BREAKERING SECTIONS

MAR 29174

WIND ENGINEERING STUDY OF FIRST NATIONAL BANK OF DENVER BUILDING

by

J. A. Peterka* and J. E. Cermak**

for

Urban Investment and Development Company 1660 Lincoln Center Building Denver, Colorado 80203

> First National Bank of Denver 621 17th Street Denver, Colorado 80202

> > and

Welton Becket and Associates 10000 Santa Monica Blvd. Los Angeles, California 90025

Fluid Mechanics Program Fluid Dynamics and Diffusion Laboratory Department of Civil Engineering Colorado State University Fort Collins, Colorado

December 1973

* Assistant Professor

** Professor-in-Charge, Fluid Mechanics Program

CER73-74JAP-JEC20

FIRST NATIONAL BANK OF DENVER BUILDING (1:180 scale model)

ACKNOWLEDGMENTS

Construction of the building model and pressure switch was accomplished by personnel of the Engineering Research Center Machine Shop. Mr. James A. Garrison aided in the motion pictures of flow visualization. Mr. Robert E. Akins supervised pressure-data acquisition and reduction. Dr. S. K. Nayak was responsible for velocity measurements.

TABLE OF CONTENTS

Chapter	Page
	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF APPENDICES
	LIST OF FIGURES
	LIST OF SYMBOLS
I	INTRODUCTION
	1.1General.11.2The First National Bank Building2
II	WIND SIMULATION FACILITIES AND BUILDING MODEL 4
	2.1 Wind Tunnels 4 2.2 Model 4
III	INSTRUMENTATION AND DATA ACQUISITION 7
	3.1 Flow Visualization 7 3.2 Pressures 7 3.3 Velocity 9
IV	RESULTS
	4.1 Flow Visualization
V	CONCLUSIONS
	REFERENCES
	TABLES. . </td
	APPENDIX A
	APPENDIX B
	FIGURES

LIST OF TABLES

Table		Page
1	MOTION PICTURE SCENE GUIDE	. 22
2	MEAN AND FLUCTUATING VELOCITIES IN THE PLAZA	. 23
3	PEAK PRESSURE DATA FOR THE NEW TOWER	. 24
4	PRESSURE DATA FOR THE NEW TOWER WITH ADDED STRUCTURE .	. 28
5	PRESSURE DATA FOR THE EXISTING TOWER	. 30
6	PRESSURE DATA FOR THE GALLERIA	. 32

.

LIST OF APPENDICES

Appendix		Page
А	PRESSURE DATA FOR THE NEW TOWER	. 33
В	PRESSURE DATA FOR SELECTED TAPS AT TWO DEGREE WIND INCREMENTS FOR THE NEW TOWER	. 54

LIST OF FIGURES

Figure		Page
1	Plan View of Wind Tunnels	65
2	Site Plan for the First National Bank	66
3	Pressure tap locations	68
4	Completed Model Installed in the Wind Tunnel	73
5	Pressure Switch Installed in the Model	74
6	Data Sampling Time Verification	75
7	Typical Hot Wire Calibration	76
8	Mean Velocity Profiles Approaching the Model	77
9	Turbulence Intensity Profiles	79

LIST OF SYMBOLS

Symbol	Definition
U	Local mean velocity
D	Characteristic dimension (building height, width, etc.)
ν	Kinematic viscosity of approach flow
	Reynolds number
Е	Mean voltage
A	Constant
В	Constant
n	Constant
Urms	Root-mean-square of fluctuating velocity
Erms	Root-mean-square of fluctuating voltage
U _w	Reference mean velocity outside the boundary layer
Y	Height above surface
δ	Height of boundary layer
Tu	Turbulence intensity $U_{\rm rms}^{}/U_{\infty}^{}$ or $U_{\rm rms}^{}/U$
C _p mean	Mean pressure coefficient, $\frac{(p-p_{\infty})_{mean}}{\frac{1}{2} \rho U_{\infty}^2}$
C _p rms	Root-mean-square pressure coefficient, $\frac{[(p-p_{\infty})-(p-p_{\infty})_{mean}]_{rms}}{\frac{l_2 \rho U_{\infty}^2}{}^2}$
C _{pmax}	Peak maximum pressure coefficient, $\frac{(p-p_{\infty})_{max}}{\frac{1}{2} \rho U_{\infty}^{2}}$.
C _{pmin}	Peak minimum pressure coefficient, $\frac{(p-p_{\infty})_{\min}}{\frac{1}{2} \rho U_{\infty}^{2}}$
ρ	Density of approach flow

LIST OF SYMBOLS (Cont.)

Symt	001	Definition
() _{min}	Minimum value during data record
() _{max}	Maximum value during data record
р		Fluctuating pressure at a pressure tap on the structure
p,	0	Static pressure in the wind tunnel above the model

÷

1. INTRODUCTION

1.1 General

A significant characteristic of modern tall building design is lighter cladding and more flexible frames. These features combine to produce an increased vulnerability of glass lights and cladding to wind damage. In addition, increased use of pedestrian plazas has brought about a need to consider wind and gustiness in the design of these areas. Techniques have been developed during the past decade for wind-tunnel modeling of proposed structures which allow the prediction of wind pressures on cladding and wind environment about the building. Knowledge of pressures on the structure permits adequate but economical selection of window strength to meet selected maximum design winds while information on sidewalk level gustiness allows plaza areas to be protected by design changes before the structure is constructed.

Modeling the aerodynamic loading on a structure requires special consideration of flow conditions in order to guarantee similitude between model and prototype. A detailed discussion of the similarity requirements and their wind-tunnel implementation can be found in References 1, 2, and 3. In general, the requirements are that the model and prototype be scaled in geometry, that the approach mean velocity at the building site have a vertical profile shape similar to the full-scale flow, that the turbulence characteristics of the flows be similar, and that the Reynolds number for the model and prototype be equal.

These criteria are satisfied by constructing a scale model of the structure and its surroundings and performing the wind tests in a wind tunnel specifically designed to model atmospheric boundary-layer flows. Reynolds number similarity requires that the quantity UD/ ν be similar for model and prototype. Since ν , the kinematic viscosity of air, is identical for both, Reynolds numbers cannot be made precisely equal with reasonable wind velocities. Wind velocity in the wind tunnel would have to be the model scale factor times the prototype wind. However, for sufficiently high Reynolds number (> 10⁵) a pressure coefficient at any location on the structure will be essentially constant with Reynolds number. Typical values encountered are 10⁸ for the full scale and 10⁶ for the wind tunnel model. Thus acceptable flow similarity is achieved without precise Reynolds number equality.

1.2 The First National Bank Building

A wind study was performed for the proposed First National Bank Building in Denver, Colorado. The 418 ft high structure was modeled at a 1:180 scale. The objectives of the wind study were to obtain mean and fluctuating pressures on the building as well as wind velocity and gustiness in the plaza adjacent to the structure. In addition, a flow visualization study was performed to define overall flow patterns and regions where local flow features might cause difficulties in panel loading or pedestrian discomfort.

The Bank Building will occupy a portion of the block between 17th and 18th Streets and between California and Welton Streets in Denver. The structure consists of a tower occupying the quarter-block nearest to 18th Street and California with a plaza occupying the remaining area along California. The existing First National Bank Building (366 ft high) occupies the corner of the block at 17th and Welton Streets. A low pedestal structure will occupy the remaining portion of the block along Welton Street. The site is in the center of the downtown

area on flat terrain. Surrounding structures range in height from nearly the same to less than the Bank Building height. The flow approaching the site crosses relatively flat terrain with low structures except for the tall buildings in the downtown area close to the building site.

2. WIND SIMULATION FACILITIES AND BUILDING MODEL

2.1 Wind Tunnels

The wind study was performed in the Meteorological Wind Tunnel located in the Fluid Dynamics and Diffusion Laboratory at Colorado State University, Figure 1. The tunnel is a closed circuit facility driven by a 250 h.p. variable-pitch, variable-speed propeller. The test section is nominally 6 feet square and 88 feet long fed through a 9-to-1 contraction ratio. The test section walls diverge 3/4 in./8 ft and the roof is adjustable to maintain a zero pressure gradient along the test section. The mean velocity can be adjusted continuously from 1 to 120 fps. The facility is described in detail by Plate and Cermak [4].

The flow visualization portion of the study was performed in the Industrial Aerodynamics Wind Tunnel (Figure 1). It has a 6 foot square test section 36 feet long. A 75 h.p., constant speed propeller can generate velocities from 0 to 65 fps.

2.2 Model

In order to obtain an accurate assessment of local pressures using piezometer taps, the model was constructed to the largest scale that would not produce serious blockage in the wind tunnel. A 1:180 scale model was constructed using 3/4 in. "Lucite" plastic for the tower portions of both the new and existing structures on which pressure measurements were to be made and using styrofoam for the lower structure.

Piezometer taps (1/16 in. dia.) were drilled normal to the exterior surface at 68 locations on two sides of the proposed structure.

at 37 locations on the existing structure and at 3 locations on the galleria skylight adjacent to the plaza. The location of the taps on the two structures is shown in Figures 3a to 3e. Pressures on the two sides of the new structure not instrumented were obtained by rotating the building 180 degrees so that the remaining sides were replaced by the instrumented faces.

An area of 1100 ft radius surrounding the building site was modeled in detail. Structures located within this region were modeled from styrofoam which retained the overall height and shape but omitted small surface details. The Building model and surrounding area was mounted on a 76 in. dia. turntable centered 84 ft from the test section entrance. That portion of the modeled area which did not fit on the turntable was placed upstream and downstream from the turntable and changed to match the turntable azimuthal position each time the turntable was rotated. The turntable indicated azimuthal orientation to \pm 0.1 degree.

The region upstream from the modeled area was covered with a randomized roughness constructed from bricks. A 12 in. high vortex generator provided a boundary-layer trip at the entrance to the test section. The distribution of bricks was designed to provide a boundary-layer thickness of approximately 50 in., a velocity profile power-law exponent similar to that for a city environment, and a logarithmic velocity profile with a realistic roughness length. A photograph of the complete model in-place in the wind tunnel is shown in Figure 4. The wind-tunnel ceiling was adjusted after placement of the model to obtain a zero pressure gradient along the test section.

For the flow visualization study, the thickness of the turbulent boundary layer in the short test section length available in the

Industrial Aerodynamics Wind Tunnel was increased by adding tapered spires at the test-section entrance.

of the new structure not instrumented were obtained by rotating the building 180 degrees so that the remaining sides were replaced by the instrumented faces.

An area of 1100 ft radius surrounding the building site was modeled in detail. Structures located within this region were moleled from styrofoum which retained the overall height and shape but omitted small surface details. The Building model and surrounding area was mounted on a 76 in. dis. turntable centered 84 ft from the test section entrance. That portion of the modeled area which did not fit on the turntable was placed upstream and downstream from the turntable and changed to match the turntable azimuthal position each time the turnturn.

The region upstream from the modeled area was covered with a randomized roughness constructed from bricks. A 12 in. high vortex generator provided a boundary-layer trip at the entrance to the test section. The distribution of bricks was designed to provide a boundary-layer thickness of approximately 50 in., a velocity profile power-law exponent similar to that for a city environment, and a logarithmic velocity profile with a realistic roughness length. A hotograph of the complete model in-place in the vind tunnel is shown in Figure 4. The wind-tunnel ceiling was adjusted efter placement of the nodel to obtain a zero pressure gradient along the test section. For the flow visualization study, the thickness of the turbulent

boundary layer in the short test section length available in the

3. INSTRUMENTATION AND DATA ACQUISITION

3.1 Flow Visualization

Visualization of the flow in the vicinity of the model is helpful in understanding and interpreting mean and fluctuating pressures, in defining zones of separated flow and reattachment where pressure coefficients may be expected to be high, and in indicating areas where pedestrian discomfort may be a problem. Titanium tetrachloride smoke was released from sources on and near the model and motion picture records made. Conclusions obtained from these smoke studies are discussed in section 4.1.

3.2 Pressures

Mean and fluctuating pressures were obtained at each of the 176 pressure tap locations on the buildings indicated on Figure 3. Measurements were made for 68 taps at a time. A 12 in. length of 1/16 I.D. plastic tubing connected 68 pressure ports on the building to a 72 tap pressure switch mounted inside the model. The switch (Model 2) was designed and fabricated in the Fluid Dynamics and Diffusion Laboratory to minimize the attenuation of pressure fluctuations across the switch. Each of the 68 measurement ports was directed in turn by the switch to one of 4 pressure transducers mounted close to the switch. The switch was operated manually by means of a shaft projecting through the floor of the wind tunnel. A mechanical indexing feature locked the switch into each of the 18 required positions while a potentiometer provided an indication of the switch position on a digital voltmeter. The 4 pressure switch input taps not used for transmitting building pressures were connected to a common tube leading outside the wind tunnel and provided a means of performing in-place calibration of the transducers. A photograph of the pressure switch in place is shown in Figure 5.

The pressure transducers used were "Statham" differential straingage transducers (Model PM283TC) with a 0.15 psid range. They were selected for the stability and linearity in the working range required. The frequency response of the transducers was greater than 200 Hz and adequately covered the range of frequencies encountered. A reference pressure was obtained by connecting the reference side of the transducer with plastic tubing to the static side of a pitot tube mounted in the wind tunnel free stream above the model building. In this way the transducer measured the instantaneous difference between the local building surface pressure and the static pressure in the free stream above the model.

Each pressure transducer bridge was monitored by a Honeywell Accudata 118 Gage Control/Amplifier unit which provided excitation to the bridge and amplified the bridge output. The instruments are characterized by a very stable excitation voltage and amplifier gain. Output from the Honeywell signal conditioners was fed to an on-line 8 channel System Development, Inc., analog-to-digital conversion unit. The data was processed onto digital tape for later data analysis by computer. Resolution of conversion was ± 0.0016 in pressure coefficient. All 4 transducers were recorded simultaneously for 16 seconds at a 240 sample per second rate. The results of an experiment to determine the length of record required to obtain stable mean and rms pressures and to determine overall accuracy of the pressure data acquisition system is shown in Figure 6. A typical pressure port record was integrated for a number of time periods to obtain the data shown. Examination of a large number of pressure taps showed that the overall accuracy for a 16 second average are, in pressure coefficient form,

0.03 for mean pressures, 0.10 for peak pressures and 0.01 for rms pressures. Pressure coefficients are defined in Section 4.3.

3.3 Velocity

Velocity and turbulence intensity profiles were made upstream from the detailed model area and at the building location (with the model removed) for several approach flow directions. In addition, mean velocity and turbulence intensity measurements were made 0.2 in. (3.0 ft prototype) above the surface for 4 wind directions near the building at locations 1 through 10 shown in Figure 2. The surface measurements were intended to indicate the environment to which a pedestrian in the plaza area would be subjected.

Measurements were made with a single hot-wire anemometer mounted with its axis vertical. The instrumentation used was a DISA constant temperature anemometer (Model 55D05) with a 0.0004 in. dia. platinum (80%) - iridium (20%) sensing element 0.080 in. long. Output was read from a Hewlett-Packard integrating digital voltmeter (Model 2401C) for mean voltage and a DISA RMS meter (Model 55D35) for rms voltage.

Calibration was performed by placing the anemometer in the free stream near the pitot tube used to record wind tunnel velocity and recording the output for several velocities. The calibration data was fit to a variable exponent King's Law relationship

$$E^2 = A + BU^n$$

where E is the hot-wire output voltage, U the approach velocity and A, B and n are coefficients selected to fit the data. A typical calibration showing the linear relationship between E^2 and U^n is plotted in Figure 7. The above relationship was used to recover the mean velocity at measurement points from the measured mean voltage.

The fluctuating velocity in the form $U_{\rm rms}$ (root-mean-square velocity) was obtained from

$$U_{\rm rms} = \frac{2 \ E \ E_{\rm rms}}{B \ n \ U^{n-1}}$$

where E_{rms} is the root-mean-square voltage output from the anemometer. All turbulence measurements were divided by either local mean velocity U or mean velocity outside the boundary layer U_{∞} . Division by U gives an indication of the relative unsteadiness at the location while division by U_{∞} permits easy determination of the actual magnitude of rms velocity fluctuations at a point for various approach velocities.

4. RESULTS

4.1 Flow Visualization

A 1000 ft film is included as part of this report showing the characteristics of flow about the structure with smoke. A listing of the contents of the film is shown in Table 1. Several features can be noted from the visualization. Flow about the upper portion of the new tower structure showed that flow tended to separate cleanly from the corners of the building with no evident tendency of the separated region to reattach to the structure. The large size of the mullions tended to cause a visibly turbulent flow along each building side even when flow was at an angle which prevented the flow from separating from the face. As the flow angle was varied to a direction resulting in separated flow on a particular face, no distinct approach flow direction could be associated with formation of a separated flow. The separation developed gradually as a thickening of the turbulent flow near the surface. For this region, large pressure coefficients would not be anticipated on the building faces, based on smoke flow observations, except possibly in the first one or two window bays where the separated flow region was observed to be thinner than over the rest of the face.

The flow over the top of the structure was always separated with the separation streamline located well above the main penthouse roof. The tops of two small structures extending above the penthouse roof were still within the separated region but were much closer to the separation streamline.

