50% across seasons, but the mean absolute errors are > 20 µgm
-3

 in the NW, Inner 



72 

 

Mongolia, Beijing, and Eastern China in spring, due to the influence of dust transport. Absolute 

errors are much smaller in winter and only high for NW China during summer and fall.  

Assuming the entire aerosol mass is black carbon leads to greater and more frequent 

(wider distributions) errors than sulfate (MNGE 22-47%), mainly because of the larger mass 

extinction at lower relative humidity values and the fact that hydrophobic black carbon generally 

makes up a small fraction of the mass loading in all regions in the U.S. When RH is low, this 

assumption increases the AOD, which leads to an under prediction in the derived PM2.5. When 

RH is high, this decreases the AOD and leads to an over prediction in derived PM2.5.  The largest 

percentage changes occur in NV and the 4 Corners regions due to the low relative humidity, low 

mass concentrations, and large contribution of dust, while the largest absolute changes are in 

regions in the Eastern US. In China, much like the sensitivity test with sulfate, the absolute errors 

are generally small, but the absolute errors can be rather large. We also see similar behavior with 

regards to regions impacted by dust having the greatest absolute errors. The length of the 

whiskers on the box plots suggests that this would be a larger issue on specific days with high 

dust transport.  

It is assumed that using a finer resolution model, although more computationally 

expensive, will be more representative of small scale variability and better suited for estimating 

surface air quality. Punger and West [2013] find that coarse resolution models often drastically 

underestimate exposure in urban areas. We therefore investigate the grid-size dependence of our 

simulated ƞ to test the necessity of running the model at a finer resolution to determine ƞ. For 

this, we determine the ƞ values from a simulation running at 2°x 2.5° grid resolution (with the 

same emission inputs and time period), re-grid these values to the nested grid resolution 

(0.5°x0.666°) and  solve for the derived PM2.5 concentrations using the AOD values from the 
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nested simulation. From Figure 4.1 and Figure 4.2, we see larger discrepancies in regions which 

are dominated by more spatially variable emissions (California, the Northeast, the Great Lakes, 

around Beijing and eastern China) rather than areas with broad regional sources (Southeast U.S., 

4 Corners, Tibet, Yunan).  However, compared to the other sensitivity tests, using the coarser 

grid leads to mean errors of only 30-50% (or 1-5 µgm
-3

) in the U.S. and 30-80% in China, which 

suggests that spatially averaged ƞ are potentially more useful than temporally averaged ƞ for 

constraining PM2.5 values. This is in line with the conclusions from Thompson and Selin [2012] 

who show that very coarse grids can over predict pollutant concentrations and consequently 

health impacts (associated with exposure to ozone), but using very fine grids does not 

significantly decrease the error in simulated concentrations compared to observations. 

As mentioned previously, GEOS-Chem has a known high bias in nitrate aerosol over the 

U.S. [Heald et al., 2012]. In our final sensitivity, we test how this nitrate bias could impact ƞ and 

the derived PM2.5. This should only be an issue if nitrate has a drastically different vertical 

profile (or ƞ) from the other species. In some regions, such as the Southeastern U.S., the 

simulated nitrate profile is very similar to the profile of sulfate, but in the Midwest and Great 

Lakes regions, the nitrate profile is significantly different than that of the other species (Figure 

4.3). We therefore compute ƞ without nitrate aerosol, and then derive PM2.5 using the standard 

AOD. From the figure, this appears to not be a large source of potential error (<15%), and only 

slightly larger errors occur in winter and in regions where nitrate is biased high (Great Lakes, 

Midwest, and Appalachia). Furthermore, these errors are less than the bias between the model 

and surface observations of nitrate (1-2 µgm
-3

 compared to 2-7 µgm
-3

), suggesting that even 

though there is a known bias in the model, using satellite observations may largely correct for 

this by constraining the total AOD when estimating satellite-derived PM2.5. We did not do this 
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comparison for China as measured nitrate concentrations are not widely available for evaluation 

in this region. However, Yang et al. [2014] do suggest that model nitrate is also too high in 

China.  

 

Figure 4.3 Simulated annual average vertical profiles of atmospheric aerosol 

species in several regions of the U.S. for 2009. 

 

 Compared to the MNGE values determined from daily concentrations, the normalized 

mean biases in annual average concentrations (shown in Appendix 5) are generally much less 

(range of ±20% in U.S. and ±50% in China). This is because the potential random errors in daily 

values can cancel out in the long-term mean, as is the case for our sensitivity tests regarding the 

vertical profile and relative humidity (for most places). However, because our method to test the 

sensitivity to aerosol type required assuming all aerosol mass was black carbon or sulfate, we 

introduced a systematic bias that is not significantly reduced in the annual NMB. For China, 

NMB values are also greater than for the U.S. reflecting the high daily variability that is more 

strongly impacted by using seasonal averages. 

This analysis was performed for one year, however, there is also inter-annual variability 

and previously well-noted recent trends in PM2.5 which may impact our uncertainty estimates. 

Leibensperger et al. [2012] and Chin et al. [2014] show that concentrations of anthropogenic 

aerosols in the U.S. have been decreasing  over the last 20 years due to decreasing anthropogenic 
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emissions. The changes in AOD, as discussed previously, are less obvious because they also 

encompass transboundary pollution. However, in general, AOD over the U.S. has also declined, 

while AOD over China has increased in many regions following increases in fossil fuel and dust 

emissions as shown by Chin et al. [2014] and shown in Figure 3.9. This suggests that year-

specific ƞ values are also necessary. While 2009 appears to be a rather typical year in terms of 

concentrations and in general there is not a significant variability in the meteorology fields over 

this time period (Appendix VI. Interannual Variability 

 

), additional work is still required to verify whether these uncertainty estimates might 

vary significantly year-to-year.   

