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ABSTRACT 
 
 

CONSTRUCTION AND EVALUATION OF EPIDEMIOLOGIC SIMULATION MODELS 

FOR THE WITHIN- AND AMONG-UNIT SPREAD AND CONTROL OF INFECTIOUS 

DISEASES OF LIVESTOCK AND POULTRY 

 
Epidemiologic modeling is an increasingly common method of estimating the potential 

impact of outbreaks of highly contagious diseases, such as foot-and-mouth disease (FMD) and 

highly pathogenic avian influenza (HPAI), in populations of domesticated animals.  Disease 

models are also used to inform policy decisions regarding disease control methods and outbreak 

response plans, to estimate the possible magnitude of an outbreak, and to estimate the resources 

needed for outbreak response.  Although disease models are computationally sophisticated, the 

quality of the results of modeling studies depends on the quality and accuracy of the data on 

which they are based, and on the conceptual soundness and validity of the models themselves.   

For such models to be credibly applied, they should realistically represent the systems they are 

intended to reflect, should be based to as great an extent as possible on valid data, and should be 

subjected to careful and ongoing scrutiny. 

Two key steps in the evaluation of epidemiologic models are model verification and model 

validation.  Verification is the demonstration that a computer-driven model is operating 

correctly, and conforms to its intended design.  Validation refers to the process of determining 

how well a model corresponds to the system that it intended to represent.  For a veterinary 

epidemiologic model, validation would address issues such as how well the model represents the 

dynamics of the disease in question in a population to which the model is applied, and how well 

the model represents the application of different measures for disease control.  Among the steps 
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that can be taken by epidemiologic modelers to facilitate the processes of model verification and 

validation are to clearly state the purpose, assumptions, and limitations of a model; to provide a 

detailed description of the conceptual model for use by everyone who might be tasked with 

evaluation of a model; document steps already taken to test the model; and thoroughly describe 

the data sources and the process used to produce model input parameters from data. 

The realistic representation of the dynamics of spread of disease within individual herds or 

flocks can have important implications for disease detection and surveillance, as well as for 

disease transmission between herds or flocks.  We have developed a simulation model of within-

unit (within-herd or within-flock) disease spread that operates at the level of the individual 

animal, and fully incorporates sources of individual-level variation such as variability in the 

durations of incubating and infectious periods, the stochastic nature of disease spread among 

individuals, and the effects of vaccination.  We describe this stochastic model, along with the 

processes employed for verification and validation.  The incorporation of this approach to 

modeling of within-unit disease dynamics into models of between-unit disease spread should 

improve the utility of these models for emergency preparedness and response planning by 

making it possible to assess the value of different approaches to disease detection and 

surveillance, in populations with or without some existing level of vaccine immunity. 

Models rely not only on realistic representations of the systems of interest, but also on valid 

and realistic information.  For spatially explicit models of the spread and control of disease in 

populations of livestock and poultry, this means a heavy reliance upon valid spatial 

representations of the populations of interest, including such characteristics as the geographic 

locations of farms and their proximity to others in the population.  In the United States, limited 

information regarding the locations of actual farm premises is available, and modeling work 
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often makes use of artificially generated population datasets.  In order to evaluate the accuracy 

and validity of the use of such artificially generated datasets, we compared the outcomes of 

mechanistic epidemiologic simulation models that were run using an empirical population 

dataset to those of models that made use of several different synthetic population datasets.  

Although we found generally good qualitative agreement among models run using various 

population datasets, the quantitative differences in model outcomes could be substantial.  When 

quantitative outcomes from epidemiologic models are desired or required, care should be taken 

to adequately capture or describe the uncertainty in model-based outcomes due to the use of 

synthetic population datasets. 
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1. Introduction, literature review, and study objectives 

 
Epidemiologic modeling is an increasingly common method of estimating the potential 

impact of outbreaks of highly contagious diseases, such as foot-and-mouth disease (FMD) and 

highly pathogenic avian influenza (HPAI), in populations of domesticated animals.  In this 

chapter, our goals are as follows: to describe epidemiologic models and discuss the reasons for 

their construction and use; to explore the differences, strengths, and limitations among various 

types of epidemiologic models; to provide a review of FMD and HPAI with specific emphasis on 

disease epidemiology; to review recent epidemiologic modeling studies of the spread and control 

of FMD and HPAI in populations of livestock and poultry; and to establish the context for the 

work described in subsequent chapters. 

1.1. The motivation for building epidemiologic models 

Epidemiologic models are members of a class identified by some authors as “process 

models” (Hurd and Kaneene, 1993; King and Soskoline, 1988).  A process model is a simplified, 

quantitative representation of a real system or process, which attempts to describe or illustrate 

how that system or process operates.  In the case of epidemiologic models, the primary process 

of interest is the spread of disease in a population over time.  Epidemiologic process models 

might be quite simple or relatively complex, depending on the purpose for which they are 

intended.  Simple process models have been constructed to explore the dynamics of infectious 

disease in susceptible, randomly mixing populations.  Pioneering work by Kermack and 

McKendrick (1927, 1932, 1933), for example, contributed to development of the threshold 

theorem of epidemics: in a simple mathematical model that considered only the rate of disease 

spread among individuals in a population, Kermack and McKendrick demonstrated that, for an 
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epidemic to occur, a certain proportion of the population must be susceptible to disease.  Below 

this threshold density, an epidemic is not expected to occur. 

More complex processes might involve any of several mechanisms responsible for disease 

spread in animal populations, such as the nature and frequency of interaction among members of 

an animal population or physical mechanisms by which causal agents of infectious disease are 

transmitted.  Relatively complex epidemiologic process models have been constructed that 

attempt to account for multiple mechanisms of disease spread in heterogeneous animal 

populations (e.g., Bates et al., 2003c, 2003d; Patyk et al., in preparation).  Several of these more 

complex models are discussed in more detail below.  In other cases, epidemiologic systems 

might be concerned with interactions between two or more populations, such as host and parasite 

populations, or populations of disease vectors and animal species susceptible to disease.  

Epidemiologic systems of interest often also involve interventions made to limit further spread of 

disease. 

Each of the contributing elements of a real system might be termed a component of that 

system.  Quantitative process modeling allows investigators to study the often dynamic nature of 

the interactions among these components (Anderson and May, 1991; Hurd and Kaneene, 1993) 

and to examine how the alteration of individual components of a system might affect the overall 

outcome of that system.  Models are particularly useful for the demonstration of the potential 

effects of such alterations when it is not practical, or even possible, to experimentally alter the 

real system.  In veterinary epidemiology, it is neither possible nor desirable to experimentally 

determine the extent of a regional or national disease outbreak or to test large-scale mitigation 

strategies under actual field conditions.  Disease models provide an alternative experimental 

framework in which the extent of an outbreak or the effects of various large-scale mitigation 
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strategies can be explored.  Models may be used to assess how a system might respond to 

different events or interventions, for example, to investigate disease spread under different 

seasonal conditions or to compare the efficacy of different disease control strategies in different 

regions and populations.  Modeling has the added advantage of being far less expensive than 

experience with actual disease outbreaks (Garner and Lack, 1995; Schoenbaum and Disney, 

2003). 

Additionally, through the process of constructing a epidemiologic model, the understanding 

of the system being modeled is often improved: Teclaw (1979) pointed out that “models not only 

mimic real systems in a more comprehensible way, but may go beyond description and lead to 

conclusions contrary to intuition.”  Similarly, the systematic process of model building often 

identifies gaps in existing knowledge about components of the system under investigation.  The 

identification of such gaps can then be used to guide useful field or laboratory research (Taylor, 

2003). 

1.2. Types of epidemiologic models 

Epidemiologic models may take any of several forms.  This section presents a simple 

taxonomy for some of the types of models that have appeared in the epidemiologic and 

veterinary epidemiologic literature.  The list of types of models addressed here is by no means 

exhaustive.  There is no clear set of rules that distinguishes models of one type from another, and 

there are many models that defy the broad characterizations presented.  It is still helpful, 

however, to draw some conceptual, if not always clear, lines between the various categories and 

to keep in mind that models of different types can often be used to complement one another. 
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1.2.1. Differential calculus-based mathematical models 

 Some models, such as differential calculus models, are based on sets of formulas or 

equations that describe the system of interest in a rigorously mathematical way.  Analytical 

approaches can then be used to determine solutions for these systems, thus producing model 

outcomes.  The models of Kermack and McKendrick (1927, 1932, 1933) are models of this type 

(see Figure 1-1).  More recent applications of this type of model in veterinary epidemiology have 

been described (Bavinck et al., 2009; Miller, 1976; Smith and Dunipace, 2011; Thornley and 

France, 2009), some of which are discussed in more detail in subsequent sections. 

These models are generally deterministic in nature: they make use of single values to 

represent model parameters, and they give exactly one estimate of the outcome, produced 

analytically, which typically represents the “typical” or average expected situation.  Because 

model parameters are represented with single values, rather than distributions, deterministic 

models cannot directly account for natural biological variability among individuals in a 

population.  Such models also fail to account for stochasticity.  As Carpenter (2011) points out, 

this limitation can have considerable consequences for the validity of such models: “in the early 

stages of an epidemic, especially in a small population with a low contact rate, deterministic 

models fail to accurately portray the ‘boom or bust’ situation of epidemics, i.e., given an 

identical scenario sometimes an epidemic dies out while other times it takes off and becomes 

explosive.”  Deterministic mathematical models also generally fail to account for spatial 

relationships that exist among the elements of certain populations, such as a population of farm 

premises.  For these reasons, among others, some investigators prefer to use stochastic, spatially 

explicit models.  Two general types of stochastic spatially explicit models are described in 

sections 1.2.2 and 1.2.3. 
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1.2.2. Spatial kernel-based mathematical models 

A second class of mathematical models is based on the concept of a spatial kernel.  In such 

models, populations of interest are characterized by their spatial or geographic distributions.  

Such models have been used, for example, to consider disease spread among a population of 

livestock or poultry premises, each of which is represented in spatial context generally as a point 

location.  The spatial kernel represents the probability of disease spread between an infectious 

and a susceptible unit (i.e., premises) based on the distance between the two units (Keeling, 

2005; Keeling et al., 2001; Rorres et al., 2010, 2011; Tildesley et al., 2012).  Spatial kernel 

functions are generally empirical, derived from outbreak data.  Keeling et al. (2001), for 

example, created a spatial kernel to represent the spread of foot-and-mouth disease (FMD) in the 

United Kingdom (UK) in 2001 during an outbreak in progress.  Rorres et al. (2010, 2011) have 

generated a similar spatial kernel, based on historical information collected during an outbreak of 

highly pathogenic avian influenza (HPAI) in the eastern United States (US).  These spatial 

kernels are then used to stochastically simulate the spread of disease throughout the population 

of interest.  This approach does not distinguish among different mechanisms that might lead to 

infection: all such mechanisms are incorporated into the spatial kernel (Keeling, 2005). 

Spatial kernel-based models rely on information regarding outbreak outcomes: they rely on 

data collected either during or after an outbreak to generate a spatial kernel.  [Models that rely on 

information about outbreak outcomes have been called “top-down” models by some authors 

(e.g., Singer et al., 2011).  This is in contrast to “bottom-up” models, discussed in the following 

section.]  The kernel is then applied by analogy: spatial kernels produced based on one outbreak 

have been applied to other populations based on the assumption that the circumstances 

contributing to disease spread are analogous in the two situations.  Tildesley et al. (2012) used a 

spatial kernel generated during the 2001 outbreak of FMD in the UK to evaluate options for 
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disease control in the event of an FMD outbreak in Pennsylvania.  Similarly, Keeling et al. 

(2001) used a spatial kernel generated in the early phases of the 2001 UK FMD outbreak to 

estimate the continued impact of the outbreak in its later stages.  This spatial kernel has also been 

applied retrospectively to evaluate alternative measures for FMD control in the UK outbreak 

(Keeling et al., 2003; Tildesley et al., 2006). 

Although these models have the advantage that they can be parameterized relatively quickly 

in the face of an outbreak (Keeling, 2005; Rorres et al., 2011a), they have several limitations.  

First and foremost is their reliance on outcome data: the utility of such models in advance of an 

outbreak for planning purposes is limited to situations analogous to those in which outbreaks 

have occurred.  It would be inappropriate, for example, to apply the method of Tildesley et al. 

(2012) to evaluate measures for FMD control in the western United States: the UK-based spatial 

kernel is very likely wholly inappropriate to application in a population with very different 

demographics, geographic distributions, and other characteristics.  A second limitation is that of 

the quality of information used to generate the spatial kernel.  Data from early stages of 

outbreaks in progress are likely not to be high-quality.  This in turn may influence the accuracy 

of model results. 

Third, because the spatial kernel does not distinguish between different mechanisms of 

disease spread, they can provide little insight regarding the impacts of those mechanisms, or of 

the effects of disease control measures targeted to specific mechanisms of disease spread.  To 

realistically address questions regarding specific components of an epidemiologic system, it is 

necessary to construct models that represent the mechanisms behind those components. 
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1.2.3. Mechanistic simulation models 

An alternative to the mathematically-oriented modeling approaches discussed above is the 

use of computer-driven simulation models that attempt to mimic the actual processes that occur 

within a system: in an epidemiologic simulation model, for example, the frequency of movement 

of animals among farm or ranch premises might be recreated to mimic this mechanism of disease 

spread.  These models are intended to emphasize “realism rather than mathematical rigour” 

(Miller, 1976), in the sense that analytical, closed-form solutions to sets of equations are not 

sought.  Instead, the representation of individual components of a system is used to determine the 

emergent properties of the system as a whole.  For this reason, models of this type are sometimes 

referred to as “bottom-up” models (Singer et al., 2011): model building begins at the bottom, 

with the representation of basic components, and builds toward the outcome of interest.  Most 

mechanistic simulation models are stochastic and can thus be used to represent the entire range 

of possible outcomes from a single set of starting conditions: best case, typical, and worst case 

outcomes. 

Mechanistic simulation models still require information, but the information required 

pertains to system inputs, rather than outcomes: that is, these models do not rely on data from a 

disease event.  Such information is generally more readily available.  Consequently, 

epidemiologic simulation models of disease spread and control find their greatest utility in 

regions or countries that are currently free from the disease of interest, and for which no obvious 

analogous outbreak situations exist. 

An additional advantage associated with mechanistic models is that they are often more 

transparent to non-specialists.  In the construction of epidemiologic simulation models, the 

attempt is often made to represent complex systems in ways that are readily understandable, and 

easily communicated to policy makers, response planners, and other stakeholders.  Each of the 
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components of a complex system can be separated and described in ways that are accessible to 

the intended audience, and in ways that are recognizable as real-world phenomena.  These 

characteristics are critical for the conceptual validity of models, as discussed in chapter 2. 

Numerous mechanistic simulation models have been applied to questions in veterinary 

epidemiology (Bates et al., 2003c; Dickey et al., 2008; Harvey et al., 2007; Patyk et al., in 

preparation; Schoenbaum and Disney, 2003; Sharkey et al., 2008; Truscott et al., 2007; Yoon et 

al., 2006).  Additional examples of all three types of models described above are presented and 

discussed in section 1.4, following a brief review of the biology and epidemiology of FMD and 

HPAI in section 1.3. 

1.3. Biology and epidemiology of foot-and-mouth disease and highly pathogenic avian  
 
influenza 

1.3.1. Foot-and-mouth disease 

Foot-and-mouth disease (FMD) is a highly contagious disease that affects many 

important livestock species.  Since 2000, FMD has been reported in most major areas of the 

world with the exceptions of North America, Australia, and central Europe (Food and 

Agriculture Organization of the United Nations, 2012). 

The causal agent of FMD is a picornavirus in the genus Aphthovirus, of which seven 

serotypes, designated O, A, C, SAT 1, SAT 2, SAT 3, and Asia 1, are currently recognized 

(Alexandersen et al., 2003).  FMD virus (FMDV) consists of a single strand of positive sense 

RNA, surrounded by a capsid composed of multiple copies of four structural proteins (Acharya 

et al., 1989).  Replication of viral RNA in infected host cells occurs via an intermediate negative 

sense RNA molecule, which is then used as a template for the synthesis of new positive sense 

viral RNA (Monaghan, 2004). 
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Among known susceptible species are cattle, swine, sheep, goats, African and Indian 

buffalo, American bison, and Bactrian camels, among others (Alexandersen et al., 2003; Larska 

et al., 2009; Maroudam et al., 2008; Rhyan et al., 2008; Thomson et al., 2003; Vosloo et al., 

2007).  Host specificity is determined partly by viral strain: even within serotypes, species-

specific strains occur.  A porcinophilic strain of serotype O was responsible for a 1997 outbreak 

of FMD in Taiwan that had little to no effect on cattle in the country (Lee et al., 2009; Yang et 

al., 1999), while another strain of the same serotype caused the outbreak among cattle and sheep 

in the United Kingdom in 2001 (Gibbens et al., 2001; Haydon et al., 2004). 

FMD is particularly notable for its potential for rapid, extensive spread in naïve 

populations, its potential to cause animal health emergencies of international scope, and for its 

severe economic consequences (OIE, 2011).  An FMD outbreak on the island of Taiwan in 1997 

resulted in the infection of animals on 6147 farms.  Over 4 million swine were slaughtered as 

part of a disease control campaign, and over 21 million doses of vaccine were dispensed.  Direct 

costs associated with the outbreak have been estimated at over $378 million, while the total 

estimated cost to the swine industry in Taiwan was assessed at $1.6 billion.  Taiwan had been 

free of FMD for over 68 years prior to the 1997 outbreak, which is thought to have started with 

the smuggling of infected animals or animal products into the country (Chen et al., 1999; Yang et 

al., 1999). 

More recently, an epidemic of FMD occurred in the United Kingdom in 2001, 34 years 

after the most recent previous major epidemic (Ferguson et al., 2001a). The epidemic led to the 

detection of over 2000 infected premises and the destruction of over 6.5 million animals 

(Haydon et al., 2004).  Before the epidemic ended, FMD had spread to Ireland, France, and the 
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Netherlands (UK Department for Environment Food and Rural Affairs, 2002).  Economic losses 

in the UK alone have been estimated at $10.7 to $11.7 billion (Thompson et al., 2002). 

Mechanisms of transmission of FMD have been characterized.  Direct animal-to-animal 

contact resulting in transfer of the virus from infected to susceptible animals is the most common 

form of transmission.  Physical contact with excretions and secretions (vesicular fluid, milk, 

urine, feces, semen) and fecal-oral transmission can result in disease spread.  Ruminants in 

particular are susceptible to disease transmission via inhalation of aerosolized secretions 

(Alexandersen et al., 2003; Bates et al., 2003d; Donaldson, 1987).  The movement of infected 

sheep through markets prior to the detection of disease is thought to have been a major 

contributor to the 2001 FMD outbreak in the UK (Mansley et al., 2003).  Indirect contact by 

contaminated personnel, vehicles, and other equipment can contribute to the spread of disease 

(Alexandersen et al., 2003; Bates et al., 2003d).  Indirect contact by vehicles and equipment is 

believed to have played a major role in an outbreak of FMD that occurred in Uruguay in 2001 

(European Commission, 2001; Reeves et al., 2006).  Some investigators believe that, under 

certain climatic conditions, it may be possible for FMD to be transmitted over long distances 

(potentially across many kilometers) by airborne dissemination (Bates et al., 2003d; Donaldson 

et al., 2001), although this hypothesis remains controversial. 

Although the last reported case of FMD in the United States occurred in 1929 (Mohler 

and Snyder, 1930), the disease continues to be a substantial threat to US animal agriculture.  

International trade of livestock and animal products and the continuing increase in international 

travel make the inadvertent introduction of FMD more probable.  In recent years, concern about 

the potential for intentional introduction of FMD through acts of bioterrorism has also risen 

substantially (Bates et al., 2003d; Kostova-Vassilevska, 2004; Wilson et al., 2001). 
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The economic implications, particularly for international trade, of an outbreak of FMD in 

the US would be considerable.  The occurrence of FMD in a country or region previously 

recognized as free from disease provides ample reason for other countries to discontinue trade 

with the infected country or region (Kitching, 2000).  Detection of one animal infected with 

bovine spongiform encephalopathy in the US resulted in the immediate closure of US beef 

export markets in Japan, Korea, Mexico, and Canada, and in the estimated loss to the US beef 

industry in 2004 of $3.2 to $4.7 billion (Coffey et al., 2005).  Recent studies show that the 

economic impact of an outbreak of FMD in the US could be severe (Ekboir, 1999; Paarlberg et 

al., 2008; Pendell et al., 2007). 

Measures for disease prevention (such as import restrictions and mandatory quarantine of 

live animals to be transported across national boundaries) provide a first line of defense, but the 

possibility of introduction of FMD will always exist.  Consequently, appropriate contingency 

planning is essential (Geering and Lubroth, 2002). 

The primary objective of contingency planning for FMD, particularly in countries or 

regions that are currently free of FMD, is rapid containment of the disease, to be followed by 

eradication (Geering and Lubroth, 2002; USDA-APHIS-VS, 2010).  Once freedom from disease 

can be demonstrated after an outbreak, international trade may resume.  The central challenge for 

the development of contingency and response plans is to provide an economically feasible course 

of action that will minimize the consequences of an incursion of FMD as effectively and 

efficiently as possible. 

Foot-and-mouth disease is characterized clinically by the appearance of often severe 

vesicular lesions in and around the mouth and on the feet; lameness; drooling; and reluctance to 

feed, stand, or walk  (Alexandersen et al., 2003).  These signs are often more pronounced in 
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swine and cattle than in sheep or goats (Alexandersen et al., 2003; Kitching and Hughes, 2002; 

Kitching et al., 2005), and, as noted above, may vary with the strain of the virus.  Although a 

variety of diagnostic tests for FMD exist (e.g., Alexandersen et al., 2003; Clavijo et al., 2004; Fu 

et al., 2011; Grubman and Baxt, 2004), initial detection of FMD and detection of herds 

subsequently infected during an outbreak are often made on the basis of clinical signs of disease 

(Gibbens et al., 2001; Kitching et al., 2005; Mansley et al., 2011), with subsequent confirmation 

by diagnostic test (Alexandersen et al., 2003; Kitching et al., 2005). 

Among the measures that have been used for the control of FMD outbreaks are 

quarantine and localized restriction of animal movements; depopulation of detected, infected 

herds; preemptive depopulation of herds known to have had contact with detected, infected 

herds; preemptive depopulation of herds based on proximity to detected, infected herds; 

vaccination of susceptible animals in proximity of infected herds; or nation-wide emergency 

vaccination of susceptible livestock (Geering and Lubroth, 2002; USDA-APHIS-VS, 2010).  

Each of these measures has implications for animal health and welfare; the state of local, 

regional, and national economies; and international trade.  Contingency plans must consider 

which of these measures, either alone or in combination with others, will yield the best possible 

results.  The scale on which these practices is applied is an additional consideration, particularly 

in the face of limited resources. 

1.3.2. Highly pathogenic avian influenza 

Avian influenza is a viral disease that affects many species of wild and domesticated 

birds.  Among the susceptible species are chickens, turkeys, ducks, quail, pheasants, geese, and 

many wild bird species (Alexander, 2007; Artois et al., 2009; Humberd et al., 2006; Makarova et 

al., 2003). 
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Influenza viruses are negative-sense single-stranded viruses in the family 

Orthomyxoviridae.  Three genera of Influenzavirus are recognized, and are referred to as type A, 

B, or C.  Influenza viruses of type A are known to infect birds.  Subtypes of type A viruses are 

distinguished from one another based on the characteristics of two antigenic glycoproteins found 

in the outer coat of the virus particle, hemagglutinin and neuraminidase.  Subtypes are named 

based on the forms of hemagglutinin and neuraminidase present, for example, “H5N1” or 

“H7N7”.  Sixteen forms of the hemagglutinin glycoprotein and nine forms of neuraminidase 

have been characterized in influenza A viruses known to infect birds.  All forms of 

hemagglutinin and neuraminidase glycoproteins and nearly all combinations have been found in 

birds (Alexander and Brown, 2009; Alexander, 2007).  Recently, a seventeenth antigen type of 

hemagglutinin, found in fruit bats, was characterized (Tong et al., 2012). 

Strains of avian influenza are further classified based on their pathogenicity.  So-called 

“highly pathogenic” strains are those which have been shown to cause at least 75% mortality in 

four-to-eight-week-old susceptible chickens (Alexander and Brown, 2009), but the severity of 

clinical disease and the level of mortality associated with each strain varies considerably by host 

species (Alexander, 2007; Perkins and Swayne, 2003). Chickens and turkeys, for example, are 

highly susceptible to highly pathogenic H5 strains and show high levels of mortality, while 

ducks infected with the same H5 strains show little clinical disease and low levels of mortality 

(Alexander and Brown, 2009; Alexander et al., 1986; Jeong et al., 2009).  Considerable 

variability has been shown in infected wild species as well (Artois et al., 2009). Among the other 

clinical signs of disease in birds are the following: neurological signs, such as paresis, paralysis, 

tremors; diarrhea; pulmonary edema and congestion; and lesions of various internal organs (Ellis 

et al., 2004; Perkins and Swayne, 2001). 
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Mutation of low-pathogenic strains of influenza in birds can give rise to highly 

pathogenic strains.  All known highly pathogenic strains are either H5 or H7 subtypes.  Because 

these subtypes are known to give rise to highly pathogenic strains, all H5 and H7 infections, 

whether low-pathogenic or highly pathogenic, are notifiable diseases according to the World 

Organization for Animal Health (OIE) and the USDA (Alexander and Brown, 2009; OIE, 2011; 

USDA-APHIS, 2011). 

