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ABSTRACT 

 

CLOUD PROCESS INFORMATION FROM A FLEET OF SMALL SATELLITES: 

SYNTHETIC RETRIEVALS USING AN OPTIMAL ESTIMATION ALGORITHM 

 

 

 The great importance of clouds in understanding atmospheric phenomena is widely 

recognized, yet faithful representations of cloud and precipitation processes in models at nearly 

all scales remain elusive. In order to properly constrain model parameters, it is important to 

obtain reliable observations of cloud properties in varying atmospheric environments. The 

Temporal Experiment for Storms and Tropical Systems (TEMPEST) mission was proposed to 

help address this need by deploying a cluster of CubeSats, each containing an identical, five-

frequency passive microwave radiometer, into the same orbit. Doing so would allow for the 

observation of cloud processes at a high temporal resolution and on a global scale. 

 In order for such a mission to be useful in understanding cloud processes, it is crucial to 

develop a retrieval algorithm that can distinguish true changes in the atmospheric state from the 

noise induced by making repeated observations only a few minutes apart at different view 

angles. To this end, a physical optimal estimation algorithm is developed for the retrieval of 

water vapor, cloud water, and frozen hydrometeors from cross-track microwave sounders such as 

the TEMPEST radiometer. The performance of the algorithm is assessed by using high 

resolution Weather Research and Forecasting (WRF) model output to generate synthetic 

radiometer observations, while incorporating realistic error estimates, and then comparing the 

parameters retrieved using the synthetic observations to the actual model parameters.  
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For rapidly changing clouds, differences in parameters retrieved at various view angles, 

while not trivial, are small enough that changes in cloud properties can be discerned. This is 

especially true for view angles near nadir, where the field of view is smaller and changes less 

rapidly with time. Experiments simulating a cluster of TEMPEST instruments successively 

observing the same cloud system suggest that using the higher-quality retrievals near nadir to 

constrain preceding and subsequent observations allows for cloud changes to be observed more 

clearly. An analysis of the contribution of various forward model errors indicates that 

incorporating more accurate a-priori information about wind speed, cloud coverage, and cloud 

heights, perhaps obtained from coincident measurements by other spaceborne instruments, would 

further constrain the retrieval and mitigate some of the view angle induced biases. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Motivation 

Clouds are profoundly important in the atmospheric system. They link atmospheric and 

hydrologic processes, transfer moisture and momentum, affect large-scale circulations through 

latent heat release, and have radiative effects that strongly influence regional and global climate. 

Representing cloud processes remains one of the foremost challenges in atmospheric modeling. 

The spatial scales of cloud processes span several orders of magnitude, and most microphysical 

processes operate at scales much smaller than the grid box of a global climate model (GCM) or 

even the most detailed numerical weather forecast models. Thus parameterization is necessary to 

represent sub-grid scale processes in cloud resolving models (CRMs). Countless studies have 

shown that CRM output can be quite sensitive to the choice of cloud microphysics scheme or to 

the value chosen for certain parameters within a single scheme [e.g. Saleeby and Cotton, 2008; 

Adams-Selin et al., 2013; Cintineo et al., 2014; Van Weverberg et al., 2014; Morrison et al., 

2015]. 

The value chosen for a given microphysical parameter can vary significantly from model 

to model and is often chosen by the modeler somewhat arbitrarily. Values chosen might be based 

on measurements from a single field campaign, even if the model is being applied to a different 

meteorological regime. In other cases, they might be chosen to maintain consistency with older 

studies, or parameter values might be chosen so as to “tune” a model to produce realistic-looking 

output fields. If representations of cloud and precipitation processes in models are to continue to 

improve, it is important to better constrain the appropriate choice of microphysical parameters 
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and to gain a better understanding of how these parameters vary in different environments 

around the globe. 

For example, one microphysical parameter that cloud models are particularly sensitive to, 

particularly for mixed-phase convective clouds, is the collection efficiency of liquid drops by ice 

and graupel. Johnson et al. [2015] used statistical emulation of the MAC3 cloud microphysics 

model to quantify the sensitivity of 12 cloud properties to aerosol concentrations and 9 

microphysical model parameters. They found that, for a deep convective cloud, the model output 

was more sensitive to the graupel collection efficiency than to any other parameter, with the 

graupel collection efficiency having a particularly large effect on the amount of accumulated 

precipitation after 80 minutes and the maximum precipitation rate. Other cloud responses that 

were sensitive to collection efficiency included the mean cloud drop effective radius, the mean 

downdraft speed, the mean reflectivity, and the mean specific drop mass.  

 Clearly, an accurate estimate of this parameter is important if convective systems are to 

be simulated well in numerical weather prediction (NWP) models. Unfortunately, the parameter 

is not well-constrained or easily measured. The collection efficiency can depend on many 

factors, including the size and shape of the frozen particles and water drops, the relative collision 

velocity, and turbulence [Khain et al., 2000; von Blohn et al., 2009]. Moreover, it is not clear 

how other atmospheric parameters such as temperature or humidity may affect the collection 

efficiency. 

Another parameter that is present in many microphysical schemes and that has been 

shown to be especially influential in the output of GCMs is the autoconversion threshold radius 

[e.g. Lohmann and Feichter, 1997]. When cloud droplets in a model are smaller than this radius, 

it is assumed that no cloud droplets collide to form larger drops and thus (in liquid-phase clouds) 
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no precipitation is formed until the cloud droplets grow large enough through other processes 

such as condensational growth. This parameter is introduced to crudely mimic a widely observed 

characteristic of rain formation: that it tends to occur only once the coalescence process has been 

activated.  

 In GCMs, the autoconversion threshold radius has important impacts on cloud lifetimes 

and coverage. When the threshold radius is set to a higher value, rain formation is inhibited, 

leading to longer-lasting clouds and increased overall cloudiness. This can have important 

radiative consequences. As such, it is a parameter that is often tuned to ensure that climate 

models can properly simulate the radiation balance of the present day climate [e.g. Rotstayn, 

2000]. In addition, the autoconversion threshold radius strongly influences the magnitude of 

aerosol indirect effects [Golaz et al., 2011]. Figure 1.1, reprinted from Golaz et al. [2013], shows 

how changing the autoconversion threshold can significantly affect the amount of surface 

temperature warming in a GCM simulation. The GFDL CM3 coupled climate model was run 

with three different microphysical configurations, with the threshold radius ranging from 6.0 µm 

(red line) to 10.6 µm (blue line). Even though other cloud parameters were re-tuned for each run 

so as to achieve the same top-of-atmosphere radiation balance for the period 2001-2010, there 

are considerable differences in the model’s simulation of 20
th

 century surface temperatures for 

each configuration.  

The model recreates the surface temperature record of the last 150 years with most 

fidelity when a threshold radius of 6.0 µm is used. However, this value is lower than what is 

supported by most observational studies. For example, Pawlowska and Brenguier [2003], 

analyzing flight segments from the Aerosol Characterization Experiment, found that it is only 

when the maximum mean volume droplet radius exceeds 10 µm that precipitation forms in 
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stratocumulus clouds. Suzuki et al. [2013] similarly found that microphysical parameterizations 

in the GFDL CM3 that best reproduced satellite-observed microphysical statistics were not very 

skilled at reproducing simulated temperature trends, and that parameterizations which best 

reproduced temperature trends relied on parameter values inconsistent with observations. This 

disconnect between the constraints implied for the autoconversion threshold based on bottom-up 

process-based studies and top-down metrics such as the observed temperature trend suggests the 

presence of compensating errors in the model and underscores the fact that there is a lot of room 

for improvement in microphysical parameterizations.  

 
Figure 1.1. Time evolution of global mean surface air temperature anomalies from five-member 

ensemble runs of the GFDL CM3 climate model with different values chosen for the 

autoconversion threshold radius (6.0 µm in red, 8.2 µm in green, and 10.6 µm in blue) and 

additional cloud returning. Also plotted are observed temperature trends, and the letters above 

the horizontal axis mark major volcanic eruptions (cited from Golaz et al. [2013]). 
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1.2  Informing Cloud Models with High Temporal Resolution Satellite Observations 

 Comprehensive, multi-instrument field studies are one avenue for constraining model 

parameterizations, and can yield very accurate measurements for various parameters at a given 

place and time. However, they usually target one specific environment or type of cloud and often 

fail to give insight into how parameters might vary from one place to another. Satellite-based 

estimates of microphysical parameters, on the other hand, have larger uncertainties associated 

with them but can but used to construct global databases with which to examine relationships 

between microphysical parameters and large-scale environmental variables. Indeed, satellite 

instruments have been used for years to measure various cloud properties, with the goal of 

improving CRM parameterizations. For example, Kawamoto et al. [2001] developed a method 

by which to simultaneously measure cloud optical thickness and effective particle radius using 

Advanced Very High Resolution Radiometer (AVHRR) multispectral radiance data. Suzuki et al. 

[2010] made use of coincident measurements of vertical profiles of reflectivity from CloudSat 

and Moderate Resolution Imaging Spectroradiometer (MODIS) measurements of in-cloud 

optical depth and effective particle radius. They demonstrated a trimodal pattern in reflectivity 

profiles that they identified as corresponding to non-raining, drizzle, and raining precipitation 

categories and investigated their occurrence as a function of droplet size. Suzuki et al. [2011] 

then compared the observed satellite statistics with those produced by two CRMs, finding that 

models tend to convert cloud water to rain water too quickly and suggesting that deficient 

representations of autoconversion and accretion might be to blame. 

 Large, sophisticated satellite sensors such as CloudSat are clearly useful in measuring 

specific microphysical parameters with good accuracy. However, a downside is that a satellite in 

a typical orbit will observe any given cloud system at most once per orbit and often less 
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frequently than that. It is thus hard to observe the temporal evolution of clouds to precipitation, 

and to measure the rate at which individual cloud processes occur. Propopsed geostationary 

microwave sounding instruments such as GeoSTAR [Lambrigsten et al., 2004] would in theory 

be able to observe changes in clouds on short timescales, but cost considerations have thus far 

precluded the launch of any microwave sounders into geostationary orbit. An alternative to a 

single, costly geostationary instrument is a constellation of much smaller satellites flying in low 

Earth orbit. The Temporal Experiment for Storms and Tropical Systems (TEMPEST) mission 

proposes to deploy a cluster of 6U-Class CubeSats, each carrying an identical five-frequency 

passive microwave radiometer, into the same orbital plane. The satellites would be spaced only a 

few minutes apart (this study assumes 6 CubeSats with 6-minute spacing) and thus would offer 

the opportunity to directly observe the lifecycle of clouds at a high temporal resolution, while 

also likely providing better spatial resolution than could be achieved by a radiometer in 

geostationary orbit. 

 The TEMPEST radiometers would not be able to provide the sort of detailed vertical 

profiles of clouds that more sophisticated sensors (such as the cloud radar on CloudSat) can 

provide. Nevertheless, by looking at the changes in measured radiances from one TEMPEST 

satellite to the next, as they observe the same scene, important information can be gathered about 

different processes taking place inside the clouds. For example, cloud water, rain water, ice, 

snow, and graupel each have radiometric signals in the part of the electromagnetic spectrum at 

which the TEMPEST radiometer operates. If TEMPEST radiometers are able to retrieve 

integrated amounts of cloud water and cloud ice, then changes in these values from one CubeSat 

overpass to the next could offer valuable insight into the rate at which cloud droplets are 

collected by frozen particles, and the rate at which clouds mature and transition to producing 
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precipitation, in different large-scale environments. These observations, combined with modeling 

studies, could help constrain parameters such as the collection efficiency and autoconversion 

threshold. In addition, near-coincident measurements between the TEMPEST constellation and 

more sophisticated satellites such as CloudSat and the Global Precipitation Measurement (GPM) 

satellite would offer opportunities to leverage the temporal context provided by TEMPEST with 

more detailed microphysical information to further aid our understanding of cloud processes. 

CubeSats have the added benefit of being much cheaper to produce and to launch than traditional 

Earth observing satellites, with a much shorter development lifecycle. 

As envisioned, the TEMPEST 6U CubeSats would be launched all at once into the same 

International Space Station (ISS) orbit, and then passive drag-adjusting maneuvers would be 

used to separate them by the desired amount. However, while the 6U CubeSats would all be in 

the same orbital plane, they would not sweep out identical footprints on the Earth, because the 

Earth would be rotating underneath them. This concept is illustrated qualitatively in Figure 1.2. 

Thus, it would be necessary to observe features at different view angles with each satellite pass. 

In order for this mission concept to be useful, then, it is critical to develop a retrieval algorithm 

that is as independent of view angle as possible. If two retrievals of, say, cloud liquid water path 

are performed over the same location a few minutes apart from each other and yield different 

results, one can only say something about the development of the cloud system if systematic 

biases due to view angle differences can be ruled out as the source of the discrepancy. In other 

words, the signal from the true change in atmospheric state must be larger than the noise 

introduced by taking two different measurements at different view angles. This thesis details the 

development of a robust optimal estimation retrieval algorithm for use with TEMPEST and other 

similar sensors and investigates the magnitude of sources of view-angle-induced errors.  
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Figure 1.2. Conceptual illustration of the TEMPEST constellation of CubeSats (cited from 

Reising et al. [2017]). 
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CHAPTER 2: A ONE DIMENSION VARIATIONAL RETRIEVAL ALGORITHM 

FOR TEMPEST 

 

2.1  Background 

Spaceborne passive microwave radiometers have been used for over four decades to infer 

information about geophysical variables over the global oceans, beginning with the Nimbus 5 

Microwave Spectrometer (NEMS) that operated at five frequencies between 22.235 and 58.8 

GHz [Staelin et al., 1973]. Today, there are many satellites orbiting Earth that carry passive 

microwave radiometers as part of their payloads. These instruments operate with various 

frequency and polarization combinations. In all cases, they measure the amount of upwelling 

radiation at certain frequencies and from a certain direction that reach the satellite on which they 

are mounted.  

 Some of these passive microwave sensors, such as the Global Precipitation Measurement 

Microwave Imager (GMI), the Advanced Microwave Scanning Radiometer (AMSR), and the 

Special Sensor Microwave Imager / Sounder (SSMIS) series of instruments, are conically 

scanning. They view the Earth at a constant view angle with the same footprint size across the 

entire scan. These radiometers have channels at frequencies ranging from about 6 GHz to about 

190 GHz. The fact that these instruments include channels at “window frequencies,” where there 

is little absorption of radiation due to atmospheric constituents such as oxygen or water vapor, 

allows for the retrieval of surface characteristics such as sea surface temperature and wind speed. 