 

4.1.2 Context of Sensitivity Analysis  

 While we use the term “error” in our sensitivity analysis for comparing the original 

simulation of PM2.5 to PM2.5 derived using modified ƞ values, we do not assume that these are 

actual model errors, but potential errors or uncertainties. In general, the model simulates PM2.5 

well (as shown in Figure 3.6) and represents important processes. Satellite AOD can help to 

constrain these estimates to better represent measured concentrations [van Donkelaar et al., 

2006], but in specific regions or periods of time, the potential errors in ƞ could lead to 

discrepancies between satellite-derived and actual surface mass. These sensitivity tests can then 

provide a range of uncertainty in satellite-based PM2.5 associated with model uncertainties. Our 

estimates in Section 4.1.1 convey the uncertainty in daily satellite-derived PM2.5 associated with 

model assumptions. 
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However, there are also potentially more uncertainties in the model that we did not 

quantify here. We used seasonally averaged values for most of our sensitivity tests because we 

assume that on average the model does a good job simulating the relationship between AOD and 

PM2.5, but it might be incorrect on specific days. In reality, the relationship could be further 

outside the range then is simulated either in the seasonal average or on specific days. We also did 

not test the sensitivity to particle density or size distribution, but these were previously found to 

have little impact on derived values [van Donkelaar et al., 2006]. Additionally, derived values 

were shown to often be more sensitive to ƞ in regions impacted by dust or biomass burning, 

which could suggest uncertainty linked to specific emission sources, which we did not test 

explicitly here.  

 From these sensitivity tests, we see that assumptions used to determine the ƞ relationship 

can strongly impact the estimated daily surface PM2.5 concentrations. Using a seasonally 

averaged value of AOD appears to be a poor option for determining short term exposure, often 

worse than using a seasonally averaged PM2.5 value. This suggests that while constraining the 

model with satellite observations might improve PM2.5 estimates, if, due to lack of coverage, the 

only option is to use a temporally averaged satellite AOD, the associated errors for daily 

estimates could outweigh the benefits. With regards to potential errors in the model calculation 

of ƞ, the vertical distribution appears to be a larger source of potential error across locations and 

seasons than assumptions about the aerosol type and water uptake, although those assumptions 

can lead to the large errors on specific days. Additionally, while there is variability in the errors 

across regions, errors are often greatest in regions with high populations (Northeast, Great Lakes, 

California, Beijing and Eastern China), which implies greater uncertainty when determining 

exposure estimates.   
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Comparing MNGE for daily concentrations to NMB for annual average concentrations 

also highlights the differing potential impacts on exposure estimates due to systematic and 

random errors, an important distinction for determining the usefulness of this method. Systematic 

errors may not be as obvious on short timescales compared to random errors (related to 

meteorology and/or representation of plumes) that can lead to large biases in daily concentrations 

and acute exposure estimates. However, these random errors have less impact when we examine 

annual average concentrations and chronic exposure. Systematic errors, potentially related to 

sources or processes (as in Chapter 2), might be harder to counteract even on longer timescales 

even when the model is constrained by satellite observations. 

 We translate this potential uncertainty in ƞ to potential uncertainty in mortality and 

exposure estimates determined from the satellite-based PM2.5. Figure 4.4 is an updated version of 

Figure 3.12 with added range of potential uncertainty. This range is determined by using the 

normalized mean bias in annual PM2.5 determined from the sensitivity tests for RH, the vertical 

profile, grid resolution, and aerosol composition. We determine the bias for each gridbox and 

then use these values to “bias correct” our satellite-based PM2.5. This bias is then applied to the 

satellite-based PM2.5 and used to re-calculate the percent of the population that is exposed to 

different annual PM2.5 concentrations. We see that the potential uncertainty in ƞ can substantially 

impact exposure estimates. In particular, these uncertainties are comparable to, or even larger 

than, the differences in exposure estimated using different satellite sensors. 
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Figure 4.4 Similar to Figure 3.12 but with range of potential uncertainty in 

exposure estimates using satellite-based PM2.5 denoted by shaded regions. Colors 

of shaded regions coordinate with line color. 

 

4.2 Uncertainties in Satellite AOD 

 

4.2.1 Method to determine uncertainty in satellite AOD 

For “validation” of satellite products, studies have often relied on comparisons with 

AERONET ground sites [e.g. Kahn et al., 2005; Levy et al., 2010; Remer et al., 2005; 2008; 

Zhang and Reid, 2006]. Uncertainty in satellite AOD can be due to a variety of issues such as the 

presence of clouds, the choice of optical model used in the retrieval algorithm, and surface 

properties [Zhang and Reid, 2006; Toth et al., 2013]. The uncertainty in AOD over land from 

MODIS is estimated as 0.05 ± 15% [Remer et al., 2005], while Kahn et al. [2005] suggested that 

70 % of MISR AOD data are within 0.05 (or 20 % ×AOD) of AERONET AOD. 

There are also discrepancies between AOD measured by the different instruments. Aqua 

has an afternoon overpass while Terra has a morning overpass. It might be expected that there 

would be some differences in retrieved AOD associated with diurnal variations in aerosol 

loading. However, the difference of 0.015 in the globally averaged AOD between MODIS 

onboard Terra and Aqua (Collection 5), although within the uncertainty range of the retrieval, is 
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attributed more to uncertainties and a drift in the calibration of the Terra instrument, noted in 

Zhang and Reid [2010] and Levy et al. [2010].  MODIS Collection 6 (as will be discussed 

further) is more consistent with MISR [Levy et al., 2013]. MISR has a different measurement 

technique and swath width, such that the correlation between MISR AOD and MODIS AOD is 

only 0.7 over land (0.9 over ocean) [Kahn et al., 2005].  

 There are also uncertainties due to the satellite sampling as discussed in Section 3.3.3 

because of the potential that the concentrations on days with available observations are skewed. 

In order to assess the sampling bias, we use the model and compare the annual mean to the mean 

when sampled to days with valid observations (Figure 3.10). In general, sampling leads to an 

underestimation in AOD. This can partly be attributed to high aerosol loading mistakenly 

identified as cloud and possibly the removal of anomalously high AOD values (>2.0).  This 

suggests that the average AOD values shown here can also be influenced by our filtering and 

data quality standards. Analysis of the impact of satellite data quality on the AOD to PM2.5 

relationship is discussed in Toth et al. [2014]. They find that using higher quality observations 

does tend to improve correlations between AOD and PM2.5 across the U.S. (though in general 

correlations are low).  

