IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 4, NO. 12, DECEMBER 1995

1641

A Multiscale Stochastic Image
Model for Automated Inspection

Daniel Tretter, Member, IEEE, Charles A. Bouman, Member, IEEE,
Khalid W. Khawaja, and Anthony A. Maciejewski

Abstract—In this paper, we develop a novel multiscale stochas-
tic image model to describe the appearance of a complex three-
dimensional object in a two-dimensional monechrome image.
This formal image model is used in conjunction with Bayesian
estimation techniques to perform automated inspection. The
model is based on a stochastic tree structure in which each node
is an important subassembly of the three-dimensional object. The
data associated with each node or subassembly is modeled in a
wavelet domain. We use a fast multiscale search technique to
compute the sequential MAP (SMAP) estimate of the unknown
position, scale factor, and 2-D rotation for each subassembly. The
search is carried out in a manner similar to a sequential likelihood
ratio test, where the process advances in scale rather than time.
The results of this search determine whether or not the object
passes inspection. A similar search is used in conjunction with
the EM algorithm to estimate the model parameters for a given
object from a set of training images. The performance of the
algorithm is demonstrated on two different real assemblies.

I. INTRODUCTION

ORMAL mathematical image models have long been used

in the design of image processing algorithms for applica-
tions such as compression, restoration, and enhancement [1].
Such models are traditionally low level stochastic models of
limited complexity. In recent years, however, important theo-
retical advances and increasingly powerful computers have led
to more complex and sophisticated image models. Depending
on the application, researchers have proposed both low-level
and high-level models.

Low-level image models describe the behavior of individual
image pixels relative to one another. Markov random fields
and other spatial interaction models have proven useful for
a variety of applications, including image segmentation and
restoration [2], [3]. Bouman and Shapiro [4], along with Will-
sky, Benveniste, and their associates [5], [6], have developed
multiscale stochastic models for image data.

High-level models are generally used to describe a more
restrictive class of images. These models describe larger struc-

Manuscript received May 22, 1994; revised February 14, 1995. This work
was supported by an AT&T Bell Laboratories Ph.D. Scholarship, the NEC
corporation, National Science Foundation grant number MIP93-00560, and
National Science Foundation grant number CDR 8803017 to the Engineering
Research Center for Intelligent Manufacturing Systems. The associate editor
coordinating the review of this paper and approving it for publication was
Dr. Michael Unser.

D. Tretter is with Hewlett-Packard Laboratories, Palo Alto, CA 94304-
1126 USA

C. A. Bouman, K. W. Khawaja, and A. A. Maciejewski are with the School
of Electrical Engineering, Purdue University, West Lafayette, IN 47907-1285
USA.

IEEE Log Number 9415094,

tures in the image explicitly, rather than describing individual
pixel interactions. Grenander and his associates, for example,
propose a model based on deformable templates to describe
images of nonrigid objects [7], while Kopec and his colleagues
model document images using a Markov source model for
symbol generation in conjunction with a noisy channel [8],
[9]. Our image model is primarily high level, although we
do model individual pixel statistics within the context of
larger structures. In addition, we combine the image model
with a fast multiscale search procedure to form an object
detection algorithm for use in the particular application of
automated inspection. Since the detection process is based on
a formal model of the image data, it can be carried out in
a consistent manner using well-known stochastic estimation
techniques.

A number of different approaches to the object inspection
problem have been taken in the past. Much of the early work
in this area concentrated on special purpose algorithms to
inspect specific objects [10]. More recently, inspection has
often been viewed as only one of a number of related machine
vision tasks, so general object recognition systems are used
for inspection. Examples of this approach include Brooks’
ACRONYM system [11], as well as the systems of Flynn
and Jain [12] and Mehrotra and Grosky [13], which perform
three-dimensional pose estimation and use a multiple object
database. Most object recognition techniques, however, are not
based on a formal probabilistic model of the data. Instead, they
generally extract features of some sort from the data and match
these to corresponding object characteristics.

The image model proposed in this paper was constructed
with the inspection application in mind. It therefore incorpo-
rates several concepts and features that have proven useful
in other object detection algorithms. For instance, many ap-
proaches to object detection and shape representation use
multiresolution processing to reduce computation while retain-
ing robust results. Rosenfeld and his associates use multiscale
template matching for object detection [14], [15], while other
researchers use multiresolution descriptions to represent shape
[16], [17]. Some researchers have combined multiscale ap-
proaches with a hierarchical description of object structure to
further reduce computation. Burt uses a Laplacian pyramid
data representation in conjunction with a tree structure that
divides the object into various components [18]. Ettinger
divides the object contour into subparts, which he searches
using a coarse-to-fine recognition scheme [19]. Our object
inspection algorithm incorporates similar concepts, so the

1057-7149/95$04.00 © 1995 IEEE

1642

e Y X o)

Fig. 1. General model structure for a subassembly. The state is the (random)
location, orientation, and scale factor of the subassembly. The image data
is the (random) wavelet transform image. The parameters are deterministic
quantities estimated from training data.

image model is based on an object component hierarchy and
a multiscale data representation.

In this paper, which builds on the work presented in [20],
[21], and [22], we develop a model-based inspection algorithm
designed to detect assembly errors in a rigid object from a
single monochrome image of the object. Since the algorithm
is designed specifically for automated inspection, we can take
advantage of the highly structured viewing conditions typically
found in a factory environment. For example, since the object
to be inspected is known in advance, the algorithm is only
trained to be sensitive to this one object; anything else in
the field of view is taken to be extraneous to the inspection
task. Also, the regions of the object at which assembly errors
are most likely to be visible are known, so the algorithm
concentrates most of its attention on those object regions.
Finally, the approximate location and pose of the inspected
part will often be known [23], [24]. The algorithm is, therefore,
designed to be robust to limited changes in viewing conditions,
but it does not allow for arbitrary object orientation.

As viewing conditions change, the apparent shape and
appearance of an object will alter, so the object model must
be flexible enough to allow some degree of distortion. Each
of the important features, or subassemblies, of the object is
therefore modeled separately, and their relative positions in
the image are permitted to vary randomly to a certain degree.
The subassemblies are linked together in a stochastic tree
structure, where the position, or state, of each subassembly
is taken to be a random quantity dependent on the state of the
parent subassembly in the tree. The states thus form a Bayesian
network on the object tree [25].

Each subassembly is modeled separately using the struc-
ture shown in Fig. 1, where the arrows indicate conditional
dependence. A subassembly’s location, scale, and orientation
in the image are expressed as a random state vector X, where
the component distributions are determined by the allowed
viewing conditions. The exact distribution of X is dependent
on the deterministic parameter set ¢, which will remain the
same for all images. The parameters are estimated from a set
of training images, allowing the model to adapt to specific
viewing conditions.

The data associated with each subassembly, which is taken
to be a multiresolution wavelet decomposition of the original
grayscale image, is modeled as a multiscale random field. Data
values depend on the deterministic parameter §, which can
be thought of as a multiresolution template describing the
appearance of the subassembly. The multiscale data model
was developed with concepts and results from the theory of
multiscale random processes in mind [4]-[6].

The inspection algorithm locates an object and all of its
subassemblies in an image by estimating the state of each
node of the object tree. The states are estimated based on the

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 4, NO. 12, DECEMBER 1995

image data, which is modeled as a set of noisy measurements
dependent on the underlying states. Thus, since the states form
a Bayesian network on the object tree, the state estimation
procedure is exactly analogous to state estimation for a hidden
Markov model. The state estimation takes the form of a
multiscale search at each node, progressing from the root of
the object tree to its leaves. Each subassembly is inspected
in turn, and the estimated state of the parent node is used
to guide the multiscale search. The search at each node
results in an approximation to the maximum a posteriori state
estimate for the associated subassembly given the estimated
parent state and the image data. The estimation procedure is
therefore the sequential MAP (SMAP) procedure of Bouman
and Shapiro [4]. This gives a noniterative, computationally
efficient formulation for locating and identifying the desired
object.

