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ABSTRACT 

BAROTROPIC INSTABILITY IN THE INNER CORE OF TROPICAL CYCLONES 

The theory of barotropic stability of a vortex is presented including Rayleigh's condition, 

Fj~rtoft's condition, Ripa's Theorem and Arnol'd's Theorem. The probable profile of 

potential vorticity (PV) in a tropical cyclone is discussed. It is likely that this profile has 

at least one reversal of the radial gradient of PV in the inner region of the storm. This 

reversal of PV gradient is a necessary condition for barotropic instability. 

Linear normal mode analysis of many tangential wind profiles from the data set of 

Gray and Shea {1976) indicate that barotropic instability may be a common feature of 

mature tropical cyclones. The modified Rankine profile, the Holland (1980) profile and 

two profiles developed in this paper are also analyzed. Results indicate that a single 

reversal of vorticity gradient over the entire radial extent of the storm may produce low 

wavenumber instability while more localized reversals tend toward higher wavenumber 

instability. These instabilities have e-folding times on the order of a few hours and are 

generally located in the vicinity of the PV gradient reversal which is typically just within 

the radius of maximum winds. These results lead us to conclude that barotropic instability 

may be the primary cause of the polygonal eye walls which are observed in many tropical 

cyclones. 
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available on the internet via hypertext transfer protocol (HTTP) at the Colorado State 
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http:// eclipse. atmos. colostate. edu/html/jimthesis /jim. html 

This technology is an exciting new opportunity for scientists around the world to commu-

nicate ideas to each other and to the larger community. As new technology, however, it 
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Chapter 1 

INTRODUCTION 

The hurricane is one of the most studied of all tropospheric weather phenomena. Yet, 

low radar reflectivity within the eyewall, high wind speeds and relatively small spatial 

scale continue to make the inner core ( defined here as the inner 1 ° radius of the storm) of 

the hurricane one of the least understood tropospheric weather features. One identifying 

feature of almost all hurricanes is the eye, a roughly circular area of relative calm sur-

rounded by the storm. The eyewall is a cloud wall of intense convection located just within 

the radius of maximum winds. A recent study of hurricane Gloria (1985) by Franklin et 

al. (1993) is based on one of the most extensive data sets ever compiled for a single storm, 

yet no reliable data could be gathered within 13 km of the storm center. When one con-

siders that this storm had a radius of maximum winds of only 19 km it is clear that there 

remains a significant gap in our understanding of the dynamics of tropical cyclones. 

The shape of the eyewall, as mentioned above, is nearly circular. Yet, often this 

wall is observed by radar and satellite to contain some straight line configurations and/ or 

takes on the appearance of a polygon of low order (e.g. triangle, rectangle, pentagon). 

Lewis and Hawkins (1982) present observations of several Atlantic basin storms which 

form polygonal eyewalls including this radar image of hurricane Betsy (1965) (Figure 1.1) . 

Muramatsu (1986) reported observations of several storms including typhoon WYNNE 

(1980) which presented several different eyewall shapes (square , pentagon, and hexagon) 

at various times (Figure 1.2) . Black and Marks (1991) noted a mesa-vortex, which we 

believe to be a related feature, within the eye of hurricane Hugo (1989), during a rather 

dramatic flight in which an engine loss caused them to orbit inside the eye for over an 

hour in order to regain sufficient altitude to escape the storm. 
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Figure 1.1: Two examples of polygonal features observed by the Key West. Fl. . WSR-57 
radar in Hurricane Betsy (1965): a) hexagonal eye at 0748 GMT on 8 September 1965 
and b) square eye at 0803. (From Lewis and Hawkins (1982)) 
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Lewis and Hawkins gave an explanation for the formation of these polygonal eyes 

based on the superposition of horizontally propagating gravity waves. Muramatsu dis-

missed this explanation since the observed structures seem confined to a narrow region 

near the eyewall and, barring the possibility of some kind of wave guide effect , there is no · 

reason that gravity waves should be restricted to that area. Muramatsu further noted that 

these features are quite similar to features found in tornadoes and presented in theoretical 

studies by Snow {1978) and Staley and Gall {1979). 

Rotunno {1986) and Snow {1982) provide further discussion of tornado dynamics and 

tornadogenesis. The tornado vortex is observed to form within a larger tornado cyclone 

and in many cases several vortices are observed within the same cyclone. This multiple 

vortex phenomenon is also observed in vortex chamber experiments in which the swirl 

ratio, the ratio of circulation t o flow volume through the chamber, is large. Each of 

the authors also suggest that barotropic instability, although not providing a complete 

explanation, may play a roll in tornado dynamics . 

The papers discussed a ave are the only papers regarding polygonal eyes to appear 

m the refereed literature. This suggests that these features may be considered a nov-

elty and unimportant in light of the problems of determining storm track and strength. 

However, we will argue here that polygonal eyewall features are an indication of the most 

basic dynamic structure of the storm, a structure which may indeed be quite important 

in determining both the strength and the track of the hurricane. We will show that 

barotropic instability may be a regularly occurring feature of tropical cyclones, and that 

this barotropic instability may often result in the formation of polygonal eyewalls. To this 

end we will consider the two dimensional linear dynamics of a hydrostatic vortex with no 

friction and no forcing. These dynamics are well represented by the shallow water model 

which has a long history of use in this type of study, most likely beginning with Lords 

Rayleigh and Kelvin late in the nineteenth century. 

It is well accepted that, in this context, the hurricane can be considered as consisting of 

an axisymmetric tangential wind with perturbations which cause radial flow and tangential 

deviations from symmetry. With these assumptions the question left to be asked is that 
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Figure 1.2: Hexagonal eye of typhoon WYNNE (1980) at 0400 GMT on October 12. 1980, 
by the Miyakojima radar. (From Muramatsu (1986)) 

of the structure of this basic state tangential wind or the related structure of the basic 

state potential vorticity. Two types of instability may occur as a result of this structure. 

The first is inertial instability which results from a sufficient decrease of absolute 

angular momentum with increasing radius. For the inviscid axisymmetric case, given that 

the basic state velocity is everywhere positive. inertial instability requires 

in the northern hemisphere. The inner core of a tropical cyclone is generally observed to 

be a region of increasing absolute angular momentum so that inertia.I instability is highly 

unlikely there (Shea, 1972; Shapiro and Montgomery, 1993; Franklin et al. 1993). It may 

however be an important process in the upper tropospheric outflow region (Flatau and 

Stevens, 1989; 1993). A review of the theory of inertial stability can be found in Emanuel 

(1979). 

The second is barotropic instability which results from a sufficiently large radial shear 

of the tangential wind. In Chapter 2 we will consider in detail the conditions for which 



5 

barotropic instability may occur. In Chapter 3 . we will use the model developed in Ap-

pendix A to determine the magnitude of instability growth for various profiles of tangential 

wind including those observed in the extensive data set of Shea (1972) as well as several 

idealized profiles which are developed in Appendix B. 

It needs to be noted that the terms · "hurricane" and "tropical cyclone" are ·used 

interchangeably throughout the text. The terni "hurricane" is not intended to refer to a 

particular basin of formation, unless we refer to a specific named storm. 



Chapter 2 

THEORY OF BAROTROPIC STABILITY OF A HURRICANE VORTEX 

For quasi-static frictionless , axisymmetric flow with diabatic sources, the Ertel po-

tential vorticity equation is DP/ Dt = P80 / 80, where P = (f + (e) / a is the potential 

vorticity, (e = o(rv)/ror the isentropic relative vorticity (with v the tangential wind), 

a = -8p / 80 the pseudodensity in 0-space, D / Dt the substantial derivative, and 8 / 80 the 

partial derivative with respect to 0 but with absolute angular momentum held fixed · (i .e. 

the derivative along the absolute vorticity vector). In a hurricane, the diabatic heat source 

iJ is primarily due to latent heat release, which tends to be a maximum in the midtropo-

sphere of the moist convective region. Thus, the right hand side of the PV equation takes 

on large positive values in the lower troposphere at the radius of intense eye wall convec-

tion. Further, subsidence at the center of the eye would tend to bring upper tropospheric 

low PV air down to lower levels. These processes would combine to result in potential and 

relative vorticity fields which have maxima near the eye wall rather than at the hurricane 

center. Moller and Smith (1994) performed computations using a numerical model based 

on Schubert and Alworth (1987) in which the heating profile is maximum in an annular 

region of the middle trophosphere. Figure 2.1 shows their initial heating profile and the 

resulting nondimensional potential vorticity profile 48 hours later. The potential vorticity 

is defined here as q/ f = (ao/(f a) where ao is a constant reference pseudo-density and a is 

the pseudo-density in 0-space (see Schubert and Alworth 1987 for further details). These 

plots are in a potential radius coordinate system defined by f R2 = fr 2 + 2vr. 

The reversal of the radial gradient of potential vorticity at lower tropospheric levels 

in the hurricane sets the stage for combined barotropic-baroclinic instability. Since the 

potential vorticity field in the hurricane is induced by moist physical processes, we would 
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Figure 2.1: (a) The initial heating profile in degrees K per day and (b) the nondimensional 
potential vorticity profile q/ f 48 hours later in isentropic - potential radius space from the 
model calculations of Moller and Smith {1994). 

expect these same moist processes, along with barotropic and baroclinic instability effects, 

to play a role in the evolution of wave disturbances developing out of this background state. 

Apparently, barotropic processes play a particularly important role. 

Here we will present a review of the theory of barotropic instability in a vortex. We 

begin with a consideration of the stability conditions for the linear nondivergent barotropic 

model, we then discuss the divergent case and finally the extension to the nondivergent 

nonlinear case. To our knowledge this represents the complete theory of barotropic insta-

bility for a vortex as it is understood today. 

2.1 Nondivergent linear stability 

Let us first consider the /-plane nondivergent barotropic vorticity equation linearized 

about a basic state tangential flow v which varies with radius. This equation takes the 

form 

where 

8(' ,d( _ 8(' -+u-+v-- = o,· 
8t dr r8¢ 

( = / + 8(rv) 
r8r 

(2.1) 

(2.2) 
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( ' o(rv') ou' = -----, ror r8¢ 
(2.3) 

and the perturbation wind components ( u', v') satisfy the nondivergent relation 

o(ru') ov' 
--+-=0. 

ror r8¢ 
(2.4) 

We can express equation (2.1) in terms of a streamfunction, 'lj;(r, ¢, t) , defined such that 

(2.5) 

We now assume a waveform solution, 'lj;(r,¢ , t) = w(r)exp(i(m</)-vt)), where mis the 

tangential wavenumber and must be an integer to insure continuity, and II is the complex 

frequency of the wave. Thus equation (2.1) becomes 

( v - rv) [__!:__r dw - m22 w] - w d( = 0. 
m rdr dr r dr 

(2.6) 

2.1.1 Rayleigh's condition and Fjfijrtoft's theorem 

We now multiply equation (2.6) by rW'" /(v - rv/m), where w• is defined as the 

complex conjugate of W. Assuming that the perturbation streamfunction vanishes at the 

origin and at arbitrarily large r and integrating results in: 

0. (2.7) 

Separating equation (2. 7) into real and imaginary parts results in 

r:,o (m2 1'1112 + r I dw 1
2 + r 1'1112 

(ii - rvr/m) d() dr 
lo r dr Iv - rv/ml 2 dr 

0, (2 .8) 

· (2.9) 

From equation (2 .9) we see that if vi IO then d(/dr must have both signs in the domain. 

That is, the gradient of the basic state vorticity with respect to radius must reverse itself. 

This is Rayleigh 's necessary condition for instability. Another, more stringent , condition 

can be derived by considering equation (2.8). We again assume Iii IO but now we assume 
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that Rayleigh's condition is satisfied and define rs as the radius at which d(/dr = 0, and 

Ws = v(rs)/rs. From (2.9) we then get 

(2.10) 

Adding this to equation (2.8) results in 

l oo r21wf (- - )d(,d w-ws - r 
o Iv - rv/ml2 dr 

[

00 (m2 
I d'iI! 1

2
) = - lo 7 l'iI!l2 +r dr dr (2.11) 

Since the right hand side of this equation must be less than zero, it follows that 

(2.12) 

somewhere within the domain. This is Fj0rtoft 's (1950) theorem. 