 Not only are there discrepancies in AOD between instruments, there are also differences 

between product versions for the same instrument. The MODIS Collection 6 Level 2 AOD is 

substantially different from Collection 5.1 [Levy et al., 2013]. In general, AOD decreases over 

land and increases over ocean with Collection 6. These changes are due to a variety of algorithm 

updates including better detection of thin cirrus clouds, a wind speed correction, a cloud mask 

that now allows heavy smoke retrievals, better assignments of aerosol types, and updates to the 

Rayleigh optical depths and gas absorption corrections [Levy et al., 2013]. The normalized mean 
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bias in AOD estimated for Collection 5.1 against Collection 6 is shown in Figure 4.5. In general, 

Collection 5.1 is biased low over most regions, with the exception of more desert regions, where 

it is biased high. Results are similar over China and the United States. We do note that some of 

these differences are limited in part by the number of available observations; however, here we 

only show grid boxes that have at least 200 observations. These differences would also impact 

the derived PM2.5 (and can explain some differences between our results and previous studies 

based on MODIS Collection 5.1). In particular, because Collection 6 suggests higher AOD over 

many of the urbanized regions, the derived PM2.5 and resulting exposure estimates (all other 

variables constant) would be greater.  

 

 

Figure 4.5 Percent Difference in AOD from using MODIS Aqua Collection 5 

compared to AOD with Collection 6 for 2004-2011 over (a) the United States and 

(b) China (Collection 5-Collection 6/Collection 6). 

 

We ascertain the potential uncertainty in satellite AOD by comparing satellite 

observations to AERONET. In Figure 4.6 and Figure 4.7, we show the mean normalized gross 

errors between AOD from each satellite instrument and AERONET sampled to all available days 

during the time period of 2004-2011 for the U.S. and China. Note that some of these sites were 

established for field studies and only provide a few months of data. As we use all available data, 
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we are not accounting for bias that might have some seasonality (i.e. changes in surface 

properties).   

 

Figure 4.6 Mean Gross Error in AOD between satellites (a) MODIS Aqua 

Collection 6, (b) MISR, (c) MODIS Aqua Collection 5 and (d) MODIS Terra 

Collection 5 and AERONET AOD for 2004-2011. 

 

From these comparisons, we see that the satellites generally agree with AERONET better 

in the eastern U.S. and eastern China and have larger biases in the west near deserts and at 

coastal regions where there could be issues distinguishing land and water in the retrieval 

algorithm. MNGEs at each AERONET site are generally similar among the instruments, with 

greater differences at these western sites. While Collection 6 does reduce the bias at several sites 

along the East Coast in the U.S., it is generally more biased at the sites in Arizona, Nevada, and 
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New Mexico. However, the biases between MODIS Collection 6 and AERONET are more 

similar to the biases in MISR than compared to Collection 5.   

 

Figure 4.7 Same as Figure 4.6 but for China. 

 

 To calculate the uncertainty in premature mortality due to acute exposure from estimates 

made with the (MODIS Collection 6) satellite AOD, we use the MNGE (from daily 

observations) calculated from all sites in the west and all sites in the east for each country. To 

calculate the uncertainty for chronic exposure, we calculate a NMB (from annual averages). The 

NMB for each site is shown in Figure 4.8. There are fewer sites in Figure 4.8 because we require 

at least 50 (approximately one a week) valid observations in order to calculate an annual average. 

At many sites, the NMB is much less compared to MNGEs. This is expected, as annual values 

can average out larger daily fluctuations. However, sites where the NMB is on the same order as 
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the MNGE (i.e. the western U.S.), are suggestive of a systematic bias that cannot be averaged out 

over time. Table 4.1 summarizes the statistics for East and West U.S. and China. Compared to 

the standard MODIS AOD retrieval uncertainty, our overall NMB is less in the eastern U.S. (-

1%) and western China (11%) and higher in the western U.S. (40%) and eastern China (18%). 

Our MNGEs are significantly greater than the standard uncertainty and our NMB values (Table 

4.1).  

   

Figure 4.8 Normalized mean bias in annual average AOD from MODIS 

Collection 6 compared to AERONET sites in (a) the U.S. and (b) China.  

 

Table 4.1 Regional satellite AOD MNGE and NMB values determined from 

comparison with AERONET AOD and used to determine uncertainty range in 

mortality estimates. 

Region 
NMB 

[%] 

MNGE 

[%] 

China West 11 58 

 East 18 36 

U.S. West 40 76 

 East -1 37 

 

4.2.2 Methods to address biases associated with surface properties 

There are potentially ways to reduce the biases in MODIS AOD as shown in previous 
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studies [van Donkelaar et al., 2010; Hyer et al., 2011]. AOD retrievals using the MODIS 

instruments assume surface reflectance properties that can lead to known (and unknown) biases 

in AOD, such as over the Western U.S. It was previously suggested by Hyer et al. [2011] that 

this bias can be minimized by using the MODIS Bidirectional Reflectance Distribution Function 

(BRDF) Albedo Product [Schaff et al., 2002] to derive an empirical relationship to correct AOD 

values. However, as shown in their study, minimal improvements were seen over the Western 

United States. Additionally, their empirical relationships were derived for Collection 5 and the 

strong filtering criterion that they employ greatly reduces our sample size, making it impractical 

for the daily estimates needed in this study.  

Another method used by van Donkelaar et al. [2010] also uses the BRDF Albedo 

product, but instead of applying the empirical formula, uses it to establish land surface types 

(separated by their ratios of black sky to white sky albedo at different wavelengths). These 

regions were then grouped together for comparisons with AERONET stations and any outliers 

are removed. This was done for monthly averages where it is more likely that an outlier would 

suggest a systematic bias rather than simply a high AOD event. We therefore chose not to use 

this method. As our goal is not to produce a product but to delineate uncertainties, we instead use 

comparisons with AERONET AOD (Table 4.1) to determine the uncertainty in satellite AOD 

and determine the range of values that could be calculated if these regional biases are considered. 

 

4.3 Uncertainties in Mortality Burden Estimates 

We compare our results to premature mortality burden estimates from other studies in 

Table 4.2. In general, our estimates for the U.S. and China are higher than most previous global 

estimates, except for Anenberg et al. [2010] and Fann et al. [2012]. In particular, our estimates 

appear to be double those found by Lelieveld et al. [2013].  The spread among these studies can 
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be attributed to the data used (i.e. Collection 5 rather than Collection 6 and choice of baseline 

mortality rates) as well as the risk ratios and response functions. For example, Evans et al. 