However, these instruments also have channels near the 22.235 GHz and 183.31 GHz water 

vapor absorption lines, which allow for the retrieval of total precipitable water (TPW) and some 

information about the vertical profile of water vapor in the atmosphere. Historically, instruments 



! 10!

such as these have been termed “imagers” because of their skill in retrieving surface and column 

integrated variables, although this current generation of instruments does have limited sounding 

ability. 

 Other passive microwave radiometers, such as the Microwave Humidity Sounder (MHS), 

Advanced Microwave Sounding Unit (AMSU), Advanced Technology Microwave Sounder 

(ATMS), and the Sounder for Probing Vertical Profiles of Humidity (SAPHIR), are cross-track 

scanning. They view Earth at a range of view angles and footprint sizes. In most cases lacking 

the window channels of imagers, they are most adept at providing information about the vertical 

profiles of water vapor or temperature, rather than surface characteristics. For this reason they 

are termed “sounders.” Typically, a collection of frequencies between about 50 and 60 GHz is 

used for temperature sounding and frequencies on either side of the 183.3 GHz water vapor 

absorption line are used for moisture sounding. 

 The retrieval of atmospheric parameters from a collection of brightness temperature (Tb) 

measurements at different microwave frequencies is an example of an inverse problem. Given 

complete knowledge of the state of the atmosphere, it is relatively straightforward to use physical 

principles to model the amount of radiation at given frequencies that reaches a radiometer. In 

remote sensing terms, a state vector ! containing information about the state of the atmosphere 

can be mapped to a measurement vector ! representing the brightness temperatures at each 

frequency of interest through the use of a forward model, !. However, in an atmospheric 

retrieval, it is the measurement vector that is known and we desire to solve for the state vector. 

Thus some method is required to allow one to solve for!! as a function of ! through the use of an 

inverse forward model, !!!. This is not an easy task, as radiative transfer cannot be well-

represented with a linear forward model that would be easily inverted. The inverse problem is 
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further complicated by the fact that it is ill-posed: two distinct atmospheric state vectors can 

yield very similar measurement vectors, making it harder to determine the true state of the 

atmosphere from a measurement vector alone (which will have measurement uncertainties 

associated with each of its components). 

Many early passive microwave retrieval algorithms were regression-based [e.g. Wilheit 

and Chang, 1980; Alishouse et al., 1990] or semi-physical methods that made assumptions to 

simplify the equations of radiative transfer in the atmosphere to make the inverse problem more 

tractable [Greenwald et al., 1993; Wentz, 1997]. These early algorithms were sensor-specific, 

using derived equations to link Tbs at certain frequencies, or in some cases the difference in Tbs 

between two frequencies, to an estimate of the geophysical parameter of interest. 

 More recently, retrieval algorithms have been developed that make use of fully physical 

forward models, allow for the retrieval of all parameters of interest simultaneously, and are not 

tied to a specific sensor or set of frequencies. Algorithms of this type are better able to ensure 

that the retrieved atmospheric parameters are consistent with each other across sensors, and that, 

when put into a forward model, result in reasonable simulated brightness temperatures. Sensor-

independent algorithms are desirable in that they allow for the creation of consistent records of 

geophysical variables across the ever-expanding history of spaceborne passive microwave 

radiometers. A common approach is to iteratively solve for a collection of geophysical 

parameters by repeatedly forward modeling the transfer of radiation through the atmosphere until 

a solution for the atmospheric state vector is found that yields forward modeled Tbs close to 

those observed by the satellite while also being consistent with prior knowledge (a-priori 

information) about the state of the atmosphere [Deblonde and English, 2003; Elsaesser and 

Kummerow, 2008; Boukabara et al., 2011]. The Colorado State University 1-D variational (CSU 
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1DVAR) retrieval algorithm [Duncan and Kummerow, 2016] is one such algorithm, having 

initially been developed for the retrieval of non-raining parameters for GMI but having been 

adapted for use with other conically scanning instruments such as AMSR and the Tropical 

Rainfall Measuring Mission Microwave Imager (TMI). The work presented in this thesis 

demonstrates that the CSU 1DVAR algorithm can also be used to retrieve information from 

cross-track sounders. 

 

2.2  Description of Spaceborne Sensors and Data  

 Specifically, this work applies the 1DVAR algorithm to the Temporal Experiment for 

Storms and Tropical Systems Technology Demonstration (TEMPEST-D) radiometer. 

TEMPEST-D is a 6U-class (34 cm by 20 cm by 10 cm) CubeSat that is planned to be launched 

into the ISS orbit in 2018. The ISS orbit has an altitude of about 400 km with an inclination of 

51.64 degrees and a period of 92.65 minutes. TEMPEST-D is meant to demonstrate the drag-

adjusting maneuvers that will be necessary to provide time separation for a train of CubeSats and 

to demonstrate precision intercalibration between TEMPEST-D measurements and those made 

by other spaceborne passive microwave radiometers. Thus it will reduce the risk, cost, and 

development time for future CubeSat constellation missions, including TEMPEST. It will carry a 

five-frequency, cross-track scanning passive radiometer, with channel frequencies centered near 

89, 165, 176, 180, and 182 GHz. Although this work focuses on synthetic TEMPEST retrievals 

in preparation for the launch of TEMPEST-D, the algorithm can be easily adapted for use with 

other cross-track sounders, such as MHS, which operate at similar frequencies. Table 2.1 gives 

detailed specifications for TEMPEST-D and MHS. 
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Table 2.1 Selected sensor specifications for TEMPEST-D and MHS. QV polarization is quasi-

vertical (i.e., vertical polarization at nadir) and QH is quasi-horizontal. NEDT and IFOV are 

abbreviations for Noise Equivalent Differential Temperature and Instantaneous Field of View, 

respectively. 
 Channel 

Frequency 

(GHz) 

Polarization NEDT 

(K) 

Beamwidth 

(degrees) 

Nadir 

IFOV 

(km) 

Edge IFOV – 

Across Track 

(km) 

Edge IFOV – 

Along Track 

(km) 

TEMPEST-D:        

 89 QV 0.3 3.6 25.1 55.8 36.8 
 165 QV 0.5 1.8 12.6 27.9 18.4 
 176 QV 0.6 1.8 12.6 27.9 18.4 
 180 QV 0.7 1.8 12.6 27.9 18.4 
 182 QV 0.9 1.8 12.6 27.9 18.4 

MHS:        

 89 QV 0.22 1.12 15.9 52.8 27.1 
 157 QV 0.34 1.17 15.9 52.8 27.1 
 183.3 ±1.0 QH 0.51 1.05 15.9 52.8 27.1 
 183.3 ±3.0 QH 0.40 1.02 15.9 52.8 27.1 
 190.3 QV 0.46 1.02 15.9 52.8 27.1 

 

 

 

Output from the Weather Research and Forecasting (WRF) mesoscale numerical weather 

prediction model [Michalakes et al., 2001] using the Advanced Research WRF (ARW) 

dynamical core and the WDM6 microphysics scheme [Lim and Hong, 2010] is used to generate 

synthetic TEMPEST observations. The model output comes from a simulation of Hurricane 

Gonzalo, which formed in the Atlantic Ocean in October 2014. The simulation covers the time 

period from 0600 to 1800 UTC on October 16, 2014, with model output available every 3 

minutes. The horizontal resolution is 3 km and the model has 30 vertical levels, using sigma 

coordinates. The domain stretches roughly from 74°W to 63°W and from 21°N to 29°N. The 

model output is converted to Tbs at the TEMPEST-D frequencies using the radiative transfer 

model described in Section 2.3. 

 This particular simulation was chosen for this study mostly because of its high spatial and 

temporal resolution. This allows us to determine whether Tb differences due to changing 

atmospheric conditions on short time scales are sufficiently larger than Tb differences due to 

view angle differences, so as to confidently diagnose cloud changes occurring between 



! 14!

TEMPEST satellite measurements. Another benefit of the simulation is that it includes a variety 

of atmospheric conditions, from clear-sky conditions outside the radius of the storm to spotty 

clouds on the periphery of the storm to heavy rain in the center of the storm. The outer bands of 

the storm offer a good opportunity to test the retrieval algorithm’s performance in the case of 

clouds rapidly developing and transitioning to precipitation. However, the fact that a tropical 

cyclone simulation is used should not lead the reader to believe that TEMPEST-D or the full 

TEMPEST mission is specifically designed to observe tropical cyclones. In fact, near the center 

of a tropical cyclone, where precipitation is very heavy, it is unlikely that a passive radiometer 

like TEMPEST would be able to determine cloud properties with much accuracy. 

 Ancillary data (sea surface temperatures, surface wind speeds, surface pressures, and 

temperature profiles) used by the retrieval algorithm are taken from the European Center for 

Medium-Range Weather Forecasts’ reanalysis product, ERA5. The reanalysis data have a 

temporal resolution of 1 hour and a horizontal spatial resolution of 30 km, with 137 vertical 

levels. A-priori information about the atmospheric state is also taken from ERA5. Using ERA5 

for a-priori and ancillary data has limitations. The data have to be interpolated to match the much 

finer temporal and spatial resolution of the WRF model. Also, the ERA5 product is not designed 

to be particularly skillful at reproducing tropical cyclones, so in some cases the errors between 

the ERA5 state and the WRF model output can be quite large. For example, ERA5 

underestimates the wind speed near the center of the hurricane compared to WRF, and many of 

the finer structures in the rain bands are missed. In operational use, it might be possible to make 

use of more sophisticated methods of obtaining a-priori and ancillary information to slightly 

improve the retrieval algorithm. However, even though errors can be quite large at certain pixels,!
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this is explicitly accounted for in the calculation of the a-priori and forward model error 

covariance matrices (see Section 2.4.3). 

 

2.3  Generation of Synthetic TEMPEST Observations 

In order to create the synthetic TEMPEST “observed” Tbs used to test the retrieval 

algorithm, the full 30-level WRF model profiles from the simulation of Hurricane Gonzalo, 

without any simplifying assumptions or interpolation, are run through a radiative transfer model. 

The ray tracing makes uses of actual three-dimensional geometry to create synthetic Tbs for view 

angles ranging from nadir to 45 degrees, and then a small number randomly sampled from a 

Gaussian distribution with a mean of zero and a standard deviation of 1K is added to each Tb 

value to simulate the sensor noise that will be present in the actual TEMPEST-D instrument. 

The Rosenkranz [1998] model is used for atmospheric gaseous absorption by oxygen, 

nitrogen, and water vapor. The surface emissivity and reflectivity are calculated from the 

FASTEM6 ocean surface emissivity model [Kazumori and English, 2015]. Absorption and 

scattering due to cloud liquid water are calculated using Mie theory, with cloud droplets and rain 

drops assumed to be spherical with sizes following the same gamma distributions assumed by the 

WDM6 microphysics scheme (equation 1 in Lim and Hong [2010], with a shape parameter of 3 

for cloud droplets and a shape parameter of 1 for rain). Graupel particles are assumed to follow 

an exponential size distribution (equation 1 in Hong and Lim [2006]), and scattering properties 

are similarly calculated using Mie theory. The density of all graupel particles is assumed to be 

500 g/cm
3
, as in WDM6. 

The WDM6 microphysical scheme has two additional classes of frozen hydrometeors, 

deemed “ice” and “snow.” Ice particles are typically smaller than snow particles (most are less 
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than 500 microns in maximum dimension) and more dense. However, the distinction between the 

two categories can be fuzzy, and both species are therefore included as part of the ice water path 

that the 1DVAR algorithm tries to retrieve, while graupel is kept as a distinct ice water species. 

Thus, it is worth examining more closely how the size distributions for ice and snow are 

specified in WDM6. 

The number concentration of ice particles, NI, is treated differently in WDM6 than it is in 

most other bulk microphysical schemes. For any given level of the atmosphere at any given grid 

point, NI is diagnosed based on the mixing ratio of ice present: 

!! = 5.38!×!10
!(!!!)

!.!"    (2.1) 

where ! is the density of the air and !! is the mixing ratio of ice. This equation comes from 

equating two different parameterizations for the fall speed of cloud ice, the first from Heymsfield 

and Donner [1990] relating the mean fall speed to the ice mixing ratio and the second from 

Heymsfield and Iaquinta [2000] relating the fall speed of a single ice particle to its diameter. In 

this framework, all of the ice particles within a given grid box are assumed to have the same size 

with a maximum dimension given by  

                  !! = (
!!!

!.!"×!"!!
)!.!"#     (2.2) 

Notably, while mechanisms exist within the WDM6 scheme to move mass from the ice category 

to the snow category, there is no size threshold at which ice is automatically converted into snow 

(unlike many other bulk microphysical schemes), which can sometimes result in "ice” particles 

that are comparable in size to or even larger than some of the “snow” particles. 

 Snow particles, on the other hand, follow an exponential distribution: 

   !!(!) = !!exp!(−!")       (2.3) 
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Here !!(!) is the number concentration (in m
-4

) of snow particles of maximum dimension D, !! 

is the intercept parameter, and the slope ! is determined based on the snow mixing ratio and !!: 

! = (
!!!!!