2. 1.2 The semicircle theorem 

A third theorem, known as Howard's semicircle theorem, provides an upper bound 

on the growth rate of instability, Vi, for the normal mode linear problem, as well as an 

upper bound on the frequency of neutral normal modes. Here we will derive the theorem 

following Pedlosky (1970) . Later in chapter 4 we will examine the usefulness of this upper 

bound in predicting normal mode growth rates. 

We now define W = v - rv/m, and F such that 'iI! = FW. Equation (2.6) can then 

be written 

d ( 2dF ) 2 W 2F rdr rW dr - (m - 1)~ = 0. (2.13) 

Multiplying this equation by r F* , where F* is the complex conjugate of F, and integrating 

over r results in 

{oo {F*.!!:._ (rw2dF) - (m2 - nW2FF*} dr = 0, lo dr dr r (2.14) 

which can be written as 

(2.15) 
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where 

Q = ldFl2 + m2 - 1 jFj2. 
dr · r 2 

(2 .16) 

If we first assume that v is real valued we see froni ·equation (2.15) that _either Q = 0, or 

that W 2 = 0 and thus F has a singularity somewhere in .the domain. It can be shown that 

Q = 0 is a trivial solution, and it is easy to see that if F has a singularity somewhere in 

the domain then Wmin v/m Wmax which provides an upper bound on the frequency 

of normal mode rotation with respect to the basic state flow. · 

If we now assume that v = Vr + iv; where v; -f 0 we can find an upper bound on the 

growth rate (v;). Separating v into real and imaginary parts gives 

W 2 = (- TVr)
2 (rv;) 2 

. TV; ( - TVr) V - - - - - i2- V - - . 
m m m m 

Using this we can separate equation (2.15) into real and imaginary parts 

From equation (2.19), assuming v; -f 0, we have 

V 100 100 ...!:. Qr3 dr = wQr3 dr 
m o o 

where w = v/r is the basic state angular velocity. ·using 

in equation (2 .18) we have 

fo00 [ (2
: - Wmax - Wmin) W - j + ~: + WminWmax] Qr3dr · < 0. 

We now combine this with equation (2.20) to get 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

which shows that the growth rate of instability is bounded by the range of angular velocity 

in the system and the frequency of the mode. This can be represented by a semicircle in 

the (vr , vi) plane as shown in Figure 3.4 on page 25. 
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2.1.3 Algebraic stability 

When the complete solution set for any linear problem is known, any solution to 

the problem can be written as a superposition, or sum, of members of this solution set. 

In shear flow problems, however, the set of normal mode solutions generally does not 

comprise a complete set of solutions. (e.g. Drazin and Reid 1981, pp 147-153). Case 

(1960) and others have shown that there are also algebraic solutions which are required 

to represent the solution subject to an arbitr_ary initial condition. To solve the initial 

value problem it is traditional to compute the Fourier transform with respect to </> and 

the Laplace transform with respect tot (e.g., Case 1960, Farrell 1987, Carr and Williams 

1989). Thus, let 

loo 12,r 'lfsm(r) = exp(-(st+im4>)) 1P(</>,r, t)d</>dt, 
0 0 -

. (2.24) 

where m is the Fourier tangential wavenumber, and s is the Laplace transform param-

eter. The joint Fourier - Laplace transform of equation (2.1) expressed in terms of the 

streamfunction 1P' gives 

where '/POm is the m th Fourier component of the initial streamfunction. Rearrangement of 

this equation gives 

( 
82 + _!___ _ im 8 (8rv) _ m

2
) 1P = "v

21Pom. -
8r2 r8r r(s + imv) ar r8r r 2 sm s + imv (2.26) 

Carr and Williams (1989) have solved equation (2.26) for the special case of a bounded 

annular region with the basic state tangential wind decreasing as 1/r. (This choice of basic 

state renders the third term of equation (2 .26) identically zero.) Smith (1994) generalized 

this work to include an inner vortex region with uniform vorticity as well as three regions 

of constant vorticity. We have recently extended his work to multiple regions in App~ndix 

A. This model is shown to be the nonhomogeneous counterpart of the homogeneous system 

of differential equations represented by the eigensystem (A.21). We are aware of no closed 

form solutions of equation (2.26) for which the third term is not identically zero. 
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Algebraic solutions always decay given sufficient time. That is, in the limit as t -+ oo, 

the problem can always be represented in terms of exponential normal modes. However, 

they may grow faster than the exponential modes for a short time after certain "initial" 

conditions have been satisfied. We do not feel it is adequate to assume, as is often done 

in normal mode analysis, that a sufficient amount of time has passed since the "initial" 

time for two reasons. 

First , there are always processes in nature which cannot be incorporated into any 

model. Any one or combination of these forces may serve to induce the "initial" condition 

necessary for algebraically unstable modes at any time. 

Second, linear theory is only applicable in the limit of small deviations from the basic 

state. There is no reason to assume that the exponential normal modes should dominate 

the solution before this limit is reached, an algebraic mode may reach this limit itself 

before its eventual decay or it may serve to shift the exponential growth curve of a normal 

mode to the left thus affecting the nonlinear regime much sooner than the normal mode 

growth rate might suggest. 

However, the solution of the swirling initial value problem for this system is often a 

formidable task and has only been solved analytically for certain very simple basic states 

(e.g. Carr and Williams 1989, Smith 1994) . Therefore we will limit the scope of this 

paper to discussion of the discrete normal mode solutions with recognition that this is an 

important subset of the larger problem. 

2.1.4 Rayleigh's condition 

The possibility of existence of the continuous spectrum of algebraic solutions shows 

us that any theorem which relies on the assumption of waveform solutions in time may 

not be applicable to all solutions of the system. The semicircle theorem tells us something 

about the amplitude of the normal mode frequencies themselves and thus relies a priori 

on this form. However we can derive Rayleigh 's condition without the use of normal 

modes and thus be insured that it applies to all solutions to the problem. The idea 

here (and in the following sections on Ripa's theorem and Arnol'd 's theorem) is to form 

an equation consisting only of a time derivative and flux terms. This equation is then 
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integrated over the domain, with the assumption that the flux terms are suitably well 

behaved to vanish under the integral. The resulting equation states that the function 

inside the time derivative must be constant in time over the domain. If we are fortuitous , 

we can then .make a statement about the structure of a basic state which is (or is not) · 

stable to perturbations. 

We begin by forming a perturbation enstrophy equation from equation (2.1) , where 

enstrophy is defined as the square of the vorticity, 

Then we use equation {2.3) in equation {2.27) and divide by d(,/rdr to get 

+ 

Let us now define the wave-activity by 

,8(ru') _ 
0 TV a - . 

T T 

and use the continuity equation (2.4) to arrive at the wave activity relation 

Finally, integration of (2.30) over the domain yields 

:t ff A rdrd</> = d ( d()-l -Jr fr -- 1('2 rdrd</> = 0. 
dt } dr 2 

(2.27) 

(2 .28) 

(2.29) 

(2.30) 

(2.31) 

Since the integrals in {2.31) must be constant in time, if ( is a monotonically decreasing 

function of r, ('2 cannot grow in an overall sense. Thus , a sufficient condition for stability 

is that d(, / dr have the same sign throughout the domain. This argument shows that the 

perturbation enstrophy cannot grow in a global sense. It does not rule out the possibility 

that perturbations grow at one radius at the expense of perturbations elsewhere in the 

domain. Nor does it eliminate the possibility that the perturbation energy might grow 

without disturbing the perturbation enstrophy. 
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The simple linear ba.rotropic argument given above can be generalized in several ways. 

Baroclinic effects can be included in both the quasigeostrophic (Charney a.nd Stern 1962) 

and semigeostrophic (Eliassen 1983, Magnusdottir and Schubert 1990, 1991) frameworks. 

In addition the analysis need not be limited to parallel shear flows (Andrews 1983) or · 

even to linearized dynamics (Arnol'd 1965, 1966; Drazin and Reid 1981; McIntyre and 

Shepherd 1987; Shepherd 1988a,b, 1989, 1990). We shall now consider the extension to 

the linear divergent case. 

2.2 Linear stability in a barotropic model :. Ripa's theorem 

The nondivergent barotropic stability theorems of the previous section can be gener-

alized to the divergent barotropic model and to discretely layered (but not continuously 

stratified) primitive equation models (Ripa 1983, 1991) . For the shallow water case we 

consider the linearized momentum and continuity, 

ou' ou' ( 2ii) oh' -+ii-- f+- v'+g- = 0, ot ro</J r or 
ov' oii ov' ( ii) oh' at + u' or + ii ro</J + f + ; u' + 9 ro</J = o, 
oh' ,oh _ oh' - (o(ru') ov') 
ot + u or + v ro</J + h -;a;- + ro</J = 0, 

(2.3~) 

(2.33) 

(2.34) 

where the primes denote small perturbations about a purely tangential basic flow v(r), 

with associated depth h(r) , satisfying gradient balance (f + v/r)v = goh/or. 

To derive Ripa's theorem we need to combine (2 .32)- (2.34) into equations for the 

perturbation energy, momentum, and potential vorticity, i.e., 

E' = 1 [- 2 2 2) 2 h(u' + v' ) + 2iiv'h' + gh' , (2.35) 

M' = rv'h' , (2.36) 

P' ]:_ (o(rv') _ ou' -Ph') 
h ror ro</J ' (2.37) 

where P = [f +o(rv)/ror]jli . To derive the equation for E' we form 

(hu') · (2.32) + (hv' + h'v) · (2.33) + (vv' + gh') · (2 .34) to obtain 

oE' h-2 _ 'P' o[(vv' + gh')hru'] o[(vvi + gh')(hv' + h'v)] - - vu + --'-'----...;;._-'---=- + ---------
ot ror ro</J 0. (2.38) 
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To derive the equation for M' we form (rh') · (2.33) + (rv')' · (2.34) resulting in 

8M' -2 I a [r2hu'v'] a [vM' + ½r (9h12 + li(v'2 
- u'2))] 

8t - rh u P' + ror + . ro</> = 0. (2.39) 

The equation for P' , obtained by forming the vorticity equation from (2.32)-(2.33) · 

and then eliminating the divergence using (2.34) , takes the form · 

VP' di> , --+-u = ·o, Vt dr (2.40) 

where V/Vt = 8/8t + w8/8</>. This is the divergent form of equation (2 .1) . 

Defining the radial particle displacement 11 by V11/Vt = u', we can integrate (2.40) 

to obtain 

di> P' + -11 = F(r) dr (2.41) 

where F(r) is an arbitrary function of r . We restrict ourselves here to the case where 

F(r) = 0 which may preclude applicability to certain problems similar in nature to that 

studied by Case (1960). Multiplication of (2.41) by u' yields 

u' P' = _E._ (di> 1112) = _E._ (1p,2 (dP) -l) . 
Vt dr 2 Vt 2 dr (2.42) 

We now introduce a constant, wo , with units of angular velocity. This allows us to subtract 

wo· (2.39) from (2.38); after using equation (2.42) for the term involving u' P' the resulting 

equation is 

0 [ , , - 2 ] 0 [- 2 , (gh' 1 . )] at E - woM + Ah r(w - wo) + ror hr u -;:- + V (w - wo) 

r!</> [Ali2r2w(w - wo) + r(w - ½wo)(gh'2 + hv'2 ) 

v'h'(gh + r2w(w - wo)) + ½rhwou'2] 

+ 

+ 
= 0 (2.43 ) 

where A = 1/2P'2 (dF/dr)- 1. Finally, integrating equation (2.43) over the domain we 

obtain 

(2 .44) 
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We now argue that, if E' - woM' 0 and (w - wo)dP/dr 0, the constraint (2.44) does 

not allow P'2 to grow in an overall sense. From (2.35) we note that E' 0 if ii2 $ gh. By 

a similar argument, E' - woM' 0 if [r(w -wo)]2 $ gh. We can now state Ripa's shallow 

water generalization of the theorems of Rayleigh and Fj0rtoft. If there exists any value of · 

wo such that 

and 2 -[r(w - w0)] $ gh (2.45) 

for all r, then the flow is stable to infinitesimal perturbations. Ripa has also discussed 

several corollaries of (2.45), one of which is obtained by choosing wo = max[w]. This 

results in the following weaker sufficient condition for stability. If 

dP 
-<0 dr - and [ 

(gh)l/2] 
max[w] $ min w + r 

for all r, then the flow is stable to infinitesimal perturbations. 