[2013] also use satellite-based concentrations (using MISR/MODIS Collection 5 and GEOS-

Chem), but their resulting mortality estimates are much lower. However, unlike this study, they 

use a threshold value and a different response function than we use for our initial results along 

with lower baseline mortalities.  

Table 4.2 Premature mortality from PM2.5 exposure by all-cause (All), 

cardiovascular disease (CVD) and lung cancer (LC) as estimated in other studies 

for the globe, U.S., and China. Values are for (x1000), and colors represent 

studies that give higher (red) or lower (blue) estimates. 

Study U.S. (North America) China (Asia) Global 

 All Heart LC All Heart LC All Heart LC 

Evans et al., 2013       3313 1256 222 

Fann et al., 2012 130         

Anenberg et al., 2010 141 124±37 17±7 2736 2584±618 152±53 3721 3499±864 222±80 

Lelieveld et al., 2013 55 46 9.1 1006 898 108 2200 2000 186 

Cohen et al., 2005    487   800 712 6.4 

Lim et al., 2012       3200   

Fang et al., 2013  38 4.4  661 53  1532 95 

Silva et al., 2013       2100 1950 150 

This Study: Satellite 113 82 15 2084 1512 220 - - - 

This Study: Model 104 75 14 2171 1570 231 - - - 

 

For an initial metric of the uncertainty in the risk ratios that we used, we include whiskers 

on the mortality estimate bar plots (Figure 3.13 and Figure 3.15) to denote the range using the 

95% confidence interval determined in the Laden et al. [2006] and Krewski et al. [2009] studies. 

Using just these confidence intervals as a measure of uncertainty suggests that there is still a 

large range of uncertainty in population-level health responses to exposure and caution should be 

exercised when attempting to transfer these values beyond the population from which they were 

determined in order to estimate national-level mortality burdens based on ambient 

concentrations. The choice of concentration response function and/or risk ratio will have a large 
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impact on our results.  The difference between the satellite-based and model estimates is within 

this range, as well as results from many of these previous studies.  

While we chose to use risk ratios from the Laden et al. [2006] and Krewski et al. [2009] 

studies, it is evident (Figure 3.1 and Figure 3.2) that there are a range of values from different 

exposure studies. While these studies attempt to account for differences in populations, lifestyles, 

pre-existing conditions, and co-varying pollutants, relative risk ratios determined from each 

study still differ. This is likely due to variables not taken into consideration, errors in exposure 

estimates (“exposure misclassification”) [Sheppard et al., 2012], and because, although the long-

term effects of exposure to atmospheric pollutants have been well-documented, the 

pathophysiological mechanisms linking exposure to mortality risk are still unclear [Chen and 

Goldberg, 2009; Sun et al., 2010; Pope and Dockery, 2013] making it difficult to determine how 

transferable results are from the context in which they were generated.  

We also chose to use the same relative risk values for every location. However, studies 

have found that different populations have varied responses to exposure (potential for “effect 

modification”) [Dominici et al., 2003]. One of the main uncertainties in our method is relying on 

risk ratios determined from epidemiology studies conducted in the United States, which may not 

represent the actual risks for populations in China. Long-term epidemiology studies examining 

exposure to PM2.5 across broad regions of China are scarce, but studies using PM10 have 

suggested lower exposure-response coefficients than determined by studies conducted in the U.S. 

and Europe [Aunan and Pan, 2004]. 

Additionally, there is difficulty in separating the health impacts of acute and chronic 

exposure. Because short-term exposure disproportionally impacts sensitive populations, it has 

been suggested that time series analyses which find correlations between acute exposure and 
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mortality are merely noting the “harvesting” or “displacement” effect, in which there is a short-

term displacement in time of death of these vulnerable populations and no impact on the absolute 

mortality [McMichael et al., 1998]. Calculating mortality from both acute and chronic exposure 

could then lead to an overestimate in annual death rates. If this were the case, it would be 

expected that there would be an increase in risk of mortality immediately following an event and 

then a period of decreased risk [Schwartz, 2001].  However, several studies that have regressed 

the relationship using lag correlations have shown that mortality risks do increase slightly 1-2 

days following exposure but that the risk of mortality at longer lags (5, 20, 40 days) is even 

greater than the risk immediately following exposure [Pope et al., 1992; Schwartz, 2000; 

Zanobetti et al., 2002; 2003]. This suggests that the noted increase in mortality is not simply due 

to a harvesting effect, but that there can be larger long-term effects even without long-term 

exposure [Pope, 2007]. Additionally, studies have suggested that the biological response to short 

and long-term exposure could be different [Pope et al., 2004; Sun et al., 2010]. 

The distinction between effects from short-term and long-term exposure can be further 

confounded by considering that chronic exposure, which in studies generally refers to annual 

average concentrations, could be considered cumulative short-term exposure. Using annual 

averages can de-emphasize a time period, such as a fire or stagnation event, where 

concentrations are an order of magnitude larger than the average, but only for a short period of 

time. Pope [2007] suggests that we need a better understanding of the impacts of both the length 

and degree of exposure, as the responses could be very different. Additionally, it would be useful 

to have more studies that examine both acute and chronic exposure simultaneously to assess 

whether long-term exposure can lead to a vulnerable population that is more susceptible to acute 

exposure in the future [Schwartz, 2000]. Furthermore, it would be useful for determining health 
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benefits of improved air quality.  Correia et al. [2012] found an increase in overall life 

expectancy with decreasing PM2.5 concentrations. Comparing different time periods, Laden et al. 

[2006] found reducing atmospheric concentrations was associated with reductions in 

cardiovascular and respiratory mortality risk but little reduction in mortality risk due to lung 

cancer, suggesting that some individual effects might be irreversible. 

 Differences in mortality burden estimates between studies are attributable not only to the 

PM2.5 concentrations determined, but also the methodologies and risk ratios that are used. As we 

show here, the response function can have a significant impact on our results.  

 As shown in Equation 3.3, we chose to use a linear response function for our initial 

comparisons. Some studies have suggested that linear response functions can greatly 

overestimate responses at high concentrations, where it would instead be expected that responses 

would start to level off [e.g. Pope et al., 2011]. We therefore compare mortality estimates also 

using a log-linear function (equation 4.2 from Krewski et al., 2009), a power law function for 

cardiovascular disease (equation 4.3, where I is the inhalation rate of 18m
3
day

-1
, β = 0.2730, α = 

0.2685 from Pope et al., 2011 and as used in Marlier et al., 2013), and a ceiling value where we 

assume that the response is the same for any value over 30 µg/m
3
. We also show results using a 

5.8 µg/m
3
 threshold (often used with the Krewski et al. [2009] RRs as it was the lowest 

concentration observed) and the Laden et al. [2006] RRs for cardiovascular and lung cancer.  