A similar multiscale search procedure is used during the
training phase of the algorithm, where we estimate the model
parameters from a set of training images. The parameter
estimates are computed using the iterative expectation max-
imization (EM) algorithm [26].

The paper is organized as follows: In Section II, we define
the tree structure making up the object model and specify
the model associated with each subassembly. This model is
then used in Section III to develop the multiscale search
procedure for state estimation. Finally, Section IV discusses
our parameter estimation procedure, which is used to adapt
the algorithm to the particular object of interest. Simulation
results are presented in Section V, and we end the paper with
concluding remarks in Section VI.

II. THE MODEL

In this section, we will specify a formal stochastic image
model that can be used to describe the appearance of a general
class of complex three-dimensional objects. The model has
two distinct levels to its structure: The object tree and the
subassembly. Each node of the object tree will be used to
represent the relative position and orientation of the important
object features, called subassemblies. Each subassembly will
then be modeled using a wavelet transform of the associated
image region.

Object Tree Model

Fig. 2 shows an example of an object tree for a complex
three-dimensional object. Each box represents a subassembly
or node of the tree, and is drawn around a feature of interest
in the object’s image. The boxes are connected' together into
a tree structure using lines, and the level of each node in the
tree is represented by the number of lines making up the box.
In general, the subassemblies will consist of various object
components important for locating the object and for detecting
assembly errors. Typically, nodes near the root of the tree
are associated with larger parts of the object and represent
the object’s gross structure. These nodes also prove useful
in locating the object in an image. Nodes further down the
tree “zoom in” on smaller features that contain significant fine
detail.

TRETTER et al.: A MULTISCALE STOCHASTIC IMAGE MODEL FOR AUTOMATED INSPECTION

|
i
E
|

Fig. 2. An initialization image is used to define the object tree. The boxes
indicate the subassemblies associated with the nodes of the tree, and the lines
connecting the boxes show the parent-child links.

0 |- x position
X<°) . | 0|~y position
1 |- scale factor
0 |- rotation angle

Fig. 3. Model structure of complete object assembly. At each node, Y is
the image data; X () is the state containing the position, orientation and
scale of the subassembly; 9(<) is a set of data parameters which describes the
appearance of the subassembly; and {9 is a state parameter vector describing
the varjation in subassembly position.

Fig. 3 illustrates the structure and conditional dependencies
in an object tree. Each node is represented by an oval con-
taining four quantities, X @, $(2), ¥, and 0(9), where c is the
index of the node, and arrows indicate conditional dependency.
We will use uppercase letters to denote random quantities and
lowercase for nonrandom sample realizations.

The random state X(° contains the position, orientation,
and scale of the subassembly. X () is assumed random since
the geometry of the camera and object may vary from image to
image. In general, however, the position of a subassembly will
depend on the position of its parent node in the object tree. This
conditional dependence is indicated by the arrows between
nodes. Since the observed image depends on the location and
orientation of the object and its components, the image data
Y in Fig. 3 depends on each of the states, X ().

In addition to random quantities, each node contains two
deterministic parameter vectors, ¢{<) and §(°). These parameter
vectors are used to adapt the model to a wide variety of

1643

possible object behaviors and imaging environments.)
determines the mean and variation of a node’s state given
the parent node’s state, and 6(¢) determines the mean and
variation of image pixels given the node’s state. Intuitively,
one might think of #(°) as containing an image template for
the subassembly, but we will see that #(°) actually contains
more information than a simple template.

Since subassemblies only depend on each other through
their positions, the node states X(¢) form a Markov chain
along any path from the root to a leaf of the tree. This tree
dependent structure captures the interdependencies among the
subassemblies while remaining amenable to efficient compu-
tational schemes [4], [6], [27]. If we index the nodes from 1
to M, then this Markov relationship may be stated as

p(z®, . D)Mo sy =

M
Hp($(0)|X(p) = z®) $()))

c=1

where p denotes the parent of node ¢, and the parent state for
the root node of the object tree is the deterministic state vector
z(®. Notice that the state of the subassembly X () depends
on both the state parameters ¢(©) and the state of the parent
node X ®),

The density functions given in (1) must next be defined.
The subassembly state has components X (@ = [St, Z, R]*
where S =[S, Sp]t is vertical and horizontal position, Z is
scale factor, and R is angle of rotation in radians. The state
X© = 2 = [(s))¢, 209, ()]t defines a transformation
of the subassembly from the image coordinate system to a
normalized coordinate system with scale factor 1 and rotation
angle 0. This normalized coordinate system is essentially used
for data registration; the distortions in a particular image are
undone, and the subassembly data is mapped to a common
location. Each image pixel location ¢ at resolution [will
transform to a normalized location ¢/, where

i =T -2710)),

T — 1 [cosr(c) sinr(©

cosr(® | °

z(e) [—sin ()

We will use the matrix T(°) to simplify our model notation.
_ The state parameter vector $(°) has the components

©
c) _ m
5O = [v“‘)]
= [(m)E, m, m, A, AL, A

where m(®) and ~() play the role of a mean and variance
vector, respectively. Given this notation, the state vector has
a Gaussian distribution with the form

@@ — o) g@) — B
P(a: |X AN))2 |
- exp {— %(z(c)—w(”)—Am("))tB‘] (= P)— Am(c))}

3

where A is a matrix determined by the parent state z®
through the transformation T(), and B is a matrix determined

1644

+1 41 +1 -1
941 41 1
g+ o+ o —1 +1

-1 -1 1 -1

Fig. 4. Basis functions for the Haar transform. Notice that a) is the average,
b) is the vertical edge gradient, c) is the horizontal edge gradient, and d) is
only responsive to thin diagonal lines.

by ¢(©) and @),

(@)1 0 0
A 0 0
=l oo 10}
00 01
(z(P))Z,-ch) 0 0 0
B — 0 (Z(p>)27§c) 0 0
0 0 S
0 0 0 A9

Note that the vertical and horizontal offset means depend
on the matrix T®), which is a function of the scale factor z(®)
and the rotation r(?). Therefore, the vertical and horizontal
distance between subassemblies will scale with object size and
change as the assembly rotates. For simplicity we assume the
vertical and horizontal positions have the same variance. This
assumption makes the variances independent of rotation angle.
The root node does not have an actual parent node, so for this
node we define the parent state X (%) to be z(® = [0, 0, 1, 0]*.

Subassembly Model

In this section, we will present the model used for each
subassembly or node of the object tree. This model determines
the distribution of the image pixels in the region of each
subassembly.

The subassembly model is based on a wavelet transform
of the image. The wavelet transform has two important ad-
vantages in modeling the image. First, since the transform
may be thought of as approximately separating the image into
distinct spatial frequency bands, it tends to decorrelate the
image data [28]. We will see that this decorrelation removes
undesirable mismatches caused by small shifts in average gray
scale. The decorrelation also results in a transformed image
with the natural interpretation of vertical and horizontal edge
bands. The second advantage of using the wavelet transform
is the dramatically reduced computation which results from
processing data at multiple scales [18]. In Section III, the
object search is formulated as an optimization problem in a
high-dimensional space. The key to the efficient solution of
this optimization will be a structured search which exploits
the multiresolution structure of the wavelet transform.