Visualization of smoke near the surface indicated that most of the plaza area should be reasonably well protected from strong winds for

most approach wind directions. Because the plaza was generally in a separated flow region, it was characterized by small but fluctuating velocities. The corner of the plaza at the intersection of 17th and California Streets had fairly high velocities but low turbulence for winds from 330 degrees and 90 degrees. The main entrance to the structure on California Street did not show unusual wind characteristics except when wind approached approximately perpendicular to that building face. For this condition, a strong downdraft created by the broad flat building face impinged on the sidewalk and swept across the street hitting the lower building on the opposite side of the street. A relatively uncomfortable environment on the sidewalks could result if the approach winds were strong.

Smoke visualization with a 380 foot structure located on the corner of 17th and California Streets directly across California from the plaza (Figure 2b) did not significantly change the results discussed above. The largest effect was to lower somewhat the velocities noted in the plaza area.

4.2 Velocity

Typical approach velocity profiles are shown in Figure 8a and b. One profile was taken 89 in. upstream from the model (1335 ft prototype) and is characteristic of the boundary layer approaching the model. The boundary layer thickness, δ , was 48 inches corresponding to a prototype value of approximately 720 ft. In the form (Figure 8a)

$$\frac{U}{U_{\infty}} = \left(\frac{Y}{\delta}\right)^n$$

the velocity profile has an exponent n of 0.26 which is a reasonable value for city environments such as Denver with relatively low building

heights extending right to the downtown area. The profiles plotted in Figure 8b are shown in semilogarithmic form. The roughness height indicated by the zero velocity intercept of the best fit line is 5.3 ft which is reasonable for the site modeled. A velocity profile taken at the building site with the building removed is also shown in Figure 8. Some modification to the approach flow is evident in the profile caused by nearby structures.

Profiles of longitudinal turbulence intensity are shown in Figure 9 for the upstream approach conditions and for the building site. Modifications to the profiles due to topography and local structures are evident. For the purpose of this report, turbulence intensity is defined as the root-mean-square of the longitudinal velocity fluctuations divided by the reference mean velocity U_{∞} at the outer edge of the boundary layer,

$$Tu_1 = \frac{U_{rms}}{U_{\infty}}$$

or as the rms velocity divided by the local mean velocity,

$$Tu_2 = \frac{U}{Tms}$$
.

Mean velocity and turbulence intensity at plaza locations 1-10 shown in Figure 2 for 4 wind directions are listed in Table 2. Measurements were taken 0.2 in. (3.0 ft prototype) above the surface. The largest mean velocities were recorded at points 3,9 and 10 for a 90 degree wind azimuth and points 4 and 6 for a 330 degree wind azimuth with velocities ranging from 60 to 72 percent of U_{∞} . The highest 'gustiness' values ($U_{\rm rms}/U$) were obtained for locations 6 and 8 for wind directions 240 and 330 degrees respectively. Large values of gustiness must be interpreted in terms of the magnitude of mean velocity since a low wind velocity can lead to large values as effectively as large rms velocities. The large values of $U_{\rm rms}/U$ for these locations are due in large part to low mean velocities. The largest value of gust velocity $(U_{\rm rms}/U_{\infty})$ occurred at location 3 for a wind direction of 90 degrees. Combined with the large mean velocity at that point, the indication is that a relatively uncomfortable area exists near point 3 in the plaza for easterly winds. It is possible to relate the velocity data to pedestrian comfort. Following the guidelines suggested by Australian researchers (6), peak winds below 35 mph should not cause noticeable pedestrian discomfort.

4.3 Pressures

A total of 1937 pressure recordings were made. These were for each of the 136 pressure ports on the new tower at each of the 10 wind directions examined (plus 68 ports examined with the addition of a neighboring structure and 20 ports examined at 15 closely spaced wind directions), for each of the 37 ports on the existing tower for three flow conditions, and for the three galleria cover ports for each of 10 wind directions. Each data record was analyzed to obtain 4 separate pressure coefficients. The first was the mean pressure coefficient

$$C_{p_{mean}} = \frac{(p - p_{\infty})_{mean}}{\frac{1}{2} \rho U_{\infty}^{2}}$$

where the symbols are as defined in the List of Symbols. It represents the mean of the instantaneous pressure difference between building pressure port and static pressure in the wind tunnel outside the boundary layer non-dimensionalized by the dynamic pressure $\frac{1}{2} \rho U_{\infty}^{2}$ outside

the boundary layer. The magnitude of the fluctuating pressure was obtained by the rms pressure coefficient

$$C_{p_{rms}} = \frac{[(p-p_{\infty}) - (p-p_{\infty})_{mean}]_{rms}}{\frac{1}{2} \rho U_{\infty}^{2}}$$

in which the numerator is the root-mean-square of the instantaneous pressure fluctuation.

If the pressure fluctuations followed a Gaussian probability distribution, no additional data would be required to predict the frequency with which any given pressure level would be observed. However, the pressure fluctuations do not follow a Gaussian probability distribution so that additional information is required to show the extreme values of pressure expected. The peak maximum and peak minimum pressure coefficients are used to determine these values:

$$C_{p_{\max}} = \frac{(p - p_{\infty})_{\max}}{\frac{l_2 \rho U_{\infty}^2}{}}$$

$$C_{p_{\min}} = \frac{(p - p_{\infty})_{\min}}{\frac{1}{2} \rho U_{\infty}^{2}}$$

The values of $p - p_{\infty}$ which were digitized at 240 samples-per-second for 16 seconds were examined individually by the computer to obtain the most positive and most negative values during the 16 second period. These were converted to Cp_{max} and Cp_{min} by non-dimensionalizing with the free stream dynamic pressure.

The four pressure coefficients were calculated by the CSU CDC 6400 computer and tabulated on microfilm. The list of coefficients for the new tower for 10 wind directions is included as Appendix A. The tap code number used in the appendix is given in Figure 3. The first digit of the code gives the building side while the second and third give sequential tap numbers on the side. Additional information provided in the appendix includes approach wind azimuth in degrees from true north, temperature in the wind tunnel in degrees F, barometric pressure in inches of Hg, and reference velocity outside the boundary layer in feet per second. The largest values of peak maximum C_p and peak minimum C_p were selected for each tap and are listed in Table 3. The largest value of peak maximum C_p was 1.45 at tap 402 for a wind azimuth of 240 degrees. Several other taps showed values above 1.3. The largest peak minimum Cp values were -2.87 at tap 313 for a 180 degree wind and -2.76 at tap 331 for a 220 degree wind. Only a few other taps showed values above -2.

To insure that no flow pattern developed between the azimuths used for approach flow direction which would cause sharply higher pressure coefficients than were anticipated from the normally spaced data, twenty pressure taps were examined for small angular increments. Taps 313-332 were selected for examination for a range of approach flow azimuths from 170 to 200 degrees in two degree increments. These taps were chosen because of high negative mean, rms and peak minimum pressure coefficients in that area. The results of that investigation are shown in Appendix B. For tap 313, showing the largest peak minimum Cp, the pressure coefficients reach a maximum value within the 30 degree span which is no higher than that determined for the original data. However, the fluctuation seen in the peak minimum is a sharp peaked pressure fluctuation occurring randomly in time. The flow in the region is extremely complex since it is at the upstream corner of the

new tower but in the wake of the old structure. The nature of the pressure fluctuations indicate a flow velocity of large amplitude and strongly varying direction at that corner of the building for southerly winds.

Additional pressure measurements were made on the new tower to determine the influence of a possible tall structure on the corner of California and 17th St. directly across California from the plaza (Figure 2b). A 30 story building (380 ft high) of octagonal shape encompassing slightly less than 1/4 of the block area was installed and pressure measurements were made on sides 1 and 2 of the new tower for wind directions 0 and 330 degrees -- the wind directions expected to show the maximum effect on the structure. The results are shown in Table 4. Comparison with the data in Appendix A indicates that the biggest influence was a moderate increase in peak negative pressures on side 2 and a slight increase in peak positive pressures on the upper portion of side 1 for a 330 degree wind. Flow over the top of the building was always separated sufficiently that all penthouse structures were buried within that region. The two tallest penthouse structures were sufficiently close to the separation surface that somewhat higher negative pressures might be expected on those roofs.

The influence of the new bank tower on pressures on the old structure was obtained by placing 37 taps on the model of the old structure and recording the pressures with and without the new tower in place. Figure 3 shows the tap locations. Only the two sides (and top) facing the new structure were instrumented since only these faces should be affected. Data was taken at a 30 degree wind azimuth without the new tower and at 0 and 30 degrees with the structure. These directions were chosen to show the maximum effects on the old structure.

The results are shown in Table 5. Comparison of the data indicates a general reduction in negative pressure coefficients and a slight increase in positive coefficients. One significant value of negative pressure coefficient was noted -- tap 116 at 0 degree showed a -2.3 value of

C_D minimum.

Three measurements of pressure were made on the galleria cover for 10 wind directions. The tap locations are shown in Figure 2. The results of the measurements, Table 6, indicate rather low pressure loadings.

CONCLUSIONS

A wind-tunnel boundary layer flow over the First National Bank building model was established whose characteristics compared favorably with the expected flow over the Denver area. Flow visualization showed that large fluctuating pressures should be expected only near the building corners. Surface wind characteristics determined from smoke flow indicated generally acceptable winds except for the plaza corner near 17th and California Streets for two wind directions and for the winds at the main entrance on California Street for winds approximately perpendicular to the face of the structure.

Measurements of velocity fluctuations showed that the largest values of 'gustiness' (velocity fluctuations relative to the local wind speed) were at plaza locations 6 and 8 for wind directions 240 and 330 degrees respectively, but they occurred for low wind velocities. The largest magnitude of velocity fluctuations occurred at point 3 for a 90 degree wind with a value of rms velocity 23 percent of the approach flow magnitude. This condition also corresponded to the largest mean velocity recorded -- 72 percent of the approach flow magnitude -- indicating an uncomfortable condition for pedestrians. In general, the mean velocities measured were relatively high with many values above 40 percent of U_{∞} , and the rms velocity fluctuations were not high with very few values over 20 percent of U_{∞} .

Pressure measurements on the structure confirmed the flow visualization conclusion that the areas near the corners would receive the largest pressure coefficients. The largest peak negative pressure coefficient was -2.87 at tap 313 for a wind azimuth of 180 degrees. Relatively few locations showed coefficients larger than -2, all of

which were located near corners. The largest positive pressure was recorded on a short side at tap 402 for a 240 degree wind with a 1.45 pressure coefficient. A few additional taps showed values above 1.3.

REFERENCES

- Cermak, J. E., V. A. Sandborn, E. J. Plate, G. H. Binder, H. Chuang, R. N. Meroney, and S. Ito, "Simulation of atmospheric motion by wind-tunnel flows," CER66JEC-VAS-EJP-GJB-HC-RNM-SI17, FDDL, Colorado State University, 1966.
- Davenport, A. G. and N. Isyumov, "The application of the boundary layer wind tunnel to the prediction of wind loading," Proc. of Int. Res. Seminar on Wind Effects on Buildings and Structures, V1, N.R.C., Canada, 1967.
- 3. Cermak, J. E., "Laboratory simulation of the atmospheric boundary layer," AIAA J1, V9, Sept. 1971.
- 4. Plate, E. J. and J. E. Cermak, "Micrometeorological wind tunnel facility, description and characteristics," CER63JP-JEC9, FDDL, Colorado State University, 1963.
- 5. Standen, N. M., W. A. Dalgliesh and R. J. Templin, "A wind tunnel and full-scale study of turbulent wind pressures on a tall building," Proc. Third Int. Conf. on Wind Effects on Buildings and Structures, Tokyo, Japan, 1971.
- 6. Melbourne, W. H. and P. N. Joubert, "Problems of the Wind Flow at the Base of Tall Buildings," Proc. Wind Effects on Buildings and Structures Conference, Tokyo, Sept. 1970.

TABLE 1

MOTION PICTURE SCENE GUIDE

Scene	Wind	Source	Source
110.		hievation	Docation
1	330°	Ground	Plaza
2		"	Along California St.
3			18th and California
4			18th and Welton
6			Garage roof
7		Low Roof	17th and Welton
8		Ground	17th St.
9		255'	Upstream of Tower
10			Latifornia St
12		"	17th St. Face of Tower
13	"	"	California St. Face of Bank Bldg.
14	"	"	West Corner Bank Bldg.
15		Ground	Plaza
16		255	18th St. NE Face of Bank Bldg
18		Ground	Plaza - Extra Bldg, in place
19	240°	Ground	17th and California
20	"	**	Plaza
21	"	"	California St.
22		**	17th St.
23		Low Roof	Welton St.
24		Garage Roof	Welton St.
26	"	Ground	18th St.
27		255'	18th St.
28		"	Welton Face of Tower
29			N Corner of Bank Bldg.
30		Ground	Plaza
32		Ground	California St.
33		255'	California Face of Tower
34		"	Upstream of Bank Bldg
35			Tower Roof
36		Ground	17th and Cal Extra Bidg. in place
3/			17th St Extra Bldg in place
39	090°	Ground	18th and Welton
40		Garage Roof	Welton St.
41		Low Roof	17th and Welton
42		Ground	18th St.
43			Plaza
45		**	California St.
46	11	"	17th St.
47		255'	17th St. Face of Bank Bldg.
48		"	California Face of Bank Bldg.
49			1/th St. Face of lower
50	**	"	Upstream of E. Corner of Tower
52			Upstream of E. Corner of Bank Bldg.
53		**	Over Welton Garage Roof
54		Ground	California St Extra Bldg. in place
55			Plaza - Extra Bldg. in Place
50		Ground	California St.
58		255'	California St.
59	020°	Ground	18th St.
60			18th and California
61			California St.
62			Plaza 17th and California
64			17th and Welton
65		Low Roof	17th and Welton
66		Garage Roof	Welton
67	"	Ground	18th and Welton
68		2551	18th St.
69 70		255	E. Corner of Tower
71		255'	Over Garage Roof Welten
72			California St.
73		Ground	Plaza - Extra Bldg. in place
74			California St Extra Bldg. in place
75			17th and California - Extra Bldg. in place
70			IOWEI ROOL
*All wind	l speeds	10 f/s	

All film exposed @ 24fr/s

TABLE 2

$U_{\rm rms}/U_{\infty}$ Urms/U U/U_____ Wind Plaza Percent Percent Azimuth Location Percent 20 34.0 14.0 41.3 1 2 36.6 13.2 36.0 3 36.5 11.7 32.1 4 55.7 12.0 21.6 5 28.4 40.0 11.4 6 9.7 20.2 48.0 7 22.6 8.5 37.8 8 17.6 8.3 47.0 9 30.3 15.2 50.2 10 45.9 15.7 34.3 90 1 49.7 12.0 24.2 2 22.2 46.7 47.6 3 72.1 23.7 32.8 4 35.7 20.4 57.1 5 43.6 20.2 46.3 6 23.1 57.6 13.3 7 26.6 11.1 41.7 8 47.2 22.2 10.5 9 68.4 11.6 17.0 10 60.7 16.5 27.2 42.3 240 1 25.9 10.9 2 25.6 13.2 51.4 3 27.2 11.9 43.9 4 35.3 12.9 36.5 5 31.6 17.9 56.8 6 11.1 16.6 66.8 7 15.9 7.1 44.9 8 22.9 8.3 36.2 9 23.4 7.8 33.2 10 9.3 5.5 59.6 330 1 29.9 13.8 46.1 2 32.3 17.7 54.4 3 31.5 46.0 14.5 4 60.9 17.7 10.8 5 42.6 45.5 19.4 6 62.4 10.0 16.1 7 18.9 9.9 52.5 8 14.7 8.9 60.7 9 49.2 12.3 24.9 10 51.5 16.5 32.0