(2.46) 

To recover the stability results for the nondivergent barotropic model from the sta-

bility results for the divergent barotropic model we consider the limit gh --+ oo, in which 

case (2.45b) is satisfied for any finite wo. Then, there is no difference between vortic-

ity and potential vorticity, and a choice of wo such that w(r) < wo everywhere leads to 

d(/dr $ 0 everywhere as sufficient for stability, while a choice of wo such that w(r) > wo 

everywhere leads to d(,/dr 0 everywhere as sufficient for stability. Thus, a necessary 

condition for instability is that d(/dr have both signs (Rayleigh's condition). It is also of 

interest to note that, if d(/dr = 0 at r = f, then the choice wo = w(f) leads from (2.45a) 

to [w(f) - w(r)]d(/dr > 0 somewhere in the flow as a necessary condition for instability 

(Fj0rtoft's theorem). 

2 .3 Nonlinear stability - Arnol'd's theorem 

In order to generalize the nondivergent linear arguments presented in section 2.1 to 

the nonlinear regime, we now begin with the nonlinear barotropic vorticity equation 

(2.47) 
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where 

(2.48) 

is the absolute vorticity and the nondivergent wind components (u, v) satisfy the continuity . 

equation 

8(ru) 8v 
r8r + r8cp = 0· (2.49) 

We now divide the fields into basic state parts and parts associated with waves or eddies, 

e.g., ((r, cp, t) = ((r) + ('(r, cp , t), where () denotes the basic state part and ( )' the 

departure from the basic state. Here () is not intended to refer to c1,n integral function 

of the variable and () 1 = 0 is not implied. In fact the basic state quantity for this case 

could also be a function of time although for the sake of simplicity we will consider it 

only a function of radius. No linearization will be performed so the primed v;i.riables do 

not necessarily have small amplitude. The ¢-invariant basic state flow is assumed fo be a 

steady solution of (2.47). We consider the case in which ((r) is a monotonically decreasing 

function of r, and thereby define the inverse function r(() such that r(((r}) = r. Then, 

differentiating this last expression with respect tor, we obtain f((r = 1. As the nonlinear 

generalization of the small amplitude wave-activity (2.29) , we now follow McIntyre and 

Shepherd (1987), Shepherd (1988a) and Haynes (1988) to define the wave activity 

(2.50) 

If we approximate r(( + () in (2.50) by the first two ·terms in a Taylor series expansion 

about ( , it is easily shown that (2.50) reduces to (2.29) . To derive the equation obeyed 

by A((, (') we first take the material derivative of this finite amplitude wave activity to 

obtain 

where, from (2.50), 

8A 
8( 
8A 
8(' 

DA 8A D( 8A D(' 
Dt = 8( Dt + 8(' Dt ' 

= ½r2 - ½r2(( + (') + rr((()(', 

= ½r2 - ½r2(( + (') . 

(2 .51) 

(2.52) 

(2.53) 
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Equations (2.52) and (2.53) , together with the fact that -D(' / Dt = D(j Dt = u'8(!8r, 

allow (2.51) to be written as 

DA a [r2u'v'] a [-21r(v'2.:.... u'2)] - = ru'(' = -"--~ + ----'~---~. 
Dt r8r r8cp (2.54) . 

Using the nondivergence condition (2.49), equation (2.54) may be written in flux form 

(2.55) 

Equation (2.55) is a finite-amplitude generalization of the li_near wave activity relation 

{2.30) . Several differences between equations (2.55) and (2.30) are noteworthy. The primed 

quantities in (2.30) are small amplitude, whereas the primed quantities in (2 .55) may be 

of finite amplitude. Where the flux (uA, vA.) appears in the finite amplitude relation 

(2.55), the flux (0, vA) appears in the small amplitude relation (2 .30) . Finally, the finite 

amplitude wave-activity is defined by (2.50), whereas the small amplitude wave-activity 

is defined by {2.29). 

To obtain the nonlinear stability condition we now integrate (2.55) over the domain 

to obtain 

.!!_ Jr f Ardrd</J = 0. dt 1 · (2 .56) 

Although this looks identical to (2.31), we must keep in mind that the A in (2.56) is 

defined by (2.50) while the A in (2.31) is defined by (2.29). The results are consistent 

since (2.50) reduces to (2.29) in the small amplitude limit. From the definition (2.50), we 

now note that 

_21 ('2 (' _ _ _ _ ,., l ('2 
I( I = f irc:(Olmin(d( s IA ((,(')l s {' lrc:(() lmaxCd( = l(JI _ . (2 .57) 

r max lo lo r min 

Together, (2.56) and (2.57) imply that 

l(rllmax ff ('2{r, cp, t)rdrdcp < 

=ff A((,(' ,O)rdrdcp < 

ff A((,(', t)rdrdcp 

1 Jr { ,2 
l(rlmin 1 ( (r, cp , O)d)..dµ, (2.58) 
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which can also be written 

jj('2(r,</>,t)rdrd<p < (2.59) 

This is the form of Arnol'd's (1965, 1966) result derived by McIntyre and Shepherd (1987) · 

and used by Shepherd (1988a) to obtain rigorous bounds on the nonlinear saturation of 

barotropic instabilities to parallel shear flows. The inequality (2 .59) bounds the distur-

bance enstrophy at time t in terms of the initial disturbance enstrophy and the radial 

gradient of the basic state absolute vorticity. It rules out the possibility of instability for 

basic state flows with (r > 0 everywhere. 

There are many interesting nonlinear aspects to the barotropic instability problem. 

Elegantly illustrated discussions of the nonlinear regime can be found in a paper by Lesieur 

et al. (1988) and in the recent textbook by Lesieur (1990, section 3.1 and Plates 7-8), who 

describe the time evolution of an unstable hyperbolic tangent shear layer in terms of the 

formation of fundamental eddies and the successive pairing or merging of these eddies. 

Further insight into the nonlinear evolution of unstable waves in a vortex has been 

obtained by Dritschel (1986; 1989), using the method of contour dynamics (Zabusky et al. 

1979, Zabusky and Overman 1983, Dritschel 1988). The method is specifically designed 

for piecewise-constant vorticity distributions such as the one used in our three region 

model. Basically, one simply predicts the position of the contours separating the regions 

of constant vorticity. 

In concluding this section we would like to make two additional comments . First , 

by using the preceeding barotropic analysis we do not wish to imply that the dynamics 

of a vortex is a purely barotropic process. Certainly, baroclinic and moist physical pro-

cesses must play an important role. However1 there does appear to be a strong underlying 

component which is fundamentally barotropic in nature. Second, we note that the coun-

terpropagating Rossby wave interpretation of barotropic instability is not the only way 

we can understand vortex instability. Another interpretation of barotropic instability is 

provided by an argument based on wave overreflection from critical radii (see Lindzen 

and Tung 1978, McIntyre and Weissman 1978, and the review article of Lindzen 1988). 
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According to this argument the Rayleigh and Fj0rtoft necessary conditions for barotropic 

instability are also sufficient conditions for the· existence of overreflected waves. The con-

ditions are that d(,/ dr change sign in the domain, that a critical radius exist , and that 

Rossby waves are overreflected at the critical radius and contained in such a way as to be · 

repeatedly overreflected. Although considerable progress toward understanding barotropic 

and baroclinic instability can be made using the concepts of wave overreflection, the inter-

pretation is more complex and perhaps less intuitive than the counterpropagating Rossby 

wave viewpoint. 



Chapter 3 

NORMAL MODE ANALYSIS 

In this chapter we present the results of a normal mode analysis of the basic state 

conditions typical in the inner region of a tropical cyclone. The model is a nondivergent 

barotropic model. The basic state relative vorticity is represented in a piecewise constant 

manner with J steps, with the vorticity outside the radius r J assumed to be that of the 

environment. The details of model development can be found in Appendix A. In the first 

section we will repeat the analysis of the three region version of this model first considered 

by Michalke and Timme (1967). In the second section we analyze the data compiled by 

Gray and Shea (1976) and several idealized profiles fit to that data. Finally, we offer an 

explanation for the formation of polygonal eyewalls based on further analysis of several 

idealized profiles. 

3.1 Three region model 

The distribution of relative vorticity for this model is shown m Figure 3.1. The 

eigensystem (A.21) reduces to 

(i1 - v1)111 + ½6(r1/r2)m-l772 = 0, 

½6 (ri/r2)m+ l771 + (v - v2)112 = 0, 

(3.1 ) 

(3.2) 

where vi = mw1 - ½6 and v2 = mw2 - ½6 are the pure (noninteracting) Rossby wave 

frequencies at the inner and outer interfaces ,r 1 and r2 respectively, and w; = v;fr; is the 

angular frequency at interface i . Thus the second term in equation (3.1) and the first term 

in equation (3.2) can be thought of as the measure of interaction between Rossby waves 

propagating at each interface. This equation shows that the degree of interaction will 
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Figure 3.1: The basic state vorticity structure for the three region model. 

decrease with increasing wavenumber or increasing distance between the interfaces (ri/r2 

decreases) . This is illustrated in Figure 3.2 in which we assume 6 = -6 so that w1 = 0 

and w2 = ½[(ri/r2)2 - 1] . Regarding (3 .1) and (3.2) as a linear homogeneous system in 

the unknowns T/1 and T/2 , we require that the determinant of the coefficient matrix vanish 

for nontrivial solutions, which yields the relation 

If we assume 6 = -a(2 the condition for v to be real is 

[ 1 + a ( 1 - m + mr2)) 2 - 4ar2m 0, (3.3) 

where r = ri/r2. When a = 1 the system describes a cylinder of elevated vorticity 

surrounded by and surrounding areas of zero vorticity. Dritschel (1986) considered the 

nonlinear evolution of this system using a contour dynamics method. Several of his fig-

ures resemble the appearence of polygonal eyewalls, and allow us some insight as to the 

nonlinear extension of these results. 

It can easily be shown that form= 0 and m = 1, . vis real for all a , and form= 2, 

v is real for all a 1, and thus the vortex is stable, however for m > 2 instability may 

occur for values of a 1. 
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Figure 3.2: The normalized growth rate as a function of the width of a cylinder of elevated 
vorticity (6 = -6) for wavenumber 3, 4, 5, and 6 disturbances. 

Michalke and Timme (1967) showed that the limiting case of an infinitely thin cylinder 

of elevated vorticity is always unstable form 2: 1, and that for the case of a finite width 

instability may occur for all m 2: 3. They also showed that the presence of an elevated 

central vorticity does not always have the stabilizing effect one would expect. We illustrate 

this tendency with Figure 3.3 in which the maximum growth rate (normalized by the 

maximum vorticity) is contoured as a function of vorticity band width ratio, ri/r2 (x axis), 

and the angular velocity ratio, wifw2 (y axis). Since wifw2 = (~1 + 6)/((rrfr~)6 + 6) , 

the y axis of Figure 3.2 is equivalent to the contours along the bottom (w 1 = O) edge of 

Figure 3.3. One might also notice the upper boundary of this figure (w1 = w2) defines 

solid body rotation which is marginally stable to perturbations. For r1 /r2 < 0.5 there is 

a region in which increasing the angular velocity in the inner region r r1 has the effect 

of producing an instability in wavenumber three where one did not exist before. 

Eigensystems were calculated for wavenumbers 3 through 32. The transition from one 

wavenumber to the next occurs at the "V" in the contour. Unshaded areas are regions 

of stability except at the right edge of the graph where the greatest instabilities occur at 

higher wavenumbers than those computed here. 

As a test of the usefulness of the semicircle theorem we also present Figure 3.4 which 

shows the normalized distance from the point Wmax /2 to the point ( Vr, Vi). Keeping in 
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Figure 3.3: Wavenumber and growth rate of instabilities as a function of radius ratio and 
angular velocity ratio for the three region model. Wavenumbers 3 through 9 are indicated 
and calculations were made for all wavenumbers less than 16. Contours of growth rate 
increase logarithmically from lightest to darkest. 
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Figure 3.4: Scatter plot in the normalized (vr, v;) domain of unstable modes for the three 
region model with 6 = -6 and varying ri/r2. The solid line is the limit described by 
equation (2.23). Only odd wavenumbers 3-13 are shown. 

mind that these results are for the three region model only, we can observe from this figure 

that the upper bound described by the semicircle theorem becomes a better approximation 

as the wavenumber of the instability increases. This would suggest that there is a further 

dependence on wavenumber than that described by equation (2.23) on page 10. ·We should 

also note that, strictly speaking, the semicircle theorem as presented in section 2.1.2 is not 

valid for this problem since in 2.1.2 we implicitly assumed that the vorticity profile was 

smooth while here we allow discontinuities in that profile. It is also interesting to note 

that although the theory allows for growing instabilities at frequencies which are less than 

w2 ( < 1 on the Vr axis) , none are found. 