!!!
)!.!"     (2.4) 

where !! is the density of snow (a constant 100 g/cm
3
 in WDM6) and !! is the mixing ratio of 

snow. The intercept parameter !! is not constant but has a dependence on temperature, meant to 

represent the broadening of snow distributions that is observed at higher temperatures. Thus, 

 !! = min!{2×10!, 2×10!× exp 0.12 !! − ! }      (2.5) 

The WDM6 scheme does not specify the crystal habit, or shape, of the ice and snow 

particles. In past decades, it has been common to model ice particles as low-density (sometimes 

called “fluffy” or “soft”) spheres [e.g., Zhao and Wang, 2002] and use Mie theory. However, it is 

now widely recognized that doing so introduces significant errors [e.g., Kulie et al., 2010]. In 

more recent years, several groups have used modeling studies to produce single-scattering 

properties in the microwave regime for various non-spherical habits [e.g., Hong, 2007; Kim et 

al., 2007; Petty and Huang, 2010].  For the purpose of generating synthetic TEMPEST 

observations, any habit(s) could be defined to be the “truth,” including soft spheres; however, it 

is probably more helpful in terms of testing the retrieval algorithm to make more realistic 

assumptions. This work makes use of a database of microwave scattering properties for ice 

particles [Liu, 2008] as well as an associated database for larger aggregates of ice crystals 

[Nowell et al., 2013]. These databases use the discrete dipole approximation method (DDA; see 

Draine and Flatau [2000]) to compute single-scattering properties by approximating a 

continuum target with a finite array of polarizable points. Habits are chosen that have mass-

diameter relationships that mostly closely resemble the relationships in WDM6: thus, ice 

particles are treated as “long columns” (Liu shape 0) and snow particles as aggregates of 200 !m 



! 18!

and 400 !m rosettes (Liu shape 13) for the purposes of calculating scattering properties in the 

radiative transfer model. 

Using this radiative transfer model, brightness temperatures are calculated at the 3 km by 

3 km resolution specified by the WRF model. Then, these Tbs are averaged across the field of 

view (FOV) of the satellite, using a two-dimensional Gaussian weighting function. The FOV is 

calculated based on the beamwidth of the radiometer, as well as the view angle and the height of 

the satellite orbit. Since precise orbital parameters for TEMPEST are not known, simplified 

geometry is used that assumes a locally flat earth and a constant orbit height of 400 km. In this 

formulation, the cross-track and along-track fields of view are given by FOVCT and FOVDT, 

respectively: 

FOV!" = H(tan α+
!

!
− tan α−

!

!
)      (2.6) 

FOV!" =
!"

!"#!(!)
tan!(

!

!
)       (2.7) 

where H = 400 km is the height of the satellite, α is the view angle, and ! is the beamwidth in 

degrees. For the 89 GHz channel on TEMPEST, ! is 3.6, while for the other channels it is 1.8. 

This simplified method of calculating the FOV does lead to small errors on the order of a few km 

at the edge of the scan, but should be adequate for estimating the FOV-induced errors in the 

retrieval algorithm. 

 

2.4  CSU 1DVAR 

 The 1DVAR technique, also known as optimal estimation, is a regularized matrix inverse 

method based on Bayes’ Theorem. Much of the mathematics that follows is laid out more 

explicitly in other texts, such as Rodgers [2000]. As mentioned above, the relationship between 
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the physical state of the atmosphere and measured Tbs can be generalized by the following 

expression: 

 ! = ! !,! + !     (2.8) 

where ! is the measurement vector containing the observed Tbs at each radiometer channel and ! 

is the state vector containing the atmospheric properties to be estimated. In the case of 

TEMPEST, the state vector contains five parameters: the three leading principal components 

(PCs) of the water vapor profile, the integrated amount of liquid cloud water in the atmospheric 

column (LWP), and the integrated amount of cloud ice and snow (IWP). However, to calculate 

simulated Tbs, the forward model ! depends not only on the parameters in the state vector but 

also on a variety of parameters not solved for but assumed to be known in the model atmosphere 

(for example, surface temperature, surface wind speed, vertical profile of temperature, cloud 

height and depth, etc.) These parameters are included in the vector !. Finally, ! is an error term 

containing uncertainties due to sensor noise, errors in the forward model, and uncertainties in the 

forward model parameter assumptions (!). The forward modeled Tbs ! !,!  should agree with 

the satellite measurements ! within the model and sensor error estimates given by !. The aim of 

the 1DVAR algorithm is to find the most likely state vector !, given measurements !, prior 

knowledge about the state of the atmosphere, and proper error estimates. 

 The most likely state vector is found by making use of probability density functions 

(PDFs) and Bayes’ theorem. According to Bayes’ theorem, the conditional probability !(!|!) of 

state !, given measurements !, is equal to  

!(!|!) =
! ! ! !(!)

!(!)
     (2.9) 
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where !(!|!) is the probability of ! given !, !(!) is the PDF of the state vector, and !(!) is the 

PDF of the measurement vector. Our goal is to maximize !(!|!) for a particular !. Equivalently, 

since !(!) is independent of !, the aim is to maximize the product ! ! ! !(!). 

 Now, let us assume that the values of the parameters in ! are distributed in a Gaussian 

fashion. This is a reasonable assumption for the water vapor profile coefficients. LWP and IWP 

do not tend to be Gaussian-distributed in nature, so instead the parameters log10(LWP) and 

log10(IWP) are used. This makes their distributions more Gaussian, although it is still not a 

perfect assumption (since, in cloud-free conditions, the LWP and IWP will always be equal to 

zero). Under this assumption, !(!) can be expressed by  

!(!) =
!

(!!)!/!|!!|
exp −

!

!
!− !!

!
!!

!!
!− !!   (2.10) 

where ! is the number of elements in !, !! is an estimate of the state vector independent of the 

satellite measurements (the a-priori state vector), and !! is the associated error covariance 

matrix, obtained empirically. Similarly, we assume that the statistics of the measurements are 

also Gaussian, so that we can state 

!(!|!) =
!

(!!)!"/!|!!|
exp −

!

!
!− !(!,!) !

!!
!!

!− !(!,!)   (2.11) 

Here ! is the number of elements in !, and !! is the measurements/forward model error 

covariance matrix. !! is, essentially, a matrix representation of the error term !, with the errors 

assumed for each radiometer channel as the main diagonal elements of the matrix and 

covariances of the errors between the channels as the off-diagonal elements. 

 Combining equations 2.10 and 2.11, it can be seen that maximizing the product 

! ! ! !(!) amounts to maximizing  

exp −
!

!
!− !!

!
!!

!!
!− !! ∙ !exp −

!

!
!− !(!,!) !

!!
!!

!− !(!,!) . 
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This will occur when the cost function,!Φ, is minimized, with Φ defined as follows: 

Φ = !− !!
!
!!

!!
!− !! + !− !(!,!) !

!!
!!

!− !(!,!)   (2.12) 

The cost function thus weights both measurements and prior knowledge, in relation to their 

uncertainties. The first term in the cost function penalizes a potential solution vector ! for 

departures from the fixed a-priori state vector values. This prevents the algorithm from settling 

on a state vector that might match observed Tbs quite well but that is physically unrealistic. The 

second term in the cost function penalizes potential solution state vectors whose forward 

computed Tbs differ substantially from the satellite-observed Tbs. This term, normalized by the 

number of satellite channels used, can also be called the chi-squared metric: 

!! = !− !(!,!) !
!!

!!
!− !(!,!) /!    (2.13) 

The !! value measures the quality-of-fit between the forward modeled Tbs and the observations, 

independent of departures from the a-priori state vector. That is, the lower the !! value, the 

greater the consistency between the state vector and the satellite observations. 

 Minimizing Φ and finding the maximum probability state vector ! is accomplished by 

finding the value for ! at which the gradient of the cost function, ∇!Φ, is equal to zero. Because 

the forward model is non-linear, this value cannot be solved for explicitly. Instead, the Gauss-

Newton method of iteration is used. Starting with some first guess for the state vector, !!, new 

guesses are found via the following equation: 

!!!! = !! + (!!
!!
+!!

!
!!

!!
!!)

!!
!!

!
!!

!!
!− ! !,! − !!

!!(!! − !!)  (2.14) 

where !!!! is the state vector after ! + 1 iterations. ! is a matrix of derivatives (Jacobian) 

containing the change in the forward modeled Tbs at each measurement frequency resulting from 

perturbations to the state vector (that is, !!" =
!!!

!!!
). As ! is non-linear, ! is re-computed each 
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iteration so as to linearize the problem about the current value of !. Convergence is achieved 

once there is very little change between iterations (equation 5.29 in Rodgers [2000]). 

 

2.4.1  Forward Model 

 The forward model used in the TEMPEST 1DVAR retrieval makes use of the same basic 

radiative transfer code that is used to create the synthetic brightness temperatures as described in 

Section 2.3; however, several simplifying assumptions are made. These assumptions serve to 

speed up the code but, perhaps more importantly for this exercise, introduce errors into the 

forward model that mimic the type of errors that one would expect to be present if real data were 

being used. After all, a forward model set up in exactly the same manner would be able to 

reproduce the synthetic brightness temperatures exactly (at least, to within the amount of random 

noise artificially imposed at the end of the process), but in reality no forward model will ever be 

able to exactly model the true atmosphere. The setup of this experiment retains nearly all of the 

major sources of forward model error that we expect to be present for the true TEMPEST-D 

mission. The only notable exceptions are errors due to the surface emissivity and water vapor 

absorption models, since the exact same models are used both to generate the synthetic 

TEMPEST observations and to calculate brightness temperatures in the 1DVAR forward model. 

However, emissivity model errors are not expected to be much of a problem due to the fact that 

only one of the TEMPEST channels (89 GHz) has meaningful sensitivity to the surface. Most 

contemporary models of water vapor absorption are thought to be largely accurate, so clear-sky 

absorption errors should similarly be dwarfed by the other sources of error considered in this 

study. 
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Instead of the 30 vertical levels in the WRF output, the forward model makes use of 16 

vertical pressure layers, with 50 hPa layer depths from 300 hPa to the surface and additional 

layers from 100-200 hPa and 200-300 hPa. This configuration is slightly different than that used 

in Duncan and Kummerow [2016], which had better vertical resolution from 900 hPa to the 

surface but worse from 300-500 hPa. The change in layer spacing allows the retrieval to make 

better use of the information provided by TEMPEST about the middle atmosphere, where most 

of the weighting functions for the TEMPEST frequencies peak.  

The input values required by the forward model include the following: the sea surface 

temperature (SST); surface wind speed; surface pressure; height and temperature of each layer in 

the atmospheric column; LWP and IWP; and the average water vapor pressure in each layer. The 

SST, wind speed, surface pressure, and height and temperature profiles are taken from the 

interpolated ERA5 reanalysis product. These values do not change from one iteration of the 

retrieval to the next. The a-priori values for LWP, IWP (combining both ice and snow particles), 

and the water vapor profile are also taken from ERA5, but these values do change as the 

algorithm works to find the optimal solution that minimizes the cost function. 

The forward model makes the plane-parallel assumption, meaning that the atmosphere is 

assumed to have no horizontal variation at any given pressure level. Another important 

assumption is that of fixed cloud levels. In the forward model, all of the cloud water is assumed 

to be distributed evenly between 800 and 900 hPa, following Duncan and Kummerow [2016]. 

This approach obviously has limitations since clouds in the real atmosphere can and do form 

outside these levels. However, errors in the simulated Tbs caused by this simplistic representation 

are somewhat mitigated by the fact that the emissivity of liquid cloud drops increases with 

decreasing temperature [Matzler et al., 2010]. The implication is that the effective emission is 
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tied much more closely to the total amount of liquid water in the column than it is to cloud 

height. Various other methods of distributing the cloud water in a fixed manner in the forward 

model were tested; however, without reliable a-priori information about the heights and depths of 

the clouds, the effect on the overall accuracy of the cloud water retrieval is small. The effects of 

this fixed cloud layer assumption are examined more thoroughly in Chapter 4. 

More care should be taken with the vertical placement of cloud ice. Most of the effect on 

Tbs due to ice comes from scattering. Ice particles present at different levels of the atmosphere 

(and thus at different temperatures) tend to have different particle size distributions (PSDs), 

leading to different scattering effects. In this study, cloud ice is distributed among the upper 

levels of the forward model atmosphere according to a constant ratio determined by calculating 

the average amount of cloud ice at each level for all pixels in the Hurricane Gonzalo WRF 

simulation that have a total IWP above 10 g/m
2
. The exception is that cloud ice is not allowed to 

occur at temperatures above 273 K. This method seeks to minimize the overall bias in the 

retrieval of IWP, although errors due to the vertical placement of cloud ice can still be quite large 

for individual pixels.   

The forward model assumes a monodisperse drop size distribution (DSD) for liquid cloud 

water with spherical particles of radius 15 !m. In reality, cloud particles are not monodisperse 

nor are they precisely spherical, but this should not be a large cause for concern because most 

non-precipitating cloud droplets are small enough that scattering is negligible and absorption is 

largely dependent on the total mass of water in the cloud, not the DSD [Bennartz, 2007].  

Once again, things are much more difficult when it comes to ice, as assumptions made in 

regard to both ice crystal habit and size distribution can have a large effect on forward modeled 

brightness temperatures. To demonstrate the dramatic effect that ice crystal habit can have on 
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microwave brightness temperatures, a series of experiments were conducted in which a sample 

atmospheric profile was run through the forward model, first with no ice and then with an IWP 

of 1 kg/m
2
, to produce brightness temperatures at the TEMPEST frequencies. The surface 

characteristics and vertical profiles of water vapor, temperature, and geopotential height were set 

to the average values for all pixels in the Hurricane Gonzalo simulation, the LWP was set to 0 

g/m
2
, and the assumed view angle was a moderate value of 20 degrees. In each experiment a 

different ice habit was assumed. The experiments all assumed a monodisperse PSD (with ice 

particle diameters of either 400 !m or 1 mm), to isolate the effect of different particle habits 

from the effect of different PSDs.  

Figure 2.1 shows the difference between the clear-sky Tb and the cloudy-sky Tb at two 

frequencies, 89 GHz and 165 GHz. Results for the 176, 180, 182 GHz channels are not shown 

because they are quite similar to the results at 165 GHz. For small ice particles at 89 GHz, where 

the wavelength of radiation (about 3.4 mm) is an order of magnitude larger than the diameter of 

400 micron particles, scattering is limited and the difference among the various habits is 

negligible. For larger particles, however, and especially at the higher frequency (i.e. shorter 

wavelength) TEMPEST channels, it is clear that there are large differences in the Tb response 

among the different habits. For 400 !m particles at 165 GHz, the difference in brightness 

temperature between the clear-sky and cloudy-sky case ranges from 7.0 K for 4-bullet rosettes to 

52.8 K for block columns with a standard deviation of 15.0 K among the different habits. For 

particles with diameter 1 mm, the differences are even more stark. The spread in Tb depression at 

89 GHz for 400 micron particles ranges from 16.2 K on the low end (for a soft sphere of density 

100 g/cm
3
) to a whopping 174.7 K at the high end. Even ignoring the block column and solid 

sphere categories, which probably aren’t very realistic for a particle of this size, the range  
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Figure 2.1. Clear-sky Tb minus cloudy-sky Tb at 89 GHz (top) and 165 GHz (bottom) for a 

variety of ice habits with a fixed IWP of 1 kg/m
2
. Results are shown for monodisperse 

distributions of ice particles with diameters of 400 !m (blue) as well as 1 mm (yellow). The 

crystal habits included (as named in Liu 2008 and Nowell et al., 2013) are as follows: long 

column (LC); block column (BC); thin plate (TP); 4-bullet rosette (ROS); sector snowflake 

(SEC); dendrite snowflake (DEN); aggregate of 200 !m, 6-bullet rosettes (AGG1); aggregate of 

400 !m, 6-bullet rosettes (AGG2); and aggregate of 200 and 400 !m, 6-bullet rosettes (AGG3). 

