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ABSTRACT 

 

EXAMINING THE IMPACTS OF CONVECTIVE ENVIRONMENTS ON STORMS USING 

OBSERVATIONS AND NUMERICAL MODELS 

 

Convective clouds are significant contributors to both weather and climate. While the 

basic environments supporting convective clouds are broadly known, there is currently no 

unifying theory on how joint variations in different environmental properties impact convective 

cloud properties. The overaching goal of this research is to assess the response of convective 

clouds to changes in the dynamic, thermodynamic and aerosol properties of the local 

environment. To achieve our goal, two tools for examining convective cloud properties and their 

environments are first described, developed and enhanced. This is followed by an examination of 

the response of convective clouds to changes in the dynamic, thermodynamic and aerosol 

properties using these enhanced tools.  

 In the first study comprising this dissertation, we assess the performance of small 

temperature, pressure, and humidity sensors onboard drones used to sample convective 

environments and convective cloud outflows by comparing them to measurements made from a 

tethersonde platform suspended at the same height. Using 82 total drone flights, including nine at 

night, the following determinations about sensor accuracy are made. First, when examining 

temperature, the nighttime flight temperature errors are found to have a smaller range than the 

daytime temperature errors, indicating that much of the daytime error arises from exposure to 

solar radiation. The pressure errors demonstrate a strong dependence on horizontal wind speed 

with all of the error distributions being multimodal in high wind conditions. Finally, dewpoint 
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temperature errors are found to be larger than temperature errors. We conclude that 

measurements in field campaigns are more accurate when sensors are placed away from the 

drone’s main body and associated propeller wash and are sufficiently aspirated and shielded 

from incoming solar radiation. 

 The Tracking and Object-Based Analysis of Clouds (tobac) tracking package is a 

commonly used tracking package in atmospheric science that allows for tracking of atmospheric 

phenomena on any variable and on any grid. We have enhanced the tobac tracking package to 

enable it to be used on more atmospheric phenomena, with a wider variety of atmospheric data 

and across more diverse platforms than before. New scientific improvements (three spatial 

dimensions and an internal spectral filtering tool) and procedural improvements (enhanced 

computational efficiency, internal re-gridding of data, and treatments for periodic boundary 

conditions) comprising this new version of tobac (v1.5) are described in the second study of this 

dissertation. These improvements have made tobac one of the most robust, powerful, and 

flexible identification and tracking tools in our field and expanded its potential use in other 

fields.  

 In the third study of this dissertation, we examine the relationship between the 

thermodynamic and dynamic environmental properties and deep convective clouds forming in 

the tropical atmosphere. To elucidate this relationship, we employ a high-resolution, long-

duration, large-area numerical model simulation alongside tobac to build a database of 

convective clouds and their environments. With this database, we examine differences in the 

initial environment associated with individual storm strength, organization, and morphology. We 

find that storm strength, defined here as maximum midlevel updraft velocity, is controlled 

primarily by Convective Available Potential Energy (CAPE) and Precipitable Water (PW); high 
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CAPE (>2500 J kg-1) and high PW (approximately 63 mm) are both required for midlevel CCC 

updraft velocities to reach at least 10 m s-1. Of the CCCs with the most vigorous updrafts, 80.9% 

are in the upper tercile of precipitation rates, with the strongest precipitation rates requiring even 

higher PW. Furthermore, vertical wind shear is the primary differentiator between organized and 

isolated convective storms. Within the set of organized storms, we also find that linearly-oriented 

CCC systems have significantly weaker vertical wind shear than nonlinear CCCs in low- (0-1 

km, 0-3 km) and mid-levels (0-5 km, 2-7 km). Overall, these results provide new insights into 

the joint environmental conditions determining the CCC properties in the tropical atmosphere.  

Finally, in the fourth study of this dissertation, we build upon the third study by 

examining the relationship between the aerosol environment and convective precipitation using 

the same simulations and tracking approaches as in the third study. As the environmental aerosol 

concentrations are increased, the total domain-wide precipitation decreases (-3.4%). Despite the 

overall decrease in precipitation, the number of tracked terminal congestus clouds increases 

(+8%), while the number of tracked cumulonimbus clouds is decreased (-1.26%). This increase 

in the number of congestus clouds is accompanied by an overall weakening in their rainfall as 

aerosol concentration increases, with a decrease in overall rain rates and an increase in the 

number of clouds that do not precipitate (+10.7%). As aerosol particles increase, overall cloud 

droplet size gets smaller, suppressing the initial generation of rain and leading to clouds 

evaporating due to entrainment before they are able to precipitate. 
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CHAPTER 1: INTRODUCTION 

 

1.1. Importance of Convective Clouds 

Convective clouds are essential components of the atmospheric system at local through 

global spatial scales and weather and climate temporal scales. They are responsible for many 

different weather hazards, including flooding, tornadoes, large hail, and strong winds. On a 

global scale, convective clouds are the source of about half of the total rainfall on earth (Yang 

and Smith 2008) and are important contributors to the global circulation (Riehl and Malkus 

1958). The formation and development of convective clouds require certain thermodynamic, 

dynamic, and aerosol environmental conditions, and the combination of environmental 

parameters can change the behavior of the clouds that form. Changes to the global environment 

will inevitably also cause variations in these environmental properties, which can then lead to 

changes to the convective clouds that form. These variations in convective cloud properties are 

likely to produce immediate changes to the local weather effects, and, subsequently feedbacks to 

the global circulation and climate. Understanding the impacts of environmental parameters on 

convective clouds is therefore critical for processes across weather and climate scales. 

1.2. Convective Cloud Environments 

The basic properties of environments favorable for convective clouds are already broadly 

known and understood. In the extreme case, clouds cannot form in an environment with no water 

vapor, as vapor is required to condense for clouds to form in the first place. In a more realistic 

case, the development of convective clouds requires a vertical temperature profile such that as air 

rises, the latent energy released by condensing or freezing water vapor into liquid drops or ice 

particles allows the upward moving air to remain warmer and, therefore, less dense than 
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surrounding environmental air. Thermodynamic characteristics are not the only environmental 

properties that have important impacts on convection. Dynamical properties, such as wind shear, 

are also critical contributors to convective properties, in particular how and whether convective 

clouds tend to organize themselves (Klemp and Wilhelmson 1978; Weisman and Klemp 1982; 

LeMone et al. 1998; Johnson et al. 2005) or rotate, as in the case of supercell thunderstorms 

(Doswell 1987).  

The thermodynamic and dynamic properties of the local environment are not the only 

contributor to convective properties. Convective clouds also require the presence of aerosol 

particles that water vapor can condense onto in order to become cloud drops. These cloud 

condensation nuclei (CCN) are a subset of aerosol particles in the atmosphere, and convective 

cloud properties can be highly influenced by their number, size, type, and properties (Squires 

1956; Twomey 1960; Albrecht 1989). Further, through their effects on radiative properties, CCN 

may influence the thermodynamic environment (Shine et al. 1990). 

While the basic properties of the thermodynamic, dynamic, and aerosol environments 

required to produce and maintain convective clouds are known, there is still not a universal 

theory linking joint variations in environmental conditions to convective properties. The desire to 

quantify this environment – convective storm relationship has been highlighted in recent years 

(National Academy of Science, 2017), in particular as we now enter the era of observations and 

numerical modeling of individual convective cloud properties globally. To couple to these 

observations and model data of convective properties on a global scale, new technologies for 

observing convective environments and quantifying the links between environments and 

convective clouds must be developed. Further, we must first understand the relationships 
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between environments and convective cloud properties on local scales before we can understand 

their impacts globally.   

1.3. Dissertation Outline and Science Questions 

As the relationships between environments and convective cloud properties are not fully 

known, the primary goal of this dissertation is to first describe new tools for sampling convective 

environments and then to use those tools to examine the links between environment properties 

and convective clouds, regionally.  

In Chapter 21, an extensive analysis of the use of multirotor drones (also known as small 

Uncrewed Aerial Systems [sUAS] or small Uncrewed Aerial Vehicles [sUAV]) for sampling key 

thermodynamic parameters in the boundary layer is performed. While fixed-wing drones have 

long been used in atmospheric science (Vorontsov et al. 1958), the use of multirotor drones is 

much more recent, thanks to advances in flight controller and battery technology. The accuracy 

of atmospheric environmental parameters measured from fixed-wing drones is well quantified, 

thanks to their long heritage and overall similarity to research aircraft platforms. However, 

because of their multiple rotors and internal electronics, the measurement accuracy from 

multirotor drones is not as well understood. While some previous studies have examined the 

measurement accuracy of temperature, pressure, and humidity sensors from multirotor drones 

(Greene et al. 2019; Barbieri et al. 2019), a complete quantification of the thermodynamic 

measurement accuracy of unshielded sensors has not been previously conducted. Understanding 

potential biases and the accuracy of thermodynamic measurements from novel drone platforms is 

 
1 This study, titled “Where Should the Sensor Go? An Evaluation of Multirotor Drone Sensor 

Siting Locations” (Freeman, S.W., J. Bukowski, L.D. Grant, P.J. Marinescu, J.M. Park, S.M. 

Hitchcock, and S.C. van den Heever, 2022) is to be submitted to the Journal of Atmospheric and 

Oceanic Technology 
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critical for their use in measurements of convective boundary layers. Therefore, the first goal of 

this dissertation is to:  

(1) Evaluate the errors and biases induced by a multirotor drone on measurements of 

pressure, temperature, and humidity in the boundary layer. 

