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Prediction of the wter table position and the amount of 

vi thdra\olal ·,rhere ground \18. ter is flowi~g from an aqu.ifel' to a 

reservoir has not been exact due , i n part , to t he difficLllty o.f 

solving the nonli near partial differential equation which des-

cribes the flow. 

Ap~roximate solutions obtained by two differont methods 

for the nonli.noa.r eG.uation are pr-esented . Bot!1 solutions give 

better agreement with experimental r esults than does the solu-

tion o.f tho nimplifi ed linear equation for the flow. 

The solutivn of one-dimensional bow1dury value problems 

in grow1d water flow h:ls JT!(l.OY i n t-3res ti!:J.g appli cati ons . For 

e~ple, ~he i ncrement of vatar added to ban~ stora~e when 

filli ng a reservoi!· or the decremen t taken from ban c stora;e 
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when/ emptying a rese rvoir can ba a considerable amount and ita 

prediction ie desirable. The same solution also applies to 

certain cases or transients caused by the digging of drains 

and to bank storage adjacent to str eams that undergo changes in 

water level. This paper presents four approximat e solutions for 

the problem. Soluti ons I and III are first approximations in 

which the eff ect of t he drawdown on the ar ea available tor the 

flow of ground Yater is neglected. Solutions II and IV are 

second approximations ~hich take the effect of drawdown into 

account. 

The solutions presented in. thia pnper are based upon the 

follovinz assumptions& 

1. The sa t cirated aquifer is of infinite extent and over-

lays an impermeable layer of zero slope . 

2. The Dupuit-Forchl1ei~er assumptions hold. 

3. The change in reservoir wat er level is instantaneous. 

4. The aquifer is compos ed of an isotropic and homogeneous 

material. 

Solution I 

Consider the flou into a reservoir as shoyn in figure 1. 
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I Land Surf c~c:e~·-------~-------~-~----------~ 

Reservoir d 

Fig. I Flow into a Reservoir 

The flow through a cross section of unit width at t he distance x 

from the origin is 

Q = f({d -r .fi r h ) _?_!!_ 
z jJ~ 

vhera 1 K is the permeability of the aquifer. 

It ve let 

then 

D = d-r fl 
z 

Q:; J((£J+h)~ 
ax. 

(1) 

(2) 

(3) 

/ 
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the equation o.f continuity for the strip of width dx and 

time increment dt 1s 

where: V is the specific yield of the aquifer. 

Or, by use of equation (J) 

K ( o ;h) rd
2
h 1- J((M)~ = v ;;;h 

d~~ d~ Jt 
By letting cC= KVD, equation (5) becomes 

This differential equation is nonlinear in for~. 

(4) 

(5) 

(6) 

If d is 

much larger than H, h can be discarded fror!l equation (J). · 

The continuity equation (4) then givea the following linear 

differential equation. 

·. C( ;:/-h - dh (7) 
J~L JE 

A solution of this equation as presented by GloverY is 

h, ~ -;I r J-1¢ (8) 

z 
vhera: 

x · 

¢ ;:~ = z -u.~ 
Y7f. e du.. 

0 

(9) 

/J Glover, R. E. Personal co~unication. July 1958. 

, 

I 
/ 
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~ is the error function. The integral is tabulated in Reference 

.). 

This is soluti on I. When the dravdovn is small compared to 

the thickness of the aquifer, Solution I is an approximate solu-

tion or equation (6). It satisfies the boundary and initial 

oondi t1 ons : 

for x=O t > 0 

x- c::o 

t=O x>O 

Solution II 

A second approximation to the true solution of equation ~) 

may be obtained by applying the method of Picard (1). This 

method uses each s uccessive approximation to approach a closer 

approximation. To obtain the s econd approA~mation, the non-

linear t erms of equation (6) are co~puted f r om t he first 

approxinate solution, equation (S), and substituted into equa­

tion (6) as knovn functions. The differential equation, as 

thue modified, is t hen solved again subject to the initial and 

boundary conditions. The process of solution r equires that 

particttiar· integrals of the known functions be found. 

ex; (.2.b.)2 A particular int egral Pl• for the term - D a~ is: 

0 == - h,~ 
I I 2. D (10) 

o(~ Similarly a particular integral P2' for the term - D hl ax?- -
iea 
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- _j_ dhjh, d;r. 
~0 dX 

The expanded form of this particul.ar integral is: 
XL 

p - HI_ ;I 2. :x e -~ ;-/ Z. e 
~ = zi ~o f/7PH.x.t + o 7r 

(11) 

(12) 

An approximate solution of the modified form of differential 

equation (6) which satisfies the initial and boundary conditions 

iea 

(lJ) 

This is solution II; where q is the first approximation 

altered to correct h2 for the initial and boundary conditions. 

