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ABSTRACT

THREE ESSAYS ON DISEASE, DEVELOPMENT, AND INTERVENTION

The effect of health on development is well documented in the literature. Generally,

variables like life expectancy and infant mortality are used as proxies for overall health.

These variables encompass all potential causes of mortality and morbidity and may not

provide useful policy prescriptions. Individual diseases are explored as well, such as malaria,

but are not necessarily compared. This paper will map the income and age profile of 150+

individual causes of mortality. Mortality data are explored for 150+ causes, for 185 countries

in 1990 and 2010. We summarize the data to show that mortality rates certain low income

burdens decline rapidly as income grows while other remain constant, or even increase. We

also develop a framework with with the individual relationships between burdens the income

growth or vice-versa could be explored.

We present a multi-species dynamic population model of wildlife management in which

a manager applies spatial or individual-based disease protection interventions to a wildlife

species with high existence value. We use the model to investigate the choice between the

alternative interventions assuming the manager’s objective is to 1) maximize abundance sub-

ject to a budget constraint or 2) minimize management costs subject to a desired abundance

level. The model is specifically used to analyze population dynamics between the endan-

gered black footed ferret and prairie dogs which are susceptible to sylvatic plague outbreaks.

While specific results are sensitive to biological and economic parameters, we find a defined

switch point between the recommended use of spatial vs. individual disease mitigation in-

terventions based on either a target population or potential fixed budget. Below a specific
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budget or target abundance, individual-based protection should be used, while above, spatial

protection should be used.

We present an individual-based stochastic simulation model of wildlife population and

disease dynamics under different management strategies. Our objective is to estimate the

cost and biological outcome of various vaccination strategies against rabies in Kwazulu-

Natal, South Africa. A health economic data assessment such as we present here is a crucial

component of disease control. This analysis can guide management decisions by highlighting

cost-effective strategies. At a broader level, it will provide information to policy makers and

other stakeholders regarding both the feasibility and public health benefits, stemming from

reduced canine to human transmission, of the elimination of canine rabies.
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Essay #1: Disease Burden Transition Through Development Stages

1.1. Introduction

Global disease and other causes of premature mortality accounted for an estimated 52.8

million deaths in 2010, many of them entirely preventable [1]. The reduction in disease

related mortality and disability is an important objective from a social, as well as economic

perspective. From a social perspective, health plays a crucial and direct role in the overall

life expectancy, and the quality of life of an individual. In many cases, children and young

adults are the primary victims of preventable disease, and contribute to the majority of

deaths and disabilities [2]. It has been estimated that the value of gains in health are of the

same order of magnitude as gains in income in terms of social welfare [3].

From an economic perspective, health has a more indirect influence through its contri-

bution to human capital. Health influences the productivity of labor, the size of the labor

force, and contributes to cognitive abilities. Much of the literature agrees that improving

health can lead to large tangible payoffs by increasing economic growth. Disease eradication

has been shown to lead to improved education, higher literacy rates, and long term personal

income gains [4]. In terms of economic growth, [5] finds that higher mortality rates lead to

shortened decision horizons yielding higher short-term benefits at the expense of long-term

gains. It then follows that by extending the decision horizon through longer life expectancy,

long term economic gains should follow. Further, improvements in health can also lead to

higher rates of productivity among workers, and larger labor pools [6, 7]. While there is

substantial cross-country regression evidence to support the idea that health (generally in

terms of life expectancy or infant mortality) is indirectly correlated with improved economic

growth and development, it is far from conclusive as to the causal relationship between the
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two. It is, however, conclusive that health plays an important role in social welfare at the

micro and macro levels.

This paper explores disease burden profile transitions and economic growth. We attempt

to identify burdens with high marginal returns to investment, where initial and relatively

small investments return large health gains. While aggregate measures of health have long

been used in empirical estimations, they may not provide useful policy prescriptions. A par-

ticular conclusion may be that life expectancy is positively correlated with income per capita,

though for policy makers, the implications may be less clear. The suggestion of increasing

life expectancy to increase economic growth provides little guidance on how to accomplish

the goal. There are a number of factors that influence life expectancy and that may vary

significantly by country or income group. Rather than looking at overall life expectancy or

infant mortality, which include all possible causes of mortality and disability, individual dis-

eases and bundles of diseases are analyzed within different levels of development to identify

how relevant disease profiles shift through development stages, and their relationship with

income. By analyzing individual causes of mortality and morbidity, more specific and tar-

geted policy prescriptions can be made. Data for 256 diseases and other causes of mortality

and disability for 185 countries are used to analyze these movements and relationships. Data

were obtained for the years 1990 and 2010.

Beyond aggregate health measures, individual diseases can and do have a large impact

on overall well-being and economic development, and may provide a better explanation of

income, growth, or development in certain locations. Malaria has long been shown to signif-

icantly depress potential growth in Africa and Asia. [8] conclude that eradicating malaria in

subsaharan Africa will lead to a permanent increase in annual growth of 2.6%. [4]explores

2



the effect of hookworm eradication in the American South circa 1910. He concludes that the

hookworm infection rate could directly account for roughly half of the literacy gap and 20

percent of income differences between the American North and South at the time.

While diseases like malaria and hookworm are geographically specific, and generally

present primarily in low income countries, middle and high income countries face their own

set of influential disease burdens. Obesity among high income countries is growing at a rapid

pace. Obesity rates in the United States are projected to reach roughly 40 percent in men,

and 43 percent in women by the year 2020 [9]. The financial burden on national budgets,

business, health care providers, and individuals is well documented and substantial. In the

United States alone, [10] find that in 1998, obesity accounted for between 1 and 8 percent

of the national health expenditure, with the cost to business being reported to reach $12

billion per year [11]. Regarding wages, [12] find that obese workers suffer from wage penalties

ranging from 0.7 to 6.3 percent relative to their non-obese counterparts. The aggregate size

of national labor force is also impacted. [13] finds that obesity rates have a significant and

negative impact on employment for both men and women. The marginal employment effect

for obese men was found to be -0.084, while obese females have a probability of employment

that is 0.213 lower than non-obese females.

Expected disease burdens vary significantly between low, middle, and high income coun-

tries. It is important then, to understand these shifts as a country moves from one devel-

opment stage to the next. As household income rises in low income countries, individuals

may be better able to invest in preventative care to avoid certain disease burdens such as

malaria or tetanus. Diseases like malaria and tetanus, which are most common in low income

countries, can be more easily avoided through the purchase of bed nets, or oral medication
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for malaria, and simple injections for tetanus. From a public health perspective, increased

income may also lead to increased tax funding for additional public health projects such as

mass polio vaccination, etc. There may then be a distinction between causes of mortality

and morbidity that are primarily dealt with by private individuals through insurance and

health care and those causes that are addressed using state resources through public health

projects. Movement through development stages will influence both private access to pre-

ventative care as well as the state’s ability to combat certain burdens and provide better

care. Better access to health care will undoubtedly increase life expectancy and improve

well-being. While life expectancy has been shown to be positively correlated with economic

growth [14], it may bring with it new causes of mortality and morbidity in the form of

increased risk of cancers, cardiovascular diseases, etc.

Disease burden shifts can occur for many reasons: increased access to health care, rising

income, longer life expectancy, etc. Diet for example, can change significantly as income

increases, though not always for the better. [15] find that rapid income growth in China

between 1989 and 1997 has led to a shift to more low quality foods with negative impacts

on heath, with low-income groups experiencing the largest increase in detrimental effects.

Cancer, on the other hand, is a disease of old age that is greatly affected by life style. Cancer

detection and diagnosis normally occurs around the age of 50 or later in the United States

[16]. Along with cancer, the risk of diseases like Alzheimer, arthritis, type 2 diabetes, and

cardiovascular disease increases greatly with age.

This paper will analyze how disease burdens shift through development stages and eco-

nomic growth. From a social planner’s perspective, who is interested in maximizing the

aggregate social welfare of a population, it is important to understand how growth may be
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related the health of individuals as well as understanding the marginal benefit of health

investment. Growth from a low to a middle income country might lead to fewer cases of

malaria and tetanus, but increased cases of obesity and diabetes. Moving from a middle

income country may lead to higher cases of cancer, and other diseases of old age. The ability

to plan for such shifts, in the form of health care reforms, awareness campaigns, etc., could

reduce the expected impact. Likewise, at each income group, there are likely burdens that

should be focused on as smaller relative investments may yield larger returns. This paper

contributes to the literature by going beyond the general aggregate measure of health, life

expectancy or infant mortality, and exploring the relative impact of individual causes of

mortality and morbidity on income and growth. Other non-disease causes of mortality and

disability are also considered such as auto accidents and self harm.

1.2. Data

Crucial to this empirical analysis is the construction of cross-country mortality and dis-

ability rates for a wide range of potential diseases. Data for 229 causes of mortality and

disability were obtained from the Global Health Data Exchange, which were collected by the

Institute for Health Metrics and Evaluation for the 2010 Global Burden of Disease Study.

Data are presented in the form of disability adjusted life years (DALY), deaths, years of

life lost due to premature mortality (YLL), and years lived with disability (YLD). These

measure are broken down further into aggregate values, rates per 100,000 population, and

relative percentages within countries. For example, looking at DALYs for a specific country,

the total number of DALYs for each cause is available, as well as the DALY rate per 100,000

population, and the relative percentage of total DALYs that each cause contributes.
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Mortality related measures (deaths, and YLL) included only 182 of the total 229 causes

as some causes do no cause mortality. Causes such as ADHD and Autism are sources of

YLD, though they do not contribute to mortality.

Along with disease burden data, other cause of mortality and disability are also included

in this data set. These causes include auto accidents and other road injuries, nutritional

deficiencies, self harm, various forms of assault, mental disorders, and others. See Table A.1

for a full list of causes of mortality and disability. Data on GDP per capita were collected

from the World Bank and are adjusted to $2005.

1.3. Disease Burden Transition

In order to illustrate the disease and cause burden shift through development stages,

causes were ranked based on the expected income of afflicted individuals. Using deaths as

an example, this was done using a weighted average GDP per capita using the following

function

(1.1) E[GDPi] =
K∑
k=1

GDPk
Deathsi,k∑K
n=kDeathsi,k

where E[GDP ] is the expected GDP per capita of an individual dying from cause, i.

The denominator of equation 1.1 is the aggregate global deaths associated with cause i. The

numerator is the summation of GDP per capita of country k, multiplied by the deaths from

cause i in country k. This expression tells us the expected GDP per capita of individuals

that die from each of the causes of interest, and allows us to rank causes by their expected

income per capita. So then, causes with a lower GDP per capita would be interpreted as

disproportionately affecting individuals in low income countries, and causes with higher GDP

per capita would be interpreted as affecting individuals in high income countries. So then,
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as a country moves from low to mid to high income, one could expect the expected disease

or cause burden to follow this ranking. Table 1.1 lists the causes ranked based on mortality

rates in 2010 from the lowed expected per capita income to the highest 1. The standard

deviation of the weighted income and the max probability density (discussed below)are also

provided. If we look at the first cause on the list, Tetanus, we would expect the annual

income of an individual who has died from Tetanus to be $878. The relatively large max

density of distribution of incomes for this cause suggests that Tetanus mortality is primarily

occurring in the lowest of income groups with mortality rates declining rapidly with income

growth.

Table 1.1. Income Ranked Cause List With Expected Per Capita Income
and Max Density. 2010

Expected Standard Max Expected

Cause Income Deviation Density Age Group

Tetanus 878 9.43 0.361 0-14

Malaria 1,020 24.68 0.095 0-14

Obstructed labor 1,065 14.37 0.197 15-64

Maternal sepsis 1,358 18.15 0.324 15-64

Maternal hemorrhage 1,385 18.05 0.333 15-64

Abortion 1,456 18.71 0.359 15-64

Measles 1,499 27.53 0.239 0-14

Other: maternal disorders 1,514 18.35 0.455 15-64

Syphilis 1,516 28.31 0.346 0-14

Pneumococcal meningitis 1,546 12.33 0.479 0-14

Neonatal sepsis 1,550 10.84 0.385 0-14

Maternal hypertension 1,569 17.83 0.359 15-64

Glomerulonephritis 1,641 8.75 0.506 65+

HiB meningitis 1,646 27.35 0.468 0-14

Whooping cough 1,763 32.33 0.270 0-14

Acute hepatitis A 1,767 13.15 0.349 65+

Meningococcal 1,798 13.77 0.333 0-14

1The ranked burden table for 1990 can be found in the Appendix
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Otitis media 1,902 6.50 0.747 0-14

Rabies 1,932 23.64 0.340 15-64

Other: neonatal disorders 1,962 19.11 0.393 0-14

Protein-energy malnutrition 2,009 21.70 0.363 65+

Meningitis 2,042 17.95 0.408 0-14

Diarrheal diseases 2,047 21.05 0.394 0-14

Tuberculosis 2,107 14.18 0.474 65+

Animal contact 2,169 16.49 0.457 0-14

Neonatal encephalopathy 2,272 15.17 0.490 0-14

Neonatal disorders 2,329 15.68 0.475 0-14

Nutritional deficiencies 2,332 21.14 0.302 65+

Diptheria 2,382 92.72 0.513 0-14

Typhoid fevers 2,491 25.74 0.258 15-64

Upper respiratory infections 2,492 31.81 0.316 65+

Encephalitis 2,550 18.46 0.354 0-14

Other: meningitis 2,772 22.62 0.360 0-14

HIV AIDS 2,904 47.57 0.244 15-64

Preterm birth complications 3,035 20.92 0.389 0-14

Mechanical forces (firearm) 3,247 35.85 0.302 15-64

Cleft lip and palate 3,256 31.14 0.336 0-14

Sickle cell 3,309 64.12 0.207 0-14

Neural tube defects 3,452 59.82 0.341 0-14

Acute hepatitis B 3,551 28.13 0.265 65+

Other: road injury 3,635 41.56 0.363 65+

Iron-deficiency anemia 3,695 31.33 0.198 65+

Other: infectious diseases 4,161 39.38 0.309 0-14

Appendicitis 4,366 34.74 0.275 65+

Assault by sharp object 4,425 36.74 0.271 15-64

Epilepsy 4,477 33.15 0.313 65+

Fire 4,572 30.55 0.292 65+

Other: NTD 4,572 50.70 0.278 0-14

Interpersonal violence 4,702 38.09 0.265 0-14

Iodine deficiency 4,742 45.18 0.219 65+

Assault by other means 4,759 30.86 0.246 0-14

Assault by firearm 4,933 65.21 0.233 15-64

Mechanical forces 5,242 42.42 0.225 15-64

Hemoglobinopathies 5,272 49.73 0.300 0-14

Poisonings 5,325 48.02 0.233 0-14
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Other: STDs 5,427 45.42 0.248 65+

Pedestrian road injury 5,433 65.13 0.252 65+

Chlamydia 5,459 45.73 0.248 65+

Gonnorhea 5,462 45.80 0.248 65+

Drowning 5,465 39.75 0.266 15-64

Asthma 5,495 41.38 0.254 65+

Other: congenital anomalies 5,524 52.40 0.261 0-14

Congenital anomalies 5,929 48.28 0.260 0-14

Other: nutritional deficiencies 5,983 62.14 0.169 65+

Other: gynecological disorders 6,033 63.26 0.176 65+

Varicella 6,159 50.06 0.349 0-14

Gynecological diseases 6,309 65.45 0.174 65+

Bacterial skin diseases 6,373 61.09 0.292 65+

Thalassemia 6,471 70.15 0.268 0-14

Congenital heart anomalies 6,512 46.31 0.250 0-14

Cellulitis 6,524 61.29 0.300 65+

Fibroids 6,533 93.33 0.176 15-64

Other: hemog 6,662 59.77 0.248 0-14

Other: skin diseases 6,665 64.69 0.319 65+

Cervical cancer 6,685 46.08 0.217 65+

Acute hepatitis C 6,792 63.42 0.205 65+

Lower respiratory infections 6,796 66.34 0.319 0-14

SIDS 6,923 70.00 0.310 0-14

Other: mechanical forces 7,039 68.86 0.230 15-64

Other: transport injuries 7,134 57.28 0.224 15-64

2 Wheel road injury 7,152 58.46 0.210 15-64

Transport injuries 7,197 54.37 0.219 65+

Road injury 7,202 55.07 0.218 65+

Other: chromosomal anomalies 7,548 71.26 0.234 0-14

Other: unintentional injuries 7,828 77.96 0.254 0-14

Bicycle road injury 7,912 75.07 0.225 65+

Dengue 7,956 86.30 0.182 65+

Urolithiasis 8,052 68.01 0.235 65+

G6PD deficiency 8,142 63.46 0.229 65+

Unintentional injuries 8,283 73.30 0.249 65+

Peptic ulcer 8,404 84.54 0.259 65+

4 Wheel road injury 8,726 73.51 0.203 15-64

Hemorrhagic stroke 8,803 79.87 0.206 65+
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Adverse medical treatment 8,821 91.46 0.248 0-14