In Chapter 32 of this dissertation, enhancements to a cloud object tracking tool used for 

identifying, tracking, and segmenting convective clouds and other atmospheric phenomena is 

presented. As both model and observational datasets continue to grow, tools for automatically 

tracking convective clouds and their environments are required. However, many existing 

tracking tools are only able to be used with one kind of atmospheric phenomena (e.g., Núñez 

Ocasio et al. 2020), or one kind of variable (Dixon and Weiner 1993). Data on convective clouds 

and other atmospheric phenomena are produced from a variety of different sources, such as 

satellites, radars, and numerical models. Tracking the same phenomenon in multiple different 

data sources should not require multiple different algorithms, as such approaches can produce 

mismatches and hence different results owing to their differing methodologies. The Tracking and 

Object-Based Analysis of Clouds (tobac; Heikenfeld et al. 2019) package resolves this issue, 

allowing users to track any atmospheric phenomenon with any variable on any grid. tobac’s 

variable- and grid-agnostic capabilities sets it apart from all other tracking algorithms commonly 

used in atmospheric science, but the original (v1.2) version of tobac is computationally slow and 

can only track in two spatial dimensions. As convective cloud datasets continue to grow, the 

 
2 This study, titled “tobac v1.5: Introducing Fast 3D Tracking, Splits and Mergers, and Other 

Enhancements for Identifying Meteorological Phenomena” (Sokolowsky, G.A.*, S.W. Freeman*, 

W.K. Jones, J. Kukulies, F. Senf, P.J. Marinescu, M. Heikenfeld, K. Brunner, E.C. Bruning, 

S.M. Collis, R.C. Jackson, G.R. Leung, B. Raut, S.M. Saleeby, P. Stier, S.C. van den Heever, 

2022; *these authors contributed equally to this work) is to be submitted to Geoscientific Model 

Development 
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ability to identify and track millions of convective clouds rapidly and in three dimensions is 

necessary to quantify convective cloud properties and processes, how they evolve over storm 

lifecycles, and the environments that create them. Hence, the second goal of this dissertation is 

to:  

(2) Enhance the ability to identify, track, and segment convective cloud properties and 

processes and their environments. 

In Chapter 43, we explore how the dynamic and thermodynamic environment influences the 

properties of the two deeper convective cloud modes in the tropics: congestus and cumulonimbus 

clouds (Johnson et al. 1999). Obtaining robust environment – cloud relationships requires a large 

database of both convective cloud properties and their environments. To build this database of 

clouds, a novel long-duration, high-resolution, large-area numerical model simulation (termed 

“basin-scale simulation”) is conducted. The tobac tracking package, described in Chapter 3, is 

used to track nearly 200,000 individual clouds throughout their entire lifecycle to build a 

substantial database of convective clouds and their environments. Using this database, three 

environmental properties of convective clouds were examined: convective cloud intensity (both 

precipitation intensity and vertical velocity intensity), convective cloud organization, and the 

linearity of organized convective systems. Understanding how the basic properties of convective 

environments influence these three key cloud properties is the first step towards building a 

unified theory on how convective clouds influence their environment. Therefore, the third goal 

of this dissertation is to:  

 
3 This study, titled “Dynamic and Thermodynamic Environmental Modulation of Tropical 

Congestus and Cumulonimbus in the Maritime Continent” (Freeman, S.W., D.J. Posselt, J.S. 

Reid, S.C. van den Heever, 2022, accepted pending revision) is accepted pending revision at the 

Journal of the Atmospheric Sciences 
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(3) Elucidate the relationships between convective cloud intensity, organization, and 

morphology and the thermodynamic and dynamic environmental properties of the 

tropical atmosphere 

Finally, in Chapter 54 of this dissertation, an analysis of how the aerosol environment 

influences convective cloud precipitation in the tropics is presented. As discussed in Section 1.2 

above, the concentration of aerosol particles in the atmosphere can have impacts on clouds and 

precipitation from changing cloud properties directly and from influencing the broader 

convective environments indirectly. Expanding on the basin-scale methodology introduced in 

Chapter 4, two additional basin-scale numerical experiments with tobac-enabled tracking are 

conducted, in which only the concentration of aerosol particles in the atmosphere is varied. This 

experimental design allows for an examination of how aerosol particles alone influence 

convective properties on both a storm- and scene-scale. Hence, the fourth goal of this dissertation 

is to: 

(4) Examine the relationship between aerosol particles and the precipitation produced by 

the congestus and cumulonimbus modes of tropical convection on both a cloud- and 

scene-level. 

In Chapter 6, a summary of this dissertation research, a discussion of the findings, and the 

implications of this work are presented. Impacts on future missions examining convective 

environments, such as the upcoming INvestigation of Convective UpdraftS (INCUS) and 

Atmosphere Observing System (AOS) satellites are discussed, and opportunities for future 

model-observational research are examined.   

 
4 This study, titled “Aerosol-induced Enhancement of Congestus and Suppression of 

Cumulonimbus Clouds in the Tropics” (Freeman, S.W. and S.C. van den Heever, 2022, in 

preparation) is in preparation for Geophysical Research Letters 
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CHAPTER 2:  WHERE SHOULD THE SENSOR GO? AN EVALUATION OF 

MULTIROTOR DRONE SENSOR SITING LOCATIONS 

 

2.1.  Introduction 

Small drones (hereafter referred to as drones; also known as small Uncrewed Aerial 

Systems [sUAS or UAS] or small Uncrewed Aerial Vehicles [sUAV or UAV]) have been used 

for atmospheric science research since as early as 1956 (Vorontsov et al. 1958; Humphrey 1961). 

Until the 2010s, the drones utilized were exclusively fixed-wing drones (e.g., Schafer et al. 2001; 

Houston et al. 2011; Elston et al. 2014; Riganti and Houston 2017). Multirotor drones were then 

introduced into atmospheric science research and have since increased in popularity (e.g., Brady 

et al. 2016; Lee et al. 2017; Geerts et al. 2017, 2018; Vömel et al. 2018). This enhanced 

popularity of multirotor drones is due in part to their ability to take off and land vertically, their 

ability to hover, their low cost, and their relative ease to fly.  

A wide body of research has investigated the accuracy of measurements made on fixed-

wing drones, including thermodynamic variables (e.g., Spiess et al. 2007; Houston et al. 2016) 

and winds (e.g., Shuqing et al. 1999; van den Kroonenberg et al. 2008). However, relatively less 

work has examined the accuracy of thermodynamic measurements made from multirotor drones 

as compared to fixed-wing drones. This is in spite of the fact that multirotor drones have 

complex aerodynamic interactions caused by their multiple propellers operating at different 

speeds close to each other (Yoon et al. 2016) which can be expected to impact the measurements 

being made.  

Although the accuracy and precision of measurements made aboard multirotor drones are 

not yet well characterized, several field campaigns have already employed multirotor drones to 
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measure thermodynamic variables. These campaigns include the Colorado State University 

Convective CLoud Outflows and UpDrafts Experiment (C3LOUD-Ex; van den Heever et al. 

2021); the Verification of the Origins of Rotation in Tornadoes EXperiment-SouthEast 

(VORTEX-SE; https://www.nssl.noaa.gov/projects/vortexse/ ; Lee et al. 2017; Lee et al. 2019); 

the Lower Atmospheric Process Studies at Elevation-a Remotely piloted Aircraft Team 

Experiment (LAPSE-RATE; Barbieri et al. 2019); and the Land-Atmosphere Feedback 

Experiment (LAFE; Wulfmeyer et al. 2018; Lee et al. 2019). A thorough characterization of 

multirotor thermodynamic measurement accuracy is needed to best interpret and results of these 

recent field campaigns (Koch et al. 2018).  

Several recent studies have made some progress in assessing the accuracy of measurements 

made using multirotor drones. Greene et al. (2018) completed approximately an hour of 

experiments in which an octocopter drone (a multirotor with eight rotors) was secured to a 

surface and the rotors were turned on within an insulated indoor chamber. They moved a plastic 

cylindrical sensor shield containing a hot wire anemometer and a temperature sensor to several 

under-propeller positions. In these trials Greene et al. (2018) found that the location with the 

smallest temperature bias was approximately 5-10 cm below the propeller and one third the 

length of the propeller from the propeller tip (i.e., 1 cm away from the propeller tip for a 3 cm 

propeller). They argued that this placement allows for aspiration but is sufficiently far from the 

heat generated by the motor and wingtip vortices. Green et al. (2018) also observed that when the 

drone’s propellers were idle, their temperature measurements were biased between 0.5 and 1 K. 

They determined that this was due in part to the hot wire anemometer, which was located 

adjacent to their temperature sensor. 
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 Greene et al. (2019) completed a follow-up study to (Greene et al. 2018) by flying a 

quadcopter (a multirotor with four rotors) next to an Oklahoma Mesonet station. They completed 

seven flights, totaling approximately an hour of flight time, and examined three siting locations 

on the quadcopter. They found that solar radiation biased the sensor measurements by up to 0.2 

K when the sensors were not properly shielded. They also found that a sensor mounted inside a 

duct at the front of the quadcopter produced more consistent temperature results than sensors 

mounted in cylindrical shields underneath the propellers, although they did not statistically 

compare the drone-based measurements to measurements made from a separate platform. 

Overall, Greene et al. (2019) recommended siting temperature sensors inside a ducted fan at the 

center of the drone to ensure sufficient aspiration. The results in Greene et al. (2018) and (2019), 

which tested different platforms with different sensor siting locations, indicated that more 

research must be done to better understand the biases and accuracy of drone-based 

measurements.  

While Greene et al. (2018, 2019) examined thermodynamic measurement errors on one 

drone platform based on sensor placement, Barbieri et al. (2019) investigated measurements 

made from multiple drone platforms, some with multiple sensors in different places on a single 

drone. Their study utilized intercomparison data from the LAPSE-RATE field campaign, which 

employed 35 different fixed-wing and multirotor drones. Their drone-measured temperature, 

pressure, relative humidity, and wind measurements were compared to measurements from a 

nearby instrumented tower. In these tests they found that the mean value differences in the 

thermodynamic measurements made from the drones against the instrumented tower were 1.6 ± 

2.6 K in temperature, 1.01 ± 1.16 hPa in pressure, and -3.15 ± 12.12% in relative humidity. 

Barbieri et al. (2019) examined the measurements made from a large number of platforms, 
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sensors, and sensor placements. This approach did not fully characterize the errors from sensor 

placement. Their work instead characterized the worst-case error possible from measurements 

made by many drones.  