RR= exp [ β (C-C0) ]       (4.2) 

RR= 1 + α (I x C) 
β
       (4.3) 

Table 4.3 gives the list of input for our comparisons of results using different CR 

functions and the resulting percent change compared to our initial conditions. These values are 

also shown in Figure 4.9 for chronic exposure. The largest difference is between using the risk 
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ratios from Laden et al. [2006] vs. using Krewski et al. [2009]. In the U.S., using a threshold 

value of 5.8 µgm
-3

 has a significant impact, reducing estimates by more than half (which 

consequently would put our estimates into agreement with Lelieveld et al. [2013]). The impact of 

a threshold is much less for estimates for China because annual concentrations are high enough 

that subtracting a threshold makes little difference. Conversely, using a ceiling value of 30 µgm
-3

 

produces no difference in the U.S. (0% of the population experiences annual concentration 

values greater than 30 µgm
-3

), while strongly reducing estimates in China.  

Most experts in health impacts of ambient air quality agree that there is no population-

level threshold (although there may be individual-level thresholds) [Roman et al., 2008]. Other 

studies have not used a threshold value, but a “policy-relevant” background concentration 

(generally >1µgm
3
) to calculate mortality attributable to concentrations due to national 

anthropogenic emissions (not transport or natural sources, ie. concentrations that policies might 

be able to reduce).  

We also see that the shape of the CR function produces different results between the U.S. 

and China. In the U.S., a log-linear CR function is almost equivalent to a linear response because 

of the low concentrations, while a power law function increases estimates as opposed to in 

China, where a log-linear relationship increase estimates and a power law function decreases 

estimates. This is because log-linear functions are very similar to linear function at low 

concentrations, higher at mid-range concentrations (~10-30 µgm
-3

), and then lower at high 

concentrations. Power law functions are greater than linear and log-linear at lower 

concentrations, but tend to level off at lower concentrations than log-linear functions.  
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Table 4.3 Input for premature mortality estimate sensitivity tests and the resulting 

percent change in mortality due to chronic exposure as shown in Figure 4.9. 

Parentheses are for values determined from satellite-based concentrations.  

 RR source Threshold CR shape % Change USA % Change China Study using method 

Krewski Krewski et al., 2009 No Linear 
base base Evans et al., 2013; 

Fan et al., 2012 

Krewski-T Krewski et al., 2009 Yes Linear 
-62 (-56) -8 (-8) Evans et al., 2013; 

Annenburg et al., 

2010 

Laden Laden et al., 2006 No Linear 89 (87) 45 (47) Fan et al., 2012 

Laden-T Laden et al., 2006 Yes Linear -24 (-14) 36 (38)  

Krewski-30 Krewski et al., 2009 No Linear to 30 ugm-3 
0 (0) -34 (-31) Anenburg et al., 

2010 

Krewski-LL Krewski et al., 2009 No Log-Linear 

5 (6) 21 (20) Evans et al., 2013; 

Fann and Risley, 

2013 

Krewski-PL Krewski et al., 2009 No Power Law 52 (44) -18 (-17) Marlier et al., 2013  

 

  

 

Figure 4.9 Average annual premature mortality due to PM2.5 exposure in the U.S. 

and China as a function of the risk ratio and shape of C-R function. Colors 

indicate cause of death and satellite-based PM2.5 estimates are hatched, model-

based estimates are solid. Explanation of input for each estimate is given in Table 

4.3. 
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 We conduct similar tests for premature mortality due to acute exposure. In order to not 

confound these comparisons with sampling issues, we show results using the model for a single 

year (Figure 4.10). We again test the impact of using a threshold, ceiling and log linear function 

(Table 4.4). Results are similar to the sensitivity tests for chronic exposure in that the threshold 

has a significant impact on estimates for the U.S. and much less on estimates for China. Because 

most mortality associated with acute exposure occurs due to days with extremely high 

concentrations, using a ceiling value reduces estimates in China by about half. Using a log-linear 

response function makes the least difference, but does slightly increase estimates.   

Table 4.4 Input for premature mortality estimate sensitivity tests for acute 

exposure and resulting percent change in mortality shown in Figure 4.10. 

 Threshold CR shape % Change USA % Change China 

Ostro No Linear base Base 

Ostro-T Yes Linear -56% -10% 

Ostro-30 No Linear to 30 ugm-3 -6% -51% 

Ostro-LL No Log-Linear +1% +5% 

 

 

Figure 4.10 Average annual premature mortality due to PM2.5 exposure (using 

model concentrations) in the U.S. and China as a function of the risk ratios and 

shape of C-R function with colors indicating cause. Explanation of input for each 

estimate is given in Table 4.4. 

While we explore a variety of factors that could influence our results and those of other 

studies here, there are also many other factors that we have not considered explicitly. For 
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example, in this study we used bulk mass concentrations of PM2.5 and did not take into account 

any differences in aerosol composition or size as there remains uncertainty about which size and 

chemical components of PM are most harmful to human health. It is generally suggested that fine 

particles (or PM2.5) are more toxic than coarse particles [Schwartz et al., 1996; Burnett et al., 

2000; Cifuentes, Luis et al., 2001; Franklin et al., 2008; Zanobetti and Schwartz, 2009]; 

however, Ostro et al. [2006] found stronger effects on mortality with coarser particles. This 

discrepancy could also be due to difference in composition as Zanobetti and Schwartz [2009] 

show stronger seasonal and regional variability in the coarse mode particle effects than in the 

fine, suggesting the toxicity could be more related to composition than size. Krall et al. [2013] 

suggest that organic and elemental carbon are more toxic than inorganic species. Cao et al. 