MEAN AND FLUCTUATING VELOCITIES IN THE PLAZA

TABLE 3 PEAK PRESSURE DATA FOR THE NEW TOWER

MAXUMUM PRESSURE COEFFICIENT

MAXUMUM PRESSURE COEFFICIENT

PRESSURE AZIMUTH MAXIMUM MEAN RMS PRESSURE AZIMUTH MAXIMUM MEAN RMS TAP OF MAXIMUM PRESSURE PRESSURE PRESSURE TIP OF MAXIMUM PRESSURE PRESSURE NUMBER PRESS.COEFF. COEFFICIENT COEFFICIENT COEFFICIENT PRESSURL PRESS.COEFF. COEFFICIENT COEFFICIENT COEFFICIENT NUMBER 101 150 .136 -. 325 .145 135 330 1.151 . 532 .135 102 150 .125 -.255 .107 136 330 1.065 . 492 .150 103 240 . 498 -.275 .267 157 300 .935 . 359 .124 104 0 .770 1.215 .175 138 270 .954 . 325 . 166 105 330 1.223 . "19 .172 139 270 1.008 .277 .184 106 300 1.185 . 536 . 100 140 ٥ .553 .174 . 095 107 300 1.215 .549 .215 141 350 .665 . 310 . 085 109 300 1.126 .555 .220 142 330 .477 . 056 .102 109 300 1.292 . 554 .242 145 330 1.045 . 536 .117 TTO 300 1.202 .519 .247 144 350 1.005 .551 .119 111 3CC 1.245 . 452 .262 145 350 1.045 . 550 .124 112 270 1.308 .707 .222 146 350 .967 .493 .100 113 0 1.237 . 784 . '6' 147 350 .610 .206 114 . 090 550 1.256 .755 . 156 149 300 . 424 . 159 115 .070 350 1.227 .779 . 159 201 45 1.075 .655 116 . 150 350 1.217 . 767 . 159 202 45 1.201 . 854 117 .170 300 1.168 . 590 . 194 203 45 1.201 .795 .174 118 300 1.252 . 560 .201 204 20 1.562 .002 .100 119 300 1.286 . 527 .201 205 45 1.059 . 561 .144 120 300 1.296 .420 . 199 206 45 1.290 . 858 .165 121 270 1.519 .505 .225 207 45 1.250 . 790 .167 122 0 1.172 .705 . 154 209 20 1.353 . 752 .175 123 350 1.092 .636 . 159 209 45 1.165 .461 .149 124 350 1.154 .705 . 154 210 45 1.357 .745 125 . 164 350 1.154 .675 .140 211 45 1.264 . 691 .170 126 350 1.171 . 655 .146 212 20 1.255 .616 .190 127 350 1.151 . 505 .145 213 90 1.075 -.075 . 510 129 300 1.039 . 440 . 150 214 45 1.124 .619 .157 129 270 1.130 . 595 . 165 215 45 1.167 . 560 .157 130 270 1.027 .515 .174 216 20 1.035 .416 131 .169 0 1.074 . 550 .164 217 45 .545 .100 .119 1 32 330 1.051 . 555 .149 218 45 . 492 .139 133 350 1.107 . 501 .145 219 0 .480 .029 .104 134 300 1.062 . 378 .140 220 ٥ . 554 . 050 .151

TABLE 3 (continued) PEAK PRESSURE DATA FOR THE NEW TOWER

MAXUMUM PRESSURE COEFFICIENT

MAXUMUM PRESSURE COEFFICIENT

......

a construction of the

PRESSURE	AZIMUTH	MAXIMUM	MEAN	RMS	PRESSURE	AZIMUTH	MAXIMUM	MEAN	RMS
TAP	OF MAXIMUM	PRESSURE	PRESSURE	PRESSURE	TAP	OF MAXIMUM	PRESSURE	PRESSURE	PRESSURE
NUMBER	PRESS.COEFF.	COEFFICIENT	COEFFICIENT	COEFFICIENT	NUMBER	PRESS.COEFF.	COEFFICIENT	COEFFICIENT	COEFFICIENT
301	1	.402	601	.164	535	90	. 805	. 422	.102
302	180	. 755	258	.160	336	90	. 828	. 491	.100
303	240	.450	201	.112	337	90	. 994	. 532	. 150
304	180	1.100	.241	. 320	539	90	1.115	. 588	. 154
305	150	1.185	. 359	.219	339	90	1.007	.545	.182
306	150	1.369	. 404	. 197	340	300	. 739	102	. 180
307	150	1.047	. 552	.185	341	300	. 474	.076	.084
308	150	. 891	. 357	.170	342	300	.554	.127	. 398
509	150	1.009	. 502	.167	343	150	. 466	.090	. 060
510	150	1.055	.286	.175	544	90	. 762	.447	.105
311	90	.970	. 595	.142	345	90	. 878	.541	.100
512	90	1.174	. 757	.172	546	90	. 854	.520	.095
515	180	.468	400	. 595	547	90	.616	.515	.090
514	150	.590	.120	. 126	348	45	. 698	.175	.140
515	150	. 791	.245	.145	401	240	1.205	. 486	.250
316	150	. 051	. 304	.150	402	240	1.451	. 686	.255
317	150	. 859	. 502	.157	403	240	1.241	. 646	. 199
318	90	.918	.505	. 1 1 1	404	180	1.350	. 796	. 190
519	150	. 887	.244	.120	405	240	. 996	. 559	.184
520	90	1.114	.691	.145	406	240	1.542	. 659	.210
321	90	1.227	. 701	.178	407	240	1.381	.678	. 192
322	20	. 501	165	.140	408	240	1.312	. 529	. 151
323	90	.460	.104		409	240	. 936	.202	. 164
524	90	.675	. 504	. : 99	410	180	1.165	. 356	.221
325	150	. 856	.205	.119	411	240	1.374	.546	. 192
326	90	. 860	. 482	.100	412	240	. 886	.202	.145
327	90	. 865	.515	.105	413	240	.787	.159	.166
328	90	.979	.580	· .115	414	1 6 0	. 843	.074	.109
529	90	1.229	. 662	.144	415	180	.775	076	.211
330	90	1.192	. 685	.161	416	240	.415	109	. 150
551	20	.575	257	.184	417	240	. 866	.140	.177
332	350	.576	554	.161	418	240	1.070	.218	.176
333	90	.700	.269	.091	419	240	. 850	.140	.161
334	90	.857	. 359	.097	420	240	.451	102	.142

TABLE 3 (continued) PEAK PRESSURE DATA FOR THE NEW TOWER

MINIMUM PRESSURE COEFFICIENT

MINIMUM PRESSURE COEFFICIENT

...............................

PRESSURE	AZIMUTH	MINIMUM	MEAN	DMC	201222290	171 MILT.			
TAP	OF MINIMU	M PRESSURE	PRESSURF	39122396	THESSURE	ALINUM	HINIHUH	MEAN	RMS
NUMBER	PRESS.COEFF.	COEFFICIENT	COEFFICIENT	COFFEICIENT	LAP		M PRESSURE	PRESSURE	PRESSURE
101	300	-1.590	525	100	NUTBER	PRESS.COEFF.	COEFFICIENT	COEFFICIENT	COEFFICIENT
102	300	-2.132	- 635	101	1 3 3	45	-1.346	572	.203
103	300	-1.696	- 790	184	156	45	-1.062	259	.161
104	45	-1.527	- 785	120	157	180	940	466	. 1 1 0
105	45	-1.479	- 785	180	139	240	-1.569	264	.224
106	45	-1.592	- 704	162	139	240	-1.875	606	.295
107	45	-1.297	- 600	170	140	45	-1.564	459	.101
109	45	-1.061	- 488	170	141	45	098	255	. 155
109	45	989	- 884	170	142	45	792	100	.079
113	240	-1.200	- 200	220	145	90	772	546	.064
111	240	-1.637	- 554	.220	144	90	796	540	.065
112	240	-1.810	- 728	. 300	145	90	777	520	. 364
113	45	-1.662	- 750	1/8	146	90	659	420	.065
114	45	-1.745	- 761	163	147	180	804	516	.007
115	45	-1.600	- 744	107	148	180	-1.959	485	.255
116	45	-1.385	- 621	100	201	90	976	.255	.201
117 .	45	-1.237	- 500	176	202	550	-1.204	396	.197
118	45	989	- 385	168	203	330	-1.612	599	.229
119	240	-1.291	287	200	204	330	-1.842	694	.255
120	240	-1.557	- 499	280	205	150	-1.759	295	.154
121	240	-1.051	- 494	221	206	330	-1.550	422	.245
122	45	-1.952	- 768	166	207	330	-1.609	577	.255
123	45	-1.895	780	172	209	350	-1.667	605	.251
124	45	-1.740	755	200	209	90	-2.416	.005	.209
125	45	-1.747	- 604	210	210	550	-1.454	417	.279
126	45	-1.185	- 469	20.0	211	330	-2.295	591	.261
127	45	-1.020	571	170	212	350	-1.912	652	.265
128	240	-1.036	245	177	213	350	-1.650	294	.244
129	240	-1.666	- 478	286	214	550	-1.697	399	.245
1 3 0	240	-1.413	- 549	101	215	350	-1.001	565	.245
131	45	-1.882	74	205	216	350	-1.845	641	.261
1 32	45	-1.849	842	.218	217	270	-1.249	550	. 0.02
135	45	-1.651	700	255	218	270	925	571	. 0.85
1 34	45	-1.566	529	.241	219	500	-1.595	406	. 158
					220	300	-1.640	420	.148

TABLE 3 (continued) PEAK PRESSURE DATA FOR THE NEW TOWER

MINIMUM PRESSURE COEFFICIENT

MINIMUM PRESSURE COEFFICIENT

PRESSURE	AZINUTH	HINTHUN	MEAN						
TAP	OF MINIMUM	Parcoupr	BACCOURE	RMS	PRESSURE	AZIMUTH	HINIMUM	WEAN	DWC
NUMBER	PRESS.COEFF	OFFEICIENT	CAFEFICIENT	PRESSURE	TAP	OF MINIM	M PRESSURE	281222389	395551195
501	300	-1 614	CUEFFICIENT	COEFFICIENT	NUMBER	PRESS.COEFF.	COFFFICIENT	COFFEICIENT	COFFEICIENT
302	350	-1 741		.210	335	20	-1.385	- 674	CVEFFICIENT 113
303	90	-1 884	070	. 195	336	20	-1.098	- 584	
304	240	-1 748	/99	.129	337	20	-1.095	- 5/8	
305	240	-1.027		.139	538	45	-1.756	- 428	. 109
306	220	-1 681	691	.149	339	45	-2 148	- 684	.204
307	220	-1 840	562	. 154	340	350	-1.562	- 480	.202
309	220	-1 469	543	.145	541	0	- 791	- 540	.201
309	220	-1 444	480	.119	542	350	- 850	- 210	. 073
510	220	-1 822	645	.147	345	0	- 629	- 446	.175
511	45	-1 400	265	.155	344	350	- 764	- 436	. 075
512	45	-1 380	665	.176	345	330	- 720		.077
313	180	-7.050	678	.146	346	350	- 442	- 106	. 0 / 0
314	240	-1 866	400	. 595	347	550	-1 458	- 880	.062
315	240	-1.500	765	.170	348	220	- 540	-, 339	.142
316	240	-1.400	694	.195	401	300	-2 276	-, 363	
517	240	-1 122	590	. 188	402	300	-1 841		.202
518	45	- 078	471	. 150	403	300	-1 558		. 506
519	45	-1 270	106	.214	404	150	-2 120	355	. 197
320	45	-1 604	405	.245	405	500	-1.855	- 788	. 302
321	45	-1 057		.205	406	500	-1.118	- 647	.243
322	180	-7 118	693	.201	407	500	-1 572	- 870	.230
323	220	-2.113	694	.295	408	150	-1 681	- 682	.233
524	240	-1.446	726	.106	409	500	-1 847		.212
525	240	-1.826	709	.210	410	500	-1 780	- 676	.251
526	240	-1.320	766	.206	411	500	-1 488	- 804	. 515
527	240	-1.313	409	.104	412	880	-1 514		.290
528	45	-1.212	292	.165	418	800	-1 070		. 162
529	15	-1.735	256	.245	A14	800	-1 682		.247
350	45	-1.406	618	.256	415	800	-1 080		.298
551	220		/10	.209	416	880	-1.000	- 003	.243
552	800	-2.131	852	.209	417	800	-7 470	902	.200
333	240	-1.033	768	.260	418	884	-2.0/9	-, 776	.270
334	244	-1,4/4	421	.222	410	884	-1./20	/ 30	
334	240		507	. 159	420	884	-1.420	(83	. 193
					- 2 V	330	-1.003		.234
TABLE 4 PRESSURE DATA FOR THE NEW TOWER WITH ADDED STRUCTURE

2 84	IND DIRECTION	3 TE	PERATURE 69.0	C DEGREES F		IND DIRECTION	0 TF	MDEDITIDE EC A	
0.	ACCELENCE PRESS	24.90 N HG	VELOCITY	52. ** FPS	BA	ROMETRIC PRES	5 24.90 IN HG	VELOCITY	52 11FPS
PRESSURE	MEAN	RMS	W1 . TW-W						52
TAP	PRESSURE	PRESS	PRESE	H111H0H	PRESSURE	MEAN	RMS	MAXIMUM	MINIMUM
BER	COEFFICIENT	CARERICIELT	CAEEE.C.C.	PRESSIRE	TAP	PRESSURE	PRESSURE	PRESSURE	PRESS
101	057	144	CARLE TO THE P	COFFE COFF.	NUMBER	COEFFICIENT	COEFFICIENT	COEFFICIENT	COFFFICIENT
: :2	950	148		-1.519	1 35	. 391	.110	. 854	. 391
1:3	662	100		- :.526	136	. 342	.105	.849	036
104	.797	172		-1.161	157	.259	. : 99	.616	002
: :5	. 624	147	. 29	. : 95	: 59	. 322	. 384	. 555	- 268
106	.529	11-	1.009	. '2:	139	266	. 369	029	- 107
107	.412		.0.5		140	. 112		. 455	- 286
109	. 54 :			.155	141	.246	. 072	.556	- 158
109	271	105	.64	0.000	142	. 357	. 195	. 551	158
	201		.500	079	145	. 375	. 101	667	
111	- 013		.536	178	144	. 377	. 1 3 1	686	
• • 2	- 264		.20	560	145	. 374		786	
113	778		054	552	146	. 329		593	- 101
114	718	. '09	.294	.140	147	. 362	. 199	4.4	
::5	617		1.100	. '02	148	201	. 175		
116	548	. 29	1.00.	. 105	2::	125	. 16.8	100	
117	482		.0*0	. 1 2	2:2	. 199	. 197	801	355
118	410		.015	. 365	205	. 223	154	604	24
119	815	2	. 776	.017	2:4	.215	292	1 166	
.20	154		.776	040	205	218	. 16 1	140	- 48.0
121	- 280		. 594	250	206	. 191		RCR	- 202
.22	6.33 E 77		335	428	207	.285	122	. 565	202
125	CEA	. 105	1.254	. : * 5	2:0	.252	278		20
124	.050	. 161	1.055	. 166	209	264	165	- 481	
125	514	. 158	.990	. * 99	210	.012	095	REE	472
126		. : 25	.075	.*:9	211	172	150		324
127		.115	.050	. 367	212	050	264		-,494
120		.109	. 755	.009	215	5:0	184		
120	. 316	. 101	.646	096	2:4	- 175			.200
129	. 055		.404	264	215	044		. 505	486
1 2 4	226	.060	055	452	216	- 125	820	. 77	/20
131	.511	.189	1.117	.059	217	- 116			-1.425
1 32	.504	. 158	.992	. 920	219	- 165			500
: 55	. 462	.150	. 92 7	.095	210	- 095		.22	455
54	.429	.117	. 860	. 378	2.3	- 160	. 109	. 562	515
					664		. 145	.601	787

h	WIND DIRECTION 350 TEMPERATURE 60.50 DEGREES F				L.	IND DIRECTION	350 TI	TEMPERATURE 68.50 DECREES E		
84	ROMETRIC PRES	5 24.90 IN HG	VELOCITY	52.90FPS	BA	ROMETRIC PRES	5 24.90 IN HG	VELOCITY	52.90FPS	
PRESSURE	MEAN	RMS	MAXINUM	W T 5: T M1 IM	PRESSURE	WEAN	DWC	10 8 v 7 541 M		
TAP	PRESSURE	PRESSURE	PRESSURE	PBF 55: PF	TAP	PBESSURE	PBECCUBE	PRECENSE	RINITUR	
NUMBER	COEFFICIENT	COEFFICIENT	COEFFICIENT	COFFEICIENT	NUMBER	COFFFICIENT	COFFEICIENT	COFFEICIENT	PRESSURE	
101	629	.170	- 185	-1 101	1 55	SA7	CUEFFICIENI 143	UJEFF ICIERS	COEFFICIERI	
102	575	.119	265	-1 112	136	491	180	1.113	. 197	
105	540	. 098	232	-1 007	187	800	183		. 122	
104	. 493	.178	1.110	- 117	138	180	110		. 525	
105	.704	.172	1.194	- 157	150	- 199		.633	184	
106	. 727	. 154	1.187	168	140	- 145			451	
107	. 689	. 164	1.121		141	245		.205	414	
109	.643	. 157	1.119		142	.245		. 51 1	0.000	
109	.579	.151	- 30		148	108		. / 91	. 162	
113	. 520	.147	1.075		144	480			.224	
111	. 509	.129	575	- 160	145			. 845	.215	
112	007	.098	870	- 867	145			.002	. 152	
113	. 424	.170	1.075	- 200	147	. 393			.114	
114	.704	.167	1.585	112	149	- 259		. 438	152	
115	. 777	.163	1.500	200	201	230		042	555	
116	.770	.158	1.287	105	207	- 688	.139	. 102	-1.264	
117	.750	.174	265	266	248			.210	-1.355	
110	.685	.165	1.165	105	204	- 057	-210	1.000	-2.050	
119	.584	.151	1.110	142	205	- 686	. 32 1	201	-2.578	
120	.202	.114	657	- 196	205	535	. 220	. 36 3	-1.462	
121	394	.001	508		200		.231	. 162	-1.757	
122	. 529	.174	954		200	- 750	.221	159	-1.951	
125	.603	.168	1.148	1.375	200	/ .	.220	260	-2.472	
124	.685	. 162	1.220	36.0	210	559	.234	.244	-2.025	
125	. 696	. 159	1.107	.200	210		.250	.117	-1.847	
126	.675	. 154	1 146	.203	211	- 738	. 252	.092	-1.094	
127	.616	. 150	1 178	130	212	120	.246	195	-2.664	
129	.509	.142	1 151	29	215	. 1 / 6	. 121	. 546	410	
129	.202	.111	671	. 120	214	009	.229	.145	-1.742	
150	135	. 370		120	215	(55	.257	.194	-1,915	
151	.258	.172	874		210	/61	.244	290	-2.262	
1 52	.502	165	1 186		217	526	.076	.012	672	
155	.574	146	1 126		210	520	.117	. 192	903	
134	.576	146	1 147	.200	219	474	.200	. 125	-1.556	
				.295	220	657	.176	221	-1.552	

.