These three previous studies have provided steps toward understanding the errors induced 

by measuring thermodynamic variables onboard multirotor drones. However, no current work 

has investigated the accuracy of thermodynamic measurements made from multiple sensor 

positions aboard a multirotor while in flight and compared those measurements to observations 

recorded with identical sensors mounted to platforms other than drones. The work that is 

described here compares eight different sensor positions of drone-based temperature, pressure, 

and dewpoint temperature measurements to those made using tethersonde carried instruments 

located sufficiently far away from the direct influence of the drone’s propellers. Our goal is to 

analyze the errors induced by the multirotor itself in the measurements of each of these 

fundamental atmospheric variables. Further, in investigating these errors, we aim to provide 

already-completed field campaigns such as C3LOUD-Ex, LAFE, and others with a robust 

characterization of drone-based thermodynamic measurement errors. Finally, we include 

recommendations for sensor placement for future field campaigns that employ multirotor drones.  

2.2 Methodology 

To assess the accuracy of thermodynamic measurements made from multirotor drones, a 

comprehensive experiment suite using a hexacopter drone (a multirotor with six rotors) was 

designed. The experiments included 82 outdoor flights, 9 of which were flown at night, and were 

conducted adjacent to an instrumented tethered balloon (hereafter tethersonde). The flights were 

conducted from October 2018 to January 2019 and provided approximately 12.5 hours of total 
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sampling time. During each test flight eight different sensor siting locations onboard the 

multirotor were compared to the measurements taken on board the tethersonde.  

a. Drone and Sensor Setup 

The DJI Matrice 600 Pro (SZ DJI Technology Co., Ltd., Shenzhen, China) hexacopter is 

employed in these experiments. The Matrice 600 Pro, pictured in Figure 2.1a and 1b, has been 

used in atmospheric science field campaigns and published literature (e.g., Islam et al. 2019; van 

den Heever et al. 2019). The Matrice 600 Pro is powered by six batteries positioned at the center 

of the drone platform, which is also the location of the avionics and flight computers. Six arms 

extend radially from the center, and each arm contains an independently spinning motor and an 

attached 53 cm propeller. The drone dimensions are 1.668 m x 1.518 m x 0.727 m when in 

takeoff and landing configuration. After takeoff, the drone switches to cruise configuration and 

its landing legs fold upwards to the sides, reducing the height of the drone (Figure 2.1a). The legs 

remain retracted until the drone is configured for landing.  

The International Met Systems iMet XQ (Grand Rapids, MI, USA) sensor is used to 

make the thermodynamic measurements for this work. This particular sensor (Figure 2.1c) has 

been previously used to make thermodynamic measurements from multirotor drones (e.g., 

Hemingway et al. 2017; Themistocleous 2017; Dexheimer et al. 2018; Lee et al. 2019; 

van den Heever et al. 2019). The iMet XQ measures pressure, temperature, and humidity at 1 Hz. 

The specifications and sensor technologies of these measurements are detailed in Table 2.1. The 

humidity sensor reports relative humidity rather than an absolute measure of humidity and has a 

separate temperature sensor that can be used for more accurate conversions between humidity 

variables. To analyze the humidity for this research, the relative humidity values that are 

recorded by the sensors are converted to dewpoint temperature, an absolute value of atmospheric 
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moisture, using the temperature from the humidity sensors. The conversion from the native 

relative humidity values to dewpoint temperature is performed to eliminate the impacts of 

temperature bias on the relative humidity sensors, as relative humidity relies on accurate 

measurements of both temperature and moisture. Nine of the 12 sensors employed in these tests 

save the temperature of the humidity sensor in addition to the other three variables, while three 

of the older sensors do not report the humidity sensor’s temperature and are therefore excluded 

from the analysis of humidity. This should not bias the results because between each flight 

experiment each of the sensors was progressively moved from one location to the next. None of 

the sensors used in these experiments has a shield covering the temperature or humidity sensor, 

although the temperature sensor’s reflective coating helps mitigate the radiation error during 

daytime flights.  

To examine the impacts that different sensor placements have on thermodynamic 

measurements, eight different sensor sites onboard the drone are chosen for these experiments. 

The sensor sites are shown in Figure 2.1a and b. These eight different sensor sites represent what 

we believe are the most common and/or logical locations for sensors onboard multirotor drones. 

Two of the positions, CWProp and CCWProp (CW for a ClockWise rotating propeller and CCW 

for a CounterClockWise rotating propeller) are approximately 2 cm underneath the propellers 

and 5.5 cm inside the tip of the propeller when the propeller and arm are parallel. This distance is 

located away from the propeller tip by approximately 1/3 of the length of the propeller (8.8 cm 

on this platform), as recommended by Greene et al. (2018). The Top and OverBatt positions are 

situated on top of the drone. Top is located at the highest point atop the avionics bay but below 

the three upward pointing GPS antennae, and the OverBatt position is located on top of a battery 

bay with the temperature sensor extended away from the central portion of the drone by 
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approximately 2 cm. A similar placement to the OverBatt position was also used by Lee et al. 

(2019). One of the landing legs of the aircraft contain two positions, TopLeg and BotLeg, which 

are approximately 8 cm below one of the drone arms when in cruise configuration (Figure 2.1a). 

The TopShelf and BotShelf positions are on platforms mounted below the main electronics bay 

by approximately 7 and 15 cm, respectively. The TopShelf position was used to house the 

thermodynamic sensors during the C3LOUD-Ex field campaign.  

b. Drone and Sensor Setup 

To identify the drone-induced errors of the eight examined positions, the drone is flown 

adjacent to a tethersonde. The tethersonde is anchored in dead scrubland at the now-retired 

Christman Field Airport (hereafter Christman Field) in Fort Collins, CO. The anchor point of the 

tethersonde is at least 50 m from roads, fences, and other objects that could inadvertently 

influence the observations. The tethersonde is initially raised to a height of at least 50 m above 

the surface during the day and 30 m at night using a rope, but it is allowed to change its 

horizontal and vertical position with the wind. The altitude for the tethersonde is chosen to be 

high enough such as to be above the surface layer but low enough to reduce needed battery to 

climb and maneuver and allow more sampling time on a single battery set.  

The tethersonde instrumentation is mounted approximately 50 cm below the base of the 

balloon. This instrumentation consists of an International Met Systems iMet-1 radiosonde with 

an iMet XQ sensor of the same type as that on board the drone (Figure 2.1d). Although both the 

iMet-1 radiosonde and iMet XQ record GPS and thermodynamic variables, the GPS from the 

iMet-1 radiosonde is used as the tethersonde’s location value because the iMet XQ’s GPS 

antenna is directed at the surface, causing degraded accuracy. On the other hand, the iMet XQ is 

used for the thermodynamic measurements to remove any error that may potentially be caused 
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by differences in instrument technology between the iMet XQ and the iMet-1 radiosonde. The 

tethersonde is launched at the beginning of each flight day and allowed to remain airborne for the 

entire duration of the flights held on any one day. The tethersonde is, however, occasionally 

raised or lowered in order to avoid interference with manned aircraft traffic or to change the 

attached iMet XQ sensor halfway through the flight day as part of the iMetXQ drone sensor 

rotations. The iMet XQ sensors aboard the tethersonde are included in the rotations of the 

sensors aboard the drone; most sensors used on the drone are also on the tethersonde for at least a 

few flights. It should be noted that as for the sensors aboard the drone, the iMet XQ aboard the 

tethersonde is not shielded and instead has a reflective coating on the temperature sensor. While 

we recognize that this adds another possible source of error to the daytime flights in association 

with solar radiation, we have treated the measurements made from the tethersonde’s iMetXQ 

sensor as truth for this study as they are not subject to the airflow and perturbations induced by 

the drone.  

The drone takeoff and landing position is located 20 m east of the tethersonde anchor 

point. After takeoff, the drone is flown directly upwards until the altitudes of both the 

tethersonde and the drone are within a few meters of one other. Despite this initial check, the 

tethersonde is on average 9.13 m higher than the drone for the 82 flights in this study (9.71 m 

during the day flights and 4.2 m for the night flights). This mean altitude bias does not 

substantially affect the thermodynamic errors measured. When comparing only the data when the 

drone was higher than the tethersonde, the thermodynamic measurement errors are similar (not 

shown). The drone is oriented such that the front of the drone (the angle of the drone shown in 

Figure 2.1a) faces due south. While the tethersonde’s horizontal position and altitude is allowed 
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to vary in flight with the changing winds, the drone’s position is fixed in space for each of the 82 

flights using the drone’s autopilot function.  

Each of the flights has at least nine consecutive minutes of sampling time, not including 

the additional flight time necessary for takeoff, setup, and landing. After each flight, the sensors 

attached to each of the positions on the drone are rotated, with each sensor aboard the drone 

being sequentially moved to a different position. The sensor rotation is performed to remove any 

potential bias caused by a specific sensor-position combination. While the sensors aboard the 

drone are rotated after each flight, the sensor aboard the tethersonde is only changed either 

between flight days or halfway through the flights on a given day. The sensor on board the 

tethersonde each day is drawn from the set of sensors used in the drone rotations and is rotated 

between the tethersonde and the drone between flight days. 

c. Sampling Conditions 

The 82 flights are conducted at Christman Field in a variety of nonprecipitating 

meteorological conditions, which are sampled by the co-located Christman Field weather station 

(hereafter surface weather station) (Figure 2.2). The range of observed pressure (Figure 2.2c) is 

limited to between 830 and 855 hPa due to the site’s elevation (1573 m above sea level). Like the 

pressure, the moisture conditions observed (Figure 2.2b) are also bounded due to the dry climate 

in Colorado. The experiments are performed primarily in low wind conditions, as is evident from 

the distribution of sustained wind (Figure 2.2e) and gusts (Figure 2.2f). Low wind conditions are 

necessary to limit the motion of the tethersonde, and thus its altitude variability with respect to 

the drone. The wide range of thermodynamic and solar radiation (Figure 2.2d) conditions tested 

in this study significantly extends all of the previous studies described in Section 2.1 by 
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providing a statistically robust characterization of the errors associated with sampling 

thermodynamic conditions using multirotor drones. 

d. Data Quality Control 

Several steps are taken to quality control both the tethersonde and drone thermodynamic 

data. First, all twelve iMet XQ sensors employed in this study are placed in an insulated chamber 

11 times for between 8 and 72 hours each and calibrated to one another to remove any bias 

between the sensors. The maximum measured biases between sensors are 0.4 K in temperature, 1 

hPa in pressure, and 4% in relative humidity. The measured biases between the sensors for each 

variable are removed from the data obtained in this study. Next, only those measurements for 

which the drone’s measured altitude is within 30 m (50 m) in the vertical (horizontal) of the 

tethersonde’s measured altitude are used in order to enhance the likelihood that the tethersonde 

and drone measured air with similar thermodynamic properties. The 30 m vertical threshold is 

chosen because the nominal accuracy of the GPS aboard the iMet-1 radiosonde is ±15 m. The 50 

m horizontal threshold is selected because the length scale of boundary layer eddies is 

proportional to the height above the surface (Arya 2001). We therefore assume that 50 m in the 

horizontal approximated the width of the eddies at an altitude of 50 m above ground. Analysis 

reveals that the results of this study are not sensitive to the distance thresholds (not shown). In 

addition to removing data points where the drone and tethersonde are too far apart, data points 

are also removed where the iMet-1 or the iMet-XQ aboard the tethersonde record invalid data. 