Inguinal and femoral hernia 8,826 75.26 0.163 65+

Cirrhosis 8,874 78.59 0.221 65+

Rheumatic heart disease 8,956 83.73 0.244 65+

Diabetes 9,093 71.98 0.206 65+

Down’s syndrome 9,126 90.80 0.220 0-14

Other: respiratory diseases 9,206 127.39 0.219 0-14

Other: urinary diseases 9,213 87.00 0.195 65+

Gastrititis and duodenitis 9,298 79.12 0.190 65+

Schizophrenia 10,000 112.10 0.242 65+

Intestinal obstructions 10,051 104.22 0.238 65+

Other: endocrine 10,085 102.00 0.161 0-14

Hodgkin’s lymphoma 10,126 86.85 0.193 65+

Hypertensive heart disease 10,216 88.07 0.178 65+

Stroke 10,293 86.78 0.185 65+

Hypertensive CKD 10,355 81.16 0.205 65+

Liver cancer 10,357 104.18 0.203 65+

Pancreatitis 10,373 90.72 0.172 65+

Cardiomyopathy 10,474 106.24 0.170 65+

Diabetic CKD 10,511 97.86 0.216 65+

Endocarditis 10,546 93.61 0.203 65+

Digestive diseases 10,710 103.34 0.225 65+

Endometriosis 10,729 405.90 0.129 15-64

Decubitus ulcer 10,775 122.97 0.221 65+

Chronic kidney disease 10,845 90.53 0.231 65+

Other: digestive diseases 11,081 115.10 0.220 65+

Other: CKD 11,235 97.83 0.244 65+

Pneumoconiosis 11,280 144.91 0.250 65+

Other: neurological disorders 11,293 108.83 0.190 65+

Larynx cancer 11,432 100.16 0.154 65+

Rheumatoid arthritis 11,519 136.24 0.226 65+

Ischemic stroke 11,585 102.04 0.196 65+

Eating disorders 11,906 129.52 0.189 65+

Cardio and circulatory diseases 11,963 107.04 0.171 65+

Nasopharynx cancer 12,037 171.16 0.172 65+

Other: drug use 12,103 137.95 0.148 0-14

Testicular cancer 12,173 123.86 0.150 65+

Musculoskeletal disorders 12,269 125.72 0.180 65+
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Stomach cancer 12,293 129.50 0.172 65+

Self harm 12,348 121.72 0.188 15-64

Chronic respiratory diseases 12,475 127.92 0.254 65+

Inflammatory bowel disease 12,525 146.04 0.247 65+

Other: musculoskeletal 12,558 127.72 0.157 65+

Ischemic heart disease 12,649 117.72 0.162 65+

Other: mental and behavioral 12,726 144.21 0.203 65+

Non-melanoma skin cancer 12,995 119.71 0.169 65+

Gall bladder diseases 13,178 130.42 0.192 65+

Esophageal cancer 13,247 142.25 0.175 65+

Urinary diseases 13,296 138.53 0.174 65+

Mental and behavioral disorders 13,340 147.87 0.156 65+

Other: cancers 13,393 137.82 0.235 65+

Alcohol use disorders 13,788 182.85 0.138 15-64

Genital prolapse 13,883 194.86 0.097 65+

Cocaine use 13,896 169.30 0.151 0-14

Mouth cancer 14,265 141.55 0.151 65+

Other: pharynx cancer 14,328 159.63 0.164 65+

COPD 14,440 158.31 0.207 65+

Thyroid cancer 14,464 141.21 0.170 65+

Opioid use 14,993 182.63 0.145 0-14

Amphetamine use 15,204 186.15 0.141 0-14

Other: cardio and circulatory 15,307 170.35 0.168 65+

Gallbladder cancer 15,522 175.95 0.151 65+

Pyelonephritis and UTI 15,777 172.20 0.160 65+

Falls 15,904 193.88 0.227 65+

Leukemia 16,237 167.98 0.208 65+

Uterine cancer 16,579 173.72 0.150 65+

Non-Hodgkin lymphoma 16,882 180.78 0.175 65+

Breast cancer 16,955 180.70 0.160 65+

Ovarian cancer 18,333 203.77 0.163 65+

Brain cancer 18,404 213.00 0.150 65+

Bladder cancer 18,696 207.00 0.139 65+

Prostate cancer 18,996 214.94 0.133 65+

Interstitial lung diseases 19,109 255.31 0.190 65+

Neurological disorders 19,258 252.12 0.214 65+

Lung cancer 19,386 212.20 0.138 65+

Vascular intestinal disorders 19,567 222.55 0.107 65+
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Pancreatic cancer 19,992 220.01 0.128 65+

Colorectal cancer 20,040 218.83 0.144 65+

Melanoma 20,231 262.62 0.120 65+

Multiple sclerosis 20,402 268.59 0.157 65+

Kidney cancers 20,863 239.78 0.130 65+

Aortic aneurysm 20,879 254.84 0.142 65+

Peripheral vascular disease 22,388 284.52 0.133 65+

Myeloma 23,716 278.65 0.138 65+

Parkinson’s disease 24,428 311.13 0.173 65+

Atrial fibrillation 25,352 351.45 0.118 65+

Alzheimer’s disease 29,621 439.54 0.136 65+

Malaria on the other hand, has a low expected income but a low max density, suggesting

that as income grows, mortality rates decline at a much slower rate. We would assume that

Malaria mortality remains relatively high through multiple income groups.

Intuitively, causes on either extreme can be interpreted as being very GDP per capita

specific, or that they disproportionately affect individuals on either the low or high income

portion of the scale. The causes that fall in the middle are less clear as to who is primarily

affected. It could be that the causes are specific to middle income individuals, or it could be

that the causes span multiple income groups from low to high, and fall in the middle simply as

an overall average. This would mean that certain causes may follow individuals with similar

probabilities throughout several development stages. In order to evaluate whether causes are

income specific or span multiple income groups, the standard deviation of weighted income

of each cause is calculated. The standard deviation provides insight into the distribution of

incomes associated with a specific cause. A large standard deviation indicates a cause that

spans multiple income groups, while a small standard deviation indicates a tight distribution

around a specific income.
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It is also true, however, that we would expect the standard deviation to increase as the

absolute value of expected income increases. This may lead to the spurious assumption

that since the standard deviation of a high income cause is larger than a low income cause,

that the high income cause spans more income groups than the low income cause. To

appropriately compare the income distribution of each cause, a distribution was estimated.

We would assume that the types of distribution vary across causes, so we cannot apply the

same distribution assumption to each. In order to approximate each distribution, kernel

density estimation was used to estimate the probability density function for each cause. One

output of this method density of observations at each income level. Causes with a higher

maximum density can be assumed to be relatively more specific to particular incomes than

causes with a lower maximum density. As an example, figure 1.1 illustrates the distribution

of weighted income associated with mortality for the cause neonatal sepsis, an income specific

cause of mortality, and multiple sclerosis, which spans a larger income range.

Based on the ranking provided in Table 1.1, we could identify causes as being low, mid,

or high income causes. This would provide a mortality road map of sorts by providing an

expected burden shift as income grows. The expected income along with the standard de-

viation and max probability density of each cause provide insight into expected income or

groups of incomes for each cause. This is particularly useful for interpreting the expected

income of causes that fall within the mid income range. Understanding the relative distri-

bution of the cause allows us to determine whether the cause is middle income specific, or

whether is spans multiple, or even all income groups, putting its expected income in the

middle.
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Figure 1.1. Examples of a income specific cause of mortality vs. a burden
that spans multiple income groups. Distributions are from 2010.

Figure 1.2 illustrates how the social value of the burdens changes across the income

landscape. Burdens that are primarily associated with high income countries are the burdens

that have the smallest social value in terms of years of life lost due to the burden. Burdens in

low income countries are those that primarily afflict young individuals and lead to the largest

number of years of life lost. It would seem that as income rises, health related resources are

allocated to their most productive use in terms of managing burdens with high social value.

Or, burdens that are relatively more easily prevented and controlled are prioritized.

From table 1.1 we also get a sense of how burdens are prioritized by public and private

health spending. Looking at the top ten burdens sorted by increasing expected income, all

but malaria which is likely geographically specific, has a high max density suggesting that the

mortality distribution is tight and heavily skewed to lower income countries or individuals.
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Figure 1.2. As the average income of a burden rises, the years of life lost
due to the burden declines

2

It may be that the burdens are simply more often found in lower income countries, which

would be the case for malaria, but others like the various maternal burdens associated with

childbirth and preventable diseases could be found anywhere. The mortality risk of all

ten, aside from malaria is drastically reduced when incomes grow, even in relatively small

amounts.

The low expected income and low standard deviation of the income distribution suggest

that as incomes rise, mortality rates for these burdens declines dramatically. This may be due

to individuals having greater access to relatively low cost vaccines for the preventable diseases

and medical facilities, or trained medical professionals for the routine medical procedures or

childbirth. This suggests that as income grows either public or private dollars are being
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prioritized to combat these relatively easily preventable burdens, likely a combination of the

two.

Figure 1.3 illustrates this decline of prioritized and preventable burdens compared to a

relatively income immune burden, Stroke. It is apparent that as income grows, the mortality

rate of stroke victims remains relatively constant through all income groups, even increasing

marginally during the middle income stages. Tetanus and obstructed labor mortality rates,

however, decline quickly as income grows and settle and a relatively low rate, significantly

lower than at the lower income stages.
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Figure 1.3. As income per capita rises, there is a sharp decline in tetanus
and obstructed labor mortality rates, while the stroke mortality rate remains
relatively constant.

Intuitively, there would seem to be a relationship between income and the mortality rates

of specific burdens, such as tetanus and obstructed labor. This could be due to increased
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public and private investment into healthcare as disposable income grows. The reverse

relationship is also interesting while more difficult to measure. As the mortality rate of

disease and other burdens falls, especially burdens that disproportionately affect working

age individuals, there may be a measurable benefit to economic growth. As mortality rates

fall and overall health improves, productivity may improve, the labor force may grow, the

number of years individuals spend in the labor pool may also grow along with life expectancy.

This could create a cycle of sorts where income growth improves health, which in turn boosts

income.

We present a theoretical model which may explain the relationship between income and

health at the household level. We then attempt to identify the strategy that would be needed

to isolate and quantify this relationship from both directions, i.e. from income to health,

and from health to income.

1.4. Household production and burden prevention

We start with a standard household production model that follows [17]. Household utility,

u, is derived from consumption, c, and the overall health of the household. We assume that

health is determined by the morbidity rate of individual burdens, b. We also assume for

simplicity that households only suffer from one burden at any given time. The household

utility function is then defined as

(1.2) u = u(c, b)

We assume that consumption increases utility but at a decreasing rate, and that burden

morbidity reduces utility at a decreasing rate. Equation 1.2, then, produces the following first

and second order conditions: u′(c) > 0, u′′(c) < 0, u′(b) < 0, and u′′(b) > 0. The amount of

income available for household consumption is constrained by the following budget equation
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(1.3) c = y − ph
pc
h

where y is the available budget, c is the amount spent on consumption, h is the amount

spent on preventative measures which could be healthcare or other safety precautions, and

pc and ph are the prices of consumption and health care, respectively.

Assume that production occurs at the household level and that the household owns the

factors of production, k and l which are transformed into output, y. Beyond the factors of

production, we assume that household health, in the form of burden morbidity b, directly

influences output as well as other potential exogenous factors, X. Household output is

defined by the following production function

(1.4) y = f(k, l, b,X)

where all factors of production have diminishing marginal effects on output. The first and

second order conditions are as follows: f ′(k) > 0, f ′(l) > 0, f ′(b) < 0, f ′′(k) < 0, f ′′(l) < 0,

and f ′′(b) > 0.

The burden morbidity rate is influenced by investment into preventative measures h, as

well as public investment into preventative measures, denoted by g. Our model differs from

that in [17] with the addition of g. Other exogenous factors such as geography, development

stage, demographics, etc. may also influence the burden morbidity rate. We denote these

potential exogenous factors as Z.

(1.5) b = b(h, g, Z)

Equation 1.5 produces the following first and second order conditions: b′(h) < 0, b′(g) <

0, b′′(h) > 0, and b′′(g) > 0. This means that investment into preventative measure both

from the household and the public reduce burden morbidity rates but at a diminishing rate.
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Substituting equation 1.5 into equation 1.4, and substituting equation 1.4 into equation

1.3 yields

(1.6) c = f(k, l, b(h, g, Z), X)− ph
pc
h

which when substituted, along with equation 1.5, into equation 1.2 forms the household’s

utility maximization problem. The decision variable is the choice of investment into preven-

tative measures, h.

(1.7) Choose h to max u(f(k, l, b(h, g, Z), X)− ph
pc
h, b(h, g, Z))

The first order condition with respect to the choice variable set equal to zero produces

the following relationship

(1.8)
∂u

∂c

[
∂f

∂b

∂b

∂h
− ph
pc

]
+
∂u

∂b

[
∂b

∂h

]
= 0

Solving equation 1.8 for the price ratio between consumption and preventative measures

yields

(1.9)
∂f

∂b

∂b

∂h
+
∂u/∂b

∂u/∂c

[
∂b

∂h

]
=
ph
pc

which yields the following relationships

∂f

∂b
,

∂b

∂h
,

∂u

∂b
< 0, and

∂u

∂c
> 0

The first term in equation 1.9 is the marginal impact of investment into preventative

measures on per capita output. The second term is the marginal impact of investment into

preventative measures on household utility. Both terms are positive. The overall benefit is

then set equal to the marginal cost of private investment, ph/pc.
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From equation 1.4, we see that the burden morbidity rate negatively impacts household

production. We assume that the inverse relationship also exists for some burdens. This can

be illustrated by solving equation 1.5 for h showing that h = (y− c)(pc/ph). Combining this

identity with equation 1.5 yields the following relationship

(1.10)
∂b

∂y
=
∂b(h, g, Z)

∂h

∂h

∂y
< 0

Likewise, public investment also has an impact on household burden morbidity rates such

that

(1.11)
∂b

∂g
=
∂b(h, g, Z)

∂g
< 0

Depending on the nature of the burden the marginal effect of income ,∂b/∂y, may be

larger than the marginal effect of public investment, ∂b/∂g, or vice versa. Some burdens may

require large scale efforts to effectively prevent morbidity, such as infrastructure improve-

ments, safety regulation, or the benefits of heard immunity stemming from mass vaccination

against diseases like measles. Other burdens may depend more on private investment such

as medication for things like asthma or high blood pressure.

We assume identical preferences and factor endowments across households in each coun-

try, allowing us to use representative households for each country in each time period. To

account for the potential of reverse causality between income and burden prevalence, we

would need to estimate equations 1.4 and 1.5 as simultaneous equations. For burdens that
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do not exhibit reverse causality, we would estimate equation 1.4 using either OLS or 2SLS

where appropriate.

1.5. Identification Strategy

Ideally, the goal of this paper would be to explore the directional causal relationship

between income and individual health burdens, and those burdens and income. This would

allow for a direct comparison of the relative impact of certain health burdens on the expected

income growth of individuals, and how they compare to other burdens. This understanding

could lead to prioritization of health related spending on burdens that would yield the largest

marginal benefit in terms of social value. In addition, understanding how income growth and

spending directly, or indirectly impacts burden rates would provide insight into improving

health spending strategies.