Primary infection of domestic poultry with avian influenza is often due to contact with 

infected wild birds (Alexander, 2007; Artois et al., 2009; Easterday et al., 1997; Stallknecht and 

Brown, 2008; Swayne, 2008a, 2008b), but the vast majority of subsequent spread of disease 

within domestic poultry populations is due to the spread of infective feces by various fomites.  

Large quantities of virus are excreted in feces, which can result in contamination of food or 

water, and infection by either fecal-oral or fecal-cloacal routes.  The H5N1 strain of avian 

influenza is an exception, in that it is also transmitted via respiratory mechanisms (Alexander, 

2007). 

Between flocks of domestic poultry, indirect contact (movement of personnel and 

equipment) is thought to be the major source of transmission (Alexander, 2007; Capua and 

Marangon, 2006; Capua et al., 2003).  Disease spread by the transport of live or dead birds has 

also been implicated in past outbreaks (Halvorson, 2009).  Some investigators have posited that 

localized spread of disease by airborne mechanisms or flying insects can take place (Alexander, 

2007), but long-distance airborne transmission is not believed to occur (Capua and Marangon, 

2006). 

The likelihood of spread of avian influenza in poultry populations is dependent on the 

population density of poultry and on the levels of biosecurity practiced in poultry flocks.  Early 
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detection and rapid diagnosis have been recognized as key factors in disease control (Alexander 

and Brown, 2009; Capua and Marangon, 2006).  Depopulation of infected domestic flocks, either 

alone or coupled with preemptive depopulation of neighboring flocks, has been used for control 

of avian influenza outbreaks (Alexander and Brown, 2009; Bavinck et al., 2009; Halvorson, 

2009; Sims et al., 2003; Stegeman et al., 2004). 

Initial detection of highly pathogenic avian influenza in commercial flocks is often based 

on observation of unusually high levels of within-flock mortality.  Baseline levels of mortality in 

commercial flocks are often observed and considered normal during poultry production (e.g., 

Elbers et al., 2004; Vieira et al., 2009; Xin et al., 1994), but mortality beyond baseline levels has 

been used to establish thresholds of mortality above which reporting of potential disease is either 

recommended or, in some cases, mandated (Elbers et al., 2004; Vieira et al., 2009).  Thresholds 

of 0.2% to 5% daily mortality, observed over 1 or 2 consecutive 24-hour periods, have been 

employed in practice  (Elbers et al., 2004, 2007). 

Historically, the use of vaccination for the control of avian influenza has been 

discouraged, in part because of the potential difficulty in detecting or correctly diagnosing 

disease in infected vaccinated flocks (Alexander, 2007; Savill et al., 2006b), and due to concern 

that vaccinated birds might act as subclinical carriers of infection (Capua and Marangon, 2006).  

Vaccination has been used, however, in outbreaks of avian influenza in Mexico and Pakistan 

(Alexander and Brown, 2009; Naeem and Siddique, 2006).  The use of emergency vaccination 

(i.e., vaccination carried out in the face of an outbreak to control the disease) is thought to be a 

potentially useful control measure, if carried out in concert with other biosecurity and disease 

surveillance measures (Capua and Marangon, 2006). 



 16

Outbreaks of avian influenza in the US, the Netherlands, and the recent outbreak of an 

Asian strain of H5N1 illustrate some of the difficulties associated with the control of the disease. 

A low-pathogenic strain of H5N2 avian influenza was first noted in Lancaster County, 

Pennsylvania in the spring of 1983.  Signs of disease included respiratory difficulties in infected 

birds and decreased egg production, but only low levels of mortality.  By the fall of that year, a 

highly pathogenic strain had emerged, with mortality approaching 90% in infected flocks.  

Control of disease was complicated by the simultaneous circulation of low-pathogenic and 

highly pathogenic strains until the decision was made to depopulate all flocks that showed signs 

of infection with H5N2, whether low- or high-pathogenic, in February 1984.  The outbreak 

resulted in the detection of 65 infected flocks in Pennsylvania, Virginia, Maryland, and New 

Jersey, and the deaths of 17 million birds, either due to disease or to depopulation (Alexander 

and Brown, 2009; Halvorson, 2009). 

An outbreak of H7N7 HPAI occurred in the Netherlands in 2003.  Initial disease control 

measures included depopulation of detected infected flocks and preemptive depopulation of all 

flocks within 1 km of known infected premises.  As the epidemic continued, however, only 

complete depopulation of areas with dense poultry populations was found to be effective.  The 

epidemic resulted in the infection of 255 flocks, the depopulation of 1255 commercial and 

17,421 noncommercial flocks, and the culling of 30 million birds (Bavinck et al., 2009; 

Stegeman et al., 2004).  The experience caused Stegeman et al. (2004) to conclude that 

“outbreaks of HPAI viruses are difficult – if not impossible – to control with usual measures in 

poultry-dense areas, and effective control could be achieved only by depopulation of the whole 

affected area.” 
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In 1996, a new strain of H5N1 was isolated in Guandong province, China.  The strain is 

thought to have been circulating in domestic ducks in China from that time, leading to several 

outbreaks in the late 1990’s and early 2000’s.  An outbreak in Hong Kong in 2002 led to the 

slaughter of nearly 1 million birds (Sims et al., 2003).  Since that time, the strain has spread 

westward throughout Asia into Europe and Africa (Alexander and Brown, 2009; Artois et al., 

2009).  Infection of humans by this strain can also occur (Beigel et al., 2005).  Since 2003, close 

to 600 cases of human infection with H5N1 have been reported.  Of those, 60% resulted in death 

(Centers for Disease Control and Prevention, 2012). 

1.4. Recent disease modeling efforts 

Epidemiologic modeling for the purposes of evaluating control and mitigation strategies for 

diseases like FMD and HPAI in the US has been carried out for many years: Miller (1976) 

described a relatively simple model for this purpose over 30 years ago.  More recently, improved 

computational capabilities have led to a substantial increase in the application of modeling 

techniques (Bates et al., 2003a, 2003b, 2003c; Dickey et al., 2008; Harvey et al., 2007; Patyk et 

al., in preparation; Sanderson et al., 2009; Schoenbaum and Disney, 2003; Sharkey et al., 2008; 

Truscott et al., 2007; USDA-APHIS-VS-CEAH, 2009). 

1.4.1. Modeling foot-and-mouth disease in the US 

Schoenbaum and Disney (2003) presented a flexible epidemiologic simulation model for 

the evaluation of alternative FMD mitigation strategies in the US.  Hypothetical data and 

information from expert opinion were used to construct epidemiologic models.  Epidemiologic 

modeling results were coupled with economic analyses to determine optimal control strategies.  

Among the economic implications considered were total direct government costs associated with 

outbreaks, domestic loss impacts, and impacts of international trade losses.  Schoenbaum and 
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Disney concluded that preemptive depopulation of herds near infected premises was not a 

suitable control strategy under the conditions considered.  Preemptive depopulation of herds 

identified as having had contact with infected premises was shown to be generally cost-effective 

and led to shorter disease outbreaks than depopulation of only known infected herds.  The 

authors also concluded that the use of vaccination for disease control would be more expensive 

than depopulation.  Finally, the authors concluded that “the choice of best mitigation strategy 

depended on herd demographics and the rate of contact among herds”. 

While Schoenbaum and Disney (2003) considered hypothetical scenarios thought to be 

representative of US livestock populations in different regions, Bates et al.  (2001; 2003; 2003a, 

2003b) took a different approach and collected detailed information on contact rates and 

distances among herds in a relatively small study region.  In contrast to the results of 

Schoenbaum and Disney, Bates et al. concluded that vaccination could be a cost-effective 

measure for disease control: vaccination of all susceptible livestock within 50 km of detected 

infected premises reduced the average number of herds infected during an outbreak by 41%.  

Bates et al. (2003) noted that vaccination “may be a cost-effective strategy... if vaccinated 

animals are not subsequently slaughtered and there is no future adverse economic impact, such 

as trade restrictions.”  Schoenbaum and Disney (2003) made the explicit assumption that 

vaccinated animals would have to be destroyed in order to resume normal international trade and 

considered this factor in their economic analysis. 

In recent years there has been considerable enhancement, evaluation, and application of the 

model originally developed by Schoenbaum and Disney (2003).  In 2002, the Emergency 

Management Working Group of the North American Animal Health Committee reviewed 

several existing models, examined the assumptions made in these models, and identified several 
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areas for improvement (USDA-APHIS-VS-CEAH, 2002).  These suggestions led to the 

development of the North American Animal Disease Spread Model (NAADSM), described by 

Harvey et al. (2007), based in part on the original efforts of Schoenbaum and Disney (2003).  

NAADSM is well characterized (Harvey et al., 2007; Hill and Reeves, 2006), thoroughly tested, 

and has been subjected to repeated scrutiny by many independent evaluators.  Over 80 experts 

from 11 countries have participated in detailed reviews of NAADSM since 2002 (Dubé et al., 

2008; USDA-APHIS-VS-CEAH, 2002, 2004), and a complete description of the mechanisms 

included in NAADSM has been published for review by the scientific and regulatory 

communities (Harvey et al., 2007). 

Dickey et al. (2008)  reported on the importance of considering heterogeneous contact rates 

among premises of different types in epidemiologic simulation modeling: model results differed 

considerably when all farm premises were treated as an “average” type than when differences in 

management practices and contact rates among farms of different types were considered.  This 

characteristic was anticipated by Bates et al. (2003a)  and Harvey et al. (2007): both of these 

models explicitly allow the simulation of heterogeneous contact rates among farms of different 

types.  Dickey et al. reiterated the importance of the collection and application of data specific to 

regions of the US where epidemiologic modeling would be used. 

Pendell et al. (2007) constructed an economic framework that integrated NAADSM to 

analyze the regional impacts of FMD under three alternate disease introduction scenarios in 

southwest Kansas.  The authors concluded that the potential economic impact of an outbreak was 

heavily dependent upon the type and location of the initially infected premises.  Depending on 

the type and location of the initially infected premises, the authors estimate the losses in Kansas 
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might range from $35 million to $1 billion.  Pendell et al. had access to some data concerning the 

locations of livestock premises, but relied on expert opinion for contact rates and distances. 

Similarly, Paarlberg et al. (2008) used an integrated system consisting of an epidemiologic 

model (NAADSM) and an economic model of the US agricultural sector to examine the potential 

impact on the US economy of an outbreak of a foreign animal disease like FMD.  They 

considered a scenario in which FMD is introduced by contaminated feed into four small swine 

operations.  The authors estimated total losses to livestock-related enterprises of between $2.8 

billion and $4.1 billion, which extended over a period as long as 4 years.  Paarlberg et al. relied 

heavily on expert opinion for the development of their epidemiologic models. 

Ward et al. (2009) conducted simulation modeling of an FMD incursion in an 8-county 

area in Texas characterized by large, intensive feedlot operations.  Information about direct rates 

of contact among operations was collected with a survey (Loneragan et al., 2006), the results of 

which have not been published in an accessible form.  Expert opinion was used to estimate the 

frequency of indirect contact.  Ward et al. reported that early detection of disease had the greatest 

impact on reducing severity of simulated outbreaks, while vaccination had little or no effect. 

More recently, Sanderson et al. (2009)  reported on the effect of movement controls, 

increased biosecurity, and vaccination on the potential epidemiologic impact of an FMD 

incursion in the state of Kansas.  The authors concluded that indirect contact was the major 

source of disease transmission, and that local vaccination around infected premises did not 

contribute to the effective control of disease spread.  This conclusion is driven largely by expert-

opinion-based assumptions regarding the effects, frequency, and distances of indirect contacts 

among farm premises, a limitation readily acknowledged by the authors.  This study and the 

discrepancies in results between studies relying on expert opinion again highlight the need for 
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more accurate information about the number and range of premises-to-premises contacts: in 

order for epidemiologic modeling techniques to provide valid, credible results, and to make 

meaningful contributions to animal health emergency response planners and policy makers, more 

information about the contact networks that exist among farm premises is needed. 

Most models of FMD have been concerned with spread of disease between premises.  

Relatively little attention has been devoted to the within-herd spread of disease.  An exception is 

a study conducted by Carpenter et al. (2004), which made use of a simple stochastic model of 

spread of FMD within a hypothetical dairy herd.  Of particular interest to the study was the 

extent of disease spread within the herd by the time clinical signs could be detected.  Using their 

model, the authors showed that, by the time 1% of a dairy herd of 1000 animals showed clinical 

signs of FMD, 65% to 97% of the herd would already be infected. 

1.4.2. Modeling highly pathogenic avian influenza 

The scale of the units of interest in modeling investigations of HPAI varies widely.  

Unlike models of FMD, which have rarely considered the spread of disease within herds, within-

flock spread of HPAI has been more often of interest in modeling studies (Bos et al., 2007, 2009, 

2010; Savill et al., 2006b, 2008; Tiensin et al., 2007).  Between-flock models at the regional or 

national level have been constructed to explore disease dynamics of past outbreaks (Bavinck et 

al., 2009; Rorres et al., 2010, 2011; Smith and Dunipace, 2011)  and to evaluate disease 

surveillance and control strategies (Alba et al., 2010; Dorea et al., 2010; Patyk et al., in 

preparation; Sharkey et al., 2008; Truscott et al., 2007).  Although beyond the scope of the 

current report, even a global-scale model of the spread of HPAI has been proposed (Rao et al., 

2009). 



 22

1.4.2.1. Models of within-flock spread of HPAI 

Several mathematical models of within-flock spread of HPAI have been constructed, with 

a particular emphasis on disease detection.  Dorea et al. (2010), for example, constructed a 

relatively simple, deterministic model of the within-flock spread of disease to determine the 

likely time of detection of disease within infected flocks.  On the basis of their model, the 

authors reported that detection of disease within infected flocks based on observed levels of 

mortality would most likely occur five days after infection.   This model was based on 

parameters that described the durations of the latent and infectious phases of HPAI in infected 

chickens and the rate of within-flock transmission of disease.  By contrast, Bos et al. (2007), 

using a slightly different stochastic mathematical model, concluded that 11 to 15 days could 

elapse between infection and detection of disease based on observed levels of mortality.  Bos et 

al. used data from the 2003 outbreak of H7N7 HPAI in the Netherlands to inform their model.  

Parameters used to represent disease state durations and transmission were the same in both 

reports.  The difference in outcomes for time to detection is likely due to the mortality threshold 

employed in each study.  Dorea et al. assumed that disease detection would occur when a 

threshold of 0.2% mortality on a given day was observed.  This value was based on responses to 

a questionnaire, in which poultry producers indicated the degree of mortality that they would 

have to observe before taking further action (Vieira et al., 2009).  Bos et al. used the higher 

threshold for detection of 0.5% mortality on 2 consecutive days.  This higher threshold was 

based on legislation in place in the Netherlands for mandatory reporting of disease. 

In a similar study, Savill et al. (2008) suggested that, in flocks in which birds are housed 

in cages, the use of a mortality threshold based on within-cage mortality for disease detection 

would be more sensitive than use of overall within-flock mortality.  All three reports relied on 

mathematical and statistical models of the within-flock transmission rate of HPAI from an 
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experimental disease transmission study (van der Goot et al., 2005).  Similar estimates have also 

been determined from field outbreak data (Bos et al., 2009, 2010; Tiensin et al., 2007). 

Savill et al. had earlier used the same model to demonstrate the implications of the use of 

vaccination on detection of disease in HPAI-infected flocks (Savill et al., 2006b).  In the study, 

they suggested that at least 90% of vaccinated birds had to be protected in order to reduce the 

probability of an outbreak by 50%.  The authors conclude that, for a vaccination program to be 

successful, the vaccine must not only be highly effective but must also be coupled to sensitive 

disease detection mechanisms.  The authors also suggested that the use of unvaccinated sentinel 

birds in vaccinated flocks could improve the sensitivity of disease detection. 

1.4.2.2. Models of between-flock spread of HPAI 

Several investigators have used models of HPAI based on past outbreaks to investigate 

disease dynamics in a population of flocks.  Two recent studies have used nonspatial, 

mathematical models to examine the role of backyard flocks in HPAI outbreaks.  Bavinck et al. 

(2009), relying on data collected during the H7N7 outbreak in the Netherlands in 2003, 

suggested that backyard flocks were less susceptible to infection than commercial flocks and had 

little influence on the course of the epidemic, and that it may not be necessary in the future to 

depopulate backyard flocks. 

In a study based on a 2004 outbreak of H7N3 in British Columbia, Smith and Dunipace 

(2011) similarly acknowledge that the influence of backyard flocks during that outbreak seemed 

to be “modest at best” but suggested that their influence could not be disregarded.  Contrary to 

Bavinck et al., Smith and Dunipace suggested that the need to either depopulate or vaccinate 

backyard flocks should be considered when estimating the overall effort required for disease 

control. 
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Spatially explicit mathematical models of the spread of HPAI based on past outbreaks 

have also been constructed.  Rorres et al. (2010, 2011) described methods for estimating spatial 

kernels from limited data, and applied these methods to estimate spatial kernels based on the 

1983-1984 epidemic of H5N2 HPAI in the eastern United States.  According to the authors, their 

purpose “was to deal with the problem of how to determine model parameters based on the 

varieties of data that are actually available during and after an epidemic” (Rorres et al., 2011).  

They tout the “simplicity” of their model, in that it represents spread of disease with only two 

parameters which could be relatively quickly generated from available information in the face of 

an outbreak.  Although the authors demonstrate that the parameters they developed can be used 

to recreate outbreaks that fit the historical outbreak and acknowledge that models can be “useful 

adjuncts to all the other arguments that go into selecting one control strategy rather than another” 

(Rorres et al., 2011), neither of these reports attempted to provide information regarding 

potential control strategies for HPAI. 

Boender et al. (2007) demonstrated an application of spatial-kernel-based models for 

HPAI.  Using a spatial kernel derived from data collected during the 2003 H7N7 epidemic in the 

Netherlands, they constructed a model to produce a map of the Netherlands that differentiated 

between areas thought to be of high and low risk during potential future outbreaks.  According to 

the authors, high-risk areas were those in which local-area spread alone could lead to major 

outbreaks.  Such areas are likely those characterized by dense poultry populations.  The authors 

did not report on the actual density of poultry populations, nor did they compare their model-

based risk map to a map that reflected only population density. 

Mechanistic simulation models of the spread of HPAI have also been constructed.  Using 

the outcome of their deterministic model of within-flock spread of disease (see section 1.4.2.1), 
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Dorea et al. (2010) then constructed a stochastic model of between-flock spread to estimate the 

number of secondary exposures of premises to HPAI.  Using population information from two 

counties in the state of Georgia, Dorea et al. estimated that, before detection of disease on a 

primary infected premises, premises on average would spread disease to two to three additional 

farms. 

The model of Dorea et al. (2010) was not used to estimate impacts beyond the number of 

premises infected by one initially infected farm.  Three additional models have been developed 

to address issues of larger scope.  Two of these simulate the spread and control of HPAI in Great 

Britain (Sharkey et al., 2008; Truscott et al., 2007), and one simulates the spread and control of 

HPAI in the US state of South Carolina (Patyk et al., in preparation). 

With a stochastic simulation model, Truscott et al. (2007) simulated the spread of HPAI 

among 23,516 premises in Great Britain.  The authors attempted to represent direct and indirect 

contacts that would occur within networks based on shared connections, such as slaughter 

facilities or connections between premises that were part of the same poultry company.  The 

model also simulated local-area transmission of disease.  According to this study, although 

typical approaches for disease control, including the imposition of movement restrictions of 

people and poultry and the depopulation of infected premises, were sufficient to control most 

outbreaks, more strident measures were necessary in the case of larger outbreaks.  In this 

simulation, when outbreaks exceeded 20 premises, additional control measures were used.  The 

most effective interventions in case of these large-scale outbreaks were the use of preemptive 

depopulation of all poultry within 10 km of known infected premises, or the nationwide use of 

vaccination.  Although simulation results indicate that the use of depopulation would be more 
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effective, the authors suggest that logistical constraints and the expense associated with such a 

major depopulation effort make nationwide vaccination the more attractive option. 

Likewise, Sharkey et al. (2008) presented model results that indicated that most outbreaks 

of HPAI in Great Britain would be small: in 73% of cases, outbreaks were restricted to the 

initially infected premises.  This model accounted for multiple mechanisms of disease 

transmission, including transport of animals, indirect contact, and local-area spread of disease.  

In their simulations, local-area spread contributed to 54% of all disease spread, with the 

remainder produced by indirect contact among premises.  They concluded, however, that “large 

outbreaks cannot occur with local transmission alone”.  Regardless of the control strategy 

employed, 99% of all simulated outbreaks ended within 100 days.  Among the strategies used 

were the depopulation of known infected premises, reduction of movement among premises, 

imposition of surveillance zones of 3 km and 10 km, and tracing of contacts that occurred among 

premises.  Neither preemptive depopulation nor vaccination were considered in this study.  

Given the critical importance of these two control measures in this population (according to 

Truscott et al., 2007), a more direct, detailed comparison of control strategies and model 

parameters would be useful. 

Finally, the report of Patyk et al. (in preparation) is the currently the most detailed 

relatively large-scale model of the spread and control of HPAI in the United States.  The authors 

established a set of parameters to represent disease transmission by direct contact, indirect 

contact, and local-area spread, as well as a typical set of disease control measures.  In a 

population of 786 commercial premises and 5353 backyard premises, this model produced a 

number of infected flocks from 1 (indicating that disease did not spread beyond the initially 

infected premises) to 483, with a median of 17 infected flocks.  The maximum outbreak duration 
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observed was 123 days.  This study did not include a comparison of multiple control strategies, 

but the authors alluded to its potential utility for such a purpose. 

1.5. Objectives of the current study 

1.5.1. Evaluation of epidemiologic models 

“Modeling, although seemingly objective, should be seen as a subjective activity in which 

the world view of the modeler is an integral part of the process” (Haywood and Haywood, 2002).  

Every model is based on a set of decisions made by the modelers.  These decisions are dependent 

partly on the nature of the research questions that a model is used to address, but there is also a 

considerable degree of subjectivity involved in the construction and application of models.  In 

the examples presented above, we have seen subjective decisions regarding the form of model to 

use (e.g., spatial-kernel-based or simulation), the degree of realism and complexity that the 

models incorporate, the mechanisms of disease spread believed to be important and the degree of 

differentiation between such mechanisms, and the control measures evaluated with models (e.g., 

depopulation, vaccination, or both).  These choices naturally influence conclusions drawn from 

model-based investigations. 

The subjectivity inherent in the construction and use of models complicates the assessment of 

the utility of such models: just as model development involves elements of subjectivity, so too 

does the evaluation of models and model-based conclusions.  For veterinary epidemiologic 

models to be credible, and therefore credibly applied, they must be transparent and critically 

evaluated.  In chapter 2, we discuss various approaches that have been employed in the 

evaluation of veterinary epidemiologic models, and present a set of guidelines intended to aid 

those who will be charged with performing such evaluations. 
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1.5.2. Building a more realistic model of within-unit effects of disease and vaccination 

“While it is advisable that models be only as complex as needed, it is often necessary to 

modify simplifying assumptions and thus increase model complexity to better reflect reality” 

(Carpenter, 2011).  A model might be considered “more complex” than other “simpler” (but less 

realistic) models because it requires more parameters, but there are other critical considerations.  

Models that require few parameters are not necessarily “simple” if those parameters represent 

theoretical abstractions rather than real-world events.  Furthermore, in many instances, less effort 

is required to collect relevant information to generate several model parameters that represent 

observable, measureable qualities than it is to generate a single parameter that represents a less 

tangible phenomenon.  For example, the models of Schoenbaum and Disney (2003) and Harvey 

et al. (2007) make the simplifying assumption that the durations of the latent, subclinically 

infectious, and clinically infectious disease states can be treated as unit-level characteristics.  

Data available to directly inform such a unit-level characteristic, however, are scarce or 

nonexistent.  By contrast, the model of Bates et al. (2003c) considers animal-level durations for 

disease states, and simulates within-unit spread of disease.  Although this is more “complex” in 

the sense that more computation must be carried out by the model, information for the 

parameters themselves is more readily obtained (e.g., Burrows, 1968; Mardones et al., 2010). 

In the examples presented above, although within-unit spread has been modeled in the 

context of disease detection, few veterinary epidemiologic models of the between-unit spread 

and control of disease explicitly consider within-unit spread.  In chapter 3, we show that a 

consideration of within-unit spread is important for models that will be used to evaluate 

approaches for disease detection and surveillance.  We describe a stochastic, individual-based 

model of within-unit spread of disease, which also includes representations of disease mortality 

and the effects of vaccination.  We also illustrate the application of this model for the within-unit 
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spread and detection of foot-and-mouth disease (FMD) and highly pathogenic avian influenza 

(HPAI).  Although this model requires more parameters than “simpler” models, the data required 

to inform those parameters are more easily obtained, more transparent, and more credible. 

We also describe our application during construction of this model of the guidelines 

presented in chapter 2, to ensure that it can be fully evaluated by its users, other modelers, field 

epidemiologists and veterinary practitioners, and decision-makers. 