No averaging is performed on the data except where described in Section 2.3e.  

2.3. Results 

For each thermodynamic variable, we examine the differences at each time between the 

measurements taken aboard the drone and the measurements taken aboard the tethersonde. We 
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define this difference as the error. The error is comprised of three potential sources: instrument 

error, drone-induced error, and radiative error. The instrument error is defined as any error 

caused by fluctuations in the instrument itself other than the calibration biases that have already 

been corrected. The drone-induced error is any error directly associated with the drone that 

would not exist if the instrument was mounted to the tethersonde. Possible sources of drone-

induced error include heat dissipated by the drone motors, avionics, and batteries, and airflow 

perturbations induced by the rapidly spinning rotors and their associated vortices. The radiative 

error component is defined as any error resulting from the effects of solar radiation, including 

heating of the sensor itself by the sun, heating of the surface of the drone below the sensor, or 

any other error that does not exist at night.  

The results from the 82 flights are discussed separately for each thermodynamic variable. 

Temperature is further stratified into daytime (73 flights) and nighttime (9 flights) results. A 

night flight is defined as any flight completed after nautical twilight and where 0.0 W m-2 

insolation is measured by the surface weather station. 

a. Daytime Temperature 

The temperature error, defined as the temperature measured by the tethersonde subtracted 

from the temperature measured by the drone at each time, is calculated separately for each sensor 

position (i.e., 𝑇!"#$%,'%$'#"	)#*+,-#$ − 𝑇,%,.%"'#$!%; where T is the temperature in K). The 

temperature error for each sensor location on the drone is shown in Figure 2.3 for the 73 daytime 

flights (a total of approximately 40,000 individual temperature observations for each sensor 

position). The mean errors between the drone and tethersonde are less than ±0.42 K for all eight 

tested siting locations, although the spread between the 2.5th and 97.5th percentiles reaches 2.79 

K, with the largest spread being -0.91 K ≤ T ≤ +1.88 K for TopShelf (Figure 2.3).The BotLeg 
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position, which is approximately 8 cm below the propeller and is shielded from the direct 

downward air forced from the propeller by the leg it is mounted to, has the smallest magnitude 

mean error (-0.07 K). This is in contrast to TopLeg, which has the largest magnitude mean error 

(+0.42 K) despite it being located only ~10 cm horizontally from the BotLeg position.  

One can categorize the eight sensors shown in Figure 2.3a into two main groups: those 

sensors that have a cold mean bias and lower error standard deviations (BotLeg, CCWProp, 

CWProp, OverBatt, Top), and those positions that have a warm mean bias and higher error 

standard deviations (BotShelf, TopLeg, TopShelf). These differences can be seen more clearly in 

Figure 2.3b-i, which show histograms of the errors for each of the eight sensor positions. The 

three sensor positions with the warm mean bias and higher errors (Figure 2.3c, h, and i) can 

generally be characterized as non-normal distributions that are skewed towards warmer 

temperatures relative to the tethersonde data. In contrast, the remaining positions (Figure 2.3b,d-

g) are similarly non-normal, but have smaller error standard deviations and negative tails, which 

indicates a large cold bias relative to the tethersonde. The situations in which this occurs will be 

explored below.  

 We now assess the three components of error (instrument, drone, and radiation) to 

understand the causes of the mean temperature errors. The substantial sampling time during 

daytime (11 hours; ~200,000 data points total) in this study and the fact that instrument errors are 

typically symmetric around zero after being corrected for any mean bias, means that the 

instrument errors are largely mitigated and thus play a trivial role in the mean thermodynamic 

errors. Therefore, the mean observation errors are primarily caused by drone-induced errors, 

radiative errors, or both. 
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To better characterize the radiative error present during the daytime flights, the flights are 

stratified by the average solar radiation that is observed at the surface weather station (Figure 

2.4). Each of the solar radiation bins shown in Figure 2.4 contains between eight and ten flights. 

With increasing insolation, the median bias generally becomes colder for those sensors receiving 

a large amount of aspiration (BotLeg, CCWProp, CWProp, OverBattery, Top). For those sensors 

receiving less aspiration (BotShelf, TopLeg, TopShelf), the mean bias typically becomes warmer 

with more insolation (BotShelf, TopLeg) and/or the error bars become substantially larger 

(TopLeg, TopShelf). The reason for these opposite trends appears to be twofold: (1) the reflective 

coating onboard the iMet sensors is likely inadequate to reflect all of the incoming solar energy; 

and (2) since the tethersonde does not receive forced aspiration unlike the drone which receives 

some from the propellers, the temperature measured on the tethersonde might be biased warm 

relative to the true environmental temperature, thus leading to a perceived cold bias on the drone 

for the five positions receiving more aspiration. Figure 2.4 further shows that the spread of the 

error generally increases with increasing solar radiation for all sensor positions. This suggests 

that simply placing sensors underneath propellers may not be sufficient to counteract the solar 

radiative error. Rather, Figure 2.4 suggests that efforts to properly shield sensors could be 

worthwhile. However, such shields can block ambient airflow, including airflow produced by the 

drone, thereby reducing sensor aspiration. Such effects should therefore be taken into 

consideration when designing sensor shields. The impacts of radiative error on the mean 

thermodynamic errors and how we can separate this source of error from drone-induced error 

will be further examined in Section 2.3b below. 

The temperature results demonstrate that for the worst-case scenario for any single 

temperature measurement made during the daytime that the accuracy at a 95% confidence 
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interval (hereafter CI) has a range of -1.34 K ≤ T ≤ +1.88 K when not removing the mean biases 

(Figure 2.3b-i). The sensor position with the narrowest CI is BotLeg, which had a 95% CI of -

0.75 K ≤ T ≤ +0.65 K. Section 2.3e contains an analysis of the errors when measurements of 

temperature gradients are sought instead of measurements of absolute temperature values, and 

the implications of the accuracy measures elucidated in this work for field campaigns will be 

discussed in Section 2.4.  

b. Nighttime Temperature 

Nighttime flights were conducted to understand the effects of radiative error and to 

separate the radiative error from the drone-induced error. Figure 2.5 shows the analyses of 

temperature using only the 9 nighttime flights (approximately 1.5 total flight hours). The errors 

in measured temperature are notably smaller at night than during the day. The largest mean bias 

in temperature decreases from 0.42 K during the day to 0.24 K at night, and the largest 95% CI 

range decreases from 2.75 K to 1.5 K. This indicates that radiative errors, either due to the 

heating of the sensor itself or as a result of heating the drone body, are substantial contributors to 

the total errors observed in the daytime flights. 

Recall that for the daytime flights, the various drone sensor positions either have a warm 

or cold mean bias depending on the amount of aspiration they received. In contrast, at night, all 

eight tested positions have a warm bias (Figure 2.5), and the magnitude of the warm bias ranges 

from +0.05 K to +0.24 K. This could be due to a combination of two factors: the mean altitude 

bias between the drone and tethersonde (4.2 m) and the heat generated by the drone. However, a 

4.2 m mean altitude bias is unlikely to result in a warm bias on the order of 0.1 K. Even if a dry-

adiabatic lapse rate is assumed in the near-surface boundary layer (an unrealistically strong lapse 

rate at night), a 4.2 m altitude difference only translates to a mean bias of +0.04 K. We therefore 
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speculate that the primary cause of the temperature bias is that the drone, unlike the tethersonde, 

is a significant source of heating. The batteries’ onboard temperature sensors indicate that each 

battery can increase its temperature by up to 25 K while in flight. The TopShelf position has the 

highest mean bias, which is likely due to its position directly below the main electronics and 

battery bay. The BotLeg has the lowest mean bias, similar to the daytime temperature results. 

The small bias for the BotLeg position is once again likely because this sensor position is farthest 

from the main electronics bay and motors. Even the two positions that are located directly below 

the propellers (CWProp and CCWProp), which should receive the most aspiration among the 

sensor positions, have warm biases at night. The warm biases for the under-propeller positions 

are likely due to the heat generated by the motors in flight or by the propellers circulating air 

warmed over the main body of the drone to these positions. Overall, the nighttime flight results 

demonstrate that even if sensors are properly shielded from radiation error during the day that 

drone-induced errors are present and must be accounted for during daytime and nighttime flights. 

When comparing the nighttime distributions of error (Figure 2.5b-i) to those of the daytime 

position errors (Figure 2.3b-i), the nighttime distributions are narrower (Figure 2.5b-i). For the 

nighttime flights, the 95% CI of all the sensor siting locations is at worst -0.31 K ≤ T ≤  +0.82 K 

when not adjusting for the mean bias, a substantial improvement on the -1.34 K ≤ T ≤ +1.88 K 

analyzed from the daytime flights.  Although these data are not normally distributed, the smaller 

tails and narrower distributions characteristic of the nighttime flights suggest that shielding the 

temperature sensor aboard the drone will improve data quality and reduce error for the daytime 

measurements for all the sensor siting locations tested.  
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c. Pressure 

All 82 flights are analyzed together for the pressure analyses as there is no substantive 

difference between daytime and nighttime pressure errors (not shown). The drone errors for all 

eight sensor locations have a negative pressure bias (Figure 2.6). The low-pressure bias on the 

drone occurs despite the drone being lower in altitude than the tethersonde by 9.13 m on average 

(see Section 2.2b). This suggests that there is some amount of drone-induced error that leads to 

the observed consistent negative pressure bias. We speculate that this negative pressure bias may 

be induced by the complicated aerodynamic interactions discussed in Section 2.1. However, a 

study that can model these complex interactions on our platform, similar to that of Yoon et al. 