Establishing this causal relationship, however, is difficult to do as there are likely un-

observable influences which will affect the outcome of estimation. Examples of methods

needed to attempt to identify these relationships would income sample selection control

methods as more traditional methods, such as double-blind randomized experiments are

simply not available. Proper sample selection should introduce adequate variation in our

variables of interest. In addition, we would need to control for other factors that may be

correlated with our variable of interest in each structural equation. Failing this, we likely

need an Instrumental Variable (IV).

The instrumental variable method for estimating causal relationships is a very popular

with the IV estimates commonly viewed as recovering the local average treatment effect

(LATE) among the population of compliers, or those whose treatment status is influenced
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by the IV [18]. This relies on the exclusion restriction which states that the instrumental

variable used does not have any direct effect on the dependent variable or any indirect effect

through omitted variables. This assumption is necessary for any convincing instrument, but

is often violated [19, 20].

One method of obtaining convincing instruments is using Natural Experiments, or exam-

ining the outcome measures for observations in the treatment and control groups which are

not assigned randomly. Given the lack of randomization, the source of variation is gleaned

from what would resemble an experimental design [21, 22]. In our case, there is potential

for IVs which are correlated with health, but not with income, but the opposite provide less

options. Things like climate, storm frequency, elevation, rainfall, snowfall, etc. would all

be likely correlated with health [23]. For example, warmer tropical climates are more prone

to disease such as malaria, or typhoid. Countries with higher rain or snowfall may experi-

ence more auto accidents or job related accidents, etc. In terms of longitudinal temporal

variation, climate change may be a good option. The change in global temperature across

the globe has had impacts of varying degrees based on location. This has potentially led to

burden profile shifts and rates.

Other empirical attempt to identify the causal link between income and health have

included instruments of lottery winnings of Swedish lottery players[24], disability pensions

in Austria [25], firm-specific wage components [26], and more.

Attempts to identify the relationship between specific burdens and income are less plen-

tiful, though to exist. [27] for example use what is called Malaria Ecology as an instrument

for malaria risk which consists of temperature, mosquito abundance and vector specificity.

It is assumed to exogenous to public health interventions and investments. The authors find
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that malaria risk directly affects per capita income. [28] use food prices as an instrument for

calorie intake, finding that calorie intake does impact wage offer. Others, such as household

wealth, community health infrastructure, and local food prices are used to instrument for

disability days identify the relationship between health and wages earned [29].

In order to ensure the exclusion restriction of IV used in this analysis, we would need to

identify a variable that would be correlated with health but not income for equation 1.4, and

a variable that is correlated with income but not health for equation 1.5. This is relatively

easier for burdens that are geography or climate specific such as malaria, but more difficult

for non geographic or climate specific such as obstructed labor. One options for something

like obstructed labor could be physical build, or identifying certain body types that would

be more susceptible to such complications, and potentially the races, or regions where those

physical builds are more abundant. Alternatively for an instrument that is correlated with

income but not health, there seems to be several possible options such as geography, climate,

and other natural experiments like lottery winnings, etc.

Another relationship that needs to be considered is how burdens move together. It is true

that many burdens may be correlated, meaning that if measures were taken to reduce the

prevalence of a specific burden, the prevalence of other burdens may fall along with it. [30]

find that patients with type-2 diabetes with no prior myocardial infarction have the same

risk of myocardial infarction as non-diabetic patients that do have a history of myocardial

infarction. It stands to reason, then, that by reducing the prevalence of type-2 diabetes will

also lead to lower prevalence of heart disease. If we are interested in identifying the isolated

relationship between income and mortality or mortality and income of specific burdens, we
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will need a way to address this multicollinearity, otherwise our estimates could be including

the impacts of other burdens as well.

Clearly, this quickly becomes a daunting exercise as each burden or groups of burdens

would likely require their own specific instrumental variables in order to satisfy the exclusion

restriction. We would also need to consider instruments that are specific to a single burden

to limit the cross burden correlation. If burdens cannot be distinguished in any meaningful

way, highly correlated burden clusters could be estimated to identify the relationship between

income and the burden cluster, and the other way around. Though this is less ideal as the

interpretation is less specific when talking about the individual burdens in the cluster.

Assuming that convincing instruments could be identified for one or more burdens, we

would then need to account for the potential for reverse causality. This could be done

by employing a seemingly unrelated regression (SUR) strategy where health and income

equations would be estimated simultaneously. Three stage lease squares (3SLS) could be

used where first, instruments are estimated, and then used in the SUR estimation. This

relies on the assumption that each system is properly identified and that rank and order

conditions hold for each system. Hausman tests for endogeneity and reverse causality could

be performed to ensure that the reverse causality is in fact present, otherwise a two stage

least squares (2SLS) regression method could be used.

In the next section we outline a potential estimation strategy assuming that all necessary

restrictions have been met, e.g. exclusion restriction, reverse causality, etc.
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1.6. Estimation Framework

The potential empirical approach to estimate equations 1.4 and 1.5 would be using 3SLS

system of equations model. The following generalized versions of equations 1.4 and 1.5 would

be used

(1.12) yit = β0 + (φ0 − β0)Dit + β1b̂
∗
it + γitXit + αjRj + εit

(1.13) bit = η0 + η1ŷi,t−1 + η2ĝit + δitZit + αjRj + ζit

where for equation 1.12, yit is the log income per capita, bit is the log burden mortality

rate, Xit is a vector of exogenous regressors, Rj is a vector of six regional dummy variables,

and εit is the error term capturing all unobserved effects across countries and time. The

variable Dit follows the form from [31] where Dit = 1 if bit = 0 and Dit = 0 if bit > 0,

and b∗it = Max(bit, Dit)
3. For equation 1.13, bit and Rj are the same as in equation 1.12.

Income is now lagged, yi,t−1 to account for the assumed recursive effect of income on burden

mortality [32]. Meaning, changes in income take one year to impact burden mortality rates.

The variable git is the per capita public spending on preventative measures. The variable

Zit is a vector of exogenous regressors that influence burden prevalence. Finally, ζit is an

error term. The hats in equations 1.12 and 1.13 indicate that b̂it and ŷi,t−1 are instrumental

variables.

The regression method 3SLS assumes that one or more right hand variables are endoge-

nous, as well as assuming that there is some form of reverse causality. For many burdens these

may be justified assumptions. [17], for example, find this to be the case for malaria and per

capita income. The authors use 3SLS which is shown to be consistent and efficient, opposed

to standard OLS and 2SLS. The assumption is that most burdens will exhibit endogeneity

3The variable Dit is used to efficiently estimate equation 1.12 when values for the burden are zero as
taking the log of zero produces estimation errors.
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and simultaneity, meaning that there is some form of omitted variable bias or measurement

error as well as reverse causation, or that income also influences burden prevalence.

We would also need to perform a number of diagnostic tests such as Durbin-Watson to

test for autocorrelation, Breush-Pagan to test for heteroscedasticity, and Shapiro-Wilk to

test for abnormal regression residuals.

1.7. Discussion

We believe this paper is a contribution to the literature by providing a basic income

growth burden transition map. We show where individual burdens fall on the income scale

and what countries could potentially expect in terms of which burden mortality rates will

decline as income grows, which will increase, and which will likely remain constant. We show

that burden mortality rates decline at different rates as income grows, allowing for policy

makers to potentially prioritize burdens where public or private investment yields relatively

high social returns. An interesting observation is that the vast majority of burdens that fall

in the low income range disproportionately affect young individuals, ages 0 to 14, and those

of working age, 15 to 65. The social value of reducing the burden associated with these

burdens, is then very high as the years of life lost are largest for these burdens.

Previously, the literature has overwhelmingly focused on the relationship between income

and aggregate health measures such as life expectancy or infant mortality, or single burdens

in isolation. While important relationships to explore, they may not be entirely actionable

from a policy makers perspective. The task of ’increasing life expectancy’ in order to increase

income growth is ambiguous without providing any sort of idea of what to tackle first, second,

etc. to maximize the social return of scarce resources invested. Understanding where burdens

lie on an income scale and how income specific they are, will potentially inform health related

26



investments. It may also help policy makers anticipate incoming burdens as income grows

allowing for proactive prevention or mitigation strategies.

While our analysis is purely a summary of the available data, we believe it provides an

invaluable snapshot of the burden mortality rate transition through the development phases

globally. The insight for some burdens is more clear than other. Some burdens, such as

tetanus which is geographically universal see a rapidly declining impact on mortality as

health grows. It also suggests that the strategy may also be universal so that countries

could learn from each other to improve the mitigation strategy. This suggests that it may

be a good burden to be prioritized early on in low income countries to maximize investment

returns. Others, such as malaria are geographically specific so that insights would also likely

be specific to countries where malaria is prevalent. Further, strategies for malaria would

likely vary by location as the key malaria factors such as temperature, mosquito density,

storm frequency and severity vary by location as well. And other burdens, such as stroke

seem to span all income groups equally, suggesting that as income grows, stroke risk remains

constant. This is not to say that no investments should be made in stroke mitigation, just

that the social returns may not be as immediate or large as those associated with other,

more income specific burdens.

Additional work would be needed in order to empirically estimate the relationship be-

tween each burden and income in order to properly optimize a longitudinal burden mortality

reduction strategy. We stop short of empirically exploring these relationships but we do

develop a theoretical framework with which the impact of an individual burden on income

growth or vice versa could be identified, assuming all necessary identification conditions are

met. The literature does provide empirical estimates of a few of these relationships, but
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far too few to guide any largescale health investment strategy. This becomes a substantial

endeavor as satisfying the exclusion restrictions would likely be different vary by burden or

burden clusters.

In addition, further empirical research could potentially explore the difference between

public and private health investment and their respective relationships with different bur-

dens. It is likely that some burdens would respond more to public investment campaigns

or regulations while other may respond better to private investment. Understanding which

burdens may benefit from public vs. private investment (or vice versa) could lead to more

effective public health initiatives. Public health policy makers may want to invest more

into awareness campaigns to spur private investment for certain burdens while investing into

vaccination campaigns, for example, for other burdens.

This paper provides a base upon which further research can build to extend understanding

of the relationship between health burdens and economic growth. We have shown that

additional analysis and examination is warranted and would be vital to better understand

how income is related to mortality burden and expected burden profiles, which as of yet has

not been attempted at such a large scale.
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Essay #2: Interspecific Population Management and Disease Control

2.1. Introduction

Disease can play a large role in crafting management strategies surrounding many human,

wildlife, or livestock issues. Management goals may be to minimize human exposure to

disease, maximize livestock production, or to minimize damages. While various benefits

arise from managing disease, it may be very costly to do so, requiring managers to weigh

the trade-offs of any particular strategy [33, 34]. Controlling disease would require less

effort if outbreaks could be anticipated by providing protection prior to the outbreak and

limiting management between outbreaks. The challenge arises due to the uncertainty of

outbreak timing, especially within wildlife populations. This leads to either constant disease

protection to ensure minimum losses, no disease protection to minimize management cost, or

perhaps a hybrid by responding to outbreaks to try and reduce the extent of damage caused.

The former will minimize damage though at a higher ongoing cost. The latter will minimize

management cost at the risk of high losses in terms of lost livestock or human contact. The

third option may be successful at mitigating risk at a reduced cost though if a disease is

aggressive, reaction times could be too large to provide any real benefit.

The purpose of this paper is to develop an ecological model to examine the disease

management problem when the wildlife host only provides value in that it sustains a separate

species with high non-market/intrinsic value. In our case due to potential extinction. We

examine the effect of geographic (spatial) protection vs. physical protection against disease

transmission. Specifically, the model is developed to analyze management strategies for

mitigating the impact of sylvatic plague on prairie dog populations which are the primary

diet of the target species, black-footed ferrets. Management strategies include a spatially
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applied insecticide which kills the fleas that act as the plague vector, and oral vaccination

designed to protect the prairie dogs themselves against transmission. We find that there

exists a threshold target ferret population, below which oral vaccination is more cost effec-

tive, and above which, insecticide is more cost effective. The threshold level is sensitive to

biological and economic parameters.

The spread of infectious disease from wildlife to domesticated animals is a major world-

wide problem. Wildlife related diseases that spread to livestock, for example, have the

potential to cost billion of dollars. The USDA has estimated that a Foot-and-Mouth Disease

(FMD) outbreak in the UK in 2001 cost $13 billion and reduced the UK economy by 0.3%,

and that a similar outbreak in the US (which is considered FMD free), could cost billions

in first year alone, plus the ongoing costs of losses, control, and management [35]. Beyond

the initial and ongoing losses, costs occur in the form of increased trade restrictions, and

biosecurity measures. In 2000, Michigan lost its accredited Bovine Tuburculosis free status,

which cost an estimated $22 to $74 million in the proceeding five years in the form of more

stringent regulation and cattle losses [36]. [37] provide a table of 26 wildlife diseases that

pose a risk to livestock as well as humans.

A manager’s optimal choice of intervention will likely depend on the desired outcome,

whether it be to eliminate the disease entirely, maximize the size of a particular population, or

simply limit the impact of the disease. Population control has been identified as an effective

method of disease elimination by reducing the population below a theoretical threshold,

beyond which the disease can no longer replicate, leading to elimination [38]. The effect

of population control on wildlife disease dynamics has been significantly explored in the

ecological literature [33]. While population control can be an effective tool to achieve disease
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elimination or reduction, reduced population size may not be desirable if the target species

is relatively valuable. Managers may wish to reduce disease burden while simultaneously

maximizing the wildlife population size because of indirect value. Other protection methods

include wildlife vaccination programs [39, 33], large scale environmental activities [40], and

supplemental feeding [41–43].

For a manager tasked with maximizing a livestock or wildlife population, the required

threshold for disease eradication may not be feasible. Further, if the primary disease vector

exists within an unmanaged species, eradication of the disease within the target population

may only be temporary. This leads to a constant risk of exogenous introduction.

The manager’s choice of intervention should also consider the role of interaction between

wildlife species when determining the management strategy [44]. Literature surrounding

interspecific competition has primarily focused on pest species control, often in the form of

harvesting or other removal methods and the spillover effects from the management of pest

species to other wildlife species [45, 46]. The ecosystem management literature that accounts

for stock-dependent species interaction primarily deals with optimal harvest rates [47–49],

though has recently grown to include the role of habitat loss and creation [50, 51].

A specific example of interspecific population dynamics and disease control can be found

in reintroduction efforts of the black-footed ferret (Mustelanigripes). The black-footed ferret

was thought to be, and was officially declared extinct in 1979. In 1981 a ranch dog in Mee-

teetse, Wyoming, returned home with a dead ferret. The owners notified Wildlife Services

officials who located that last known remaining ferret colony [52]. A successful captive breed-

ing program led to the reintroduction of approximately 4,500 ferrets across 24 sites in the

US and Canada [53]. A major impediment to the successful reintroduction of black-footed
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ferrets is sylvatic plague (Yersinia pestis) epizootics in prairie dog (Cynomys) populations.

Plague epizootics have limited ferret habitat with sufficient prey as up to 90% of the ferret’s

diet is composed of prairie dogs, with mice and voles being consumed with a much smaller

frequency [Campbell Iii et al., 1987]. This dependence on prairie dog populations can lead

to large reductions in the ferret population or even extirpation with the possibility of whole

colonies being wiped out within a single breeding season [54, 55]. In order to prevent po-

tential plague outbreak, Wildlife Services routinely applies insecticide throughout existing

reintroduction sites.

As an alternative, a potential oral vaccination is also being developed for use among

prairie dog colonies, with research ongoing [56–58]. Baits containing this vaccine could

be distributed by aircraft or vehicle to specific prairie dog habitats. Oral vaccination, as

opposed to insecticide, would provide permanent protection for prairie dogs against plague

while insecticide degrades and is only effective for animals living within the coverage area.

These results could extend to human side disease prevention. Human disease can be

controlled in several ways including a more spatial approach of border control vs. a more

individual approach of mandating vaccinations. A social planner may be interested in find-

ing the optimum balance between spatial and individual disease protection that maximizes

overall social net benefit.

2.2. A Model of Indirect Population Management Through Disease

Control

2.2.1. The Ecological Model. We model the two treatment options separately since

most current management strategies do not incorporate the two and likely would not combine
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them for simplicity sake. The two options are comparable by their achieved outcomes when

subjected to either budget constraints or target abundance levels. We now discuss the

modeling approach for both dusting and oral vaccination.