WIND DIRECTION 30 TEMPERATURE 70.50 DEGREES F BAROMETRIC PRESS 25.00 IN NG VELOCITY 50.43FPS

PRESSURE	MEAN	RMS	MAXIMUM	M 7 B 1 7 M7 1 M
TAP	PRESSURE	PRESSURE	PRESSURF	PErceipr
NUMBER	COEFFICIENT	COEFFICIENT	COFFFICIENT	COFFEILIENT
101	291	.078	.015	- 760
102	441	.136	.048	- 990
105	344	.114	.051	- 800
104	507	. 150	096	-1 205
105	671	.200	.454	-1 657
106	453	. 344	.786	-1 647
107	098	.251	498	- 942
100	027	. 125	. 391	918
109	025	. 094	.271	- 612
110	.071	. 125	. 492	558
111	605	. 251	.405	-2.216
112	437	. 345	.469	-1.551
115	149	.277	.565	-1.289
114	047	.178	. 493	942
115	047	. 129	. 30 1	854
116	.009	.146	.414	844
117	466	. 295	.597	-1.002
119	279	. 316	.415	-1,458
119	150	.242	.485	-1.211
120	077	.172	.417	948
121	055	.119	. 427	786
122	010	.129	. 422	645
201	.427	. 155	.842	450
202	. 595	.177	1.036	. 0 5 8
203	.694	.105	1.519	0.000
204	.747	.191	1.309	.071
205	.720	. 194	1.365	.122
206	. 346	. 150	. 829	157
207	.549	.101	1.044	075
209	.645	. 195	1.195	.002
209	.675	.138	1.059	.201
210	.617	.206	1.225	040
211	.229	.164	. 796	215
212	.405	.187	1.058	081
215	. 452	.198	1.107	055
214	.457	.202	1.077	070
215	. 576	. 190	1.087	009

TABLE 5 (continued) PRESSURE DATA FOR EXISTING TOWER - NEW TOWER IN PLACE

.

WIND DIRECTION 0 TEMPERATURE 71.60 DEGREES F HIND DIRECTION 30 TEMPERATURE 71.50 DEGREES F BAROMETRIC PRESS 25.00 IN HG VELOCITY 53.23FPS BAROMETRIC PRESS 25.00 IN HG VELOCITY 50.50FPS 3855551185 HEAL

DDECC										34.34773
TID	MEAN	RMS	MAXIMUM	MINIMUM		PRESSURE	WEAN	DWC		
1 MACO	PRESSURE	PRESSURE	PRESSURE	PRESS RE		TAP	PPESSUPE	BBECEUBE	RAXINUR	HINIMUM
DER	CUEFFICIENT	COEFFICIENT	COEFFICIENT	COFFFICIENT		NUMBER	COFFEICIENT	COFFEIGURE	PRESSURE	PRESSURE
101	395	.107	. : 0 0	- 830		101	- 126	CUEFFICIENT	CORFFICIENT	COEFFICIENT
	454	.117	. 374	- 886		102	120	. 119	. 505	806
105	310	.130	.2'0	- 754		102	210	. 185	. 597	-1.075
104	360	. 146	.257	- 806		104	139	.125	-270	720
105	497	. 064	2*8			105	510	-214	.250	-1.162
106	500	.065	501			105	400	. 156	046	-1,154
107	524	. 370	- 356	- 700		100	498	.144	055	-1.527
100	559	.092	- 265	/90		107	4/6	.157	079	-1,141
:09	544	.099	- 170	865		100	425	.127	.065	-1.076
113	572	. 162		991		109	365	. 110	.045	827
111	481	.069	- 266	-1.409		110	296	. 090	.017	614
112	527	.080	- 265	795		111	386	. 096	121	860
113	549	. 089	200	-1.070		112	420	. 100	146	847
114	555	100	200	-1.249		115	412	.096	169	889
115	562	110	225	-1.217		114	395		095	822
116	612	210		-1.167		115	347	.080	.045	706
117	- 445	.2.0	. 125	-2.514		116	309	.085	.100	851
118	551		229	722	1	117	361	.107	029	-1.040
119	- 562		200	079	1	119	378	.119	057	-1.272
120	- 559	. 105	105	965		119	390	.121	015	-1.106
121	- 503		051	-1.145		120	395	.118	038	-1.255
122	- 482	. 157	. 141	-1.021		121	358	. 392	057	806
201	- 641	. 506	.746	-1.722		122	516	.096	.057	
202		. 151	. 05 1	-1.409		201	. 55 5	.245	1.305	- 679
218		.096	055	909		202	.591	.284	1.515	- 500
204	491	.091	115	975		205	. 495	.299	1.551	- 588
204	492	. 386	074	-1.018		204	.295	.206	1.199	- 450
205	496	.079	270	915		205	.028	.224		- 604
206	526	.115	092	-1,159		206	. 522	.218	1.197	- 814
207	507	.091	105	963		207	. 625	.254	1 456	- 242
200	487	.076	108	856		209	.576	.251	1 461	- 106
209	478	.041	304	- 608		209	419	162	847	
210	475	.065	252	- 725		210	.182	220		
211	559	. 152	125	-1 182		211	. 551	170		425
212	492	. 084	186	- 888		212	460	210	1 385	172
215	485	.070	- 220			215	475	216	1.200	076
214	479	.065	- 271	- 747		214	426	-210		075
215	449	. 065	- 201	/0/		215		.211	1,197	107
				655		213	. 334	.181	.989	297

TABLE 6

GALLERIA PRESSURE MEASUREMENTS FIRST NATIONAL BANK BUILDING, DENVER, CCLORADO

Wind Direction	Tap Number	Mean Pressure Coefficient	RMS Pressure Coefficient	Maximum Pressure Coefficient	Minimum Pressure Coefficient
		540	077	24.0	074
000	1	548	.077	268	874
000	2	627	.105	225	-1.044
000	3	296	.232	.596	978
020	1	400	.074	160	657
020	2	425	.075	184	701
020	3	376	.096	.049	697
045	1	276	.073	052	609
045	2	192	.070	.099	523
045	3	134	.089	.410	440
090	1	332	.106	.300	749
090	2	354.	.066	112	736
090	3	498	.090	138	898
150	1	101	.093	.380	462
150	2	192	.070	.084	535
150	3	188	.052	.048	428
180	1	.006	.049	.230	170
180	2	010	.052	.189	257
180	3	036	.056	.171	278
240	1	.083	.085	.380	230
240	2	.079	.077	.401	323
240	3	.031	.069	.338	297
270	1	037	.070	.236	283
270	2	.034	.054	.251	256
270	3	.079	.063	.333	211
300	1	.028	.075	.270	292
300	2	.145	.095	.616	200
300	3	.210	.103	.808	226
330	1	282	.162	.146	811
330	2	.066	.178	.625	638
330	3	.425	.153	1.062	008

-

APPENDIX A

PRESSURE DATA FOR THE NEW TOWER

Notes -

- 1. Pressure coefficients are defined in section 4.3
- 2. Pressure tap code is defined in Figure 3
- 3. Azimuthal orientation can be determined from Figure 2

i	WIND DIRECTION	0 TEI	MPERATURE 70.8	C DEGREES F	H	IND DIRECTION	0 TE	MPERATURE 70.8	A DECREES F
B	AROMETRIC PRESS	5 24.90 IN HG	VELOCITY	52.03FPS	BA	ROMETRIC PRESS	24.90 IN HG	VELOCITY	52.03FPS
PRESSURE	E MEAN	RMS	MAYTMIN	50 7 5 - 7 507 - 140	PRESSURE	NEAN	DHC		
TAP	PRESSURE	PRESSURE	PRECCUPE	PRECEMP	TAP	PRESSURE	20222399	BBEEELBE	RININUR
NUMBER	COEFFICIENT	COEFFICIENT	COFFEICIENT	CAREFICIENT	NUMBER	COFFEICIENT	CAFFEICIENT	COEFEICIENT	PRESSURE
101	699	. 146	- 212	-1 JOB	135	246	OB1	CREFFICIEN	CUEPPICIERT
102	919	.171	870	-1 491	156	192	375		.011
105	551	. 101	227	- 084	157	121	374	. 3 . 9	014
104	. 770	.175	1.215	056	159	095	370	177	000
105	.578	.124	.919	100	139	519	369	- 427	210
106	.457	.098	.741	ARG	140	.174	095	RRR	519
107	. 35 1	. 392	.651	- 050	141	.212	.077		- 136
108	. 292	.007	.500	- 070	142	.252	.084	516	
109	.239	.085	.519	- 121	145	.221		5/8	
110	. 169	.079	.451	- 097	144	.236	.096	568	035
111	017	. 368	.209	226	145	.259	. 076	677	
112	220	. 054	012	- 410	146	.221	.071	516	
115	. 784	.167	1.257	.159	147	046	.075	. 228	
114	.654	. 129	1.109	185	148	255	. 379	128	- 509
115	.514	.106	.848	.125	201	013	.064	206	- 282
116	.441	. 095	. 757	.111	202	.205	.085	519	- 104
117	. 370	. 391	.648	.086	205	. 372	.114	.760	- 008
118	.284	.085	.595	.009	204	.553	.198	1.198	- 277
119	. 199	. 381	.459	070	205	092	.064	.135	- 882
120	016	. 070	. 5:15	226	206	. 196	. 092	480	- 151
121	255	.054	059	415	207	. 399	. 152	.775	- 027
122	.705	. 154	1.172	. 150	209	.509	.225	1.112	500
125	.590	.124	.971	.215	209	155	.064		560
124	.497	.105	. 866	.186	210	. 150	. 390	. 491	175
125	.406	. 399	. 745	.040	211	. 349	.127	.765	- 100
126	. 351	. 390	.675	.025	212	. 442	.226	1.045	577
127	.244	. 084	. 560	012	215	196	. 062	.106	588
129	.166	.078	. 453	075	214	. 052	.085	. 400	507
129	059	.066	.200	265	215	.217	.117	.652	366
150	260	. 055	098	458	216	.271	.220	1.024	955
151	.558	.164	1.074	042	217	058	.076	.224	555
1 52	.485	. 129	.057	.124	218	004	.089	. 345	591
155	.404	.102	.747	.150	219	. 029	.104	. 480	292
154	. 516	.089	.665	.079	220	. 059	.151	.554	445

HIND DIRECTION A TENDEDITION TA AN DECORDA -

BAI	ROMETRIC PRES	S 24.90 IN HG	VELOCITY	52.22FPS		TINU CINECTION	0 TE	MPERATURE 60.0	O DEGREES F
DDECCUOR					94	HOMETRIC PRESS	5 24.90 IN HG	VELOCITY	52.22FPS
TIP	PRESSURE	RMS	MAXIMUM	MINIMUM	PRESSURE	WEAN	8.80	M. 6 1	
MACO	COFFEIGURE	PRESSURE	PRESSURE	PRESSURE	TAP	BBESCURE	#13	HAXIHUH	MINIMUM
RAI	CUEFFICIENT	COEFFICIENT	COEFFICIENT	COEFFICIENT	LI INRE D	CARPELSSUNE	PRESSURE	PRESSURE	PRESSURE
803	588	.116	200	-1,125	885	CVEPPICIENI	COEFFICIENT	COEFFICIENT	COEFFICIENT
342	140	. 022	035	258	333		.060	291	605
303	586	.140	.110	905	338	499	.059	202	752
504	524	. 064	317	- 754	337	481	.060	260	705
505	493	. 066	159	- 781	338	461	.063	220	666
506	426	.069	146	- 717	559	466	.075	198	755
507	430	.074	- 162		540	602	.116	355	-1.157
309	402	.075	- 077	0.1	341	509	.073	246	791
309	411	.075	- 189	070	542	481	.072	188	- 794
310	414	.070	- 104	/34	545	446	. 055	260	- 629
311	405	.063	- 212	051	544	447	. 055	271	- 611
312	395	. 065	- 194	655	345	357	.046	205	- 540
515	511	.071		605	346	110	.048	.102	- 277
514	469	057		\$55	347	366	.111	. 055	- 784
315	456	065		755	548	229	.065	. 062	- 648
316	455		169	665	401	556	.057	- 882	- 770
517	- 449	160	185	650	402	546	. 056	- 882	788
318	- 440		192	669	405	581	. 06 1	- 861	- 703
519	- 427		271	671	404	- 610	078	- 868	/92
320	- 505		249	655	405	575	055		940
321	- 399		172	575	406	- 585		3/0	720
522	- 544	. 062	152	572	407	- 618		300	755
323			106	909	408	- 647			078
374	489		155	005	400	- 634	.000	997	-1.103
825	-,440	.086	040	725	410		.002	569	865
325	452	. 378	0.000	797		923	. 965	575	001
320	464	. 066	069	775	413			592	954
521	467	.059	182	721	412	671	.091	406	-1.554
528	441	.057	205	- 651	415	647	.060	410	000
529	425	. 050	245	- 608	414	655	.071	425	952
550	407	. 360	165	- 600	415	678	.075	457	-1.045
551	505	.097	085	-1 120	416	704	.097	551	-1.180
552	555	.000	265		417	755	.125	441	-1.551
333	497	. 069	218		418	797	.085	618	-1.065
334	495	. 362	- 225		419	612	. 165	006	-1,168
				(95	420	515	.155	098	904

WIND DIRECTION	20	TEMPE	RATURE 70.8	O DEGREES F
BAROMETRIC PRESS	24.90	IN MG	VELOCITY	52.08FPS

WIND DIRECTION 20 TEMPERATURE 70.00 DEGREES F BAROMETRIC PRESS 24.90 IN HG VELOCITY 52.00FPS

PRESSURE MEAN RMS MAXIMUM MINIMUM PRESSURE MEAN RMG	MAY 197116 DET BUT DET IN
TAP PRESSURE	
NUMBER COEFFICIENT COEFFICIENT COEFFICIENT NUMBER COEFFICIENT COFFFICIENT	THE COEFFICIENT COEFFICIENT
101502 .097226002 135 .052 .064	AR COEFFICIENT
105 - 449 .099 - 145 - 603 157 - 002 .05	. 329 209
104294 .155 .658867 .158125 .45	. 524 196
105 .150 .158 .511 - 464	
106 .119 .065 .518 .142 140 .116 .07	430
107 .041 .052 .224	.532291
109 .033 .059 .228 . 103 142 .110 .656	.569157
109 .017 .059 .220 .212 145 .072 .055	
110019 .057 .204187 144 .081 .081	. 507090
111135 .055 .064	.299104
112228 .055057446 .128 .446	
113157 .196 .561	
114 .199 .164 .650 - 807 149 - 210	
115 137 071 596 - 248 201 271 10	010450
116 .111 .064 .569 - 140 202 .555 18	100
117 .099 .059 .509 - 178 205 .750 17	.930 .039
110 .040 .056 .251 - 107 .204 .002	1 860
119014 .055 .226245 .205 .190 .000	
120125 .049 .109524 206 .526 .15	.516501
121219 .052054590 207 .725 166	1 254
122090 .199 .658982 208 .752 .17	1 868
123 .144 .155 .555546 .209 .094 .100	476
124 .159 .075 .585299 210 .415 .140	946
125 .119 .067 .418155 .211 .585 .184	1 226
126 .094 .064 .588195 212 .616 .100	1 255 104
127 .055 .060 .515164 215028 .110	410
129005 .058 .260207 214 .229 .14	676 . 150
129111 .052 .120549 215 .565 .150	
130212 .049026574 216 .416 .150	1 456 - 457
131019 .200 .519756 217 .016 .080	
132 .141 .104 .459559 218 .058 .080	
135 .156 .070 .452125 219 .042 .081	896 - 277

. . .