(2016), would be required to confirm this hypothesis. All eight positions have similar error 

standard deviations and mean biases (Figure 2.6). The 95% CIs are all within -

2.0 hPa ≤ P ≤ +0.9 hPa for a single independent measurement.  

Unlike the temperature error distributions, the error distributions for pressure are 

multimodal for most siting locations (Figure 2.6b-i). The multimodal distributions are 

particularly evident in the BotLeg, BotShelf, and TopLeg positions, which are all bimodal. To 

understand this bimodality, we stratify the pressure errors for all sensor positions into strong and 

weak wind flights. Strong wind flights are defined as flights during which the surface weather 

station reports an average 5-minute gust greater than 3 m s-1 during the sampling period. 

Approximately half of the flights are classified as strong wind flights and half as weak wind 

flights. The results for one position (BotShelf) demonstrate that the bimodal distribution is 

primarily caused by the 39 flights with stronger wind gusts (Figure 2.7b). The 43 flights 

classified as having weak surface winds more closely approximate a unimodal distribution 

(Figure 2.7a).  
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Although it is not possible to determine the reason for the pressure error bimodality during 

the high wind gust events using the data collected here, we speculate that it is caused either by 

the motion of the tethersonde or by unequal dynamic pressure perturbations on the drone due to 

its complex aerodynamics (Yoon et al. 2016). Since the tethersonde is not rigidly tethered to the 

ground and is instead secured with a string, the tethersonde tilts downwind as the horizontal 

winds increase, lowering its altitude. If the wind changes speed or direction, the tethersonde’s 

altitude quickly changes, but the drone maintains a constant altitude. The tethersonde, therefore, 

oscillates between being higher and lower than the drone in high wind events, which could 

explain the observed bimodal structure. Using the Hypsometric equation and typical values for 

the temperature and pressure during this study, the expected change in pressure is 1 hPa for a 

10 m change in height. This is approximately the magnitude of the spread in pressure in the 

bimodal positions, which suggests that the majority of the multimodality may be because of the 

oscillating tethersonde. However, if this effect accounts for all of the multimodality, all eight 

sensor positions should have similar bimodal error distributions, which is not the case (Figure 

2.6d,e,i). Instead, the bimodality in the error distribution is most likely caused by multiple 

factors, including the motion of the tethersonde and the impact of dynamic pressure perturbations 

from the drone’s aerodynamics. In stronger winds, the dynamic pressure force is larger, and this 

force may be unequally applied to the drone and tethersonde instruments. However, this 

hypothesis also cannot be confirmed without experiments in a controlled wind environment, 

experiments utilizing a fixed observational tower, or detailed computer modeling of the airflow 

around the drone. Since the highest wind speed experienced in this study was 5.5 m s-1, it is 

difficult to predict whether the pressure error will follow similar distributions under even higher 
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wind situations. More data need to be collected before a more thorough analysis and 

characterization of the pressure errors can be conducted.  

d. Dewpoint Temperature 

As with pressure, the dewpoint temperatures from all 82 flights are analyzed together 

(Figure 2.8). All sensor positions except CWProp have mean bias magnitudes in dewpoint 

temperature of less than 0.5 K, with three positions having a near-zero mean bias against the 

tethersonde (BotLeg, TopLeg, and TopShelf; Figure 2.8a). Furthermore, the non-propeller 

positions (i.e., all but CWProp and CCWProp) have unimodal distributions with 95% CIs of less 

than ±2.75 K for all but OverBatt (Figure 2.8b-i). This is in contrast to the sensor siting locations 

under the propellers (CWProp and CCWProp), which have a total 95% CI of -1.5 K ≤ T-

d ≤ +5.4 K  (Figure 2.8d,e).  

The wide 95% CIs of the CCWProp, CWProp, and OverBatt positions merit 

investigation. In each of these cases (Figure 2.8d-f), the wider CIs are caused by relatively longer 

tails on the positive side of the distribution (where the drone is moister than the tethersonde), 

especially for the CWProp position. As the drone does not carry any water onboard and does not 

produce water in flight, the unequal moisture distributions must be a result of error induced 

either by the drone or by solar radiation.  

The 82 flights are stratified by solar radiation (Figure 2.9), as is done in Section 2.3a, to 

determine the contribution of solar radiation to the dewpoint error. This figure indicates that, 

generally, the errors (spread and mean bias) in dewpoint temperature decrease with decreasing 

solar radiation, suggesting that there is some component of radiative error to the total dewpoint 

temperature error. This is despite the fact that the relative humidity sensor measures the 

temperature that the relative humidity is based on. We speculate that the radiative error may 
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result from the relative humidity measurement having a different response time than the 

temperature measurement on the relative humidity sensor module. If these two parts of the 

sensor reported their temperature and humidity with different response times, the measured 

relative humidity may lag behind the temperature measurement, leading to errors when the 

temperature is rapidly changing, such as in direct sunlight. However, it is impossible to 

determine the exact cause of the radiative error conclusively with the data collected. Future work 

should explore this issue further.  

e. Temperature and Dewpoint Temperature Gradients 

Some field campaigns that have utilized multirotor drones, such as C3LOUD-Ex and 

LAFE, have been interested in measuring temporal or spatial gradients in the thermodynamic 

variables rather than in singular measurements of these variables. In this section, we examine the 

accuracy of the drone measurements when considering temperature or dewpoint temperature 

gradients in time, where the relative magnitudes, as opposed to the absolute magnitudes are 

important. 

To determine the accuracy of examining temperature or dewpoint temperature gradients 

instead of singular measurements of temperature or dewpoint temperature, the autocorrelations 

of the error are first examined. The e-folding time of the error autocorrelation is greater than 1 s 

for all positions (not shown), which indicates that noise which is present in this error may be 

eliminated by applying a moving average. We therefore apply a 20-second moving average to 

the temperature and dewpoint temperature data. This interval is chosen because it is longer than 

the e-folding times of error autocorrelation for all sensor positions in temperature and most 

sensor positions in dewpoint temperature (not shown). We specify that only 75% of the data 

points contained in the moving average window must be valid data points. This requirement 
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means that for a single 20 s period, there must be 15 valid data points for a moving average to be 

calculated. If there are fewer than 15 valid data points, the moving average will not be calculated 

and the point will be set as invalid. These newly filtered data will be notated with an overbar for 

the remainder of this work (e.g. 𝑇,$ 	𝑇!&&&).  

 

To characterize the measurement error expected when sampling some 
/0,1

/,
, where t is time, 

an appropriate time interval (∆𝑡) must first be chosen. We consider time intervals of 9 min (the 

total time of each flight) or less for this analysis. Increasingly large ∆𝑡s reduce the number of 

useable data points. To provide a compromise between a sufficiently long ∆𝑡 such that it is larger 

than the e-folding time and a sufficiently short ∆𝑡 to allow as large a sample size as possible, a 

time interval of 60 seconds is chosen. The results are not particularly sensitive to the exact ∆𝑡 

used (not shown). Figure 2.10 shows the results of this analysis, where for each time, the filtered 

temperature (𝑇&) is subtracted from the temperature 60 seconds later (i.e. 𝑇&,234' − 𝑇&,, notated 

here as 𝑇	$ 34'). It is evident from this figure that when examining the daytime temperature 

gradients, the errors at each sensor siting location are smaller than the errors in measuring the 

absolute value of temperature (Figure 2.3), with a worst-case 𝑇	$ 34' error of (-1.08 K, +1.12 K) at 

a 95% CI (Figure 2.10). Unlike the absolute measurements of temperature, in 𝑇	$ 34', the biases 

are all near zero. The implications of this accuracy CI for field campaigns are discussed further 

in Section 2.4.   

As shown in Sections 2.3a and 2.3b, the daytime and nighttime temperature accuracies 

differ due to the impacts of solar radiation. With that in mind, an analysis of 𝑇	$ 34' error is 

conducted for the nighttime flights. The 95% confidence error for temperature gradients at night 

(Figure 2.11) are approximately the same as each independent nighttime temperature 
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measurement (Figure 2.5).  This result suggests that when measuring temperature gradients 

during the day that the accuracy may differ if there are variations in the incoming solar radiation, 

such as might ensue from changing cloud properties.  

We also have performed an examination of the error when measuring dewpoint 

temperature gradients. Figure 2.12 shows the error distributions for all eight sensor siting 

locations for 𝑇&!,34'. In all eight sensor siting locations, the maximum dewpoint temperature 

gradient error is ±2.00 K at the 95% confidence level, lower than most of the absolute value 

dewpoint temperature errors. Furthermore, the mean dewpoint temperature gradient error is 

approximately zero for all sensor positions. Examining temperature and dewpoint temperature 

gradients is often the goal of field campaigns rather than examining absolute temperature or 

dewpoint temperature, and the implications of these results will be explored in the next section. 

2.4. Discussion and Implications for Field Campaigns 

  The results presented here characterize the accuracy of thermodynamic measurements 

made from unshielded sensors in eight different sensor siting locations on one multirotor drone 

platform. To understand the implications of these findings for the use of drone platforms in field 

campaigns, two recent campaigns that used unshielded sensors to measure thermodynamics from 

multirotor drones are now examined. The C3LOUD-Ex field campaign (van den Heever et al. 