The wavelet transform uses the Haar basis functions illus-
trated in Fig. 4. Fig. 5 shows an image resulting from this Haar
wavelet decomposition. Notice that at each resolution, two of
the bands have the interpretation of being the horizontal or
vertical edge gradients. This structure will be used to make
the image model sensitive to both region (average gray scale)
and edge (gradient magnitude) information. Another advantage

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 4, NO. 12, DECEMBER 1995

of the Haar basis functions is the computational simplicity
resulting from coefficients of +1.

We will generally assume that Y is the wavelet transformed
image. The wavelet transform is an invertible, orthogonal
transformation, so the transformed image contains all of the
information in the original data. Also, since the Jacobian of
the transformation is unity, the value of the density functions
are equal for the original and transformed data.

For simplicity, our algorithm uses only the vertical and
horizontal gradient information in the wavelet representation;
we do not model the diagonal band information. This allows
us to represent the data at each pixel location as a gradient
vector. At each resolution /, define Y; = [Y},, Yi5] where Y7,
and Y}, are the vertical and horizontal bands of the wavelet
transform. Generally, 0 < [< L — 1 where | = 0 is the
finest resolution and L — 1 is the coarsest. Each pixel in Y}
is denoted by Y;(z) = [V}, (2), Yin(2)] where ¢ = [iy,45]" is a
vector index. Intuitively, this index corresponds to the physical
position [v, h] = [i12" + 2!, 4928 + 20-1],

The pixels Y;(i) are assumed to be conditionally inde-
pendent given the state X(©) and the data parameters 6.
This is a reasonable assumption since the wavelet transform
decorrelates the image data. Intuitively, the pixel value y;(7)
represents the local gradient of the image at location 3.
Since image derivatives are known to be accurately modeled
as Laplacian distributed [29], we choose a density function
similar to the Laplacian density for our data distribution. In
particular,

1
TCEIO)E

o {_Hyz(i)—ﬂt(i)ﬂ})

)\(C)ﬁl(i)

p(yz(i)IX(c) — z(C))g(C)) =

where ||- || is the Euclidean norm and /;(z) and &4(¢) are model
parameters determined by z(®) and 0. The redundant parameter
A€, which also depends on the state (®) and the resolution
{, has been added to explicitly account for local variation in
image brightness. Note that this model differs slightly from the
Laplacian density, which uses a 1-norm in place of the 2-norm.

The mean vector f;(2) of (3) is just the average local
gradient at pixel location ¢. This characterizes grayscale be-
havior, including edge polarity and sharpness. The variation
parameters &;(¢) indicate the areas of greatest uncertainty in
the template, which will generally occur near edges. Thus,
the model is sensitive to both region-based and edge-based
information, with the relative importance of each information
type determined by the model parameters. Note that the vari-
ation parameter is common to both the vertical and horizontal
wavelet bands. In this way, a rotation of the subassembly can
be modeled by simply rotating each mean vector f;(z).

To define the relationship between the parameters of (3) and
X and 4, we must first precisely define the components for
6. For node c of the object tree, the components for 6(¢) are
6(0) = [ma(i), o1()], where (i) = [p1o(0), pun(0)] is the
average gradient at template location ¢, and 7 is a vector index
which takes values in Wl(c). The set Wl(c) may be thought
of as a window containing the subassembly in the normalized

TRETTER et al.: A MULTISCALE STOCHASTIC IMAGE MODEL FOR AUTOMATED INSPECTION

Fig. 5. Wavelet decomposition using the Haar basis functions. The transformation generates separate vertical and horizontal bands at each resolution.

coordinate system. In order to eliminate spurious results due to
insufficient data, we define Wl(c) to be empty for resolutions
{ at which this window contains fewer than 4 X 4 pixels. In
Fig. 2, these windows correspond to the rectangular boxes.
The effect of the state (9 = [(s))t,2(), 7]t is to
transform and distort the template of parameters () and
its associated window W(°). Therefore, to compute the pa-
rameters of a pixel we will determine the § parameters that
transform to the pixel location. Unfortunately, this coordinate
transformation will generally yield noninteger positions in the
coordinates of the template. We solve this problem by using
bilinear interpolation to compute parameter values between
grid points. The variation parameters form a scalar template
that undergoes an affine transformation while the mean vectors
can be thought of as a local gradient field under the same
transformation. The parameters of (3) are thus given by

(i) = w (T(c) (z — 2—ls(a)>)T(c) @)
51(i) = oy (T(c) (z - 2_13(6)))
where the noninteger arguments of y;(-) and oy(-) are inter-
preted as bilinear interpolation. Of course, (4) is only defined

when ¢ transforms to template locations contained in Wl(c).
Therefore, this transformed window is defined to be

W = {i:TO(i-27@) e W} .

Combining these ideas yields the complete data model at each
resolution [.

X© = 4@)y = LI
p(ul z) ieIWIl(c> N CEO)E
lya(s) — (@)l
- exp {—)\(C)ﬁ'l(i) } . (5

We should note that the model presented has a minor incon-
sistency. If the windows of the various subassemblies overlap,

then there is more than one way in which the pixel parameters
may be computed. Theoretically, this inconsistency could be
eliminated by assigning a priority ordering to the nodes. For
example, nodes closest to leaf nodes could occlude nodes
higher in the tree. However, for computational simplicity we
ignore this inconsistency and assume that the overlap of nodes
in space and scale will not have a significant effect.

Also notice that pixels outside of the subassembly windows
are not explicitly modeled. In practice, we will always compute
ratios of density functions so the contribution due to these
unmodeled pixels will cancel out. Kopec and Chou use this
same idea in their model for document images [9].

III. STATE ESTIMATION

To compare a given image to our model, we must first
locate each of the object subassemblies in the image. This
is equivalent to estimating the four-dimensional state vector
associated with each node of the object tree. The states

will be estimated using the sequential maximum a posteriori

(SMAP) procedure of Bouman and Shapiro [4]. This technique
simplifies the estimation problem by allowing the state of each
node in the object tree to be estimated separately.

This section presents a multiscale technique to search the
state space for the most likely position and orientation of a
subassembly. Since the search algorithm must be performed
for every new image, it should be as efficient as possible. Com-
putational efficiency is achieved by using the log likelihood at
coarse resolutions to guide the search at finer resolutions.

SMAP Estimation

The SMAP method starts at the object tree’s root and
progresses to its leaves. At each node of the tree, the maximum
a posteriori (MAP) estimate of the state X(°) is computed
given the image data y and the estimated state at the parent
node, #®). In order to simplify computation and avoid a

1646

recursive implementation, we modify the SMAP algorithm by
ignoring data terms from descendants of the node c. Using
these assumptions, the SMAP state estimate for node ¢ is
given by

) =arg max { log p(y| X (@ = (9 9
2

T log p(z©]X® = A(p>,¢<c>)}

To simplify computation, we will use likelihood ratios to
compute £(¢). Let po(y) be some as yet undefined density
function for the data when the subassembly c¢ is not present.
Note that since po(y) does not depend on X (9,

p(u|X® = 29, 0)
po(y)
+ log p(a©) [X®) = @) ¢(“))}- ©)

@ = argm(ax {log

A multiscale search procedure will be used to perform the
optimization in (6), so we need to define a multiresolution
version of the expression in (6). With this in mind, the log
likelihood ratio for resolutions coarser than [is defined to be