WIND DIRECTION 20 TEMPERATURE 69.50 DEGREES F BAROMETRIC PRESS 24.90 IN HG VELOCITY +99.00FPS

WIND DIRECTION 20 TEMPERATURE 69.50 DEGREES F BAROMETRIC PRESS 24.90 IN HG VELOCITY +99.00FPS

PRESSURE	MEAN	RMS	HAXIMUN	HINIHUM	PRESSURE	MEAN	RMS	MAXIMUM	MINIMUM
TAP	PRESSURE	PRESSURE	PRESSURE	PRESSURE	TAP	PRESSURE	PRESSURE	PRESSURE	PRESSURE
NUMBER	COEFFICIENT	COEFFICIENT	COEFFICIENT	COEFFICIENT	NUMBER	COEFFICIENT	COEFFICIENT	COEFFICIENT	COEFFICIENT
301	391	.102	.052	-1.012	3 3 5	574	.112	192	-1.395
302	353	.112	.139	- 874	336	594	.117	161	-1.098
303	493	.117	. 302	- 894	557	540	.109	193	-1.095
304	349	.097	009	944	559	496	.100	107	981
305	325	. 110	.172	892	559	477	. 108	104	926
306	522	.111	.101		540	375	.074	120	641
307	451	.117	057	-1.058	541	34 t	.070	148	605
308	466	.101	150	993	542	320	.068	145	595
309	440	.084	044	788	545	321	.065	127	615
310	400	.072	145	676	544	344	.066	125	600
311	375	.069	107	659	545	292	.063	041	529
312	352	.072	084	612	546	034	.062	.219	224
315	201	.107	.170	709	547	124	.157	. 354	761
314	275	.105	.200	711	549	096	.089	.290	576
515	406	.085	.089	695	401	554	. 058	140	545
316	479	.074	164	758	402	340	.057	146	561
517	492	.072	264	756	405	357	.058	164	586
318	465	.071	178	758	404	366	.065	172	660
519	454	.066	215	758	405	350	.050	078	548
320	300	.062	169	655	406	346	. 059	140	655
321	357	.061	151	691	407	396	.062	145	649
522	165	.140	.501	586	408	452	.005	167	074
525	219	.138	. 554	771	209	326	.068	096	629
324	396	.098	. 144	894	410	355	. 065	044	750
325	488	.089	165	951	411	423	.086	140	840
326	512	.095	167	-1.050	412	521	.119	227	-1,145
327	529	.104	255	-1,151	413	359	.066	125	711
329	499	.099	229		414	300	.064	129	762
329	451	.083	204	796	415	450	.091	146	949
350	429	.075	195	715	416	514	. 125	162	-1.100
351	257	.184	.575	950	417	490	.078	266	740
332	512	. 152	.469	917	419	498	.076	277	755
335	428	. 095	.099		419	497	. 1 1 1	141	879
354	513	. 095	114	947	420	557	.077	115	589

	HIND DIRECTION	45 TE	MPERATURE 60.0	O DEGREES F	L	IND DIDECTION	15 75	MOCOLTUNE CO.	
E	AROMETRIC PRESS	24.95 IN HG	VELOCITY	50.80FPS		ROMETRIC PARCO		TPERATURE 68.8	O DEGREES F
					DA	RUNEIRIC PRESS	24.95 IN NG	AFFOCILA	50.80FPS
PRESSUR	E MEAN	RMS	MAXIMUM	MINIMUM	DDE 551105	MC			
TAP	PRESSURE	PRESSURE	PRESSURE	PRESSURE	TID	DOCCCUDE	RHS	MAXIMUM	MINIMUM
NUMBER	COEFFICIENT	COEFFICIENT	COEFFICIENT	COFFEICIENT	IAP	PRESSURE	PRESSURE	PRESSURE	PRESSURE
101	746	.110	411	-1 289	NUMBER	COEFFICIENT	COEFFICIENT	COEFFICIENT	COEFFICIENT
102	686	.147	- 129	-1 207	155	372	.203	.295	-1.346
105	192	.097	159		156	259	. 161	.298	-1.062
104	785	128	- 857	007	157	211	. 156	. 367	766
105	795	.136	- 303	-1.527	139	219	. 101	.272	740
106	704	. 162	- 111	-1.6/9	139	262	.074	. 370	611
107	600	178		-1.592	140	459	.181	010	-1.564
109	455	170		-1.297	141	235	. 155	.192	898
109	- 554	170	. 191	-1.061	142	188	.079	.135	- 792
110	265	150	.672	989	145	195	. 064	.194	- 476
111	- 262	115	. 479	875	144	166	. 056	. 059	- 420
112	- 291		. 500	-1.041	145	154	. 054	. 249	- 862
113	- 750		. 160	662	146	054	. 050	. 121	- 282
114	- 761	150	5/8	-1.662	147	175	. 047	015	- 884
115	- 744	100	226	-1.745	149	172	. 045	- 016	. 828
116	- 621	. 192	.072	-1.600	201	. 635	. 150	1 476	323
117	- 500	176	. 167	-1.585	202	. 854	. 170	1 201	
119	- 395	168	.127	-1.257	205	.793	174	1 281	
119	- 314	. 163	. 544	989	204	456	151	1 112	
120	- 262	. 191	.518	-1.088	205	.561	144	1 464	251
121	202	. 116	.210	852	206	859	168	1.300	. 1 1 4
122	- 760	.095	.168	759	207	790	167	1.290	. 381
128	- 784	. 100	272	-1.952	208	599	144	.250	.244
124	786	.172	220	-1.895	209	461			116
125	/ 35	.200	.256	-1.740	210	748	164	. 165	057
125		.219	.250	-1,747	211		. 104	1.357	.256
120	469	.200	.225	-1,105	211	.091	.170	1.264	.220
121	5/1	.179	. 256	-1.028	212	.200	. 197	1.020	525
120	295	. 156	.275	885	215	. 592	. 149	.911	025
129	265	. 120	. 429	919	214	.619	. 157	1.124	.179
150	270	.072	. 106	544	215	. 560	. 157	1.167	.104
151	074	.205	519	-1.002	216	.101	. 152	.077	557
1 52	042	.218	000	-1.849	217	.100	.119	.545	588
155	700	. 255	. 142	-1.651	210	.159	.001	. 492	250
1 34	529	.241	.095	-1.566	219	.060	.065	. 569	209

-.142

.076

. 121

-.419

220

WIND DIRECTION 45 TEMPERATURE 60.00 DEGREES F

H	IND DIRECTION	45 TEP	PERATURE TO.OC	DEGREES F	H	IND DIRECTION	45 TE	MPERATURE 70.0	OFGREES F
BA	ROMETRIC PRESS	24.90 IN HG	VELOCITY	50.02FPS	BA	ROMETRIC PRESS	24.90 IN HG	VELOCITY	50.82FPS
PRESSURE	MEAN	DWC	MA	A. 1. 4. 1. Mar	PRESSURE	WEAN			-
TAP	PPESSUPE	20122399	BBEECHBE	RINIHUR	TAP	POECCUPE	20022200	HAXIMUM	MINIMUM
NUMBER	COFFEICIENT	COFFEICIENT	CAREFLATE	PRESSURE	NUMBER	COEFFICIENT	PRESSURE	PRESSURE	PRESSURE
501	- 160	100	CUEFF LLIER:	CUEPPICIENT	335	AIS	CUEFFICIENI	CORFFICIENT	COEFFICIENT
302	- 282	145	. 50 :	0/5	336			- 542	407
503	- 695	192	. 195		337	- 127	. 117	. 548	750
304	- 225		- 110	-1.352	358	- 121	. 193	. 581	-1.004
505	- 120		.200	644	330	423	.284	.497	-1.756
306	- 026		. 308	0/4	340	- 192	.262	016	-2.145
507	- 071	187	. 423	618	341	- 180	.065	.010	456
508	- 109	155	. 440	585	342	- 284		.007	509
509	- 222	. 105	.525	762	343	234	.067	045	519
510		. 2 4 3	. 420	-1.091	344		.041	. 051	226
511	- 668	. 232	.615	-1.247	345		.045	.172	157
512	605		020	-1.409	345	208	.054	-291	059
515	- 157		155	-1.250	347	.293	.069	.555	.074
314	- 139				349	176	. 104	.546	214
315	- 001	. 1 4 2	.437	4/7	401		.140	.698	626
316	- 005	180	.478	542	402	- 800	.058	146	500
317	- 454	178	.401	/4/	403	500	.049	154	-,544
319	- 196		. 627	/91	404	313	.047	167	406
319	- 445	248	. 492	975	405		.051	149	517
320	- 654	.243	. 34 /	-1.2/9	406	- 824	.007	162	958
321	- 608	.205		-1.604	407	320	. 056	160	651
822		. 2 4 4		-1.957	409		.049	170	489
328	- 012		.290	020	400		.051	152	500
374	160		. 557	5:2	410	51 5	. 056	129	721
825			. 487	355	411	302	.046	150	461
325		146	. 477	507	412		. 045	160	471
827			. 3 . 3	/95	418	500	.049	141	546
829	- 266	245	. 476		414	305	.049	141	625
320	276	.243	. 748	-1.155	415	501	.044	155	450
329	010	. 236	.252	-1.725	415	511	.046	167	465
224	/ 10	.209	170	-1.496	410	309	. 051	157	558
331	173			410	417	217	.063	044	555
332	050	. 055	. 196	511	410	210	. 060	. 977	595
333	. 0 54		. 294	517	419	192	. 100	.146	497
334	. 0 5 5	.0/1	. 547	410	420	259	. 155	. 100	-1.161

	HIND DIRECTION	9.6 75		A BECAREE F	HIND DIRECTION 90 TEMPERATURE 60.50 DEGREES				
	AROMETRIC PRESS	24.95 IN HG	VELOCITY	50.96FPS	BA	ROMETRIC PRESS	24.95 IN HG	VELOCITY	50.96FPS
	E MEAN				PRESSURE	MEAN	RMS	MAYTHUM	SET BUT SET IN
TAP	BREEEIBE	BBEESUBE	HAXINUH	MINIMUM	TAP	PRESSURE	PRESSURF	PRESSURE	PRESCUPE
NUMBER	CAPPELOUP	PRESSURE	PRESSURE	PRESSURE	NUMBER	COEFFICIENT	COFFEICIENT	COFFEICIENT	CAEFEICIENT
NUMBER	COEFFICIENT	COEFFICIENT	COEFFICIENT	COEFFICIENT	135	- 544	056	CVEFFICIENT	CUEPPICIERI
101		.145	220	-1,524	136	. 525		550	759
102	-,491	. 151	.074	-1.092	157	- 405		295	/82
105	556	.110	097	-1.002	139	- 545	.005	259	715
104	460	. 052	278	649	180	505	.072	202	854
105	465	. 054	298	655	140	550	.075	209	879
106	-,465	. (59	264	714	140	489	.069	249	744
107	517	.000	251	965	147	488	.065	278	777
100	504	.070	250	977	142	517	.066	520	755
109	407	.068	215	805	143	546	.064	366	772
110	504	. 068	214	995	144	540	.063	527	786
111	515	.081	270	-1.085	145	520	.064	225	777
112	498	.091	255	-1.047	146	420	.063	.060	639
115	-,445	. 052	245	- 651	147	559	.062	165	762
114	467	. 050	275	- 481	149	555	.062	241	727
115	485	.049	506	- 478	201	.255	.201	1.021	976
116	490	.049	- 524	- 650	202	.207	. 122	.547	569
117	478	.049	524	- 644	203	.044	.000	. 546	245
118	491	. 050	- 512	- 644	204	220	.060	. 344	415
119	491	. 052	- 567		205	.241	.265	.945	755
120	474	. 060	- 261		206	.270	. 121	.615	236
121	- 475	.072	- 166	78.6	207	.064	.091	. 527	746
122	- 466	048	- 816	- 636	209	265	.060	059	- 463
125	- 477	046	- 824		209	.005	.209	.950	-2 416
124	- 482	046		-,030	210	.169	.144	.610	- 584
125	- 485	047		-,042	211	018	.095	. 524	- 418
126	- 645		36 /	-,007	212	326	.066	- 100	
127	- 644		290		215	075	.510	1 075	1.380
128			-,310	662	214	.090	163	684	.239
120	495	.001	291	699	215	064	094	887	/ 02
1 8 8	-, 6/3		244	651	216	526	068		421
		.071	291	727	217	- 186	124		
131	492	. 055	501	745	219	- 072		. 199	796
152	491	. 055	505	759	219	- 085			518
155	505	.054	552	706	220	- 266		. 126	459
1 54	558	. 055	575	-,775	224	200		049	500

WIND DIRECTION 90 TEMPERATURE 69.50 DEGREES F BAROMETRIC PRESS 24.90 IN HG VELOCITY 52.60FPS

WIND DIRECTION 90 TEMPERATURE 69.50 DEGREES F Barometric Press 24.90 in HG Velocity 52.60FPS

PRESSURE	HEAN	RMS	HAXIMUM	NINIMUM	PRESSURE	MEAN	RHS	MAXIMUN	HINIHUH
TAP	PRESSURE	PRESSURE	PRESSURE	PRESSURE	TAP	PRESSURE	PRESSURE	PRESSURE	PRESSURE
NUMBER	COEFFICIENT	COEFFICIENT	COEFFICIENT	COEFFICIENT	NUMBER	COEFFICIENT	COEFFICIENT	COEFFICIENT	COEFFICIENT
501	550	. 124	127	-1.445	335	. 422	.102	.805	. 191
302	576	.111	229	-1.148	356	. 491	.108	. 828	.241
303	799	.129	305	-1.354	357	.532	. 130	.994	.205
304	247	.066	009	500	330	.588	. 154	1.113	.149
305	012	.001	. 341	506	339	.545	. 182	1.097	047
306	.175	. 099	. 480	168	340	246	.070	.049	495
507	.212	.094	.529	125	341	215	.000	.069	462
308	.294	.090	.627	095	342	265	. 095	.005	591
509	. 365	.107	.759	. 025	543	.080	.072	. 325	145
510	. 453	.110	.797	. 055	344	. 447	.103	. 762	.194
511	.593	.142	.970	. 145	345	.541	.108	. 878	.242
512	.757	.172	1.174	.259	346	. 529	.095	. 854	.291
515	160	.065	.078	575	347	. 315	.090	.616	.008
514	.099	.085	. 590	125	349	. 159	.079	.416	201
515	.260	.099	.575	011	401	509	.097	247	962
516	. 255	.009	.290	.206	402	493	.062	255	744
517	. 435	.105	. 852	.054	403	496	.058	275	726
518	.505	.111	.910	.090	404	473	.059	271	710
519	.557	.119		.102	405	547	.007	522	-1.047
520	. 691	.145	1.114	.201	406	519	. 059	502	799
521	. 781	.178	1.227	.142	407	518	.057	500	701
322	165	.069	.116	424	408	499	.059	250	607
525	.104	.000	.460	166	409	562	.064	589	791
524	. 304	. 099	.675	.050	410	559	. 055	365	752
525	.408	.097	.814	.120	411	558	. 052	575	726
526	. 492	.100	. 860	.206	412	525	. 052	346	704
527	.513	. 105	.865	.225	413	580	.057	424	
529	.580	.115	.979	.245	414	560	. 053	385	755
529	. 662	.144	1.229	.267	415	565	. 055	396	759
550	. 685	.161	1.192	.185	416	552	.054	375	729
551	204	.064	.027	-,418	417	561	.059	361	
352	.060	.082	. 355	250	419	506	.066	407	966
555	.269	.091	. 700	.044	419	595	.065	404	826
554	. 359	.097	.057	.140	420	570	.061	56 t	819

	IND DIRECTION	150 TE	PERATURE 68.5	· · FORFER F						
BA	ROMETRIC PRESS	24.95 11 45	E orter	SC ADEDE	WIND DIRECTION 150 TEMPERATURE 60.50 DEGREES F					
				33. 2005	BA	ROMETRIC PRES	5 24.95 IN HG	VELOCITY	59.02FPS	
PRESSURE	MEAN	RMS	M1	W11 1W W						
TAP	PRESSURE	PRESSURE	PRESS	PPFCC PF	PHESSURE	MEAN	RMS	MCH1KAM	MINIMUM	
NUMBER	COEFFICIENT	COEFFICIENT	COFFEIGUELT		TAP	PRESSURE	PRESSURE	PRESSURE	PRESSURE	
101	325	. 145	136	-1 102	NUMBER	COEFFICIENT	COEFFICIENT	COEFFICIENT	COEFFICIENT	
:02	255	.107			1 35	107	. 354	060	520	
105	253	. 390	• 25	0.0	1 3 6	194	. 354	:05	509	
104	206	.067		52	157	196	.055	105	545	
105	102	. 155		0.3	159	225	.056	: 90	35 !	
136	174	.049	- 488	- 4 4	159	259	.041	097	- 414	
107	198	047		56	140	220	. 044	097	598	
108	195	344		394	141	218	.050	301	410	
109	189	247		401	142	242	. 052		- 468	
110	- 199	145	039	459	145	252	. 050	051	- 459	
111	202	149		591	144	196	. 051	. 175	- 551	
112	- 197			411	145	195	. 048		- 881	
113	- 205		320	425	146	164	. 0 5 5	047	- 201	
114	- 'GR			596	147	224	.055	- 118	- 844	
115	- 196		057	474	148	229	.056	- 125		
116	- 194		054	550	201	207	. 126	019	- 967	
117	- 194	. 0 36	055	521	202	300	127			
118	- 209	. 0 5 5	090	511	205	272	109	212		
119	- 218	. 056	105	522	204	- 279	128			
120	- 207		105	550	205	295	184		95	
121	- 208	. 346	002	505	206	298	128		-1./59	
122	2 . 3		017	559	207	- 276	100			
128	22 :	. 369	025	5~5	208	- 282	117		967	
124	203	.049	05'	440	209	- 551	146	20	974	
125		.054	076	552	215	- 827	180		-1.421	
125	183	. 352	065	5."	211	- 200			-1.274	
120	200	. 0 5 5	094	5:5	212			. 191		
121	212	. 055	076	540	212		. 121	. 992	-1.176	
120	214	.057	101	5*6	213	302	. 163		-1.509	
129	202	. 045	370	440	216	333	. 159	. 0 5 0	-1.051	
150	224	.063	070	671	215	207		.207	966	
151	204	.060	356	508	210	241	. 100	. 324		
1 52	192	. 045	2.060	352	217	512	. 100	027	774	
155	176	. 036	047	554	210	215	. 064	055	514	
134	195	. 054	060	500	219	204	.049	007	426	
					220	210	.045	047	411	