3.2 Analysis of hurricane inner core data 

Gray and Shea (1976) presents an extensive set of data for hurricane flight penetra-

tions between 1957 and 1969. There are approximately 100 aircraft flights into twenty-two 

hurricanes on forty-one storm days. The data is compiled into 2.5 nautical mile (nm) in-

crements of radius from a minimum radius of 5 nm to a maximum radius of 50 nm. For 
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each storm level between two and sixteen radial legs of data were collected, allowing us to 

approximate the radially averaged storm relative tangential wind .. 

A total of 492 radial legs are contained in the data s·et. From these we were able to 

compute 89 storm relative tangential wind profiles, each of which consists of averages at · 

19 radii. Table 3.1 gives the storm name, date, flight level, radius of maximum winds, 

and maximum tangential wind for each of the profiles analyzed. For details of the data 

collection and binning methods please refer to Shea (1972) and Gray and Shea (1976). 

Using equation (A.9) we can solve a linear system for the vorticity . steps which exactly 

reproduce any discretely sampled profile of tangential winds. Since a realistic profile may 

have several reversals in gradient of vorticity we also present results for the best fit modified 

Rankine (e.g. Shea 1972) and Holland (1980) profiles, as well as two profiles which we 

shall call poly3 and poly4. A discussion of all of these profiles can be found in Appendix 

B. The best fit for each idealized profile was computed using the root mean square (RMS) 

error between the data and that profile. Using the 19 data points provided equation (A.9) 

was used to find the corresponding vorticity profile and the eigensystem (A.21) was then 

solved for the original data and each of the profiles using a double precision version of the 

real general matrix solver from the Eispack library. Since the velocity and not the vorticity 

was sampled, in the case of the idealized profiles, we should not expect the vorticity profile 

to reproduce exactly that given by the corresponding equations. Table 3.2 presents each 

profile from Table 3.1 by ID, the most unstable wavenumber and e-folding time for the 

data and each of the profiles, as well as the parameters used and the corresponding RMS 

error. The outer slope parameter for the poly3 and poly4 .profiles is identical, thus only 

the poly3 value is shown. 

At the bottom of the table a summary is provided which gives the number of unstable 

profiles, as well as the mean and standard deviation for each field . 

Table 3.3 presents a summary by wavenumber of most unstable mode for the data 

and for each of the idealized profiles. Note that the data had at least one unstable mode 

in every case, while the idealized profiles often act in a stabilizing manner, reducing both 

the wavenumber and growth rate of the instability. 'The exception to this is the modified 
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Profile Storm Approx. Radius of Maxlm1.n1 Profile Stonn Approx. Radius of Maximum . 

ID Name Date F~ghl Maxlm1.n1 Tangential ID Name Date Flight Maximum Tangential 

Level (mb) Wlnd (km) Wind (mis) Level (rrb) Wind (km). Wind (m's) 

1 CARRIE 16-Sep-57 6()g 42 37 48 CLEO 23-Aug-64 667 14 56 

2 CARRIE 16-Sep-57 535 42 38 49 DORA 05-Sep-64 715 51 40 

4 CARRIE 17-Sep-57 686 69 38 50 DORA 05-Sep-64 618 46 41 

5 CARRIE 15-Sep-57 260 93 17 51 DORA 05-Sep-64 · 715 79 34 

CLEO 18-Aug-58 811 42 35 52 DORA 07-Sep-64 715 93 40 
6 

53 DORA . 07-Sep-64 667 93 35 
7 CLEO 18-Aug-58 577 37 32 

54 DORA 07-Sep-64 715 79 37 
8 CLEO 18-Aug-58 260 88 17 

55 DORA 08-Sep-64 667 93 37 
9 DAISY 27-Aug-58 637 19 48 56 DORA 08-Sep-64 860 93 41 
10 DAISY 27-Aug-58 270 19 32 57 DORA 09-Sep-64 715 93 33 
11 DAISY 28-Aug-58 637 28 39 58 DORA .09-Sep-64 618 93 32 
12 HELENE 25-Sep-58 811 46 32 59 GLADYS 17-Sep-64 907 28 51 
14 HELENE 26-Sep-58 715 37 55 60 GLADYS 17-Sep-64 715 28 41 
15 HELENE 25-Sep-58 577 32 49 61 GLADYS 17-Sep-64 715 28 52 
16 HELENE 25-Sep-58 270 42 32 62 GLADYS 17-Sep-64 577 28 48 

17 HANNAH 01-0ct-59 715 3 36 63 HILDA 01-0ct-64 907 23 48 

18 HANNAH 02-0ct-59 715 42 44 64 HILDA 01-0ct-64 763 23 51 

19 HANNAH 04-0ct-59 715 51 46 65 HILDA 01-0ct-64 667 28 42 

20 DONNA 04-Sep-60 618 23 60 66 HILDA 01-0ct-64 520 23 43 

22 DONNA 07-Sep-60 637 28 53 67 HILDA 01-0ct-64 322 23 48 

23 DONNA 09~ 811 2S 61 68 HILDA 01-0ct-64 199 28 22 

24 ANNA 21.Jul-61 715 23 35 69 HILDA 02-0ct-64 907 46 44 

CARLA 08-Sep-61 
70 HILDA 02-0ct-64 715 65 43 

26 715 00 40 
HILDA 02-0ct-64 74 42 71 667 

27 CARLA 09-Sep-61 859 46 48 72 HILDA 02-0ct-64 211 69 15 
28 CARLA 09-Sep-61 859 32 49 73 ISBELL 14-0ct-64 860 23 41 
29 CARLA 09-Sep-61 715 46 45 74 ISBELL 14-0ct-64 715 19 37 
30 CARLA 10-Sep-61 618 37 46 75 ISBELL 14-0ct-64 570 37 37 
31 CARLA 11 -Sep-61 618 28 45 76 BETSY 03-Sep-65 763 46 46 
32 ESTHER 16-Sep-61 811 9 55 n BETSY 03-Sep-65 667 46 45 
33 ESTHER 16-Sep-61 477 23 46 78 BETSY 03-Sep-65 520 32 41 
34 ESTHER 16-Sep-61 477 28 41 79 BETSY 03-Sep-65 221 69 19 
35 ESTHER 17-Sep-61 811 19 49 80 BETSY 05-Sep-65 907 69 50 

36 ESTHER 17-Sep-61 811 19 49 81 BETSY 05-Sep-65 811 74 37 

37 ESTHER 17-Sep-61 811 19 51 82 BETSY 05-Sep-65 667 69 33 

38 ELLA 10-0ct-62 907 56 39 83 BETSY 05-Sep-65 520 88 31 

39 ELLA 10-0ct-62 618 79 34 85 INEZ 27-Sep-66 763 14 38 

40 BEULAH 23-Aug-63 811 37 35 86 INEZ 27-Sep-66 667 14 44 

41 BEULAH 24-Aug-63 811 42 42 
87 INEZ 27-Sep-66 520 14 32 
88 INEZ 27-Sep-66 221 19 15 42 BEULAH 24-Aug-63 520 32 34 
89 INEZ 28-Sep-66 955 14 60 

43 FLORA 03-0ct-63 715 19 53 90 INEZ 28-Sep-66 763 14 66 
44 FLORA 03-0ct-63 667 19 55 91 INEZ 28-Sep-66 667 14 55 
45 FLORA 10-0ct-63 715 79 35 92 INEZ 28-Sep-66 520 14 59 
46 FLORA 10-0ct-63 667 88 31 93 INEZ 28-Sep-66 221 19 27 
47 CLEO 23-Aug-64 715 14 57 94 BEULAH 18-Sep-67 955 42 35 

Table 3.1: Storm profi es used in this study (from Gray and Shea (1976)) 



Profile True e•folding Rankine e-lolding Holland e•lolding Poly3 e-folding Poly4 e•lolding Inner Outer Poly3 Poly3 Poly4 Rankine Holland Poly3 Poly4 
ID MUW time(hrs) MUW time(hrs) MUW time(hrs) MUW time(hrs) MUW time(hrs) Rankine Rankine Holland p zO zO RMS RMS RMS RMS 

Error Error Error Error 
1 3 2.27 11 40.43 2 2.32 2 6.92 2 5.03 1.28 -0.17 1.76 0.73 1.05e-09 9.85e• 1 O 1.32 3.76 3.64 2.63 
2 7 0.82 13 4.85 2 1.24 2 5.96 2 4.96 1.67 ·0.24 2.01 0.92 7.00e-10 1.15e-09 1.65 4.41 4.80 3.63 
4 7 1.17 2 2.05 2 18.62 2 11 .87 1.24 ·0.53 2.21 1.47 1.28e-1 O 1.38e-09 1.51 3.44 3.88 2.70 
5 6 1.99 2 9.38 2 176.78 2 36.86 0.82 ·1 .97 1.42 0.10 1.00e-04 1.00e-04 0.81 2.43 1.87 1.83 
6 5 2.91 2 1.51 2 6.40 2 5.68 1.21 ·0.30 1.91 1.08 1.07e•10 3.07e-10 1.06 2.13 2.59 1.66 
7 7 1.10 16 11 .73 2 1.54 2 9.18 3 6.22 1.42 ·0.19 1.66 0.76 1.77e•10 1.87e-10 1.00 3.69 3.10 2.51 
8 6 2.85 2 6.39 2 55.53 2 44.63 0.96 -0.46 1.66 1.47 1.28e•10 1.86e-04 1.12 1.42 1.29 1.11 
9 2 1.01 4 1.59 0.74 -0.58 1.90 1.22 4.27e-09 2.16e-03 1.07 2.49 3.03 2.91 
10 2 3.33 5 1.07 3 0.99 4 1.96 2.21 ·0.59 2.15 1.26 2.71e-09 1.78e•10 1.18 2.11 2.00 1.80 
11 3 0.93 2 1.66 0.53 ·0.36 1.40 1.02 3.19e-03 4.23e-03 1.25 1.56 0.66 0.79 
12 4 2.99 2 1.69 3 40.59 2 7.08 1.08 ·0.30 1.82 1.16 1.89e•10 2.61e•04 0.61 2.05 1.90 1.36 
14 4 0.54 2 1.86 2 4.20 2 2.75 1.15 ·0.47 1.99 1.31 1.20e-09 1.15e-10 5.00 4.72 6.15 4.95 
15 4 1.12 15 7.44 2 0.79 2 3.66 2 2.35 1.42 ·0.37 1.94 1.08 1.15e-09 1.45e-10 1.86 3.23 3.82 2.61 
16 5 1.50 16 8.79 2 1.49 2 7.21 2 6.48 1.56 -0.33 2.19 1.14 1.89e•10 1.73e-10 0.91 2.70 2.99 2.15 
17 10 1.67 13 6 .10 2 1.35 3 11 .62 3 6.39 1.53 -0.12 1.68 0.58 1.15e-09 1.66e-10 1.07 4.36 3.60 2.37 
18 3 1.44 2 1.06 2 10.80 3 6.24 1.16 ·0.48 2.03 1.41 1.18e•10 1.28e-10 2.08 1.86 3.09 1.61 N) 
19 4 3.22 16 47.77 2 1.32 2 7.77 4 11 .39 1.30 -0.50 2.34 1.47 1.82e-10 2.22e-09 0.76 3.54 4.09 3 26 00 