Also shown are results from explicit Mie theory calculations using solid spheres (SS) or low-

density fluffy spheres (FS). 
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between assuming soft spheres and assuming aggregates of 200 !m rosettes spans more than 100 

K, with a standard deviation of 33.6 K. In general, habits that assume a higher density for the ice 

particles tend to produce more extinction, though this is not uniformly true. For example, block 

columns cause a greater Tb depression than solid spheres, even though they have less than half 

the density. Note also that, while for most habits increasing particle size leads to increasing 

extinction, the effect is not uniform across all particle habits; in fact, for dendrites there is 

actually less extinction when the particles are assumed to be 1 mm in diameter than when they 

are assumed to be 400 !m. 

The ice PSD can also have a large effect on the TB response. To illustrate this, another 

set of experiments was performed with the sample atmospheric profile in which the ice crystal 

habit was kept constant (Liu aggregates were used), but different PSDs were specified. Figure 

2.2 shows the TB response at 89 GHz and 165 GHz for IWP ranging from 0 to 2000 g/cm
3
.  

Clearly, there is less scattering when the WDM6 ice distribution (green) is used as compared to 

the other size distributions, but even among the other distributions, the differences in TB 

response can be on the order of 20 K for large amounts of cloud ice. When the temperature of the 

cloud is adjusted, these differences can be magnified even further (not shown). 

 When selecting a PSD and crystal habits to use in the forward model, a priority was 

placed on selecting a scheme that was both flexible (i.e. applicable to a variety of regimes) and 

grounded in observations. Maintaining consistency with the scheme used to generate the 

synthetic TEMPEST observations would be counter-productive, in that the WDM6 microphysics 

scheme is designed for speed of computation and is known to have deficiencies, particularly with 

respect to ice [e.g., Van Weverberg et al., 2013]. Moreover, as mentioned above, no PSD is 

going to be a perfect representation of the real atmosphere, and so if realistic estimates of the  
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Figure 2.2. 89 GHz (top) and 165 GHz (bottom) Tbs as a function of IWP for different assumed 

ice PSDs. The PSDs tested include: (blue, H04s) WDM6 snow distribution from Hong et al. 

[2004]; (red, RH83) exponential snow distribution from Rutledge and Hobbs [1983]; (yellow, 

F07) moment estimation parameterization from Field et al. [2007]; (purple, R98) modified 

exponential snow distribution from Reisner et al. [1998]; (green, H04i) WDM6 ice distribution 

from Hong et al. [2004].  

 

 

 

capabilities of this retrieval algorithm are to be obtained, it is important to maintain differences 

in ice microphysics between the way the synthetic Tbs are generated and the way they are 

retrieved. The range in Tbs that results from these differing assumptions should represent a 

realistic uncertainty estimate.  

Because ice particle sizes in the true atmosphere exist on a spectrum, with no clear-cut 

“ice” and “snow” categories, and because the total integrated amount of cloud ice is retrieved as 

a single parameter within the 1DVAR framework, a single PSD is used to represent all ice 

particles in the forward model. The PSD chosen comes from Field et al. [2007], hereafter F07. 

The F07 PSD parameterization is derived from aircraft measurements of frozen PSDs in both 
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tropical anvils and cirrus clouds as well as midlatitude stratiform clouds. An exponential 

distribution to represent the small end of the size spectrum is combined with a gamma 

distribution to represent the large end of the spectrum, which allows for the realistic 

characterization of the narrow peak in particle concentration that is often observed for small ice 

particles. The F07 parameterization also accounts for the temperature dependency of observed 

PSDs. Using moment conversions, the F07 scheme allows for a full PSD to be obtained if any 

moment of the PSD is known. For the purposes of the forward model, the moment used is the 

one defined by the layer ice water content (IWC, units g/m
3
). 

In order to convert the IWC and temperature into a full PSD, a mass-diameter 

relationship for the frozen hydrometeors must be defined: 

 ! ! = !!!
!      (2.15) 

where ! !  is the mass for particle with maximum dimension ! and ! and ! are coefficients. 

The resulting F07 PSD will depend on the choice of ! and !. For the forward model, ! is chosen 

to be 52.4 kg/m
3
 and ! as 3.0, thus assuming the frozen hydrometeors have a constant density of 

100 kg/m
3
. Noting the definition of IWC, 

                   !"# = ! ! ! ! ! !"     (2.16) 

and combining equations 2.15 and 2.16 it can be seen that the ! moment of the PSD is given by 

    ℳ! =
!"#

!
!.       (2.17) 

Next, following F07, a parameterization is used to relate any moment ℳ! (in this case, ℳ!) to 

the second moment of the PSD: 

    ℳ! = !(!)exp![! ! !!]ℳ!

!(!)
     (2.18) 

where !!  is the temperature in degrees Celsius, and !(!), ! ! , and !(!) are quadratic 

functions of !. Equation 2.18 is general and can be used to estimate any moment of the PSD 
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once ℳ! has been calculated. In the forward model, with ! = 3, ℳ! is calculated using equation 

2.17 and then ℳ! from equation 2.18. Once these two moments are known, the full PSD ! !  

can be estimated by re-scaling an underlying distribution Φ that is determined by the physics that 

control the PSD evolution [Lee et al., 2004; Field et al., 2005]: 

    ! ! = Φ!" !
ℳ!

!

ℳ
!
!
,!!!! = !

ℳ!

ℳ!

     (2.19) 

 Example F07 mass-weighted PSDs (that is, the number concentration times the mass of a 

particle of a given size; units kg/m
4
) for varying values of IWC and temperature are shown in 

Figure 2.3, along with the corresponding distributions obtained using the snow PSD scheme in 

WDM6. The F07 parameterization produces a broader distribution with a greater sensitivity to 

temperature.  

As for particle habit, the forward model assumes 6-bullet rosettes  (Liu shape number 8) 

for particles with a maximum dimension less than 800 !m and aggregates of 400 !m rosettes 

(Liu shape 12) for particles 800 !m or larger. The forward model is physically realistic, at least, 

in that smaller rosettes combine to form larger aggregate particles. Thus, the forward model both 

assumes different particle habits and different PSDs (along with assuming a fixed fraction of 

frozen particles in each layer) from the radiative transfer model used to generate the synthetic 

TEMPEST brightness temperatures. The magnitude of the errors created by these differing 

assumptions is explored further in Chapter 4, but is in line with the spread seen in Figures 2.1 

and 2.2. Thus, the forward model error associated with ice microphysics in this experiment is 

expected to be broadly consistent with what should be expected once actual TEMPEST-D 

measurements are being conducted. Using a combination of different crystal habits and/or 

modifying the assumed mass-diameter relationship could potentially improve retrieval 

performance, and once actual data is available such tuning might be useful. However, to try to do 
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so for the purposes of evaluating the retrieval capabilities on synthetic data would probably not 

be particularly useful. 

 

 

Figure 2.3. Mass distributions for the Field et al. [2007] and WDM6 snow PSD schemes, at a 

temperature of either 240 or 270 K and an ice water content of either 0.2 or 2.0 g/m
3
. 

 

 

 

2.4.2  Water Vapor Principal Components 

 While the forward model requires vapor pressure for all 16 vertical levels, it is not 

feasible to reliably and independently retrieve a full 16-level water vapor profile from only 5 

radiometer channels. Thus, to reduce the dimensionality of the problem, 3 principal components 

of the water vapor profile are retrieved instead. This approach makes use of the fact that water 

vapor profiles tend to have similar shapes and that the water vapor content of one atmospheric 

level will tend to be correlated with the water vapor content of the levels above and below it, and 

follows the example of other retrieval algorithms such as Boukabara et al. [2011]. The PCs are 
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defined as variations about a mean profile. For the synthetic retrievals for Hurricane Gonzalo 

that will be shown, the mean profile and principal components are calculated using all profiles in 

the simulation at hourly time steps from 0700 to 1800 UTC. For operational use, the mean 

profile and PCs will be subset by SST and calculated from ERA5 reanalysis data. Water Vapor 

PCs are calculated in terms of mixing ratio and then translated to vapor pressure as part of the 

forward modeling process.  

 The 1DVAR algorithm solves for the coefficient of each PC that results in a minimized 

cost function (eqn. 2.12). The resulting water vapor profile will be of the following form: 

!"!"# =!"+ !!!"! + !!!"! + !!!"!    (2.20) 

where !"!"# is the retrieved water vapor profile, !" is the mean water vapor profile, !"! is the 

profile of deviations corresponding to the i-th leading PC, and !! is the coefficient for the i-th PC, 

which may be positive or negative. When trying to recreate the true water vapor profiles, it is 

impossible to capture fine details with 3 PCs. Nevertheless, it is possible to capture most of the 

variability observed in water vapor profiles. For the WRF model data used in this study, the 3 

leading PCs are able to account for 68.2%, 15.9%, and 7.1% of the total variance, respectively. 

Adding additional PCs gives greatly diminishing returns. Figure 2.4 shows the mean water vapor 

profile as well as the first 3 principal components. Also shown is a sample water vapor profile, 

and the fits to that profile that can be obtained using 2 or 3 principal components. This particular 

profile has an unusually deep layer of moisture near the surface, which is unable to be captured 

even when 3 PCs are used. Still, the PC representations are far superior to just assuming the 

mean profile. 
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Figure 2.4. Left: Mean water vapor mixing ratio profile calculated from the WRF simulation. 

Middle: The departures from the mean profile described by the 3 leading principal components. 

Right: A sample water vapor profile taken directly from the WRF output (solid black), compared 

to the mean profile (dashed black), and the best-fit profiles that can be obtained using 2 (yellow) 

or 3 (purple) principal components. The coefficients used are !! = −4.53, !! = 1.41, and 

!! = −1.32. 

 

 

 

2.4.3  Error Covariance Matrices 

 The matrices !! and !! are quite important in guiding the 1DVAR retrieval to a solution. 

The elements of !! help determine how much leeway is allowed when finding a solution for the 

state vector: if the assumed errors are small, the state vector will be forced to be more similar to 

the a-priori state vector. The !! matrix determines how much weight each channel is given in the 

inversion. Channels whose errors are assumed to be smaller are given more weight, with the 

simulated Tbs at these channels forced to match observations more closely. Determining the right 

values for !! and !! can be a delicate task. In both cases, if the values chosen are too loose, the 

accuracy of the retrieval will degrade. On the other hand, if the assumed errors are too strict, 

convergence to an optimal solution will occur less often and it will be harder to draw conclusions 

from the retrieved parameters.  
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 In this study, the values chosen for !! come directly from a comparison between the 

statistics of the WRF model output on which the synthetic retrieval is performed and the ERA5 

reanalysis data that is used as a-priori information. This ensures that the assumed a-priori errors 

are appropriate. The same subset (1/20
th

 of the full model run) is used for calculating !! as for 

calculating the water vapor PCs; that is, hourly output from 0700 to 1800. All of the pixels from 

these files are used to calculate the variance in the difference between the state vector parameters 

(log10(LWP), log10(IWP), and the coefficients of the water vapor PCs) in the WRF model output 

compared to the values of those same parameters in ERA5 . These variances make up the main 

diagonal elements of the matrix. Covariances between the parameters are also calculated and 

included in the matrix as the off-diagonal elements. Note, however, that the PCs are by definition 

uncorrelated with each other, so the covariance between PCs is zero.  

  Determination of !! is a multi-step process designed to take into account sensor noise, 

errors in ! (the fixed atmospheric parameters assumed by the forward model), and errors 

introduced by the forward model itself because of its simplified representation of the atmosphere. 

Since the same emissivity and atmospheric absorption models used by the forward model are 

used when creating the synthetic TEMPEST brightness temperatures, errors in these compared to 

the real atmosphere do not contribute to !!, but will be an additional source of error when 

running retrievals using real TEMPEST-D observations. 

 Once again, hourly output from the WRF simulation of Hurricane Gonzalo is used to 

create !!. First, the full atmospheric profiles from the model are converted to the simplified form 

used by the forward model. The 30 vertical levels in sigma coordinates from WRF are 

interpolated to yield the 16 fixed pressure levels expected by the forward model. After 

interpolation, the water vapor profile is further simplified to the profile that can best match the 
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model profile using only 3 PCs. Finally, all of the cloud water from the model profile is summed 

up and re-distributed evenly between the 800 and 900 hPa pressure levels. Similarly, all of the 

ice and snow in the model is distributed among the vertical levels as specified by the forward 

model. 

 Next, the other atmospheric parameters required by the forward model (namely, wind 

speed, surface pressure, SST, and the height and temperature profiles) are taken from ERA5. The 

simplified atmospheric profiles are then run through the same plane-parallel forward model used 

by the retrieval algorithm and simulated Tbs are calculated. These simulated Tbs are then 

subtracted from the synthetic TEMPEST Tbs calculated from the full WRF profiles. From this, 

the variance in Tb differences at each TEMPEST channel is computed. The variances are added 

to the NEDT values for the channels (to account for sensor noise, which is independent of 

forward model error) to yield the diagonal !! elements. The covariances between the errors in 

each of the channels are also calculated and make up the off-diagonal elements. It should be 

noted that many 1DVAR microwave retrievals [e.g. Elsaesser and Kummerow, 2008; Boukabara 

et al., 2011] do not include any off-diagonal elements. This decreases computational cost but 

implicitly assumes no correlation between channel errors, which is probably not a valid 

assumption. For example, if errors in the forward model create Tb errors at 182 GHz, then it is 

likely that similar errors will occur at 180 GHz, which lies near the same water vapor absorption 

line. Duncan and Kummerow [2016] showed that the inclusion of error covariances increases 

skill in cloudy areas, and for this reason the covariances are included in !!.  
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2.4.3.1  ANGLE DEPENDENCE OF !! 