1.5.3. A comparison of model outcomes based on different sources of population data 

“Any model ultimately depends for its validity on the accuracy and completeness of the data 

underpinning it” (Taylor, 2003).  Regardless of the form that epidemiologic models take, they all 

share a common requirement for empirical data.  Although a simulation model based on 

incomplete or theoretical input information may yield useful hypotheses for further research, for 

model results to be useful to response planners and decision makers, the model must be based on 

valid, if not completely accurate, input data. 

Unfortunately, for efforts to model diseases of livestock and poultry in the United States, 

detailed, accurate data concerning the farm populations of interest (including the number, sizes, 

and locations of farms) are not available.  In most instances, a surrogate for actual farm 

population datasets must be used. 

In chapter 4, we evaluate several methods that have been developed to generate such 

surrogate datasets, and show how they affect the outcomes of a model of the spread and control 

of HPAI in commercial poultry flocks in South Carolina.  The aim is to show whether, and if so, 

how, model results can be credibly applied when they are based on population demographics that 

are known not to be accurate. 
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The diagram above illustrates the conceptual foundation of the Kermack and McKendrick model of 
disease spread.  In this model, the population of interest is divided into three classes.  Initially, most 
individuals in the population are susceptible to disease.  The size of this class is designated S.  As 
susceptible individuals become infected, they join the infectious class (I).  The rate of infection of 
susceptible individuals is influenced by the number of infectious individuals in the population together with 
an additional transmission parameter β.  As infected individuals recover (at rate γ), they join the 
recovered class (R).  Once recovered, this model assumes that individuals are immune to reinfection by 
the disease.  This simple model further assumes that the population is closed, i.e., that no new individuals 
enter the population through birth or immigration, and no individuals leave through to emigration or death. 

 

The dynamics of this system can be represented by the following set of differential equations, which 
describe the rate of change over time of each of the three classes in the population: 

 

   The size of the susceptible class decreases as susceptible individuals come into 
                                       contact with infectious individuals, influenced by the transmission parameter.  

 

   The size of the infectious class increases with newly infected susceptible 
                                       individuals, and decreases as infectious individuals recover. 

 

   The size of the recovered class increases as previously infectious individuals 
                                       recover. 

Figure 1-1.  The differential equations-based model of Kermack and McKendrick (1927). 
 

  

β γ 
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dt
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2. Approaches for evaluating veterinary epidemiologic models: verification, 

validation, and their limitations1 

Summary 

The evaluation of models of the spread and control of animal diseases is crucial if these 

models are to be used to inform decisions about the control or management of such diseases. 

Two key steps in the evaluation of epidemiologic models are model verification and model 

validation. Verification is the demonstration that a computer-driven model is operating correctly, 

and conforms to its intended design. Validation refers to the process of determining how well a 

model corresponds to the system that it is intended to represent. For a veterinary epidemiologic 

model, validation would address such issues as how well the model represents the dynamics of 

the disease in question in the population to which this model is applied, and how well the model 

represents the application of different measures for disease control. 

Just as the development of epidemiologic models is a subjective, continuous process, 

subject to change and refinement, so too is the evaluation of models. The purpose of model 

evaluation is not to demonstrate that a model is a “true” or “accurate” representation of a system, 

but to subject it to sufficient scrutiny so that it may be used with an appropriate degree of 

confidence to aid decision-making. 

To facilitate model verification and validation, epidemiologic modelers should clearly state 

the purpose, assumptions and limitations of a model; provide a detailed description of the 

conceptual model; document those steps already taken to test the model; and thoroughly describe 

the data sources and the process used to produce model input parameters from those data. 

                                                 
1 A version of this chapter was published as Reeves, A., Salman, M.D., and Hill, A.E.  2011.  Approaches 
for evaluating veterinary epidemiological models: verification, validation, and their limitations.  Rev. Sci 
Tech. Off. Int. Epiz. 30(2), 499-512. 
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2.1. Introduction 

Computer-driven epidemiologic modeling is an increasingly common technique for 

assessing the potential consequences and possible spread of animal diseases. Modeling of animal 

diseases has been used to estimate the possible magnitude of an outbreak and the resources 

needed for a response, and to inform policy decisions on measures for disease control (Bates et 

al., 2003a, 2003c; Ferguson et al., 2001a, 2001b; Garner et al., 2010; Keeling et al., 2001, 2003; 

Portacci et al., 2009; Schoenbaum and Disney, 2003). Epidemiologic models may take several 

forms. Some are based on analytical formulas that describe the system of interest in a rigorously 

mathematical way (Ferguson et al., 2001a, 2001b; Keeling et al., 2001, 2003; Thornley and 

France, 2009). Others employ computer-driven simulation to mimic the actual mechanistic 

processes at work within a system (Bates et al., 2003b; Garner and Beckett, 2005; Harvey et al., 

2007). 

Regardless of their form, all models – especially models which are intended for use by 

response planners and policy-makers – require careful evaluation. For models to be effectively 

used in these instances, a sufficiently high level of credibility of the model and its results must be 

achieved so that decision-makers and other stakeholders can have a justifiable degree of 

confidence in their application. By the same token, careful evaluation of models can identify and 

clarify their limitations and weaknesses, temper tendencies toward over-reliance on apparently 

“objective” model-produced outcomes, and minimize their misapplication. 

Methods for model evaluation are quite diverse; as several authors have noted, there is no 

single standard or approach that can be applied to all models (Kleijnen, 1999; McCarl, 1984). At 

a very basic level, as the mathematical or computational complexity of epidemiologic models 

increases, it is essential to demonstrate that the mathematical framework or software used for a 
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model is free from major errors which would threaten the accuracy of the calculations that the 

model produces. Some approaches for evaluating models are, by necessity, qualitative. Any 

assessment of the conceptual quality of a model, for example, is fundamentally qualitative in 

nature. In some instances, it may be possible to use quantitative or statistical approaches to 

demonstrate correspondence between a model and a natural system, although the use of such 

quantitative methodologies does not necessarily ensure that a model is conceptually sound. 

The aim of this paper is to describe approaches for evaluating epidemiologic models 

intended to inform management or policy decisions on animal diseases, with an emphasis on two 

approaches that have been called “verification” and “validation”. Our specific objectives are as 

follows: 

 to briefly define and describe the processes of model verification and validation 

 to discuss several approaches used to address the challenging issue of validating 

epidemiologic models intended to inform emergency response plans 

 to illustrate practical approaches to model verification and validation, based our 

experiences as members of the research team behind the North American Animal Disease 

Spread Model (NAADSM) (Harvey et al., 2007) 

 and, finally, to present a set of suggestions for steps that could be taken to improve the 

credibility and acceptance of epidemiologic models for the management of animal 

diseases. 

2.2. Model context, development, and evaluation 

Figure 2-1 illustrates a conceptual series of steps in the process of model development and 

application. Several of these steps deal explicitly with the evaluation of models, but almost every 

stage in the figure implies some form of appraisal of the model under development. Decisions 
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made at the outset of model development about the specific purpose of a model and the questions 

which it is being designed to answer will affect the ways in which the model’s utility and 

credibility are assessed. 

First and foremost, models must be evaluated in the context of the problems that they are 

intended to answer (Law and McComas, 2001; Overton, 1977; Sargent, 2009). The criteria for 

judging a model that is intended to inform broad questions in a qualitative way will be quite 

different from those used to evaluate a model that claims to offer specific predictive capabilities. 

Secondly, for results of modeling investigations to be credible, the models must be built 

upon reliable data (Rykiel, 1996; Taylor, 2003). Models based on incomplete or theoretical input 

data may yield useful hypotheses for further research and evaluation, but the limitations of such 

models should be clearly and expressly stated. The more complete the input data for a model are, 

the more likely it is that the model’s output will be credible. 

Thirdly, just as the conceptual development of models is, in many respects, a subjective 

undertaking, so too is the evaluation of models. Individual modelers must weigh the relative 

importance of different aspects of epidemiologic systems, and may come to different conclusions 

about how to represent various processes in their models, or even about which processes to 

represent. Any assessment of the credibility of a model must consider these subjective design 

decisions. 

Fourthly, Figure 2-1 makes the distinction between a conceptual model or model 

framework, and a specific model that applies a particular conceptual framework, together with a 

particular data set or set of parameter values, to represent a specific situation. The North 

American Animal Disease Spread Model, for example, is a framework for the development of 

epidemiologic simulation models, which has been used to build specific models of a variety of 
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diseases in different settings and populations, such as foot and mouth disease (FMD) (Pendell et 

al., 2007; USDA-APHIS-VS-CEAH, 2009), Aujezsky’s disease (pseudorabies) (Portacci et al., 

2009), and highly pathogenic avian influenza (HPAI) (Patyk et al., in preparation), among others. 

Both the conceptual framework and the particular instances in which the framework are used 

need to be evaluated. The utility of the former does not necessarily rely upon the latter, but the 

quality of specific models is highly dependent on both the conceptual framework and the data 

used for their construction. 

Finally, Figure 2-1 illustrates that the process of model development and evaluation is 

cyclical and iterative. Evaluation is not a single, discrete step, and “is not something to be 

attempted after the simulation model has already been developed, and only if there is time and 

money remaining” (Law and McComas, 2001). Model evaluation should instead be considered 

ongoing: model assumptions should be reassessed continually as new sources of information 

become available. 

The assessment of the computational correctness of a model has been called “verification”. 

Verification deals with questions such as: “Does the computer program perform all calculations 

correctly?” and: “Does the program match exactly what the designers intended?” The assessment 

of how well a model conforms to or exemplifies the system that it is intended to represent is 

sometimes referred to as “validation” (Kleijnen, 1999; Sargent, 2009; Schlesinger, 1979). 

Validation is intended to address the question, “Is a model an adequate representation of the real 

system?” (For the remainder of this paper, we will follow these definitions for “verification” and 

“validation”, but note that these definitions are not universally applied. For example, Oreskes et 

al. (1994) use the terms “verification” and “validation” to denote somewhat different concepts.) 
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Together, verification and validation efforts can help investigators to ascertain the overall quality 

and credibility of a model. 

2.3. Model verification 

Model verification refers to the process of determining whether the model, as implemented 

in software, conforms to the desired conceptual model (Sargent, 2009). In other words, 

verification provides an assessment of whether the software implementation of the model is 

working correctly. Among the criteria by which a model’s verification status might be assessed 

include its correctness (the “extent to which a model meets its specifications”) and its reliability 

(the “extent to which a model can be expected to perform its intended function with required 

precision”) (McCall et al., 1977; Scholten and Udink ten Cate, 1999). Any model used for 

scientific research or for decision support should be expected to meet a high standard for such 

characteristics. 

Model verification, although straightforward in concept, can be time-consuming, 

particularly as models become more complex. Sargent (2009) and Scheller et al. (2010) present 

useful discussions of some of the software engineering practices that can facilitate the 

construction of verified models, particularly for larger projects, and several authors have 

provided detailed descriptions of approaches to verification (Knepell and Arangno, 1993; 

Whitner and Balci, 1989). In this paper, we focus on two central aspects of model verification 

that have a direct impact upon the credibility of epidemiologic models regardless of their form, 

size or scope: producing documentation that describes the conceptual model in detail, and 

thorough testing to ensure that the model is performing as intended. 
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2.3.1. Describing the conceptual model 

As shown in Figure 2-1, designing the conceptual model is an early stage in model 

development. There is a great deal of value in explicitly documenting this conceptual model. 

Such documentation can be used to assess the conceptual validity of the model (see below), but, 

at a more basic level, it can provide a standard by which the correctness of a model can be 

judged (Knepell and Arangno, 1993; Scheller et al., 2010). The purpose of a written model 

specification is to describe, in clear, accessible language, the purpose, requirements and 

conceptual details of a model. The intended audience of such a document includes the modelers 

themselves, as well as any technical personnel who will be involved in implementing the model, 

among others (see section 2.4.2, below). The model specification can also provide a basis for 

model testing (NAADSM Development Team, 2010a; Scheller et al., 2010). 

In the case of NAADSM, the model specification document (NAADSM Development 

Team, 2010a) describes every component of the modeling framework in detail: it is the 

authoritative source that describes how the conceptual model should operate, and is the standard 

by which the software implementation of the conceptual model is judged. Although the 

specification may be updated as needed, to correct ambiguities or to incorporate new features, 

the complete history of the specification is tracked, and every version is available for reference 

and evaluation by independent researchers (NAADSM Development Team, 2008, 2010a). 

2.3.2. Model testing 

Fairley (1978) and Whitner and Balci (1989) distinguish between two forms of model 

testing, which they refer to as “static” and “dynamic”. For simple models, static testing may be 

sufficient. This approach involves a structured examination of the formulas, algorithms and code 

used to implement a model, preferably by several reviewers who were not directly involved in 
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writing the implementation themselves. Garner and Beckett (2005) describe the use of this 

approach in the development of AusSpread, a simulation platform designed initially to model the 

spread and mitigation of FMD. 

For more complex models, dynamic testing is often useful. During dynamic testing, a 

computer program is run repeatedly under different conditions to ensure that the output it 

produces is correct, according to the conceptual model, and consistent with expectations. Often, 

such tests are established to be run repeatedly and automatically, to ensure that any changes to 

the software implementation did not inadvertently introduce errors; this process is referred to as 

regression testing. Scheller et al. (2010) describe several levels of testing, from simple unit tests 

that evaluate specific, individual functions; to broader system testing that assesses the interaction 

of all of the components of a model. We will illustrate these approaches in the following 

sections, with examples from the development of NAADSM. 

3.2.1. Automated software testing of the NAADSM framework 

To ensure that the NAADSM application correctly implements the conceptual model 

specification, NAADSM relies upon an automated regression-testing approach. Simple models 

have been constructed to test every aspect of the NAADSM application. There are currently well 

over 1,000 individual models in this suite of tests, and new tests are continually being developed. 

When the NAADSM application is compiled from program source code, every test is 

automatically run and results are tracked using a freely available framework for software testing 

(Savoye, 2004). Prior to the public release of any new version of NAADSM, every test in the 

suite must be passed. Every simple model developed for testing is published, along with the 

complete source code for the NAADSM application. 
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3.2.2. Manual testing of NAADSM 

In addition to the automated use of simple tests, manual testing using more complex 

situations has been carried out for the NAADSM framework. Every aspect of the model 

framework is examined by analysts working independently of the programmers to confirm that 

the model conforms to the published specification. Any errors identified during manual testing 

are noted and must be corrected before public release. 

2.3.3. The limitations of model verification 

Model verification procedures can be quite objective and thorough. Many techniques 

developed in the field of software engineering can be rigorously applied to the programming of 

models (Baxter et al., 2006; Scheller et al., 2010). Model verification offers no answer, however, 

to the crucial questions: “Is the model useful?” and “Is the model adequate for the purposes for 

which it was designed?” Questions like these can be addressed by a variety of approaches that 

fall under the general heading of “model validation”. 

2.4. Model validation 

Validation refers to the process of determining whether a model is an acceptable 

representation of the system that it is intended to represent, given the purpose of the model or 

study (Law and McComas, 2001; Sargent, 2009). A more elaborate definition is provided by 

Schlesinger (Schlesinger, 1979): model validation is the “substantiation that a ... model within its 

domain of applicability possesses a satisfactory range of accuracy consistent with the intended 

application of the model”. It is important to note that “acceptable representation” in the 

definition above does not mean an “accurate” or a “true” representation: Oreskes et al. (1994) 

convincingly argued that it is impossible to establish whether any particular model is an accurate 
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representation of a natural system, and that the use of the term “validation” in this sense is highly 

misleading. 

2.4.1. The problem of model validation 

In contrast to the process of model verification, establishing the validity of models is not 

clear cut, and can be quite problematic. As McCarl (1984) observed, “there is not, and never will 

be, a totally objective and accepted approach to model validation”. The standards by which a 

model’s validation is judged are partly dependent upon the purpose of the model. The validation 

of models designed strictly to address research questions (for example, to generate and test 

hypotheses concerning population or disease dynamics or to identify new areas of research) does 

not have to be as stringent as the evaluation of models that will be used to inform operational 

management decisions. When such decisions are made on the basis of the results of modeling 

studies, it is important to know that these studies are appropriate, accurate and correct. Given the 

difficulties associated with the study of very complex multifactorial problems, the subjective 

elements of modeling itself, and philosophical issues like those presented by Oreskes et al. 

(1994), the threshold for accepting a model cannot be “proof” of its accuracy or validity. Rather, 

this threshold should be that of reasonable confidence in the results produced by the model. As 

Holling (1978) stated, “provisional acceptance of any model implies not certainty, but rather a 

sufficient degree of belief to justify further action”. The task of model validation, as described 

here, is that of evaluating models in order to have a justifiable level of confidence in their results 

before they influence policy or management decisions. 

It is often constructive to think of a model in a similar way to a scientific hypothesis. An 

epidemiologic model, for example, represents the modelers’ hypotheses about the interactions 

among members of a population, the dynamics of disease in that population, the mechanisms of 
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disease spread, and the efficacy of different disease control measures. As with any hypothesis, 

models should be tested and challenged. As models are subjected to and withstand increasing 

levels of scrutiny in diverse situations, their credibility is increased. Such models can then be 

applied to problems of management and policy with greater confidence, provided that it is 

always clearly understood that no model truly represents physical reality, and that the acceptance 

of any model must be subject to continuing evaluation. 

What follows is not a set of methods that will prove that a model represents a real system, 

but rather a set of activities that might be undertaken to provide evidence which may either 

support or refute the hypothesis presented by a model. Several authors present descriptions and 

detailed taxonomies of the methods used to assess model validity (Knepell and Arangno, 1993; 

Law and Kelton, 2000; Rykiel, 1996; Sargent, 2009). Our intention, in the following sections, is 

to present and discuss the usefulness of some of these methods, together with examples of their 

application, both from our own experiences and from other published reports of animal disease 

modeling. We also refer readers to several excellent discussions of model validation, including 

those presented by Oreskes et al. (1994), Rykiel (1996), and Taylor (2003). 

2.4.2. Conceptual validity 

A particularly useful – and a foundational – criterion for the validation of an 

epidemiologic model is the answer to the question, “Does the structure of the model make logical 

and biological sense?” This has been referred to as “conceptual validity” (Rykiel, 1996; Sargent, 

2009). For a model to have conceptual validity, its theoretical underpinnings should be shown to 

be based on known and scientifically accepted properties of the system of interest, or at least on 

reasonable and justifiable assumptions about such properties. Among some of the questions that 

might be addressed in assessing the conceptual validity of a model are the following: 
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 does the model fit the purpose or purposes for which it was designed? 

 does the structure of the model sufficiently capture the relationships and interactions 

among components of the system being modeled? 

 given the purpose of the model, are key components of the system absent from the model, 

or oversimplified? Is additional detail necessary for any component? 

 based on existing knowledge and experience, are the outcomes produced by the model 

reasonable? 

Review by independent experts on the subject matter concerned – sometimes referred to as 

establishing “face validity” (Rykiel, 1996) – can be used as a means of assessment. In this case, 

it is quite helpful to have a detailed document that describes the conceptual model, as noted 

earlier. Such a document can provide a basis for discussion and evaluation of the details of the 

model’s operation. The publication of model descriptions (Bates et al., 2003b; Harvey et al., 

2007; Jalvingh et al., 1999; Stärk et al., 2000) greatly facilitates the assessment of the conceptual 

validity of models. 

Reliance on the peer-reviewed literature provides one avenue for the conceptual assessment 

of epidemiologic models. The NAADSM Development Team has also taken a more direct 

approach and sponsored a series of meetings of subject-matter experts, including 

epidemiologists, virologists, economists, policy-makers and other modelers, to review the 

NAADSM modeling framework (Dubé et al., 2008; USDA-APHIS-VS-CEAH (United States 

Department of Agriculture-Animal and Plant Health Inspection Service-Veterinary Services-

Centers for Epidemiology and Animal Health), 2002, 2004). The structure and assumptions of 

the modeling platform have been described in detail during these workshops, and discussion, 
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suggestions and advice are solicited from all participants. The results of these expert panel 

evaluations are then used to guide future research and development. 

2.4.3. The use of data in model validation 

As noted in section 2.2, it is possible to assess the conceptual framework separately from 

the data used to inform a model. Empirical data are generally used in two ways during modeling:  

 input data are used to develop parameters that will influence model outcomes  

 data that represent the outcomes or results of a system (output data) are used to provide a 

basis for comparison with model-produced outcomes.  

In a few cases, particularly for endemic disease situations, large amounts of both types of 

data may be available for models of disease spread in populations. In many instances, however, 

we have access to information pertaining to only a single outbreak of disease in a particular set 

of circumstances. Information collected during the 2001 outbreak of FMD in the United 

Kingdom (UK), which has been widely used for modeling studies (Ferguson et al., 2001a, 

2001b; Keeling et al., 2001, 2003; Savill et al., 2007), represents one such data set. In still other 

instances, models are developed to explore hypothetical situations (Bates et al., 2003a, 2003b; 

Garner and Beckett, 2005; Patyk et al., in preparation). In these cases, some information is 

generally established to inform model inputs, but there can be no data on the (non-existent) 

system outcomes. 

Whatever the form or source of data used to inform models, their correctness and validity 

should also be considered. As Rykiel (1996) points out, there is no guarantee that available data 

necessarily provide a better or more accurate depiction of a real system than a conceptual model. 

The process of ensuring so-called data validity (Rykiel, 1996; Sargent, 2009) can in itself be 

complex. 
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Several authors have emphasized the notion that, in order to demonstrate validity, models 

should be tested against data not used during their construction (Kitching et al., 2007; Spedding, 

1988). Green and Medley (2002) indicated that such a step should be a requirement before a 

model is used to inform policy decisions. This is one of several possible approaches that fall into 

the general category of “operational validation” (Sargent, 2009). 

Although this suggestion seems straightforward, its implementation for incompletely 

understood biological and epidemiologic systems is problematic. First, it implies that reliable, 

valid data exist for at least two situations, for both the development of parameters and for 

comparison to actual system outcomes. Secondly, this approach would require the existence of a 

suitable means of evaluation by which the similarity of model-produced outcomes to system 

outputs can be assessed. Thirdly, it implies that these situations are sufficiently dissimilar from 

one another that they represent unique tests of a model, but are still similar enough that exactly 

the same approach to modeling developed for one situation can be legitimately applied to the 

others. We have already mentioned the first difficulty. The remaining two problems are 

discussed below. 

A variety of quantitative, statistical approaches to show the correspondence between model-

produced outputs and outcomes generated by biological systems have been devised and applied 

in a few situations (Fay et al., 2006; Kleijnen, 1999; Loehle, 1997; Mayer and Butler, 1993; 

Power, 1993; Reynolds Jr. et al., 1981; Robinson and Froese, 2004; Waller et al., 2003). Most of 

these approaches to what has been called statistical validation rely upon the existence of a large 

amount of data (i.e. many observations) pertaining to the outcome of the natural system, which 

limits their applicability to most situations of interest to animal disease modelers. 
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Waller et al. (2003) proposed the use of Monte Carlo hypothesis tests, which, in essence, 

compare a single set of outcome data from a real system to multiple model-generated outcome 

data sets, and seek to answer the question, “Do the observed data appear consistent with the 

model?” rather than the more typical question, “Does the model appear consistent with the 

observed data?” Although this approach is not without value, it raises an additional question: 

how representative is any single outcome? When considering recent outbreaks of FMD in the 

UK, for example, is the 2001 outbreak, which resulted in the infection of over 2,000 herds 

(Anderson, 2002), more or less representative than the 2007 outbreak, which produced only eight 

infected herds (Anderson, 2008)? How “consistent” would each of these two outcomes have to 

be with model-produced data to conclude affirmatively that the data are consistent with the 

model? Efforts to compare outcomes from epidemiologic models to data generated by individual 

outbreaks should be undertaken with care: such comparisons are potentially informative, but an 

over-reliance on quantitative approaches for evaluation of models may well be misleading. 

The disparity between these two recent FMD outbreaks in the UK also illustrates the third 

potential problem raised above: the dissimilarities among outbreaks of even the same diseases in 

generally the same types of populations make it difficult to test a model against data not used 

during its construction. As described in section 2.2, the use of data is integral to model 

construction. Although the conceptual framework of a model and the data used to inform this 

model are distinct and can (and should) be evaluated individually, output generated by a model is 

inseparable from the combination of these two elements. The correspondence of model output to 

a natural system cannot be evaluated without considering the conceptual model and the source 

data simultaneously. 
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2.4.4. Validation of model components 

Although it is difficult to demonstrate the validity of an entire model by the means 

described above, especially in the absence of relevant data, it may be possible to assess the 

validity of some individual components of a more complex model. This component-based 

approach to validation is sometimes recommended (Martin et al., 1987). An example is a 

recently completed validation of the process used in NAADSM to simulate animal movements 

and contacts among farm premises (Dubé, 2009). 

Briefly, the objective of this study was to validate the contact component used in 

NAADSM by comparing simulated movements to real-world, farm-to-farm movements that had 

been recorded for adult milking cows in Ontario, Canada. The study concluded that the approach 

used in NAADSM performed reasonably well in simulating average network characteristics 

observed in real-world movement data, but did not perform as well in simulating extreme upper 

percentiles of movement network components, involving rare but observed farms with 

excessively high shipment frequencies. The results of this study will be used to inform future 

development, with the objective of providing better representations of actual events and thus 

leading to greater confidence in the results of modeling studies. 