[2012] also find stronger respiratory mortality responses to organics; but for all-cause mortality, 

the response is stronger for ammonium nitrate. Franklin et al. [2008] suggest that the association 

between non-accidental mortality and PM2.5 exposure is greatest when there are greater 

concentrations of aluminum, arsenic, sulfate, silicon, and nickel, while Burnett et al. [2004] 

suggest mortality is more associated with sulfate ion, iron, nickel, and zinc. Ostro et al. [2010] 

also find that mortality associations with exposure to PM2.5 differ by season and composition, 

suggesting that risk ratios based only on PM2.5 mass may underestimate the effects with regards 

to specific components. This range of conclusions highlights the need for further studies which 

focus on effects related to composition of particles as understanding which emission sources 

produce the most toxic particles could be very useful for regulation purposes [Dominici et al., 

2014]. 
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4.4 Discussion 

In the previous sections, we have discussed a variety of uncertainties and methodological 

choices made that could impact mortality burden estimates using model and satellite-based PM2.5 

concentrations. The impact this uncertainty has on our burden estimates is summarized in Figure 

4.11 and Figure 4.12. Here we show the average mortality determined using the model or 

satellite-based concentrations, along with error bars for the confidence intervals on the risk 

ratios, the uncertainty due to satellite AOD, the potential uncertainty in ƞ, and a range of 

estimates related to the shape of the C-R function and risk ratios. We show these results 

separately, but their effects can also be cumulative. From these figures, it is evident that the 

discrepancy between the satellite-based and model mortality estimates is within the range of 

uncertainty associated with the satellite AOD. The uncertainty in satellite AOD and the model ƞ 

also creates a larger range of premature mortality estimates with regards to acute exposure rather 

than chronic exposure. For chronic exposure, we see that the choice of C-R function and RR 

clearly spans the largest range of mortality burden estimates. This is not as evident in our figure 

for acute exposure because we only show results from the limited sensitivity tests shown in the 

previous section. However, if we compare our results to the range denoted by the confidence 

intervals, the uncertainty in RR still overshadows the other uncertainty in our mortality burden 

estimates. If we included all of these uncertainties, we would cover the range of premature 
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mortality estimates given in Table 4.2.  

 

Figure 4.11 Premature mortality burden (colored by cause) due to chronic 

exposure and uncertainty estimates for the U.S. and China. Hatched bars indicate 

estimates using satellite-based concentrations; gray lines denote confidence 

interval for risk ratio. Boxes denoted range of uncertainty in satellite AOD, ƞ, and 

choice of the concentration-response function and risk ratio for sensitivity tests in 

Figure 4.9.  

It is also important to note that we are calculating national mortality burdens attributable 

to PM exposure, in which potentially large errors for specific locations can be canceled 

out in the aggregate. Therefore, regionally we might expect a larger range of estimates.  

 

Figure 4.12 Premature mortality burden (colored by cause) due to acute exposure 

and uncertainty estimates for the U.S. and China. Hatched bars indicate estimates 

using satellite-based concentrations; gray lines denote confidence interval for risk 

ratio. Boxes denoted range of uncertainty in satellite AOD, ƞ, and the choice of 

concentration-response function and risk ratio for sensitivity tests in Figure 4.10. 
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4.5 Conclusions 

 

While exposure to PM2.5 is associated with premature mortality, the magnitude of this 

response is still unclear and we can conclude that determining mortality estimates at the 

population level is a tentative process. When put in the perspective of uncertainties in AOD, 

choices regarding the response functions, and (potentially) the AOD-to-surface-PM2.5 

relationship; satellite-based or strictly model-based concentrations do not predict significantly 

different results at the national scale, even though they may produce different surface 

concentrations. Therefore, while using satellite observations to constrain model PM2.5 

concentrations can be very useful, there remain many areas linked to this methodology where 

improvements could reduce the uncertainty in mortality burden and exposure estimates, 

especially concerning acute exposure.   

As we have shown that the potential model biases are not globally consistent and the ƞ 

relationship is highly variable based on local sources, transported pollution and dust, and 

meteorology; further regional studies need to be conducted in order to assess and improve the 

model’s ability to simulate AOD, PM2.5, and the relationship between the two.   

Our sensitivity analysis highlights the strong variability in PM2.5 and AOD, suggesting 

time-averaged (running mean) values or intermittent sampling may not correctly represent 

concentrations to which people are exposed. Therefore, there should be a stronger push for more 

daily monitoring and again, while the satellite can help constrain the model in regions with less 

certainty in model emission inventories, this uncertainty will still have a strong impact on the 

resulting satellite-based concentrations. Improving spatial and temporal coverage of observations 

is therefore extremely important. 
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 In regards to mortality burden estimates, a large range of values could be determined 

bases on our choice of the risk ratio or shape of concentration response function. While the 

epidemiology studies attempt to statistically account for differences in populations and 

confounding variables, there is still a large spread in determined risk ratios. Further studies will 

be necessary to better account for exposure misclassification and reduce uncertainties in potential 

effect modification and determine how transferable CR functions and RRs are for this kind of 

study. 
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5 Summary and Future Work 

  

Exposure to atmospheric aerosols is currently one of the leading environmental concerns pertaining 

to human health, and these particles are also important for our climate system. Since 1999, the NASA 

constellation of earth observations has been providing insight into the transport, processing, and budget of 

atmospheric particles. These remote observations also offer a new set of constraints for improving and 

investigating model simulations of atmospheric aerosols.   

The focus of this dissertation was to use satellite observations of aerosols in conjunction with a 

global chemical transport model to improve our understanding of surface air quality. The motivation for 

this work was two-fold: estimating the burden on health and potential impacts on climate. While health 

impacts were more explicitly discussed, implications from Chapter 2 are also important for climate. 

 Chapter 2 explored aerosol loading and composition in the Southeastern United States, a region 

of great interest for climate and for the potential interaction of biogenic and anthropogenic sources. This 

work revealed the disconnect between the observed seasonality in surface mass concentrations and 

satellite AOD, which was investigated in the context of a model simulation of aerosol loading in the 

region.  The main conclusions of this section were as follows: 

1.) The model underestimates summertime AOD over the SEUS as observed by the suite of NASA 

satellites and the magnitude of seasonal variation between summer and winter.  

2.) The model also slightly underestimates the magnitude and seasonality in surface mass 

concentrations, but the seasonality in AOD is not being driven by changes in surface mass 

concentrations, as the magnitude of seasonality in AOD is 100-300% and surface observations 

only show ~10-40%. 