 Duncan and Kummerow [2016] applied the CSU 1DVAR algorithm to conically-

scanning instruments, with separate !! matrices for each instrument (because the instruments 

have different channel configurations) but with the same !! being used for all retrievals made for 

each instrument. However, for a cross-track scanning instrument such as TEMPEST, the view 

angle changes with each pixel in a scan. The change in view angle can affect forward model 

errors. For example, the higher the view angle, the more significant the errors caused by the 

plane-parallel assumption become. At nadir, the TEMPEST radiometer sees only the 

atmospheric profile directly above a given pixel, but at a 45° view angle the path of the radiation 

through the atmosphere will include parts of the atmospheric profile above several pixels. If the 

surrounding pixels have atmospheric profiles different from the profile corresponding to the 

surface footprint of the radiometer (invalidating the plane-parallel assumption), then errors in 

retrieved parameters can result. In addition, the atmospheric path length increases as view angle 

increases, which can amplify forward model errors. To account for these issues, the process of 

creating the !! matrix outlined above is repeated for view angles ranging from nadir to 45° in 

five degree increments, with a separate !! computed for each view angle. The differences can be 

considerable; Figure 2.4 shows the difference between the !! computed at nadir and 45°. For 

most channels, the errors are larger at higher view angles; the exception is at 89 GHz. This is 

likely because this channel is most sensitive to the surface. At nadir, the fact that the atmospheric 

path length is shorter means that more of the radiation reaching the satellite comes from the 

surface. Thus errors in assumed surface parameters translate to larger 89 GHz Tb errors at nadir. 

When performing retrievals, the !! matrix corresponding to the closest view angle is used. 
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Figure 2.5. Channel error covariance matrix (!!), at both nadir (left) and a view angle of 45° 

(right). The values correspond to the square root of the covariance between the channels. 

 

 

2.5  Method of Evaluating Retrieval Performance 

The synthetic TEMPEST Tbs generated by the radiative transfer model described in 

Section 2.3 are input into the 1DVAR retrieval algorithm, with ancillary atmospheric parameters 

as well as a-priori state vectors for LWP, IWP, and the water vapor PCs taken from ERA5. 

While the synthetic Tbs are produced on a 3km x 3km grid, the spatial difference between 

TEMPEST pixels, while dependent on the integration time, will almost certainly be greater than 

3 km. If there are 90 pixels per scan, as is the case for the similar MHS, and the altitude of the 

satellite is 400 km, that would imply a distance between pixels on the order of 10 km. For 

simplicity, since the WRF model output has 3 km horizontal resolution, comparisons between 

“true” (WRF model) parameters and the retrieved parameters are done at 9 km resolution. For a 

given 9 km by 9 km grid box, the synthetic TEMPEST Tbs (which have been averaged over the 

view-angle-dependent FOV) from the middle of the 9 corresponding WRF grid boxes are used 

by the 1DVAR algorithm to retrieve LWP, IWP, and the water vapor profile (in the form of 3 PC 

coefficients). The water vapor profile is used to calculate the TPW, which is also evaluated 

against the WRF model values.  In the results presented in the next chapter, these retrieved 

parameters are compared to the values of these same parameters for the same grid box of the 
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WRF output, after the WRF output has been averaged to 9 km resolution. Note, however, that 

figures in Chapter 3 that show maps of WRF parameters are plotted at the original 3 km 

resolution, to illustrate the fact that small-scale atmospheric features are not be able to be 

explicitly resolved by the retrieval algorithm. 

The retrieval algorithm struggles in areas of heavy precipitation, as manifest with pixels 

that fail to converge or associated !! values (equation 2.13) that are quite high, indicating a poor 

fit. While this is not unexpected, considering that rain drops and graupel particles can have a 

strong scattering signal, and that the OE forward model has no way to account for rain or 

graupel, it does suggest that the retrieval algorithm as currently configured is best suited for the 

evaluation of cloud processes in non-precipitating or only lightly precipitating clouds. In the 

assessment of retrieved parameters in the following chapter, only 9 km x 9 km grid boxes with a 

WRF rain water path (RWP) of less than 200 g/m
2
 and a graupel water path (GWP) of less than 

25 g/m
2
 are included in the analysis. These thresholds are chosen somewhat arbitrarily, although 

the lower threshold for GWP reflects the fact that graupel particles affect Tbs more strongly than 

an equivalent mass of raindrops. 
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CHAPTER 3: RESULTS FROM SYNTHETIC TEMPEST RETRIEVALS 

 

3.1  Retrieval Accuracy 

Before assessing the consistency of the TEMPEST retrieval algorithm across different 

view angles, it is helpful to get a sense of the overall accuracy of the retrievals and the 

limitations of the algorithm. Figure 3.1 shows how the retrieved values of LWP and IWP, 

assuming either a nadir observation or a view angle of 30 degrees, compare to the actual values 

in the WRF model, for one time step in the Hurricane Gonzalo simulation. Also shown are the 

corresponding values from ERA5, which are used as the a-priori values by the 1DVAR 

algorithm. The algorithm generally retrieves cloud liquid and water in the correct places, 

although there are some spurious signals in clear-sky areas, and some areas of low ice water path 

are missed. For the most part, retrieved parameters that result from assuming a nadir observation 

are best able to match the WRF model output. This is not surprising, given that the FOV is 

smallest at nadir and that the path of radiation through the atmosphere is the shortest, with less 

amplification of forward model errors. 

Of course, Figure 3.1 shows only one snapshot in time; it is also informative to consider 

the retrieval performance at nadir across all time steps in the simulation. To this end, Figure 3.2 

shows density plots comparing retrieved values of TPW, LWP, and IWP with the WRF model 

values, and Table 3.1 gives error statistics for the both the retrieved values and the values taken 

from ERA5. The table is split into clear sky and cloudy sky pixels because the errors in the 

retrieval are of a somewhat different nature in these two regimes.  
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Figure 3.1. Liquid water path (top row) and ice water path (bottom row) at 1000 UTC in grams per square meter, taken from the WRF 

simulation (left column) and ERA5 reanalysis (second-from-left column). The rightmost columns show the same scene as retrieved by 

the 1DVAR algorithm at nadir and at a view angle of 30 degrees. 

!
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Figure 3.2. 2-D histogram of retrieved parameters (ordinate) compared to the actual parameters 

from the WRF model run used to generate the synthetic TEMPEST observations (abscissa). The 

solid black line in each panel represents the one-to-one line. 
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Table 3.1 Correlation, bias, and root-mean-square error (RMSE) for the retrieved values of 

TPW, LWP, and IWP, as well as the corresponding error statistics for the ERA5 interim data that 

is used as a-priori information for the retrieval. Statistics are shown for both clear-sky (IWP < 10 

g/m
2
, LWP < 10 g/m

2
; 36,864 pixels total) and cloudy regimes (LWP > 50 g/m

2
 or IWP > 50 

g/m
2
; 37,739 total pixels). LWP and IWP correlations are not included for the clear-sky regime 

because by definition the correlation between any collection of non-zero values and a collection 

of zeros (the true value of LWP or IWP when there is no cloud) is zero. 

Clear Pixels (n=36864) 

 Retrieval 

Correlation 

Retrieval 

Bias 

Retrieval 

RMSE 

ERA5 

Correlation 

ERA5 Bias ERA5 

RMSE 

TPW 0.883 -0.79 mm 2.30 mm 0.857 -1.07 mm 2.59 mm 

LWP - +28.8 g/m
2
 43.2 g/m

2
 - +44.1 g/m

2 
58.7 g/m

2
 

IWP - +21.8 g/m
2
 36.7 g/m

2
 - +56.7 g/m

2 
266.1 g/m

2
 

Cloudy Pixels (n=37739) 

 Retrieval 

Correlation 

Retrieval 

Bias 

Retrieval 

RMSE 

ERA5 

Correlation 

ERA5 Bias ERA5 

RMSE 

TPW 0.839 -1.37 mm 2.89 mm 0.858 -1.46 mm 2.83 mm 

LWP 0.457 +5.5 g/m
2
 214.1 g/m

2
 0.038 -31.6 g/m

2 
234.7 g/m

2
 

IWP 0.915 -64.6 g/m
2
 158.8 g/m

2
 0.363 +250.9 g/m

2 
922.5 g/m

2
 

 

 

 

In clear-sky conditions, the retrieval shows moderate skill at retrieving TPW, with a 

correlation coefficient (0.883) that is slightly higher than the correlation with a-priori values. The 

negative bias is also reduced, and the root-mean-square error (RMSE) is lower as well. On the 

other hand, in cloudy conditions, the retrieved TPW values are, on average, not much better or 

worse than the a-priori ERA5 values, indicating that the radiometric signals of cloud water and 

cloud ice tend to mask the more subtle signatures of the water vapor PC coefficients. 

For the purposes of observing cloud processes, of course, what is more important is the 

accuracy of the retrieved values of LWP and IWP. Both parameters tend to be overestimated in  

clear-sky and even light-cloud regions. Some of this bias is inevitable. The nature of the 

distribution of cloud water and cloud ice means that there are many cloud-free pixels, and 

radiometric noise as well as forward model errors can, in some cases, lead to Tbs that are best 

matched by the inclusion of a small amount of cloud water or cloud ice. Since negative values of 
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cloud water and cloud ice are not allowed in the forward model, this will lead to a positive bias 

in retrieved LWP and IWP. Additionally, brightness temperatures in clear-sky areas that are 

adjacent to clouds will be affected by the clouds, since the TEMPEST FOV is larger than 9 km. 

This also contributes to the positive bias. Thus, small retrieved values of LWP and IWP (below 

about 50 g/m
2
 or so) should be treated with skepticism, and the retrieval algorithm should not be 

considered to be especially sensitive to thin clouds.  

 At higher cloud amounts, the retrieval shows skill in retrieving both LWP and IWP. The 

correlation coefficient for both parameters is much higher than in the a-priori data, with reduced 

biases and RMS errors as well. The retrieval is less sensitive to cloud water than it is to ice, with 

a considerably lower correlation coefficient and a density plot in Figure 3.2 that shows 

considerably more scatter (it should be noted, however, the logarithmic color scale somewhat 

exaggerates this scatter). LWP tends to be underestimated for high LWP amounts in WRF. This 

is due to several factors, which are explored more fully in Chapter 4. 

 On the other hand, retrieved IWP has a very high correlation with model IWP; however it 

is consistently underestimated. This is readily apparent from the density plot in Figure 3.2, where 

the slope of the distribution is much less than 1. This bias stems mostly from the differences in 

ice mircophysics (habit and PSD) between the forward model and the radiative transfer model 

used to generate the synthetic brightness temperatures. Using the WRF microphysics leads to 

smaller particles, on average, which have less of an effect on Tbs than ice in the forward model, 

and so the retrieval settles on a smaller total amount of ice to best match the observed Tbs.  As 

explained in Section 2.4.1, these differences are presumed to be representative of the true 

uncertainties in our current understanding of real-world ice microphysics. This result also 

suggests that the retrieval is not particularly sensitive to small ice particles, while giving a more 
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reliable estimate of the amount of larger “snow” particles. Importantly, however, the very high 

correlation means that the retrieval is very good at determining where there is more or less ice, 

and this is critical for observing changes in cloud ice over time, even if fundamental uncertainties 

in ice microphysics preclude high-accuracy measurements of the total IWP. 

 

3.2  Observing Rapidly-Changing Cloud Characteristics 

 For a proposed TEMPEST constellation of CubeSats, even more important than the 

overall accuracy of the retrieved parameters is the consistency of the parameters – are differences 

caused by making retrievals at different view angles small enough that true changes in 

atmospheric parameters can be discerned? While this question is addressed from a more 

statistical point of view in Section 3.3, here, we shall gain insight into the problem through a 

more detailed analysis of three, 30-minute long case studies from the WRF model run, in which 

cloud fields are rapidly changing over a limited domain. 30 minutes is used because it represents 

the outer limit to the period of time over which the same cloud feature could be observed from a 

TEMPEST-type cluster of satellites in the same orbit, at least over the tropical oceans. The 

surface of the earth (at the equator) moves at a speed of 460 meters per second; thus in 15 

minutes it will have moved about 414 km. The distance between the sub-satellite point and the 

edge of the TEMPEST swath is also a little over 400 km.  If a point were directly under a 

TEMPEST satellite at t=0, then at t=-15 minutes that same point would have been located on one 

edge of the swath and at t=15 minutes on the other edge of the swath.  

First, let us consider a cirrus cloud shield in a region to the southeast of the core of the 

hurricane that dissipates between 0800 and 0830 UTC. Figure 3.3 shows the change in the IWP 

in the WRF simulation over this period, as well as retrieved IWP for each snapshot calculated at!
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!

 

Figure 3.3. The top row of plots shows IWP from the WRF Hurricane Gonzalo simulation between (66.5° W, 23.5° N) and (65.5° W, 

25.5° N), at 6-minute increments from 0800 to 0830 UTC. The lower rows show the same scene as retrieved by the 1DVAR algorithm 

at various view angles.!
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!

Figure 3.4. As in Fig. 3.3, except only a single series of retrieved IWP values are shown, with a 

different view angle for each time, mimicking the behavior of a constellation of TEMPEST 

CubeSats. 

 

 

 

view angles of 0, 30, and 45 degrees. The retrieval does not capture the evolution of the IWP 

field perfectly; low values of IWP are retrieved in some areas that are clear, and the lower spatial 

resolution of the retrieval means that features tend to blur together. Still, at any given view angle 

the general decreasing trend in IWP is clear, and the differences due to view angle at any given 

time are small. These facts suggest that a sequence of satellites, making measurements at 

different view angles, would be able to faithfully capture the dissipation of the cirrus clouds. 

This is shown even more clearly is Figure 3.4. Here, the same sequence of snapshots from the 

model is shown, but it is assumed that a TEMPEST satellite observes the scene with a view angle 

of negative 45 degrees at 0800 UTC, and then a sequence of TEMPEST satellites go on to 

observe the same scene at 6 minute intervals thereafter, until finally a last observation is made 

with a view angle of 45 degrees in the opposite direction. Even with realistically changing view 

angles, the retrieval clearly captures the dissipation of the cloud field. 