WIND DIRECTION 150		TEMPERATURE 69.80 DEGREES	F
BAROMETRIC PRESS 24.90	14	HG VELOCITY 59.83FPS	

WIND DIRECTION 150		TEMPERATURE	69.80	DEGREES	F
BAROMETRIC PRESS 24.90	I Ni	HG VELC	CITY	59.83FPS	

									33.03113	
PRESSURE	MEAN	RMS	MAXIMUM	HINIMUM	005555105	-				
TAP	PRESSURE	PRESSURE	PRESSURE	PRESSURE	PRESSURE	REAN	RUZ	HAXIHUH	HINIMUM	
NUMBER	COEFFICIENT	COEFFICIENT	COEFFICIENT	COEFFICIENT	I AP	PRESSURE	PRESSURE	PRESSURE	PRESSURE	
301	246	. 164	. 191	-1.155	NUMBER	COEFFICIENT	COEFFICIENT	COEFFICIENT	COEFFICIENT	
302	541	.143	019	-1 047	555	.140	.002	.550	105	
303	450	. 156	. 006	-1 154	556	. 145	.077	.498	397	
304	. 199	.009	. 22.1	164	337	.149	.077	.575	072	
305	. 359	.219	1 198		339	. 397	.083	.493	185	
506	. 404	. 197	1 860	205	339	059	.092	.455	436	
507	. 352	185	1 047		340	115	.053	. 370	- 498	
309	. 357	170		200	341	058	.063	. 199	248	
309	302	167		099	342	000	.074	.291	- 384	
310	286	175		151	343	. 090	.060	466	- 078	
511	108		.055	159	344	.240	. 095	.720	350	
512	169		. 850	229	345	.222	074	514		
518	. 105	. 150	.651	470	346	172	047	878		
814		. 1 1 7	. 575	760	547	- 052	040			
815	. 120	. 126	. 590	441	549	- 043	150	100	255	
515	.245	.145	. 791	292	401	- 204			292	43
316	. 304	. 150	. 85 1	112	402	- 227			558	
317	. 302	.157	.059	004	108			. 105		
518	.207	.120	.779	098	404	750	.232	.176	-1.475	
519	.244	.128	.007	111	105	(30	. 502	. 319	-2.120	
520	.161	.127		225	405	204	. 095	. 029	691	
521	. 029	. 111	.502	514	400	313	.156	.101	876	
322	126	.079	.274	519	407	449	.179	.159	-1.266	
525	.010	.090	. 420	501	400	552	.212	. 045	-1.601	
524	. 135	.104	.648	749	409	204	.081	021	651	
325	.205	.119	. 856	- 180	410	295	.082	. 022	686	
326	.219	.109	.757	- 182	411	354	.086	094		
327	. 195	.097	647	- 140	412	329	.009	000	051	
528	.178				415	201	.068	051	590	
529	.115	. 099	710		414	275	.057	101	522	
350	002		447	195	415	209	.057	095	575	
551	102	077	26.6	317	416	200	. 050	079	672	
552		186	. 276	425	417	201	.041	057	351	
555	100		. 3 / 3	296	418	229	. 064	015	- 495	
554	1 50		. 777	241	419	526		099		
				152	420	541	. 095	- 156	- 778	

H.	IND DIRECT: ON	190 TEI	MPERATURE 70.0	CEGREES F	L.	IND DIRECTION	190 TE	MPERATURE 70 0	DECREES E
BA	ROMETRIC PRESS	5 24.90 IN HG	VELOCITY	54.91FPS	BA	ROMETRIC PRESS	24.90 IN HG	VELOCITY	54.91FPS
PRESSURE	MEAN	RMS	MAXIMUM	Set 5 (1 Minute	PRESSURE	MEAN	RMS	MAYTMIN	10 T 1 - T 107 - 10
TAP	PRESSURE	PRESSURE	PRESSURE	POTSS OF	TAP	PRESSURF	PRESSURE	PRECEMPE	Parcenar
NUMBER	COEFFICIENT	COEFFICIENT	COEFFICIENT	COFFFICIENT	NUMBER	COEFFICIENT	COFFFICIENT	COFFEICIELT	CASESICIEN
101	310	.103	.095	- 809	1 35	416	376		LUEFFICIES.
102	354	.071	091	- 646	136	- 455	097	- 127	09
105	. 065	.116	.405	- 478	137	466	110		- / . 0
134	209	. 064	- 125	- 806	159	551	180		940
105	275	.050	108	- 675	159	596	212		201
106	274	. 056	065	- 508	140	221	457		-:./49
107	350	.075	089	- 767	141	244	058		4:0
109	576	.093	105	- 458	142	225	199		470
109	347	. 064	155	- 668	143	- 142	101		520
TTO	352	. 054	150	- 585	144	- 109	110	.2.5	450
111	549	. 052	178	- 526	145	- 179	107		425
112	357	. 052	165	- 545	146	- 184	075	- 2 - 1	5/8
113	297	.047	119	- 495	147	516	097		496
114	314	.042	180	- 574	149	- 485	288	- 180	
115	355	.042	100	551	201	272	050		959
116	347	.045	208	508	202	296	054		503
117	351	.049	185	- 559	203	295	070		002
110	377	. 054	206	- 602	204	285	076		707
119	385	.057	204	717	205	285	150		960
120	369	.060	184	- 623	206	307	061		
121	354	.062	155	- 719	207	309	055	- 146	
122	525	.050	095	529	208	506	058	- 180	
125	359	.048	165	551	209	501	067	- 113	
124	355	. 052	155	542	210	525	070	. 120	
125	570	. 059	010	650	211	329	060	187	/ 50
126	412	.065	101	726	212	351	. 062	- 105	
127	436	.075	154		215	540	108	- 464	
128	454	. 089	196		214	547	100		-1.102
					-				

216

217

210

219

220

-. 346

-. 350

-. 507

-.209

-.250

-.215

.067

.075

.105

. 090

.091

.002

-.151

-.142

-.041

.010

. 120

. 361

-.689

-. 846

-.959

-.650

-.590

-.559

WIND DIRECTION 100 TEMPERATURE 70.00 DEGREES F

129

150

151

1 52

155

154

-. 458

-. 485

-. 505

-.297

-. 505

-. 366

.124

.106

. 059

.058

.060

. 069

-.095

-.215

-.025

-. 057

-.002

-.129

-1.106

-1.035

-. 601

-.500

-.527

-. 669

HIND DIRECTION 180		TEMPERATURE	69.8	DEGRELS	F
BAROMETRIC PRESS 24.95	IN	HG VELO	CITY	55.60FPS	

WIND DIRECTION 100 TEMPERATURE 69.00 DEGREES F BAROMETRIC PRESS 24.95 IN HG VELOCITY 55.60FPS

36:22366	HEAN	RMS	HAXINUH	MINIMUM	PRESSURE	MEAN	RMS	MAXIMUM	HINIMUM
TIP	PRESSURE	PRESSURE	PRESSURE	PRESSURE	TAP	PRESSURE	PRESSURE	PRESSURE	PRESSURE
NUMBER	COFFFICIENT	COFFFICIENT	COEFFICIENT	COEFFICIENT	NUMBER	COEFFICIENT	COEFFICIENT	COEFFICIENT	COEFFICIENT
501	- 601	. 164	.402	-1.181	335	090	.083	. 302	502
502	- 258	.160	. 755	856	336	061	.091	.551	36 1
505	546	.165	.267	-1.119	337	066	.100	.510	461
504	.241	. 528	1.100	-1,435	359	110	.116	. 302	585
305	.294	.161	1.022	172	559	210	.108	. 395	777
306	. 332	. 122	. 858	085	540	106	.069	.240	375
507	.259	.151	. "55	221	541	057	. 092	. 529	355
308	.211	.139	.686	201	542	017	.099	.465	256
309	.210	.146	.091	520	545	.105	. 087	.402	150
310	.172	.145	.715	384	544	.299	.114	. 696	087
511	. 008	.154	.570	415	545	.234	.159	.597	490
512	136	. 110	. 594	555	346	. 152	.071	.695	055
515	488	. 595	.460	-2.868	347	194	. 100	.272	478
514	152	. 121	. 591	619	548	212	.074	. 329	520
315	058	.119	.445	550	401	.165	.076	.471	291
316	. 026	.129	.598	472	402	.449	.111	. 650	210
517	-0.000	-0.000	-0.000	-0.000	405	.606	.144	1.064	094
318	-0.000	-0.000	-0.000	-0.000	404	. 796	. 190	1.350	246
319	-0.000	-0.000	-0.000	-0.000	405	. 155	.104	.651	275
520	-0.000	-3.000	-0.000	-0.000	400	. 460	. 157	1.144	127
521	164	.070	.295	405	407	. 426	.175	1.015	199
522	694	. 295	.084	-2.115	400	.201	. 155	. 896	266
525	361	.161	.135	-1.425	409	.115	. 150	.910	510
524	252	.108	.141	605		. 336	.221	1.165	408
525	170	.115	.252	609	412	. 195	.225	1.045	529
526	095	.120	. 426	612	412	1/5	. 189	. 655	001
527	060	. 122	.522	452	413	045	. 184	.646	695
528	036	.119	. 562	409	416	.0/4	. 189	. 845	549
529	000	.106	.497	507	415	0/6	.211	.775	707
350	162	.065	.160	-,415	417	244	. 144	. 405	759
351	555	. 120	.248	-1,172	417	255	.070	.244	468
552	268	.105	.071	702	410	225		.319	700
355	102	.089	. 193	611	434	215	.067	.057	494
354	119	.002	.256	497	429	19/	.065	011	554

WIND DIRECTION 240		TEMPERATU	RE	69.00	DEGREES	F
BAROMETRIC PRESS 24.95	IN	HG VE	LOC	ITY	52.43FPS	

WIND DIRECTION 240 TEMPERATURE 69.00 DEGREES F BAROMETRIC PRESS 24.95 IN NG VELOCITY 52.43FPS

PRESSURE	MEAN	RHS	MAXIMUM	MINIMUM	PRESSURE	MEAN	RMS	MAXIMUM	MINIMUM
TAP	PRESSURE	PRESSURE	PRESSURE	PRESSURE	TAP	PRESSURE	PRESSURE	PRESSURE	PRESSURE
NUMBER	COEFFICIENT	COEFFICIENT	COEFFICIENT	COEFFICIENT	NUMBER	COEFFICIENT	COEFFICIENT	COEFFICIENT	COEFFICIENT
101	191	.090	.095	625	1 55	104	.057	.127	557
102	260	. 150	. 098	-1,102	136	102	.066	.149	597
105	273	.267	. 498	-1,105	137	101	. 095	.294	614
104	179	.061	. 195	447	150	264	.224	. 455	-1.569
105	114	.085	.445	394	159	606	.295	. 175	-1.075
106	079	.091	.514	627	140	102	.049	.026	554
107	086	. 101	. 435	654	141	150	.042	.000	557
108	078	.117	.465	000	142	152	.050	.100	276
109	092	. 154	.558	861	145	120	.054	. 199	296
110	200	.220	.490	-1.200	144	097	.062	.175	417
111	554	. 306	.509	-1.657	145	004	.058	. 150	200
112	725	.246	. 36 5	-1.010	146	029	.049	.170	201
115	167	.062	.141	415	147	100	.057	.155	299
114	147	.071	.161	484	148	110	.065	. 152	466
115	107	.082	.210	555	201	257	.064	054	572
116	008	. 396	. 35 1	485	202	244	.047	074	409
117	075	.119	.498	615	205	255	.045	004	598
118	142	.151	.621	700	204	251	.050	085	412
119	207	.209	.502	-1.201	205	225	.050	065	559
120	499	.259	. 426	-1.557	206	250	.040	101	400
121	494	. 22 1	.005	-1.051	207	251	.057	116	365
122	192	. 055	. 054	424	200	227	.041	090	450
125	159	.060	.090	405	209	221	.051	055	420
124	116	.071	.195	559	210	256	.044	097	591
125	007	.079	.260	657	211	255	. 0 5 9	115	300
126	094	.104	.507	926	212	220	.045	090	420
127	154	. 127	. 400	740	215	251	. 050	066	506
120	245	.177	. 552	-1.056	214	254	.042	083	440
129	478	.256	. 525	-1.666	215	220	.036	097	351
130	549	.191	089	-1,415	216	221	.050	009	405
151	189	.044	. 055	452	217	210	.042	090	377
1 52	154	. 347	.127	591	210	225	.059	000	354
1 5 5	109	. 052	.116	- , 586	219	254	.045	095	455
154	125	. 052	.075	597	220	251	.047	074	559

HIND DIRECTION 240 TEMPERATURE 70.00 DEGREES F BAROMETRIC PRESS 24.90 IN HG VELOCITY 52.05FPS

WIND DIRECTION 240 TEMPERATURE 70.00 DEGREES F BAROMETRIC PRESS 24.90 IN HG VELOCITY 52.05FPS

PRESSURE	MEAN	RMS	MAYTMON		PRESSURE	MEAN	RMS	MAXIMUM	HINIMUN
TAP	PRESSURE	PRESSURE	PRESCURE	Parcenar	TAP	PRESSURE	PRESSURE	PRESSURE	PRESSURE
NUMBER	COEFFICIENT	COEFFICIENT	COFFEICIENT	CARESSURE	NUMBER	COEFFICIENT	COEFFICIENT	COEFFICIENT	COEFFICIENT
301		.146	- 280		535	252	.111	. 151	779
302	667	.177	.050	-1 860	336	216	. 100	.240	664
303	201	.112			557	198	.090	. 145	644
304	674	.159	227	-1 740	539	198	.077	.151	621
305	691	.149		-1 027	339	211	.066	. 041	559
306	658	.147	.002	-1 274	540	.055	.098	. 400	425
307	586	.146	0.000	-1 155	541	. 054	.000	. 595	174
309	460	.151	.055	-1 007	542	.072	.085	.466	165
309	372	.131	.094	-1 001	345	115	. 056	.159	275
310	307	. 125	.177	- 860	344	209	.061	. 0 55	410
311	256	.105	.107	- 850	345	107	.044	050	545
512	244	. 089	. 067	- 780	346	092	.055	. 042	195
315	755	. 165	502	-1 700	547	169	. 054	025	204
514	745	. 170	147	-1 866	548	172	.054	057	504
315	694	. 195	.048	-1 602	401	. 486	.250	1.205	525
316	590	. 188	.109	-1 486	402	. 686	.255	1.451	190
517	471	. 150	. 065	-1 122	405	.646	. 199	1.241	200
318	550	. 126	.109	- 950	404	. 304	.141	.762	550
319	200	.112	.155	- 771	405	. 559	.184	.996	205
320	214	.092	.248	- 621	406	.659	.210	1.542	076
321	212	.073	.109	- 550	407	.678	.192	1.501	210
322	866	.191	285	-1.056	400	. 529	.151	1.512	195
525	851	.197	.008	-1.784	409	.202	.164	.956	210
524	709	.210		-1.440	410	.546	.145	. 922	.127
325	566	.206	.104	-1.526	411	.546	. 192	1.374	522
326	409	.104	.257	-1.140	412	.202	. 145		509
527	292	.163	. 552	-1.212	415	.159	.166	.707	567
328	212	.157	. 582	- 846	414	.208	.144	.019	159
329	197	.104	. 520	- 710	415	.120	.149	.715	250
330	198	. 058	. 127	- 408	416	109	.150	.415	508
351	994	. 300	125	-2.278	417	.140	.177	. 866	545
552	725	. 52 1	.275	-1.787	410	.210	.176	1.070	295
355	421	.222	.221	-1.474	419	.140	.161	.850	511
554	307	. 159	. 184	-1.002	420	102	.142	. 451	621