(e) = 2o gl
L(z9,1) = log (H ply lXp @ a; 3)>
0\Ym

+ 1ng(m(6)|X(p) =z ¢,

This expression, which we wish to maximize, is the sum
of a data term and a prior term. The data term indicates
how well the data at this state and resolution matches the
subassembly model. The prior term gives the prior likelihood
of the subassembly appearing at this location and orientation.
The prior term of the log likelihood ratio is computed using
the prior state density function in (2), but the data term must
still be precisely defined. For pixels 7 ¢ Wl(c), the presence
or absence of the subassembly is irrelevant. Therefore, for all
i g W, po(wili)) = plyi(d)|X© = z,8). If subassembly c
is not present at state (%), we have no a priori expectations for
the pixel values in the window W) We therefore assume that
these pixels are independent and 1dent1cally distributed. Since
vy is a bandpass signal with no dc component, we assume the

values are zero mean with distribution
()l } o

1
H 7 OXP {_ c
iew!® 27 ()\(()C)>)‘((l)

where)\éc) is the local average variation of the image data.
Putting this model together with (5) yields the result

L1 () = () glo)
log(H P(Ym| X z',09))
m=l

polyr) =

P0(Ym)
L-1 . /\(()c)
- ;16%) (%8 N6, (3)
llym () — m(Z)ll Iy ()]
- NCE u() y)\(()c)) . 8)

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 4, NO. 12, DECEMBER 1995

We estimate the unknown parameter /\gc) by maximizing (7)
with respect to this parameter, while the value of A(® is
estimated by maximizing (5). This gives the final expression

NG

Lz = 2N10gi\ Z > 2logdm(i)
m= ZZGW()
+ Iogp(a:(c) IX(P) — m(p),d)(c)) , ©)
where
L—-1

1 & Yo (3) = i (3
= o 3 (et
m:livevf)
L—-1
N = Z 1.
m= i

Note that the estimates XO(C) and A(®) depend on the resolu-
tion [and the subassembly state (), which determines the
windows WT(,S). The log likelihood ratio in (9) can now be
computed at any candidate state X(©) = £(¢) and resolution I.

Multiscale Search for Subassembly

We next devise a procedure for searching the states, z(%),
and resolutions, [, in an efficient manner. The possible sub-
assembly positions, (%), must be sampled at discrete points,
and computation is saved by sampling (®) more coarsely for
large values of [corresponding to coarse resolution. Rotation
and scale changes should also be sampled more finely for
large templates. To do this, define the constant d(© to be the
diameter of the smallest circle containing the template at scale
factor 2(®) = 1 and resolution [= 0. Then the sampling period
of 2(9) and 7(°) should be inversely proportional to d(®), Using
this approach, define k& = [kq, k2, ks, ka]* to be a vector of
integer indexes, and let z(k, 1) be the vector function

z(k,l) =

g2 K2+ 20 g2l 421
a© 7 4o

[k12l—1 + 2l—2’ k22l_1

The function z(k,) gives the candidate states at each resolu-
tion I, which we link to those at the next finer resolution by
defining the neighbors of (k,1) to be

next(k,l) = {(n,l - 1) | n; = 2k; or n; = 2k; + 1} .

The state indexes k1, kg, k3, and k4 correspond to vertical and
horizontal position, scale factor, and rotation angle, respec-
tively. The index k3 must therefore be nonnegative since only
positive scale factors are possible, while the rotation angle
must be between —n and 7, setting limits on the possible
values of k4 at each resolution I. The vertical and horizontal
position are nominally unconstrained, although in practice
indexes k; and k- are limited such that the position falls within
the image boundaries. Fig. 6 illustrates this sampling scheme

TRETTER et al.: A MULTISCALE STOCHASTIC IMAGE MODEL FOR AUTOMATED INSPECTION

=0 = & Coarse

T
4-

[Resolution
Search Path o 1
1=

2 2 Level
2 \ 4 & L |
0 1 2 3 4 5 & 7
=3 Fine
Candidate States

Fig. 6. Multiscale sampling for a one-dimensional state space. The index
kassociated with each sample is as labeled. A multiscale search procedure is
carried out on these samples to compute the state estimate.

for a single state component. Note that the candidate states
form a binary tree that densely samples the space of possible
states.

The multiscale search procedure is defined on this tree
structure, and it proceeds based on the log likelihood ratio
Ly(k,1) = L(z(k,1),1) associated with each sampling index
k and resolution /. We initialize the search for a subassembly c
by computing the log likelihood ratios over all vector indexes
k € X()(a,l) where

{k : logp(x(k,l)|X(p) = A'(”),dJ(C)) > a}

and « is a user-defined rejection threshold. The initialization
takes place at resolution ! = max(Ias,, l((f)), where Iy, is
equal to the coarsest resolution at which X{°)(«,-) contains
at least My elements, and l(()c) is the finest resolution to which
the search is permitted to proceed. The constant M is used to
make sure the search is initialized with a reasonable number
of points, and the finest resolution l(()c) is set during training
using the heuristic procedure described in section 4.

The initial candidate states and their associated log likeli-
hood ratios are stored in a data structure known as a heap. This
structure allows efficient insertion of new values and extraction
of the pairs (k,!) with the largest log likelihood ratios.

After initialization, the search locates the M'most promising
search paths and expands them to the next finer resolution
by computing the log likelihood ratios L4(-) associated with
their neighbors. If any of these log likelihood ratios fall
below a rejection threshold «, the algorithm discards the
corresponding state, thereby pruning the search space. If any
of the log likelihood ratios exceed an acceptance threshold £,
the corresponding state is returned as the state estimate £(¢).
Candidate states with L4(-) between « and 3 are stored on the
heap. The algorithm then extracts the M best states from the
updated heap and the process repeats. Since the best candidate
states can occur at any resolution, the multiscale search can
backtrack to coarser resolutions if necessary to investigate
additional search paths. We improve robustness by choosing
M > 1 and investigating multiple search paths simultaneously.

As illustrated in Fig. 7 the search takes the form of a
sequential likelihood ratio test in which 8 and o represent
acceptance and rejection thresholds. If these thresholds are
not exceeded, the search process continues to finer resolutions
where more data is obtained. If the search reaches a point at
which all M candidate states are at the finest resolution, then
a decision is made by comparing the log likelihood to a third
threshold, Go.

The search is implemented as described in Fig. 8. For our
simulations we use the values o = —15,8 = 100,06y =

xXO(a,l) =

1647

Multiscale Search Procedure

/////////////7

° Decide object is present B
Bgor .

|
E E 20 T 5
=3 ' | BN Multiscale search
—E 2 o | [3 Il | i f -
= 2] | S— + T L Ema— T iteration
£

w20 o

i ject i 7
0/ Decide cbject is not present /7

Fig. 7. An example search procedure for M = 4. The search terminates
when it encounters a candidate state whose log likelihood ratio exceeds /3 or
when the heap has been exhausted (all remaining candidate states have log
likelihood ratios less than o).

20, M = 16, and My = 100. If the search for a particular
subassembly terminates in a rejection (no match), that sub-
assembly is declared missing, and the SMAP procedure is
terminated for descendents of that node.

In some cases this search procedure will terminate with a
match at a resolution [®) > lgp) for node p. The resulting
coarse state estimate X can be viewed as a quantized
v(elgsion of the actual state, which we take to be at resolution
I, so

x® = x® + Q.

This quantization error will increase the uncertainty in the
location of subassembly ¢, a child node of p. This increased
uncertainty is accounted for by changing the covariance matrix
of (2) to

B = B+Bo(X®, ¢, 1 1P

where Bg(-) is a diagonal matrix computed in Appendix A.

IV. TRAINING ALGORITHM (PARAMETER ESTIMATION)

An iterative procedure based on the expectation maximiza-
tion (EM) algorithm is used to estimate the model parameters
6 and ¢ from a set of training images. The first training image
Y(-,0) is distinct from the rest because the states, X, are
assumed known. This image, which we will refer to as the
initialization image, defines the regions associated with each
subassembly and will also be used to initialize the model
parameters.