 When it comes to measuring changes in cloud water, view angle differences can be more 

problematic. For example, Figure 3.5 shows the rapid development of new, liquid clouds in a 
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band to the south of the center of Gonzalo. At nadir, the retrieval is able to capture the evolution 

of this cloud system quite well, even if the LWP is underestimated by a bit (since this is a narrow 

band of clouds, FOV averaging probably contributes to this underestimation, along with the 89 

GHz channel saturation that is described in Chapter 4). At higher view angles, however, the 

accuracy of the retrieval degrades. While at a constant view angle of 30 degrees the general 

pattern of the cloud development is still apparent, there are significant differences between the 

retrieved values at 30 degrees and nadir. At 45 degrees, the scene appears totally different. If the 

retrievals at these different view angles are stitched together to imitate a TEMPEST constellation 

(middle row of Fig. 3.5), one gets the impression that the cloud amount is lessening, which is of 

course the opposite of what is happening. 

This scene demonstrates a problem that is common for the retrieval at high view angles; 

namely, the retrieval tends to settle on high and low values of LWP at the expense of moderate 

values. In some cases, in fact, the retrieval even mistakes areas of high LWP as areas with near-

zero LWP. The reason for this is explored more fully in Chapter 4; but, put simply, much of the 

Tb sensitivity at TEMPEST frequencies is lost at high view angles, especially in areas of high 

TPW, high winds, or cloud-top pressures that are above the 800 mb assumed by the forward 

model. The Tb response at 89 GHz saturates, with dramatic changes in LWP leading to only 

small changes in measured Tbs. The Tb response is also nonlinear and in some cases even non-

monotonic. All of this means that the retrieval becomes prone to mistakenly settling on extreme 

values to minimize differences between observed and forward modeled Tbs. 
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Figure 3.5. As in Fig. 3.3, except LWP is plotted and the domain is the region between (69.5° 

W, 22.5° N) and (68° W, 24° N). 

 

 

 

Figure 3.6. Top row: WRF simulation LWP field, at 6-minute increments.  Middle: Scene as 

viewed from a series of satellites at varying view angles, with the a-priori assumptions about the 

atmospheric parameters being taken from ERA5 each time. Bottom: Retrieved LWP values 

obtained by using time-adjacent retrieved values as a-priori information, as described in the text. 
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Thankfully, in the context of a train of satellites, a significant portion of this error can be 

rectified by making use of the information provided by preceding or subsequent satellite 

observations. The tendency of the retrieval at high view angles to settle on extreme values can be 

mitigated by placing more strict limits on the assumed a-priori errors. For a single high-view-

angle observation, this can be problematic because reducing the assumed error will make the 

final retrieved value track more closely with the a-priori value, which might be well off the mark, 

at least in the case of ERA5 – it is hard to put clouds in exactly the right place. With a cluster of 

satellites, however, one can leverage the more reliable information that can be obtained by 

observations closer to nadir. 

The way this is done is as follows. For high view angle retrievals, the a-priori values of 

LWP, IWP, and the 3 water vapor PCs are taken from the time-adjacent overpass of the same 

pixel by a preceding or subsequent CubeSat. This process is done iteratively; so, for the case 

shown in Figure 3.6, the retrieval at 10 degrees at 0818 UTC would be used to provide the a-

priori values for the retrieval at 30 degrees at 0824 UTC, and the retrieval at -10 degrees at 0812 

UTC would be used to provide the a-priori values for the -30 degree retrieval at 0806 UTC. Then 

the 0824 retrieval would be used as a-priori information for the 0830 retrieval and the 0806 

retrieval as the a-priori for the 0800 retrieval. When this is done, the assumed a-priori error 

variance in the !! matrix is also reduced to 200 g
2
/m

4
 for both LWP and IWP. This moderate 

value allows the retrieved values of LWP and IWP to change in response to clear increases or 

decreases, but prevents the algorithm from making large changes to these parameters in 

exchange for only slightly better Tb agreement. The results of using this iterative method are 

shown in the bottom row of Figure 3.6, and it is clear that this modified retrieval does a much 

better job of capturing the actual changes in LWP. 
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This improvement speaks to the value of using an optimal estimation retrieval algorithm 

as opposed to simply a minimum variance method; that is, one in which the differences between 

observed and forward modeled brightness temperatures are minimized without any a-priori 

probability distribution function assumed for the state vector. Because of the weak radiometric 

response at high view angles, a minimum variance method would not be appropriate, and the 

weak a-priori constraints provided by ERA5 are insufficient. However, having several 

TEMPEST instruments provides a wealth of additional, more accurate a-priori information with 

which to further constrain the state vector. 

A downside of this approach is that, while nadir retrievals are generally more reliable 

than retrievals at higher view angles, if any significant errors in the retrieved values exist at 

nadir, then these errors can propagate to successive or preceding higher-view-angle retrievals as 

they become tied to erroneous a-priori assumptions. Still, differences in retrieved values from 

one TEMPEST overpass to the next should be informative, even if the values themselves are 

biased low or high because of errors in the nadir retrieval. 

Finally, it should be noted that while using low-view-angle retrievals as a-priori 

information for higher-view-angle retrievals is almost uniformly helpful, it is not a silver bullet 

to eliminate all problems at high view angles. Figure 3.7 shows another example of a rapidly 

changing cloud field, this time to the northwest of the storm center between 0918 and 0948 UTC. 

While at any constant view angle the general trend is clear, much less LWP is retrieved at a 45 

degree view angle and this creates a problem when trying to piece together a picture of the cloud 

development from multiple satellites (Figure 3.8). In this case the negative bias at high view 

angles is not merely an artifact of a flat Tb response, but rather a radiometric signal at high view 

angles that the algorithm interprets as a lower LWP. Using the iterative a-priori approach 
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(bottom row) helps somewhat, but there are still lower retrieved LWP values at 0948 UTC 

compared to 0936 UTC or 0942 UTC, even though the actual model values are increasing. 

 

 
Figure 3.7. As in Figure 3.5, but for the region between (72° W, 26.5° N) and (69.5° W, 30° N) 

from 0918 UTC to 0948 UTC. 

 

 
Figure 3.8. As in Figure 3.6, but for the region between (72° W, 26.5° N) and (69.5° W, 30° N) 

from 0918 UTC to 0948 UTC. 
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3.3  Statistical Consistency Across View Angles 

 It is also possible to evaluate the consistency of the retrieval at different view angles by 

looking at all of the pixels in the simulation collectively. Figure 3.9 shows the values for the 

same error statistics listed in Table 3.1, but shows how each changes a function of view angle. 

The statistics shown are calculated using output from the iterative version of the retrieval 

described in the previous section, and for simplicity all pixels (clear and cloudy sky) are 

included.  

 

 
Figure 3.9. Left: Correlation coefficient between retrieved and model values of LWP (green) and 

IWP (blue), for view angles ranging from nadir to 45 degrees. The horizontal dotted lines show 

the ERA5 correlation values, for comparison. Right: Bias and root-mean-squared errors for 

retrieved LWP and IWP, again as a function of view angle. 

 

 

 

As noted in Section 3.1 the correlation coefficients for both LWP and IWP are 

significantly higher than the correlation with ERA5 data. Figure 3.9 demonstrates, however, that 

the correlation coefficients are also quite consistent, at least out to a view angle of about 30 or 35 

degrees. At this point the correlation coefficient for IWP starts to decrease, and the correlation 

for LWP also slightly decreases. Similarly, when looking at bias and RMSE, the retrieval is quite 

consistent up to a view angle of 35 degrees. At the highest view angles, LWP starts to become 

biased low compared to lower view angles (this effect is evident in the case study presented in 
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Fig. 3.8), and IWP starts to become biased higher. The RMSE for IWP also increases at high 

view angles. 

Lastly, we can ask the question: how does the distribution of errors caused by viewing a 

scene from different angles compare to the distribution of differences in LWP and IWP that 

occur at WRF model grid points at intervals of only a few minutes? If one hopes to reliably 

retrieve information about changes in the amount of cloud liquid and cloud ice, then that first 

distribution must be narrower than the second. These distributions, for model output at 1000 

UTC, are shown in Figure 3.10. The figure shows results both for retrievals that assume a 

constant ERA5 grid of a-priori state vectors for all view angles, and for retrievals that make use 

of lower view angle retrieved values for a-priori information. The figure shows histograms of 

differences between retrievals at 30 degrees and 10 degrees (corresponding to a temporal 

difference of close to 6 minutes), as well differences between retrievals at 45 degrees and nadir 

(associated with about 15 minute spacing). These error distributions are generally within the 

corresponding model error distributions, calculated by subtracting the model value of LWP/IWP 

at 1000 UTC from the value of the same pixel at 0954 UTC or 0945 UTC. This is particularly 

true when the iterative version of the retrieval is used, which narrows both the LWP and IWP 

error distributions, but particularly the LWP distribution, for the reasons discussed in Section 

3.2. It should be noted that some of the differences in the WRF model from one time step to 

another are simply due to advection, and not meaningful changes in the properties of individual 

clouds. Still, judging from these distributions, one can infer with reasonable confidence that 

changes on the order of 50 g/m
2
 or larger in retrieved LWP or IWP from one TEMPEST 

observation to the next likely reflect true changes in the atmosphere, while smaller changes could 

just be noise.!
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Figure 3.10. (A) Distribution of errors in LWP using ERA5 data as a-priori information at all view angles. (B) Distribution of errors 

in LWP using the iterative approach to assigning a-priori values described in the text. (C) As in panel A, but for IWP. (D) As in panel 

B, but for IWP. All panels: The blue distributions show the differences in retrieved values for view angle pairs of 30 degrees and 10 

degrees (solid line) or 45 degrees and nadir (dotted line). The black distributions shows the differences in model simulation values 

between 1000 UTC and 0954 UTC (solid line) or 0945 UTC (dotted line). 

!
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CHAPTER 4: CHANNEL SENSITIVITIES AND ERROR ANALYSIS 

 

4.1  Channel Sensitivities 

In this section we examine the sensitivity of the various TEMPEST channels to changes 

in the atmospheric parameters retrieved by the 1DVAR algorithm. This leads to a greater 

understanding of the factors contributing to errors in the retrieved values, and how they change 

with view angle. Let us begin by considering the weighting functions for the TEMPEST 

channels under clear-sky conditions. If Τ!(!) is the transmittance of the atmosphere at height ! 

for radiation at wavelength !, representing the fraction of energy emitted at a given level in the 

atmosphere that makes it to the top of the atmosphere, then the weighting function for a channel 

at wavelength ! is given by the derivative 
!!!(!)

!"
. The weighting function is an indication of 

where in the atmosphere the radiation at a given channel comes from. The weighting function 

depends on the atmospheric state, and also depends weakly on view angle. Figure 4.1 shows the 

weighting functions for a nadir observation at the TEMPEST frequencies for two sample clear-

sky pixels from the WRF simulation. 

 

Figure 4.1. Left: Weighting functions at nadir for the TEMPEST frequencies for a representative 

pixel from the WRF simulation with a TPW value of 42.5 mm. Right: Weighting functions for a 

much more moist pixel, with a TPW value of 73.1 mm. 
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 Note that when the atmospheric column is moister, the weighting functions peak higher 

in the atmosphere. While not shown here, the weighting functions at a higher view angle would 

also peak higher in the atmosphere, although the effect is less dramatic. Note also that while the 

89 GHz channel has a significant sensitivity to the surface, the 165 GHz channel is only slightly 

sensitive to surface characteristics, and at the other channels all of the radiant energy that reaches 

the satellite is coming from higher up in the atmosphere. 

 Keeping the general structure of these weighting functions in mind, let us now consider 

the sensitivities of each channel to changes in the two retrieved parameters most important for 

understanding cloud processes, LWP and IWP. To explore these sensitivities, the same sample 

atmospheric profile described in section 2.4.1 was run through the 1DVAR forward model, with 

varying amounts of either LWP or IWP (the results for liquid assume no ice, and the results for 

ice assume no liquid). The effect of these changes on the forward modeled Tbs are shown in 

Figure 4.2. 

It is clear that nearly all of the LWP signal comes from radiances at the 89 GHz channel, 

as the Tbs are nearly flat at the other frequencies. When there is no liquid water in the column, 

microwave energy at 89 GHz comes partly from the surface and partly from the atmosphere. As 

more cloud water is added, the cloud water absorbs and re-emits some of the upwelling energy 

coming from the surface, meaning that more of the energy that reaches the satellite is coming 

from the atmosphere rather than the surface. Since the emissivity of the ocean at 89 GHz is 

significantly less than unity, the atmosphere appears “warmer” than the surface does and thus as 

LWP increases so does the 89 GHz brightness temperature. Eventually, however, saturation is 

reached, where the cloud fully masks the surface, and adding more liquid water has little effect 

on brightness temperatures. This demonstrates why it is hard to make accurate retrievals for high!
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Figure 4.2. Left: Tb as a function of LWP at TEMPEST frequencies for retrievals made at nadir (blue), at a view angle of 45 degrees 

(red), at a 45° view angle plus with 25% more water vapor (yellow), and at a 45° angle, with high TPW and a deeper cloud extending 

up up to 650 hPa (purple). Right: TEMPEST Tbs as a function of IWP using the cloud ice distribution assumed in the forward model 

(blue), assuming a cloud layer from 100hPa to 200 hPa (red), or assuming a cloud layer from 400 to 500 hPa (yellow).!
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values of LWP – there simply isn’t much of a radiometric signal at the TEMPEST frequencies 

with which to discern the difference between, say, a LWP of 1000 g/m
2
 or 2000 g/m

2
. The 

retrieval will be guided by a-priori information in such cases.  

 The problem is worse, however, at higher view angles. In this case, the path length 

through the atmosphere is longer, so the radiometer sees less of the surface to begin with. Thus 

the contrast in 89 GHz Tbs between a clear scene and a cloudy one is reduced, and the channel 

becomes saturated at even lower amounts of liquid water. As can be seen in Fig. 4.2, there is 

very little radiometric signal beyond 500 g/m
2
 or so. Other factors that can reduce the LWP 

signal at 89 GHz include high TPW or high surface wind speeds. As seen from the weighting 

functions, increasing the amount of water vapor in the atmosphere decreases the surface 

contribution, and sea surface emissivity increases with increasing wind speed, reducing the 

contrast between the effective temperatures of the atmosphere and surface. 