WIND DIRECTION 270	TEMPE	RATURE 69.1	DE DEGREES	F
BAROMETRIC PRESS 24.95	IN HG	VELOCITY	54.23FPS	

WIND DIRECTION 270 TEMPERATURE 69.00 DEGREES F BAROMETRIC PRESS 24.95 IN MG VELOCITY 54.23FPS

PRESSURE	MEAN	8MS	MAYTMIN	Ad 1 5 - 1 60 - 44	PRESSURE	MEAN	RMS	MAXIMUM	HINIMUM
TAP	PRESSURE	PRESSURF	PRECEMPE		TAP	PRESSURE	PRESSURE	PRESSURE	PRESSURE
NUMBER	COEFFICIENT	COEFFICIENT	COFFEICIELT	CAEPE LA LEVE	NUMBER	COEFFICIENT	COEFFICIENT	COEFFICIENT	COEFFICIENT
101	474	170	ARA	CUEPPICIEN:	1 35	.252	. 006	.559	042
102	574	149		-1.210	136	.205	. 100	.645	016
105	759	157	- 116	60	157	. 325	.124	. 759	107
104	129	. 062	107	2 . 2	139	. 325	.166	.954	175
105	.079	.075			139	.277	.184	1.000	195
106	.201	.077			140	157	. 051	.045	552
107	.255	081		210	141	. 022	. 055	.236	145
108	. 326	.087	746	222	142	.136	.065	. 368	066
109	.404	. 194	704		145	. 22 1	.001	. 556	054
110	.479	.109	618		144	.269	.085	. 652	. 052
111	. 625	160	1 188		145	.201	.087	.509	.057
112	.707	.222		100	146	.294	.080	.614	. 050
115	109	. 055		309	147	.198	.085	.508	067
114		.066	804		148	.117	. 055	. 35 :	077
115	.206	.075	441	- 000	201	572	.069	155	722
116	. 308	.082			202	394	.060	198	655
117	.410	.095	741		205	577	. 055	166	549
118	.475	.104	786		204	364	. 055	100	526
119	. 559	. 124	941	180	205	572	.040	211	564
120	. 658	. 192	1.245		206	509	.045	255	557
121	.585	.225	1.519	- 115	207	575	.045	215	549
122	145	. 054	.105	- 847	208	358	.045	199	547
125	.035	.065	.258	- 106	209	374	.040	222	619
124	.182	.074	.418	- 101	210	393	.046	226	557
125	.277	.083	.511	- 150	211	570	.045	209	547
126	. 545	.095	649	0.48	212	357	.045	176	521
127	.409	.104	720	126	215	301	. 054	100	761
128	. 499	.128	978		214	596	.040	222	595
129	. 595	. 165	1.150	- 120	215	361	.047	176	557
150	.515	.174	1.027	- 021	216	345	.049	143	554
151	167	. 054	.150	- 584	217	350	.092	065	-1.248
152	012	. 060	.259	- 282	219	571	.085	155	925
155	. 120	. 071	. 455	- 106	219	575	.071	192	759
154	. 165	.076	. 471	089	220	564	.066	105	690

F WIND DIRECTION 270 TEMPERATURE 69.80 DEGREES F BAROMETRIC PRESS 24.90 IN HG VELOCITY 54.11FPS

WIND DIRECTION 270 TEMPERATURE 69.00 DEGREES F BAROMETRIC PRESS 24.90 IN HG VELOCITY 54.11FPS

PRESSURE	MEAN	RMS	MAXIMUM	WININ	PRESSURE	MFAN	DMC	M.R., They be	
TAP	PRESSURE	PRESSURE	PRESSURE	PRESSURE	TAP	PRESSURE	20122360	PUT I LAT	HINIHUH
NUMBER	COEFFICIENT	COEFFICIENT	COEFFICIENT	COEFFICIENT	NUMBER	COEFFICIENT	COFFEICIENT	CAREFUCIELS	PRESSURE
501	467	.215	.074	-1.550	335	- 369	070	CVEFFICIEN	CUEPPICIENT
302	197	. 165	.249	741	336	- 355	078	045	715
305	414	.114	062	866	357	548	075	445	005
304	626	. 140	226	-1.504	359	545	067		640
305	646	. 154	138	-1.624	339	- 363	050		/05
306	562	.154	065	-1.551	540	176	150	802	030
507	545	.143	155	-1.540	341	- 049	074	. 383	-1.050
308	400	.119	151	-1.050	342	- 009	071	.223	350
309	645	.147	159	-1.440	345	234	049	.230	240
510	565	.155	065	-1.522	344	578	055		589
511	548	.148	099	-1.278	345	- 545		174	558
512	486	. 120	012	-1.129	346	- 218		143	489
515	466	.109	144	971	347	582	072	92 (3/3
514	425	.092	189	905	349	545	0.55		
515	385	.070	115		401	081	867	161	640
516	366	.072	399	650	402	088	160	1.130	-1.402
517	454	. 110	. 052	855	405	006	15.8		404
510	401	. 097	. 389	762	404	262	149		550
319	376	.081	004	722	405	- 406	25.2		/34
520	356	.064	050	621	406	070	146	. 3 . 3	-1,485
521	356	.050	155	602	407	121	105	RCE	
522	745	.108	256	-1.740	408	358	188	. 365	/22
525	726	. 186	102	-1.755	409	304	201	201	
524	621	.166	. 3 : 0	-1.206	410	079	.141	876	203
525	494	.151	056	-1.015	411	100	100		
526	402	. 104	.157	775	412	356	142		522
527	359	. 097	. 059	711	415	151	218	- 2 · 4	007
529	358	.075	.017	602	414	- 002	198		-1.015
529	542	. 062	365	615	415	059	192		489
550	541	.047	127	502	416	- 287	120		444
551	852	.209	256	-2.757	417	015	050	216	914
552	670	.211	. 022	-1.657	419	. 025	044	286	29/
555	467	. 127	3.000	977	419	. 020	050	. 2 30	150
354	300	.085	:02	75 !	420	006	. 060	.205	261

	WIND DIRECTION	300 TE	MPERITURE 69.7	CEGREES F		IND DIRECTION	300 TE	TEMPERATURE 69.7	
8	AROMETRIC PRES	5 24.95 14 40	VELOCITY	54.32595	BA	ROMETRIC PRES	5 24.95 11 HG	ELOCITY	54 805PC
									34.32773
PRESSUR	E MEAN	RMS	MAXIMUM	M [1,] M [M	PRESSURE	MEAN	RMS	MAXIMUM	MISITMUM
TAP	PRESSURE	PRESSURE	PRESSIRE	PRESSURE	TAP	PRESSURE	PRESSURE	PRESSURE	PPFSS PF
MBER	COEFFICIENT	COEFFICIENT	COEFFICIENT	COEFFICIENT	NUMBER	COEFFICIENT	COEFFICIENT	COFFFICIENT	COFFEICIENT
101	525	.190	. :66	-1.590	1 35	. 379	.143	975	ARA
: :2	633	.:9:	110	-2. 32	: 56	. 370	.134	122	
105	790	80	3:5	696	137	. 359	. 124	035	
104	.247	.150	.885	498	139	.263	. 120	995	
: 35	. 460	. 183	1.065	169	: 39	. 084	. 153	776	
: :6	.536	. 100	1.185	121	140	035	. 376	218	304
107	.549	.213	1.213	101	141	.209	.090	517	303
108	.555	.220	1.126	- 118	142	. 330	.100		
109	.554	.242	1.292	- 164	143	. 389	108	851	
110	.519	.24-	.202	- 155	144	.411	107		
111	. 452	.262	1.245	25 !	145	409	105		• • • • •
::2	. 257	.275	1.128	518	146	.409	192		.114
113	.212	. 146	. 845	511	147	.276	188		. 165
114	. 425	. 169	.966	150	149	. 159	078		
* 15	.525	. 184	1.160	- 176	201	595	124	. 424	121
::6	.561	. 192	1.192	56	202	586	112		975
117	.590	. 194	1.160	- 026	203	- 589	116		-1.065
::0	.560	.201	1.252	- 154	234	378	100		-1.142
119	.527	.201	1.286		205	- 400	142		-1.242
120	. 420	. 199	1.296	- 147	236	- 574			-1.255
121	. 167	.201	1.141	- 1-1	207	- 367			-1.351
122	. 156	. 135		. 8/8	208	- 548		321	-1.189
123	. 371	. 155	1.045	- 118	209	- 427	246	014	975
:24	. 479	. 159	1.001	126	210	- 384	.230	.226	-1.751
125	.500	. 172	1.128	- 110	211	- 877		. 54	- ' . 25 *
126	. 499	168	1 1 4 8	- 161	212	- 366	29		- 1.222
127	. 474	. 165	1 199	- 020	215	- 407	2	339	-1.198
:28	. 449	. 150	1 180		214	. 876		.194	-1.506
129	. 363	148	1 185	- 158	215	- 507		. 125	-1.011
150	. 124	150	600	- 847	215	- 874		050	-1.460
131	.078	129	56 1	- 181	217	- 340		079	-'.200
1 32	.265	141	724		219	- 207	.101	. 156	719
133	375	154	684		210	20	. 140	.210	875
134	578	149	1 162		213	400	. 50	. 394	-1.595
					224	420	. 149	026	-1.640

WIND DIRECTION 300	TEMPERATURE 69.50 DEGREES F	
BAROMETRIC PRESS 24.90	IN HG RELOCITY 54.45FPS	

WIND DIRECTION 300 TEMPERATURE 69.50 DEGREES F BAROMETRIC PRESS 24.90 IN HG VELOCITY 54.45FPS

PRESSURE	MEAN	RMS	MAXIMUM	M T 92 T 947 - M	PRESSURE	MEAN	RMS	MAXIMUM	MT 92 T MT IM
TAP	PRESSURE	PRESSURE	PRESSURE	PRESSIRE	TAP	PRESSURE	PRESSURE	PRESSURE	PRESSURE
NUMBER	COEFFICIENT	COEFFICIENT	COEFFICIENT	COFFFICIENT	NUMBER	COEFFICIENT	COEFFICIENT	COEFFICIENT	COFFFICIENT
301	637	.210	016	-1 514	335	364	. 396	.101	790
302	561	.135	119	-1 185	336	325	. 086	019	- 704
505	469	.144	.128	-1 209	337	309	. 090	. 347	748
304	549	.119	255	-1 190	359	310	.102	. 069	852
305	541	.117	223	-1.110	559	355	. 124	. 168	841
306	495	. 100	191		340	102	. 190	.759	951
307	500	.096	222	952	541	.076	. 084	.474	- 192
308	480	.092	196	814	342	.127	.090	.554	176
309	467	. 092	110		343	215	. 056	014	414
310	424	. 389	097	- 749	344	377	. 066	142	620
311	371	. 384	050	715	345	325	. 350	065	494
312	352	.086	345	879	546	160	. 052	. 344	550
515	600	. 151	102	-1.416	547	411	. 101	005	892
514	581	.137	205	-1.222	349	200	.068	026	565
315	559	. 125	215	-1.017	401	849	.262	. 150	-2.270
316	525	.112	159	-1.007	402	578	. 506	. 109	-1.841
517	490	. 101	065	-1.057	403	355	.197	. 172	-1.558
318	444	. 095	100		404	410	.126	.064	-1.074
319	405	. 390	020	784	405	758	.245	.201	-1.855
520	348	. 387	056	740	406	547	.250	. 021	-1.110
521	340	. 390	010	618	407	579	.253	.170	-1.572
322	677	.195	174	-1.679	408	403	.160	.194	-1.091
525	652	.179	142	-1.555	409	770	. 25 1	.240	-1.007
324	601	. 156	057	-1.100	410	575	.515	. 525	-1.780
325	553	.140	100	-1.115	411	500	.250	.262	-1.455
326	474	.116	. 020	951	412	405	.158	. 166	-1.278
327	408	.101	.071	805	413	670	.247	.057	-1.929
329	357	.007	.147	665	414	490	.298	.277	-1.652
329	514	. 397	. 021	714	415	510	.243	. 506	-1.959
330	310	.098	.091	612	416	300	.165	.242	-1.160
551	006	.270	101	-2.055	417	552	.250	.250	-2.079
552	769	.268	147	-1.855	419	575	.271	.252	-1.752
555	605	.170	025	-1.450	419	240	. 192	. 473	-1.592
334	439	.115	007	982	420	549	.144	.514	995

WIND DIRECTION 330	TEMPERATURE 69.50 DEGREES F	
BAROMETRIC PRESS 21.93	IN HG VELOCITY 52.63FPS	

HIND DIRECTION 330 TEMPERATURE 69.50 DEGREES F BAROMETRIC PRESS 24.95 IN HG VELOCITY 52.63FPS

PRESSURE	MEAN	RMS	MAXIMUM	MINIMUM	PRESSURE	MEAN	RHS	MAXIMUM	W 19:1W1'W
TAP	PRESSURE	PRESSURE	PRESSURE	PRESSURE	TAP	PRESSURE	PRESSURE	PRESSURE	PRESSURE
NUMBER	COEFFICIENT	COEFFICIENT	COEFFICIENT	COEFFICIENT	NUMBER	COEFFICIENT	COEFFICIENT	COEFFICIENT	COFFFICIENT
101	537	.175	018	-1.408	1 35	.532	. 135	1.151	166
102	502	.122	157	-1.104	136	. 492	.150	1.065	151
105	635	.107	510	-1.125	157	. 448	.120	. 954	.087
134	.538	.164	1.139	012	138	.227	.116	.649	- 114
105	.718	.172	.223	.129	139	097	.111	. 435	- 476
106	. 720	. 153	1.179	.221	140	-3.000	. 364	.215	280
107	.681	.160	1.095	.111	141	.318	.085	.665	. 001
108	.651	. 156	1.049	.097	142	.477	.102	. 856	.214
109	.629	.149	1.127	.172	143	.536	.117	1.045	210
110	. 566	.149	.975	.070	144	. 55 1	.119	1.005	.254
111	. 399	.137	. 757	064	145	. 550	.124	1.045	.189
112	.069	.110	. 435	520	146	. 493	.100	.967	.179
115	.513	. 152	1.125	017	147	.206	. 390	.6:0	- 154
114	. 735	. 156	1.256	.248	148	094	. 099	. 597	557
115	.779	.159	1.227	. 510	201	271	. 166	.512	- 970
116	. 767	.159	1.217	.298	202	396	.197	. 374	-1.204
117	.715	.159	1.155	.245	203	599	.229	.115	-1.612
110	.657	.158	1.165	.195	204	684	.255	154	-1.842
119	.584	. 152	1.024	. 152	205	309	.226	. 541	-1.550
120	. 371	. 155	. 756	052	206	422	.243	. 374	-1.550
121	. 342	.100	.502	545	207	577	.255	.164	-1.609
122	.405	. 163	1.004	164	209	605	.251	. 376	-1.667
123	.636	. 159	1.092	. 388	209	298	.297	.611	-1.685
124	.705	. 154	1.154	.190	210	417	.270	. 400	-1.454
125	.675	.149	1,154	.265	211	591	.261	. 164	-2.295
126	.635	. 146	1.171	.219	212	652	.265	. 005	-1.912
127	.585	. 145	1.151	.169	213	294	.244	. 589	-1.630
128	.511	.140	1.022	.094	214	399	.245	. 547	-1.697
129	. 336	. 120	.774	075	215	565	.243	.248	-1.001
150	010	. 095	.272	297	216	641	.261	067	-1.845
131	. 354	.159	.902	189	217	211	. 085	. 056	560
1 32	.553	.149	1.051	.115	219	226	.111	.214	727
133	.581	.145	1.107	.186	219	550	.168	.149	-1.525
: 34	.564	.140	1.056	. 192	220	422	. 155	.008	-1.095

HIND DIRECTION 350		TEMPERATURE	69.50	DEGREES	F
BAROMETRIC PRESS 24.70	IN	HG VELOC	1TY	51.70FPS	

HIND DIRECTION 330 TEMPERATURE 69.50 DEGREES F BAROMETRIC PRESS 24.70 IN HG VELOCITY 51.70FPS

PRESSURE	MEAN	RMS	MAXIMUM	HINIHUM	PRESSURE	MEAN	RMC	N.L . 7 MI - M	
TAP	PRESSURE	PRESSURE	PRESSURE	PRESSURE	TAP	PRESSURF	PRESSURE	20122386	BELCURE
NUMBER	COEFFICIENT	COEFFICIENT	COEFFICIENT	COEFFICIENT	NUMBER	COEFFICIENT	COFFFICIENT	COEFFICIENT	CARESSURE
301	641	.112	273	-1.468	335	591		tor interest	CUEFFICIER
302	656	.195	.164	-1.741	356	396	. 199	- 117	
303	446	.144	.157	-1.018	337	370	.112	- 480	
304	641	.104	202	-1,159	339	311	146	200	
305	595	. 120	000	-1.072	339	277	176	. 828	
306	309	.132	. 551	845	540	400	.281	. 550	-1 867
507	369	.109	.229		341	205	. 152	.297	- 716
309	301	.095	.005	707	342	219	.173	870	
309	394	.092	049	778	343	300	.074	- 079	- 587
510	352	.091	054	- 669	344	426	. 977	- 198	- 764
311	279	.100	. 362	716	345	391	. 373	157	- 720
512	249	.114	. 150	762	346	196	. 362	.006	- 442
515	653	.109	219	-1.045	547	559	.142	. 155	-1 055
314	557	.128	. 050	- 999	349	271		027	- 628
315	371	.148	.256	-1.064	401	664	. 389	401	996
316	296	.150	.207	757	402	658		363	-1.026
317	345	. 393	. 375	679	, 405	662	.091	598	975
318	359	.097	075	705	404	600	.105	502	-1.168
519	354		062	625	405	668	. 0 . 0	300	995
320	263	.106	. 371	656	406	669	.002	574	988
321	255	.135	.215	725	407	681	. 387	409	-1.055
322	505	.140	.115	-1.040	408	697	.110	569	-1.259
323	452	.141	.256	926	409	697	.107	560	-1.158
524	507	.127	.507	702	410	706	.109	572	-1.257
325	294	.109	.195	795	411	735	.110	599	-1.206
326	322	. 398	.110	715	412	706	. 162	284	-1.614
327	345	. 098	.186	792	413	694	. 152	254	-1.775
529	307	.104	. 366	926	414	711	. 116	502	-1.091
529	244	.152	.249	701	415	766	. 155	262	-1.556
350	200	.150	.227	641	416	902	.200	52 3	-1.990
351	447	. 195	. 464	956	417	719	.158	199	-1.764
352	354	. 161	.576	\$55	419	750	.150	270	-1.761
333	315	.129	. 185	729	419	703	.153	264	-1.428
334	362	. 094	017	945	420	917	.254	255	-1.885

APPENDIX B

.