20 5 0.40 7 0.92 2 0.50 4 2.86 2 1.16 2.00 ·0.65 2.33 1.40 2.71e-09 1.74e-09 2.22 3 .73 5.10 4.27 
22 5 0.69 9 1.71 2 0.72 2 2.69 3 2.15 1.79 ·0.34 1.80 0.99 9.24e-10 1.49e•10 1.48 4.88 4.22 3.15 
23 7 1.32 2 0.99 2 2.60 3 1.77 1.13 -0.56 2.04 1.34 2.61e-09 4.25e-05 0.88 3.18 3.77 3.10 
24 9 2.55 3 1.56 6 10.13 4 5.42 0.67 -0.40 1.56 1.03 1.74e-09 2.59e-03 1.09 0 .89 0.97 · 1.05 
26 10 1.27 13 22.20 3 1.44 3 21 .30 3 12.93 1.44 -0.32 2.52 1.47 6.84e-10 1.1 le-09 1.35 4.26 4.35 3.50 
27 7 1.38 14 48.43 2 1.20 3 15.79 2 4.21 1.29 -0.37 2.13 1.27 1.Sfle-10 1.01e•09 1.17 3.57 3.97 2.89 
28 3 1.18 11 2.73 2 0.75 2 3.93 2 2.41 1.70 -0.38 2.05 1.12 1. toe-09 1.25e-1 O 1.75 3.51 4.59 3.32 
29 3 2.17 2 1.31 3 16.48 2 5.77 1.12 -0.36 1.93 1.27 1.74e-09 2.89e•04 0.72 316 3.02 2.36 
30 5 2.11 12 3.39 2 0.94 2 4.85 2 3.53 1.71 -0.41 2.23 1.22 1.27e•10 1.49e•10 0.86 4.10 4.83 3.66 
31 4 1.79 2 1.08 2 3.18 3 2.74 1.21 -0.25 1.50 0.81 2.71e-09 1.28e•10 0.60 3.33 2.51 1.72 
32 3 1.62 7 1.63 4 1.42 1.62 -0.27 1.28 0.74 6.79e-09 1.66e-10 2.36 6.22 5.55 4.98 
33 2 1.19 10 4.07 3 1.10 6 15.87 2 1.88 1.50 ·0.32 1.60 0.88 1.54e-09 1.16e• 10 2.19 4.49 4.81 4.21 
34 4 0.66 2 1.49 2 3.48 3 3.13 1.02 -0.22 1.42 0.72 1.07e•10 1.07e-08 3.81 4.44 4.70 4.25 
35 2 2.73 4 1.75 0.90 ·0.17 1.02 0.54 2.57e-09 2.99e-08 3.68 6.39 5 07 4.72 
36 3 2.18 4 1.78 1.03 -0.16 1.02 0.54 5.08e-09 8.86e•10 2.27 5.53 3.73 3.37 
37 2 1.05 4 1.67 1.17 ·0.18 1.02 0.58 4 .27 e-09 1. 15e-09 2.49 5.57 4.03 3.58 

Table 3.2: Most unstable wavenumber (MUW) and e•folding time of instabilities for the Gray and Shea ( 1976) data and for profile fits as dcscrihcd in the text. 
Also included arc best fit values and RMS error for each profile. (page I of 3) 



Profile True a-folding Rankine a-folding Holland a-folding Poly3 a-folding Poly4 a-folding Inner Outer Poly3 Poly3 Poly4 Rankine Holland Poly3 Poly4 
ID MUW time(hrs) MUW time(hrs) MUW time(hrs) MUW time(hrs) MUW time{hrs) Rankine Rankine Holland p zO zO RMS RMS RMS RMS 

Error Error Error Error 
38 9 2.80 12 22.07 2 1.51 3 25.95 2 8.15 1.38 --0.19 2.26 1.02 1.07e-10 2.708--09 1.09 4.39 4.22 3.27 
39 11 1.14 8 110.25 2 2.28 2 53.85 2 13.81 1.31 --0.29 2 .35 1.47 1.16e-10 1.158--09 1.32 3.70 4.06 3.08 
40 3 4.33 2 1.56 2 9.64 3 9.82 0.78 -0.15 1.34 068 1.74e-09 1.34e--03 1.30 1.90 1.23 1.05 
41 2 2.73 2 2.26 2 5.26 2 6.53 1.07 -0.27 1.72 1.02 1.668-10 3.328--04 0.95 2.41 2.47 1.66 
42 2 2.77 2 1.33 2 4 .69 2 4.48 0.88 --0.30 1.48 0.95 1.828-09 1.158--03 0.82 2.34 1.94 1.80 
43 3 0.73 4 1.31 1.10 --0.41 1.63 0.99 4.27e--09 1.158--09 2.98 2.13 1.99 1.47 
44 4 0.88 6 3.11 4 1.29 0.84 -0.51 1.79 1.12 6.43e--09 1.81e--04 1.47 2.43 2.76 2.50 
45 7 2.99 2 4.15 3 77.58 4 153.35 0.70 --0.49 1.28 1.47 7. 798--04 1.088--03 1.13 2.94 1.06 0.99 
46 2 2.02 2 5.40 4 243.60 2 207.42 0.66 --0.69 1.26 1.47 7.87e--04 9.09e--04 1.25 3.12 1.34 1.18 
47 2 4.00 0.66 -0.53 1.72 1.09 1.09e--08 6.798--09 1.25 2.59 2.99 2.78 
48 5 3.61 0.58 -0.52 1.70 1.07 1.758--08 2.1 le--03 1.07 3.13 3.51 3.45 
49 10 1.49 2 2 .11 o.~o -0.36 1 o:;, 1.38 4.77e--03 3.62e--03 1.91 3.69 1.8Q 2.12 
50 5 1.34 2 1.69 0.54 -0.38 1.12 1.30 3.22e--03 3.02e--03 0.58 3.95 1.77 1.90 
51 2 3.46 2 4.97 0.27 --0 .11 1.02 1.25 3.82e--03 2.74e--03 2.87 3.19 1.30 0.67 
52 2 2.40 2 5.11 2 29.02 2 15.08 0.40 -1 .97 1.02 0.10 1.008--04 1.008--04 2.28 4.55 6.07 9.1 9 
53 4 2.98 2 5.89 2 31 .28 2 17.45 0.30 -1.97 1.02 0.10 1.008--04 1.008--04 2.73 3.69 6.1 6 9.96 
54 12 1.12 2 5.34 2 28.67 2 32.65 0.79 --0.15 1.41 1.46 3.548--04 8. 798--04 1.31 3.25 1.55 1.73 

(0 
55 4 3.08 2 4.39 2 30.08 2 16.25 0.74 -1.97 1.30 0.10 1.00e--04 1.00e--04 1.05 4.37 3.04 4.02 
56 3 3.28 2 5.00 2 28.78 2 14.74 0.50 -1.97 1.02 0.10 1.00e--04 1.00e--04 1.30 3.88 3.70 7.04 
57 10 3.78 2 6.20 2 32.44 2 18.57 0.42 -1 .97 1.02 0.10 1.00e--04 1.008--04 1.86 2.02 3.8Q 7.23 
58 14 1.63 2 6.45 2 33.47 2 19.56 0.33 -1 .97 1.02 0.10 1.00e--04 1.008--04 2.13 3.15 5.34 8 .43 
59 2 1.08 2 0.71 2 2 .86 3 2.21 1.06 -0.40 1.72 1.07 1.0le-10 2.968--09 1.89 2.81 3.36 2.73 
60 3 1.13 3 1.70 2 3.49 2 3.84 0.93 --0.21 1.35 0.72 1.43e--09 7 .368-04 1.55 3.44 2.56 2.14 
61 3 0.47 2 1.42 2 2 .89 3 2.07 1.21 -0.51 1.99 1.24 2.89e--09 1.158--09 2.68 3.57 4.53 · 3.60 
62 3 0.88 15 14.23 2 0.84 2 3.03 3 2.35 1.37 --0.40 1.82 1.06 1.49e-10 1.308-10 1.68 3.41 4.05 3.09 
63 7 1.54 4 1.60 6 11.22 2 1.80 1.03 --0 .32 1.48 0.89 9.59e-10 6.81e--06 1.02 2.53 2.06 1.59 
64 3 0.79 11 4.59 3 0.69 6 9 .50 2 1.52 1.44 --0 .44 1.80 1.08 3.29e--09 ~.98e--09 1.20 3.88 4.63 3.80 
65 3 1.66 2 0.99 2 3.95 2 6 .44 0.70 --0 .41 1.55 1.10 5.04e--04 2.98e-03 0.66 2.61 2.20 2.29 
66 2 1.87 14 15.18 3 0.82 5 8.65 2 1.78 1.33 -0.45 1.80 1.10 4.40e--09 1.74e-09 0.79 2.48 3.18 2.53 
67 4 1.25 8 1.55 2 0.58 5 4.70 2 1.52 1.84 --0 .54 2.07 1.24 6.26e--09 1 . 7 4e-09 1.37 4.04 5.27 4.58 
68 6 1.31 8 3.51 2 2.40 2 6.60 3 5.14 1.87 -0.38 1.88 1.05 1.15e--09 1.238--09 1.64 2.74 2.53 2.38 
69 4 1.99 2 2.03 2 11.96 2 12.21 0.79 --0.37 1.53 1.32 3.03e--04 1.67e--03 1.20 3.13 1.45 1.25 
70 4 1.58 2 2.34 2 27.19 2 33.13 0.78 --0 .33 1.34 , 1.47 9.26e--04 1.37e-03 1.25 4.91 2.80 2.66 
71 11 0.93 2 8.21 2 4.87 0.59 -1 .10 1.12 1.47 1.79e--03 1 .808-03 .1 .68 4.30 2.34 2.47 
72 3 1.45 2 9.27 0.57 -0.40 1.02 1.47 8.22e--04 6.73e-04 1.28 2.50 1.76 1.83 

Table 3.2: Most unstable wavenumber (MUW) and e-folding time of instabilities for the Gray and Shea (1976) data and for profile fits as described in the text. 
Also included are best fit values and RMS error for each profile. (page 2 of 3) 



Profile True a-folding Rankine e-folding Holland a-folding Poly3 a-folding Poly4 a-folding Inner Outer Poly3 Poly3 Poly4 Rankine Holland Poly3 Poly4 
ID MUW time(hrs) MUW time(hrs) MUW time(hrs) MUW time(hrs) MUW tlme(hrs) Rankine Rankine Holland p zo zo RMS RMS RMS RMS 

Error Error Error Error 
73 6 0.66 2 1.14 0.49 -0.53 1.70 1.22 3.798-03 5.208-03 1.74 2.74 2.14 2.16 
74 5 1.10 . 0.46 -0.29 1.23 0.79 1.248-03 5.038-03 1.52 0.85 0.55 0.68 
75 2 0.48 5 8.06 0.22 -0.61 1.01 1.47 8.698-03 5.618-03 1.59 6.28 1.82 2.13 
76 6 1.85 2 1.79 . 0.42 -0.37 1.04 1.30 5.098-03 4.33e-03 1.82 3.02 1.29 1.35 
77 2 1.33 2 1.73 0.43 -0.50 1.06 1.47 5.208-03 4.23e-03 1.64 4.38 1.65 1.60 
78 3 1.87 2 1.45 2 3.58 2 7.26 0.79 -0.20 1.31 0.77 3.238-09 2.018-03 0.93 2.27 1.26 1.23 
79 5 2.29 2 6.48 0.56 -0.79 1.04 1.47 1.11e-03 1.02e-03 1.19 1.88 1.61 1.68 
80 4 1.92 2 2.39 3 82.46 2 37.62 0.80 -0.55 1.23 1.47 1.24e-03 1.61 e-03 3.11 7.44 5.26 5.22 
81 9 1.45 2 3.67 0.44 -0.30 1.02 1.47 2.868-03 2.29e-03 2.12 2.08 1.51 1.76 
82 3 1.86 2 4.21 0.38 -0.30 1.02 1.47 3.308-03 2.528-03 2.34 2.14 1.56 1.49 
83 2 3.41 2 8.14 0.32 -0.55 1.02 1.47 2.898-03 1.99e-03 1.97 3.94 1.73 2.17 
85 2 2.54 0.22 -0.38 1.38 0.88 1.008-02 1.00e-02 0.67 0.74 0.93 1.05 
86 5 1.12 5 1.50 1.75 -0.42 1.50 0.93 1.43e-08 8.18e-09 1.08 1.82 1.97 1.82 
87 2 0.92 0.66 -0.26 1.08 0.70 5.78e-09 2.71e-09 1.60 1.39 1.25 1.19 
88 4 0.71 0.70 -0.43 1.54 1.00 1.098-04 1.698-03 1.71 1.80 1.77 1.84 
89 3 2.12 0.36 -0.51 1.67 1.06 1.848-03 1 .ooe-02 2.13 0.73 1.00 1.13 
90 2 1.~2 0.71 -0.57 1.82 1.14 2.82e-08 6.79e-09 0.86 2.06 2.67 2.43 

· 91 2 1.86 0.17 -0.50 1.63 1.05 1.00e-02 1.00e-02 1.58 0.98 1.28 1.49 
92 4 2.28 . 1.01 -0.54 1.78 1.11 1.758-08 6.79e-09 1.36 3.00 3.55 3.35 
93 3 1.63 4 1.82 0.89 -0.60 1.95 1.28 5.898-09 1.268-03 1.94 1.24 1.05 1.19 
94 3 1.91 2 2.02 0.50 -0.20 1.12 0.84 2.488-03 2.90e-03 1.63 0.92 1.25 1.32 

Count 89.00 25 73 54 61 
Mean 1.80 15.77 2.65 23.79 14.31 0.96 -0.52 1.57 1.05 9.198-04 1.22e-03 1.58 3.17 2.92 2.75 

Std dev 0.90 23.74 2.19 41.16 32.48 0.47 0.45 0.41 0.38 2.05e-03 2.15e-03 0.76 1.33 1.44 1.76 

Table 3.2: Most unstable wavenumber (MUW ) and e-folding time of instabilities for the Gray and Shea ( 1976) data and for profile fits as described in the text. 
Also included are best fit values and RMS error for each profile. A summary of mean and standard deviation of e-folding time is also shown. (page 3 of 3) 

0 
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Rankine profile which often produces high wavenumber results , this is probably due to the 

discontinuity of basic state vorticity at the radius of maximum winds in this profile. The 

largest number of cases in the raw data occurred in wa.venumbers two and three , while the 

mean most unstable mode was in wavenumber five. This agrees with the observations of · 

Murama.tsu (1986) who found square to hexagonal eyewalls to be most frequent. Nearly all 

of the cases were in wa.venumbers (2-7) . For the modified Rankine profile nearly all of the 

cases were stable, and of those which were unstable most occurred in higher wa.venumbers. 