 A final complication is that, while the forward model assumes a cloud layer extending 

from 800-900 hPa, cloud water can exist above this level. In this case, the trend in 89 GHz 

temperature with increasing LWP can actually reverse itself, with 89 GHz Tbs being lower at 

high amounts of LWP than at medium amounts (because the effective emission temperature of 

the cloud is lower). Because the forward model assumes a constant cloud top at 800 hPa, it is 

unable to recreate this decrease in Tb with increasing LWP and thus instead takes cloud liquid 

away to try to match the observed 89 GHz Tb. While a deep liquid cloud layer like this does 

create a radiometric signal at 165 GHz, the forward model cannot recognize it if the cloud height 

is assumed to be fixed. The issues raised above all point to sources of error in the retrieval of 

LWP, and help explain why it is so important to constrain the a-priori LWP information used 

when trying to retrieve at a high view angle. 
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! In contrast to IWP, Figure 4.2 shows that LWP has a clear, relatively linear radiometric 

signal at all TEMPEST frequencies, although the response is much more muted at 89 GHz. The 

vertical placement of the cloud ice, however, can have important consequences, especially at the 

182 GHz channel. Because the weighting function at 182 GHz peaks high in the atmosphere, if 

most of the ice mass is below the peak in the weighting function, then most of the ice scattering 

signal at 182 GHz will be lost, even though a strong scattering signal will still be present at other 

channels. This can confuse the retrieval algorithm, causing errors in the retrieved IWP due to the 

uncertainty in the proper vertical placement. 

 

4.2  Error Analysis 

 A series of experiments was performed to quantify the effect of the various assumptions 

that combine to make up the forward model error. Using the forward model, and all of the 

simplifications contained therein, TEMPEST Tbs were calculated for the WRF model output at 

1000 UTC. Then these assumptions were gradually relaxed, one at time. At each step, the Tbs 

were re-computed, and the new Tbs were fed into the retrieval algorithm. By measuring the 

difference in Tbs between each step, along with the difference in values retrieved by the 1DVAR 

algorithm, one can isolate the effect of each assumption and gain insight into which sources of 

error are most significant. The results of this exercise are shown in Figures 4.3 and 4.4. Figure 

4.3 shows the bias and root-mean-square errors induced at the five TEMPEST frequencies by 

each forward model error source, averaged across all pixels. Figure 4.4 shows the bias and RMS 

errors induced in the retrieved parameters of TPW, LWP, and IWP. Clear-sky and cloudy 

regimes are considered separately. Both plots show the effects at both nadir and a 45 degree view 

angle.!
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Figure 4.3. Bias (left) and RMS (right) errors in forward modeled TEMPEST brightness 

temperatures from various sources. Blue bars are errors at nadir and yellow bars errors at a 45° 

view angle. The errors sources considered are as follows: errors in ancillary atmospheric data 

(ANC), errors in assumed surface wind speed (WSP), limitations in the ability to represent the 

full water vapor profile with 3 principal components (PC), errors in the vertical distribution of 

liquid cloud drops (LWPf), errors in the vertical distribution of frozen hydrometeors (IWPf), 

errors induced by averaging over the full radiometer field of view (FOV), errors induced by the 

plane-parellel assumption (SP), errors induced by interpolating the 30-level WRF atmosphere to 

16 levels (INTP), and errors in the assumed ice mircophysics (ICE). 

!
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Figure 4.4. Top left: Biases in retrieved TPW, LWP, and IWP induced by error sources for clear-

sky conditions. Top right: RMSE in clear-sky conditions. Bottom right: Cloudy-sky RMSE. 

Bottom left: Cloudy-sky biases. Blue bars are errors at nadir and yellow bars errors at a 45° view 

angle. The abbreviations are the same as for Fig. 4.3, with two extras: AP represents errors 

induced by a-priori assumptions, and NEDT represents errors induced by random errors in the 

radiometer observation. 
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A comparison of the magnitudes of the errors in Figure 4.4 shows which sources of error 

are most important for the various retrieved parameters, and the differences between the nadir 

and 45-degree error statistics offer insight into which assumptions contribute the most to the 

inconsistencies in the retrieval at high view angles.  

 

4.2.1  Ancillary Data 

 Errors in the SST, surface pressure, height profile, and temperature profile assumed by 

the forward model are all small and thus are grouped together in this analysis. Mistaken 

assumptions about these variables lead to a small positive bias in 89 GHz Tb and a small negative 

bias at 182 GHz. Overall, though, induced errors are quite small and in most cases this source of 

forward model error can be safely ignored. 

 

4.2.2  Surface Wind Speed 

 The surface wind speeds assumed by the forward model (taken from ERA5) are biased 

slightly low compared to the actual winds speed present in the WRF model. Since a lower wind 

speed translates to a lower surface emissivity, this bias in wind speed leads to a negative bias in 

89 GHz Tb. The bias is larger at nadir than at 45 degrees, as one would expect given the greater 

sensitivity to the surface. When it comes to retrieved values, this bias in 89 GHz Tb is reflected in 

positively biased LWP values, because as discussed in Section 4.1, the LWP signal is also almost 

entirely at 89 GHz. Because the errors are larger at nadir, this effect is probably at least partly 

responsible for the fact that LWP values retrieved at 45 degrees tend to be lower. In the long run, 

of course, one would hope that assumed values of wind speed are unbiased. However, that 
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doesn’t change the fact that, for any given scene, assumed wind speeds are likely to have errors 

and that this error will affect the LWP retrieval. 

 

4.2.3  Representation of the Water Vapor Profile 

 As mentioned in Chapter 2, it is impossible to capture the entire variability in possible 

water vapor profiles with only 3 principal components. Nevertheless, the forward model is 

restricted to adjusting the PC coefficients when trying to adjust the water vapor profile. This 

leads to considerable RMS errors in retrieved TPW in clear-sky regimes, probably mostly related 

to deficiencies in the way the lowest levels of the atmosphere, where most of the water vapor is 

located, are represented. For reasons that are not confidently understood at this time, the PC 

representation of the water vapor profile also contributes to a negative bias in 89 GHz brightness 

temperatures, and a corresponding positive bias in retrieved LWP. The response is similar across 

all view angles, however. 

 

4.2.4  Placement of Cloud Liquid 

 This experiment confirms what was argued in Section 4.1; namely, that assuming a fixed 

liquid cloud level can lead to non-trivial errors in retrieved LWP, because of the different 

emission temperature. RMS errors due to this factor are on the order of 350 g/m
2
, and are slightly 

higher at higher view angles. This assumption can be an important source of error in certain 

situations, but based on comparisons with the error statistics for the other assumptions, it is not 

necessarily a dominant source of error either. 
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4.2.5  Placement of Cloud Ice 

 The fixed distribution of frozen hydrometeors in the forward model creates negative 

biases at the 176, 180, and 182 GHz channels, as well as considerable RMS errors. This is 

probably because the forward model is putting ice in middle levels in the atmosphere more often 

than in the WRF model, which reduces the Tb depression at the channels that peak higher in the 

atmosphere. This leads to a negative bias in retrieved IWP. Although not nearly as important as 

ice microphysical assumptions, it is nonetheless a significant factor in the overall negative bias 

of retrieved IWP. 

 

4.2.6  Field of View Size 

 The larger the field of view, the more likely it is that the FOV will include a mix of 

cloudy and clear areas. When comparing with a higher resolution product, the result of this sub-

grid scale variability will be retrieved cloud fields that are biased high in clear areas and biased 

low in cloudy areas, as can be seen clearly in Figure 4.4. Even if all of the fields are averaged to 

a common low-resolution grid, differences remain. This is largely a consequence of the non-

linear response of 89 GHz Tbs to increasing cloud water, and is closely related to the so-called 

beam-filling effect [e.g., Greenwald et al., 1997].  Field of view errors are more of a problem for 

the retrieval of LWP than for IWP, which makes sense given the non-linearity of the LWP 

response and the face that the LWP retrieval relies heavily on the 89 GHz channel, which has 

lower resolution than the other channels. Given the large FOV-induced RMS errors, and the fact 

that these errors are significantly larger at 45 degrees (which makes sense, given the larger 

FOV), this is probably one of the most important factors contributing to view angle associated 

retrieval errors. 
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4.2.7  Plane-parallel Assumption 

 The plane-parallel assumption does not induce significant errors at nadir but can lead to 

substantial errors at 45 degrees. This does not result in significant biases, but retrievals at high 

view angles should be expected to be noisier in part due to this assumption. 

 

4.2.8  Interpolation of Atmospheric Profiles 

 The forward model divides the atmosphere into 16 vertical levels, as opposed to the 30 

levels specified by WRF, which leads to somewhat unexpectedly large errors. Probably the most 

significant errors are a positive bias in retrieved IWP and a negative bias in TPW in cloudy 

regions. The reasons for these biases are not entirely clear, but probably have to do with the 

decreased vertical resolution of the forward model above 300 hPa (where much of the ice is 

located) and insufficient resolution of the lower-level water vapor structure. 

 

4.2.9  Ice Microphysical Assumptions 

 Unsurprisingly, the discrepancy between the habit and PSD of frozen hydrometeors in the 

forward model compared to the WRF model is by far the most important source of error in the 

retrieval of IWP. As has already been discussed, the forward model microphysics leads to an 

overestimation of the amount of scattering as compared to the WRF microphysics, which 

manifests itself in negative biases at all channels. Across all pixels, the 165 GHz Tbs are biased 

low by 2.15 K at nadir and by 3.25 K at 45 deg, with RMSE values of 4.92 K and 6.91 K, 

respectively. Although not shown in Fig. 4.4, if only pixels with IWP>500 g/m
2
 are considered, 

these errors grow to over 15 K. This puts the forward model uncertainty in the brightness 

temperatures in line with the uncertainty estimates given in Section 2.4.1. The negative bias in 
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the brightness temperatures leads to a large negative bias in retrieved IWP, consistent with 

Figure 3.1. It also results in smaller but still substantial negative biases in retrieved TPW and 

LWP in cloudy areas. In all cases, the effect is slightly stronger at higher view angles. 

 

4.2.10  A-priori Selection and Sensor Noise 

 Figure 4.4 also includes two additional sources of retrieval errors, errors influenced by 

the choice of a-priori values as well as the random errors added to the synthetic Tbs to imitate 

radiometric noise. Sensor noise is relatively unimportant in the retrieval of TPW and IWP but 

does have a non-trivial effect on the LWP retrieval, acting to give a slightly positive LWP bias 

on the whole. The effect is larger at 45 degrees, reflecting the effect that there is less contrast in 

89 GHz clear-sky and cloudy sky brightness temperatures at high view angles, meaning a given 

change in Tb will correspond to a larger change in retrieved LWP. The a-priori errors show the 

amount by which the retrieval is being dragged toward the a-priori state. This represents the 

largest source of error for the TPW retrieval. It is not a particularly important error term for the 

retrieval of LWP or IWP in cloudy conditions, but it does account for a lot of the positive bias in 

retrieved LWP and IWP in clear-sky regions. 

 

4.3  Error Mitigation with Coincident Satellite Observations 

 Some of the errors examined in the previous section could be constrained if a TEMPEST 

series of observations were to take place near the time of an observation by a different 

spaceborne instrument. For example, most of the passive microwave radiometers in the GPM 

constellation include a channel near 37 GHz. This channel is more sensitive to liquid cloud water 

than 89 GHz and does not saturate as quickly, making retrievals of LWP more accurate. While it 
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would be hard to add a 37 GHz channel to the TEMPEST instrument, due to the large antenna 

size required and the size limitations of the CubeSat platform, anytime a TEMPEST observation 

is made in close proximity to a retrieval of LWP from one of these other satellites, that a-priori 

information could be used to further constrain the TEMPEST retrieval of LWP. This would 

particularly improve retrieval performance in areas of high LWP, where the 89 GHz channel on 

TEMPEST saturates, and would help reduce the differences in retrieved LWP between high and 

low view angles. The 37 GHz channel, along with even lower frequency channels on GMI and 

AMSR-2, can also be used to retrieve wind speeds. The incorporation of these more accurate 

wind speeds into the retrieval, instead of relying on reanalysis data, would also serve to improve 

the LWP retrieval. 

 Observations made near the same time as the “A-Train” series of satellites offer even 

more possibilities for improving the retrieval. In addition to the AMSR-2 microwave radiometer, 

the A-Train includes two instruments, the Advanced Microwave Sounding Unit (ASMU-A) and 

the Atmospheric Infrared Sounder (AIRS), which could help further constrain the water vapor 

profile. More accurate water vapor a-priori assumptions, particularly near the surface, would 

reduce the errors associated with the principal component representation of water vapor in the 

forward model. Also, the A-train contains the CloudSat cloud radar, as well as the Cloud-

Aerosol Lidar with Orthogonal Polarization (CALIOP) on the CALIPSO satellite. Observations 

from these instruments, while limited to a narrow swath with a width of less than 2 km for 

CloudSat and less than 100 m for CALIOP, could be used to provide the TEMPEST retrieval 

with a more accurate picture of the heights and depths of the clouds being observed. As laid out 

in Section 4.2, the forward model’s simplified vertical distribution of cloud liquid and cloud ice 

represent two of the most sizable sources of forward model error, so being able to adjust these 
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cloud heights to match nearby radar and lidar observations would be of great benefit. The 

information from CloudSat and CALIPSO could also help to better constrain the frozen 

hydrometeor PSD. Thus, the detailed information provided by the A-train instruments could help 

constrain the forward model for a given cloud system, allowing for more accurate TEMPEST 

retrievals by the oreceeding or subsequent instruments in the TEMPEST cluster, which in turn 

would add value to the A-train observations by providing temporal context. 

 Geostationary satellite observations could also potentially be used to reduce errors in the 

retrieval, without having to rely on coincident overpasses that occur only a few times per day. 