2.2.1.1. Dusting. It is assumed that the host prairie dog (PD) population, NPD, is closed

to migration and contained to a fixed geographical area. This is a reasonable assumption

as populations can be vast distances apart and immigration is minimal. A modified SEIR

compartmental framework was used to model the disease dynamics. This stands for suscep-

tible, exposed, infected, and recovered (SEIR), which is a common disease dynamic modeling

approach. Compartmental models are simply mathematical frameworks used to stratify a

population into different health states. The model includes assumptions which govern the

interaction of individuals in each state and the movement between states. The possible states

of individuals within the host population are susceptible S, infected I, and protected P 4.

The current intervention strategy used to protect the host from plague is the application of

a powdered insecticide called Delta Dust. The insecticide (dust) is applied (dusting) to the

burrow openings and surrounding area within a colony of the host. All animals living within

the dusted area are assumed to be protected from the fleas that serve as the primary disease

reservoir [59]. Aggregate population of the host then, is simply NPD = S + I + P . Changes

in S, I, and P are defined as

(2.1) Ṡ = G(S, L,NBFF )− C(S)βSI − θ(S, P )− δS − ω(S, P, L)

(2.2) İ = C(S)βSI − θ(S, P )− δS − αI

4There is no recovered class as sylvatic plague is chronic with a mortality rate of approximately 100
percent [Cully Jr, 1997]
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(2.3) Ṗ = Z(P,L,NBFF )− θ(S, P )− ω(S, P, L)

Where G and Z (defined below) are density dependent logistic growth functions which

are influenced by the aggregate predator black footed ferret (BFF) population, NBFF . This

relationship incorporates a predator prey dynamic where the predator black-footed ferret

population, NBFF , negatively influences the host (prey) prairie dog population,NPD, such

that

(2.4) G = rPDS

(
1−

S + γNBFF
S

(S+P )

(1− L
KL

)KPD

)

(2.5) Z = rPDP

(
1−

P + γNBFF
P

(S+P

( L
KL

)KPD

)

The parameter,γ, in equations 2.4 and 2.5 attempts to capture the effect of the aggregate

predator population on the aggregate prey population. As the predator population increases,

a larger portion of the prey population is hunted, leading to a decline in the host (prey)

population. Assume then,that γ > 0, meaning that for any NBFF > 0, NPD < Nmax
PD , where

Nmax
PD is the prey population achieved when there are no predators.

Given that protection refers to a geographic area that has been treated against the

diseased reservoir, all offspring born to mothers within the protected area, are assumed to

also be protected from the disease. Changes in the aggregate protected land area is defined

as

(2.6) L̇ = edKL(1− L

KL

)− φL
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where KL is the total colony area, or the total possible area available for dusting, and L

is the total stock of dusted land. The term L/KL, then, is the proportion of total area that

is dusted at any point in time. Managers choose the proportion of total land area to dust

ed, for any given period. Where in our case the period is a year, so effort is applied annually.

The dusted area provides protection against the disease to animals living within that area,

while animals not in the protected area are still susceptible. Movement between protected

and none protected areas is allowed and is described by equation 2.9 below. The terms

(1 − (L/KL))KPD, and (L/KL)KPD in the denominators of equations 2.4 and 2.5 account

for the fact that population density may vary between the protected and non protected areas

resulting in different growth rates. The dusted area reverts back to unprotected area at rate

φ. It is assumed that the manager does not know what areas have reverted to unprotected

status, therefore, the manager will randomly dust a given proportion ed, of the total area KL

every period. This means that some still protected area may be dusted again. A fixed value of

ed=0.5, for example, means that 50% of the total land area will be dusted in every period. If

the population is uniformly distributed across the landscape, then this means that half of all

the host population will become protected. At least in period one. In subsequent periods, an

effort level of ed=0.5 may not provide coverage for half of the remaining susceptible animals

as the manager may be redundantly dusting still protected areas.

Movement between the S and P classes stemming from dusting effort and dust degrada-

tion is governed by the equation θ(S, P ). The net movement of animals between classes due

to dusting effort ed, and degradation φ, takes the following form

(2.7) θ = ed(S + P )− φP
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The transmission function takes the form presented by [43], where C(S) is the contact

function which determines the overall probability of an animal contracting the disease such

that

(2.8) C =
1− ε− εS

S

The parameter ε ∈ (0,1) represents the degree of density dependence of the disease trans-

mission. If ε = 0 then the transmission equation becomes frequency dependent. If ε = 1, the

transmission becomes density dependent [38]. It is assumed that in reality 0 < ε < 1. The

variable β is the disease transmission rate.

The function M(S, P, L) governs the movement of animals between the protected and

non protected areas in order to equalize population density. This specification assumes that

a population decline in one area (in our case, due to disease) causes migration pressure due

to the change in relative densities. Net migration is defined as

(2.9) ω = η

(
S

(1− L/KL)KPD

− P

(L/KL)KPD

)
(S + P )

where η is a dispersion parameter, or the rate at which the migration occurs. If η = 0

then no migration occurs. If η = 1 then migration occurs instantly every period. We would

assume that 0 < η < 1 so that there is some lag in the migration from area to another. This

specification is assumed in other ecological models which incorporate migration between

locations (e.g. [60] and [61]) and captures the findings in [62], that feral cats in neighboring

populations immigrate due to resource abundance, and in [63], that female deer migrate

according to resource availability relative to density.
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The parameter, δ, represents the constant exogenous threat of disease introduction from

outside disease vectors. In the case of sylvatic plague, the primary form of transmission

among wildlife is through flea bites. This means that even if the disease is not present or

is eliminated, it is introduced or reintroduced to the susceptible class at any time at rate δ.

The parameter α is the disease-specific mortality rate.

Finally, changes in the aggregate predator population are defined as

(2.10) ṄBFF = rBFFNBFF

(
1− NBFF

KBFF (S, P )

)

where the carrying capacity of the predator population is a function of the healthy prey

population. Assume that the predator’s diet is almost exclusively comprised of the prey,

so that if the prey population were to fall to zero, so would the predator population. This

dynamic is captured in the modified predator carrying capacity: KBFF = ω(S + P ) [64].

Where ω represents the proportional relationship between the predator and prey popula-

tions, i.e., the maximum sustainable number of predators, KBFF , for any given healthy prey

population (S + P ). For simplicity, assume further, that the predator population does not

feed on infected or dead host animals. This assumption implies no disease transfer from the

host to the predator population or to protected animals.

2.2.1.2. Oral vaccination. Assume that another method of disease control exists in the

form of oral vaccination. Baits containing a vaccine against the plague can be dropped

throughout the colony. These baits are eaten and provide temporary, and sometimes perma-

nent disease protection for the animal. To simplify, we assume that the protection afforded

from the oral vaccination is permanent given the relatively short lifespan of the host species.

37



To account for the modified dynamics associated with oral vaccination, equations 2.1, 2.2,

2.3, and 2.10 are rewritten as

(2.11) Ṡ = Y (S, V,NBFF )− C(S, V )βSI −O(S, V )− δS − µS

(2.12) İ = C(S, V )βSI + δS − αI

(2.13) V̇ = O(S, V )− µV

(2.14) ṄBFF = rBFFNBFF

(
1− NBFF

KBFF (S, V )

)

In this scenario, protection from the disease is no longer geographic. This means that

protection is not passed from mother to offspring. There is also no longer migration from a

protected to non protected area as it is assumed that baits are distributed uniformly across

the landscape, and therefore, successfully vaccinated (and non-vaccinated) animals will also

be uniformly distributed. This is a reasonable assumption as currently, oral vaccination are

often dropped from aircrafts using machines that drop baits at equal intervals and in equal

quantities while the flight pattern moves uniformly across the landscape. Growth is again

logistic with a predator prey dynamic and takes the following form

(2.15) Y = (S + V )

(
π − rPD

S + V + γNBFF

KPD

)
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where π is the birth rate of the host population and µ is the mortality rate. Given that

we assume no recovery and 100% mortality, α = 1, there is no natural growth or mortality

in I. The contact rate is not determined by overall population density as susceptible and

vaccinated animals are interspersed across the landscape. The contact function is now written

as

(2.16) C =
(1− ε+ εS)

S + V

where the contact rate is a function of aggregate density as animals are no longer segregated.

The protection function is also modified in that effort is no longer applied to a geographic

area, but rather, is a choice of the number of oral baits to uniformly distribute over the

landscape. It cannot be assumed that animals will always have the opportunity to eat a

dropped bait, even if one bait is dropped per animal. It must be assumed that some animals,

as well as already vaccinated animals, may hoard baits and eat more than one, leaving none

available for other susceptible animals. We then account for the increasing marginal costs

associated with vaccinating animals. Let the proportion of susceptible animals vaccinated

each period for a given number of baits distributed, ev, be defined as

(2.17) P (ev) = 1− e
−λ

ev

(S + V )

where P (ev) ∈ (0, 1), and the term ev/(S+V ) is the number of available baits per animal, a

measure of ”bait density”. The parameter λ is a measure of the bait success. Equation 2.17

can also be interpreted as the individual probability that each remaining susceptible animal

will become vaccinated given a certain number of baits distributed. The total number of

newly vaccinated animals can then be written as: O(S, V ) = SP (ev). Figure 2.1 illustrates
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the probability of vaccinating an animal for three hypothetical values for λ. As λ decreases for

any given number of available baits per animal, the probability of successful oral vaccination

also declines. For a fixed value of λ, the probability of successful oral vaccination increases

with the number of baits distributed across the landscape (ev). In order to prevent the

possibility of one bait vaccinating more than one animal, λ ∈ (0, 1) ensuring that one bait

can at most, vaccinate one animal.

Figure 2.1. Probability of successful oral vaccination based on the number
of baits dropped per animal on the landscape

In the next section we discuss our strategy to solve the model for specific management

target outcomes including several different budget constraints as well as target population

outcomes.

2.3. A Numeric Simulation of the Model

2.3.1. Motivation and parameterization. Ideally, we would construct a bioeco-

nomic framework in order to solve for the optimal level of effort given the benefits less costs

associated with management. The proposed model presents a scenario in which neither

an analytic nor numerical solution is possible due to the complex nature of the differential
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equations and the subsequent feedback rules. Though this may not be necessary as most

managers are dealing with fixed budgets or set abundance goals already. This complexity re-

quires that the model be analyzed in a non optimal way. Assume then, that a manager places

sufficient value onto the predator population such that the associated costs of management

are not considered the choice variable. In this scenario, the manager is constrained by a

particular per-period budget that cannot be exceeded, and is assumed to be fully exhausted

in each period. The objective of the manager is to maximize the predator population which

provides some intrinsic value to society, through population management via disease control

interventions. Disease control interventions include either dusting or oral vaccination.

Data used to parameterize the model were obtained primarily from the literature, annual

Plague Management Reports from North Dakota, as well as from the The Black-Footed

Ferret Recovery Implementation Team (BFFRIT) located in Wellington, Colorado. Plague

Management Reports outline efforts to respond to and prevent plague outbreaks across

North Dakota (ND). The plague management in ND consists of a coordinated effort by

four federal agencies. Dusting efforts began in 2008 and have continued annually since

then with support provided by the US Forest Service, Badlands National Park, the US

Fish and Wildlife Service, and several NGOs [65]. The BFFRIT was created in 1996 as a

multi-agency conservation effort led by the U.S. Fish and Wildlife Service, and serves as

the main organization tasked with implementing efforts to promote recovery of the black

footed ferret, an endangered species (blackfootedferret.org). Given the relatively recent

interest in black-footed ferret recovery, the accuracy of many of the parameters may be

limited due to lack of field studies. The results then, should be viewed as an example

rather than an optimal management strategy to be implemented in the field. The results
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do, however, provide interesting economic insights into the population management through

indirect disease intervention and show which parameters most influence potential conclusions.

Table 2.1 provides a list of all parameters, values, and sources.

Table 2.1. Parameter values used for the numerical example with their de-
scription and source

Parameter Descriptions Value Source

S0 Initial size of PD susceptible population 28,267 [65]
I0 Initial size of PD infected population 0 Assumption
P0 Initial size of PD protected population 0 Assumption
V0 Initial size of PD vaccinated population 0 Assumption
L0 Initial size of protected land area 0 Assumption
Kl Total size of PD colony (acres) 3299 [65]

NBFF0 Initial size of ferret population 178 Estimate
rPD Intrinsic rate of growth of the PD 0.07 π − µ
π Natural growth rate of PD animal 0.3 [66]
µ Natural mortality rate of PD animal 0.23 [67]

rBFF Intrinsic rate of growth of the ferret 0.038 [68]
KPD Carrying capacity of the PD 56,400 Assumption
β Disease transmission coefficient 0.073 [69]
ω ferret population carrying capacity coefficient 0.0063 [64, 70]
φ Protection degradation rate 1 Assumption
δ Exogenous disease transmission rate 0.0001 Assumption
α Disease related mortality rate 1 [71]
γ ferret population effect on PD population 159 [64, 72]
ε Disease contact parameter 0.01 Assumption
λ Baiting success parameter 1 Assumption
η Migration parameter 0.2 Assumption
cD Cost of dusting entire landscape 61,031 [65]
cV Unit cost of oral vaccine 2.87 [73]

We simulate a specific colony, called the Agate colony located in Conata Basin/Badlands

area of North Dakota. The colony covers 3,299 acres of land and hosts an estimated pop-

ulation of 28,267 prairie dogs. [64] estimates that a minimum of 272.5 PDs are required to

sustain one ferret family group, with 763 PDs being harvested annually per ferret family

group in typical conditions. A ferret family group consists of one breeding female, their

young for the year, and 0.5 adult males [72]. With an average litter size of 3.3, the average

size of a ferret family group is 4.8 animals [70]. The carrying capacity coefficient ω, derived

by dividing the average size of a ferret family group by the typical number of PDs reacquired
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to support the group annually, and is interpreted as the number of ferrets that one PD can

sustain annually. Assuming that the PD population is at steady state and the ferret pop-

ulation is at carrying capacity, we estimate an initial population of 178 black-footed ferrets

(S0ω).

We are interested in comparing the black-footed ferret abundance outcomes for dusting

vs. oral vaccination when the management budget is fixed at various levels. We are also

interested in identifying specific dusting coverage levels and bait densities required to achieve

specific black-footed ferret abundance outcomes. This could provide managers with an idea

as to the most cost effective strategy given various goals. It could also identify the conditions

under which one method would be more cost-effective than another. The proceeding sections

will provide simulation results for maximum dusting efforts and oral vaccine densities given

several potential budgets. We then compare specific ferret population outcomes and their

required dusting and oral vaccine efforts. Finally, we perform a sensitivity analysis.

2.3.2. Population outcomes with fixed project budgets. Assume that a wildlife

manager tasked with maximizing the ferret population over time faces a fixed budget con-

straint every period. The manager’s decision is whether to use dusting or oral vaccine to

achieve the desired outcome, assuming the entire budget is spent every period. We explore

the potential outcomes using five potential budgets. In 2014, during the annual dusting effort

of the Agate colony, 3,299 acres were dusted (100% of the total available acres) at a total

cost of $61,031 [65]. Assume that this budget represents the maximum potential budget that

a manager may face, Bmax. We propose 10 budget scenarios of 10% increments of Bmax.

Given the potential budgets, a manager chooses the highest affordable dusting effort or

bait density to apply to the PD colony each period. The outcome of interest is the population
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of the ferret in the final period, which is assumed to be the steady state. In addition, we

are interested in the path that the population takes before reaching steady state. This will

be measured by the sum of per period ferret populations as a measure of total biomass. As

an example, using Bmax, figure 2.2 illustrates the path that ferret populations take before

settling at the assumed steady state. Results of the oral vaccination scenario are highly

dependent on the unit cost of administering the bait. As the bait is still being researched, unit

costs of mass administration are not available. For the purpose of this analysis, oral rabies

vaccination costs were used as a proxy. Between 1995 and 2006, an oral rabies vaccination

campaign was performed in 20 counties in South Texas to combat canine and fox rabies.

The campaign led to the elimination of canine variant rabies with a unit bait administration

cost $2.87 [73].