3.) New measurements of vertically-resolved aerosol extinction from the CALIOP instrument 

suggest that the seasonality in AOD that is not captured by the model is due to an underestimation 

in extinction above the surface. 
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4.) Model sensitivity simulations suggest that this above-surface enhancement is not due to a bias in 

the mixing height or a current surface source but must be due to another missing source.  

This study was the most comprehensive investigation of aerosol loading undertaken in the Southeastern 

United States to date. Despite this, we lacked the observations to pinpoint the source of aerosols in the 

lower free troposphere. This has however motivated follow-on work.  Field measurements taken during 

the SOAS and SEAC
4
RS campaigns that occurred in summer 2013 are currently being analyzed which 

may provide some useful insights (although 2013 had above average rainfall and fire activity). However, 

in order to determine how representative these field campaigns are to other years in terms of aerosol 

sources, loading, and meteorology; future work should also explore interannual and interseasonal 

variability in the region. 

 The Southeastern U.S. is of interest due to the observed regional cooling and the suggestion that 

aerosols could be driving temperature trends [Portmann et al., 2009]. This hypothesis was not explored in 

this work, but our results could be useful for such an endeavor. Modeling studies that have attempted to 

simulate the “warming hole” have found it centered over the Midwest rather than the Southeastern U.S. 

[Leibensperger et al., 2012]. A missing source of aerosol over the Southeastern U.S. could explain some 

of this discrepancy. Additionally, in order to link aerosol trends to temperature trends, knowledge of the 

vertical profile is important, especially for estimating radiative effects.  

 In a broader context, this work provides an example of how to combine information from a 

variety of observations and a model in order to determine what we do not understand (or do not simulate 

in the model) well about atmospheric processes or aerosol sources and then identifying the observations 

that would be useful to improve our understanding.  

 This example links to the other chapters in which we further explored how limited observations, 

potential model uncertainties, and or details we do not understand about health effects might impact 

national premature mortality burden estimates and could lead to a range of results.  Multi-year average 

satellite-based PM2.5 datasets have been previously used for calculating chronic exposure and mortality 

burdens. However, long-term mean concentrations are often insensitive to hidden peaks in daily 
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concentrations, so we explored whether satellite observations could also be used to determine acute 

exposure. This process is difficult due to the limitations of coverage for polar-orbiting satellites, but some 

spatial interpolation techniques were analyzed and found to improve coverage without causing drastic 

biases. We also found that because of strong daily variability, temporal averages are not a good substitute 

for missing data. While comparisons with surface observations in the U.S. showed that the model 

underrepresented days with the highest concentrations, the satellite-based estimates did provide more and 

higher daily concentrations and greater exposure, suggesting potentially better representations of extreme 

events (especially with regards to fires). Surface PM2.5 measurements in China were not available for the 

time period studied here, but are now being taken more routinely. Future work comparing model 

simulated values to these observations will help us better understand model performance in China. The 

main conclusion from Chapter 3 was that acute exposure could account for 2-3% of the premature 

mortality due to PM2.5 exposure in the U.S. and 15-20% in China. We provided these as a national-level 

burden because (much like concentrations); using nationally-representative response functions can cause 

large errors for specific locations, but some of these errors should cancel out in aggregate. 

 However, not all errors in mortality burden calculations cancel out on longer timescales or in 

national totals. Therefore, in Chapter 4, we explored the uncertainty in our mortality burden estimates 

which also provides a context for comparing the range of results from previous studies (Table 4.2) that 

used modeled, spatially interpolated surface observations, and satellite-based concentrations. In this 

section, we detail how different assumptions could account for some of the discrepancies in these 

estimates and where most of the uncertainty in these endeavors arises. In particular, we looked at potential 

model uncertainties, satellite AOD uncertainty, and different functions for determining mortality burden 

estimates. To our knowledge, this is the first time that the role of these different factors has been 

compared.  

In terms of model uncertainty, our goal was to determine the variables that are the most important 

for the model to simulate correctly in each region and the range of potential model uncertainty. The 

sensitivity tests using the seasonally-averaged values stress the importance of potential systematic biases 
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and the need for daily-resolved values. We saw that the vertical profile was generally the most important 

variable, but grid resolution and relative humidity can also be important on specific days and in specific 

locations. These sensitivity analyses suggest that more regional studies (such as our example over the 

Southeastern U.S.) should be conducted in the future to better understand and better simulate the AOD-

PM2.5 relationship (η). The developing SPARTAN network will hopefully provide more continuous 

measurements of PM2.5 collocated with AERONET observations in order to have measurements against 

which to compare the model ƞ [Snider et al., 2014].While satellite observations may be useful for 

constraining model concentration estimates, ultimately the goal for model development should be to 

improve the model simulation with updated emission inventories and better representation of atmospheric 

processes. This is specifically important in China as potential model uncertainty is much larger as shown 

not only by our sensitivity analysis, but also because of the lack of long-term surface measurements to 

validate against. As concerns over air quality continue to rise, more measurements of surface PM2.5 are 

being made available and can provide necessary model validation.  

We also compared the potential model uncertainty to uncertainty in the satellite retrieval of AOD, 

which, in an aggregate sense, was less. However, comparisons with AERONET sites showed greater 

errors at specific locations (desert regions) and on shorter timescales. These uncertainties in satellite AOD 

and model simulated AOD-PM2.5 relationships more than accounts for the difference between the model 

estimates and the satellite-based estimates of mortality. 

Reducing uncertainty in satellite-retrieved AOD is a matter of both improving coverage and 

better accounting for regional biases.  Future geostationary satellites (such as TEMPO) will be useful for 

both of these endeavors and provide extremely valuable information for daily monitoring and tracking of 

air quality. It is difficult to globally correct MODIS for differing regional biases and sampling issues, but 

increased temporal coverage over a fixed location should aid in reducing potential biases. Additionally, 

the ability to track plumes would improve our understanding of local and regional influences and provide 

beneficial information for regulating and reducing exposure.  
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 Finally, we examined the range of premature mortality burden estimates determined using 

different health-risk assumptions. In our work, we determine concentration not exposure. Therefore, to 

take atmospheric concentrations and then estimate the burden of mortality, several different assumptions 

have to be made: 

 (1) Is there a causal relationship?  

(2) What is the shape of the concentration-response function (and is this response transferable to 

different regions and people groups)?  