2.4.5. Comparison of models 

Comparison of the results from several independently developed models may be used to 

improve the level of confidence in the models tested. This process has been called “relative 

validation” (Dubé et al., 2007). 

Dubé et al. (2007) conducted a comparison of three simulation models using relatively 

simple disease scenarios. Among the findings of this comparison was that, although statistically 

significant differences were observed among model outputs, results from all three models 
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supported the same or very similar conclusions on approaches for disease control. This finding 

could be used to increase the confidence of end users and decision-makers in modeling results. 

The results of a follow-up investigation that considered more complex scenarios were 

subsequently reported (Sanson et al., 2011). 

Several similar comparisons of models of the spread and control of animal disease have 

also been undertaken. Vigre (2008) reported on a comparison of mathematical and simulation-

based models. The differences identified were more substantial than those reported by Dubé et 

al. (2007), and may reflect the broader distinctions between the fundamental assumptions made 

by the individual models. Continued investigations in this vein would be quite helpful. Gloster et 

al. (2010) also recently reported on the comparison of several models of airborne dispersion of 

FMD virus. Like Dubé et al. (2007), they reported that the results of the models evaluated were 

broadly similar but, of course, highly dependent on the assumptions made and the data used by 

different groups of modelers. 

Loehle (1997) identified the comparison of models as a component of the larger process 

of what he called structural analysis, or an evaluation of the inherent assumptions and 

identification of the deficiencies of various models. Loehle argued that, because of the existence 

of such structural differences among models, and because comparing multiple models is the most 

effective way to identify and determine the effects of such differences, it is essential to direct 

multiple modeling efforts towards any important policy or management problem. 

2.4.6. Sensitivity analysis as a form of validation 

When data from real systems are limited, sensitivity analysis is sometimes suggested to 

inform model validation efforts (Bates et al., 2003c; Karsten et al., 2005; Kleijnen, 1999). 

Sensitivity analysis is used to determine the amount of influence that particular parameters have 
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on the outcome produced by a model. Sensitivity analysis can also be used to assess the 

conceptual validity of a model: if certain parameters are expected to be important in a system, 

based on prior knowledge of that system, then sensitivity analysis should bear out these 

expectations (Kleijnen, 1999). 

Of greater value is the use of sensitivity analysis to determine which parameters in a model 

are important. If a model includes parameters about which there is a high degree of uncertainty, 

but which are shown by sensitivity analysis to have a substantial impact on model results, such 

parameters are good targets for additional research. An example of applying such sensitivity 

analysis to animal disease modeling was recently published (Owen et al., 2011). 

2.5. Suggestions for the construction of useful, credible models of animal disease 

As discussed in the preceding sections, the primary objective of model verification and 

validation is not to demonstrate that a model is a true or even a highly accurate representation of 

a real system, but rather to provide a set of approaches and criteria by which a model can be 

evaluated. For models that might be used as a partial basis for policy or management decisions, it 

is essential that such evaluation establishes a foundation of support and credibility. To that end, 

we suggest the following practical steps that members of the veterinary epidemiologic 

community can take to produce credible, useful models of the spread and control of disease in 

animal populations. These suggestions are drawn from our own experience, as well as from 

many of the other valuable sources cited throughout this article; in particular, those written by 

Bart (1995), Rykiel (1996), Law and McComas (2001) and Sargent (2009). 

Clearly and precisely state the purpose for which a model was designed 

The importance of the first step, illustrated in Figure 2-1: that of determining and then 

clearly and precisely stating the questions to be asked of a model, may seem self-evident, but this 
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step is often overlooked (Bart, 1995). Overton (1977) remarked that: “the great majority of 

criticisms of models relate to a capacity for which the model was not designed in the first place”. 

A clear understanding of the purpose of a model is a prerequisite for any further evaluation. 

Provide a detailed description of the conceptual model, and documentation concerning the 

assumptions and limitations of the model 

Virtually every paper on techniques for the verification and validation of models stresses 

the importance of documentation for the conceptual model (Bart, 1995; Knepell and Arangno, 

1993; Law and McComas, 2001; Sargent, 2009; Scheller et al., 2010). A model description 

should not be produced solely, or even primarily, for the developers of an individual model. 

Those who will derive the most benefit from the existence of such documents will be other 

model users, in the broadest sense of the term: other researchers, analysts and decision-makers, 

who will be expected to apply or evaluate the model and its results. Such documentation is 

particularly useful when it includes discussions of the model’s assumptions and limitations, 

presented in ways that are clear and biologically relevant (Guitian and Pfeiffer, 2006). 

Provide details of steps taken for model verification 

At its most basic level, the credibility of a model relies upon the demonstration that the 

model, as implemented in software, does what it is supposed to do. Anyone asked to evaluate a 

model, particularly if it will be used to influence policy, should have access to a computational 

implementation of the model and details of the verification procedure employed, as well as to 

any tests used for verification, so that he or she can reproduce and evaluate the computational 

correctness of the model. 
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Describe the data used to develop model parameters, and provide documentation for the 

approaches and assumptions used to produce model parameters from data 

The process of translating raw data into parameters suitable for use in models is seldom 

straightforward. An understanding of this process, however, is essential if reviewers are to have 

an adequate basis for judging the model’s results. Two recent reports illustrate this suggestion 

quite nicely: Mardones et al. (Mardones et al., 2010) conducted a meta-analysis based on 21 

research papers and documented in detail the procedures that they used to estimate the durations 

of different disease states for FMD. In a different study, Patyk et al. (in preparation) produced a 

model of the spread and control of HPAI in South Carolina in the United States. This study 

included an online supplement that described in detail all the sources of information used for the 

study, as well as the computational tools that the authors developed and used for parameter 

development. 

Involve independent experts in the evaluation of models and their outcomes 

Veterinary epidemiologic modeling is an interdisciplinary undertaking. Modelers can 

take advantage of a great deal of expertise in different fields by involving experts from these 

fields. For models to be used for decision-making, it is also essential to involve other 

stakeholders in this process; for example, those who are responsible for decision-making or for 

implementing policies in the field. In our own experience with NAADSM, we have found that, 

through its widespread application, they have benefited substantially from the efforts of others to 

use and evaluate it. 

A variety of forums have become available for sharing and discussing veterinary 

epidemiologic modeling work over the last few years (Dubé et al., 2008; USDA-APHIS-VS-

CEAH and OIE, 2008; USDA-APHIS-VS-CEAH, 2002, 2004). We encourage anyone involved 
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with the construction, use or evaluation of models to seek out and take advantage of such 

opportunities when they occur. 

When possible, use existing information for data-driven validation of models or their 

components 

We have discussed the limitations and advantages of this approach in sections 2.4.3 and 

2.4.4 above. Such approaches should be undertaken with care, and with the recognition that the 

results will not be definitive: a poor conceptual model may still produce a good fit to observed 

data and vice versa. In situations where appropriate information is available, however, the 

comparison of model-produced outcomes to real data can still be enlightening. Retrospective 

analysis of past outbreaks is crucial to understanding them, and modeling can be a very useful 

tool in this pursuit (Garner et al., 2007; Kitching et al., 2006). 

Present a range of possible outcomes, including “best case” and “worst case” scenarios 

As discussed above, models are not definitive representations of reality. We are often 

uncertain about the ways in which at least some components of our systems operate, and also 

about specific parameter values. Presenting a range of results is one way to capture some of this 

uncertainty. 

Use sensitivity analysis to determine the importance of parameters used in a model 

In addition to the benefits discussed in section 2.4.6, evaluating the importance of model 

parameters – especially those for which data are limited – can be used to estimate the potential 

effects of parameters about which the modelers are uncertain. 

Compare the purposes, conceptual bases, and outcomes of different models 

During the modeling process, different modelers make different subjective decisions and 

assumptions. Qualitative agreement among several models may lend credibility to the 
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conclusions drawn from model-based studies. Areas of disagreement among models should 

prompt additional research and investigation to improve our level of understanding of the system 

components in question. 

Finally, treat model evaluation as an on-going process, not as settled fact 

Every epidemiologic model is a work in progress, informed and updated by existing and 

new knowledge about the dynamics of disease; changes in agricultural and social practices; and 

changes in the forms, sources and quality of available data. The validity of any epidemiologic 

model should be continually reassessed under new conditions or as the state of our knowledge 

improves. 

2.6. Conclusions 

The careful evaluation of any model intended to inform management or policy decisions is 

an essential activity. Two key steps in assessing the quality and usefulness of epidemiologic 

models are verification and validation. Unfortunately, there are no purely quantitative, strictly 

objective means by which to evaluate models. Each model, and each situation to which modeling 

will be applied, is unique, and unique means may be necessary to evaluate a model and its 

particular applications. 

Holling (1978) pointed out that, “provisional acceptance of any model implies not 

certainty, but rather a sufficient degree of belief to justify further action”. We have outlined a set 

of recommendations that can be used by epidemiologic modelers to cultivate confidence in 

applying this technique to important problems in animal population health. Individual models 

will continue to be developed and compared, and will evolve as they are scrutinized. Through 

these exercises, our collective aim of providing useful tools to assist in decision-making 

processes can be met. 
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To achieve a sufficient level of credibility for model outcomes, it is essential not to involve 

solely modelers in their evaluation. As Rykiel (1996) observed, “to the extent that a model is a 

scientific experiment and theoretical development, its testing and validation are within the 

purview of the scientific community”. We agree, and would add that, in the case of models for 

animal diseases, the evaluation of models is also within the purview of field epidemiologists and 

veterinary practitioners, policy planners and decision-makers, and animal industry 

representatives. 
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Figure 2-1.  Schematic diagram of the stages of model development, evaluation, and application. 
Adapted from Dent and Blackie (1979), Martin et al. (1987), and Taylor (2003). 
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3. Development of a stochastic, individual-based modeling framework for 

within-unit transmission of highly infectious animal diseases 

Summary 

The dynamics of spread of disease within individual herds or flocks, which may have 

different degrees of immunity to disease due to vaccination, can have important implications for 

disease detection and surveillance, as well as for disease transmission between herds or flocks, 

especially for highly infectious diseases.  We have developed a simulation modeling framework 

for within-unit disease spread that operates at the level of the individual animal and fully 

incorporates sources of individual-level variation, such as variability in the durations of 

incubating and infectious periods, the stochastic nature of disease spread among individuals, and 

the effects of vaccination.  We describe this stochastic modeling framework, along with the 

processes employed for its verification and validation.  We also illustrate the use of the 

framework to explore within-unit disease dynamics of foot-and-mouth disease and highly 

pathogenic avian influenza, with a particular emphasis on disease detection. 

The incorporation of this approach to modeling of within-unit disease dynamics into 

models of between-unit disease spread and control should improve the utility of such models for 

emergency preparedness and response planning by making it possible to assess the value of 

different approaches to disease detection and surveillance in populations with or without some 

existing level of vaccine immunity.  An implementation of this conceptual model is freely 

available via the internet at http://www.naadsm.org/wh. 



 73

3.1. Introduction 

Models of disease spread often incorporate information about the transmission of disease 

at different levels, depending on their purpose.  Models of within-unit disease dynamics (i.e., 

processes that occur within individual flocks or herds) have been used to estimate changes in 

disease prevalence over time (Evans et al., 2010; Perez et al., 2002), to estimate rates and 

parameters associated with disease transmission (Bouma et al., 2009; Perez et al., 2002), to 

assess the utility of within-unit disease interventions such as vaccination (Bouma et al., 2009; 

Savill et al., 2006b), or to investigate the likelihood and timing of detection of disease under 

different conditions (Carpenter et al., 2004; Savill et al., 2006b).  Models of between-unit spread 

of disease (i.e., spread of disease from individual flocks or herds to others) have been used to 

inform policy decisions regarding disease control methods and outbreak response plans, to 

estimate the possible magnitude of an outbreak, and to estimate resources needed for outbreak 

response (e.g., Bates et al., 2003a, 2003b; Dorea et al., 2010; Garner and Lack, 1995; Nielen et 

al., 1999; Schoenbaum and Disney, 2003; Stegeman et al., 2010). 

Existing modeling frameworks for simulation of between-unit spread and control of 

disease represent within-unit disease dynamics in different ways.  Some do not consider within-

unit dynamics at all, either for the sake of conceptual simplicity or due to lack of available data 

(Savill et al., 2007; Schoenbaum and Disney, 2003).  In others (e.g., Garner and Beckett, 2005; 

Garner and Lack, 1995; Harvey et al., 2007; NAADSM Development Team, 2010), within-unit 

disease dynamics are not explicitly simulated, and disease states and durations apply to entire 

units, but allowances may be made so that changes in disease prevalence in infected units over 

time can be represented. 
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Some authors have suggested that representations of within-unit disease dynamics should 

be incorporated into models of between-unit transmission of disease (Carpenter et al., 2004; 

Kostova-Vassilevska, 2004).  Some models explicitly represent these phenomena (e.g., Bates et 

al., 2003a) albeit in ways that do not fully account for true individual-level variation. 

Additionally, in many countries and situations, there is interest in modeling the dynamics 

of disease in populations characterized by variable levels of vaccine coverage and efficacy (Dubé 

et al., 2011).  Limitations in an existing model of between-unit spread and control (Harvey et al., 

2007) were found during attempts to apply this model to situations in countries in South 

America.  The need for a model that more realistically simulates the process and effects of 

vaccination was identified in a meeting of subject matter experts from North and South America 

(Dubé et al., 2008, 2011). 

Finally, as a practical matter, it is difficult to develop justifiable parameters for models of 

between-unit spread without considering within-unit disease dynamics.  Consider, for example, 

the notion of the duration of a disease state.  The vast majority of data on the durations of disease 

states are collected at the level of individual infected animals (Bates et al., 2003b; Bouma et al., 

2009; Mardones et al., 2010; Perkins and Swayne, 2003; Spickler et al., 2008), rather than at the 

level of the unit.  These individual animal-level durations, together with parameters that describe 

within-unit disease transmission, determine unit-level disease state durations. 

Here we present an approach that can be used to take advantage of this kind of 

individual-level information in a structured, reproducible fashion to inform models of between-

unit disease spread and control.  The purpose of this paper is three-fold: 1) to describe a 

computationally efficient, individual-based, fully stochastic framework for modeling within-unit 

disease progression, disease spread, and vaccination; 2) to discuss procedures employed to verify 
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and validate the model; and 3) to briefly illustrate the utility of the framework by constructing 

simulation models of the dynamics of foot-and-mouth disease (FMD) and highly pathogenic 

avian influenza (HPAI) infection in representative situations.  We also discuss the practicality 

and potential value of incorporating this conceptual within-unit modeling framework directly 

into models of between-unit spread, detection, and control of disease. 

3.2. Materials and Methods 

3.2.1. Description and implementation of the conceptual model 

The conceptual model is a stochastic, state transition framework that operates in discrete 

time steps of fixed duration.  The modeler is responsible for selecting the time step (e.g., days, ½ 

days, or hours) most appropriate to the question of interest.  Every individual within a closed 

population is explicitly simulated.  At each time step, every individual is assumed to have one of 

several disease or immune states, as shown in Table 3-1.  Upon infection, individuals progress 

through each of several infected states.  The number of time steps that each individual spends in 

each of these infected states is stochastically determined from an appropriate, user-defined 

distribution, provided in the form of a probability density function.  Infection may be transmitted 

among individuals within the population, which is assumed to be randomly mixing, upon 

adequate exposure to disease.  Disease mortality and mortality due to causes unrelated to the 

disease under consideration may both be simulated, and the effects of vaccination of all or part of 

the population may also be included.  An overview of the model framework is provided in Figure 

3-1.  Details are presented in section 3.3.1. 

The conceptual model framework has been implemented in a computer program, called 

WH, for Microsoft Windows platforms.  The program and its source code, written in the Delphi 

programming language (Borland Software Corporation, 2002), are published under an open 
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source software license (Free Software Foundation, 2007) and are distributed via the internet at 

http://www.naadsm.org/wh.  This program was used to generate all results presented in this 

paper. 

3.2.2. Verification and validation of the model 

Verification of the computational correctness of the modeling application and ongoing 

efforts to validate the conceptual modeling framework (Reeves et al., 2011) are described in 

section 3.3.2. 

3.2.3. Modeling the within-herd spread of foot-and-mouth disease 

Three scenarios representing the spread of foot-and-mouth disease (FMD) in a hypothetical 

dairy herd of 1000 cattle were constructed based on the example of Carpenter et al. (2004), and 

were simulated using the described modeling framework.  Parameters for these scenarios are 

summarized in Table 3-2.  Each scenario used a different distribution for the within-herd 

transmission parameter (i.e., the number of adequate exposures per infectious individual per time 

step), also based on Carpenter et al. (2004), to represent low, moderate, and high rates of within-

herd disease spread.  In each case, the herd was assumed to be entirely susceptible to infection by 

FMD at the outset of the simulation.  Parameters representing the durations of disease states were 

adapted from the report of Mardones et al. (2010). 

Simulated outbreaks of FMD proceeded in daily time steps.  For each simulated outbreak, 

the time to disease detection was determined, again based on the example of Carpenter et al. 

(2004).  Detection of disease was assumed to be visual, and based on a threshold value for 

prevalence of individuals showing clinical signs of disease: disease was considered to be 

detected on the day that the specified threshold was met.  Two detection thresholds, 1% and 5%, 
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were considered.  The prevalence of all infected individuals within the herd (i.e., individuals in 

the latent and subclinical states, as well as individuals showing clinical signs of disease) was 

determined for the day on which the detection thresholds were met.   

One thousand iterations were run for each scenario.  Summary statistics and figures were 

generated using the statistical software package R, version 2.14.2, and associated libraries 

(Maechler et al., 2011; R Development Core Team, 2012).  Results were compared to the similar 

model of Carpenter et al. (2004). 

3.2.4. Modeling the within-flock spread of highly pathogenic avian influenza 

Three scenarios representing the spread of highly pathogenic avian influenza (HPAI) in 

broiler chickens were constructed, based on the example of Savill et al. (2006).  Parameters are 

summarized in Table 3-3.  Disease spread was simulated in a population of 20,000 birds, a 

population size typical of commercial broiler houses for the southeastern United States (Dorea et 

al., 2010; Patyk et al., in preparation).  The three scenarios simulated the spread of disease in 

populations with levels of effective vaccine immunity of 0%, 50%, and 90%.  Parameters for 

disease state durations, disease mortality, and transmission rates representative of the H5N1 

strain of HPAI were derived from published reports (Bouma et al., 2009; Easterday et al., 1997; 

Spickler et al., 2008; Swayne and Halvorson, 2008). 

Simulated outbreaks of HPAI proceeded in hourly time steps.  Detection of disease was 

based on incidence of mortality.  Two detection thresholds were used: within-flock mortality of 

0.2% over a single 24-hour period (Dorea et al., 2010; Vieira et al., 2009); and within-flock 

mortality of 0.5% on each of two consecutive 24-hour periods (Bos et al., 2007). 

The number of days to disease detection was recorded for each simulated outbreak based 

on each of the two detection criteria.  The actual prevalence of infection among living birds in 



 78

the flock at the time of detection was also determined.  Results generated by 1000 iterations of 

each scenario were compared to outcomes from similar investigations (Dorea et al., 2010; Savill 

et al., 2006). 

3.3. Results 

3.3.1. The conceptual model 

An overview of the model framework, which is composed of four distinct but interrelated 

subcomponents, is provided in Figure 3-1.  The four major subcomponents of the model 

framework simulate the following events: disease spread among individuals (Section 3.3.1.1); 

disease progression in infected individuals, disease mortality, and progression of immunity 

(Section 3.3.1.2); background mortality (i.e., death unrelated to disease) (Section 3.3.1.3); and 

the process of vaccination itself (Section 3.3.1.4). 

3.3.1.1. Subcomponent for spread of disease among individuals 

The model simulates spread of disease from infectious to susceptible individuals by 

contact or exposure.  A transmission parameter (the number of secondary infections per 

infectious individual per time step) is specified as a distribution by the user.  This distribution 

represents the variability in the number of secondary cases that arise per infectious case per time 

step.  The number of adequate exposures that occur in each time step for each infectious 

individual is determined stochastically by the model from this distribution.  Other individuals in 

the population are selected at random as the targets of these adequate exposures.  Susceptible 

targets will subsequently become infected. 

For large populations, in cases where there are potentially many infected individuals and 

many exposures, it is not practical, simply as a result of the large number of calculations that 

would be required, to simulate every single exposure as a random occurrence between two 
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individuals.  Computational efficiency can be substantially increased, however, by using an 

approximation illustrated in Figure 3-2.  The algorithm used in the model framework first 

determines how many total adequate exposures occur during a single time step and then makes 

use of a distribution described by Gani (2002, 2004) and an approach to calculation using 

Stirling numbers of the second kind (Abramowitz and Stegun, 1972) to determine how many 

individuals are exposed at least once. 

Once the number of individuals which will receive at least one adequate exposure has 

been determined, the number of these individuals which are susceptible and will become infected 

is modeled as a hypergeometric process (Vose, 1996): the total (finite) population (designated 

M) consists of all living individuals, and the subpopulation of interest includes all susceptible 

individuals (D).  From the total population, the number of individuals who receive at least one 

adequate contact will be selected (n).  A hypergeometric distribution defined by these three 

parameters [Hypergeometric( n, D, M)] is then used to stochastically determine how many 

susceptible individuals were selected.  These individuals will become infected during this time 

step.  A similar calculation is made to determine how many vaccinated but not yet immune 

individuals will become infected in each time step (Figure 3-2).  In our tests, use of the 

approximation described above reduces required computational time for the model, in some 

cases from hours to seconds, without having a substantial effect on the model outcome (data not 

shown). 

3.3.1.2. Subcomponent for disease progression, disease mortality, and progression of immunity 

At each time step, disease transitions may be made from one state to the next (latent to 

subclinical, subclinical to clinical, etc.) as shown in Table 3-1 and Figure 3-3.  The number of 

time steps that an infected individual will spend in the latent, subclinical, or clinical disease 
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states is determined stochastically from user-provided distributions that represent the durations 

of these individual-level states.  Similarly, the number of time steps that a naturally or vaccine 

immune individual will remain immune is determined from appropriate, user-specified 

distributions.  It is possible to represent states with durations of zero time steps.  This capability 

allows the modeler to exclude or skip disease states that are not of interest: individuals with a 

subclinical state duration of zero time steps, for example, will progress from the latent state 

directly to the clinical state. 

When an individual’s clinical disease period ends, death from disease is modeled as a 

Bernoulli trial (Law and Kelton, 2000): whether this individual will die from disease or recover 

is determined by the probability that disease will result in death. 

3.3.1.3. Subcomponent for mortality unrelated to disease 

All individuals regardless of their disease or immune state are equally likely to die of 

non-disease-related causes.  Death unrelated to disease is modeled as a binomial process (Vose, 

1996): at each time step, the number of individuals who will die from causes unrelated to disease 

is determined using a binomial distribution based on the number of living individuals in the 

population and the time-step-specific probability that an individual will die of causes unrelated to 

disease. 

3.3.1.4. Subcomponent for vaccination 

When vaccination occurs, a user-specified model parameter determines the proportion of 

the population to be vaccinated (Figure 3-4).  Living individuals are selected at random from the 

population to be vaccinated, regardless of their disease or immune state.  A second user-specified 

proportion represents vaccine efficacy, i.e., the proportion of vaccinated individuals which will 

develop effective immunity.  The time required for onset of immunity after vaccination and the 
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duration of immunity for each effectively vaccinated individual are determined from user-

provided distributions. 

Vaccination may precede or follow the introduction of disease, as shown in Figure 3-1.  

The model may be applied to investigate the effects of different levels of vaccine coverage (i.e., 

the proportion of a population vaccinated) and vaccine efficacy. 

3.3.1.5. Model outputs 

Among the outputs generated by the model are the following: time-step-specific and 

cumulative incidence of infection; time-step-specific prevalence of each of the disease and 

immune states listed in Table 3-1 (e.g., prevalence of latent, subclinical, clinical, or all infected 

individuals, or prevalence of vaccine immunity); and time-step-specific and cumulative 

mortality, due either to the disease of interest or to causes unrelated to the disease of interest. 

3.3.2. Verification and validation of the model 

Reeves et al. (2011) presented a set of suggestions intended to aid in the process of model 

evaluation.  Here, we describe our efforts to follow these suggestions. 

3.3.2.1. The purpose of and motivation for the conceptual model 

The need for a model that realistically represents within-unit dynamics of disease and effects 

of vaccination arose during an effort to apply an existing between-unit model of disease spread 

and control (Harvey et al., 2007) in countries in South America (Dubé et al., 2008, 2011).  In 

consultation with subject matter experts representing nine countries in North and South America, 

it was determined that existing models did not adequately represent such characteristics, nor did 

they fully take advantage of within-unit dynamics to inform approaches for disease detection 

(Dubé et al., 2008).  The model described here is intended to more realistically, and more 
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credibly, represent these characteristics, in a computationally efficient way, such that it would be 

practical to incorporate a model of within-unit disease dynamics into a larger model of between-

unit disease spread and control. 

3.3.2.2. Verification of the computational implementation of the model 

Static and dynamic testing of the computational implementation (Fairley, 1978; Whitner and 

Balci, 1989) of the model described here have been conducted.  Static testing involved the 

examination by software engineers not directly involved in the initial development of the model 

of algorithms and code originally developed by the authors.  Dynamic testing involving the 

development and detailed analysis of test cases run with the modeling application has also been 

carried out by the authors. 