A comparison of these with the other three profiles in which all of the unstable modes were 

in wavenumber 6 or less indicates that spatially small anomalies in the tangential wind 

profile, such as the kink in the modified Rankine profile at the radius of maximum winds, 

tend to produce instabilities in higher wa.venumbers while the smoothed profile (in which 

at most one reversal of vorticity occurs) tends to produce lower wavenumber instabilities, 

possibly at higher growth rates. Yet, the Rankine profile provided the best overall fit to 

the raw data in most individual profiles and in the average as indicated by the summary 

at the end of Table 3.2. 

The largest growth rate, which occurred for profile #20, was in wave number five and 

corresponds to an e-folding time of a.bout 24 minutes. The mean e-folding time for all 

profiles is a.bout 1 hour 48 minutes. This time is well within the time sea.le of significance 

for tropical cyclones. 

There does not seem to be a significant correlation between growth rate and most 

unstable wavenumber results for the raw data and any of the profiles. This would suggest 

that the most unstable mode is most dependent on the small sea.le structure of the velocity 

profile. 

Figures 3.5 - 3. 7 present the velocity and corresponding vorticity for several of the 

data profiles which were found to be most unstable. The corresponding idealized profiles 

are also shown for ea.ch case. For profile #75 the vorticity is maximum at the vortex center 

so that the instability is probably ca.used by the sharp decrease in velocity at 23 km just 

before increasing to the maximum. In fa.ct it appears that in every case the instability is 

ca.used by sharp gradients in vorticity with small spatial extent. These anomalies may be 
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Wavenurrt>er Nurrt>er Mean Number Mean Number Mean mean 
04 of data a-folding Std 04 Rankine a-folding Std Inner std Outer std of Holland a-folding std holland std 

MUM Cases tlme(hrs) Dev Cases 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

Stable 

mean 
holland std 
parm dev 

1.57 0.43 
1.83 0.37 
1.78 0.21 
1.01 
1.79 

1.44 0.28 

20 1.56 2.35 1 
21 1.32 2.33 0 
15 1.30 2.10 0 
10 1.15 1.60 2 
5 1.36 2.42 0 
7 1.29 4.03 2 
0 3 
3 2.09 6.66 1 
4 1.73 5.13 1 
2 1.03 10.44 3 
1 1.12 2 
0 3 
1 1.62 2 
0 2 
0 3 
0 64 

Wavenumber Number Mean 
of 

MUM 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

Stable 

of Poly3 a-folding 
Cases 

38 
8 
2 
2 
4 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

35 

time(hrs) 

6.12 
23.15 
5.66 
6.09 
11 .25 

time(hrs) Dev parm dev parm dev Cases time(hrs) dev parm dev 

4.87 0.59 -1.1 61 1.63 1.97 1.57 0.43 
7 1.07 3.34 1.83 0.37 
3 1.66 26.97 1.78 0.21 

1.25 7.55 1.98 0.23 -0.5 0.09 1 8.05 1.01 
1 3.11 1.79 

1.18 4.27 1.81 0.19 -0.46 0.19 0 
3.20 3.84 1.67 0.26 -0.41 0 .. 11 0 
1.71 1.79 -0.34 0 
4.07 1.5 -0.32 0 
4.93 7.16 1.47 0.17 -0.33 0.12 0 
5.87 8.01 1.55 0.16 ·0.3 0.11 0 
7.23 14.70 1.55 0.1 -0.23 0.08 0 

23.15 4423 1.31 0.02 -0.41 0.04 0 
9.78 31 .18 1.4 0.02 -0.38 0.01 0 
13.62 25.72 1.43 0.11 -0.34 0.13 0 

0.73 0.3 -0.57 0.51 16 1.44 0.28 

Number Mean 
std Mean std Mean std of Poly4 a-folding std Meari std 
dev 

8.47 
40.79 
5.79 

20.58 
62.14 

p 

0.93 
1.21 
1.44 
1.17 
0.97 

dev zO dev 

0.46 7.33e-05 1.77e-04 
0.28 2.538-04 4.53e-04 
0.03 3.948-04 3.948-04 
0.07 5.33e-09 9.35e-1 O 
0.09 1.88e-09 8.62e-1 O 

Cases 

38 
13 
10 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1.12 0.28 2.18e-03 2.82e-03 28 

time(hrs) dev zO dev 

4.53 4.71 3.97e-04 6.98e-04 
3.31 6.24 1.07e-04 3.57e-04 
2.10 3.74 3.86e-04 8.03e-04 

3.16e-03 2.87e-03 

Table 3.3: Summary of instabilities for data and related profiles by wavenumber 
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caused by errors in the data collection method. However, none of the anomalies are so 

questionable as to suggest that any of the data profiles are not physically realistic basic 

states. 

3.3 Stability of an idealized profile 

As we pointed out in the discussion of the three region model, counterpropagating 

waves will only interact with each other if they are sufficiently close together. In Figure 

3.8 we have extended this interpretation to a somewhat more realistic vorticity profile by 

assuming a Gaussian distribution of vorticity with radius. We then sampled this vorticity 

at 64 points chosen with a constant vorticity step so that changes in growth rate and 

wavenumber should be due solely to the distance in radius between steps and not to the 

change in magnitude of the steps. The center of the profile is at sufficiently large radius 

that the vorticity is zero at small radius. As we would expect, if we consider the half-

width of the Gaussian distribution to be a measure of the distance between waves, Figure 

3.8 is quite similar to Figure 3.2. Note that wavenumber two is now included in the set 

of possibly unstable waves. The growth rate for this wave is generally much less than 

that for higher wavenumbers, however, it has an influence over a much greater distance. 

This factor certainly contributed to the findings of the previous section in which the three 

profiles which have a smooth gradient of vorticity throughout are most often unstable in 

wavenumber two when they are unstable at all, while the modified Rankine profile which 

has a discontinuity in the gradient of vorticity at the radius of maximum winds, most 

often produced high wavenumber instabilities. Another notable feature of this graph is 

that wavenumber 3 is never the most unstable wave. This may be significant for two 

reasons, first Muramatsu (1986) pointed out that he found no observations of triangular 

eyewalls, and second, Guinn (1992) could not produce a triangular feature in his nonlinear 

model unless his initial perturbation was also in wavenumber 3. On the other hand many 

of the data profiles analyzed in the previous section were most unstable in wavenumber 3. 

Figures 3.9 and 3.10 show wavenumber 4 and 5 anomilies produced by using the 

modified Rankine profile out to the radius of maximum vorticity then decreasing the 
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Figure 3.5: Profiles of mean tangential velocity (left figures) and the corresponding vortic-
ity (right figures) for the data. (solid) , as well as the modified Rankine (dashed) , Holland 
(dotted) , Poly3 (cha.in dot) , and Poly4 (cha.in dash) profile fits for selected storms. From 
top to bottom the corresponding most unstable wa.venumbers for the raw data. a.re (2 ,3,4,4). 
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Figure 3.6: Same as Figure 3.51 except the most unstable wavenumbers are {5,617,9) 
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vorticity linearly out to twice the radius of maximum vorticity. This is done to avoid 

the large change in vorticity of the modified Rankine profile at the radius of maximum 

wind. It also has the effect of shifting the radius of maximum wind to slightly greater 

radius with respect to the maximum vorticity. This test was also constructed so that the · 

step size of vorticity remained constant rather than the sample radii. The upper figure 

is at some arbitrary time after an initial perturbation, the lower one is at one e-folding 

time later. The normalized basic state velocity and vorticity profiles are also shown, the 

difference between the basic states is best noticable in the vorticity profile which has 

a sharper gradient near the maximum for the wavenumber 5 case. Muramatsu (1986) 

observed several transitions of the eye of the same storm between wavenumbers four , five , 

and six. We have found that only slightly different basic states can produce maximum 

growth in any of these wavenumbers. 
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Chapter 4 

CONCLUSIONS 

In this report we have reviewed the theory of barotropic stability of a hydrostatic invis-

cid shallow fluid on an f-plane. We have considered the divergent and non-divergent linear 

cases, (Rayleigh's, Fj0rtoft's, and Ripa's theorems), and the non-linear, non-divergent case 

(Arnol'd 's theorem). We believe this to be a reasonably complete summary of the theory 

of stability of a barotropic vortex as it is understood today. 

We then developed a normal mode model, in which the axisymmetric basic state 

vorticity is approximated as a piecewise constant function , for the linear non-divergent 

case. Using this model we were able to analyze several profiles of storm relative tangential 

winds from t he data set of Gray and Shea {1976). This analysis indicated that each of 

the profiles had instability in at least one mode and that these instabilities had e-folding 

times which were on the order of a few hours. These e-folding times appear to be short 

enough to influence the dynamics of a typical mature hurricane, although no attempt was 

made to verify their magnitude with another model. We then analyzed best fit profiles 

for each case using the modified Rankine, and Holland profiles as well as the poly3 and 

poly4 profiles developed in Appendix B. The results of this analysis indicate that smoother 

profiles have a stabilizing influence on the vortex. The modified Rankine profile was found 

to be the best overall fit with the smallest root mean square error and standard deviation 

over the entire dataset. However , it also typically gave instabilities in higher wavenumbers 

than the other profiles. 

We have also shown observations (Figures 1.1 and 1.2) in which the eyewall structure 

1s observed by radar or satellite to appear polygonal in shape and other observations 

of hurricanes which have indicated meso-vortices within the main storm, a phenomenon 

which is a logical non-linear extension of these polygonal features. 
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The polygonal perturbation produced in this model is often strongest near the radius 

of maximum winds. This polygonal feature can be extended to the vorticity field. However, 

there is little data available which details the vorticity in the inner region of a tropical 

cyclone. Therefore we can only intuitively assume that the fields of vorticity and those 

detectable by radar and satellite are somewhat correlated. Given this assumption it would 

appear that barotropic instability is the mechanism for these phenomena. 

Clearly there is a need for more observational studies to either verify or refute the 

conclusions of this study. It seems worthwhile to repeat the eigenvalue calculations with 

a more accurate solver, such as that used in Weber and Smith (1994), and a model which 

assumes a smooth profile of vorticity instead of a piecewise constant profile as used here. It 

is also important to realize, as pointed out in Chapter -2, that the growth rates produced 

by normal mode analysis are not necessarily the largest growth rates possible for this 

type of instability. Instantaneous conditions forced by dynamics outside the realm of the 

linear nondivergent model may result in transient growth rates much larger than those 

produced by a normal mode model. The nonhomogeneous model developed in Appendix 

A can be used to investigate this possibility and perhaps to determine the optimal initial 

perturbation for wave growth. 