Ideally, we would like to compute the maximum likeli-
hood estimates of # and ¢ given the N training images
Y(-,0)...Y(-, N — 1). However, this would require a joint
optimization over the entire object tree, which is too compu-
tationally complex. Instead, the estimates of 6 and ¢(©) are
computed at each node ¢ using the N images and z&ff), the
estimated parent state for image n.

(09,4 = arg ma

X
(6(e), (o))
N-1
I @ mIx® = 32,609,6¢). (10)
n=0

As with the SMAP state estimation of section II-A, data
information from descendants of node c is ignored.

Notice that (10) may be implemented as a sequence of
optimizations at individual nodes. Since each optimization

1648

1. set I = max(la,, I§9)
2. for all k € X (e, 1)

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 4, NO. 12, DECEMBER 1995

3. compute L(k,1) and store (k,!) on the heap

4. while the heap is nonempty

5 extract the M largest likelihood ratios L(k(1),{(1)) - .. L(k(ar), [(ar)) from the heap
6. if for all 4, Iy == 1§

7. if L(k(1y, k1)) > Bo stop with match (k(1y, (1))

8 else stop with no match

9. fori=1to M

10. if Iy > 159

11. for all (k,1) € next(ky, iiy)-

12. compute L(k,{)

13. if L(k,1) > B, stop with match (k,1)
14. if L(k, 1) > a, store (k,!) on the heap
15. else

16. store (k(iy, I(iy) on the heap

17. stop with no match

Fig. 8.

Multiscale search algorithm for inspection. Lines 1-3 initialize the heap data structure. Lines 6-8 check to see if all candidate nodes are at the finest

resolution and, if they are, compare the maximum ratio to Jo. Lines 10-16 search children of candidate nodes.

depends on the estimated parent states £, this sequence must

proceed in order from root to leaves.

The difficulty in computing (10) is the missing state in-
formation szc). Without this state at each image, we cannot
determine the best state parameters ¢(9, or the template
parameters §(°), The EM algorithm is specifically formulated
to solve such “missing data” problems.

EM Algorithm

The EM algorithm works by computing a sequence of
parameter estimates which converge to a local maximum of
(10). The EM update equation is given by

(égzcc}w’ ¢2'(nce)w) - a‘rg

max
(6(e),g(ery ~
N-1
-3 Ellogp(y(,n), XP|XP = 48,60, 6()) ||
n=0
where

(P) — ~(17 H(C) ¢(21

L, = {Y('7n):y('>)

and 6(021 and ¢oz o are the parameters from the previous
iteration. Using Bayes rule and noting that data parameters
must be estimated for all subassembly resolutions < l(c), we
get two separate update equations.

N—-1 L-1
05, = argmax ZO Z([log p(yi (-,)| X5, 6()) |T,]
=Y = Iy
(11
N-1
pe) (1 x @) = 5 4le
¢new - aI‘gI;l(fi.)X Z:O E[lng(Xn |an - np ,¢()) |Fn] :
(12)

Consider the state parameter update of (12). The update
equations for the components of ¢(©) = [(m(9)?, (v()*]? can

be computed by using the prior state density in (2), and then
setting the derivative with respect to ¢(°) to zero. The update
for the state means is given by

) _All

new

Z EBl(X —zhry,] .

n=0

The EM update equations will all contain expected values over
the posterior-state density for node ¢ in each training image.
Each of these expectations can be approximated as a weighted
sum over the sampled states at resolution l(()c). For example,

E[(X() - &) [T
> (@b, 1§7) — 25) p((k, 7))
ok

> (o))
Z(I (k, ZC) #P)y exp{Ld(k,léc),n)}

;exp {Ld(k,léc),n)}

where Lg(k,1§7,n) is the log likelihood ratio associated
with the pair (k,[) in training image n. While these sums
may be computed, in our experience the likelihood ratio
associated with the most likely state typically dominates by
orders of magnitude, particularly for larger subassemblies and
subassemblies containing fine detail. Note that even a modest
difference in log likelihood ratios L4(-) leads to a large
difference in likelihood ratios exp{L4(-)}. Thus, the expected
values are approximated by the values corresponding to the
most likely state, which is the state found by the multiscale
search procedure. Formally, this approximation can be stated
as

BI(X[) —#P)Tn] ~ 2 -2 .

TRETTER et al.: A MULTISCALE STOCHASTIC IMAGE MODEL FOR AUTOMATED INSPECTION

This same approach is often taken when solving analogous
expressions in speech and text recognition[9]. The update
equation for the state means is then given by

N B S
= .A. N Z(.’IZ" —l'n)

n=0

FNO)

A similar method is used to compute the updates for the
variance parameters (), These updates are given by
{ © a0)]t _

Vs ,new? Yz ynew? Ir,new -

NZ 62(n) Zé%)

n-—O

1 N-1
W o

[16s(
b (s)
where

[65(n), 8:(n), 8-(n)]’

Now we need to compute the update equations for the
data parameters from (11). Recall that a parameter POET
used in the data model to account for intensity scaling of
image regions, which is necessary for the log likelihood ratio
computations. During training, however, all data variability
among the training images is incorporated into the variabil-
ity parameter estimates, &;(-), so A(®) becomes an arbitrary
constant, which we set to one.

The template components z;(-) and oy(-) can be expressed
in terms of the parameters ji;(+) and &4(-) of equation (5) by
performing the inverse of the transformations in (4). However,
the transformations of (4) may not be strictly invertible, since
the size of the transformed window W(C) may not be the same
as the size of the untransformed window W(©). We avoid this
problem by using bilinear interpolation on the data values to
approximate the inverse of the bilinear interpolation in (4).
Since each expectation in (11) is approximated by the value
at the most likely state £ = [()¢, 252, #{7]t for each
training image n, the template components are computed as

(@) = fu ((Tﬁf))‘li + 27159, n)(Tgp)—l

o(i) = & ((T("C))‘li +27150, n)

= 3 -3 — An{D,.

where [f1;(3,n),5,(i,n)]* are the parameters corresponding to
pixel (i, n) of training image n, and T is the transforma-
tion matrix evaluated at .

1649

The image pixel values at the template component locations

can be approximated via the same transformation. Let
filin) = w((TE) i +2750,) (TW) ™

Each expectation in (11) can now be approximated by the
value at the most likely state 9, yielding a sum over the
pixels in the window VVl(c). If this sum is thought of as an
approximation to an integral over the window, a simple change
of variables leads to a second approximation as a sum over
the untransformed window Wl(c) . Ignoring terms that do not
depend on 6(°) | this gives (14) (at the bottom of this page),
where the invariance of the 2-norm under rotation is used to
obtain the final expression.

Substituting (14) into (11), the EM updates for the template
parameters are given by

N-1
'u’l new() - arg;n;l; (7(LC))3 “gl(i’n) - 1(7’)“ 15)
N-1
3 (GO 16sm) — e (3]
81 mew (i) = =2 — (16)
)3 a0y
n=0

The computation of (15) would require a recursive imple-
mentation, so we approximate the update by assuming the scale
factors are all near unity and replacing the 2-norm with a
1-norm. This gives the update

D new(t) = Median {§;(4,0),...9:(4, N — 1)}.