0 20 40 60 80 100

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

Periods

B
la

ck
−

F
oo

te
d 

F
er

re
t p

op
ul

at
io

n

Dusting
Oral Vaccination

Figure 2.2. Black-footed ferret population dynamics under dusting and oral
vaccination strategies when constrained by the maximum available budget.

Table 2.2 provides the estimated results for a 100 year simulation.
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Table 2.2. The effort, steady state (SS) black-footed ferret populations, and
associated total biomass that each hypothetical fixed budget affords

Dusting Oral Vaccination
Budget Effort SS Biomass Effort SS Biomass

$6,103 0.1 7 13,288 2,127 39 36,557
$12,206 0.2 9 16,831 4,253 57 55,417
$18,309 0.3 12 20,972 6,380 70 69,533
$24,412 0.4 14 25,940 8,506 81 80,987
$30,516 0.5 17 32,103 10,633 90 90,675
$36,619 0.6 22 40,334 12,759 98 99,066
$42,722 0.7 31 52,658 14,886 106 106,462
$48,825 0.8 50 74,216 17,012 113 113,055
$54,928 0.9 99 121,152 19,139 119 118,990
$61,031 1 179 179,206 21,265 125 124,364

2.3.3. Input requirements for target population outcome. Now, rather than

a manager seeking the best outcome given a fixed budget, assume that the manager is given

a target black-footed ferret population outcome. The manager is interested in understanding

the costs required under dusting and oral vaccination scenarios to achieve the desired out-

come. The maximum possible outcome is achieved when dusting effort, ed = 1, or when the

manager applies coverage to 100% of the available colony area in each period. This means

that all animals are constantly covered at all times. In contrast, given the exponential nature

of the baiting success function, the vaccination rate will approach 100% but will not reach it,

regardless of the chosen λ (figure 2.1). For this reason, oral vaccination will never provide a

larger steady state ferret population then dusting, though given a high enough bait density,

the difference will be negligible.

Using a dusting effort of 100%, the maximum possible steady state ferret population can

be identified as Nmax
BFF = 179. Further, the minimum desirable population is assumed to be

Nmin
BFF = 50. We identify 10 potential target ferret steady state populations between the

desired minimum and maximum and find the required inputs in the form of dusting and

oral vaccination effort to achieve the targets (Table 2.3). Figure 2.3 illustrates the same
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ferret population dynamics when the target steady state population is Nmax
BFF = 179. This

requires a dusting effort of ed = 1 meaning that 100% of the landscape is protected, and a

oral vaccination effort of ev = 49,880, meaning that 49,880 baits are distributed across the

landscape.

Table 2.3. The effort required to achieve a specific fixed black-footed ferret
steady state population with the associated cost and biomass

Dusting Oral Vaccination
Target SS Effort Biomass Cost Effort Biomass Cost

50 0.8 74,216 $48,825 3,290 47,688 $9,442
64 0.842 88,999 $51,388 5,330 62,981 $15,297
79 0.872 103,332 $53,219 8,090 78,905 $23,218
93 0.892 115,496 $54,440 11,250 93,227 $32,288

107 0.908 127,373 $55,416 15,040 106,965 $43,165
122 0.922 139,966 $56,271 19,930 121,050 $57,199
136 0.934 153,060 $57,003 25,390 133,474 $72,869
150 0.942 163,310 $57,491 31,880 145,002 $91,496
165 0.95 174,622 $57,979 41,260 157,141 $118,416
179 0.956 178,996 $58,346 49,880 163,913 $143,156
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Figure 2.3. Black-footed ferret population dynamics using the required dust-
ing and oral vaccination efforts when the target population the maximum pos-
sible
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The results illustrate that there exists a threshold steady state ferret population at which

the most cost effective strategy switches from oral vaccination to dusting. Below the thresh-

old population, oral vaccination provides the target outcome at a lower cost, and after the

threshold, dusting becomes more effective. Dusting provides little overall protection at lower

effort levels but increases in effectiveness exponentially. Oral vaccination provides larger

marginal gains at lower effort levels but exhibits diminishing returns. Oral vaccination the-

oretically, cannot provide 100% coverage but asymptotes at the full coverage level. Figure

2.4 illustrates this relationship using the assumed parameter values. The threshold occurs

at a ferret population outcome of roughly 122 animals. At the point where the curves cross,

the manager would be indifferent between dusting and oral vaccination as both strategies

would produce the same result for the same price. This particular threshold is a product

of the parameters used, especially values used for λ and the unit bait cost, which are both

assumed. As an example of how the results might change, figure 2.4 also presents a scenario

where λ = 0.8. In this case, the threshold occurs at a ferret population outcome of roughly

108 animals. In the next section the sensitivity of this threshold to values for λ and bait

cost will be explored more fully.

2.3.4. Parameter sensitivity. As is true with all biological and economic modeling,

functional forms and parameter values are likely to vary between circumstances and contexts.

A sensitivity analysis is then performed to determine how the outcomes change as the values

of specific parameters change. This analysis includes many parameters, all of which could

be examined to determine the outcome’s sensitivity to changes, however, many parameters

are assumed to be accurate or relatively unimportant. Also, an examination of all parameter

values would produce many possible outcomes, too many to present in this paper, therefore,
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Figure 2.4. The costs of achieving specific ferret population outcomes and
the threshold at which dusting becomes the more cost effective management
strategy

only a handful of parameters are considered.

The parameters chosen all lack empirical results from which estimates could be taken

requiring arbitrary assumptions to be made. The first is the contact parameter ε, in the dis-

ease transmission function, equation 2.8. This parameter determines the degree of density

dependence in the transmission of plague from one animal to another. The second parameter

is the migration parameter η, in equation 2.9, which determines how quickly ferret popula-

tions move between protected and non-protected areas of the landscape when density differs.

Finally, baiting success λ, which influences the probability of baiting success, and the unit

bait cost cV , are considered. All of these parameters will influence the threshold ferret

population at which cost effectiveness will switch between oral vaccination and dusting, as

well as the potential steady state populations and the aggregate biomass achieved. Changes

in λ and cV will influence the shape of the oral vaccination curve, thus changing the point
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at which the dusting and oral vaccination curves cross. Changes in η will influence the over

all level of management necessary to control the disease, and ε will influence the shape of

the dusting curve.

All of these parameters will influence the threshold ferret population at which cost ef-

fectiveness will switch between oral vaccination and dusting, as well as the potential steady

state populations and the aggregate biomass achieved. Changes in λ and cV will influence

the shape of the oral vaccination curve, thus changing the point at which the dusting and

oral vaccination curves cross. This can be visualized in figure 2.4. Changes in η will influ-

ence the overall level of management necessary to control the disease, and ε will influence

the shape of the dusting curve.

Figures 2.5 illustrate the sensitivity of the threshold to variations of the values for each

of the parameters. Tables 2.4 and 2.5 provide estimates on the change in steady state ferret

populations and aggregate biomass for assumed low and high estimates of each parameter.
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Figure 2.5. Holding all else constant, the ferret population threshold given
values of λ, the bait cost, ε, and η
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Table 2.4. Sensitivity of parameters related to dusting

Baseline ε=0.008 ε=0.012 η=0.1 η=0.3
Budget SS Biomass SS Biomass SS Biomass SS Biomass SS Biomass

$6,103 7 13,288 9 14,575 6 12,340 7 13,659 7 12,943
$12,206 9 16,831 12 18,872 8 15,405 10 17,188 9 16,496
$18,309 12 20,972 15 23,804 10 19,022 12 21,343 12 20,622
$24,412 14 25,940 17 29,659 12 23,391 14 26,336 14 25,565
$30,516 17 32,103 22 36,853 14 28,843 17 32,544 17 31,688
$36,619 22 40,334 28 46,371 19 36,173 23 40,882 22 39,828
$42,722 31 52,658 39 60,466 26 47,235 32 53,478 31 51,930
$48,825 50 74,216 60 84,691 42 66,840 51 75,811 49 72,894
$54,928 99 121,152 116 136,134 86 110,410 102 124,570 96 118,695
$61,031 179 179,206 179 179,206 179 179,206 179 179,206 179 179,206
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Table 2.5. Sensitivity of parameters related to oral vaccination

Baseline λ=0.8 Bait Cost=$1.50 Bait Cost=$3.50 ε=0.008 ε=0.012
Budget SS Biomass SS Biomass SS Biomass SS Biomass SS Biomass SS Biomass

$6,103 39 36,557 35 31,753 55 54,020 31 27,422 45 42,754 36 32,063
$12,206 57 55,417 50 48,648 79 79,144 45 42,459 64 63,920 51 49,121
$18,309 70 69,533 62 61,472 96 96,989 55 54,020 78 79,645 63 61,957
$24,412 81 80,987 72 71,997 111 110,851 64 63,604 90 92,361 73 72,394
$30,516 90 90,675 81 80,989 123 122,099 72 71,861 101 103,097 82 81,228
$36,619 98 99,066 88 88,989 133 131,455 79 79,144 111 112,388 89 88,877
$42,722 106 106,462 95 95,843 143 139,345 85 85,673 119 120,574 96 95,616
$48,825 113 113,055 102 102,131 151 146,028 91 91,584 127 127,867 102 101,616
$54,928 119 118,990 107 107,840 158 151,702 96 96,989 134 134,425 108 107,011
$61,031 125 124,364 113 113,055 164 156,527 101 101,963 141 140,347 113 111,891
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2.4. Discussion

The purpose of this paper is to show that population management requires an under-

standing of the inter-species ecology as well as the effect of management strategies on the

disease dynamics. We focus on how disease management mitigation strategies influence inter-

specific wildlife dynamics. We also explore the differences between spatial disease protection

and individual disease protection when elimination is not attainable and reduced populations

are not desirable.

This is a contribution to the literature in that no other study of black-footed ferret man-

agement previously considered the cross species dynamics when determining which manage-

ment strategies to pursue. Most attempts to understand the relationship between effort and

biological outcomes were overly simplistic and did not adequately address the spatial, tem-

poral, and interspecific dynamics. We present a much more complex model that accounts

for all of these dynamics, providing a much more complete picture of cause and effect. We

believe that the complexity of our model is necessary as simplifying any further would lead

to loss of realistic dynamics. Previously, the most useful understandings of how management

efforts related to program success have been gathered from trial and error or simple case

studies. We hope to provide better insight before programs start in order to guide program

strategy.

While preserving highly endangered species is important, it is also vital to understand

the limits of management efforts and strategies to identify optimal strategies in terms of

cost effectiveness given various program goals. In some cases, managers may significantly

overspend simply to ensure a beneficial outcome without the understanding of the marginal

costs of those benefits. We outline those marginal benefits and marginal costs in this paper
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allowing for managers to achieve the desired results while spending the minimum necessary

amount. Goals such as maximizing abundance, achieving a target abundance at the lowest

possible cost or providing insight into optimal strategies when facing budget constraints.

We show the relative values of spatial disease protection and individual disease protection.

From a human perspective, this can be viewed as the value of maintaining a border, or

preventing the outbreak of disease vs. the value of protecting individuals through vaccination

or other methods.

We find that there exists a threshold target population level, below which, oral vac-

cination (individual protection) is more cost effective, and beyond which dusting (spatial

protection) is more cost effective. This result comes from the functional forms of the protec-

tion equations. Given that movement between spatially protected and non protected areas

can occur, the largest marginal benefits from dusting occur at higher levels of overall land-

scape coverage. This is an important result that can guide future management decisions

in the face of budget constraints or specific abundance goals. For example, if a manager if

facing a fixed budget, the size of the budget will determine whether dusting or oral vaccina-

tion efforts should be pursued to maximize the benefits. Likewise, a desired abundance will

determine the most cost effective approach to achieving that abundance.

For oral vaccination, the marginal benefits of effort are increasing but at a decreasing

rate. This is due to the fact that full coverage of the population is theoretically not possible.

Coverage will approach, but will not achieve, 100%. The opposite if true for spatial protec-

tion. Benefits grow exponentially eventually achieving 100% protections, beyond which, any

additional effort is wasted with zero marginal benefit. While these results are specific to the

case of black-footed ferret population management, the general result likely holds in other
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cases when considering spatial vs. individual disease protection strategies. For humans, it

would be the difference between maintaining disease free areas through strict border control,

and no border control with individual disease vaccination efforts.

These results should not be interpreted as globally optimal strategies as global solutions

were not derived due to the complex nature of the model. The results reflect possible

management decisions given potentially fixed budgets or target populations.

54



Essay #3: BioEcon: An individual-based, stochastic simulation model for

wildlife population and disease management with an application to canine

rabies

3.1. Introduction

The spread of infectious disease from wildlife to domesticated animals is a major world-

wide problem. Wildlife related diseases that spread to livestock, for example, have the

potential to cost billion of dollars. The USDA has estimated that a Foot-and-Mouth Disease

(FMD) outbreak in the UK in 2001 cost $13 billion and reduced the UK economy by 0.3%,

and that a similar outbreak in the US (which is considered FMD free), could cost billions

in first year alone, plus the ongoing costs of losses, control, and management [35]. Beyond

the initial and ongoing losses, costs occur in the form of increased trade restrictions, and

biosecurity measures. In 2000, Michigan lost its accredited Bovine Tuburculosis free status,

which cost an estimated $22 to $74 million in the proceeding five years in the form of more

stringent regulation and cattle losses [36]. [37] provide a table of 26 wildlife diseases that

pose a risk to livestock as well as humans.

Wildlife managers are often tasked with reducing the abundance of a population or the

disease prevalence within a population. Abundance may be managed to mitigate a nega-

tive impact such as crop damage or livestock predation, while disease prevalence may be

managed due to concerns about its impact on wildlife, domestic animals, or human health.

Management might also be motivated by multiple considerations and require balancing dif-

ferent objectives. In many settings, the strategic options available to managers can be quite

diverse. Sport hunting, professional removal, permanent sterilization, and temporary con-

traception might be used to control abundance. Although disease prevalence can also be
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managed indirectly by these same methods, in some cases it can be managed more directly

with vaccination. Managers strategic choice problem is further complicated by the consider-

ation of mixed strategies and strategies that vary temporally, spatially, and demographically.

The KwaZuluNatal (KZN) province of South Africa has had an ongoing programme for

control of enzootic canine rabies since the late 1970s [74]. This province is the second most

populated province of South Africa with more than 10 million residents and is located in

the south-east portion of the country along the coast. There were 473 confirmed animal

rabies cases, with six reported human deaths related to rabies in the project area when

the programme was augmented in 2007. The dog vaccination campaigns have intensified

since 2007, with the appointment of a provincial coordinator and single point of reference

for rabies control, and since 2009, when the project, together with two others (in Tanzania

and the Philippines), became demonstration sites supported by the Bill and Melinda Gates

Foundation. Our objective was to estimate the cost and biological outcome of various vac-

cination strategies. A health economic data assessment such as we present here is a crucial

component of disease control. This analysis can guide management decisions by highlighting

cost-effective strategies. At a broader level, it will provide information to policy makers and

other stakeholders regarding both the feasibility and public health benefits, stemming from

reduced canine to human transmission, of the elimination of canine rabies. It is important

to understand cost-effectiveness, which varies by region to allocate resources where they are

most productive and stretch the furthest. To achieve our goal in this paper, model selec-

tion was crucial to accurately estimated outcomes in a highly stochastic environment with

regionally specific parameters.
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In an attempt to identify the appropriate model to use to ultimately provide guidance for

managers, we found that two types of modeling efforts are common. One approach considers

the impacts of different management strategies by pairing a relatively complex model of

biological dynamics (i.e. models with spatial, demographic, or social structure) with simple

concepts of management (e.g. [75], [76], [39], [77]). For example, a Leslie matrix model or

stochastic simulation model could be used to understand dynamics under alternative levels

of removal, sterilization, or contraception within the population without consideration of the

effort and costs that are required to achieve those levels. For a manager seeking strategic

guidance, the failure of these types of models to consider effort and costs is problematic

because different strategies require different levels of effort and entail different costs. Given

that managers usually face budget constraints, accounting for the links between effort, costs,

and biological outcomes is critical to understanding what strategies are feasible or to what

extent specific strategies can be pursued.