3.3.2.3. Assessing the conceptual validity of the model 

The conceptual model and its computational implementation were presented at a follow-

up workshop involving many of the subject matter experts involved in its initial conception.  

This expert review constituted one effort to assess the face validity of the model (Rykiel, 1996).  

Subsequent application of the model (Patyk et al., in preparation; Sanderson et al., 2009; USDA-

APHIS-VS-CEAH, 2009; USDHS-STD, 2012) and evaluation of results generated constituted a 

second, and ongoing, effort to establish the conceptual validity of the model. 

3.3.2.4. Other considerations for model evaluation 

In addition to the steps described above, this report represents an effort to follow several 

additional recommendations for the construction and evaluation of models of animal disease, 

namely, by providing a description of the conceptual model and its assumptions; by describing 
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the data used to generate results; and by comparing model outcomes to those of other models 

(Reeves et al., 2011). 

3.3.3. Detection of FMD based on prevalence of clinical disease 

Results of the scenarios of FMD spread in a herd of dairy cattle are presented in Figure 

3-5 and Table 3-4.  The rate of disease spread (whether low, moderate, or high as shown in Table 

3-2) had little effect on the overall duration of simulated outbreaks in these scenarios: median 

outbreak duration ranged from 31 to 34 days in all cases.  The use of a threshold of 1% 

prevalence of clinical disease versus 5% similarly had little effect on time to detection: the 

median time to detection varied by only 1 to 2 days for all scenarios.  The 1 to 2 day delay did, 

however have a considerable impact on the prevalence of infection (i.e., the total proportion of 

infected animals, whether they showed clinical signs or not) present in herds at the time of 

detection.  When the lower threshold for disease detection was used, the median prevalence of 

infection at the time of detection ranged from 37% to 67%.  By marked contrast, when the higher 

detection threshold was used, median prevalence of infection at the time of detection ranged 

from 91% to 98%. 

3.3.4. Detection of HPAI based on mortality in broiler chickens 

Outcomes of scenarios for HPAI for three levels of vaccine coverage and two detection 

thresholds (described in Table 3-3) are shown in Figure 3-6 and Table 3-5.  Results are similar to 

those described above for scenarios of FMD: the use of the higher threshold for detection had 

little impact on the time to detection, adding only 1.1 to 1.5 days to the median time to detection 

based on the lower threshold, but the effect of the delay can again be observed in the prevalence 

of infection at the time of detection.  In the case where vaccination was not employed, the higher 
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detection threshold (and the corresponding delay) resulted in disease detection on average only 

after the peak of the epidemic had passed: by the time disease was detected using the higher 

threshold in this case, the median prevalence of infection in the flock was already declining. 

The use of vaccination also delayed time to detection in these scenarios: median time to 

detection roughly doubled in flocks with 90% vaccine coverage versus those without 

vaccination, regardless of the detection threshold.  This effect was accompanied, however, by a 

15-fold reduction in prevalence of infection at the time of detection in the case of the lower 

detection threshold (from 99.8% to 6.5%), and a 10-fold reduction in the case of the more 

stringent detection threshold (from 72% to 6.9%). 

3.4. Discussion 

3.4.1. The conceptual model 

The conceptual model of within-unit disease spread described here is an elaboration of 

concepts and approaches used previously (e.g., Abbey, 1952; Bates et al., 2003a; Carpenter et al., 

2004; Perez et al., 2002; Savill et al., 2006).  This framework is distinct, however, in that the 

durations of each disease state and the number of adequate exposures generated by each 

infectious individual are truly applied to individuals: earlier models either are deterministic or 

draw a single value from each of the individual-level distributions and apply those values to 

every individual within an iteration of the model (Bates et al., 2003b; Carpenter et al., 2004; 

Perez et al., 2002).  In other words, these other models draw new values from the individual-

level distributions only once per iteration, and treat all individuals as though they are equivalent.  

This approach has the advantages of simplicity and computational efficiency but is not a realistic 

representation of variability among individuals.  By utilizing improved computer power as well 
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as the algorithm described in Section 2.1.1, the current model is able to more realistically 

simulate truly individual-level variation. 

As demonstrated by investigations that have used the modeling framework described here 

(Patyk et al., in preparation; Sanderson et al., 2009; USDA-APHIS-VS-CEAH, 2009; USDHS-

STD, 2012), results generated by models of within-unit disease dynamics can be used to inform 

and to reduce some of the subjectivity associated with the development of parameters for 

representations of the spread and control of disease among farms or premises.  The incorporation 

of the approach to modeling of within-unit disease dynamics should improve the utility of 

models for emergency preparedness and response planning by making it possible to assess the 

value of different approaches to disease detection and surveillance. 

3.4.2. Results of FMD and HPAI modeling 

The results of the FMD modeling illustration reported above are consistent with earlier work 

done by Carpenter et al. (2004).  Using similar models and contact rates, they concluded that 

detection of disease would occur on average between 10 and 13.5 days.  The corresponding 

range from this study (which used different data to represent disease state durations and 

individual-level stochastic contact rates, unlike the earlier report) is 8 to 10 days.  Carpenter et al. 

reported that the range in the average within-herd prevalence of infection at the time of detection 

in their study was between 65% and 97%.  Here we showed an analogous range of 37% to 98%, 

depending on the contact rate and detection threshold used. 

Using a deterministic model of within-flock disease spread of HPAI, Dorea et al. (2010) 

reported that the average (mean) time to detection based on a detection threshold of 0.2% 

mortality over a 24-hour period was 5 days.  The corresponding outcome from this study ranged 

from 1.8 to 3.1 days, with a median time to detection of 2.1 days.  Dorea et al. assumed that 
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infected birds were latent for 2 days and infectious for 6 days, and modeled disease transmission 

in daily time steps.  The shorter corresponding values (mean durations of 0.24 and 2.1 days for 

the latent and clinical periods, respectively) and the less coarse choice of time step likely account 

for this difference.  Given the influence that just a few days can have in this setting, a more 

detailed evaluation would be helpful. 

Savill et al. (2006) discussed the implications of the use of vaccination for HPAI on the so-

called “silent spread” of disease in vaccinated flocks.  We likewise show that HPAI can spread in 

flocks even with relatively high levels of vaccine efficacy and coverage, and that detection of 

disease will be delayed in vaccinated flocks.  Given the very dramatic decreases in prevalence of 

disease in vaccinated flocks, however, the use of vaccination on balance might be beneficial to 

reduce the potential between-flock spread of disease. 

3.5. Conclusions 

The processes by which within-unit disease transmission occurs have immediate 

implications for detection and subsequent control of disease in a population, and likely for spread 

of disease between farms or premises as well.  The simulation framework presented here 

provides model users with a straight-forward, computationally efficient tool with which to 

explore these processes.  The simple role of chance can have a considerable impact on the 

initiation and progression of a disease outbreak, particularly in small populations or in early 

phases of epidemics when stochastic events influence whether a major outbreak will develop or 

if disease will die out relatively quickly.  The stochastic, truly individual-based design of this 

framework provides the analyst with practical information about the range of outcomes that 

might be produced under the specified initial conditions. The data requirements of this model are 

modest and easily described to policy makers, response planners, and other stakeholders.
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Table 3-1.  Disease and immune transition states included in the conceptual framework for the stochastic 
simulation model of within-unit spread of disease. 

Transition state Description and comments 
Susceptible Susceptible individuals will become infected upon effective exposure to 

disease.  Upon infection, susceptible individuals will make a transition to 
the latent state. 
 

Latent Latent individuals are infected, but not yet infectious or showing clinical 
signs of disease.  At the end of its latent period, an individual will make 
the transition to the sublinical state. 
 

Subclinical Infected and infectious (i.e., capable of transmitting disease), but not yet 
showing clinical signs of disease.  At the end of its subclinical period, an 
individual will make the transition to the clinical state. 
 

Clinical Infected, infectious and showing clinical signs of disease.  Upon the end 
of its clinical state, an individual will transition either to the recovered or 
to the dead-from-disease state. 
 

Naturally 
immune/recovered 

An infected individual that completes its disease cycle and recovers from 
disease will have this state.  Recovered individuals are no longer 
infected or infectious, and cannot become infected upon exposure to 
disease.  This state may be permanent, or may last for a specified length 
of time, after which a recovered individual will become susceptible to 
infection. 
 

Dead from disease An infected individual that completes its disease cycle and dies as a 
result of infection will have this state.  This state is permanent. 
 

Dead from causes 
unrelated to disease 

Individuals in any state may die from causes unrelated to disease.  The 
probability of death unrelated to disease is equal for individuals in all 
disease states.  This state is permanent. 
 

Vaccinated but not yet 
immune to disease 

Individuals have been vaccinated but have not yet mounted an immune 
response.  These individuals are susceptible to disease. 
 

Vaccinated and 
immune to disease 

Adequate time to develop an immune response has passed in these 
vaccinated individuals.  These individuals will be immune to infection.  
This state may be permanent, or may last for a specified length of time, 
after which a vaccine immune individual will become susceptible to 
infection. 
 

Not effectively 
vaccinated 

These individuals will not develop an immune response after 
vaccination, and will remain susceptible to infection. 
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Table 3-2.  Parameters used for models of foot-and-mouth disease. 

Parameter description Distribution/Value1 Notes and references 

Population size 
(number of cattle) 

1000 Based on Carpenter et al. (2004). 
 

Latent period (days) Weibull( 1.782, 3.974 ) Mardones et al. (2010). 
 

Subclinical infectious period 
(days) 

Gamma( 1.222, 1.672 ) Mardones et al. (2010). 

Clinical infectious period 
(days) 

Weibull( 1.453, 3.544 ) Derived from Mardones et al. (2010)., 
based on reported durations of the 
subclinical infectious period and the 
overall infectious period. 
 

Number of adequate 
exposures per day 

High: Poisson( 54.1 ) 
 

Moderate: Poisson( 21.8 ) 
 

Low: Poisson( 13.7 ) 
 

Means from Carpenter et al. (2004); 
within-herd contact was assumed to 
follow a Poisson process (Vose, 1996). 

Detection threshold based 
on prevalence of clinical 
cattle 

1%, 5% Based on Carpenter et al. (2004). 

1 Probability density function parameters and calculations follow Hill and Reeves (2006) and Vose (1996). 
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Table 3-3.  Parameters used for models of highly pathogenic avian influenza. 

Parameter description Distribution/Value1 Notes and references 

Population size 
(number of birds) 

88,000 Median size of a broiler chicken flock in 
South Carolina (Patyk et al., in 
preparation). 
 

Latent period (hours) Gamma( 1.34, 4.3 ) Derived from Bouma et al., 2009. 
 

Subclinical infectious period 
(hours) 
 

0 Because detection is based on mortality, 
and because subclinically and clinically 
infectious individuals are equally 
infectious in the conceptual framework, 
there is no practical distinction between 
the subclinical and clinical infectious 
stages for the purposes of the models of 
HPAI used here.  Consequently, all 
infectious individuals are assumed to be 
clinical. 
 

Clinical infectious period 
(hours) 

Gamma( 13.36, 3.77 ) Derived from Bouma et al., 2009. 

Number of adequate 
exposures per hour 

Poisson( 1.375 ) Mean derived from Bouma et al., 2009; 
within-flock contact was assumed to 
follow a Poisson process (Vose, 1996). 

Probability that an infected 
bird will die from disease 

0.90 Easterday et al. (1997); Spickler et al. 
(2008); Swayne and Halvorson (2008). 
 

Vaccination coverage 0%, 50%, 90% Based on Savill et al. (2006b). 
 

Vaccine efficacy 100% Based on Savill et al. (2006b). 
 
 

Detection threshold based on 
total mortality 

0.2% during one 24-
hour period 

 
0.5% during each of 
two consecutive 24-

hour periods 
 

Dorea et al. (2010). 
 
 
Bos et al., 2007 
 
 

1 Probability density function parameters and calculations follow Hill and Reeves (2006) and Vose (1996). 
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Table 3-4.  Outcomes produced by models of foot-and-mouth disease for three levels of disease spread 
and two detection thresholds based on prevalence of clinical disease. 

All results are based on 1000 iterations of each stochastic model. 
 

Model outcome 
Rate of disease spread 

Low Moderate High 

 
Outbreak duration (days)1 

34 
(0 - 49) 

33 
(1 - 45) 

31 
(1 - 49) 

Detection based on threshold of 1% prevalence of clinical disease 
 Percent of outbreaks detected 98.4% 98.8% 98.8% 
 

Time to detection (days) 1 
8 

(4 - 18) 
8 

(3 - 17) 
7 

(3 - 18) 
 Prevalence of infection at time of 

detection1 
0.37 

(0.12 - 0.696) 
0.4605 

(0.172 - 0.873) 
0.673 

(0.309 - 0.988) 
Detection based on threshold of 5% prevalence of clinical disease 
 Percent of outbreaks detected 98.4% 98.8% 98.8% 
 

Time to detection (days) 1 
10 

(6 - 19) 
9 

(5 - 18) 
8 

(4 - 19) 
 Prevalence of infection at time of 

detection1 
0.907 

(0.658 - 0.968) 
0.959 

(0.816 - 0.985) 
0.983 

(0.955 - 0.994) 
1 Values shown indicate the median and range from 1000 stochastic iterations of each model. 

 

 

 
Table 3-5.  Outcomes produced by models of highly pathogenic avian influenza for three levels of vaccine 
coverage and two detection thresholds based on mortality. 

All results are based on 1000 iterations of each stochastic model. 
 

Model outcome 
Vaccine coverage 

0% 50% 90% 

 
Outbreak duration (days)1 

7 
(6.2 - 9.2) 

7.2 
(6.4 - 8.9) 

10.1 
(1 - 14.2) 

Detection based on threshold of 0.2% mortality over a 24-hour period 

 Percent of outbreaks detected 100% 100% 100% 

 
Time to detection (days) 1 

2.1 
(1.8 - 3.1) 

2.5 
(2 - 3.6) 

4.2 
(3.1 - 6.9) 

 Prevalence of infection at time of 
detection1 

0.998 
(0.998 - 0.999) 

0.498 
(0.497 - 0.498) 

0.065 
(0.049 - 0.076) 

Detection based on threshold of 0.5% mortality observed during each of two consecutive 24-
hour periods 
 Percent of outbreaks detected 100% 100% 100% 

 
Time to detection (days) 1 

3.2 
(2.9 - 4.2) 

3.7 
(3.2 - 4.8) 

5.7 
(4.6 - 8.3) 

 Prevalence of infection at time of 
detection1 

0.717 
(0.68 - 0.75) 

0.352 
(0.331 - 0.377) 

0.069 
(0.063 - 0.075) 

1 Values shown indicate the median and range from 1000 stochastic iterations of each model. 
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Figure 3-1.  Schematic representation of the processes included in the model of within-unit spread of 
disease, as described in section 3.3.1.  
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Figure 3-2.  Schematic representation of the approximation algorithm employed by the model to improve 
computational efficiency associated with the determination of the number of new cases in each time step 
of the model, as described in section 3.3.1.1.  
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Figure 3-3.  Schematic representation of disease progression (i.e., disease state transitions), mortality, 
and immunity in the model, as described in section 3.3.1.2. 
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Enter vaccination
submodel

Determine the proportion of the population to be vaccinated
(propnVac) from the user-specified distribution.

Determine vaccine efficacy (vacEfficacy) from the user-specified
distribution.

Determine the number of individuals which will be “adequately
vaccinated” (nAdequatelyVac: see description below and in main text)

based on the values above and the total number of live individuals
(nAlive):

nAdequatelyVac = Round( propnVac × vacEfficacy × nAlive )

Apply a multivariate hypergeometric distribution to determine how
many of the adequately vaccinated individuals were susceptible
(vacSusc), infected, previously vaccinated but not yet immune,
vaccine immune (vacVacImmune), or naturally immune prior to

vaccination (vacNatImmune).

For susceptible individuals that were adequately vaccinated:

Based on vacSusc and pOnsetOfImmunityByDay, apply a
multinomial distribution to determine when vaccine immunity

will develop for all vacSusc individuals.

Calculate the probability that an adequately vaccinated individual will
become vaccine immune x days after vaccination for every day in the
discrete representation of the user-defined distribution for the time to

onset of immunity after vaccination.  Call this array of probabilities
pOnsetOfImmunityByDay.

For infected individuals that were adequately vaccinated:

Do nothing.  Adequate vaccination is not effective, and will
have no impact on progression of disease.

For previously vaccinated but not yet immune individuals
which were adequately vaccinated:

Do nothing.  Repeated vaccination will have no effect on time
to onset of immunity.

Return

Run submodel for vaccination of immune
individuals for naturally immune individuals

Run submodel for vaccination of immune
individuals for vaccine immune individuals

 

Figure 3-4.  Schematic representation of  the vaccination subcomponent used in the model, as described 
in section 3.3.1.4. 
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Figure 3-5.  Results of models of within-herd spread of foot-and-mouth disease, using detection threshold of 1% prevalence of clinical disease. 

Columns show the effects of different contact rates.  Top row: time to detection.  Bottom row: total prevalence of infection at time of first detection. 
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Figure 3-6.  Results of models of within-flock spread of avian influenza, using detection threshold of 5% prevalence of clinical disease. 

Columns show the effects of different contact rates.  Top row: time to detection.  Bottom row: total prevalence of infection at time of first detection. 
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4. A comparison of actual versus synthetic population datasets for simulation 

modeling of the spread and control of highly pathogenic avian influenza 

(H5N1) among commercial poultry flocks in South Carolina, United States 

Summary 

Spatially explicit models of the spread and control of disease in populations of livestock 

and poultry rely heavily upon valid representations of the populations of interest, including such 

characteristics as the geographic locations of farms and their proximity to other farms in the 

population.  Unfortunately, in the United States, little information regarding the locations of 

actual farm premises is available, and modeling work often makes use of artificially generated 

population datasets.  In order to evaluate the accuracy and validity of the use of such artificially 

generated datasets, we compared the outcomes of mechanistic epidemiologic simulation models 

that were run using an accurate population dataset to those of models that made use of several 

readily available synthetic population datasets for animal populations.  We chose to simulate the 

spread and control of the H5N1 strain of highly pathogenic influenza among commercial poultry 

in the state of South Carolina, a system that was recently well characterized for the purposes of 

epidemiologic simulation modeling.  Although there was generally good qualitative agreement 

regarding the relative efficacies of potential disease control measures among models run using 

various population datasets, the quantitative differences in model outcomes could be substantial.  

When quantitative outcomes from epidemiologic models are desired or required, such as in the 

case of estimation of resources needed for disease response, care should be taken to adequately 

capture or describe the uncertainty in model-based outcomes due to the use of synthetic 

population datasets. 
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4.1. Introduction 

Mathematical and simulation-based models are often used to estimate the potential impact 

and consequences of disease outbreaks in livestock and poultry populations.  Such models are 

used to inform policy decisions regarding disease control methods and outbreak response plans 

(Bates et al., 2003a, 2003c; Keeling et al., 2001; Tildesley et al., 2006) and to estimate the 

resources needed for outbreak response (USDA-APHIS-VS-CEAH, 2009).  These assessments 

may be primarily qualitative in nature, with an emphasis, for example, on comparing the relative 

efficacies of different strategies for disease control (e.g., Premashthira, 2012; Schoenbaum and 

Disney, 2003); they may be intended to provide quantitative information to guide estimates of 

specific resource needs (e.g., USDA-APHIS-VS-CEAH, 2009); or they may include elements of 

both. 

Several epidemiologic models are spatially explicit: they consider the number and locations 

of the epidemiologic units of interest (often herds, flocks, or farms) in the population under 

consideration.  These characteristics of the population then influence factors as the rate or 

probability of spread of disease among units in the population.  In most cases, these models 

require at a minimum a point coordinate to represent the geo-location of each unit in the study 

population (Bates et al., 2003b; Garner and Beckett, 2005; Harvey et al., 2007; Stevenson et al., 

2012). 

In the United States, limited information regarding the locations of farm premises is 

available.  Such detailed data either does not exist (with certain exceptions) or is not accessible 

by the public.  Spatially explicit veterinary epidemiologic modeling in the United States, then, 

often relies on artificially generated population datasets.  Some of the datasets used have been 

purely artificial, with characteristics thought to be broadly representative of different regions of 
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the US (e.g., Schoenbaum and Disney, 2003).  More recently, considerable attention has been 

devoted to the construction of population datasets from county- or state-level farm demographic 

data (USDA-NASS, 2004, 2009), with varying degrees of effort expended to ensure that the 

resulting spatial distributions of farms are realistic (Bruhn et al., 2012; Geter, 2006; Melius, 

2007; Melius et al., 2006).  Such datasets have been called “synthetic” (Bruhn et al., 2012; 

Rorres et al., 2011a, 2011b; Tildesley et al., 2012).  In at least once case, it has been possible to 

generate a synthetic population dataset directly from actual farm-level location information 

(Martin, 2009; Patyk et al., in preparation). 

In this study, we sought to compare the outcomes of epidemiologic models run with an 

accurate population dataset to those of models that made use of several available synthetic 

population datasets produced specifically for use in veterinary epidemiologic simulation 

modeling.  For this purpose, we chose to simulate the spread and control of the H5N1 strain of 

highly pathogenic avian influenza (HPAI) in commercial poultry flocks in the state of South 

Carolina.  This setting was attractive for several reasons: 1) an accurate dataset for commercial 

poultry in the state, which includes premises locations, exists at the South Carolina animal health 

authority at the Clemson University Livestock Poultry Health Division; 2) several synthetic 

datasets representing the poultry population in the state are available; and 3) a detailed set of 

input parameters for an epidemiologic model of HPAI in South Carolina was recently developed 

(Patyk et al., in preparation).  Within this context, this study is intended to address the following 

questions: 

1. How similar (or dissimilar) are the sizes, spatial distributions, and densities of several 

synthetic population datasets relative to one another, as well as to a reliable reference 

dataset that contains information on actual premises? 
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2. Does the use of synthetic datasets lead to different qualitative conclusions from modeling 

work regarding the efficacies of various strategies for disease control, relative to 

conclusions made based on the reference population dataset? 

3. Does the use of synthetic datasets affect quantitative conclusions regarding outcomes of 

epidemiologic interest (such as outbreak duration, cumulative incidence of disease, and 

other model-produced outputs) relative to conclusions made based on the reference 

dataset? 

4.2. Materials and Methods 

The conceptual modeling framework provided by the North American Animal Disease 

Spread Model (NAADSM) version 3.2 (Harvey et al., 2007; NAADSM Development Team, 

2010b) was used to develop the simulation models presented in this study.  NAADSM is a 

spatially explicit, stochastic state transition model for simulating the spread and control of highly 

infectious diseases of animals.  Disease spread in NAADSM is simulated at the unit (i.e., flock or 

premises) level.  Each unit in NAADSM is characterized by its production type, its size (the 

number of animals in the unit), and its location (specified by latitude/longitude coordinates).  The 

population datasets used in this study are described in section 4.2.1. 

A comprehensive set of input parameters suitable for simulating the spread and control of 

HPAI in the state of South Carolina was previously developed and described (Patyk et al., in 

preparation).  These parameters were used as a basis for the disease control scenarios for this 

study, described in section 4.2.2. 

We utilized the publicly available source code for NAADSM version 3.2.18 

(http://www.naadsm.org) and introduced modifications into the application so that, in each 

iteration of the stochastic model (that is, in each simulated outbreak), one flock from the 
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population is selected at random to be the initially infected unit for that particular simulated 

outbreak, from which disease might spread.  This change was made to ensure that subsequent 

conclusions were not unduly influenced by the location of any single flock in each dataset.  The 

modified version, called “Wheatland”, is available via the NAADSM website (NAADSM 

Development Team, 2012). 

4.2.1. Population datasets 

A total of five population datasets were used for this study, as described in Table 4-1 and 

illustrated in Figure 4-1.  Throughout the remainder of this paper, names used for the population 

datasets are based on their original data sources as shown in the table. 

4.2.1.1. The reference population dataset 

The reference population dataset, provided by the Clemson University Livestock Poultry 

Health Division, contained information on the actual distribution and demographics of over 95% 

of all commercial poultry premises in the state of South Carolina as of March 2012.  Geographic 

coordinates (latitude and longitude) are recorded for each of these commercial premises.  This 

information was collected in cooperation with the poultry industry in the state of South Carolina, 

under an agreement that confidentiality of the data would be maintained, and that it could be 

used for disease control efforts.  All work carried out with this reference dataset was performed 

at the Clemson University Livestock Poultry Health Division in Columbia, South Carolina, and 

no information that could be used to identify individual poultry operations was further 

distributed. 
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4.2.1.2. Synthetic population datasets 

One of the synthetic datasets was generated directly from the reference dataset according 

to methods described by Martin (2009) and used previously by Patyk et al. (in preparation).  This 

method is intended to produce an artificial population dataset based on actual data in such a way 

that prevents the identification of specific farms and protects producer privacy while maintaining 

realistic demographic and spatial distributions of premises in the population. 

Three additional synthetic population datasets representing poultry in the state of South 

Carolina were also used.  These population datasets were produced by the Lawrence Livermore 

National Laboratory (LLNL) (Melius, 2007), Research Triangle Institute (RTI) (Bruhn et al., 

2007; Bruhn et al., 2012), and the United States Department of Agriculture (USDA) – Animal 

and Plant Health Inspection Service  – Veterinary Services  – Centers for Epidemiology and 

Animal Health (Geter, 2006).  All three of these synthetic datasets were based on data from the 

2002 US Census of Agriculture, published by the USDA – National Agricultural Statistics 

Service (NASS) (USDA-NASS, 2004), but different methodologies were used to produce 

locations of premises, production types, and flock sizes for these three datasets. 