2019) was conducted in July of 2016 and May-June of 2017 and employed a suite of instruments 

to measure storm updrafts and surface outflows with targeted observations. C3LOUD-Ex used 

six multirotor drones to measure storm-produced cold pools. Cold pools are areas of 

evaporatively-cooled dense air in contact with the ground that can be identified using gradients 

in temperature near their edges. The results for temperature and dewpoint temperature gradients 

outlined in this study (Section 2.3e) are therefore particularly relevant for C3LOUD-Ex. The 
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drones used in C3LOUD-Ex were identical to the drone used in the present study, and the 

C3LOUD-Ex drone sensors were placed in the TopShelf position. Continental cold pools 

produced by deep convection, the focus of C3LOUD-Ex, typically have near-surface temperature 

differences ranging from -2 to -20 K relative to the environment (Engerer et al. 2008). The 

results presented here indicate that 𝑇&34' errors onboard the drone are at 

worst -1.08 K ≤ 𝑇&34' ≤ +1.12 K at the 95% confidence level. We therefore conclude that the 

drone measurements are certainly sufficient to successfully measure most midlatitude continental 

cold pools produced from deep convection, even without radiation shielding.
 

The Land-Atmosphere Feedback Experiment (LAFE; Wulfmeyer et al. 2018) was a field 

campaign completed in August 2017 in central Oklahoma. LAFE used a suite of instruments to 

observe land-atmosphere feedbacks over different soil types and soil moisture conditions. During 

LAFE, two multirotor drones with thermodynamic instruments were operated, including at least 

one drone that had an in situ thermodynamic sensor near the OverBatt position tested in this 

work (Wulfmeyer et al. 2018; Lee et al. 2019). The drones were used to measure vertical and 

horizontal profiles of temperature and humidity over different soil types and soil moisture to 

identify the spatial structures that may exist in these variables. Lee et al. (2019) reported that 

during the transects, the temperature varied by ±0.5 K and dewpoint temperature varied by 

approximately ±1 K. Our study indicates that the magnitudes of the variance in temperature and 

dewpoint reported by the LAFE campaign measured by the drones are likely to be real 

atmospheric features rather than instrument noise at the 90% CI.  

The results demonstrated here also elucidate some of the best practices when sampling 

pressure, temperature, and humidity with multirotor drones. In general, the lowest error spread 

and mean bias in temperature and humidity were found for the siting location furthest away from 
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the main body, including the batteries and avionics. For the specific drone used in the present 

study, the BotLeg position best meets these criteria. Future developments in drone sensor 

engineering should also focus on ways to extend the sensors away from the main body of the 

drone without substantially increasing the weight or changing the aerodynamic characteristics. 

For drone platforms where a probe or extension is not possible, measurement errors are likely to 

be higher due to the heat generated by the drone itself. Even aspiration and shielding may not be 

sufficient to remove the errors induced by the drone heating, as suggested by the nighttime 

results presented here. Many test flights should also be completed to better understand the errors 

and biases when introducing an aspirated shield. For field projects that have already completed 

their sampling phase with unshielded sensors onboard, the error values that have been 

characterized in this work should be accounted for when analyzing the data collected.   

2.5. Conclusions 

Multirotor drones have enabled new types of observational strategies and sampling in field 

campaigns. This work provides new insights into understanding the measurements made onboard 

multirotor drones. We have examined temperature, pressure, and humidity measurements made 

from drones and have characterized the biases and errors induced by placing sensors in different 

positions on multirotor drones. Eight sensor positions, representing the most common locations 

utilized in field campaigns to date, were tested by flying a multirotor drone for 82 flights (12.5 

total flight hours), including 9 flights at night. The multirotor drone was flown in close proximity 

to a tethersonde carrying the same sensors and located at a similar altitude. The measurements of 

temperature, pressure, and dewpoint temperature at each of the sensor siting locations were 

compared with the measurements from the tethersonde, where the latter observations were 
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assumed to represent ground truth. The errors were defined as the difference between the drone 

sensor measurements and the tethersonde measurements.  

The results from the observational experiments indicate that when sampling temperature 

during the day using a sensor unshielded from incoming solar radiation, measurement errors 

range from -0.83 K ≤ T ≤ +0.61 K to -0.91 K ≤ T ≤ +1.88 K at a 95% confidence level. When 

making measurements at night without incoming solar radiation impacts, the temperature error is 

reduced to -0.31 K ≤ T ≤ +0.82 K. However, at night, there is still a warm mean bias in 

temperature due to the heat generated by the battery and avionics onboard the drone. If one is 

measuring temperature gradients where the difference between point measurements is of interest 

rather than single point temperature measurements, the expected 95% confidence interval (CI) 

for daytime temperature gradient errors after filtering the data range from -0.57 K ≤ T ≤ +0.63 K 

to -1.08 K ≤ T ≤ +1.12 K, depending on sensor location.  

Our analysis of dewpoint temperature indicates that solar radiative error impacts the 

dewpoint temperature measurements made onboard the drone because the reported accuracies 

vary when stratified by solar radiation. The largest error in dewpoint temperature was found to 

be ±2.75 K, except for the sensor position below the two propellers and the position directly over 

a battery where the largest 95% CI was -1.5 K ≤ Td ≤ +5.4 K. The error when sampling a 

dewpoint gradient had a 95% CI of approximately ±2.00 K, regardless of sensor position. 

Although the errors associated with measuring pressure were investigated in this study, they 

were found to depend on the ambient wind speed. Future work should therefore examine this 

dependence if errors in the pressure measurements are to be better identified.  

Our results place a much narrower CI on thermodynamic measurements made from drones 

than those presented by Barbieri et al. (2019). This is most likely because we were focused on 
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the results from one drone platform rather than an ensemble of different drones. In field 

campaigns where multiple drones of different types are to be deployed, understanding the 

differences in drone-induced errors between platforms would be critical. The results presented 

here suggest that the error bounds for drone thermodynamic measurements can be greatly 

reduced by placing the sensor in certain positions and conducting many error characterization 

flights for each drone platform used. 

Future work should consider examining the impact of sensor shielding on measurement 

errors, the measurement errors for different types of drone platforms, and the pressure errors in 

stronger wind conditions than those examined here. Our analysis of the nighttime flights 

conducted in order to eliminate the impacts associated with solar radiative error suggest that 

shielding may not entirely eliminate errors in temperature measurements because heat from the 

drone batteries and avionics can bias the measurements. The biases in shielded sensors should 

therefore be investigated before shielding is employed in future campaigns. Additionally, errors 

associated with measurements onboard a smaller drone platform may not be identical to the 

errors on our larger platform because different drone platforms produce varying amounts of heat. 

Finally, this research provides characterizations of measurement errors based on sensor siting 

locations that are useful to already-completed field campaigns. We suggest that in future 

campaigns employing drones for thermodynamic measurements, thermodynamic sensors should 

be sited as far away from the main body of the drone (and hence the batteries and avionics) as 

possible and should be shielded from the impacts of insolation.  
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2.6.  Tables and Figures 

Table 2.1: Specifications of the iMet XQ sensor as reported by International Met Systems 

(International Met Systems 2018). 

Variable Technology iMet Reported 

Accuracy 

iMet Reported 

Resolution 

iMet Reported 

Response Time 

Temperature Glass Bead 

Thermistor 

±0.3 K 0.01 K 2 s 

Pressure Piezoresistive ±1.5 hPa 0.02 hPa 10 ms 

Relative 

Humidity 

Capacitive ±5% 0.7% 5 s with 1 m s-1 flow 

 

 

Figure 2.1: (a) Front-view picture of the DJI Matrice 600 Pro drone in flight with the legs folded 

up. The 8 sensor positions are labeled. (b) Top-down photo of the drone with the legs down; the 
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positions of all visible sensors are labeled. (c) Photograph of an iMet XQ sensor. (d) Photograph 

of the iMet-1 radiosonde with an iMet XQ sensor attached to the bottom. 
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Figure 2.2:  Histograms of conditions, averaged over the duration of each flight, observed by the 

surface weather station during all flights. Shown are surface (a) temperature, (b) dewpoint 

temperature, (c) pressure, (d) solar radiation, (e) sustained wind speed, and (f) wind gust. 
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Figure 2.3: (a) Box plots of the drone sensor temperature minus the tethersonde sensor 

temperature, i.e. the “errors” (positive values indicate that the drone is warmer than the 

tethersonde), for all daytime flights. The box outlines denote the 25th, 50th, and 75th percentiles, 

whiskers extend to the 5th and 95th percentiles, and the dots indicate the distribution means. (b-i) 

Density histograms of the daytime flight temperature errors for each individual drone sensor as 

labeled on each panel. The 2.5th and 97.5th percentiles are marked with dashed vertical black 

lines to indicate the 95% confidence interval. The error standard deviation (σ) and mean error (𝜇) 

are labeled at the top of each panel. 
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Figure 2.4:  As in Figure 2.3, except that for each sensor position, the data is stratified by solar 

radiation, E (W m-2), observed by the surface weather station.  
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Figure 2.5:  As in Figure 2.3, but for temperature errors during the nighttime flights only. 
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Figure 2.6: As in Figure 2.3, but for pressure errors during all (i.e. daytime and nighttime) 

flights. 
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Figure 2.7:  a) As in Figure 2.6c, but only including flights where the surface weather station 

reported an average gust of < 3 m s-1 during the flight; b) Similar to (a), but for an average gust 

of ≥ 3 m s-1. 
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Figure 2.8: As in Figure 2.3, but for dewpoint temperature errors for all flights. 
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Figure 2.9: As in Figure 2.4, but for dewpoint temperature errors. 

 

Figure 2.10: As in Figure 2.3b-i, but showing the quantity 𝑇	$ 34', as defined in the text, for all 

daytime flights. 
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Figure 2.11: As in Figure 2.10, but for 𝑇	$ 34' during the nighttime flights only. 