Since the EM algorithm is only guaranteed to converge to a
local maximum of the likelihood equation, the final estimates
can vary considerably depending on the initial starting point.
We have devised a heuristic technique to compute initial
parameter estimates. The state means are simply initialized
to the known state values of the initialization image Y (-,0),
with the scale factor and rotation angle defined to be unity and
zero, respectively, for this image

_ [(S(C)) 1, O]t.

me = I
Each template mean is initialized to one half the corresponding
data value in the initialization image. Thus,

fu(i) = 0.54(i,0).

E[logp(yi(-,n)| X7,) [Tn]

~ _ (c) _ “yl(ivn) - ﬁl(%")H }
~ ‘e§c) { 210g((7/ TL)))\(c)&l(l, n)
oyt o @) (TN = p@G)(TE)) }
=~ |(T(")) | {—Zlogo (i) — T
%V:U ’ o)

iew/ e

{—ZIOgUZ(z') -

2 i, m) =)| (14)
O'I(i) ’

1650

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 4, NO. 12, DECEMBER 1995

1. initialize parameter estimates #(2) and)
2. initialize 1§ = — 1
3. set EM-iteration =0
4. while EM-iteration < N and (65, $42.) 5 (65, 64
5. forn=1to N -1
6. use multiscale search to compute state estimates 4 at resolution I, < I((,C)
7. if EM-iteration == 0 and c is a leaf node, set l‘(,c) =1=0
8. else set | = max I,
n>0
9. if 1 > 0, update 6¢°) to resolution 1 — 1 using EM update equations
10. else update (%) to resolution { using EM update equations
11. if EM-iteration > 0
12. set Ig°) =1
13. update ¢(using EM update equations

14. multiply 59, 39

, and %9 by (

212\;\11), (N_{Y) and (—NNTI), respectively, to remove bias

15. store 69 and ¢(*) as model parameters for this subassembly, with ll()c) as the finest model resolution

Fig. 9. EM algorithm for training. This procedure adapts the model to the variations seen in the training set.

In this way, the expected grayscale gradients x;(z) have the
same direction as in the initialization image, but the gradient
magnitudes can be smaller.

The remaining parameters characterize the expected vari-
ability of the data and state values, so their estimation from a
single image is not so straightforward. The template variation
parameters o;(-) are normally larger near edges in the image.
These regions will also contain pixel values farther from zero,
so the template oy is initialized to a smoothed version of
the pixel norms in the initialization image. The following
smoothing operation blurs the edges in the initialization image.

101D} ewe = h@) * (0.25]15u(3,0)1))

where h(%) is a separable lowpass filter with one-dimensional
filter weights of [0.25, 0.5, 0.25] and “x” denotes a two-
dimensional convolution. This is useful since edge locations
will typically vary slightly among images.

Finally, the state variances (%) are initialized to

minimum template dimension \ 2
() = max (];,) , 16

A9 = 40 = (0.04)% .

Note that this initialization implicitly assumes that the scale
factor and rotation angle of the object will only vary to a
limited extent from image to image.

The initial template values are based on only a single image,
so they may be quite poor estimates of the parameters. The
first EM iteration is therefore used to refine the estimates of
the data parameters, but the state parameters and the value
of l(> are not changed during this iteration. In this way,
the ﬁrst iteration is essentially an initialization stage, giving
a reasonable estimate of the template parameters based on the
full set of training images.

The EM update scheme proceeds as shown in Fig. 9. We
set Ngps = 4. The algorithm tends to converge to a fairly
stable set of parameters by this point. Note that the finest
mode] resolution léc) is set to O for leaf nodes. These nodes

are normally associated with subassemblies that are important
for proper detection, so we force the algorithm to model these
subassemblies at the finest resolution. The finest resolution for
other nodes is initialized to L — 1 and is set in a monotonically
nonincreasing fashion during the training procedure.

Multiscale Search During Training

The search procedure used during the training phase differs
in several ways from the procedure of Section IIl. We want
to be sure the search returns the best possible state during
training, so the magnitudes of the acceptance and rejection
thresholds are increased to yield a slower, more conservative
multiscale search. In particular, the acceptance threshold dur-
ing training is set to 1 = 500 and the rejection threshold to
] = —40.

The object is assumed to be present in each of the training
images, so the search is forced to terminate in a match.
Ideally, this could be accomplished by setting the rejection
threshold to negative infinity. In this case, however, none of the
search paths would be pruned, and all candidate states would
be added to the heap. During the early training iterations,
the log likelihood ratio may never exceed (3;, so the search
could be required to examine every possible candidate state
before terminating. Consequently, we prune the search space
by dynamically adjusting the rejection threshold during the
search.

The search procedure during training is described in Fig. 10.
The search terminates when it encounters a state at fine enough
resolution with log likelihood ratio greater than (31, or when
all search paths have been completely examined or discarded.
The state corresponding to the best likelihood ratio is returned
as the node location.

After the training algorithm has converged, the variance
estimates 4(®), which correspond to maximum likelihood es-
timates, are biased. This bias is removed by multiplying each
variance estimate by the appropriate fraction, 2N/(2N — 1)
for 48 and N/(N — 1) for 4% and 4{9.

TRETTER ef al.: A MULTISCALE STOCHASTIC IMAGE MODEL FOR AUTOMATED INSPECTION

1651

1. set I = max(Ip,, 0)

2. for all k € X (a1,1)

3. compute L{k,1) and store (k,!) on the heap

4. set Lyar = —00

5. while the heap is nonempty

6. extract the M largest likelihood ratios L(k1,&1))-.. L(k(a), i(as)) from the heap
7. fori=1toM

8. if Iy >0

9. for all (k,1) € next(key, i)

10. compute L(k, 1)

11. if L(k,1) > Lmas and 1 < I§°

12. set Lmaz = L(k,1)

13. set (kmaz;Imaz) = (k,1)

14. if L(k,1) > B1 and 1 < IV, stop with match (k)
15. if Lmaz >0, 6= 025"t Lo, +on

16. else & = Loz + 1

17. if L(k,1) > @&, store (k,1) on the heap

18. stop with match (kmaz, Imaz)

Fig. 10. Multiscale search for training. The search is guaranteed to terminate in a match.

(a)

V. SIMULATION RESULTS

We have used this algorithm to inspect two different real
assemblies. The images used are eight bit monochrome NTSC
images obtained from a standard camcorder. All simulations
were run on a Sparc 10 workstation.

Fig. 2 shows the initialization image for the first assembly
inspected. The subassemblies making up the object tree are
drawn as boxes in the figure, and the lines connecting the
boxes illustrate the object tree connections. The object tree
contains six nodes in all for this assembly. The algorithm was
first trained using this initialization image and five additional
training images. Two of the training images are illustrated in
Fig. 11, where the boxes indicate the state estimates during the
last EM iteration. As the figure shows, the training algorithm
located each of the subassemblies correctly.

Fig. 12 illustrates the output of the algorithm for two
different test images. The object in Fig. 12(a) was assembled
correctly, and the algorithm located each of the subassemblies,
so this object passes inspection.

®)

Fig. 11. Training images for gear assembly. The boxes indicate the subassembly locations determined during training.

Fig. 12(b) shows an incorrectly assembled object. For this
image the top plate of the assembly is not fully seated on
the pins, but is tilted slightly toward the camera. This error
causes the top of the left rear pin to be lower than the surface
of the plate. Since the appearance of this pin does not match
the training images, this image fails inspection. The algorithm
indicates the error point by drawing a box with an “X” through
it at the expected subassembly position.

The second assembly to be inspected is a VHS video
cassette. We zoomed in on the portion of the cassette that
we wish to inspect and took a number of images of correctly
and incorrectly assembled pieces. The manually constructed
initialization image is shown in Fig. 13(a). For this assembly
the object tree contains five nodes.