PRESSURE DATA FOR SELECTED TAPS AT TWO DEGREE WIND INCREMENTS FOR THE NEW TOWER

Notes:

1.	Pressure	coefficients	are	defined	in
	section 4	4.3			

- 2. Pressure tap code is defined in Figure 3
- 3. Azimuthal orientation can be determined from Figure 2

4. For all data:

temperature = 72.8 degrees F barometric pressure = 24.95 in. Hg free stream velocity, U_{∞} = 55.3 fps.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	WIND DIRECTION	MEAN PRESSURE COEFFICIENT	RMS PRESSURE COEFFICIENT	MAX IMUM PRESSURE COEFF IC I ENT	MINIMUM PRESSURE COEFFICIENT
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	170	024	.169	.510	888
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	172	053	.190	.545	-1.896
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	174	119	.213	.628	-1.411
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	176	189	.246	.461	-1.851
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	178	248	.261	.593	-2.059
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	180	356	.322	.633	-2.401
184613.399.478-2.838186796.388.472-2.838188855.371.563-2.599190828.324.370-2.838192811.281.183-1.925	182	456	.355	.485	-2.031
186796.388.472-2.838188855.371.563-2.599190828.324.370-2.838192811.281.183-1.925	184	613	.399	.478	-2.838
188855.371.563-2.599190828.324.370-2.838192811.281.183-1.925	186	796	.388	.472	-2.838
190828.324.370-2.838192811.281.183-1.925	188	855	.371	.563	-2.599
192811 .281 .183 -1.925	190	828	.324	.370	-2.838
	192	811	.281	.183	-1.925
194795 .255 .229 -2.347	194	795	.255	.229	-2.347
196773 .252 .231 -2.040	196	773	.252	.231	-2.040
198760 .229 .060 -2.404	198	760	.229	.060	-2.404
200739 .223 .018 -2.083	200	739	.223	.018	-2.083

	MEAN	RMS	MAXIMUM	MINIMUM
WIND	PRESSURE	PRESSURE	PRESSURE	PRESSURE
DIRECTION	COEFFICIENT	COEFFICIENT	COEFFICIENT	COEFFICIENT
170	014	.123	.468	515
172	021	.119	.472	441
174	033	.112	.420	385
176	049	.113	.385	424
178	065	.109	.389	563
180	083	.111	.327	691
182	088	.116	.326	769
184	091	.129	.333	928
186	088	.153	.479	-1.224
188	064	.170	.568	-1.136
190	088	.229	.711	-1.120
192	147	.272	.572	-1.197
194	182	.287	.607	-1.368
196	279	.301	.588	-1.478
198	359	.304	.538	-1.427
200	426	.282	.439	-1.395

WIND DIRECTION	MEAN PRESSURE COEFFICIENT	RMS PRESSURE COEFFICIENT	MAXIMUM PRESSURE COEFFICIENT	MINIMUM PRESSURE COEFFICIENT
170	.102	.137	.752	471
172	.088	.136	.632	391
174	.074	.119	.601	337
176	.048	.115	.540	412
178	.024	.110	.547	367
180	001	.104	.400	442
182	014	.101	.400	417
184	023	.094	.382	376
186	033	.088	.303	348
188	042	.089	.500	453
190	045	.083	.259	405
192	057	.084	.272	520
194	062	.092	.262	686
196	077	.099	.245	732
198	086	.103	.227	707
200	108	.124	.323	920

WIND DIRECTION	MEAN PRESSURE COEFFICIENT	RMS PRESSURE COEFFICIENT	MAXIMUM PRESSURE COEFFICIENT	MINIMUM PRESSURE COEFFICIENT
170	.217	.147	.757	406
172	.193	.142	.723	341
174	.181	.129	.725	305
176	.145	.119	.551	313
178	.108	.118	.612	287
180	.074	.116	.604	280
182	.050	.113	.507	448
184	.001	.015	.048	064
186	.012	.099	.491	382
188	005	.096	.536	389
190	019	.089	.349	346
192	034	.080	.298	464
194	037	.083	.492	394
196	048	.081	.352	525
198	059	.078	.226	371
200	065	.080	.269	603

WIND DIRECTION	MEAN PRESSURE COEFFICIENT	RMS PRESSURE COEFFICIENT	MAX IMUM PRESSURE COEFFICIENT	MINIMUM PRESSURE COEFFICIENT
170	.268	.153	.834	316
172	.255	.138	.808	200
174	.236	.129	.795	252
176	.202	.126	.679	349
178	.161	.117	.629	335
180	.125	.128	.808	309
182	.102	.122	.597	319
184	.069	.114	.766	328
186	.050	.108	.585	316
188	.025	.103	.556	346
190	.001	.095	.489	349
192	005	.088	.446	316
194	015	.085	.323	345
196	026	.082	.330	346
198	037	.078	.416	400
200	045	.072	.222	338

WIND	MEAN PRESSURE	RMS PRESSURE	MAX IMUM PRESSURE	MINIMUM PRESSURE
DIRECTION	COEFFICIENT	COEFFICIENT	COEFFICIENT	COEFFICIENT
170	.259	.147	.852	326
172	.244	.136	.818	191
174	.226	.130	.798	252
176	.193	.127	.651	421
178	.153	.118	.626	302
180	.116	.126	.636	-,381
182	.095	.122	.500	313
184	.062	.114	.538	399
186	.045	.114	.453	306
188	.016	.106	.450	348
190	013	.099	.345	345
192	020	.092	.373	333
194	028	.088	.341	391
196	037	.085	.391	366
198	052	.080	.364	421
200	057	.073	.301	377

WIND DIRECTION	MEAN PRESSURE COEFFICIENT	RMS PRESSURE COEFFICIENT	MAX IMUM PRESSURE COEFFICIENT	MINIMUM PRESSURE COEFFICIENT
170	.208	.134	.837	344
172	.197	.128	.734	200
174	.180	.124	.716	305
176	.156	.125	.615	417
178	.123	.113	.571	255
180	.093	.121	.625	345
182	.072	.117	.484	274
184	.042	.110	.485	407
186	.028	.113	.596	339
188	.000	.106	.377	391
190	024	.100	.352	360
192	031	.094	.396	360
194	038	.089	.302	380
196	047	.086	.319	362
198	060	.081	.303	452
200	064	.073	.355	366

WIND DIRECTION	MEAN PRESSURE COEFFICIENT	RMS PRESSURE COEFFICIENT	MAX IMUM PRESSURE COEFFICIENT	MINIMUM PRESSURE COEFFICIENT
170	.049	.110	.493	303
172	.041	.109	.637	302
174	.027	.104	.482	356
176	.017	.107	.474	409
178	003	.097	.428	328
180	020	.102	.403	482
182	035	.099	.335	344
184	055	.094	.284	413
186	065	.097	.428	382
188	088	.093	.290	-,385
190	105	.090	.288	430
192	111	.085	.306	395
194	116	.081	.236	513
196	122	.079	.265	496
198	129	.072	.197	463
200	130	.067	.204	416

WIND DIRECTION	MEAN PRESSURE COEFFICIENT	RMS PRESSURE COEFFICIENT	MAX IMUM PRESSURE COEFFICIENT	MINIMUM PRESSURE COEFFICIENT
170	107	.088	.256	450
172	113	.082	.204	392
174	120	.085	.284	410
176	127	.083	.255	434
178	134	.081	.308	427
180	136	.079	.310	399
182	147	.083	.352	467
184	158	.078	.208	481
186	169	.079	.164	568
188	177	.075	.119	466
190	181	.075	.224	475
192	182	.071	.108	459
194	188	.067	.076	535
196	190	.067	.147	533
198	190	.066	.068	474
200	185	.060	.050	449

	MEAN	RMS	MAX IMUM	MINIMUM
WIND	PRESSURE	PRESSURE	PRESSURE	PRESSURE
DIRECTION	COEFFICIENT	COEFFICIENT	COEFFICIENT	COEFFICIENT
170	406	.208	.127	-1.589
172	439	.234	.202	-1.738
174	498	.257	.097	-2.265
176	-,563	.293	.195	-2.041
178	584	.281	.190	-2.235
180	561	.260	.169	-2.209
182	541	.238	.168	-1.771
184	546	.222	.060	-1.645
186	517	.193	.072	-1.476
188	498	.169	.003	-1.254
190	487	.160	.001	-1.135
192	491	.112	159	878
194	497	.148	.024	-1.067
196	495	.158	.003	-1.127
198	518	.176	030	-1.388
200	518	.185	.026	-1.440

TAP	NUMBER	323

WIND DIRECTION	MEAN PRESSURE COEFFICIENT	RMS PRESSURE COEFF LC IENT	MAX IMUM PRESSURE COEFFICIENT	MINIMUM PRESSURE COEFFICIENT
170	258	.124	.290	818
172	265	.126	.211	813
174	266	.126	.139	949
176	263	.126	.180	-1.017
178	274	.140	.284	-1.072
180	278	.146	.212	995
182	302	.165	.209	-1.021
184	350	.185	.175	-1.128
186	387	.185	.283	-1.045
188	406	.169	.194	-1.092
190	400	.165	.180	-1.102
192	394	.151	.197	921
194	394	.154	.085	927
196	386	.159	.166	956
198	387	.170	.220	-1.124
200	385	.174	.288	-1.057

	MEAN	RMS	MAX IMUM	MINIMUM
WIND	PRESSURE	PRESSURE	PRESSURE	PRESSURE
DIRECTION	COEFFICIENT	COEFFICIENT	COEFFICIENT	COEFFICIENT
170	139	.124	.400	678
172	154	.127	.370	672
174	161	.119	.316	640
176	163	.105	.255	611
178	171	.102	.315	521
180	157	.090	.188	51i
182	151	.096	.241	581
184	148	.109	.220	725
186	156	.126	.242	794
188	172	.132	.219	787
190	179	.136	.255	739
192	198	.131	.274	683
194	204	.127	.164	770
196	211	.131	.262	811
198	211	.132	.231	758
200	218	.134	.226	880

WIND DIRECTION	MEAN PRESSURE COEFFICIENT	RMS PRESSURE COEFFICIENT	MAX IMUM PRESSURE COEFFICIENT	MINIMUM PRESSURE COEFFICIENT
170 172 174 176 178 180 182 184 186 188 190 192 194	026 041 053 085 102 112 113 100 101 098 088 091 097	.143 .139 .129 .124 .110 .093 .093 .093 .088 .093 .103 .096 .102 .102	. 622 . 561 . 540 . 461 . 513 . 308 . 298 . 319 . 230 . 345 . 249 . 244 . 302	556 572 503 556 536 471 492 459 545 678 488 675 639
196 198 200	107 111 115	.105 .106 .106	.272 .248 .290	675 622 596

WIND DIRECTION	MEAN PRESSURE COEFFICIENT	RMS PRESSURE COEFFICIENT	MAX IMUM PRESSURE COEFFICIENT	MINIMUM PRESSURE COEFFICIENT
170	.056	.147	.842	407
172	.040	.145	.644	599
174	.019	.133	.694	398
176	030	.129	.626	424
178	053	.116	.528	533
180	079	.100	.439	436
182	090	.093	.316	450
184	095	.088	.413	377
186	094	.086	.254	459
188	089	.083	.524	446
190	077	.074	.247	380
192	074	.077	.254	475
194	077	.078	.230	474
196	081	.062	.132	337
198	081	.081	.303	478
200	084	.082	.258	543

WIND	MEAN	RMS	MAXIMUM	MINIMUM
WIND	PRESSURE	PRESSURE	PRESSURE	PRESSURE
DIRECTION	COEFFICIENT	COEFFICIENT	COEFFICIENT	COEFFICIENT
170	.109	.141	.772	357
172	.093	.139	.715	382
174	.066	.126	.716	370
176	.019	.128	.617	391
178	010	.113	.439	421
180	044	.103	.484	371
182	064	.103	.377	423
184	082	.094	.479	373
186	092	.088	.381	448
188	092	.079	.395	416
190	085	.070	.283	413
192	077	.070	.191	420
194	079	.067	.284	349
196	079	.064	.143	352
198	075	.066	.211	392
200	076	.071	.277	389

	MEAN	RMS	MAXIMUM	MINIMUM
WIND	PRESSURE	PRESSURE	PRESSURE	PRESSURE
DIRECTION	COEFFICIENT	COEFFICIENT	COEFFICIENT	COEFFICIENT
170	.111	.126	.715	385
172	.101	.123	.658	341
174	.074	.114	.596	424
176	.033	.117	.614	481
178	.003	.108	.430	373
180	035	.100	.488	421
182	053	.102	.417	475
184	081	.098	.333	421
186	096	.091	.341	459
188	110	.078	.327	457
190	110	.068	.169	425
192	105	.066	.187	396
194	104	.064	.259	380
196	102	.060	.200	335
198	097	.059	.132	352
200	097	.060	.176	316

WIND DIRECTION	MEAN PRESSURE COEFFICIENT	RMS PRESSURE COEFFICIENT	MAXIMUM PRESSURE COEFFICIENT	MINIMUM PRESSURE COEFFICIENT
170	.019	.102	.515	398
172	.013	.098	.608	281
174	003	.096	.546	431
176	024	.097	.367	449
178	049	.099	.430	435
180	069	.098	.418	436
182	094	.092	.284	417
184	117	.091	.403	509
186	145	.088	.412	420
188	162	.083	.281	553
190	167	.069	.168	431
192	165	.063	.140	435
194	164	.061	.114	434
196	163	.060	.082	406
198	153	.056	.058	472
200	149	.060	.103	506

	MEAN	RMS	MAXIMUM	MINIMUM
WIND	PRESSURE	PRESSURE	PRESSURE	PRESSURE
DIRECTION	COEFFICIENT	COEFFICIENT	COEFFICIENT	COEFFICIENT
170	116	.063	.194	352
172	119	.062	.200	333
174	130	.060	.147	410
176	142	.060	.118	370
178	158	.062	.132	413
180	170	.063	.098	402
182	183	.060	.109	409
184	200	.061	.069	410
186	215	.060	.040	456
188	230	.058	006	475
190	235	.052	054	485
192	233	.051	030	412
194	231	.050	029	460
196	228	.049	061	485
198	216	.045	.032	460
200	208	.047	026	395
TAP NUMBER 331

WIND DIRECTION	MEAN PRESSURE COEFFICIENT	RMS PRESSURE COEFFICIENT	MAXIMUM PRESSURE COEFFICIENT	MINIMUM PRESSURE COEFFICIENT
170 172 174 176 178 180 182 184 186 188 190 192 194 196	342 356 376 342 315 260 225 221 230 256 303 345 373 391	.131 .139 .145 .141 .132 .121 .116 .124 .138 .161 .178 .181 .182 .189	.097 .197 .101 .219 .172 .168 .143 .143 .118 .262 .127 .107 .147 .082 .104	-1.082 -1.068 -1.203 -1.145 880 849 -1.032 -1.027 -1.187 -1.084 -1.309 -1.266 -1.330 -1.467
198 200	400 413	.181 .190	.026	-1.629 -1.315

TAP NUMBER 332

	MEAN	RMS	MAXIMUM	MINIMUM
WIND	PRESSURE	PRESSURE	PRESSURE	PRESSURE
DIRECTION	COEFFICIENT	COEFFICIENT	COEFFICIENT	COEFFICIENT
170	260	.094	.096	698
172	262	.092	.172	806
174	266	.101	.158	748
176	248	.099	.179	650
178	235	.105	.139	640
180	202	.100	.218	576
182	183	.094	.173	579
184	176	.097	.101	718
186	177	.101	.267	705
188	189	.121	.155	849
190	204	.142	.249	-1.132
192	225	.156	.352	-1.211
194	229	.148	.280	-1.063
196	242	.165	.236	-1.182
198	246	.156	.273	917
200	249	.165	.259	906

Figure 1. Plan View of Wind Tunnels

Welton Street

Figure 2a. Site Plan for the First National Bank

18th Street

Fig. 2b. Site Plan for the First National Bank.

Figure 3b. Pressure tap locations

Figure 3c. Pressure tap locations

Figure 3d. Pressure tap locations

Figure 3e. Pressure tap locations

Tower

Sides

Existing

Figure 4. Completed Model Installed in the Wind Tunnel.

Figure 5. Pressure Switch Installed in the Model.

Figure 6. Data Sampling Time Verification

Figure 7. Typical Hot Wire Calibration

Figure 8a. Mean Velocity Profiles Approaching the Model

Figure 8b. Mean Velocity Profiles Approaching the Model

Figure 9. Turbulence Intensity Profiles