In contrast, a second approach, often seen in the economics literature, incorporates the

concepts of effort, cost, and catch into relatively simple models of biological dynamics and

pairs the resulting bioeconomic models with sophisticated optimization techniques (e.g. [78],

[79], [37], [80]). The relative simplicity of the biological models in these approaches is driven

by the focus on identifying a globally optimal strategy and the resulting mathematical and/or

computational burden imposed by the optimization method (e.g. optimal control, dynamic

programming). Additionally, these models do not often assume an objective in terms of

abundance or disease prevalence, but instead assume a manager attempts to maximize the

net benefit of management to society. Thus, the focus is not limited to the optimal strategy
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to achieve a certain abundance or disease prevalence target, but also includes the optimal

abundance or disease prevalence at each point in time.

In any applied setting, there is certainly value in accounting for effort and costs and iden-

tifying optimal strategies. However, in many applied settings, the focus on comprehensive

optimality present in many bioeconomic models is unlikely to be useful for several reasons.

First, it comes at the cost of biological and strategic sophistication. For example, a model

with little (or no) demographic or spatial structure cannot effectively account for strategies

that vary by age, sex, or location. Additionally, if strategies alter demographic or spatial

structure of the population, such changes likely affect biological dynamics. Second, managers

face not only budgetary constraints, but also political and technical constraints. Thus, the

manager may be choosing among a relatively small set of strategies that are deemed intu-

itively, politically, and technically feasible. Furthermore, management objectives are often

influenced by politics and public opinion.

Although the two common approaches discussed above are often unable to provide specific

strategic prescriptions, they remain valuable because they provide general lessons. Models

that do not effectively account for effort and costs still provide valuable insight into the rela-

tive effectiveness of different types of management. Conventional bioeconomic optimization

models assist managers in understanding the general characteristics of optimal strategies and

provide insight into what those strategies depend on. However, in light of the above discus-

sion, we propose a bioeconomic model (BioEcon) that strikes a balance between biological

sophistication and the ability to identify optimal strategies while recognizing management

resource constraints.
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The bioeconomic model we ultimately propose to help answer our initial question is an

individual-based stochastic simulation model that explicitly accounts for the links between

effort, cost, and biological outcomes. Additionally, the model we propose goes beyond our

initial question by allowing for general use across species and locations. The model we con-

struct, (1) accounts for population and disease dynamics, (2) allows for removal, permanent

sterilization, temporary contraception, and vaccination, (3) allows for strategies to vary tem-

porally, spatially, and demographically, (4) allows for mixed strategies, (5) accommodates

various levels of data availability, and (6) is flexible enough to allow parameterization and

functional forms for a variety of wildlife species and diseases. The appendix provides a

detailed description of the model and the rationale for its various mechanisms.

3.2. Parameterization for KwaZulu-Natal

3.2.1. Case Study Overview. The objective of this paper is not to provide a detailed

examination of all potential alternative strategies for managing rabies in a free-ranging dog

population. Given the scope of this paper, it is not feasible to fully examine the multitude

of strategic possibilities and alternative parameter values that exist. Rather, our intention

is to explore several potential vaccination strategies to illustrate the biological outcome over

the different effort levels to ideally help identify a more optimal strategy given programme

objectives. This will involve analyzing how abundance and disease prevalence change given

various levels of vaccination effort and the associated costs. For example, if a manager

prioritizes animal abundance above reduced disease prevalence, the optimal strategy may be

different than if reduced disease prevalence is the priority. Also, given a likely fixed budget,

what does the optimal strategy look like.
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The modeling effort will take place on a 3x3 spatial grid where each cell is a distinct

geographic location. We assume that each cell is 100 km2. For simplicity in this paper, we

assume that each cell has the same parameter values and will receive the same vaccination

effort. The fact that free migration is allowed to occur will allow for varied outcomes by

location. We assume that our modeled locations do not exist in isolation and that there exists

an exogenous un-modeled disease threat. For example, from other South African provinces

that may not currently have disease eradication programmes in place. We assume that

migration cannot occur between these location, but that there exists a constant probability

that disease can cross into our modeled area.

3.2.2. Population Model. We assume each of the nine cells is 100 km2 and that

carrying capacity is 10 dogs/km2 based on [81–83], which also assume free-ranging dog

populations in sub-Saharan Africa grow according to

(3.1) Ṅ = rN(1− N

K
)

where N is the canine population at any given point in time, r is the population growth

rate, and K is the assumed population carrying capacity.

The assumption of logistic growth can be decomposed into a density-independent recruit-

ment rate and a density-dependent mortality rate as

(3.2) Ṅ = N [a− (b+ r
N

K
)]
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where a is the per capita recruitment rate, b is per capita mortality rate at low densities,

and a− b = r. Following [82] and [81], we assume b = 0.33 year 5. For use in this model, the

annual rate must be converted to daily probabilities. An annual per capita mortality rate of

0.33 + 0.09(N/K) implies a daily mortality probability of

(3.3) 1− e
−0.33−0.09(N/K)

365

[81] assumed an annual birth rate of 0.42. This yields an annual probability of 1−exp(−0.42).

However, the model that relied on the birth rate of 0.42/year did not distinguish between

males and females or juveniles and adults. Thus, the expected number of births per day is

simply N [1−exp(−0.42/365)]. Our model, however, requires a daily probability of successful

mating for each adult female that is fertile. We assume a mean litter size of 4.7 and a disease-

free population that is 40% female [84], Furthermore, trial simulations imply that about 67%

of the population is sexually mature. We then can assign a daily probability for mating by

writing

(3.4) 0.93[N(0.4)(0.67)Prob(mating)]4.7 ∼= N [1− e
−0.42
365 ]

where 0.93 reflects the probability that a females survives the gestation period. Solving

equation 3.4 yields a daily probability of successful mating by a sexually mature female of

0.00094.

5note that these rates reflect changes in density rather than abundance
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Gestation duration is set at 63 days [85], dispersal of puppies from mothers at 13 weeks

[85], and puberty at 10 months [86]. Finally we assume that 40% of puppies are female [84]6.

3.2.3. Disease Model. We follow [82, 81] and assume density-dependent transmission

of the form βSI. [81] estimates a transmission coefficient (β) of 13.2. The variable S

is the number of susceptible animals with I being the number of infected animals. This

coefficient and the assumption of density-dependent transmission imply a daily probability

of transmission of approximately

(3.5) 1− e−( 13.2
365

I
100)

where I is the number of dogs in the infectious stage of the disease at any point in time.

Time spent in the exposed state E, and infected state I, are based on estimates by [81] and

are set at 25 days and 6 days respectively, so that for simplicity we assume non stochastic

transition times between disease stages. We also assume that the disease is 100% fatal, so

there is no recovery stage.

3.2.4. Management. We explore several potential vaccination management strategies

in order to compare the subsequent biological outcomes associated with each. The first

strategy is no management of any kind with no disease. In this scenario we start each of the

nine locations with a population abundance at carrying capacity. All simulations are run for

20 years. This will provide a benchmark against which disease impacts can be compared.

The second is equal to the first except that an exogenous disease threat will be introduced at

6The sex ratio of living dogs reported by [84] may not be representative of the sex ratio of living dogs at
birth, but we assume 40% of births are female because we do not specify sex-specific mortality probabilities.
[85] reports 37% of births are female, which lends further support to our assumption
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day one which continues throughout the simulation. This scenario will provide a benchmark

against which management benefits can be compared. The third and subsequent scenarios

are equal to the second but will also involve various levels of disease intervention through

vaccination.

For management, we will assumed a trap density ranging from one trap every 200 km2

to one trap every 10 km2. All animals captured will be vaccinated for disease control. We

assume that traps are checked daily so that the traps can capture new animals (or potentially,

the same animals) daily. Animals have an assumed daily probability of encountering a trap

of 0.0025 per trap, and of being trapped 7. Animals may be trapped any number of times,

though we do not assumed any trap shyness or preference so that the probability remains

the same regardless of the number of times an animal has been trapped.

Vaccination is assumed to be effective for three years. The manager then, will only re-

vaccinate a previously vaccinated animal is they were vaccinated longer than three years

previously. We also assume that a manager knows if an animal is currently vaccinated if it is

captured multiple times, meaning that animals can be effectively marked after vaccination.

We assume that the cost of setting or checking a trap is $20 per day, per trap. We

also assume that each trap is checked daily and that the chosen management strategy is

administered. In our case, vaccination of any un-vaccinated animal. We assume the cost of

vaccination to be $3 per animal, in addition to the cost of trapping the animal. So then for

example, if a manager captures a recently vaccinated animal that does not need an additional

vaccination, the manager releases the animals sans vaccination, saving $3, but still incurs

the cost of checking the trap of $20.

7We assume that if an animal encounters a trap, they will be captured
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3.2.5. Simulation. We run a total of 24 simulations. The first simulation starts each

location with a relatively low abundance which is allowed to grow unmanaged for the duration

of the simulation. This is to illustrate the growth dynamics of the population. The second

simulation starts with a population at carrying capacity in location one only. The population

is then allowed to immigrate to all other locations, and grow. This is to illustrate immigration

dynamics of the population. Only one iteration is performed for these two simulations to

illustrate the inherent randomness in the model. For all subsequent simulations for which

insight will be extracted, 100 iterations are performed with the mean values presented.

We then move onto the disease and management scenarios. Simulations 3-24 provide

insight into the potential impact of an unmanaged disease on a healthy population and the

potential benefits and costs of intervention strategies. We explore 20 intervention scenarios

ranging from effort levels of 0.5 traps placed per 100 km2 to 10 traps per 100 km2 per day.

All simulations are run for 20 years and outcomes are averaged over 100 iterations. This

takes roughly one hour per scenario.

3.3. Results

3.3.1. Dynamics without Disease. We begin by examining population dynamics

without disease. To illustrate growth from a sub carrying capacity level of abundance we

allow the population to grow from an initial population of 600 animals per location to carry-

ing capacity (Figure 3.1). We can see that location five reaches carrying capacity relatively

quickly given that migration is possible from all surrounding locations leading to a larger

influx of animals than in any of the other locations with fewer potential migration destina-

tions.
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This leads to a population that is generally higher than carrying capacity, and therefore, a

higher mortality rate.
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Figure 3.1. Population growth dynamics from a relatively low abundance
over 20 years

We also illustrate immigration between areas by starting a simulation with a population

of dogs at carrying capacity in area one only and allowing that population to move between

locations over the 20 year period. (Figure 3.2). Here we see the population of location one

decline. Only at year 20 does the population again reach carrying capacity. This is because

as surrounding migration destinations become more populated, there is less incentive to move

locations. And also, because animals begin to migrate back to location one. It is interesting

to note that even after 20 years, locations 3, 6, and 9 are still relatively uninhabited.

Finally, we establish a baseline population in each location by starting a simulation with

abundance at carrying capacity which is left unmanaged for 20 years (Figure 3.3). Disease
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Figure 3.2. Random immigration from location one to all other locations
over 20 years

prevalence is zero as no disease is introduced. This will allow us to understand the benefits

of no disease as well as the cost of having the disease present.

3.3.2. Disease Dynamics without Management. To illustrate the effects of disease

on the population, we simulate a healthy population which is exposed to the disease via con-

stant exogenous risk from outside non-managed areas. The exogenous threat only threatens

the outer areas, though the disease can spread to the center area via animal migration. We

assume an annual exposure probability of 0.05% (Figure 3.4).

We see a very large drop in the population associated with a large initial outbreak of the

disease. This is due to the density dependent nature of the disease which spreads quickly

in dense populations. Subsequent outbreaks are smaller given the lower overall abundance.

We see that the disease keeps the population at a steady level creating an ”equilibrium”
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Figure 3.3. Unmanaged population dynamics over a 20 year simulation.
These results will be used as a baseline against which disease intervention
outcomes can be compared.

population level and disease prevalence. This scenario will be used as the disease baseline.

We can compare management strategies to this outcome to identify the potential benefits of

effort.

3.3.3. Costs of Management and Resulting Dynamics. We explore the impact

of different intervention effort levels in the form of the number of traps placed and managed

per 100km2 area, and their subsequent benefits and costs. The benefits are assumed to

come in the form of reduced number of infected animals at any given time and the increased

number of healthy animals, depending on the desired objective. More indirect benefits

include the potential benefits to humans in the form of fewer diseased animals, and thus, a

lower probability for human exposure.
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Figure 3.4. Dynamics under exogenous probability of exposure.

In order to compare the impact that each effort level has on population dynamics, we sum

the overall biomass across all 20 years and all nine locations, and examine their associated

costs of management. This will give us what we call ”Health Dog Days”, and ”Diseased

Dog Days”, or simply, the number of health or diseased dogs at each location on each day,

summed over the 20 years.

We begin with an effort level of 0.5 traps placed per 100km2 (Figure 3.5), and end with

an effort level of 10 traps per 100km2 (Figure 3.6). We also run simulations for all effort

levels in between at 0.5 increments.

One of the main benefits which can be seen from even low levels of effort in Figure 3.5 is

the noticeable dampening of the initial disease outbreak. Comparing this to no intervention

in Figure 3.4, we see a more gradual, though still rapid, disease spread leading to a low

point population of almost 20% higher than what is seen in no intervention. Though the
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Figure 3.5. Dynamics under exogenous probability of exposure and a vacci-
nation effort of 0.5 traps per 100km2.

population still declines by a large degree and ”settles” at a point roughly 60% the disease

free carrying capacity.

In the high effort scenario (Figure 3.6), there is an insignificant initial outbreak, only

minor flair ups in each location, and a larger, though still relatively small, sustained diseased

population in location 5 from roughly year 10 to the end of the simulation. Though, note

the scale of the second Y axis in Figure 3.6. These are very small prevalence levels.

Table 3.1 illustrates the resulting total number of health dog days, diseased dog days,

intervention costs, marginal costs, and marginal benefits of each subsequent effort level. The

marginal cost is defined as the additional cost of moving from one effort level to another.

The marginal benefit is defined as the change in the number of diseased dog days.
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Figure 3.6. Dynamics under exogenous probability of exposure and a vacci-
nation effort of 5 traps per 100km2.
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Table 3.1. Resulting animal biomass and costs associated with various management strategies in the form
number of traps sets per 10km2.

Scenario Healthy Dog Days Diseased Dog Days Cost Marginal Cost Marginal Benefit

Baseline No Disease 67,634,378 0 $0 $0 0

Disease, No Effort 29,043,283 81,922 $0 $0 81,922

0.5/100km2 36,995,769 190,337 $76,025 $76,025 108,415

1/100km2 46,134,647 259,907 $133,255 $57,230 69,570

1.5/100km2 53,213,330 267,208 $179,398 $46,143 7,301

2/100km2 58,016,018 244,208 $213,825 $34,427 -23,001

2.5/100km2 62,188,865 175,991 $243,564 $29,739 -68,217

3/100km2 62,744,736 186,069 $255,474 $11,910 10,079

3.5/100km2 64,549,535 148,230 $271,318 $15,844 -37,839

4/100km2 65,436,989 116,350 $282,031 $10,713 -31,880

4.5/100km2 65,991,975 98,299 $289,518 $7,487 -18,051

5/100km2 66,182,293 86,687 $294,736 $5,218 -11,613

5.5/100km2 66,473,146 90,747 $299,815 $5,079 4,060

6/100km2 66,954,439 66,054 $305,354 $5,539 -24,692

6.5/100km2 67,024,161 59,024 $308,038 $2,684 -7,030

7/100km2 67,216,108 41,569 $311,975 $3,937 -17,455

7.5/100km2 67,243,235 30,122 $313,704 $1,729 -11,447

8/100km2 67,416,845 33,861 $316,691 $2,987 3,739

8.5/100km2 67,481,740 27,497 $318,655 $1,964 -6,365

9/100km2 67,511,653 20,132 $320,305 $1,651 -7,365

9.5/100km2 67,665,873 21,340 $322,427 $2,122 1,208

10/100km2 67,531,152 13,694 $322,747 $319 -7,646
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It is interesting to note that initially, as effort increases, so does the number of diseased

dog days (Figure 3.7). This is due to the increased population of healthy dogs stemming

from even small amounts of disease protection. This increases the population density, so

that when an outbreak occurs, it spreads rapidly. Only at an effort level of two traps per

100km2 do we start to see declining diseased dog days.