The algorithm was trained for this assembly using a total
of five training images. The resulting model was then used to
inspect a variety of images. Fig. 13(b)—(d) show the algorithm
results for three images of incorrectly assembled cassettes.
For the images of Fig. 13(b) and (c), the inspection algorithm
correctly locates and flags the error.

1652 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 4, NO. 12, DECEMBER 1995

(a)

©

The image in Fig. 13(d) contains a more subtle error. The
subassembly enclosed by the smallest box is a small metal
spring. In Fig. 13(d), this spring is not fully inserted into the
proper slot. However, since the part is quite small and largely
occluded by the other assembly parts, the inspection algorithm
fails to detect this error. The primary features inside this small
box are the edges of the occluding parts and the edge of the
cassette. Since these features match the model, the small errors
caused by the misinserted spring are disregarded. In general,
the algorithm can have difficulty detecting small features that
have no sharp edges, particularly if they lie in areas of high
activity in the image. This tendency can be reduced to some
extent by using feature-shaped subassembly windows, but for
small features this will reduce the number of pixels in the
window even more, and any occlusion problems will remain.

®)

(®)

@

Fig. 13. VHS cassette images. (a) initialization image; (b)~(d) test images. Note that the error in image (d) goes undetected.

The algorithm also tends to overestimate the scale factor for
small features. This tendency is illustrated by Table I, where
node 4 corresponds to the small spring. Note that all other
scale and rotation errors are quite modest. The error statistics
in Table I were computed from a set of test images obtained by
rotating the initialization image through a number of known
angles ranging from —10° to 10°. In this way, the nominal
scale factor and rotation angle were known for each test image,
so the estimation errors could be computed.

Our algorithm implicitly assumes that the large majority
of test images will contain correctly assembled objects. For
a misassembled object, the search must discard all candidate
search paths before it can terminate with no match. Thus, the
amount of computation required for an object with assembly
errors is typically much greater than that required for a

TRETTER et al.: A MULTISCALE STOCHASTIC IMAGE MODEL FOR AUTOMATED INSPECTION

1653

E[(X© — 2®) _ A (x© — 2 _ Am(c))l)g'(p) = 3®) gl
= EB|X® = ® ¢ + E[QQT|X® =3 +

E[(A — Aym©(m)HA - A)’]X(l") = 2@ ¢

a7

TABLE 1
SCALE AND ROTATION ERRORS FOR VHS CASSETTE
THE INITIALIZATION IMAGE WAS ROTATED THROUGH DIFFERENT ANGLES
RANGING FroM —10° 10 10° AND USED As A TEST IMAGE
TO COMPUTE ERROR STATISTICS FOR SCALE FACTOR AND ROTATION
ANGLE. ALL TEST IMAGES HAD A NOMINAL SCALE FACTOR OF ONE

Node 0 Node 1 Node 2 Node 3 Node 4
Scale | Mean 0.0517 0.0983 0.0475 -0.0192 0.3422
Factor | Std Dev | 0.0714 0.1044 0.0539 0.0469 0.3429
Rotation | Mean 0.0000 -0.0063 -0.0063 -0.0044 0.0043
(radians) | Std Dev [0.0447 0.0230 0.0230 0.0239 0.0219
TABLE II
COMPUTATION FOR MULTISCALE SEARCH
Avg # Touches
Object AvgCPUTIme ' Ser pixel
Gear Assembly 34.6 seconds 3.49
VHS Cassette 44.8 seconds 3.16

correctly assembled object. However, we do not consider this
to be a problem since for our application, most of the inspected
objects should be correctly assembled.

We measure the required computation for the algorithm in
two ways. The first measurement is a simple recording of the
required CPU time for testing the algorithm on a correctly
assembled part. A second complexity measure is to count
the average number of times each image pixel is “touched”
during the multiscale search. This number is incremented for
a particular pixel each time the pixel contributes to the log
likelihood ratio computation. In this way, we get a measure
of complexity that indicates the average number of times each
image pixel is used, which is independent of the particular
architecture on which the algorithm is implemented.

The inspection algorithm was run on a total of ten images
of correctly assembled objects, none of which were included
in the training set, for each of the two assemblies. The average
CPU time and average number of times each pixel is touched
are given in Table IL

VI. CONCLUSION

Stochastic model-based techniques can be effective for
object detection, particularly in a highly structured environ-
ment. The procedure presented here demonstrates some of the
principal characteristics of such a system, but the algorithm
could be improved in a number of ways. The multiscale
search and the parameter estimation procedure could both be
made more efficient, and more accurate models could improve
performance.

VII. APPENDIX A

In this appendix we derive the state variance correction
term BQ(X(p),qS(C),l(p),lé‘”))‘ We will assume the compo-
nent quantization errors in () are zero mean, uniform, and
independent. ~

The adjusted variances in B are the diagonal elements of
(17), at the top of this page, where A is the A matrix evaluated
at &),

The first two terms can be computed in a straightforward
fashion to give

EB|X® = 3@ ()

- Diag([(é(”))z + q] A, {(2@))2 + q] 7, 7, vﬁcj)

2

) (ONE
E[QQT|X® = 3] :Diag((dTp)) a (%) % 4 q)

where

() _ lél’)

4 —a
1= 12(d@®)2 -

The nonlinear cosine and sine terms in Amake the third term
of (17) more difficult to compute. We therefore approximate
the diagonal components of this term using a Taylor series
expansion and ignoring all powers of (r® — #®)) larger
than two. After performing this calculation, the state variance
correction term is given by

BQ(X(p)a¢(C)7l(p)al(()p)) = Diag(anUﬁ bQ,h’ bQ,z’ va”')

where
(d®))? 1
N E O
(g(1 — @)C2 + q((3™)? + 9)C})
(d(p))2 1
1 1T oy
(a(1 = 9)C7 + a(3®))* + 9)C)
bQ,z =4q
bQ,r =4q

bow = a7\ +

bou = a1 +

and [Cy, C]t = (T@)~1m? | with T®) equal to the trans-
formation matrix T evaluated at £(®).

REFERENCES

[1] A. K. Jain, “Advances in Mathematical Models for Image Processing,”
in Proc. IEEE, vol. 69, no. 5, pp. 502-528, May 1981.

[2] R. Chellappa and R. L. Kashyap, “Digital Image Restoration Using
Spatial Interaction Models,” IEEE Trans. Acoust., Speech, Signal Pro-
cessing, vol. 30, no. 3, pp. 461-471, June 1982.

1654

{3
[4]

[5]

6

=

(7

(8]

(91

[10]

(1]

{12]

[13]

[14]
(151

[16]

[17]

[18]
[19]

[201

121]

[22]

[23]
[24]

[25]

[26]

(271

[28]

[29]

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 4, NO. 12, DECEMBER 1995

J. Besag, “On the Statistical Analysis of Dirty Pictures,” J. Roy. Statist.
Soc. B., vol. 48, no. 3, pp. 259-302, 1986.

C. A. Bouman and M. Shapiro, “A multiscale random field model for
Bayesian image segmentation,” IEEE Trans. Image Processing, vol. 3,
no. 2, pp. 162-177, Mar. 1994.

A. Benveniste, R. Nikoukhah, and A. S. Willsky, “Multiscale system
theory,” in Proc. 29th Conf Decision and Control, Dec. 1990, pp.
2484-2489.

M. Basseville, A. Benveniste, K. C. Chou, S. A. Golden, R. Nikoukhah,
and A. S. Willsky, “Modeling and estimation of multiresolution stochas-
tic processes,” IEEE Trans. Inform. Theory, vol. 38, no. 2, pp. 766-784,
Mar. 1992.