4.2.1.3. Modifications to LLNL, RTI, and USDA synthetic datasets 

The three synthetic datasets described by LLNL, RTI, and USDA were modified so that a 

standard set of commercial poultry production types developed for use with the dataset from 

Clemson University (Patyk et al., in preparation) could be consistently applied, as described in 

sections 4.2.1.3.1 and 4.2.1.3.2. 

4.2.1.3.1. Distinguishing between commercial and noncommercial poultry operations 

Although the reference (CLPHD) dataset includes data on some small noncommercial 

flocks, this information is thought to represent only about one sixth of all such in the state.  
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Rather than rely on limited information or on artificially generated data to represent these small 

noncommercial flocks, we chose to focus solely on disease spread and control among 

commercial operations. 

To ensure that only commercial flocks were included in each synthetic population 

dataset, we removed all flocks that were explicitly identified as noncommercial or backyard 

flocks.  Not all of the synthetic datasets used for this study, however, distinguish between 

commercial and noncommercial poultry operations.  To account for this, we made further 

assumptions about differences in size between commercial and noncommercial flocks.  After a 

visual examination of the distributions of flock sizes in synthetic population datasets, a minimum 

threshold of either 1000 birds (LLNL and USDA) or 500 birds (RTI) was established to 

distinguish between commercial and noncommercial poultry operations (i.e., smaller flocks were 

assumed not to be commercial operations).  These thresholds are generally compatible with those 

used in US monitoring studies and in other modeling studies (Garber et al., 2007, 2009; Smith 

and Dunipace, 2011; USDA-APHIS-VS-CEAH-NAHMS, 2005, 2008).  Poultry operations with 

fewer than the specified number of birds were then removed from datasets used for disease 

modeling. 

4.2.1.3.2. Standardization and assignment of production types 

Patyk et al. (in preparation) developed modeling parameters consistent with the NAADSM 

conceptual modeling framework for the following commercial poultry production types, which 

are identified in the reference (CLPHD) dataset: broilers, broiler breeders, broiler breeder pullets, 

egg layers, layer pullets, turkey brooders, turkey grow-out operations, quail, and quail breeders. 

The original RTI and USDA datasets include the following production types: broilers, 

turkeys, pullets, and layers.  In both cases, “broilers” were assumed to include broiler flocks and 
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broiler breeder flocks.  In both the RTI and USDA datasets, flocks identified as “broilers” were 

reassigned at random to either the broiler or the broiler breeder types.  Random assignment was 

based on the proportion of each type of flock present in the reference dataset.  Similar operations 

were performed to divide turkey flocks into turkey brooder and turkey grow-out flocks, pullet 

flocks into layer pullets and broiler breeder pullets, and in the case of the RTI dataset, “other” 

flocks into quail and quail breeder flocks. 

The population dataset obtained from LLNL contained several more production types, 

distinguished on the basis of flock size [e.g., “broilers (small)” and “broilers (large)”].  Because 

model parameters described by Patyk et al. (in preparation) do not distinguish between flocks on 

the basis of size, these categories were combined in such instances to give production types as 

defined in the reference dataset.  Turkeys and quail in the LLNL dataset were divided as 

described above to give turkey brooders and turkey grow-out operations, and quail and quail 

breeders, respectively.  Hatcheries and commercial pigeon flocks were removed from the LLNL 

dataset, because these production types do not appear in the reference dataset and were not 

included in the models of Patyk et al. (in preparation). 

4.2.2. Model input parameters for disease spread and control 

Parameters used to represent disease manifestation, transmission, and detection were all 

used directly as reported by Patyk et al. (in preparation), with one exception.  The NAADSM 

framework allows modelers to account for the influence of within-unit prevalence of disease on 

the spread of disease between units by direct contact (the introduction of infected birds into a 

previously uninfected flock) and by local-area spread.  Patyk et al. (in preparation) utilized this 

capability in their models.  The decision to not utilize this capability in the current study was 

made for two reasons: 1) the results from Patyk et al. (in preparation) illustrated that indirect 
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contact among units (which is not affected by within-unit prevalence of disease in NAADSM) is 

likely to be far more important than either disease spread by direct contact or by local-area 

spread; and 2) deficiencies in current versions of NAADSM with regard to modeling of within-

unit prevalence of disease and local-area spread have been recognized (Dunipace et al., 2009; 

Reeves and Harvey, 2011). 

Seven strategies for disease control were devised based on the baseline strategy described 

by Patyk et al. (in preparation), as shown in Table 4-2.  These strategies employed combinations 

of various measures for disease control including restriction of movements among premises after 

detection of disease, depopulation of detected infected flocks, tracing of direct and indirect 

contacts among flocks, and preemptive culling. 

4.2.3. Model outcomes 

Thirty five scenarios (5 population datasets × 7 disease control strategies) were 

developed, and 1000 iterations of each scenario were run.  Each iteration ran until no infected 

units remained in the population.  Distributions generated by each scenario for the following 

simulation outputs of epidemiological interest were compared: the duration of the outbreak, the 

total number of units infected, the proportion of units in the population that were infected, the 

total number and proportion of units in the population that were depopulated for purposes of 

disease control, and the total number and proportion of birds in the population that were 

depopulated for purposes of disease control. 

4.2.3.1. Statistical analyses of model outcomes 

As a stochastic modeling framework, NAADSM produces distributions for each output.  

Because outputs produced by NAADSM tend not to be normally distributed, we employed 

nonparametric statistical methods as described below.  We used the medians as the measures of 
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location or central tendency for these distributions.  A 95% confidence interval was estimated for 

each median using a bias-corrected accelerated (BCa) bootstrap method (Canty and Ripley, 2012; 

Davison and Hinkley, 1997; Diciccio and Efron, 1996; Efron and Tibshirani, 1994; Haukoos and 

Lewis, 2005).  In addition to the median and its confidence interval, we also calculated two 

measures of the range of each distribution: the total range (the minimum value to the maximum 

value produced by the scenario) and the 80% probability interval (the range encompassing the 

central 80% of scenario results for each outcome, i.e., the range between the 10th and the 90th 

percentiles). 

The design employed for this study utilized two factors (population dataset and disease 

control strategy) with multiple replications for each combination of factors.  We used a 

nonparametric method devised by Mack and Skillings for testing main effects in a two-factor 

design (Hollander and Wolfe, 1999; Mack and Skillings, 1980).  This test addresses the null 

hypothesis that, after accounting for the effects of one factor, the treatment effects of the other 

factor are equal.  When the presence of a statistically significant difference (p < 0.05) was 

detected, a set of pairwise tests also described by Mack and Skillings was used to assess which 

factor values produced outcomes that differed from one another. 

For purposes of comparison, outcomes were also analyzed as though they had been 

generated from a one-factor experimental design.  In this case, five separate one-factor analyses 

(one for the reference population dataset and four more for each of the synthetic population 

datasets) were carried out to compare the treatment effects of the seven disease control strategies.  

This enabled us to determine whether the use of any of the synthetic population datasets alone 

would have produced conclusions regarding the efficacies of the different disease control 
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strategies that were qualitatively different from conclusions based on scenarios that used the 

reference population dataset. 

When analysis was performed for one-factor designs, the Kruskal-Wallis test (Conover, 

1999; Kruskal and Wallis, 1952) was used to evaluate the null hypothesis that the median 

outcome produced by all control strategies were identical.  In cases where the Kruskal-Wallis 

test indicated support for the alternative hypothesis that median outcome produced by at least 

one control strategy differed from that produced by at least one other strategy, a series of 

Bonferroni-adjusted Wilcoxon rank sum tests were conducted to identify unequal medians 

(Sheskin, 2007; Wilcoxon, 1945). 

For all statistical tests, differences were deemed to be statistically significant for α less 

than 0.05.  Implementations of the Mack-Skillings test and the associated pairwise comparison 

test, the Kruskal-Wallis test, and the Wilcoxon rank sum test in R version 2.14.2 (R 

Development Core Team, 2012) were used.  In addition to those mentioned above, several other 

R packages were used to carry out the various analyses presented here (Dragulescu, 2012; Keitt 

et al., 2012; Lewin-Koh et al., 2012; Maechler et al., 2011; Neuwirth, 2011; Ripley and Lapsley, 

2012; Urbanek, 2011). 

4.2.4. Sensitivity analysis 

Of the disease spread mechanisms simulated by NAADSM, local-area spread is the most 

sensitive to spatial proximities among premises.  For all of the scenarios described above, we 

assumed that the daily probability of local-area spread from an infected to a susceptible flock, 

both of average size and located 1 km apart from one another, was 0.01 (Patyk et al., in 

preparation), and declined exponentially with greater distances (Harvey et al., 2007; NAADSM 

Development Team, 2010b). 
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In order to evaluate the robustness of the conclusions drawn from these scenarios, we ran 

an additional 70 scenarios in order to repeat all analyses for two additional levels of local-area 

spread: a “low” level (in which the daily probability of spread of disease as described above was 

0.005) and a “high” level (with a daily probability of spread of 0.02). 

4.3. Results 

4.3.1. Characterizing the populations represented by the different datasets 

Among the characteristics of each population dataset that might influence simulation 

outcomes are the number of flocks in the population, the overall density of those flocks (i.e., 

number of flocks per unit area), the size distribution (number of birds) within flocks in each 

population, and the level of spatial aggregation or clustering of flocks in the dataset.  These 

characteristics are summarized for each of the five population datasets in Table 4-3, Figure 4-1, 

and Figure 4-2. 

4.3.1.1. Flocks in the reference population dataset 

According to the reference (CLPHD) dataset, there are 832 commercial flocks in the state, 

with an average density of roughly 0.010 flocks per square kilometer.  Flock sizes in the CLPHD 

dataset range from 2500 to 1.07 million birds per flock, with a median of 73,800 birds per flock 

and a mean of 82,617 birds per flock.  Because the number of flocks and distributions of flock 

sizes in the CLPHD(A) synthetic dataset were derived directly from the reference dataset, there 

are no differences between these two datasets with respect to these characteristics. 

4.3.1.2. Flocks in the synthetic population datasets 

Of the synthetic population datasets, the USDA dataset shows the least correspondence to 

reference (CLPHD) population dataset: relative to the reference population, it overestimates by 
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roughly a factor of 2 the number (and overall density) of flocks, and underestimates by a factor 

of 10 the median size and a factor of 2.5 the mean size of commercial flocks.  Relative to the 

reference population dataset, the synthetic population datasets from LLNL and RTI 

underestimate the number of flocks by 20% to 40%, respectively, and give estimates of median 

and mean flock size that are more consistent with those of the reference population dataset. 

The LLNL, RTI, and USDA synthetic population datasets all underestimate the range of 

flock sizes relative to the reference population (Figure 4-2).  The USDA dataset again gives the 

poorest estimate of the range of flock sizes when compared to the range from the reference 

(CLPHD) dataset: the difference from smallest to largest flocks in this dataset is approximately 

170,000.  For the reference (CLPHD), LLNL, and RTI datasets, this range is approximately 1.07 

million, 460,000, and 855,000, respectively. 

4.3.1.3. Spatial distributions of the reference and synthetic populations 

At least three of the four synthetic datasets considered in this study [CLPHD (A), RTI, and 

USDA] were produced by means that were explicitly intended to reproduce realistic spatial 

distributions (Bruhn et al., 2012; Geter, 2006; Martin, 2009; Patyk et al., in preparation).  The 

degree to which these efforts succeeded can be evaluated by comparing the degree of clustering 

among premises in the reference dataset (CLPHD) to those in the synthetic datasets.  Table 4-3 

and Figure 4-1 present information regarding the spatial distributions of commercial poultry 

premises in the datasets used for this study. 

The nearest neighbor index (Clark and Evans, 1954) provides a simple measure of spatial 

aggregation.  Values of this index can range from 0 (indicating perfect clustering) to 1 

(indicating complete spatial randomness).  The nearest neighbor index calculated for the CLPHD 

dataset is 0.46, indicating considerable spatial clustering.  Processes used to generate all other 
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datasets produce populations with considerably less clustering of premises, with the exception of 

the approach described by Martin (2009), used to generate the CLPHD (A) dataset, which has a 

nearest neighbor index of 0.48 (Table 4-3). 

4.3.2. Assessing the efficacies of disease control strategies using different population 

datasets 

In most simulation modeling studies designed to evaluate disease control strategies, several 

model scenarios, each of which represents a different strategy, are run using the same population 

dataset (e.g., Rorres et al., 2011a; Schoenbaum and Disney, 2003; Tildesley et al., 2012).  These 

scenarios are then compared to rate or rank the efficacies of those strategies.  In this section, we 

address the question of whether differences among population datasets affect qualitative 

conclusions about the relative efficacies of different disease control strategies, drawn from 

simulation modeling of HPAI in South Carolina.  For each population dataset, seven disease 

control scenarios (described in Table 4-2) were run.  Strategies were ranked on the basis of the 

epidemiologic outcomes described in section 4.2.3 using statistical techniques appropriate for 

one-factor experimental designs (the disease control strategy used is the factor of interest).  

Ranks of the various strategies were then compared across all population datasets, in order to 

determine whether conclusions concerning the relative efficacies of the different strategies would 

differ depending on the population dataset used. 

4.3.2.1. Results for the reference (CLPHD) dataset 

When the CLPHD dataset was used, three statistically distinguishable groups can be 

discerned among the seven disease control strategies when outbreak duration is considered 

(Table 4-4a).  Among all disease control strategies, the use of enhanced movement restrictions 
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(strategy mr) most effectively minimized outbreak duration.  Strategies that made use of 

preemptive destruction after tracing of exposed flocks (with or without the addition of ring 

culling within 1 km: strategies trcDestr and trcDestrRing1km) constituted the second-highest 

rated group.  The remaining strategies had the least effect on outbreak duration.  The use of 

enhanced movement restrictions also most effectively minimized the number and proportion of 

all flocks infected (Table 4-4b-c: both the number and proportion of infected flocks are 

considered for reasons discussed below). 

When the total number or proportion of units or birds depopulated was considered, the 

strategies considered here were ranked in essentially four statistically distinguishable groups 

(with some overlap in the case of number of flocks depopulated: Table 4-4d-g).  The use of 

enhanced movement restrictions most effectively minimized the numbers of units and of birds 

depopulated.  Strategies that incorporated no preemptive culling (trc and baseline) made up the 

group with the second lowest number of depopulated flocks and birds, followed by a third group 

composed of strategies that use preemptive culling (trcDestr, trcDestr1km, and ring1km).  

Finally, the use of 3 km culling rings (ring3km) resulted in the largest numbers of units and birds 

depopulated. 

4.3.2.2. Results for synthetic population datasets 

When any one of the four synthetic datasets [CLPHD (A), LLNL, RTI, or USDA] was used, 

the general patterns described in the previous section can be discerned.  In all four cases, just as 

in the reference population, use of enhanced movement restrictions most effectively minimized 

outbreak duration, followed by strategies that used preemptive culling of exposed units identified 

by tracing.  As when the reference population is used, the remaining strategies are generally not 

distinguishable from one another (Table 4-4a). 
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With regard to the number or proportion of flocks infected, similar patterns could be 

discerned when the synthetic population datasets were used compared to when the reference 

population dataset was used: the use of enhanced movement restrictions always resulted in the 

smallest number of cases, followed by remaining strategies (Table 4-4b-c). 

For numbers or proportions of flocks or birds depopulated, the same trends observed in the 

case scenarios run with the CLPHD dataset were seen in scenarios run with three of the four 

synthetic datasets [CLPHD (A), LLNL, and RTI: Table 4-4d-g].  In these cases, the use of 

enhanced movement restrictions resulted in the fewest depopulated flocks and birds.  Strategies 

that do not use preemptive culling resulted in the second-fewest depopulated flocks, followed by 

strategies that made use of preemptive culling.  The use of 3 km culling rings resulted in the 

largest number of birds depopulated, either in the last-rated group by itself or with one other 

control strategy.  In the case of the USDA population dataset, unlike the others, it was not 

possible to discern differences among strategies other than the use of enhanced movement 

restrictions. 

4.3.2.3. Ranking disease control strategies regardless of the population dataset used 

The analyses presented in sections 4.3.2.1 and 4.3.2.2 were conducted as though the 

outcomes were produced by experiments with one-factor, in which the only effects of interest 

were those of the disease control strategies being simulated.  Although this is typically the case 

for investigations that make use of only one population dataset, the use of a two-factor analysis is 

a more appropriate technique for ranking control strategies in the current study.  We ranked the 

seven disease control strategies after accounting for the effects of all 5 population datasets using 

the Mack-Skillings test, as described in section 4.2.3.1.  Results are presented in Table 4-5 
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(column 1).  The patterns described in the preceding two sections were still evident after this 

analysis. 

4.3.3. Assessing quantitative differences in model outcomes when different population 

datasets are used 

Table 4-4 and Figures 4– 3 through 4–6 show quantitative results for each outcome of 

interest generated by each population dataset/disease control strategy scenario.  A simple visual 

assessment suggested that there were marked differences in the distributions of these outcomes 

due to the use of different population datasets.  Table 4-6 summarizes the results of a statistical 

comparison of the effects of the different population datasets (after accounting for the effects of 

disease control strategies) on several epidemiologic outcomes.  For each outcome considered, 

results generated with the CLPHD (A) population dataset were statistically indistinguishable 

from those generated with the CLPHD population dataset.  

By contrast, use of the LLNL and RTI datasets were significantly more likely to produce 

smaller values for all outcomes than those from scenarios that used the CLPHD dataset, thus 

underestimating the consequences of epidemics when compared to this baseline.  The median 

numbers of flocks infected were 38% and 39% lower on average for LLNL scenarios and RTI 

scenarios, respectively, than the corresponding values from scenarios based on the CLPHD 

dataset (Table 4-6b). 

Finally, for every outcome considered, the set of scenarios that used the USDA dataset had 

the lowest rank (Table 4-6): use of the USDA population dataset is statistically significantly 

more likely to produce larger values than use of any of the other population datasets.  Relative to 

scenarios based on the CLPHD dataset, scenarios that made use of the USDA dataset showed a 

significant tendency to overestimate the consequences of an epidemic, regardless of the disease 
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control strategy employed.  For example, the median number of flocks infected in scenarios 

based on the USDA dataset was on average more than 2500% higher than the median number of 

flocks infected in scenarios based on the CLPHD dataset (Table 4-6b). 

Among the scenarios that use different population datasets, the quantitative outcomes 

described above are not simply proportional to the number of units in the population.  As shown 

in Table 4-6c, scenarios from outcomes based on different population datasets differed 

significantly in not only the number of units infected, but also in the proportion of units in the 

population infected.  Significant differences were also present in the proportion of units in the 

population depopulated, and in the proportion of birds in the population depopulated (Table 

4-6e,g). 

4.3.4. Sensitivity of model outcomes to different levels of local-area spread 

4.3.4.1. Ranking disease control strategies for all levels of local-area spread 

The ranks of disease control strategies based on model outcomes for all three levels of 

local-area spread (moderate, low, and high) after adjusting for the effects of the population 

datasets are shown in Table 4-5.  Although the statistical grouping of control strategies varied 

slightly for the different levels of local-area spread, the same general ranks and trends described 

in section 4.3.2 can be observed. 

4.3.4.2. Assessing differences in model outcomes with different population datasets and different 

levels of local-area spread 

The ranks of model outcomes from scenarios based on different population datasets for all 

three levels of local-area spread after adjusting for the effects of the disease control strategies 

simulated are shown in Table 4-7.  Again, although there is some overlap among statistically 
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distinguishable groups, the ranks and patterns are generally the same for all levels of local-area 

spread. 

4.4. Discussion 

It is generally acknowledged that the number and spatial distribution of premises are critical 

factors in simulation modeling of infectious diseases of animals (e.g., Bruhn et al., 2012; 

Carpenter, 2011).  Earlier work has shown that the spatial scales and distributions used to 

represent animal populations can affect outcomes of simulated epidemics in livestock, poultry, 

and wildlife (Carpenter, 2011; Highfield et al., 2008; Rorres et al., 2011b).  Our aim in this study 

was to assess the impact on simulation modeling outcomes of several available synthetic 

population datasets, and to compare the conclusions drawn from scenarios that make use of such 

synthetic datasets to those drawn from scenarios that use a reliable reference population.  A 

summary of our findings, within the context of the current study, is as follows: 

1. Substantial differences exist among synthetic population datasets with regard to the number 

of flocks, the number of birds per flock, and spatial distribution of premises. 

Although three of the four synthetic population datasets considered here (LLNL, RTI, 

and USDA) are based on the same underlying information, different methods were used to 

produce premises locations, production types, and flock sizes for these three datasets.  These 

differences resulted in considerable variation among population datasets. 

Data available from NASS does not specify the number of individual premises within a 

county or state.  Due to the way in which individual operations are defined for the purposes of 

NASS, poultry operations with multiple production types present at the same location will be 

recorded multiple times in the agricultural census.  The total number of poultry operations 

recorded by NASS, then, can exceed the number of actual premises.  This situation is known to 
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occur, particularly among smaller poultry operations (USDA-APHIS-VS-CEAH-NAHMS, 

2008).  There is no single, reliable, publicly available estimate of the number of unique farm 

locations represented in data from NASS.  The problem was acknowledged and addressed in the 

production of the original RTI dataset (Bruhn et al., 2012), acknowledged but unaddressed in the 

production of the original LLNL dataset (Melius, 2007), and apparently neither acknowledged 

nor addressed in the production of the USDA dataset (Geter, 2006).  This handling of NASS 

premises definitions may be partly responsible for the substantial discrepancies in the number of 

flocks among these population datasets, but other factors must also affect estimates of the 

number of farms: the RTI and LLNL datasets are in relatively close agreement on the number of 

commercial flocks, in spite of the fact that the NASS premises definition is accounted for in one 

but not in the other. 

The discrepancies in the number of flocks are even more substantial when the small 

operations (excluded from the current study) are included.  According to estimates from the 

Clemson Livestock Poultry Health Division, there are approximately 6200 flocks (commercial 

and noncommercial) in the state of South Carolina (Patyk et al., in preparation).  In the original 

synthetic datasets from LLNL, RTI, and USDA, there are 9668, 1959, and 2900 total poultry 

operations, respectively. 

2. Use of any of the synthetic population datasets included in this study generally does not 

affect qualitative conclusions regarding strategies for disease control of HPAI in South 

Carolina. 

We have demonstrated that there is general agreement among models of HPAI in South 

Carolina that utilize different population datasets (actual or synthetic) when the scope of the 

investigation is limited to performing a qualitative assessment of the efficacies of various disease 
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control measures.  This conclusion was shown to hold for several levels of local-area spread, 

which is expected to be the model parameter most strongly affected by differences in spatial 

distributions among farms. 

An exception to this general conclusion is evident when the numbers of flocks and birds 

depopulated are considered.  When the USDA dataset is used, it is not possible to distinguish 

among most disease control strategies simulated here from one another.  If only this population 

dataset had been used, very different conclusions would have been drawn regarding the benefits 

and costs of implementing preemptive ring culling than if the reference population dataset or any 

of the other synthetic population datasets had been used.  

3. The choice of the synthetic population dataset to use for modeling can have a considerable 

impact on quantitative outcomes. 

Pronounced differences among model outcomes are observed when the attempt is made to 

draw conclusions regarding the quantitative consequences of simulated outbreaks.  These 

consequences may be substantially under- or overestimated relative to outcomes generated with 

the reference population, depending on properties of the population dataset used.  These 

differences in model outcomes are not simply proportional to the number of premises in each 

population. 

4. The (qualitative) conclusions drawn from this study are not sensitive to the values used to 

represent local-area spread. 

Of the parameters used in the NAADSM framework, those that represent local-area spread 

(that is, the non-directional spread of disease among premises in close proximity to one another) 

are the most difficult to quantitatively characterize.  Efforts to characterize similar phenomena 
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have been developed for spatial kernel-based mathematical models of disease spread (e.g., 

Rorres et al., 2010, 2011a). 

Here, we represented local-area spread as a range of values, informed by the opinions and 

experience of the authors, in order to determine whether any value of local-area spread within a 

reasonable range would lead to different conclusions.  Regardless of the values for local-area 

spread used, we found no differences in the ranks of disease control strategies with regard to 

their relative efficacies, nor in the ranks of population datasets with regard to their quantitative 

outcomes.  Quantitative values for outcomes such as number of infected flocks and outbreak 

duration did vary with different levels of local-area spread (data not shown), but these 

differences are not germane to the objectives or conclusions of this particular study. 

4.4.1. Additional caveats 

4.4.1.1. Backyard flocks 

Backyard flocks were excluded from the present study for two reasons.  First, the purpose 

of this study was to investigate potential differences among model outcomes when population 

datasets containing coordinates of actual poultry operations are used, versus model outcomes 

produced when artificially generated locations of premises are used.  This would not have been 

possible for backyard flocks, for the vast majority of which the actual locations are not known.   