This provides for an interesting solution given an objective of minimizing disease preva-

lence. Given a large enough budget, the optimal solution would obviously be to simply

vaccinate as many animals as possible which leads to lower levels of disease prevalence. But

if the budget is sufficiently low, the optimal strategy would be to not manage the population

at all. We see that under the no management scenario, the number of diseased dog days is

81,922. As effort increase, that number also increases until an effort level of two traps per

100km2, but does not reach the same number until an effort of between roughly five and six

traps per 100km2. The associated cost being between roughly $294,736 and $305,354. So

for a strategy of minimizing disease prevalence, effort is only optimal when it can exceed five

to six traps per 100km2, otherwise, no effort should be expended.

If maximizing the healthy population is the objective, All levels of effort increase the

benefit relative to a no effort scenario, though at a declining marginal rate.

3.3.4. Discussion and Conclusion. This paper outlines the costs and benefits of

potential canine rabies vaccination strategies specific to a KwaZulu-Natal, South Africa

context. We identify the conditions under which certain vaccination effort strategies would

be optimal given specific management objectives. We also provide insight into the potential

disease and population dynamics stemming from various effort levels. We show that from a
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Figure 3.7. Cost and number of diseased dog days for each effort scenario.

no management scenario, increased effort will increase both healthy and diseased populations

up to a certain effort threshold (1.5 traps per 100km2 in our case).

We also show that given a strategy of minimizing disease prevalence, there exists a min-

imum required investment in order to reduce prevalence below the baseline no management

scenario. We find the minimum to be between roughly $294,736 and $305,354, as any in-

vestment less than this would actually increase disease prevalence by increasing the healthy

dog population, and thus population density. This finding can likely be assumed to general

across other locations and programmes. This is important as most vaccination campaigns

are likely operating on limited or fixed annual budgets. If those budgets are consistently

lower than the required minimum, disease prevalence may actually be increasing across the

landscape. In these cases, it may be more beneficial to focus funds on a specif location within

the programme area (location one in our case for example) in order to achieve the required
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trap density to reduce disease prevalence within that area, and thus have reduced prevalence

as a whole across the programme area.

These results may also be beneficial to managers who consistently face external threats

of disease introduction and help to understand the benefit of maintaining an active ”border”.

For this scenario, compare the scenario with no disease to a scenario where the disease is

introduced via an exogenous threat. The cost of returning to a disease free status is likely

much more than the cost of maintaining vigilant border disease screening.

We develop a model that has yet to exist for this specific application (and likely many

others) but is needed. Traditionally, there has been little data or modeling available to allow

for an analysis of an optimal strategy. Generally, understanding of how effort relates to

biological outcomes has come from case studies of specific programmes. This usually allows

for analyzing only one specific strategy in isolation. There is no ability to compare the

outcome to other strategies. Beyond this, the results are generally specific to one specific

programme that cannot easily be applied to other situations. Meaning that knowledge is not

generally transferable. Programmes are then often relegated to learning via trial and error,

generally at large expense.

Also, with no understanding of the marginal costs and benefits, programmes with signif-

icant funding often greatly overspend just to be safe, essentially wasting funds that could be

used elsewhere to great benefit. Likewise, programmes that are underfunded could also be

wasting funds by spreading them too thin and not achieving the minimum required effort

levels, thus exacerbating the problem instead of reducing it.

This paper significantly contributes to the literature by filling a much needed gap in

understanding of effort and biological outcomes. We provide a method for getting much

74



closer to answering the above questions using a sophisticated simulation methodology rather

than having to rely on costly trial and error. Our results allow for estimates of the resources

needed to pursue future vaccination campaigns as well as disease elimination, reduction,

or other strategies. Understanding the costs and benefits of rabies elimination and reduc-

tion strategies also improves the ability to motivate the inter-sectoral cooperative strategies

needed for such strategies to be successful [87].

The limitations of this paper lie in the inability to measure or estimate the human side

benefits. These benefits come in the form of reduced canine to human disease transmissions

given lower disease prevalence levels in the dog population. We did not have the necessary

data to perform this analysis and therefore only provided estimates on the animal side

benefits. Given proper data, we could also estimate the number of human bites from canines,

and the subsequent number of humans becoming infected, as well as the estimated cost of

post exposure prophylaxis (PEP) likely to be administered. This is something that future

applications of this model could and should address in order to gain a much more complete

picture.

Beyond the insights gained from the above application, this paper outlines the individual-

based stochastic simulation model of wildlife population, and how it can be used to simulate

the potential impacts on a wildlife population due to disease and other management inter-

ventions. This model can be applied to various different wildlife species, disease, geographies,

etc.

Managers have complete control to adapt all the model functions to fit species, geography,

seasonality, etc. The functions vary across modeled locations and time periods. For example,

mortality, can vary across locations and be seasonal, meaning that it could be higher for 60
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days per year. Disease could be an exogenous risk to only subset of nine modeled locations.

This includes management strategies being location and time specific. We present a model

that provides insights into the potential impact of disease and intervention where no data

may be readily available such as remote locations or in highly specific circumstances.

3.4. Bioeconomic Model

3.4.1. General Structure. BioEcon is written in R (R Core Team 2014). R was

chosen over other languages because its use by researchers is common and growing, it is free,

and the code is relatively easy to read. There are several key characteristics of the model.

First, the model tracks individual animals and their traits through time. This is performed

via a population matrix that contains a row for each living individual and a column for each

trait associated with individuals (Table 3.2). Second, the model operates on a daily time

step. This minimizes bias that results from discrete time steps, and enables the model to

more precisely consider management efforts that vary temporally. Finally, the model contains

spatial structure that consists of a grid of locations. Nine locations are available, and these

may be tailored to the specific application via different carrying capacities, management

strategies, immigration parameters, and any number of other parameters that govern vital

rates. By default the grid is arranged with location 1 in the upper left-hand corner and

location 9 in the bottom right-hand corner.

Table 3.2. Inputs used in the model and notes on input definition and usage.

Traits Notes

id a number assigned to each individual that

exists in an iteration
location indicates current location of the individual
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group indicates the group number that individual

belongs to
female 1=female

day age days since birth

juvenile 1=juvenile

mortality probability -

mating probability -

pregnant 1=pregnant

time pregnant days since becoming pregnant

exposed probability probability of contracting disease and enter-

ing exposed class
passive immunity 1=in passively immune class

natural immunity 1=in naturally immune class

susceptible 1=in susceptible class

exposed 1=in exposed class

infected 1=in infected class

recovered with immunity 1=in recovered with immunity class

time with passive immunity days since acquiring passive immunity

time in exposed class days since entering exposed class

time in infected class days since entering infected class

time with immunity after recovery days since entering recover with immunity

class
time limit passive immunity days that will be spent in passive immunity

class
time limit of exposed class days that will be spent in exposed class

time limit of infected class days that will be spent in infected class

time limit of immunity after recovery days that will be spent in recover with im-

munity class
sterile from disease 1=sterile from disease

trapped 1=trapped on current day

trapping probability -

time trapped time previously trapped

euthanize probability probability if captured

sterilize probability probability if captured

contracept probability probability if captured

vaccinate probability probability if captured
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sterile 1=sterile

contracepted 1=contracepted

vaccinated 1=vaccinated

believed sterile 1=manager assumes sterile if captured

believed contracepted 1=manager assumes contracepted if cap-

tured
believed vaccinated 1=manager assumes vaccinated if captured

time contracepted days since contraception

time vaccinated days since vaccination

group-linked traits

adult females in group count

adult males in group count

fertile adult females in group count

fertile adult males in group count

infected in group count

location-linked traits

abundance at location count

K at location carrying capacity at the individuals current

location
density at location abundance relative to carrying capacity at

location
adult females at location count

adult males at location count

juvenile females at location count

juvenile males at location count

fertile adult females at location count

fertile adult males at location count

infected at location count

susceptible at location count

traps at location count

seasonality-linked traits

day of year [1, 365]; same for all individuals

12 binary columns indicating month 1 for current month, 0 otherwise; same for

all individuals
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There are three main sections of code: inputs, functions that correspond to major bi-

ological processes, and the iteration and time loops from which the various functions are

called. The first section simply assigns values to the various inputs and can be tailored to

the specific application. Biological processes executed in specific functions include mortality,

mating, reproduction, dispersal, immigration, disease transmission, capture, and treatment

(removal, permanent sterilization, temporary contraception, vaccination). The functions

that execute the biological processes constitute the bulk of code and are discussed in detail

in the next sections. The time loop exists within the iteration loop and loops through the

days of the specified timeframe. Each day, it calls the functions that execute the various

biological processes. These functions accept the population matrix as an argument, execute

the process, and return the updated population matrix. The model was structured in this

way so that it is simple to change process ordering without moving large blocks of code.

Additionally, the structure makes it simple to modify or add processes without disrupting or

altering other parts of the model. Finally, the iteration loop performs the specified number

of iterations. Due to the stochastic nature of the model, a substantial number of iterations

may be required in some applications to acquire a clear understanding of the distribution

of results. Iterations are executed in parallel via the doParellel and foreach packages in R.

The model should be executed on a multi-core machine so that parallel processing can be

exploited.

3.4.2. Mortality. The mortality function requires two inputs. The first is a function

that assigns a mortality probability to each individual on the current day. This function can

be as simple as a constant, or it can use any of the columns of the population matrix as

arguments. For example, density dependent mortality can be accommodated by allowing
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mortality probabilities to be a function of the ratio of abundance to carrying capacity at

location. Sex and age-specific mortality can be accounted for by specifying a function that

accepts the sex and age of the individual as arguments, and seasonal differences in mortality

can be accounting for by including day of the year or the month indicators as arguments.

Mortality probabilities are updated daily. When the mortality function is called each

day, a random number on [0, 1] is drawn for each individual and compared to the mortality

probability. If the random draw is less than the mortality probability, the individual is

removed from the population matrix. In addition to this mortality process, the population

can be optionally censored to carrying capacity each day. This process occurs by randomly

removing individuals from the population until carrying capacity is reached. Once these

processes have been completed, the updated population matrix is returned to the time loop.

3.4.3. Mating and Reproduction. Mating and reproduction processes are executed

by two separate functions. The mating function relies on mating probabilities returned

from a specified function. Like the mortality probability function, the mating probability

function can be as simple as a constant, or it can include many arguments. Note that mating

probabilities of adult females are automatically considered zero if the individual is not fertile

or there are no fertile males within the location. Random numbers on [0, 1] are drawn

and compared to each fertile female’s probability of mating. If the draw is less than the

probability, the female becomes pregnant.

New litters are created by the reproduction function. When a female has been pregnant

for the specified gestation period, a litter size is selected based on a specified vector of

probabilities. Each individual within the litter is randomly assigned a sex based on the

specified fraction of offspring that are female. New individuals are added to the population

80



matrix and the relevant columns filled (e.g. id, location, sex). The updated population

matrix is then returned to the time loop.

3.4.4. Dispersal. Dispersal refers to an individual’s dispersal from their current group

or juveniles dispersal from their mother. Juveniles automatically disperse at a specified age,

while other dispersal may occur based on defined rules governing group demographics. A

number of different rules are available. The model allows no group structure, female-only

groups, or groups that contain both sexes. When specified limits on group demographics

are reached, individuals are randomly selected for dispersal. When an individual is selected

for dispersal, the individual disperses to a new group based on a specified objective. Three

options are available: (1) minimize intra-group competition from the same sex, (2) maximize

intra-group abundance of the opposite sex, and (3) minimize the number of adults in the

group.

Dispersal operates sequentially but randomly. That is, each day all individuals are eval-

uated in random order to determine if dispersal is required. If an individual must disperse

because it has reached the age of dispersal or its group demographics are not within limits,

the individual disperses to a new group based on the specified objective, and all group sta-

tistics are updated before the next individual is evaluated. This sequential process ensures

reasonable dispersal dynamics, but it also slows execution considerably. Once all individuals

have been evaluated, the updated population matrix is returned to the time loop.

3.4.5. Immigration. Unlike dispersal, immigration occurs simultaneously each day based

on probabilities returned from a specified function. Similar to mortality and mating proba-

bilities, it is straightforward to let the immigration probabilities be a function of any number

of individual, group, or location characteristics (e.g. abundance relative to carrying capacity
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at location). If a group structure is specified, immigration takes place at the group level

(i.e. groups immigrate to new locations as a whole). Individuals or groups can move to new

locations with several different specified objectives. Groups (or individuals in the case of

no group structure) can move randomly to a new location or they may move by choosing a

location with minimum abundance relative to carrying capacity. For solo males, there is an

additional option of choosing a new location based on minimum abundance of solo males.

Finally, the user may specify which movements are feasible within the grid structure. For

example, it may be reasonable to limit daily movements to bordering cells.

Immigration is executed similar to other processes. A random number on [0, 1] is drawn

for each group or individual and compared to the immigration probability. A new location is

selected randomly from the subset of feasible location, or the new location is set based on the

specified objective. Once new locations are determined, the population matrix is updated

and returned to the time loop.

3.4.6. Disease. BioEcon allows the following disease states: susceptible, exposed, in-

fected, recovered with immunity, born with passive immunity, and natural immunity. By

default, individuals in the exposed state are not yet capable of transmitting the disease, but

they will enter the infected class with certainty assuming they live long enough. The number

of days spent in each disease state is specified, and states that are not relevant for a partic-

ular disease can be ignored by entering zero for time spent in the state. Three outcomes are

possible after infection: return to susceptibility, recover with immunity, and death. These

outcomes are governed by three specified probabilities. Thus, if the application examines a

disease with a mortality rate of one, the probability of death after infection would be set at

one.
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BioEcon can be used to model population dynamics in the absence of disease. To remove

disease processes from the model, the day the disease is introduced is simply set beyond

the time frame of the simulation. This ensures that all individuals will always be in the

susceptible state. When specified this way, all other disease-related inputs are ignored by

the model. If disease dynamics are to be modeled, the day the disease will be introduced

and the number of individuals that will initially be exposed must be specified. Alternatively,

it is possible to specify an exogenous probability of exposure and the day of the iteration

that this probability becomes non-zero.

Disease transmission is governed by probabilities returned by a specified function. Thus,

the model can easily be tailored to density-dependent transmission, frequency-dependent

transmission, or more exotic forms of transmission. Each day, random numbers on [0, 1]

are compared to transmission probabilities. Individuals that are exposed are moved into

the exposed state and a timer is started. Additionally, each day all individuals in the

exposed, infected, recovered with immunity, and passively immune states are evaluated. If

an individual has been in a particular state for the specified maximum time, the individual

transitions to the next state. For individuals moving out of the infected state, an additional

random number draw determines their fate.

3.4.7. Capture. The number of units of effort (e.g. traps, labor hours) used each day

at each location must be specified. An effort unit cost is also specified so that the total cost

of capture effort on each day at each location can be calculated. Another specified function

returns capture probabilities for each individual on each day. Typically, this function will

take the units of effort at location as an argument so that the probability of being captured is

zero if no effort is expended and the probability increases as effort increases. Other possible
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arguments include abundance at location, age, sex, and the number of times the animal has

been trapped or captured previously. If a random number draw on [0, 1] is less than the

individuals probability of being trapped, the individual is marked as captured.

3.4.8. Policy or Treatment. Once an individual is marked as captured, a number

of different policies or treatments are possible. The elements of an array define the fraction

of captured animals that receive each treatment. The policy array has a row for each day

of the iteration, a column for each location, and a sheet for each policy (i.e. removal,

sterilization, contraception, and vaccination). A separate policy array must be specified for

each of four classes of individual: juvenile female, juvenile male, adult female, and adult

male. All elements of the first three sheets of these arrays must be on the [0, 1] interval and

are interpreted by the model as the fraction of animals of that class captured on a particular

day that receive a particular treatment. A given row and column of the array must sum to

one across the first three sheets; otherwise the implication is that some animals receive both

contraception and sterilization or receive fertility treatment at the time they are removed

from the population. The fourth sheet of all arrays represents vaccination and is restricted

to zero or one. If the element equals one, then all animals of that particular class and at that

location that are captured on that day will be vaccinated if they are released (not removed).

A zero implies they will be released without vaccination.