A plot of eq~tion (lJ) is shown in figure 2 with the 

dimensionless parameter h/H as ordin.a ta and x/ /4 a: t as 

abscissa. A co~plete drawdown is ass umed so that the solution 

can be compared ~ith exp~rimental data. Ths solution for the 

linear case, equation (8), is also shown in fisure 2. 

~eller and Robinson (2) obtained measurements of the draw-

down curve in a laboratory experiment in a sand filled flume. 

Water was drained fro~ the sand through a 4-inch perforated 

pipe located at tha floor of the flume. The sand used had 

values of I = 0.034 ft/sec, and V = 25.5 percent. The data 
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Fig. 2 Approximate Solutions of Ground 
Water Equ ations and Experimental Data 
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I 
or Ki ller and Robinson are compared ~ith the theoretical approxi-

mati?n, equation (13), in figure 2. 

Solution III 

An alternative second approxi~~tion for the bank storage 

case may be obtained by a method or equating flows. A first 

approximation is obtained as b~fore and the flo~ Q is co~puted 

from it. This flow ie then substituted into equation (3) and an 

~proved solution is obtained by integrating t he resulting 

expression. The first approximation will be solution III. It 

is obtained by solving the lineari zed differential equation 

- dh 
Jt. 

subject to the conditions 

x=O 

t = 0 

X-- 00 

t > 0 h = 0 

x~O h = H 

(14) 

The signi:ficance of the notation used in this case is shown in 

Land Surface 

Water 

h H 

H---.1... ----------·---l--

Q ... 
d Reservoir 

X ·---~ 

1""'\ - - - -- - • - ~ --

\ 

/ 
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I 
Tho rl qulred fi~ot approximation, 

h.J = J-1 ¢ 

solution III, is then 

(15) 

Solutions I and III satisfy the same equatio~~ and boundary 
' 

conditions; only the reference point has changed. These solu-

tiona therefore are identical. 

Solution IV . 

A first approximation to the flow Q1 through a cross 

section of Qn~t vidth at x is 

where 

D = d + ~ and h.3 is given by equation (15). 

If the drawdown is taken into account, the expression for flow 

is 

Q = K{d+h) li 
. d;/: 

To obtain a closer approximation of h, 

are arbitrarily equated: 

I( (d+h) dh 
dX 

An integration ~th respect to x yields 

(17) 

equations (16) and (17) 

(18) 

(19) 

'nla constant . c1 may ba evaluated for the boundary condition 

that h = 0 when x = 0. The value so obtained iB 

/ 
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Then, by substitution 

( d-~-h)z ~ dz.. + 2 D h 
J 

Solution IV is obtained from this relation in the form: 

This solution satisfies the initial condition h = H vhen 

(20) 

(21) 

t = O. If h4 is measured from the same datum as h2 so that 

they may be compared directly, equation (21) becomes: 

For the case of a complete dravdovn it takes t he form: 

h4
1 = Jl ;1 h~ - o.s If = 1-1 f7iJ- o.s # {23) 

this equation is shoYn on figure 2 for comparison with experi-

mental data. 

A comparison of those solutions shows tP~t the second 

approximations II and IV agree better with the experimental 

data. than do the first approxi:na.tions I and III. Fortunately, 

the best agreement is obtained from solution IV, which is the 

easiest to use. 'Dle comparison is made here \o/ith the extreme 

case or co~plete dra~own . 

All the solutions are approximations based on the assump-

tion that d is very large compared to H. This ass~ption 

ie least valid for the oa5e of complete drawdown. Therefore, 



the results from using this solution with partial drawdovns 

should be good. 

Solutions I through IV vere derived for the case of 

in!low into a reservoir upon lowering of the reservoir water 

level. However, the same equations and solutions apply to the 

case or outflow if Q is considered to be negative for flow 

into the aquifer. 

Compu ta. ti on o£ C( 

z 
Curves similar to those of figure 1 can be used to compute 

OC for a given aquifer 1! values of h, H, d, x, and t have been 

measured in the field. From these values H/D can be computed 

and curves drawn for solution I or solution IV using h/H as 

ordinate and x/ V4 a: t as abscissa. For a given h/H, tX can 

be calculated from the measured value of x/ {t and the value 

of x/ V 4 <( t obtained from the curve. 

Solutions I and IV were used to determine a: by the above 

method for several of the points from Keller and Robinson's data. 

These values were comps.red vi th the value of oc oomput.-:3d from 

laboratory measurements of K, D, and V. Table 1 indicates the 

percentage error in ~ as determined by these two solutions. 
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TABLE 1 

Error in Determination or oe 

h/H Solution I Solution IV 

Percent Percent 

- 0.41 88 84 

- 0.12 77 ·J6 

+0.06 60 24 

+ 0.42 21 17 
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