For example, the Advanced Baseline Imager (ABI) on GOES-16 can be used to identify cloudy 

areas and estimate cloud-top heights and cloud-top particle size. This would allow for stricter a-

priori errors in LWP and IWP to be assumed, reducing the positive bias in these values in clear-

sky regimes; and incorporating the information about cloud height and particle size into the 

forward model could help reduce errors associated with the assumed cloud levels and ice 

microphysics. ABI information could potentially be leveraged quite productively with a 

TEMPEST mission, since it also has a temporal resolution of 5 minutes, while the TEMPEST 

radiometers would add information critical to the understanding of cloud process by virtue of 

their ability to see through the cloud tops to better understand changes inside the cloud itself. 

 Finally, it is worth noting that once a sufficient number of coincident measurements have 

been made, covering the full diurnal cycle and a wide geographic area, these observations could 

be used to train the retrieval algorithm and improve performance even when coincident 

observations are not available. For example, statistics relating the cloud morphology and cloud 

top temperatures observed by ABI to the parameters retrieved by TEMPEST could be used to 
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develop a forward model that makes assumptions that are not fixed for all pixels but rather 

depend somewhat on the atmospheric state.   

! !
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CHAPTER 5: CONCLUSIONS AND FUTURE WORK 

 

 A robust, physically based optimal estimation retrieval algorithm has been developed for 

use with TEMPEST-D and other similar cross-track sounders. The algorithm can be used to 

retrieve a rough vertical profile of water vapor as well as integrated amounts of liquid cloud 

water and cloud ice/snow at view angles ranging from nadir to 45 degrees. The primary goal of 

this study was to determine the extent to which view angle differences might hamper the utility 

of a proposed cluster of closely spaced TEMPEST CubeSats. Synthetic observations generated 

from a high-resolution WRF simulation indicate that, in most cases, the errors in retrieved 

parameters introduced by view angle differences are small enough that the true atmospheric 

signal can be distinguished from the noise. This is especially true for observations made between 

nadir and about 30 degrees, where field of view changes are more gradual. Nevertheless, view 

angle related errors should not be ignored, and it is worth considering ways in which both the 

retrieval algorithm as well as the TEMPEST mission concept itself could be refined. 

 While the forward model is able to partly adjust for the changing nature of retrievals at 

different view angles, through its use of a view-angle-dependent forward model error covariance 

matrix, deficiencies remain. The retrieval of LWP at high view angles becomes particularly 

problematic, due to the reduced sensitivity at the 89 GHz channel. However, in the context of a 

fleet of closely spaced radiometers, using higher quality near-nadir retrievals for a-priori 

information can eliminate a significant fraction of this error, while still allowing the retrieval to 

discern true changes in atmospheric state. This iterative approach to refining the a-priori state 

vector and assumed errors also improves performance in the retrieval of IWP, though to a lesser 

extent. It is worth a more careful examination of how additional sources of a-priori information, 
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perhaps from coincident overpasses of other low Earth orbit satellites or even infrared radiances 

from geostationary satellite instruments, could further constrain the retrieval. Better constrains 

on the surface wind speed, as well as the placement of cloud levels, would undoubtedly reduce 

errors in the retrieved parameters. 

 Another important source of discrepancies between low and high view angle retrievals is 

the change in field of view. Studies have been conducted [e.g., Bremen et al., 2002; Hilburn and 

Wentz, 2008] to try to quantity and correct for beamfilling errors, and it would probably be 

helpful to try to implement a similar correction in the TEMPEST retrieval algorithm. Information 

from geostationary satellites could also be used to identify the fraction of area within a given 

field of view that is cloudy. 

 In addition, changes to the mission concept could be considered that might help reduce 

errors induced by changing view angles. For example, this study shows that the errors in the 

retrieval start to increase more rapidly past view angles of about 30 degrees. This suggests it 

might be beneficial to space the TEMPEST CubeSats more closely together than the 6-minute 

spacing assuming in this experiment. With closer spacing, more observations of the same 

location would be able to be performed at view angles near nadir. In addition, field of view 

differences between successive overpasses would be smaller, and the closer spacing would allow 

for stricter assumed a-priori errors that might improve performance even at high view angles. 

The tradeoff, of course, is that more CubeSats would be required in order to cover the same 

length of time. 

 A related consideration is that, at higher latitudes, the rotation speed of a given point on 

the Earth is reduced, so for a given TEMPEST spacing, the change in view angle between 

observations will be lessened. Additionally, locations outside the tropics tend not to have TPW 
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values that are as high as some of the extreme values seen in this hurricane simulation, which 

could increase the sensitivity to cloud water. Given these facts, it is possible that more consistent 

retrievals could be obtained away from the tropics. 

 Finally, it is worth considering whether a TEMPEST mission would be better served by a 

different combination of channels. The channels chosen for the TEMPEST-D instrument allow 

for reliable retrievals of atmospheric water vapor in clear skies (see Appendix), and are 

beneficial in that the similarities with channels on other spaceborne passive microwave 

radiometers allow for easier calibration once in orbit. However, clear-sky water vapor does not 

tend to change very rapidly with time, and so the benefits of having a train of closely spaced 

observations accrue mostly in cloudy cases, where the water vapor retrieval does not have much 

skill. In addition, the only TEMPEST-D channel with a sensitivity to cloud liquid is the 89 GHz 

channel, and going to lower frequencies where the sensitivity is stronger is problematic due to 

antenna size and FOV issues. This suggests that the TEMPEST mission might be most 

successful if it were to focus on ice processes in clouds. However, more useful information about 

cloud ice could be obtained if the observing frequencies were spaced farther apart. Because four 

of the TEMPEST channels operate at similar frequencies, the scattering signature of a frozen 

particle of a given size and habit will be similar across all channels – that is, the channels do not 

actually represent four independent sources of information. In addition, small ice particles do not 

create much of a scattering signature at these frequencies. The hypothetical inclusion of higher 

frequency channels on a TEMPEST CubeSat, even if it were at the expense of existing channels, 

would lead to increased sensitivity to small ice particles and a greater ability to distinguish 

between particle habits and size distributions. While a more careful study is warranted before 

any re-design of the radiometer, work by Birman et al. [2017] examining the information content 
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of a wide range of microwave frequencies suggests that the retrieval of cloud ice and snow 

would benefit most from the inclusion of channels near 874 GHz, 664.2 GHz, and 251 GHz. 

Similar improvements could possibly achieved by interspersing separate radiometers such as 

Tropospheric Water and cloud ICE (TWICE) CubeSat instruments [Jiang et al., 2017] within the 

TEMPEST constellation. 

 Ultimately, one of the main goals of the TEMPEST mission is to improve cloud 

parameterizations in models. This work has demonstrated that changes in integrated amounts of 

cloud liquid and cloud ice could be retrieved from a TEMPEST fleet, but has not explicitly 

shown how one might use this information to constrain parameters such as the graupel collection 

efficiency or autoconversion threshold radius mentioned in Chapter 1. In fact, given that the 

sensitivity to liquid is limited to only one TEMPEST channel, it might be the case that more 

progress can be made with respect to ice-phase parameterizations. For example, Elsaesser et al. 

[2017] found that a more realistic partitioning of convective ice into precipitating and detrained 

condensate could be obtained in a GCM by incorporating a new convective ice parameterization 

scheme informed by aircraft field campaigns. The question of how much ice is detrained from 

convective updrafts is important because convective anvils have important radiative effects and 

can affect climate sensitivity [Lindzen et al., 2001]. Direct observations by a TEMPEST fleet of 

the ice mass flux from convective cores into surrounding anvil clouds could further constrain 

convective ice parameterizations, especially in regimes not including in the aircraft field 

campaigns.  

More work is needed to determine the best way to make use of TEMPEST observations, 

and collaboration with the modeling community will be critical in paving the way forward. 

While the idea of improving cloud model parameterizations by way of cloud process 
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observations from TEMPEST remains a long-term goal, this study has advanced our 

understanding of the nature of the challenges involved and points toward multiple avenues by 

which some of these challenges might be mitigated. The fact that changes in LWP and IWP can 

be reliably retrieved, even at different view angles and for closely-spaced observations, indicates 

that this novel observation concept holds great promise. 
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APPENDIX: CLEAR SKY WATER VAPOR PROFILE RETRIEVAL 

 

 While not critical to the TEMPEST mission concept, the same optimal estimation 

framework developed in this thesis can be used to retrieve information about the water vapor 

content of the atmosphere from TEMPEST-D or any cross-track radiometer operating at similar 

frequencies, such as MHS or ATMS. Moreover, for calibration purposes, it is important that 

TEMPEST radiometers be able to properly interpret water vapor in the atmosphere. Then, if the 

radiometer were to start to malfunction while in-orbit, this would manifest itself in higher !! 

values that could be rapidly detected. Here, we test the performance of the water vapor retrieval 

algorithm in clear-sky conditions, and the consistency across different view angles. 

 The clear-sky retrieval algorithm is the same as the all-sky algorithm, with the important 

exception that the assumed errors that make up the forward model error covariance matrix !! are 

much smaller. This is appropriate because changes in the water vapor profile have a smaller 

effect on Tbs than do changes in clouds. A more restrictive !! allows the retrieval to converge on 

the true water vapor profile more closely while being less closely tied to a-priori assumptions. 

This clear sky !! is created in the same manner describe in Section 2.4.3, except only WRF 

simulation pixels that are clear of any clouds are included in the calculation. As for the all-sky 

retrieval algorithm, different error covariance matrices are calculated for all possible view 

angles, in five-degree increments. 

 To test the clear-sky retrieval algorithm, hourly data from the WRF Hurricane Gonzalo 

simulation, with all cloud water, rain, ice, snow, and hail artificially removed, were used to 

create synthetic brightness temperatures, in the same manner described in Section 2.3. These 

synthetic Tbs were then used to retrieve the coefficients for the principal components of the water 
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vapor profile, while the LWP and IWP parameters in the forward model were held fixed at zero. 

The a-priori water vapor profile was taken from ERA5, as in the all-sky retrieval. 

Figure A.1 shows sample retrievals of TPW at nadir and 45 degrees for WRF output at 1200 

UTC. Also shown is the TPW from the model as well as from ERA5. Of course, the large FOV 

of the TEMPEST radiometer, compared to the resolution of the model output, makes it 

impossible to capture features at the finest scales, but overall the retrieval does a good job of 

reproducing the TPW, with the main exception being the area near the core of the hurricane. The 

water vapor profile in this area probably shouldn’t be considered to be very similar to those 

found in true clear-sky conditions, however. The retrieval shows clear improvement over the a-

priori TPW values, a fact illustrated in Figure A.2. Outside of the hurricane core, errors in TPW 

are much smaller for the retrieval than for ERA5, indicating that there is a radiometric signal in 

clear skies with which to retrieve information about vertically integrated water vapor amounts. 

The pattern of errors in Figure A.2 does show residual a-priori influence, with positive biases 

tending to occur in areas where the a-priori TPW is positively biased, and negative biases where 

the a-priori errors are also negative. The patchy appearance of the error fields points to the 

influence of the (artificially-imposed) sensor noise as well.  

Notably, the pattern of errors at nadir and at 45° are quite similar, demonstrating the 

stability of the retrieval across the full range of view angles considered. Figure A.3 plots the 

TPW bias, correlation coefficient, and RMSE as a function of view angle, for the full simulation. 

The bias in the retrieved TPW ranges from a minimum of 0.18 (at 45°) to a maximum of 0.27 

mm (at 30°). These biases are much smaller in magnitude than the a-priori bias of -1.40. The 

correlation coefficient is between 0.956 and 0.964 at all view angles, an improvement over the 

ERA5 correlation of 0.916, and the RMS errors are between 2.05 and 2.14 mm, compared to 
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3.08 for ERA5. Based on these statistics, it does not appear that view angle differences should be 

a major source of concern for the clear-sky water vapor retrieval. 

 
Figure A.1. Top left: Total precipitable water from the WRF Hurricane Gonzalo simulation at 

1200 UTC, at 3km resolution. Top right: TPW from ERA5 reanalysis at 1200 UTC. Bottom 

right: TPW retrieved by the optimal estimation algorithm, assuming a view angle of 45 degrees. 

Bottom left: TPW retrieved at nadir. 

 

 

 

 
 

Figure A.2. Difference between retrieved TPW and model TPW for retrievals made at nadir 

(middle) and a 45° view angle (right). The difference between ERA5 and model TPW is also 

shown for reference (left).  
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Figure A.3. Top: Average retrieved minus model TPW, as a function of view angle (blue solid 

line), along with the constant ERA5 bias (red dashed line). Error bars represent ± 1 standard 

error, assuming an effective sample size of n/100 to account for spatial autocorrelation. Middle: 

Correlation coefficient between the retrieved and model TPW as a function of view angle, along 

with the ERA5 correlation coefficient. Bottom: Root-mean-squared error of the retrieved TPW 

values as a function of view angle, along with the ERA5 RMSE. 

 

 

 

Lastly, since the optimal estimation algorithm retrieves principal components of variation 

about a mean profile, it is possible to obtain rough information about the vertical structure of the 

water vapor profile. Figure A.4 shows the water vapor mixing ratios in the WRF simulation at 

1200 UTC for the levels of 500 hPa and 900 hPa. Also shown are the mixing ratios implied by 

the retrieved PC coefficients, and the corresponding mixing ratio from ERA5. It is clear that the 

retrieval is able to discern the structure of the water vapor profile more accurately in the middle 

part of the troposphere than near the surface. This is likely due to two factors. First, as shown in 



! 84!

Figure 4.1, the channel weighting functions are more sensitive to the middle atmosphere, 

particularly in moist environments. Second, the principal components used by the algorithm, 

while optimized to explain the maximum amount of the total variance in the water vapor profile, 

are not necessarily optimized to explain the maximum amount of variance in the near-surface 

water vapor. Figure 2.4 shows that all of the principal components are rather close to zero near 

the surface. This means that stark variations in mixing ratio in the lower levels cannot be 

properly represented using the three PCs. Depending on the desired application, it might be 

useful to use different PCs to capture more of the low-level variance, but this would likely come 

at the expense of accuracy at other levels. 

  

 

Figure A.4. Water vapor mixing ratio at 900 hPa (top row) and 500 hPa (bottom row) for the 

WRF model at 1200 UTC and corresponding fields for ERA5 and synthetic TEMPEST retrievals 

at nadir and 45 degrees. 

 