Y. Amit, U. Grenander, and M. Piccioni, “Structural image restoration
through deformable templates,” J. Amer. Stat. Assoc., vol. 86, no. 414,
pp. 376-387, June 1991.

A. C. Kam and G. E. Kopec, “Heuristic image decoding using separable
source models,” in Proc. Int. Conf. Acoust., Speech, Signal Processing,
vol. 5, Adelaide, Australia, Apr. 19-22, 1994, pp. 145-148.

G. E. Kopec and P. A. Chou, “Document image decoding using Markov
source models,” IEEE Trans. Pattern Anal. Machine Intell., vol. 16, no.
6, pp. 602-617, June 1994.

R. T. Chin and C. A. Harlow, “Automated visual inspection: A survey,”
IEEE Trans. Pattern Anal. Machine Intell., vol. 4, no. 6, pp. 557-573,
Nov. 1982.

R. A. Brooks, “Model-based three-dimensional interpretations of two-
dimensional images,” IEEE Trans. Pattern Anal. Machine Intell., vol.
PMI-5, no. 2, pp. 140-150, Mar. 1983.

P. J. Flynn and A. K. Jain, “CAD-based computer vision: From CAD
models to relational graphs,” IEEE Trans. Pattern Anal. Machine Intell.,
vol. 13, no. 2, pp. 114-132, Feb. 1991.

R. Mehrotra and W. 1. Grosky, “Shape matching utilizing indexed
hypotheses generation and testing,” IEEE Trans. Robotics Automat., vol.
5, no. 1, pp. 70-77, Feb. 1989.

A. Rosenfeld and G. J. Vanderbrug, “Coarse-fine template matching,”
IEEE Trans. Syst., Man, Cybern., pp. 104-107, Feb. 1977.

A.D. Gross and A. Rosenfeld, “Multiresolution Object Detection and
Delineation,” Computer Vision, Graphics, Image Processing, vol. 39,
pp. 102-115, 1987.

J. L. Crowley and A. C. Sanderson, “Multiple resolution representation
and probabilistic matching of 2-D gray-scale shape,” IEEE Trans.
Paitern Anal. Machine Intell., vol. 9, no. 1, pp. 113121, Jan. 1987.

S. Morita, T. Kawashima, and Y. Aoki, “Pattern matching of 2-D shape
using hierarchical descriptions,” Syst. Computers in Japan, vol. 22, no.
10, pp. 40-49, 1991.

P. J. Burt, “Smart sensing within a pyramid vision machine,” in Proc.
IEEE, vol. 76, no. 8, Aug. 1988, pp. 1006-1015.

G. J. Ettinger, “Large hierarchical object recognition using libraries of
parameterized model sub-parts,” in Proc. Computer Soc. Conf. Computer
Vision Pattern Recognition, pp. 32-41, Ann Arbor, MI, June 5-9, 1988.
D. R. Tretter and C. A. Bouman, “Multiscale stochastic approach to
object detection,” SPIE Visual Commun. Image Processing '93, pp.
1219-1230, Cambridge, MA, Nov 8-11, 1993,

D. R. Tretter, K. W. Khawaja, C. A. Bouman, and A. A. Maciejewski,
“A CAD driven multiscale approach to automated inspection,” in Proc.
Int. Conf. Acoust., Speech, Signal Processing, vol. 5, Adelaide, Australia,
Apr. 19-22, 1994, pp. 397-400.

, “Automated assembly inspection using a multiscale algorithm
trained on synthetic images,” in Proc. IEEE Int. Conf. Robotics Automat.,
vol. 4, San Diego, CA, May 8-13, 1994, pp. 3530-3536.

K. T. Gunnarsson and F. B. Prinz, “CAD model-based localization of
parts in manufacturing,” Computer, vol. 20, no. 8, pp. 66-74, Aug. 1987.
H. Shariat, “A model-based method for object recognition,” in Proc.
IEEE Int. Conf. Robotics Automat., Cincinnati, OH, May 13-18, 1990,
pp. 1846-1851.

H. R. Keshavan, J. Barnett, D. Geiger, and T. Verma, “Introduction
to the special section on probabilistic reasoning,” IEEE Trans. Pattern
Anal. Machine Intell., vol. 15, no. 3, pp. 193-195, Mar. 1993.

A. Dempster, N. Laird, and D. Rubin, “Maximum likelihood from
incomplete data via the EM algorithm,” J. Roy. Statist. Soc. B., vol.
39, no. 1, pp. 1-38, 1977.

J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. San Mateo, CA: Morgan Kaufmann, 1988.

S. G. Mallat, “A theory for multiresolution signal decomposition: The
wavelet representation,” JEEE Trans. Pattern Anal. Machine Intell., vol.
11, no. 7, pp. 674-693, July 1989.

R. 1. Clarke, Transform Coding of Images. Orlando, FL: Academic
Press, 1985.

Daniel Tretter (S’87-M’88-5"90-S’93-M’95) re-
ceived the B.S. degree in electrical engineering and
mathematics from Rose-Hulman Institute of Tech-
nology, in 1987, and the M:S. and Ph.D. degrees
in electrical engineering from Purdue University, in
1988 and 1994, respectively.

From 1989-1990, he was a member of the tech-
nical staff at The Aerospace Corporation. He is cur-
rently employed at Hewlett-Packard Laboratories,
Palo Alto, CA. His current research interests include
multiscale image processing and image modeling.

Charles A. Bouman (S’86-M’89) received the B.S.
degree in electrical engineering from the University
of Pennsylvania, in 1981, and the M.S. degree in
electrical engineering from the University of Cali-
fornia at Berkeley, in 1982. In 1987 and 1989, re-
spectively, he received the M.A. and Ph.D. degrees
in electrical engineering from Princeton University
under the support of an IBM graduate fellowship.

From 1982-1985, he was a staff member in the
Analog Device Technology Group at the Massachu-
setts Institute of Technology, Lincoln Laboratory. In
1989, he joined the faculty of the School of Electrical Engineering at Purdue
University as an assistant professor. His research interests include statistical
image modeling, multiscale processing, and the display and printing of images.
He is particularly interested in the applications of statistical signal processing
techniques to problems such as color half-toning, tomographic reconstruction,
multispectral segmentation, and fast image search. He has performed research
for numerous government and industrial organizations including the National
Science Foundation, U.S. Army, Hewlett-Packard, NEC Corporation, Apple
Computers, Xerox, and Eastman Kodak.

Dr. Bouman was also an NEC Faculty Fellow, from 1991-1993. He is a
member of SPIE and IS&T professional societies. He has been both chapter
chair and vice chair of the IEEE Central Indiana Signal Processing Chapter.
Currently, he is an associate editor of the IEEE TRANSACTIONS ON IMAGE
PrOCESSING, and a member of the 1996 Image and Multidimensional Signal
Processing organizing committee.

Khalid W. Khawaja was born in 1967. He received
both the B.S. degree in computer and electrical engi-
neering and the M.S. degree in electrical engineering
from Purdue University, West Lafayette, IN, in 1989
and 1990, respectively. He is currently completing
a Ph.D. degree in electrical engineering at Purdue
University.

His research interests include computer graph-
ics applications in industrial automation, computer
animation, and CAD.

Anthony A. Maciejewski received the B.S., M.S.,
and Ph.D. degrees in electrical engineering from
Ohio State University, Columbus, OH, in 1982,
1984, and 1987, respectively.

Since 1988, he has been with the School of
Electrical Engineering at Purdue University, West
Lafayette, IN, where he is currently an associate pro-
fessor. His primary research interests center on the
simulation and control of kinematically redundant
robotic systers.