Second, preliminary modeling investigations demonstrated that, in the scenarios presented, 

backyard flocks made very small contributions to the outcomes described above (data not 

shown).  This finding is consistent with previous modeling work conducted on the impact of 

backyard flocks on the spread of avian influenza in commercial flocks (Bavinck et al., 2009; 

Smith and Dunipace, 2011). 
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4.4.1.2. Production type determinations 

As described in section 4.2.1.3.2, the original population datasets produced by Lawrence 

Livermore National Laboratory, RTI International, and USDA-APHIS-VS-CEAH were modified 

to allow the use of poultry production types as defined in the study by Patyk et al. (in 

preparation).  These modifications were made to allow as fair a comparison as possible among 

results generated with the different population datasets: an attempt to parameterize each model 

separately based on the production types included in the original population datasets would have 

obscured the effects of the factors of primary interest, namely, the differences in number, size, 

and spatial distribution of flocks in the population datasets.  The process that we used, although 

somewhat subjective, was not unlike the process used in the construction of most other 

simulation models.  Given the aims of the current study, it is our opinion that these modifications 

did not meaningfully affect our conclusions. 

4.4.2. Implications for the control of HPAI in populations of commercial flocks 

Although comparing the efficacies of strategies for disease control for highly pathogenic 

avian influenza was not a primary purpose of this study, some useful conclusions can still be 

drawn.  It is clear from the results presented above, and not unexpected, that reducing the 

frequency of effective contact (for example, by reducing the number of movements of birds, 

personnel, or equipment between farms) has a much greater impact on the control of disease than 

other efforts to control disease: the imposition of enhanced movement restrictions resulted in 

simulated outbreaks of the shortest durations, and with the smallest numbers of infected and 

depopulated flocks, compared to all other control strategies.  Of greater interest is the question of 

what additional steps should be taken once contacts have been restricted to the lowest practical 

level.  Results from this study suggest that tracing of potentially dangerous contacts, coupled 
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with quarantine or preemptive destruction of flocks identified by such tracing activities, will be 

more effective in this setting than preemptive culling strategies based on proximity to detected 

infected flocks. 

The enhanced movement restrictions simulated in this study were applied statewide, 

which likely would not be practical in the event of an actual outbreak.  It would be useful in 

future studies to assess the effects of more localized application of such restrictions.  This study 

also assumed near-perfect capabilities to detect disease in infected flocks: detection based on 

diagnostic testing was assumed for the sake of simplicity to be perfect, and the probability of 

detection based on observation of clinical disease was assumed to be high as well.  The effects of 

more realistic capabilities to detect highly pathogenic avian influenza in commercial settings 

should also be explored further. 

4.5. Conclusions 

The results of this study suggest that quantitative outcomes from epidemiologic modeling 

are highly sensitive to the number of farms included.  Continuing efforts to use data from the US 

Census of Agriculture to generate synthetic population datasets for epidemiologic modeling 

should critically consider how to more accurately represent the actual number of farms in the 

population.  In situations when a reliable reference dataset is available, as is the case for poultry 

in South Carolina, opportunities exist for validation of methods used to produce synthetic 

population datasets. 

Although this study indicates that there are differences among the synthetic population 

datasets with respect to how well they reflect the spatial distribution of farm premises (i.e., the 

degree of clustering in the population), this study does not address the sensitivity of simulation 
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modeling outcomes to the spatial distributions of farms.  It would be helpful to further explore 

this characteristic, as it likely also has an effect on quantitative simulation outcomes. 

For results of simulation models to be credible, the population datasets on which they are 

based should represent reality to as great an extent as possible.  In situations where actual data 

exists but cannot be shared due to concerns about privacy or confidentiality, an approach to 

generating artificial populations such as that described by Martin (2009), which preserves spatial 

context as well as population demographics, is clearly useful.  When actual data is simply not 

available and when credible quantitative outcomes are either desired or required, it may be 

reasonable to base conclusions on models derived, not from a single population dataset, but from 

several such datasets.  The ability to incorporate parameter uncertainty and estimate a range of 

possible outcome values that account for such uncertainty is a key advantage of the stochastic 

modeling framework.  When a source of uncertainty is the population dataset itself, this factor 

should be accounted for.  At a minimum, studies that rely on synthetic population datasets to 

generate quantitative estimates should explicitly acknowledge the potentially high degree of 

uncertainty surrounding those estimates. 

 

  



126 

Table 4-1.  Population datasets used in this study. 

Population 
dataset 

Description Relevant sources 

CLPHD The reference population dataset.  Actual premises 
locations provided by the Clemson University Livestock 
Poultry Health Division (CLPHD).  This dataset represents 
over 95% of all commercial poultry operations in the state of 
South Carolina as of March 2012. 
 

 

CLPHD (A) Data from the CLHPD dataset, modified in order to prevent 
identification of individual premises while preserving 
realistic spatial relationships among premises. 
 

Martin, 2009; Patyk et 
al., in preparation  

LLNL Population dataset derived from original work conducted at 
Lawrence Livermore National Laboratory (LLNL) as 
described in the text. 
 

Melius, 2007 

RTI Population dataset derived from original work conducted at 
the Research Triangle Institute (RTI) as described in the 
text. 
 

Bruhn et al., 2007, 
2012 

USDA Population dataset derived from original work conducted at 
the US Department of Agriculture – Animal and Plant 
Health Inspection Service – Veterinary Services – Centers 
for Epidemiology and Animal Health (USDA-APHIS-VS-
CEAH) as described in the text. 
 

Geter, 2006 
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Table 4-2.  Control strategies used in this study. 

Strategy name Summary of control measures 
Baseline (baseline) The following control measures are used in the baseline disease control strategy: 

 Immediate cessation of direct contact involving detected, infected units 
 Reduction in the rate of direct contact among all flocks to 0% of the normal level by day 7 after 

detection of disease in any flock 
 Reduction in the rate of indirect contact among all flocks to 50% of the normal level by day 7 after 

detection of disease in any flock 
 Depopulation of all detected infected units 
 Increase in capacity to carry out depopulation from an initial level of 2 units per day to a level of 5 

units per day by day 7 after detection of disease in any flock 
 

Enhanced movement restrictions (mr) All measures employed in the baseline strategy, except: 
 Rate of direct contact among all flocks is reduced to 0% of the normal level by day 5 after detection 

of disease in any flock 
 Rate of indirect contact among all flocks is reduced to 30% of the normal level by day 5 after 

detection of disease in any flock 
 

1 km ring culling (ring1km) All measures employed in the baseline strategy, plus: 
 All flocks within 1 km of a detected infected flock will be preemptively depopulated 
 

3 km ring culling (ring3km) All measures employed in the baseline strategy, plus: 
 All flocks within 3 km of a detected infected flock will be preemptively depopulated 
 

Tracing without preemptive destruction 
(trc) 

All measures employed in the baseline strategy, plus: 
 Tracing forward and tracing back (tracing out and tracing in) of direct and indirect contacts involving 

an infected detected flock that occurred within 21 days prior to disease detection 
o 99% probability of successfully identifying other units involved in direct contact 
o 80% probability of successfully identifying other units involved in indirect contact 

 Immediate cessation of direct contact involving units identified by tracing 
 Diagnostic testing for infection in all units identified by tracing.  Units detected by diagnostic testing 

will trigger additional control measures (further tracing, etc.) 
o Unit-level tests were assumed to be perfect (i.e., 100% sensitivity and 100% specificity) 
o Delay of 0 to 3 days to obtain diagnostic test results 

 

Tracing with preemptive destruction 
(trcDestr) 

All measures employed in trc, plus: 
 Preemptive depopulation of units identified by trace-forward (trace-out) investigations of direct 

or indirect contact 
 

Tracing with preemptive destruction and 
1 km ring culling (trcDestrRing1km) 

All measures employed in trcDestr, plus: 
 All flocks within 1 km of a detected infected flock will be preemptively depopulated 
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Table 4-3.  Characteristics of commercial poultry population datasets used in this study. 

Population 
dataset1 

Number of commercial 
flocks2 

Number of birds per commercial flock Nearest 
neighbor

index4 Total 
count 

Average density 
(flocks per km2) 

Median Mean Standard 
deviation 

Range 

CLPHD 832 0.010 73,800 82,617 81,931 
2500 – 

1,070,000 
0.4554 

CLPHD (A)3       0.4759 

LLNL 670 0.008 65,233 65,233 6,9306 
1008 – 
461,725 

0.7556 

RTI 506 0.006 64,822 89,514 101,948 
720 – 

856,076 
0.6063 

USDA 1740 0.022 6331 33,131 43,530 
1384 – 
170,916 

0.6934 

1 Population datasets are described in Table 4-1. 
2 Overall density was calculated based on an estimate of the area of the state of South Carolina of 80,700 
square kilometers. 
3 Number of flocks in this population dataset and the distribution of the number of birds per flock are 
identical to the primary CLPHD dataset. 
4 Higher values of the Clark-Evans nearest neighbor index indicate lower levels spatial aggregation 
(Baddeley and Turner, 2005; Clark and Evans, 1954). 
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Table 4-4.  Summaries of model outcomes generated by 1000 stochastic iterations of each population dataset/control strategy scenario. 

a) Outbreak duration (days) Outbreaks were considered to have ended when no infected premises remained. 

Population 
dataset 

Disease control strategy4 
mr  trcDestr  trcDestrRing1km  ring3km  trc  ring1km  baseline 

CLPHD 

Rank1 1a 2bc 3bc 4bcd 5bcd 6cd 7cd 
Median 
(95% CI)2 

22 
(21-22) 

30 
(28-31) 

30 
(27-32) 

36 
(34-39) 

36 
(33-38) 

38 
(34-39) 

41 
(36-44) 

Range 
(80% PI)3 

2-113 
(13-41) 

2-160 
(14-113) 

2-146 
(15-114) 

2-151 
(15-112) 

2-147 
(14-113) 

2-153 
(15-113) 

2-150 
(16-111) 

CLPHD 
(A) 

Rank1 1a 2bc 3bcd 7de 4cde 5cde 6cde 
Median 
(95% CI)2 

22 
(20-22) 

28 
(25-29) 

31 
(29-32) 

39 
(35-41) 

36 
(32-37) 

38 
(33-39) 

38 
(35-41) 

Range 
(80% PI)3 

2-109 
(13-41) 

2-149 
(14-115) 

2-150 
(14-113) 

2-145 
(15-111) 

2-159 
(15-113) 

2-153 
(15-111) 

2-154 
(14-111) 

LLNL 

Rank1 1a 2b 3b 6cde 4cd 7de 5cde 
Median 
(95% CI)2 

20 
(19-20) 

23 
(22-22) 

24 
(23-24) 

30 
(28-31) 

27 
(26-26) 

31 
(29-32) 

29 
(27-30) 

Range 
(80% PI)3 

2-61 
(12-31) 

2-124 
(14-67) 

2-127 
(13-73) 

2-129 
(14-68) 

2-119 
(14-66) 

2-128 
(14-74) 

2-126 
(14-63) 

RTI 

Rank1 1a 2b 3b 7c 4c 6c 5c 
Median 
(95% CI)2 

20 
(19-20) 

22 
(21-22) 

24 
(22-24) 

30 
(28-30) 

28 
(26-29) 

29 
(27-30) 

29 
(27-29) 

Range 
(80% PI)3 

2-70 
(12-31) 

2-90 
(13-51) 

2-104 
(13-55) 

2-96 
(15-61) 

2-93 
(14-62) 

2-95 
(15-59) 

2-95 
(14-59) 

USDA 

Rank1 1a 2bc 3bcd 5bcd 4bcd 6bcd 7cd 
Median 
(95% CI)2 

25 
(23-25) 

96 
(94-97) 

96 
(93-96) 

96 
(94-96) 

96 
(93-96) 

97 
(95-97) 

97 
(95-98) 

Range 
(80% PI)3 

2-189 
(13-133) 

2-168 
(18-116) 

2-179 
(17-117) 

2-183 
(19-117) 

2-172 
(18-116) 

2-209 
(19-118) 

2-180 
(21-120) 

1 Ranks for each control strategy are based on the rank sum score calculated for the Kruskal-Wallis test (Conover, 1999). 
2 Bootstrap confidence intervals for medians were generated as described in the text. 
3  The 80% probability interval includes the central 80% of values from each simulation, i.e., the range between the 10th and 90th percentiles. 
4 Disease control strategies are described in Table 4-2. 
a-g Within each set of disease control strategies run for a particular population dataset, outcomes indicated with the same letter do not differ significantly from one 
another, as determined by post-hoc pairwise comparisons made after application of the Kruskal-Wallis test (Sheskin, 2007) as described in the text.
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Table 4-4 (continued). 

Note: Disease control strategies are listed in rank order for each individual outcome of interest, based on the reference (CLPHD) population 
dataset.  This order is not necessarily the same for all outcomes. 

b) Total number of infected flocks 

Population 
dataset 

Disease control strategy4 
mr  trcDestr  ring3km  trcDestrRing1km trc  ring1km  baseline 

CLPHD 

Rank1 1a  2b 3b 4b 5b 6b 7b

Median 
(95% CI)2 

18 
(16‐19) 

48 
(42‐56) 

52 
(43‐60) 

50 
(41‐59) 

60 
(51‐70) 

65 
(55‐75) 

66 
(56‐77) 

Range 
(80% PI)3 

0‐527 
(2‐97) 

0‐780 
(4‐752) 

0‐787 
(4‐747) 

0‐775 
(5‐748) 

0‐782 
(4‐751) 

0‐783 
(5‐748) 

0‐783 
(5‐747) 

CLPHD 
(A) 

Rank1 1a  2b 6b 3b 4b 7b 5b

Median 
(95% CI)2 

19 
(16‐20) 

41 
(34‐45) 

66 
(55‐72) 

52 
(46‐62) 

56 
(47‐68) 

64 
(54‐72) 

60 
(53‐73) 

Range 
(80% PI)3 

0‐505 
(2‐85) 

0‐787 
(3‐750)

0‐785 
(5‐744)

0‐783 
(4‐750)

0‐789 
(4‐748)

0‐788 
(5‐748)

0‐785 
(4‐749)

LLNL 

Rank1 1a  2bc 6bcd 3bcd 4bcd 7cd 5bcd

Median 
(95% CI)2 

14 
(12‐14) 

29 
(25‐31) 

37 
(31‐40) 

30 
(26‐33) 

31 
(28‐34) 

38 
(34‐44) 

35 
(31‐38) 

Range 
(80% PI)3 

0‐223 
(2‐48) 

0‐641 
(4‐263)

0‐644 
(2‐260)

0‐643 
(3‐277)

0‐651 
(3‐253)

0‐642 
(3‐302)

0‐637 
(3‐211)

RTI 

Rank1 1a  2bc  7de  3bcd  4cde  6cde  5cde 

Median 
(95% CI)2 

14 
(12‐14) 

24 
(21‐26)

40 
(33‐44)

29 
(26‐32)

34 
(30‐36)

35 
(31‐39)

35 
(31‐40)

Range 
(80% PI)3 

0‐302 
(2‐49) 

0‐414 
(2‐172) 

0‐456 
(4‐224) 

0‐445 
(3‐197) 

0‐457 
(3‐236) 

0‐445 
(4‐193) 

0‐445 
(3‐182) 

USDA 

Rank1 1a  3b 4b 2b 5b 6b 7b

Median 
(95% CI)2 

29 
(24‐30) 

1689 
(1686‐1690) 

1688 
(1685‐1690) 

1688 
(1685‐1689) 

1689 
(1685‐1690) 

1688 
(1686‐1689) 

1689 
(1686‐1689) 

Range 
(80% PI)3 

0‐1566 
(3‐1398) 

0‐1721 
(10‐1703)

0‐1717 
(9‐1704)

0‐1717 
(9‐1703)

0‐1717 
(8‐1704)

0‐1719 
(10‐1704)

0‐1718 
(13‐1702)
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Table 4-4 (continued). 

c) Proportion of all flocks in the population infected 

Population 
dataset 

Disease control strategy4 

mr trcDestr ring3km trcDestrRing1km trc ring1km baseline 

CLPHD 

Rank1 1a 2b 3b 4b 5b 6b 7b 
Median 
(95% CI)2 

0.022 
(0.019-0.023) 

0.058 
(0.05-0.069) 

0.062 
(0.052-0.072) 

0.06 
(0.049-0.071) 

0.072 
(0.061-0.084) 

0.078 
(0.066-0.091) 

0.079 
(0.067-0.093) 

Range 
(80% PI)3 

0-0.633 
(0.002-0.117) 

0-0.938 
(0.005-0.904) 

0-0.946 
(0.005-0.898) 

0-0.931 
(0.006-0.899) 

0-0.94 
(0.005-0.903) 

0-0.941 
(0.006-0.899) 

0-0.941 
(0.006-0.898) 

CLPHD 
(A) 

Rank1 1a 2b 6b 3b 4b 7b 5b 
Median 
(95% CI)2 

0.023 
(0.019-0.024) 

0.049 
(0.041-0.054) 

0.079 
(0.066-0.086) 

0.063 
(0.054-0.074) 

0.067 
(0.056-0.081) 

0.077 
(0.064-0.087) 

0.073 
(0.064-0.088) 

Range 
(80% PI)3 

0-0.607 
(0.002-0.102) 

0-0.946 
(0.004-0.901) 

0-0.944 
(0.006-0.894) 

0-0.941 
(0.005-0.902) 

0-0.948 
(0.005-0.899) 

0-0.947 
(0.006-0.899) 

0-0.944 
(0.005-0.9) 

LLNL 

Rank1 1a 2bc 6bcd 3bcd 4bcd 7cd 5bcd 
Median 
(95% CI)2 

0.021 
(0.018-0.022) 

0.043 
(0.037-0.046) 

0.055 
(0.046-0.06) 

0.044 
(0.039-0.049) 

0.046 
(0.042-0.051) 

0.057 
(0.052-0.066) 

0.052 
(0.046-0.056) 

Range 
(80% PI)3 

0-0.333 
(0.003-0.072) 

0-0.957 
(0.006-0.393) 

0-0.961 
(0.003-0.388) 

0-0.96 
(0.004-0.413) 

0-0.972 
(0.004-0.378) 

0-0.958 
(0.004-0.451) 

0-0.951 
(0.004-0.315) 

RTI 

Rank1 1a 2bc 7de 3bcd 4cde 6cde 5cde 
Median 
(95% CI)2 

0.028 
(0.024-0.028) 

0.047 
(0.042-0.051) 

0.079 
(0.065-0.086) 

0.057 
(0.049-0.062) 

0.067 
(0.059-0.071) 

0.069 
(0.06-0.077) 

0.069 
(0.061-0.078) 

Range 
(80% PI)3 

0-0.597 
(0.004-0.097) 

0-0.818 
(0.004-0.34) 

0-0.901 
(0.008-0.443) 

0-0.879 
(0.006-0.39) 

0-0.903 
(0.006-0.467) 

0-0.879 
(0.008-0.382) 

0-0.879 
(0.006-0.36) 

USDA 

Rank1 1a 3b 4b 2b 5b 6b 7b 
Median 
(95% CI)2 

0.017 
(0.014-0.017) 

0.971 
(0.969-0.971) 

0.97 
(0.969-0.971) 

0.97 
(0.968-0.971) 

0.971 
(0.968-0.971) 

0.97 
(0.968-0.971) 

0.971 
(0.969-0.971) 

Range 
(80% PI)3 

0-0.9 
(0.002-0.804) 

0-0.989 
(0.006-0.979) 

0-0.987 
(0.005-0.979) 

0-0.987 
(0.005-0.979) 

0-0.987 
(0.005-0.979) 

0-0.988 
(0.006-0.979) 

0-0.987 
(0.007-0.978) 
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Table 4-4 (continued). 

d) Total number of flocks depopulated 

Note: Simulated outbreaks ended when no infected flocks remained in the population, not when all disease control activities had been completed: 
it is possible that, due to limited capacity to carry out depopulation, not all scheduled depopulation had been carried out at the time of the end of 
each simulated outbreak.  Consequently, the numbers and proportions of depopulated flocks and birds do not necessarily represent the total 
required depopulation effort. 

Population 
dataset 

Disease control strategy4 

mr trc baseline ring1km trcDestr trcDestrRing1km ring3km 

CLPHD 

Rank1 1a 2bcd 3bcde 4bcdef 5cdefg 6defg 7efg 
Median 
(95% CI)2 

18 
(15-19) 

60 
(51-70) 

65 
(57-77) 

76 
(66-86) 

78 
(68-91) 

85 
(68-94) 

110 
(95-125) 

Range 
(80% PI)3 

0-505 
(3-95) 

0-680 
(5-505) 

0-690 
(6-500) 

0-705 
(6-510) 

0-740 
(10-505) 

0-665 
(11-510) 

0-700 
(11-505) 

CLPHD 
(A) 

Rank1 1a 2bc 3bc 4bcd 5bcd 6cde 7de 
Median 
(95% CI)2 

19 
(17-20) 

57 
(48-69) 

60 
(52-70) 

74 
(63-84) 

70 
(58-79) 

90 
(79-99) 

130 
(113-141) 

Range 
(80% PI)3 

0-480 
(3-85) 

0-740 
(5-510) 

0-710 
(5-500) 

0-705 
(6-500) 

0-690 
(9-515) 

0-690 
(11-505) 

0-670 
(12-495) 

LLNL 

Rank1 1a 2bc 3bc 4bcd 5cde 6de 7de 
Median 
(95% CI)2 

15 
(13-16) 

32 
(29-35) 

36 
(32-38) 

39 
(34-46) 

47 
(40-50) 

50 
(44-54) 

56 
(50-63) 

Range 
(80% PI)3 

0-217 
(3-48) 

0-540 
(4-252) 

0-565 
(4-207) 

0-590 
(4-295) 

0-560 
(9-275) 

0-575 
(7-301) 

0-565 
(4-280) 

RTI 

Rank1 1a 2b 3b 4b 5b 6c 7d 
Median 
(95% CI)2 

14 
(12-14) 

34 
(29-36) 

36 
(31-40) 

39 
(34-44) 

41 
(36-44) 

50 
(44-51) 

68 
(60-74) 

Range 
(80% PI)3 

0-280 
(3-49) 

0-405 
(3-230) 

0-410 
(4-179) 

0-410 
(5-198) 

0-380 
(6-195) 

0-455 
(8-220) 

0-410 
(8-235) 

USDA 

Rank1 1a 2b 6b 5b 3b 4b 7b 
Median 
(95% CI)2 

30 
(26-32) 

425 
(410-430) 

425 
(410-425) 

430 
(420-435) 

420 
(410-420) 

425 
(410-425) 

425 
(415-430) 

Range 
(80% PI)3 

0-885 
(4-605) 

0-780 
(9-530) 

0-776 
(14-543) 

0-833 
(13-535) 

0-790 
(20-525) 

0-820 
(20-530) 

0-865 
(23-535) 
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Table 4-4 (continued). 

e) Proportion of all flocks in the population depopulated 

Note: Simulated outbreaks ended when no infected flocks remained in the population, not when all disease control activities had been completed: 
it is possible that, due to limited capacity to carry out depopulation, not all scheduled depopulation had been carried out at the time of the end of 
each simulated outbreak.  Consequently, the numbers and proportions of depopulated flocks and birds do not necessarily represent the total 
required depopulation effort. 

Population 
dataset 

Disease control strategy4 

mr trc baseline ring1km trcDestr trcDestrRing1km ring3km 

CLPHD 

Rank1 1a 2bcd 3bcde 4bcdef 5cdefg 6defg 7efg 
Median 
(95% CI)2 

0.022 
(0.019-0.023) 

0.072 
(0.061-0.084) 

0.078 
(0.068-0.093) 

0.091 
(0.079-0.103) 

0.094 
(0.083-0.11) 

0.102 
(0.082-0.114) 

0.133 
(0.115-0.15) 

Range 
(80% PI)3 

0-0.607 
(0.004-0.114) 

0-0.817 
(0.006-0.607) 

0-0.829 
(0.007-0.601) 

0-0.847 
(0.007-0.613) 

0-0.889 
(0.012-0.607) 

0-0.799 
(0.013-0.613) 

0-0.841 
(0.013-0.607) 

CLPHD (A) 

Rank1 1a 2bc 3bc 4bcd 5bcd 6cde 7de 
Median 
(95% CI)2 

0.023 
(0.019-0.024) 

0.069 
(0.058-0.083) 

0.072 
(0.062-0.085) 

0.089 
(0.076-0.101) 

0.084 
(0.07-0.095) 

0.108 
(0.094-0.119) 

0.156 
(0.136-0.169) 

Range 
(80% PI)3 

0-0.577 
(0.004-0.102) 

0-0.889 
(0.006-0.613) 

0-0.853 
(0.006-0.601) 

0-0.847 
(0.007-0.601) 

0-0.829 
(0.011-0.619) 

0-0.829 
(0.013-0.607) 

0-0.805 
(0.014-0.595) 

LLNL 

Rank1 1a 2bc 3bc 4bcd 5cde 6de 7de 
Median 
(95% CI)2 

0.022 
(0.019-0.024) 

0.048 
(0.042-0.052) 

0.054 
(0.048-0.058) 

0.058 
(0.052-0.069) 

0.07 
(0.06-0.075) 

0.075 
(0.066-0.082) 

0.084 
(0.075-0.093) 

Range 
(80% PI)3 

0-0.324 
(0.004-0.072) 

0-0.806 
(0.006-0.376) 

0-0.843 
(0.006-0.309) 

0-0.881 
(0.006-0.44) 

0-0.836 
(0.013-0.41) 

0-0.858 
(0.01-0.449) 

0-0.843 
(0.006-0.418) 

RTI 

Rank1 1a 2b 3b 4b 5b 6c 7d 
Median 
(95% CI)2 

0.028 
(0.024-0.028) 

0.067 
(0.056-0.07) 

0.071 
(0.061-0.079) 

0.077 
(0.067-0.087) 

0.081 
(0.071-0.087) 

0.099 
(0.087-0.101) 

0.133 
(0.119-0.147) 

Range 
(80% PI)3 

0-0.553 
(0.006-0.097) 

0-0.8 
(0.006-0.455) 

0-0.81 
(0.008-0.354) 

0-0.81 
(0.01-0.392) 

0-0.751 
(0.012-0.385) 

0-0.899 
(0.016-0.435) 

0-0.81 
(0.016-0.464) 

USDA 

Rank1 1a 2b 6b 5b 3b 4b 7b 
Median 
(95% CI)2 

0.017 
(0.015-0.018) 

0.244 
(0.236-0.247) 

0.244 
(0.236-0.244) 

0.247 
(0.241-0.25) 

0.241 
(0.233-0.241) 

0.244 
(0.236-0.244) 

0.244 
(0.239-0.247) 

Range 
(80% PI)3 

0-0.509 
(0.002-0.348) 

0-0.448 
(0.005-0.305) 

0-0.446 
(0.008-0.312) 

0-0.479 
(0.007-0.307) 

0-0.454 
(0.011-0.302) 

0-0.471 
(0.011-0.305) 

0-0.497 
(0.013-0.307) 
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Table 4-4 (continued). 

f) Total number of birds depopulated (millions) 

Note: Simulated outbreaks ended when no infected flocks remained in the population, not when all disease control activities had been completed: 
it is possible that, due to limited capacity to carry out depopulation, not all scheduled depopulation had been carried out at the time of the end of 
each simulated outbreak.  Consequently, the numbers and proportions of depopulated flocks and birds do not necessarily represent the total 
required depopulation effort. 