It is also evident that a greater understanding can be had by extending this study to 

non-linear and three dimensional models. Work by Guinn (1992) and preliminary work 

by this author on a non-linear model would suggest that there may be a positive influence 

on wavenumber four perturbations due to the rectilinear nature of a cartesian coordinate 

model or to the rectilinear boundary conditions of that model, or perhaps both. On the 

other hand, Figure 3.8 indicates that we might expect wavenumber four to be dominant 

over a significant range of basic states. This would suggest the need for a study which 

compares the results of limited area nonlinear models in several coordinate systems. 



43 

REFERENCES 

Andrews, D.G., 1983: A conservation law for small-amplitude, quasi-geostrophic distur-

bances on a zonally asymmetric basic flow . J. Atmos. Sci. , 40, 85-90. 

Arnol'd, V.I., 1965: Conditions for nonlinear stability of stationary plane curvilinear flows 

of an ideal fluid. Dok]. Akad. Nauk. SSSR, 162, 975-978. (English translation: 

Soviet Math. , 6, 773-777). 

Arnol'd, V.I., 1966: On an a priori estimate in the theory of hydrodynamical instability. 

Izv. Vyssh. Uchibn. Zaved. Mathematika, 54, no. 5, 3-5. (English translation: 

American Math . Soc. Transl. , Series 2, 79, 267-269. 

Black, P.G., and F.D. Marks, 1991 : The structure of an eyewall meso-vortex in hurri-

cane Hugo (1989). Preprints from the 19th Conference on Hurricanes and Tropical 

Meteorology, Amer. Met. Soc., 579-582. 

Carr, L.E. III, and R.T. Williams, 1989: Barotropic vortex stability to perturbations from 

axisymmetry. J . Atmos. Sci. , 46, 3177-3191. 

Case, K.M., 1960: Stability of inviscid plane Coutte flow. Physics of Fluids , 3 , 143-148. 

Charney, J.G. and M.E. Stern, 1962: On the stability of internal baroclinic jets in a 

rotating atmosphere. J. Atmos. Sci ., 19, 159-172. 

Drazin, P.G. , and W .H. Reid, 1981: Hydrodynamic Stability, Cambridge University Press, 

New York. 525 p. 

Dritschel, D.G. , 1986: The nonlinear evolution of rotating configurations of uniform vor-

ticity. J. Fluid Mech. , 172, 157-182. 

Dritschel, D.G. , 1988: Contour Surgery: a topological reconnection scheme for extended 

integrations using contour dynamics . J . Comput . Phys. , 77, 240-266. 

Dritschel, D.G. , 1989: On the stabilization of a two-dimensional vortex strip by adverse 

shear. J. Fluid Mech. , 206, 193-221. 



44 

Eliassen, A., 1983: The Charney-Stern theorem on barotropic-baroclinic instability. Pure 

Appl. Geophys., 121, 563-572. 

Emanuel, K.A., 1979: Inertial instability and mesoscale convective systems. Part I: Linear 

theory of inertial instability in rotating viscous fluids. J . Atmos. Sci ., 36 2425-2449. 

Farrell, B.F., 1987: Developing disturbances in shear. J. Atmos. Sci., 44, 2191-2199. 

Flatau, M., and D.E. Stevens, 1989: Barotropic and inertial instabilities in the hurricane 

outflow layer. Geophys. Astrophys. Fluid Dyn., 47, 1-18. 

Flatau, M., and D.E. Stevens, 1993: The role of outflow-layer instabilities in tropical 

cyclone motion. J. Atmos. Sci ., 50, 1721-1733. 

Fj0rtoft, R., 1950: Application of integral theorems in deriving criteria of stability for 

laminar flows and for the baroclinic circular vortex. Geofis . Publ., 17, No 6, 52pp. 

Franklin J.L., S.J. Lord, S.E. Feuer, and F.D. Marks Jr., 1993: The kinematic structure 

of hurricane Gloria (1985) determined from nested analysis of dropwindsonde and 

doppler radar data. Mon. Wea. Rev. , 121, 2433-2451. 

Gray, W.M. , and D.J. Shea, 1976: Data summary of NOAA's hurricane flight penetrations 

1957-1967, 1969. Colorado State University, Atmospheric Science Paper No. 257. 

Guinn T.A. 1992: A dynamical theory for hurricane spiral bands. Colorado State Univer-

sity, Atmospheric Science Paper No. 497 .-

Haynes, P.H., 1988: Forced, dissipative generalizations of finite-amplitude wave-activity 

conservation relations for zonal and nonzonal basic flows. J. Atmos. Sci. , 45 , 2352-

2362. 

Holland, G.J., 1980: An analytic model of the wind and pressure profiles in hurricanes. 

Mon. Wea. Rev., 108, 1212-1218. 

Lesieur, M., 1990: Turbulance in Fluids. Kluwer Academic Publishers , 412 pp. 

Lesieur, M. , C. Staquet, P. LeRoy, and P. Comte, 1988: The mixing layer and its coherence 

examined from the point of view of two-dimensional turbulence. J. Fluid Mech . 192, 

511-534. 



45 

Lewis, B.M. , and H.F. Hawkins, 1982: Polygonal eye walls and rainbands in hurricanes. 

Bull. Amer. Met. Soc., 63, 1294-1300. 

Lindzen, R .S. , 1988: Instability of plane parallel shear flow (toward a mechanistic picture 

of how it works). Pageoph, 126, 103-121. 

Lindzen, R.S., and K.K. Tung, 1978: Wave overreflection and shear instability. J. Atmos. 

Sci., 35, 1626-1632. 

Magnusdottir, G., and W.R. Schubert, 1990: On the generalization of semigeostrphic 

theory to the /3-plane. J. Atmos. Sci., 47, 1714-1720. 

Magnusdottir, G., and W.R. Schubert, 1991: Semigeostrophic theory on the hemisphere. 

J. Atmos. Sci., 48, 1449-1456. 

McIntyre, M.E., and T.G. Shepherd, 1987: An exact local conservation theorem for finite-

amplitude disturbances to non-parallel shear flows , with remarks on Hamiltonian 

structure and on Arnol 'd 's stability theorems. J . Fluid Mech ., 181, 527-565. 

McIntyre, M.E., and M.A. Weissman, 1978: On radiating instabilities and resonant over-

reflecti n. J. Atmos. Sci., 35, 1190-1196. 

Michalke, A. and A. Timme 1967: On the inviscid instability of certain two-dimensional 

vortex-type flows . J. Fluid Mech ., 29, 647-666. 

Moller, J .D. , and R .K. Smith, 1994: The development of potential vorticity in a hurricane-

like vortex. Submitted to Q. J. R. Met. Soc. 

Muramatsu., T. , 1986: The structure of polygonal eye of a typhoon. J . Meteor. Soc. 

Japan , 64, 913-921. 

Pedlosky, J ., 1970: Quasi-geostrophic potential vorticity equation, Geophysical Fluid Dy-

namics Summer School Notes , Woods Hole Oceanographic Institution. 

Ripa, P. , 1983: General stability conditions for zonal flows in a one-layer model on the 

/3-plane or the sphere. J . Fluid Mech. 126, 463-489. 

Ripa, P. , 1991: General stability conditions for a multi-layer model. J. Fluid Mech. , 222, 

119-137. 



46 

Rotunno, R. , 1986: Tornadoes and Tornadogenesis. Mesoscale Meteorlogogy and Fore-

casting, Edited by Ray, P. S., AMS, 414-436. 

Schubert, W.H., and B.T. Alworth, 1987: Evolution of potential vorticity in tropical 

cyclones. Q. J. R . Met. Soc., 113, 147-162. 

Shapiro, L.J ., and M.T. Montgomery, 1993: A three-dimensional balance theory for rapidly 

rotating vortices. J. Atmos. Sci., 50, 3322-3335. 

Shea, D.J., 1972: The structure and dynamics of the hurricane's inner core region. Col-

orado State University, Atmospheric Science Paper No. 182. 

Shepherd, T.G., 1988a: Rigorous bounds on the nonlinear saturation of instabilities to 

parallel shear flows. J. Fluid Mech ., 196, 291-322. 

Shepherd, T.G., 1988b: Nonlinear saturation of baroclinic instability. Part I: The two-

layer model. J. Atmos. Sci., 45, 2014-2025. 

Shepherd, T.G., 1989: Nonlinear saturation of baroclinic instability. Part II: Continuously 

stratified fluid. J . Atmos. Sci., 46, 888-907. 

Shepherd, T.G., 1990: Arnol'd stability applied to fluid flow: Successes and failures. 

Proceedings of the IMA Workshop on Nonlinear Phenomena in Atmospheric and 

Oceanic Sciences, June 4-8, 1990, G.F. Carnevale and R.T. Pierrehumbart, eds. 

Smith, Gerald B. II, 1994: Studies of symmetrization in tropical cyclones. MS Thesis, 

Department of Atmospheric Science Colorado State University. 

Snow, J .T. , 1978: On inertial instability as related to the multiple-vortex phenomenon. 

J. Atmos. Sci. , 35, 1660-1677. 

Snow, J.T., 1982: A review of recent advances in tornado vortex dynamics. Rev. Geophys. 

Space Phys., 20 , 953-964. 

Staley, D.O., and R.L. Gall, 1979: Barotropic instability in a tornado vortex. J . Atmos. 

Sci. , 36, 973-981. 

Weber, H.C., and R.K. Smith, 1994: The stability of barotropic vortices: Implications for 

tropical cyclone motion Submitted to Geophys. Astrophys. Fluid Dyn. 



47 

Zabusky, N.J., M.H. Hughes, and K.V. Roberts , 1979: Contour dynamics for the Euler 

equations in two dimensions. J . Comput. Phys., 30, 96-106. 

Zabusky, N.J., and E.A. Overman, 1983: Regularization of contour dynamical algorithms. 

J . Comput. Phys. , 52, 351-373. 



Appendix A 

MODEL DEVELOPMENT 

Here we derive the system used for normal mode analysis in Chapter 3 by two different 

methods. First we derive an eigen-equation for the nonlinear normal mode problem. This 

equation is then linearized into a standard eigenvalue problem which is solved for the 

complex frequency v. Second we develop an initial value method which incorporates both 

the continuous spectrum and normal mode solution components using a Green's function 

approach starting from the linear system. This results in a nonhomogeneous system 

in which the algebraic spectrum is represented by the forcing term. This multiregion 

derivation is a natural extension of the two and three region formulation of Smith (1994). 

A.1 Normal mode approach 

We begin with the non-divergent shallow water model in cylindrical coordinates, 

au 8 [ 1 2 2] - - ( v + - gh + -(u + v ) at a ar 2 

av 18[ 12 2] at +(au+-:; 8¢ gh + 2(u + v ) 
I 8ru I 8v 
r ar + r 8¢ 

= 0, 

= 0, 

= 0, 

(A.l) 

(A.2) 

(A.3) 

where u and v are the radial and tangential components of the horizontal wind, and 

( 0 = f + 8
;8~> - is the absolute vorticity. This system has the properties that the 

relative vorticity, (, is conserved following a particle and that the components of flow can 

be described in terms of a single variable, the stream function, 1/J, defined such that 

81/J 81/J 
u = - r8¢ and V = ar . (A.4) 
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Figure A.l: An example of the basic state vorticity pattern assumed in this model. 

We begin by defining an axisymmetric basic state relative vorticity field in a stepwise 

manner as 

- 8(rv) J 
( ( r) = -a- = L ~., for r j < r < r j+ I . 

r r ., ·+i J . 
J =J 

(A.5) 

where ~j is a (positive or negative) step of vorticity crossing r = Tj inwards , and r J is the 

radius beyond which the relative vorticity is identically zero. This profile is illustrated in 

Figure A.1 and can be thought of as a generalization of the two region case of a Rankine 

profile. Integrating this equation results in 

2 J 

r2 L ~/ + Cj+l· 
/=j+l 

We require that rv(r) is continuous at r = Tj which gives 

(A.6) 

(A.7) 
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Summing this recursive definition for C1 and applying the boundary condition 

v(O) = 0, (which requires C1 0) we have 

so that, 

. 2 
J r ., J r2 

rv(r) = "'""' -1-e .1 + "'""' -e ./ for Tj T Tj+l· L 2 J L 2 J 
/=l /=i+l 

(A.8) 

(A.9) 

We now integrate equation (A.9) to get the basic state streamfunction -rfi(r) with the 

requirement that it remain bounded as r 0, oo giving 

_ i r:, r2 J 
1/J(r) = ln(r)"'""' ...Le.,+ - "'""' e.1 C l,j + C2 ,j for Tj r Tj+l• (A.10) L 2 J 4 L J 

/=1 /=i+l 

To satisfy the boundary requirements we have C1 ,1 = 0 and C2,J = 0, which gives, using 

recursive method outlined above, 

so that 

j ( ) J - 1 2 r 1 2 1/J ( r) = 2 L r ./ ln - e ./ + 4 L e., ( r r 
J r ., J J 

/=1 J /=i+l . 