3.4.9. Management Costs. Two types of management costs are specified: the cost of

a unit of effort (e.g. the per day cost associated with a single capture team) and the cost

of each policy of treatment on a per animal basis. Sterilization and contraception costs are

sex-specific, but removal and vaccination costs apply to both sexes. The model calculates
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total trapping costs each day based on the units of effort, and it calculates daily treat-

ment costs separately for the four classes of individuals based on the number of individuals

captured and the treatments they receive.

3.4.10. Benefits. Calculating the benefits of a management strategy requires two steps.

We assume that benefits arise from a strategy through a reduction in some negative impact

or an increase in some positive impact. Thus, the impact must be measured under some

baseline scenario (e.g. no management or current strategy) and under the proposed strategy.

To enable this, up to five impact functions can be specified. These functions can accept any

of the columns of the population matrix as arguments, and their output may represent an

impact measured in monetary terms (e.g. crop damage) or a non-monetary impact (e.g.

potential human exposures to a disease).
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APPENDIX A

Additional Tables

Table A.1. Full list of causes of mortality and disability

2 Wheel road injury Maternal sepsis

4 Wheel road injury Measles

Abortion Mechanical forces

Acne vulgaris Mechanical forces: firearm

Acute hepatitis A Melanoma

Acute hepatitis B Meningitis

Acute hepatitis C Meningococcal

ADHD Mental and behavioral disorders

Adverse medical treatment Migraine

Alcohol use disorders Mouth cancer

Alopecia areata Multiple sclerosis

Alzheimer’s disease Musculoskeletal disorders

Amphetamine use Myeloma

Animal contact Nasopharynx cancer

Anxiety disorders Neck pain

Aortic aneurysm Neonatal disorders

Appendicitis Neonatal encephalopathy

Asperger’s Neonatal sepsis

Assault by firearm Neural tube defects

Assault by other means Neurological disorders

Assault by sharp object Non Hodgkin lymphoma

Asthma Non melanoma skin cancer

Atrial fibrillation Nutritional deficiencies

Autism Obstructed labor

Bacterial skin diseases Opioid use

Benign prostatic hyperplasia Oral disorders

Bicycle road injury Osteoarthritis

Bipolar disorder Other: cancers

Bladder cancer Other: cardio circulatory

Brain cancer Other: chromosomal anomalies

Breast cancer Other: CKD

Cannabis use Other: communicable
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Cardio and circulatory diseases Other: congenital anomalies

Cardiomyopathy Other: digestive diseases

Cataract Other: drug use

Cellulitis Other: endocrine

Cervical cancer Other: gynecological disorders

Childhood behavorial disorders Other: hearing loss

Chlamydia Other: hemog

Chronic kidney disease Other: infectious diseases

Chronic respiratory diseases Other: maternal disorders

Cirrhosis Other: mechanical forces

Cleft lip Other: meningitis

Cocaine use Other: mental and behavioral

Colorectal cancer Other: musculoskeletal

Conduct disorder Other: neonatal disorders

Congenital anomalies Other: neurological disorders

Congenital heart anomalies Other: non communicable

COPD Other: NTD

Decubitus ulcer Other: nutritional deficiencies

Dengue Other: pharynx cancer

Dental caries Other: respiratory diseases

Diabetes Other: road injury

Diabetic CKD Other: sense organ disorders

Diarrheal diseases Other: skin diseases

Digestive diseases Other: STDs

Diptheria Other: transport injuries

Downs syndrome Other: unintentional injuries

Drowning Other: urinary diseases

Dysthymia Other: vision loss

Eating disorders Otitis media

Eczema Ovarian cancer

Edentulism Pancreatic cancer

Encephalitis Pancreatitis

Endocarditis Parkinson s disease

Endometriosis Pedestrian road injury

Epilepsy Peptic ulcer

Esophageal cancer Periodontal disease

Falls Peripheral vascular disease

Female infertility Pervasive developmental disorders
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Fibroids Pneumococcal meningitis

Fire Pneumoconiosis

Fungal skin diseases Poisonings

G6PD deficiency Polycystic ovary

Gall bladder diseases Premenstrual syndrome

Gallbladder cancer Preterm birth complications

Gastrititis and duodenitis Prostate cancer

Genital prolapse Pruritus

Glaucoma Psoriasis

Glomerulonephritis Pyelonephritis and UTI

Gonnorhea Rabies

Gout Refraction disorders

Gynecological diseases Rheumatic heart disease

Hemoglobinopathies Rheumatoid arthritis

Hemorrhagic stroke Road injury

HiB meningitis Scabies

HIV AIDS Schizophrenia

Hodgkin s lymphoma Self harm

Hypertensive CKD Sense organ diseases

Hypertensive heart disease Sickle cell

Inflammatory bowel disease SIDS

Inguinal and femoral hernia Stomach cancer

Intellectual disability Stroke

Interpersonal violence Syphilis

Interstitial lung diseases Tension type headache

Intestinal obstructions Testicular cancer

Iodine deficiency Tetanus

Iron deficiency anemia Thalassemia

Ischemic heart disease Thyroid cancer

Ischemic stroke Transport injuries

Kidney cancers Trichomoniasis

Larynx cancer Tuberculosis

Leprosy Typhoid fevers

Leukemia Unintentional injuries

Liver cancer Unipolar depressive disorders

Low back pain Upper respiratory infections

Lower respiratory infections Urinary diseases

Lung cancer Urolithiasis
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Macular degeneration Urticaria

Major depressive disorder Uterine cancer

Malaria Varicella

Male infertility Vascular intestinal disorders

Malnutrition Viral skin diseases

Maternal hemorrhage Whooping cough

Maternal hypertension

Table A.2. Income Ranked Cause List With Expected Per Capita Income
and Max Density. 1990

Expected Standard Max Expected

Cause Income Deviation Density Age Group

Tetanus 624 4.13 0.357 0-14

Malaria 651 13.05 0.106 0-14

Measles 725 8.15 0.179 0-14

Obstructed labor 789 7.03 0.267 15-64

Diptheria 794 9.03 0.429 0-14

Diarrheal diseases 983 6.42 0.413 0-14

Syphilis 1,018 9.71 0.322 0-14

Maternal sepsis 1,038 8.15 0.343 15-64

Rabies 1,068 15.91 0.320 15-64

Protein-energy malnutrition 1,069 9.77 0.410 65+

Whooping cough 1,093 7.55 0.367 0-14

Glomerulonephritis 1,119 7.08 0.501 65+

Abortion 1,152 8.19 0.412 15-64

Maternal hemorrhage 1,161 11.37 0.330 15-64

HiB meningitis 1,171 6.68 0.586 0-14

Pneumococcal meningitis 1,173 5.97 0.500 0-14

Other: maternal disorders 1,250 10.04 0.458 15-64

Acute hepatitis A 1,250 10.51 0.348 65+

Maternal hypertension 1,301 11.25 0.405 15-64

Neonatal sepsis 1,358 10.34 0.374 0-14

Animal contact 1,384 9.02 0.408 0-14

Nutritional deficiencies 1,395 9.87 0.359 65+

Meningococcal 1,437 9.05 0.319 0-14

Meningitis 1,528 8.74 0.470 0-14

Otitis media 1,542 5.62 0.728 0-14
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Tuberculosis 1,597 9.12 0.425 65+

Other: neonatal disorders 1,722 13.42 0.439 0-14

Upper respiratory infections 1,806 19.48 0.337 65+

Typhoid fevers 1,833 23.61 0.292 15-64

Encephalitis 1,937 15.55 0.377 0-14

Other: infectious diseases 1,995 22.09 0.382 0-14

Other: meningitis 2,046 13.94 0.388 0-14

Neonatal disorders 2,098 15.86 0.484 0-14

Neonatal encephalopathy 2,124 19.09 0.414 0-14

Mechanical forces (firearm) 2,227 19.26 0.347 15-64

Sickle cell 2,339 33.51 0.208 0-14

HIV AIDS 2,390 41.44 0.153 15-64

Cleft lip and palate 2,557 21.89 0.334 0-14

Acute hepatitis B 2,625 22.64 0.271 65+

Preterm birth complications 2,672 21.84 0.361 0-14

Varicella 2,725 18.12 0.445 0-14

Appendicitis 2,821 19.74 0.255 65+

Epilepsy 2,875 20.23 0.340 65+

Iron-deficiency anemia 3,000 26.74 0.188 65+

Neural tube defects 3,072 30.34 0.300 0-14

Fire 3,077 22.03 0.333 65+

Mechanical forces 3,258 21.20 0.263 15-64

Other: NTD 3,461 38.25 0.289 0-14

Other: road injury 3,471 56.69 0.378 65+

Poisonings 3,499 31.79 0.300 0-14

Lower respiratory infections 3,644 33.00 0.402 0-14

Bacterial skin diseases 3,691 36.16 0.306 65+

Other: congenital anomalies 3,698 28.19 0.287 0-14

Hemoglobinopathies 3,764 33.31 0.358 0-14

Assault by sharp object 3,919 37.63 0.258 15-64

Drowning 3,949 28.48 0.256 0-14

Assault by other means 3,979 29.83 0.231 0-14

Cellulitis 4,009 39.17 0.313 65+

Other: skin diseases 4,110 40.21 0.318 65+

Congenital anomalies 4,139 29.28 0.254 0-14

Interpersonal violence 4,140 40.08 0.231 0-14

Other: STDs 4,220 44.21 0.257 65+

Chlamydia 4,248 44.63 0.256 65+
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Gonnorhea 4,248 44.68 0.257 65+

Down’s syndrome 4,319 33.84 0.233 0-14

Other: nutritional deficiencies 4,325 53.50 0.123 65+

Other: mechanical forces 4,408 35.49 0.240 15-64

Assault by firearm 4,480 66.21 0.220 15-64

Iodine deficiency 4,627 43.64 0.163 65+

Pedestrian road injury 4,693 45.29 0.268 65+

Other: chromosomal anomalies 4,715 37.91 0.268 0-14

Asthma 4,750 42.12 0.296 65+

Thalassemia 4,804 58.11 0.227 0-14

Other: hemog 4,817 45.81 0.300 0-14

Other: unintentional injuries 4,926 47.74 0.284 0-14

Congenital heart anomalies 4,954 36.61 0.229 0-14

Acute hepatitis C 4,979 58.18 0.195 65+

Unintentional injuries 5,034 43.84 0.283 0-14

Adverse medical treatment 5,222 74.50 0.274 0-14

Cervical cancer 5,389 42.71 0.208 65+

Other: transport injuries 5,522 56.76 0.250 15-64

Other: gynecological disorders 5,606 63.64 0.210 65+

Other: respiratory diseases 5,649 66.19 0.292 0-14

Gynecological diseases 5,873 66.36 0.202 65+

Fibroids 5,988 89.09 0.210 15-64

Inguinal and femoral hernia 6,015 47.07 0.164 65+

G6PD deficiency 6,106 53.10 0.273 65+

Other: urinary diseases 6,380 69.42 0.250 65+

Peptic ulcer 6,396 62.73 0.262 65+

Dengue 6,589 67.61 0.214 65+

Schizophrenia 6,674 80.61 0.201 65+

Transport injuries 6,748 60.12 0.242 15-64

Road injury 6,843 61.51 0.242 15-64

SIDS 6,943 77.63 0.275 0-14

Other: digestive diseases 7,015 74.36 0.276 65+

Intestinal obstructions 7,020 79.31 0.230 65+

Pneumoconiosis 7,088 97.52 0.290 65+

Inflammatory bowel disease 7,099 76.29 0.319 65+

Bicycle road injury 7,192 73.24 0.240 65+

Gastrititis and duodenitis 7,195 62.14 0.191 65+

Cirrhosis 7,216 72.77 0.229 65+
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Liver cancer 7,269 80.30 0.247 65+

Decubitus ulcer 7,292 94.36 0.265 65+

Digestive diseases 7,328 71.71 0.253 65+

Rheumatic heart disease 7,520 75.07 0.241 65+

Endometriosis 7,635 263.65 0.212 15-64

Urolithiasis 7,663 77.73 0.228 65+

Cardiomyopathy 7,767 70.14 0.216 65+

Chronic respiratory diseases 7,771 77.36 0.254 65+

Diabetes 7,792 69.42 0.190 65+

Hemorrhagic stroke 7,797 79.08 0.204 65+

Hypertensive CKD 8,117 69.53 0.199 65+

Endocarditis 8,197 88.02 0.208 0-14

Other: neurological disorders 8,281 85.08 0.216 65+

2 Wheel road injury 8,352 88.84 0.257 15-64

Hypertensive heart disease 8,371 79.60 0.178 65+

4 Wheel road injury 8,388 85.37 0.218 15-64

Eating disorders 8,443 125.30 0.181 65+

Chronic kidney disease 8,443 77.34 0.214 65+

Pancreatitis 8,526 78.62 0.213 65+

Other: CKD 8,529 81.79 0.233 65+

Nasopharynx cancer 8,532 114.54 0.183 65+

Diabetic CKD 8,584 86.06 0.195 65+

Other: mental and behavioral 8,740 137.59 0.199 65+

Hodgkin’s lymphoma 8,751 79.59 0.162 65+

Cocaine use 8,859 159.40 0.174 0-14

Other: endocrine 8,991 99.86 0.208 0-14

Esophageal cancer 9,028 96.84 0.202 65+

COPD 9,186 98.40 0.224 65+

Other: drug use 9,210 151.71 0.163 0-14

Stroke 9,358 87.83 0.191 65+

Gall bladder diseases 9,637 100.48 0.210 65+

Urinary diseases 9,796 108.62 0.250 65+

Other: musculoskeletal 9,868 113.51 0.191 65+

Other: cancers 9,874 106.27 0.220 65+

Amphetamine use 9,885 159.39 0.154 0-14

Stomach cancer 10,157 105.71 0.172 65+

Musculoskeletal disorders 10,245 118.03 0.245 65+

Larynx cancer 10,312 100.92 0.147 65+
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Mental and behavioral disorders 10,353 114.32 0.167 65+

Non-melanoma skin cancer 10,361 98.42 0.176 65+

Rheumatoid arthritis 10,684 146.83 0.276 65+

Other: pharynx cancer 10,837 123.47 0.186 65+

Testicular cancer 10,838 139.63 0.170 65+

Ischemic stroke 10,860 103.96 0.168 65+

Self harm 10,889 119.70 0.180 15-64

Cardio and circulatory diseases 10,889 108.16 0.171 65+

Falls 11,008 144.96 0.268 65+

Mouth cancer 11,142 115.54 0.173 65+

Neurological disorders 11,187 145.08 0.282 65+

Alcohol use disorders 11,213 136.15 0.121 15-64

Interstitial lung diseases 11,636 143.12 0.189 65+

Pyelonephritis and UTI 11,733 133.97 0.176 65+

Other: cardio and circulatory 11,904 135.40 0.174 65+

Leukemia 12,007 124.87 0.200 65+

Ischemic heart disease 12,246 130.76 0.149 65+

Thyroid cancer 12,525 134.68 0.168 65+

Gallbladder cancer 12,743 144.71 0.152 65+

Non-Hodgkin lymphoma 12,963 147.67 0.235 65+

Opioid use 13,137 195.72 0.154 0-14

Uterine cancer 13,598 158.42 0.163 65+

Genital prolapse 14,141 218.66 0.131 65+

Bladder cancer 15,592 187.47 0.185 65+

Breast cancer 15,738 187.30 0.159 65+

Multiple sclerosis 15,939 222.22 0.204 65+

Ovarian cancer 15,964 191.90 0.164 65+

Lung cancer 16,055 180.44 0.145 65+

Melanoma 16,060 210.08 0.123 65+

Pancreatic cancer 16,263 183.18 0.133 65+

Brain cancer 16,621 195.86 0.129 65+

Prostate cancer 17,001 217.05 0.134 65+

Vascular intestinal disorders 17,360 201.29 0.104 65+

Kidney cancers 17,462 211.07 0.163 65+

Colorectal cancer 17,574 208.15 0.149 65+

Peripheral vascular disease 17,637 252.78 0.131 65+

Aortic aneurysm 17,743 228.54 0.173 65+

Parkinson’s disease 18,016 245.17 0.218 65+
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Myeloma 19,449 244.20 0.153 65+

Atrial fibrillation 20,996 314.69 0.151 65+

Alzheimer’s disease 21,922 359.95 0.185 65+
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