Population 
dataset 

Disease control strategy4 

mr trc baseline ring1km trcDestr trcDestrRing1km ring3km 

CLPHD 

Rank1 1a 2bc 3bc 4bcd 5cd 6cd 7cd 
Median 
(95% CI)2 

1.4 
(1.3-1.6) 

4.6 
(4-5.5) 

5.4 
(4.5-6.1) 

5.6 
(5.1-6.7) 

6.3 
(5.6-7.1) 

6.9 
(5.7-7.9) 

8.7 
(7.8-10.4) 

Range 
(80% PI)3 

0-43.5 
(0.1-7.7) 

0-59.4 
(0.2-49.8) 

0-60.4 
(0.3-48.8) 

0-60 
(0.3-49.3) 

0-61.5 
(0.6-49.8) 

0-59 
(0.6-49.7) 

0-59.8 
(0.5-49) 

CLPHD 
(A) 

Rank1 1a 3bc 2bc 4bcd 5bcd 6cde 7de 
Median 
(95% CI)2 

1.5 
(1.3-1.6) 

4.6 
(4-5.3) 

4.8 
(4-5.3) 

6.2 
(5.1-6.8) 

5.3 
(4.6-6.1) 

7.1 
(6-8.1) 

10.1 
(9.1-11.7) 

Range 
(80% PI)3 

0-40.4 
(0.1-6.8) 

0-62.2 
(0.2-49.5) 

0-60 
(0.2-48.7) 

0-60.7 
(0.3-48.6) 

0-60.8 
(0.5-49.9) 

0-59.5 
(0.5-49.3) 

0-59.2 
(0.7-48.5) 

LLNL 

Rank1 1a 2b 3b 4cd 5cde 6de 7de 
Median 
(95% CI)2 

1 
(0.9-1.1) 

2.4 
(2.1-2.6) 

2.7 
(2.3-2.9) 

3 
(2.7-3.3) 

3.6 
(3.3-3.9) 

3.8 
(3.4-4.1) 

4.5 
(4.2-4.9) 

Range 
(80% PI)3 

0-17.1 
(0.1-3.2) 

0-49 
(0.2-18.6) 

0-51.7 
(0.2-15.6) 

0-53.5 
(0.2-22.5) 

0-48.3 
(0.5-20.5) 

0-52.8 
(0.4-22.8) 

0-51.7 
(0.3-21.3) 

RTI 

Rank1 1a 2b 3b 4b 5b 6c 7d 
Median 
(95% CI)2 

1.1 
(1-1.3) 

3 
(2.5-3.4) 

3.1 
(2.7-3.5) 

3.3 
(2.8-3.7) 

3.2 
(2.8-3.7) 

4.3 
(3.8-4.7) 

6.6 
(6-7.4) 

Range 
(80% PI)3 

0-25.2 
(0.1-4.7) 

0-38.9 
(0.2-18.6) 

0-38.9 
(0.2-15.5) 

0-38.8 
(0.2-17.4) 

0-35.5 
(0.3-17.9) 

0-39.7 
(0.3-19.3) 

0-37.6 
(0.5-21) 

USDA 

Rank1 1a 2b 5b 4b 3b 6b 7b 
Median 
(95% CI)2 

0.8 
(0.7-0.9) 

37.4 
(36.8-37.9) 

37.6 
(36.8-38.3) 

37.4 
(36.8-38.1) 

37 
(36.3-37.5) 

37.4 
(36.6-38.1) 

37 
(36.3-37.8) 

Range 
(80% PI)3 

0-41.2 
(0.1-29.3) 

0-47.8 
(0.2-44.8) 

0-47 
(0.3-44.4) 

0-47.2 
(0.3-44.3) 

0-47.8 
(0.4-44.8) 

0-48.1 
(0.5-44.7) 

0-47.3 
(0.7-44.2) 
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Table 4-4 (continued). 

g) Proportion of all birds in the population depopulated 

Population 
dataset 

Disease control strategy4 

mr trc baseline ring1km trcDestr trcDestrRing1km ring3km 

CLPHD 

Rank1 1a 2bc 3bc 4bcd 5cd 6cd 7cd 
Median 
(95% CI)2 

0.021 
(0.019-0.023) 

0.066 
(0.058-0.08) 

0.079 
(0.066-0.089) 

0.082 
(0.074-0.097) 

0.091 
(0.082-0.103) 

0.101 
(0.084-0.115) 

0.127 
(0.114-0.151) 

Range 
(80% PI)3 

0-0.634 
(0.002-0.113) 

0-0.865 
(0.003-0.725) 

0-0.879 
(0.004-0.71) 

0-0.874 
(0.004-0.718) 

0-0.896 
(0.008-0.726) 

0-0.86 
(0.009-0.724) 

0-0.871 
(0.007-0.713) 

CLPHD 
(A) 

Rank1 1a 3bc 2bc 4bcd 5bcd 6cde 7de 
Median 
(95% CI)2 

0.021 
(0.019-0.024) 

0.067 
(0.058-0.077) 

0.069 
(0.059-0.079) 

0.09 
(0.074-0.099) 

0.078 
(0.067-0.09) 

0.103 
(0.088-0.118) 

0.148 
(0.133-0.17) 

Range 
(80% PI)3 

0-0.588 
(0.002-0.099) 

0-0.905 
(0.004-0.721) 

0-0.874 
(0.003-0.71) 

0-0.884 
(0.005-0.708) 

0-0.885 
(0.007-0.727) 

0-0.867 
(0.007-0.718) 

0-0.862 
(0.01-0.706) 

LLNL 

Rank1 1a 2b 3b 4cd 5cde 6de 7de 
Median 
(95% CI)2 

0.018 
(0.016-0.02) 

0.042 
(0.037-0.046) 

0.047 
(0.041-0.051) 

0.053 
(0.047-0.059) 

0.063 
(0.057-0.068) 

0.066 
(0.061-0.072) 

0.079 
(0.073-0.086) 

Range 
(80% PI)3 

0-0.3 
(0.002-0.057) 

0-0.86 
(0.003-0.326) 

0-0.907 
(0.003-0.273) 

0-0.939 
(0.004-0.394) 

0-0.848 
(0.009-0.36) 

0-0.927 
(0.006-0.4) 

0-0.906 
(0.005-0.374) 

RTI 

Rank1 1a 2b 3b 4b 5b 6c 7d 
Median 
(95% CI)2 

0.025 
(0.022-0.029) 

0.067 
(0.055-0.076) 

0.068 
(0.059-0.078) 

0.072 
(0.063-0.082) 

0.071 
(0.063-0.081) 

0.095 
(0.085-0.104) 

0.146 
(0.131-0.164) 

Range 
(80% PI)3 

0-0.557 
(0.003-0.104) 

0-0.858 
(0.003-0.411) 

0-0.859 
(0.004-0.341) 

0-0.857 
(0.005-0.384) 

0-0.785 
(0.007-0.396) 

0-0.875 
(0.007-0.427) 

0-0.831 
(0.011-0.463) 

USDA 

Rank1 1a 2b 5b 4b 3b 6b 7b 
Median 
(95% CI)2 

0.013 
(0.011-0.015) 

0.649 
(0.637-0.658) 

0.653 
(0.637-0.665) 

0.649 
(0.639-0.66) 

0.642 
(0.631-0.651) 

0.649 
(0.634-0.662) 

0.641 
(0.629-0.656) 

Range 
(80% PI)3 

0-0.714 
(0.001-0.508) 

0-0.829 
(0.003-0.777) 

0-0.814 
(0.005-0.77) 

0-0.818 
(0.006-0.768) 

0-0.829 
(0.007-0.778) 

0-0.834 
(0.008-0.775) 

0-0.821 
(0.012-0.767) 
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Table 4-5.  Disease control strategies ranked based on indicated model outcomes after adjusting for the effects of all population datasets for 
several levels of local-area spread. 

Disease control strategies are described in Table 4-2.  Results are presented for three levels of local-area spread, as described in section 4.3.4. 
 

a) Outbreak duration  b) Number of infected flocks1 

Disease control 
strategy 

Level of local-area spread  Disease control 
strategy 

Level of local-area spread 

1) Moderate 2) Low 3) High  1) Moderate 2) Low 3) High 

mr 1a 1a 1a  mr 1a 1a 1a 
trcDestr 2b 3b 2b  trcDestr 2bc 3bcd 3c 
trcDestrRing1km 3b 2b 3b  trcDestrRing1km 3bcd 2bc 4c 
trc 4cd 4cd 4c  trc 4cde 4cde 2b 
ring3km 5cde 7de 6d  baseline 5cde 7de 5d 
baseline 6cde 5cde 5d  ring3km 6de 6de 6d 
ring1km 7de 6cde 7d  ring1km 7de 5cde 7d 
         
         
c) Number of depopulated flocks1  d) Number of depopulated birds1 

Disease control 
strategy 

Level of local-area spread  Disease control 
strategy 

Level of local-area spread 

1) Moderate 2) Low 3) High  1) Moderate 2) Low 3) High 

mr 1a 1a 1a  mr 1a 1a 1a 
trc 2bc 2bc 2b  trc 2bc 2bc 2b 
baseline 3bcd 3bcd 3c  baseline 3bcd 3bcd 4b 
ring1km 4cde 4cde 4c  ring1km 4cde 4cde 3b 
trcDestr 5def 5def 5d  trcDestr 5def 5def 5c 
trcDestrRing1km 6ef 6ef 6d  trcDestrRing1km 6ef 6ef 6c 
ring3km 7g 7g 7e  ring3km 7g 7g 7d 

a-g Strategies indicated with the same letter [within the same section of the table (a-d) and the same column (1-3)] do not differ significantly from 
one another, based on post-hoc pairwise comparisons made after application of the Mack-Skillings test (Hollander and Wolfe, 1999; Mack and 
Skillings, 1980) as described in the text. 
1 The ranks of control strategies and results of further statistical analyses are identical for outcomes that considered the proportion of all 
flocks/birds affected. 
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Table 4-6.  Scenarios based on different population datasets ranked by indicated model outcomes after 
adjusting for the effects of disease control strategies, and quantitative differences relative to the CLPHD 
dataset. 

Simulation modeling 
outcome 

Population dataset 

CLPHD CLPHD (A) LLNL RTI USDA 

a) Outbreak duration (days) 

Rank1 3b 4b 2a 1a 5c 

Difference in median, 
relative to CLPHD2 - 

0% 
(-7%, 7%) 

-21% 
(-29%, -9%) 

-21% 
(-29%, -9%) 

154% 
(14%, 220%) 

Difference in 90th percentile, 
relative to CLPHD3 - 

0% 
(-2%, 2%) 

-37% 
(-43%, -24%) 

-45% 
(-55%, -24%) 

36% 
(3%, 224%) 

b) Total number of infected flocks 

Rank1 3b 4b 2a 1a 5c 

Difference in median, 
relative to CLPHD2 - 

1% 
(-15%, 26%) 

-38% 
(-48%, -22%) 

-39% 
(-50%, -22%) 

2514% 
(61%, 3419%) 

Difference in 90th percentile, 
relative to CLPHD3 - 

-2% 
(-12%, 0%) 

-63% 
(-72%, -51%) 

-70% 
(-77%, -49%) 

301% 
(126%, 1341%)

c) Proportion of all flocks in the population infected 

Rank1 3c 4c 1a 2b 5d 

Difference in median, 
relative to CLPHD2 - 

1% 
(-15%, 26%) 

-23% 
(-35%, -3%) 

0% 
(-18%, 28%) 

1150% 
(-23%, 1583%) 

Difference in 90th percentile, 
relative to CLPHD3 - 

-2% 
(-12%, 0%) 

-54% 
(-65%, -39%) 

-50% 
(-62%, -17%) 

92% 
(8%, 589%) 

d) Total number of flocks depopulated 

Rank1 3b 4b 2a 1a 5c 

Difference in median, 
relative to CLPHD2 - 

1% 
(-11%, 18%) 

-41% 
(-49%, -17%) 

-41% 
(-48%, -22%) 

403% 
(67%, 608%) 

Difference in 90th percentile, 
relative to CLPHD3 - 

-2% 
(-11%, 2%) 

-47% 
(-59%, -41%) 

-57% 
(-64%, -48%) 

81% 
(4%, 537%) 

e) Proportion of all flocks in the population depopulated 

Rank1 3c 4c 1a 2b 5d 

Difference in median, 
relative to CLPHD2 - 

1% 
(-11%, 18%) 

-27% 
(-37%, 3%) 

-3% 
(-15%, 28%) 

140% 
(-20%, 239%) 

Difference in 90th percentile, 
relative to CLPHD3 - 

-2% 
(-11%, 2%) 

-35% 
(-49%, -27%) 

-30% 
(-41%, -15%) 

-13% 
(-50%, 205%) 

f) Total number of birds depopulated 

Rank1 3b 4b 1a 2a 5c 

Difference in median, 
relative to CLPHD2 - 

1% 
(-15%, 16%) 

-44% 
(-51%, -27%) 

-35% 
(-48%, -19%) 

442% 
(-47%, 721%) 

Difference in 90th percentile, 
relative to CLPHD3 - 

-2% 
(-12%, 0%) 

-59% 
(-68%, -54%) 

-60% 
(-68%, -39%) 

31% 
(-10%, 279%) 

g) Proportion of all birds in the population depopulated 

Rank1 3c 4c 1a 2b 5d 

Difference in median, 
relative to CLPHD2 - 

1% 
(-15%, 16%) 

-33% 
(-41%, -12%) 

-2% 
(-22%, 23%) 

546% 
(-36%, 878%) 

Difference in 90th percentile, 
relative to CLPHD3 - 

-2% 
(-12%, 0%) 

-51% 
(-62%, -45%) 

-39% 
(-52%, -8%) 

56% 
(7%, 351%) 
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Table 4-6 (continued). 
1 Ranks are based on the average rank sum score calculated for the Mack-Skillings test (Hollander and 
Wolfe, 1999; Mack and Skillings, 1980). 
2 For each population dataset, the difference between the median outcome value from each control 
strategy scenario and the median from the corresponding scenario that used the reference population 
dataset was calculated.  The average (mean) difference in medians and the range of differences in 
medians (in parentheses) are shown. 
3 Similar to (2) above, but for the 90th percentiles. 
a-d Values indicated with the same letter do not differ significantly from one another, as determined by 
post-hoc pairwise comparisons made after application of the Mack-Skillings test. 
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Table 4-7.  Scenarios based on different population datasets ranked by indicated model outcomes after 
accounting for the effects of disease control strategies for several levels of local-area spread. 

a) Outbreak duration      

Population 
dataset 

Level of local-area spread      
1) Mod. 2) Low 3) High      

RTI 1a 1a 2a      
LLNL 2a 2a 1a      
CLPHD 3b 3b 3b      
CLPHD(A) 4b 4b 4b      
USDA 5c 5c 5c      
         
         

b) Total number of infected flocks 
 

c) Proportion of all flocks in the 
population infected 

Population 
dataset 

Level of local-area spread  Population
dataset 

Level of local-area spread 
1) Mod. 2) Low 3) High  1) Mod. 2) Low 3) High 

RTI 1a 1a 2a  LLNL 1a 1a 1a 
LLNL 2a 2a 1a  RTI 2b 2bc 2b 
CLPHD 3b 3b 3b  CLPHD 3c 3bcd 3c 
CLPHD(A) 4b 4b 4b  CLPHD(A) 4c 4cd 4c 
USDA 5c 5c 5c  USDA 5d 5e 5d 

         
         

d) Total number of flocks depopulated 
 

e) Proportion of all flocks in the 
population depopulated 

Population 
dataset 

Level of local-area spread  Population
dataset 

Level of local-area spread 
1) Mod. 2) Low 3) High  1) Mod. 2) Low 3) High 

RTI 1a 1a 2a  LLNL 1a 1a 1a 
LLNL 2a 2a 1a  RTI 2b 2b 2b 
CLPHD 3b 3b 3b  CLPHD 3c 3c 3c 
CLPHD(A) 4b 4b 4b  CLPHD(A) 4c 4c 4c 
USDA 5c 5c 5c  USDA 5d 5d 5c 

         
         

f) Total number of birds depopulated 
 

g) Proportion of all birds in the 
population depopulated 

Population 
dataset 

Level of local-area spread  Population
dataset 

Level of local-area spread 
1) Mod. 2) Low 3) High  1) Mod. 2) Low 3) High 

LLNL 1a 1a 1a  LLNL 1a 1a 1a 
RTI 2a 2b 2b  RTI 2b 2b 2b 
CLPHD 3b 3c 3c  CLPHD 3c 3c 3c 
CLPHD(A) 4b 4c 4c  CLPHD(A) 4c 4c 4c 
USDA 5c 5d 5d  USDA 5d 5d 5d 
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Figure 4-1.  Spatial distributions and densities of poultry flocks in each population dataset described in 
Table 4-1. 

Each grid cell represents approximately 465 km2. 
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Figure 4-2.  Distributions of commercial poultry flock sizes in the four primary population datasets 
described in Table 4-1. 
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Figure 4-3.  Distributions of outbreak durations (in days) produced by each simulated disease control 
strategy for each population dataset. 

Population datasets, indicated for each column in each plot, are described in Table 4-1.  Disease control 
strategies (a-g) are described in Table 4-2. 

Thick horizontal lines indicate the median for each scenario.  Boxes indicate the interquartile range, i.e., 
the range between the 25th and 75th percentiles.  Dashed lines indicate the 80% probability interval, i.e., 
the range between the 10th and 90th percentiles. 
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Figure 4-4.  Distributions of total number of infected flocks produced by each simulated disease control 
strategy for each population dataset. 

Population datasets, indicated for each column in each plot, are described in Table 4-1.  Disease control 
strategies (a-g) are described in Table 4-2. 

Thick horizontal lines indicate the median for each scenario.  Boxes indicate the interquartile range, i.e., 
the range between the 25th and 75th percentiles.  Dashed lines indicate the 80% probability interval, i.e., 
the range between the 10th and 90th percentiles. 
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Figure 4-5.  Distributions of total number of depopulated flocks produced by each simulated disease 
control strategy for each population dataset. 

Population datasets, indicated for each column in each plot, are described in Table 4-1.  Disease control 
strategies (a-g) are described in Table 4-2. 

Thick horizontal lines indicate the median for each scenario.  Boxes indicate the interquartile range, i.e., 
the range between the 25th and 75th percentiles.  Dashed lines indicate the 80% probability interval, i.e., 
the range between the 10th and 90th percentiles. 
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Figure 4-6.  Distributions of total number of depopulated birds (shown in millions) produced by each 
simulated disease control strategy for each population dataset. 

Population datasets, indicated for each column in each plot, are described in Table 4-1.  Disease control 
strategies (a-g) are described in Table 4-2. 

Thick horizontal lines indicate the median for each scenario.  Boxes indicate the interquartile range, i.e., 
the range between the 25th and 75th percentiles.  Dashed lines indicate the 80% probability interval, i.e., 
the range between the 10th and 90th percentiles. 
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5. Summary and conclusions 

 
“The validation of a model is not that it is ‘true’ but that it generates good testable 

hypotheses relevant to important problems” (Levins, 1966).  As noted in chapter 2, there is no 

quantitative, objective mechanism that can be relied upon to determine whether a model is 

useful.  Any assessment of a model’s utility must be based on practical and subjective 

evaluations. 

In a recent discussion of stochastic modeling, Rorres et al. (2011) quote John von Neumann: 

“the justification of a mathematical model is ‘solely and precisely that it is expected to work.’”  

The authors then elaborate on this definition and suggest that a “working” model is one that fits 

available outcome data and can be successfully applied to fit data from future events.  This 

definition is attractive but limited.  First, it is only with the advantage of hindsight after an event 

that we can determine whether a model has “worked”  It should be noted that even hindsight is 

not sufficient to determine whether a model has “worked”, as evidenced by the continuing debate 

about the application of disease models during the effort to eradicate FMD from the UK in 2001 

(Keeling, 2005; Kitching, 2004; Kitching et al., 2006; Mansley et al., 2011; Savill et al., 2006a, 

2007).  Second, the application of models is limited to situations in which outcome data exists, a 

drawback discussed in chapter 2. 

An alternative criterion for determining whether a model “works” is whether the model is 

helpful in providing direction for action before an outbreak occurs.  Without the benefit of 

hindsight and predictive, fitted epidemiologic models, we might instead attempt to determine if a 

model is useful, credible, and realistic.  The models discussed in chapters 2 and 3 are intended to 

be used in advance of an outbreak to provide useful insight and information to response planners 

and policy makers and to be useful, realistic representations of epidemiologic phenomena. 
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The decision whether to include a realistic representation of within-unit disease dynamics 

in a model (chapter 3) is partly dependent upon the purpose for which the model is constructed.  

The decision can have practical effects: in a mathematical model of between-unit spread of 

disease, for example, Ferguson et al. (2001) showed that assumptions regarding the level of 

infectiousness of an infected premises could alter model-supported decisions regarding the use of 

disease control measures, such as the use of pre-emptive culling in addition to rapid depopulation 

of known infected premises.  Savill et al. (2007) pointed out, however, that factors other than 

within-unit prevalence of infectious individuals, such as the level of farm biosecurity, affect the 

ability of infected premises to contribute to spread of disease.  Both reports indicate that data 

pertaining to the actual infectiousness of infected premises is difficult to obtain.  As a result of 

their work, Savill et al. (2007) concluded that there is insufficient evidence to support the 

inclusion of a dynamically changing level of infectiousness of infected premises in their models.  

By contrast, Kostova-Vassilevska (2004) asserted that “[i]t is generally accepted that the 

infectiousness of an infected farm increases with time as more animals become infectious” and 

suggested that models of within-unit disease dynamics should be included in larger models of 

between-unit spread and control of disease.  Carpenter et al. (2004) similarly suggested that 

intra-unit disease dynamics are a critical component of a model of between-unit transmission of 

disease. 

Although the value and utility of models of within-unit disease dynamics for simulating 

differences in the levels of unit infectiousness over time remain to be definitively addressed, the 

use of such models to simulate the effects of different disease surveillance and detection 

activities is better supported.  The ability to detect disease in an infected unit is dependent upon 

the prevalence of disease or incidence of mortality (Dorea et al., 2010; Savill et al., 2006).  As 
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the application of all disease control measures is contingent upon detection of disease, the use of 

a model of within-unit disease dynamics does have a place in larger models of between-unit 

spread and control of disease.  The conceptual model of within-unit disease dynamics described 

in chapter 3 is sufficiently computationally efficient that it should be feasible to incorporate it 

directly into models of between-unit disease spread and control. 

For a model to be credible, it must also be based on reliable, valid data, or alternatively, 

should explicitly incorporate and account for potential sources of uncertainty when existing data 

sources are known not to be entirely accurate.  In chapter 4, we demonstrated that, for purposes 

of qualitative-decision making, models can, at least in some instances, rely on artificially 

generated (but not wildly unrealistic) data.  As models are increasingly used to address questions 

that are more quantitative than qualitative in nature (USDA-APHIS-VS-CEAH, 2009), it is 

important to be circumspect about the capabilities and limitations of such models. 

The development and application of epidemiologic simulation models allows us to address 

problems in veterinary epidemiology that would otherwise be intractable to experimental 

investigation.  The concluding statement of chapter 2 is worth reiterating in closing: “To the 

extent that a model is a scientific experiment and theoretical development, its testing and 

validation are within the purview of the scientific community” (Rykiel, 1996) and all of its 

associates. 
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