2,) for Tj r r i+l· 
J 

(A.11) 

(A.12) 

(A.13) 

We now define a perturbat ion streamfunction 1/J'(r, </>, t) = J(r) exp[i(mef> - vt)] with 

requirement that the perturbat ion vorticity ( ' is identically zero everywhere except at 

the discontinuities of(, that is, 

where ,,j; = I:~, f,. This equation is satisfied by 
J =1 J 

(A.14) 

(A.15) 
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To insure that ~(r) remains bounded throughout the domain we require that 

Thus, 

j J 

~(r) = L CIJ'r-m + L c2,/rm for Tj r Tj+l· 
/=l /=j+l 

(A.16) 

Requiring continuity of the radial wind at r = rj gives the relation C1 ,j = rJmc2 ,j, which 

results in 

We now define the displacement of the jlh interface as 1Jj(<P, t) = r} exp [i(m¢ - vt)] 
I 

and require continuity of rv = rv + rf![:- at r == rj + 1Jj which results in 

l~ -r2 + A ·m (~) m ei(m</>-vt) = l~ ·r? - A ·m (rj) m ei(m<f>-vt) at r = r 3· + 111· . (A.18) 
2 J J r · 2 J J J r . 

J 

Linearize this equation noting that 1Ji r j 

mA · - _le ·r ·11·. J - 2',J J J . (A.19) 

Now we observe that the radial velocity of a particle on an interface must be equal 

to that of the interface itself, i.e. , 

im '( ) --'Ip Tj . 
r · J 

Combining (A.17) , (A.19) , and {A.20) we obtain a standard eigenvalue problem 

J 
( - / ) • "'""' 1 c 1< m) • II - ffiVj Tj 1Jj + 7i<.,/ . ./ 7J/ 

I JJ 
j =l . 

= 0, 

where 

(A.20) 

(A.21) 
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Equation (A.20) can be represented in matrix form as 

A = 
le r J-1 

( )
m -1 

2'-J rJ 

l C ( )
m+l 

2<,J-l rJ -mwJ + ½eJ 

A.2 Initial value problem 

Consider the f-plane nondivergent barotropic vorticity equation linearized about a 

basic state v(r), 

8(' _ 8(' ,8( -+w-+u-· = 0, 8t 8¢ 8r 
(A.22) 

where w = v/r. Now define the basic state vorticity , (, in a piecewise constant manner 

as 

J 

( = ej for Tj < r < Tj+l 
j'=j+l 

(A.23) 

where ei is a (positive or negative) step of vorticity crossing r = Tj inwards, and the 

relative vorticity is identically zero outward from r J. Integration of this equation results 

m 

With the definition (A.23) of ( equation (A.22) becomes 

8(' _ 8(' at + w 8<P = 0 for r # r j. 

We now perform a Fourier transform with respect to ¢, defined as 

r21r 
J(k) = Jo f(cp) exp(imcp)dcp, 

(A.24) 

(A.25) 

(It should be remembered that the Fourier space variables are different than their physical 

space counterparts although we choose not to change notation.) 

8(' . (' 0 ..J_ -+wim = .1or r,rj 8t (A.26) 
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Define the streamfunction, 1/J, such that (u, v) = (-im1j;/T, o'ljJ/oT) , with the usual relation 

to vorticity 

( 
0 0 m2) -(T-) - - 1/J. 

TOT or r 2 

Using equation (A.27) in equation (A.25) results in, · 

We now further assume that 'ljJ' can be written as a sum of functions , 

· J 

'ljJ'(r, t) = 'ljJ:(r, t) + L Aj(t)\Jlj(r), 
j=l 

with the following properties: 

• 'ljJ~(r, t) is analytic throughout the domain and at all times. 

(A.27) 

(A.28) 

(A.29) 

• Each Wj(r) is analytic throughtout the domain except at the point Tj where it is 

continuous. 

We define a function to be analytic at a point if all of its derivatives exist at that point. 

A function is continuous at a point if it , but not riessasarily its deriviative, exists and is 

single valued at that point. 

Equation (A.29) represents a linear combin~tion of functions , thus each of the func-

tions must also independently satisfy equation (A.28). In particular, 

(A.30) 

throughout the domain since 'ljJ~ is analytic at all Tj. We can solve this using a Laplace 

transform defined as f(s) = fa°° f(t) exp(-st)dt, thus 

(A.31) 

This can be rearranged into 

(A.32) 
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and inverse transformed to 

(A.33) 

which can be expressed in terms of an initial vorticity perturbation, (so as 

[ 
d d m

2
] 1 ( . ) -d (r-) - 2 1Pa = exp -imwt (sO· r r dr r 

(A.34) 

Equation (A.34), when multiplied by r is the cylindrical coordinate form of Euler 's differ-

ential equation and can be solved using a Green's function approach. With the requirement 

that "Ps be bounded for all r we arrive at 

where 

As a consequence of ( A.29), v72w j = 8 ( r - r j) where 

Thus, 

8(x) = 00 for X = 0 
0 for X-::/= 0. 

[ 
d d k2

] -(r-)-- W· = 8(r-r ·), 
rdr dr r 2 1 1 

which is again a form of Euler's equation and has solution 

(A.35) 

(A.36) 

(A.37) 

(A.38) 

(A.39) 

We now require dynamic continuity at each interface rj , that is , h(rj) = h(r;) where 

()+ is the limit when approached from greater values and o- is the limit when approached 

from below. From the tangential momentum equation 

ir av' _ I ir - I 
h = ---rwv +-(u , mat m (A.40) 

which we can express in terms of the streamfunction as 

h = (
ir a ) 8'ljJ' - , ---rw -+('ljJ mat 8r (A.41) 
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Thus, 

h(rt) - h(rj) - (::: ! -r/>;) ( 8:,' l,j -8:,' I,;-)+ 'Pj (M) -((rj) - 0, (A.42) 

From A.23 we have 

and integration of r· (A.38) from r; to rt results in 

( OiJ!j Ir+ - OiJ!j I ) = l. or ] or r-:-
1 

(A.43) 

(A.44) 

Noting that all other terms of 1/J' have the same limit at Tj when considered from either 

direction, we can use equations (A.43) and (A.44) in equation (A.42) to get, 

( iri!__r ·w·)>-·-~· (1/J' +~>. -,ii! ·,) = 0. mot J J J J a J J 
J'=l 

(A.45) 

Now use equation (A.39) and multiply by -im/ri : 

d>.j - i (-mw ·>. · + l~-/m) >. -, - m ·1/J' (r ·)) dt - J J 2 J jj' J r j J a J , (A.46) 

where 

I(m) = { (r//rj)m+l ~f ~' 
H1 (rj/r/ )m-l 1f / 2: J 

Equation (A.46) represents a system of J ordinary coupled nonhomogeneous differential 

equations in >. and can be written in the form 

>. = iB>. + if(t), (A.47) 

where 

(A.48) 

and 

B = 

lt (r J-1) m+l 
2'-.J rJ 
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The eigenvalues of the matrix B represent the solution for the homogeneous case (f = 0). 

IT we compare this matrix to A , we can see that 

(A.49) 

where 

6 0 0 0 

0 6 0 
D = 0 0 0 (A.50) 

0 0 
0 0 ~J 

Thus the matrices A and B are similar in the linear algebraic sense and as a consequence 

have identical eigenvalues. 



Appendix B 

TANGENTIAL WIND PROFILES 

The modified Rankine profile is 

(B.l) 

where rm= radius of maximum wind (RMW), Vm = v(Tm) is the axisymmetric maximum 

tangential wind, and 

p = Pi > 0 for r ::; Tm 

Po < 0 for r Tm 
(B.2) 

As shown in Chapter 3, this very simple profile often provides a very good fit to the 

observations. The mean relative vorticity associated with this profile is 

V ( T )p-l ((r) = (p + 1)~ -
Tm Tm 

(B.3) 

Thus when Pi = 1.0 the inner vorticity is constant, otherwise the relative vorticity vanishes 

at storm center and increases out to the RMW where there is a discontinuity in the 

vorticity profile. Figure B.l illustrates the structure of the modified Rankine profile for 

various values of p. Holland (1980) derived an axisymmetric tangential wind profile based 

on the pressure profiles of several Florida hurricanes. We can express this profile in terms 

of the radi s and amplitude of maximum wind as 

(B.4) 

with the realistic range for b as reported by Holland, 1 < b < 2.5. The corresponding 

relative vorticity is 



]!:;, 
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modified Rankine velocity 
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Figure B.l : Velocity (top) and vorticity structure of the modified Rankine profile. In this 
and the following figures all values are normalized to the RMW value. 
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Holland velocity 
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Figure B.2: Velocity {top) and vorticity {below) structure of the Holland profile. 
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For bin the range specified limr--+O ((r) = 0 for this profile as shown in figure (B.2). We 

find it unlikely that the relative vorticity structure is constant within the RMW of a typical 

tropical cyclone, however it is also unlikely that the relative vorticity vanish completely 

at the storm center. We would like a manner in which to vary the inner core vorticity · 

structure without varying that outside rm , in order to consider the effects of different 

structures of inner core tangential winds on the barotropic stability of the vortex. A 

velocity profile in which the inner structure can be changed without modifying the outer 

structure is thus required. To do this we choose as an outer structure a slightly simplified 

version of the Holland profile above, 

(B.6) 

where Vm and rm are as defined above, and p is a velocity slope parameter similar to b 

above. The corresponding vorticity is 

(B.7) 

where s = r /rm. We now desire an inner region profile which is smoothly continuous 

at r = rm , and which has ((0) = (o. We do this in terms of a third order polynomial 

approximation to the vorticity profile, 

((r) = ( o + ~s [wrmw (12 - p2
) - 3(o] 

+2s2 [wrmw(-16 + 2p2
) + 3(o] 

+~s3 [wrmw(6 - p2) - (o] for O r rm, 

or, with the further constraint that f = 0 at r = 0 , a fourth order polynomial, 

((r) = (o + 2s2 [wrmw(20 - p2) - 6(0] 

+5s3 [wrmw(-15 + p2
) + 4(o] 

+3s4 [wrmw(12 - p2
) - 3(o] for O r rm, 

where Wrmw = Vm/rm. 

(B.8) 

(B.9 ) 
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We can now compute the inner velocity based on each vorticity profile, 

v(r) = r { + s [wrmw(6 - ½P2
) - !(o] 

+s2 [wrmw(-8 + p2
) + !(o] 

+s3 [wrmw(3 - ½p2
) - ½(o]} for O r Tm 

and 

v(r) = r { + s2 [wrmw{lO- p2

2
) - 3(o] 

+s3 [wrmw{ -15 + p2) + 4(o] 

+s4 [wrmw{6 - ~
2

) - !(o]} for O r Tm 

(B.10) 

(B.11) 

Figure (B.3) illustrates the structure of the poly3 and poly4 profiles and the effect of 

varying the r = 0 vorticity. Note that although the inner structure depends slightly on 

p the outer structure, illustrated by Figure B.4, is fully independent of (o. The range of 

reasonable values for pis determined by the inertial stability, J2 = (f +(r)U +2v/r) > 0, 

of the outer region. For equation (B.6), v(r) > 0 for all r so that this requirement reduces 

to f + ((r) 0. Differenti~ting equation (B.6) it follows that 

OV V 
-
0 

= -p(s-P - 1) for r > Tm , 
r r 

with this substitution we rewrite the inertial stability condition as 

or, 
fr 1 s-P > 1- - - -. 

- V p 

Clearly s-P can become arbitrarily small as r gets large so that this equation can be true 

for all p only if 1-[; + 1. The limiting case is now at r = rm so that p R~":_ 1 , where 

we have defined the Rossby number for the storm as Rm = vm/Urm)-
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Figure B.3: Velocity (top) and vorticity (below) structure of the poly3 (left) and poly4 
(right) profiles out to RMW. Here zO = (o , and p = 1.0. 
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Figure B.4: Velocity (top) and vorticity (bottom) structure of the poly3 (lines) and poly4 
(symbols) profiles for several values of p. Here (o = 1.0. 
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