 

Figure 2.12: As in Figure 2.10, but for 𝑇	$!,34', where Td is dewpoint temperature. 
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CHAPTER 3:  TOBAC V1.5: INTRODUCING FAST 3D TRACKING AND OTHER 

ENHANCEMENTS FOR IDENTIFYING METEOROLOGICAL PHENOMENA 

 

3.1.  Introduction 

Recently, there has been a great deal of interest in robust, large-scale objective 

identification and tracking of clouds and other meteorological features (e.g., Heus and Seifert, 

2013; Hu et al., 2019; Núñez Ocasio et al., 2020). As the atmosphere is not a static system, 

diffusive, advective, dynamic and thermodynamic processes ensure that atmospheric phenomena 

of interest are nearly always either in motion or in a moving frame of reference, which is 

indicative of the utility of tracking frameworks for atmospheric data in general. Clouds are one 

such phenomenon for which tracking is useful. Clouds are near-ubiquitous features in the Earth’s 

atmosphere and play critical roles not only in tropospheric heat and moisture transport, but also 

with respect to scattering of solar radiation and absorption/emission of infrared radiation in the 

context of the global climate. Convective clouds and cloud systems can range in size from tens 

of meters to hundreds of km; exist for as short as a few minutes and as long as days; exhibit a 

wide variety of morphological characteristics; and undergo complex lifecycles that have a 

growing initiation stage, a quasi-steady-state mature stage, and a collapsing decay stage (Cotton 

et al., 2011). All of these elements make clouds prime candidates for objective analysis 

techniques, and because of this, clouds have been successfully tracked in a variety of 

applications (e.g., Sokolowsky et al. 2022; Leung and van den Heever 2022; Chapters 4, 5). 

Clouds are far from the only meteorological phenomena where robust tracking tools are useful. 

For example, tracking on quantities such as aerosol concentration (e.g. Bukowski and van den 

Heever, 2021) and trace gas concentrations and masses (e.g. Zhang et al., 2022) is of enormous 
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use to atmospheric chemists, climate scientists, and others studying movement of such quantities 

within the atmosphere. Convective cold pools, which are density currents that manifest via the 

evaporation of convective precipitation, can be identified and tracked using atmospheric 

thermodynamic and dynamic quantities such as temperature or temperature proxies (e.g. 

potential temperature), water vapor concentrations, and near-surface wind fields (e.g. Tompkins, 

2001; Feng et al., 2015; Drager and van den Heever, 2017; Drager et al., 2020). Atmospheric 

radiative quantities, such as outgoing longwave radiation (OLR), have clear uses in cloud 

objective identification (e.g. Gill and Rasmusson, 1983; Weickmann, 1983; Jones et al. 2022), 

but can also be leveraged to detect and track processes such as sea ice evolution (e.g. Singarayer 

et al., 2006). If such tools are made general enough, even people working outside the realm of 

atmospheric science can benefit from them, such as ornithologists or entomologists interested in 

bird and bug seasonal migration, respectively (e.g. Crewe et al., 2020; Knight et al., 2019). At 

present, however, only one such tool can address this myriad of uses: the Tracking and Object-

based Analysis of Clouds (tobac; Heikenfeld et al., 2019), a Python package based in objective 

analysis principles that uses artificial intelligence to identify, discretize, and track objects and 

fields of interest.  

The most powerful and unique feature of tobac is its variable- and grid-agnostic nature– 

i.e., it can be used with virtually any gridded input dataset and variable, meteorological or not. 

tobac was initially developed for use with clouds and associated meteorological data (Heikenfeld 

et al. 2019), and has been used for these purposes, such as tracking warm-season deep convective 

systems and Mesoscale Convective Systems (MCSs) via satellite-observed infrared brightness 

temperature (e.g. Li et al., 2021; Kukulies et al., 2021, respectively). However, due to this unique 

variable agnosticity, tobac has also been used for other applications: for example, tracking of 
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haboobs via dust concentration (e.g. Bukowski and van den Heever, 2021). tobac both draws 

from and expands upon the procedures developed in earlier cloud identification and tracking 

tools, and we have detailed some of the history of tracking tools in the atmospheric sciences 

below. 

First and perhaps foremost, tracking has historically required a great deal of human input 

and attention due to a lack of computationally efficient methods for the location, assessment, and 

connection of different features in time. One such early method, the Thunderstorm Identification, 

Tracking, Analysis, and Nowcasting tool (TITAN; Dixon and Weiner, 1993), is a well-designed 

and powerful approach for the detection and tracking of thunderstorms, and while it does 

incorporate computational analysis of data, it is heavily based in physical principles (i.e., it 

requires specific datasets/variables and can only be used to track certain things) and manual 

assessment of output due to computational limitations at the time. As discussed in Dawe and 

Austin (2012), earlier studies involving tracking of clouds (e.g. Zhao and Austin, 2005a, b; Heus 

et al., 2009) required scientists to contribute a great degree of manual/visual selection to the 

clouds they considered in their studies. This is not only time-consuming to an extent that is 

impossible to scale for large datasets, but also introduces subjectivity to an analysis that should 

ideally be objective. Some later publications (e.g. Plant, 2009; Dawe and Austin, 2012; Heus and 

Seifert, 2013) have more general criteria allowing for automated selection, but exhibit 

computational or scientific limitations due to their design. Dawe and Austin (2012) tracked 

clouds as a combination of 3D liquid water content and buoyancy in 3D space, but required 

computationally expensive determinations of 4D spatiotemporal connectivity and had specific 

definitions for different cloud components, limiting use on a variety of different cloud types. 

Heus and Seifert (2013) simultaneously expanded on and improved the tractability of the 
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approach of Dawe and Austin by connecting thermals, cloud envelopes, and precipitation shafts, 

but reduced the amount of memory needed by projecting these fields into 2 spatial dimensions 

and using the vertical dimension as a contiguity check between feature columns. However, both 

Dawe and Austin’s (2012) and Heis and Seifert’s (2013) methods were designed to be used in 

LES output fields of shallow cumulus with a vertical extent of less than 4 km, limiting the 

applicability of these methods with cloud systems that exhibit more vertical structure (e.g., 

layered clouds, deep convection or slantwise convection) and other datasets that have similarly 

complex 3D morphology. Gropp and Davenport (2021) recently developed a powerful tracking 

tool for supercell thunderstorms that was effectively demonstrated at a 3-hourly time resolution 

(coarser than the requirements of many tracking tools) but is limited by its specific case use and 

cannot be easily generalized. tobac utilizes many of the strengths of these preexisting tools while 

broadening science applications and optimizing procedures to result in a more general and 

powerful analysis tool. 

Despite the utility of tobac and the strengths of this tool over earlier such packages, the 

increasing resolution of models and identification of new use cases (such as in LES modelling) 

have made it clear that the code base requires enhancement from both a scientific and procedural 

point of view. Necessary updates to tobac’s scientific capabilities are the inclusion of the third 

spatial (vertical) dimension in feature detection and tracking and internal tools allowing for 

spectral smoothing of data. More procedural improvements which would also further the utility 

of this package are increases in computational efficiency, ingestion of multiple data sources on 

different grids (e.g., performing feature detection on one grid and segmentation on a separate 

grid), and treatments for model periodic boundary conditions (PBCs).  
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Our goal in this publication is to present each of these new improvements that have been 

released as part of tobac v1.5. In Section 3.2, we discuss the strengths and weaknesses of tobac 

v1.2, while Section 3.3 details the scientific improvements. Section 3.4 presents the procedural 

enhancements, and Section 3.5 provides a summary of our changes to tobac, concluding thoughts 

on tobac v1.5, and some planned changes which will be included in future releases. 

3.2. tobac v1.2 overview 

Before elaborating on the new capabilities which have been included in tobac v1.5, we 

begin with a general overview of the design and capabilities of the original tobac library, denoted 

v1.2. tobac was first developed through a multi-institutional collaboration (Heikenfeld et al., 

2019) in order to provide a code base for “tracking and analysing individual clouds in different 

types of datasets”. This package consists of three primary components: feature detection, or the 

objective identification of features from minima or maxima in gridded data; segmentation, or the 

discretization of the same or different gridded data based on previously detected features; and 

tracking, or the linking of detected features to one another through time. Segmentation and 

tracking operate independently of each other, but both require feature detection to have been 

performed on a data field of interest. These procedures can be performed on any gridded data 

field of interest, though for tobac v1.2, it must exist in two (feature detection, segmentation, and 

tracking) or three (segmentation only) spatial dimensions, requiring some form of data 

dimensionality reduction for feature detection and tracking when data grids are in 3D. These key 

elements, demonstrated on a field of radar reflectivity data, can be seen in Figure 3.1. The fine 

details of how these components were constructed is detailed in Heikenfeld et al. (2019), but we 

discuss the generalities and how tobac can be applied to different use cases within this section.   
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 Feature detection in tobac is performed by first establishing one or more data thresholds 

which gridded data values must exceed in order to be considered for placing features. 

Contiguous regions of gridded data meeting these criteria, as well as additional criteria such as a 

user-set minimum size, are saved as unique single-point identifiers (which can be set by users to 

either be geometric centroids, weighted-difference positions, or extrema within the data) with 

their horizontal positions in each spatial dimension. If multiple thresholds are used, features 

detected at a higher-magnitude threshold that exist within a lower-magnitude region of features 

supersede and replace the feature(s) detected at the lower-magnitude threshold (e.g. Heikenfeld 

et al., 2019, their Figure 2). This multi-threshold capability allows for the identification of 

greater-magnitude data existing within a lower-magnitude data region without losing the 

sensitivity to lower-magnitude data. For example, using multiple thresholds on a modelled 

vertical velocity field enables the detection of deep convective updrafts within a broader, weaker 

updraft region as well as isolated, weak boundary layer thermals. An illustration of feature 

detection being performed on gridded NEXRAD radar reflectivity data obtained during the CSU 

Convective Cloud Outflows and UpDrafts Experiment (C3LOUD-Ex; van den Heever et al. 

2021) can be seen in Figure 3.1a-b. In this figure, convective storms in a grouping near 

Cheyenne, WY (Figure 3.1a) are identified using a radar reflectivity threshold of 30 dBZ. Each 

of these storms is labelled as a single-point feature, marked in Figure 3.1b. With the 

identification of such features, the additional components of tobac – segmentation and tracking – 

can be fully utilized. 