(3) What is the magnitude of this relationship (as different studies determine different risk ratios) 

and does it vary (can we use one value for all locations, at all times and under all circumstances)?  

Our mortality estimates differed from estimates in other studies, not only because the PM2.5 

concentrations differ (associated with our use of the latest MODIS Collection 6 product, as well as the 

specific version of the GEOS-Chem model), but also because of our method to calculate this burden. We 

show that the range of results that can be obtained when applying different concentration-response 

functions was much larger than the range of uncertainty from the model or satellite AOD. This 

demonstrates the tentative nature of calculating national-level mortality burdens despite the strides made 

in using satellite to improving exposure estimates. This work emphasizes that there is a need for further 

bridges to be built between atmospheric chemistry research and epidemiology to improve our 

understanding of the health burden of atmospheric particulate matter.  

This study has focused on the potential of using satellite-based PM2.5 as a measure of ambient 

concentrations. Compared to using fixed-site monitors, this could potentially reduce exposure 

misclassification. However, we are still using results on a coarse grid resolution to estimate population 

exposures. Future work is required to improve how we relate ambient concentrations to population- and 

personal-level exposure. Additionally, as there exists a large range of relative risk ratios in the literature, 

additional guidance from the epidemiological community on  how transferable results from each study are 

beyond the context in which they were determined, both in terms of the population characteristics and the 

particulars of the PM mass (size, composition, etc.), is necessary.  
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In this dissertation, I explored how atmospheric observations and model simulations can be 

synthesized in order to investigate aerosol loadings and estimate health impacts. The complexity of 

atmospheric PM suggests that new observations of aerosol composition and properties, both in situ and 

remotely sensed, will be critical for further model development and application for health studies.    
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Appendix I. Death Rates and Baseline Mortality  

 

The following Figure shows the variability in death rates and baseline mortality for the 

U.S. Death rates for cardiovascular disease have declined from 2004 to 2010 in every state 

(except Alaska) while death rates for lung cancer and respiratory disease have been variable.  

 

Figure A1 Crude death rates for (a) heart disease, (b) lung cancer and (c) 

respiratory disease (given as per 100,000 people) for the United States and (d,e,f) 

the respective baseline mortalities.  
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Appendix II. Normalized Mean Bias between Model and Satellite Observations  

 

This following figure is similar to Figure 3.8; however, it uses the original 

satellite observations without spatial interpolation. General patterns are similar although 

not as evident due to lack of observations. 

 

Figure A2 Same as Figure 3.8 except determined using observations which have 

not be spatially interpolated. 
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Appendix III. Number of days with concentrations above daily standard 

 

The following figures show the number of days that the concentration in that grid box 

was higher than the daily (24 hour) standard of 35 µgm
-3

 for the U.S. and 75 µgm
-3

 for China. 

This is the proposed standard for China that is to take effect nationwide in 2016 although many 

key cities are already required to implement it. To note for the figure, these are sampled to days 

with available satellite observations and do not cover all days in the year. In the U.S., using the 

satellite-based concentrations suggests that there are significantly more days that are out of 

compliance, although we do see that the overall number has decreased over time. Additionally, 

from the maps, it is evident that these are often strongly related to fires such as the Bugaboo 

Scrub Fire in Georgia in 2007, the Murphy Complex Fire in Idaho in 2007, the multiple fires in 

California in 2008 (Montecito Tea, Sayre, Freeway Complex, etc.), which suggests that the 

model is potentially under predicting fire impacts (either in AOD or surface PM2.5). Also to note 

is the region over the Southeastern United States where the satellite suggests a widespread region 

with more days out of compliance up to 2007. This is potentially related to the issue discussed in 

Chapter 2 where the model is not simulating the vertical distribution correctly. 

Even with a higher standard, regions of China have substantially more days that would be 

out of compliance if these standards were already in place. The model suggests more days than 

the satellite-based. This could be linked to issues in emissions but could also be due to the 

satellites mischaracterization of heavy plumes.     
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Figure A3 Number of days each year when the surface PM2.5 is greater than the 

national standard of 35 µgm
-3

 for the U.S. and 75 µgm
-3

 for China using the 

model or satellite-based concentrations. These are sampled to days with satellite 

observations. Note the difference in color bars for the two regions. 
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Appendix IV. Seasonally averaged (2004-2011) surface relative humidity used in model 

simulations 

 

 

Figure A4 Average surface relative humidity during (a) winter (DJF), (b) spring 

(MAM), (c) summer (JJA), and (d) fall (SON) in the U.S. for 2004-2011.  
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Figure A5 Same as Figure A4 but for China. 
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Appendix V. Normalized Mean Bias in Annual Average PM2.5 from ƞ Sensitivity Tests 

 

 These figures show the distribution of normalized mean biases (Equation 3.5) in annual 

average PM2.5 determined from sensitivity tests and compared to the original model simulation. 

Note that because these rely on annual averages, the distributions shown represent spatial 

variations.  

 

Figure A6 Distribution of normalized mean biases in annual average PM2.5 for 

grid boxes in each region of the U.S. for 2009 determined from sensitivity tests 

discussed in Section 4.1.1. Map shows annual average simulated surface PM2.5. 
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Figure A7 Similar to Figure A6 but for China 2006. 
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Appendix VI. Interannual Variability 

 

 In our sensitivity analyses, we used model simulations for a single year. As there will be 

some variability in weather and transport and PM2.5 sources, sensitivities might also change 

between years. In order to determine if this is a substantial area of concern, we examine the 

interannual variability in AOD, ƞ, PM2.5, and RH in the following plots. From this series of 

figures, we can determine that, in general, we would expect interannual variability to impact our 

results by generally less than 5%.  

 

Figure A8 Standard deviation of relative humidity for each season (a) DJF, (b) 

MAM, (c) JJA, and (d) SON. 
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Figure A9 Same as Figure A8, but for China 

 

Figure A10 Multi-year average PM2.5 concentration (row 1), standard deviation 

in annual concentrations (row 2), and coefficient of variation (row 3) for the U.S.   
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Figure A11 Similar to Figure A10 but for AOD. 

 

Figure A12 Similar to Figure A10 but for ƞ. 
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Figure A13 Similar to Figure A10 but for China. 

  

 

Figure A14 Similar to Figure A11 but for China. 
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Figure A15 Similar to Figure A12 but for China.  