 The segmentation approach within tobac v1.2 begins with a previously identified set of 

tobac features. Where the feature detection procedure reduces contiguous regions of data to 

single points, segmentation discretizes a full volume or surface area associated with each of these 
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features. For both 2D and 3D segmentation, feature positions are used to place seeds that grow 

outwards to identify an area or volume associated with a feature, using the 

skimage.segmentation.watershed function (van der Walt et al., 2014). This allows for the 

discretization of data regions pertaining to each feature, even when multiple features exist within 

the same contiguous data region. In 2D watershedding, this procedure simply operates in two 

dimensions, but for 3D watershedding, the entire vertical column where our 2D feature is located 

has markers placed in it, except where data points do not exceed the segmentation data threshold. 

In circumstances where data fields are layered, staggered, discontinuous in height, or otherwise 

irregular through the vertical dimension, this may lead to some data fields being erroneously 

segmented together, but such data are often identifiable through quality control of tobac output. 

The discretized field, or “segmentation mask”, for each timestep is saved as an array. 

Segmentation fields produced on 2D radar reflectivity data from 2D radar reflectivity features 

are shown in Figure 1c. These regions illustrate the wider reflectivity fields outside of the 

convective cores that are associated with each of the detected features, likely precipitation 

regions raining out from the larger clouds being driven by the convective cores. 

 Finally, the tracking procedure within tobac v1.2 also requires a previously existing set of 

tobac features. These features are then used with the Python Trackpy library (Allan et al., 2021) 

to predictively link connected features in time. The presence of this tool within the tobac 

package introduces time evolution to the phenomenon identification that feature detection does 

and feature-associated area/volume produced by segmentation. An example of tobac cell 

tracking from our previously referenced radar data features is presented in Figure 3.1. Here, the 

movement of these identified systems in previous radar scans are denoted by the red lines trailing 
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from each feature point, and analyzing the information provided by this temporal evolution can 

be highly useful in convective storm lifecycle studies and other such temporally dependent foci. 

 Despite the clear objectivity, utility, and power contained within this tool, tobac v1.2 had 

several important limitations from both a scientific and procedural standpoint, as touched on in 

the introduction. The limitation of feature detection and tracking to 2D, as well as the column-

based approach to 3D segmentation using 2D features, means that data fields which do not 

reduce cleanly into 2 dimensions (e.g., environments with strong vertical wind shear or layered 

clouds; deep convective clouds with multiple discontinuous vertical regions producing 

condensate; tilted convective storms; and intrusions of aerosol layers composed of different 

species at different altitudes) might produce untrustworthy or confusing results when analysed 

using tobac v1.2. The included data processing tools are also limited, with no bandpass or 

spectral filter techniques included in the tobac v1.2 package to smooth or isolate data in noisy 

fields. From a computational perspective, the original implementation was also not well 

optimized (taking weeks or more to process large datasets), requiring substantial increases in 

computational efficiency for tractable usage with large datasets. Using detected features to 

segment data that exists on a different grid is also challenging with this version of tobac, as it 

requires a great deal of user processing to remap data to different grids. Finally, tobac v1.2 also 

lacked the ability to recognize and treat features, segmentation fields, and tracks on data with 

PBCs, a common characteristic in idealized numerical models. All of these needs motivated the 

improvements that are discussed in the following two sections. 
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3.3. tobac v1.5 – Scientific Improvements 

a. 3D Tracking 

One of the most scientifically consequential improvements to tobac made as a part of 

v1.5 is the addition of the vertical dimension to feature detection and tracking, as well as an 

overhaul of 3D segmentation. Due to the structure of tobac, each of these changes required 

different modifications to the core modules contained within the code base. 

 For feature detection, much of the overall code logic remains unchanged, but is expanded 

to include the additional spatial dimension. The feature detection functions are now capable of 

determining whether their input data exist in two or three spatial dimensions, after which they 

branch accordingly within the code. When 3D data are input, contiguity and spacing of regions 

within this data are now assessed in all three spatial dimensions versus just the horizontal 

dimensions. Further, the code also supports both uniform and non-uniform vertical grid spacing, 

allowing for use with modelling and observational data exhibiting either of these common grid 

structures. Data fields with a 3D input now output two additional data points, ‘vdim’ and 

‘altitude’, which are absent from 2D output. Including these additional data can be used for an 

abundance of analyses that depend on vertical information, e.g., defining the vertical structure of 

updrafts and downdrafts within convective clouds; identifying intrusions of concentrated aerosol 

layers; and highlighting vertical layers of elevated environmental stability, to name a few. 

In addition to the wider variety of scientific use cases that vertical information enables, 

these code changes also lead to substantial differences in feature detection output between 3D 

data and their counterparts reduced to 2D, such as that seen in Figure 3.2. Here, a model vertical 

velocity field is used for feature detection of updrafts at 1, 3, 5, and 10 m/s thresholds, with the 

2D reduction being a plan view of the column maximum value. Figure 3.2a illustrates how much 
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of the vertical structure of a 10 m/s feature in the data (white dots within the coloured 

isosurfaces) is captured by our new method, and shows via comparison to Figure 3.2b that 3D 

features’ horizontal positions may differ from their 2D-projected counterparts when the vertical 

dimension is included in feature detection and positioning. While 2D feature detection is less 

computationally expensive than 3D and may be a faster solution that produces comparable 

results, users may also find that 2D projections of 3D data can lead to erroneous results, such as 

that demonstrated in Figure 3.3. Here, a cumulus cloud and cirrus cloud existing within a sheared 

environment are traveling in opposite horizontal directions, with the cumulus cloud also moving 

upwards in time. Figure 3.3a-c depict the time evolution of this scene when 3D motion and 

detection are considered by tobac v1.5: not only are these two discrete clouds recognized, 

identified, and tracked correctly in time, but the vertical displacement of the cumulus cloud is 

also apparent in its track. Conversely, Figure 3.3d-f depict how tobac v1.2 is able to identify the 

clouds in the initial scene, but fails to track the cumulus cloud due to the cirrus cloud hiding it 

from view in Figure 3.3e due to the two-dimensional framework. This leads to the cirrus cloud 

being correctly tracked through time, while tracking of the cumulus cloud is nonexistent, its 

height evolution is missed, and the failure to detect it as a feature in  Figure 3.3e leads to it being 

considered a separate, completely new tracked feature in  Figure 3.3. Thus, a possible error 

arising from collapsing 3D data to 2D is the disappearance of 3D features.  

 Unlike with feature detection, the segmentation routine in tobac v1.2 already has some 

capabilities for 3D data processing, as discussed in the previous section. The column-based 3D 

segmentation approach – where the entire vertical column at a feature location is seeded with 

markers for watershedding (the segmented regions are identified growing outward from the 

seeds) - works reasonably well for 2D features when the 3D field being segmented does not 
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exhibit much vertical stratification or wind shear. However, seeding the full column is clearly not 

an ideal approach when we have the feature’s vertical position, as seen in 3D-detected features. 

As such, we have introduced a new “box seeding” method which, instead of a full column, seeds 

a box of user-defined size in each dimension centred at the 3D location of the feature. This 

eliminates the issues ensuing from seeding an entire column, while also ensuring that features 

which are close in 2D space but exhibit a great deal of separation in the vertical do not unduly 

influence each other’s segmentation masks.  

A further example of the new 3D segmentation procedure using LES model data is seen 

in Figure 3.4: Figure 3.4a shows the segmentation mask volume produced via column seeding, 

while Figure 3.4b’s segmentation mask was produced by box seeding covering 5x5x5 cells. 

Figure 3.4a’s segmentation mask clearly exhibits anomalous cells extending up and down from 

the main volume, including a disconnected region of cells about 1 km above the rest of the mask, 

which are unphysical and do not manifest in the box-seeded mask seen in Figure 3.4b. Quality 

control by users, such as visual inspection of segmentation masks, can help to mitigate this issue. 

However, this is a laborious process, and since minimizing user effort for objective analysis is 

one of the key motivators for the development of tobac and other comparable tools, use of the 

box seeding approach here is clearly the superior approach when users have the choice to do so. 

This benefits the science itself by making analyses more consistent and less influenced by user 

subjectivity and qualitative interpretation, and also permits layered feature detection and 

segmentation. 

 Finally, the 3D modifications to tracking are more comparable to those seen for feature 

detection than segmentation but include similarly powerful advances to both of these 

components. Since tracking in tobac is largely processed using Trackpy functions, we leveraged 
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the preexisting Trackpy framework to perform 3D tracking, keeping results both internally 

consistent and enabling the use of the same general methodology, regardless of whether the user 

is tracking on 2D or 3D data. Further, our implementation of 3D tracking in tobac v1.5 allows 

users to track on data in 3D with irregularly spaced vertical grids (e.g., stretched model grids) 

without requiring the user to re-grid the data. Figure 3.5 illustrates the use of 3D tracking on 

NEXRAD radar reflectivity data, showing the movement (red line) of the detected feature in 

both horizontal (Figure 3.5a-c) and vertical space (Figure 3.5d-f) on a feature that is tilted with 

height. Identifying the centers of such features and discretizing associated data fields are also 

much more realistic with 3D feature detection and box seeding, respectively. As tracking brings 

temporal evolution into feature analyses, incorporating the vertical dimension further expands 

these capabilities by allowing users to assess the change in vertical position over time instead of 

just the horizontal projected position. For use cases where the features of interest are known to 

exhibit vertical movement as part of their evolution – such as the growth and decay of convective 

clouds; the development of cold pools and hail cores in thunderstorms; and mechanical lofting of 

aerosols such as dust or pollen – the importance of including this dimension is essential in 

feature assessments over their life cycles. 

b. Spectral Filtering 

While tobac v1.2 already included some methods for smoothing of data, when examining 

some features of interest certain observational and model fields may still be too noisy to detect 

features of interest. For example, if one is interested in identifying and tracking atmospheric 

rivers using a high-resolution dataset, individual convective clouds should be smoothed out. In 

order to allow users to examine their features of interest without requiring preprocessing of data 

outside of tobac, a new spectral filtering tool has been incorporated into tobac as part of the v1.5 
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update. This tool is designed to facilitate the identification of meteorological phenomena at 

specific spatial scales (e.g. the MJO, equatorial waves, atmospheric rivers, mesoscale vortices, 

etc), and to remove sub-mesoscale noise in high-resolution data when the user is interested only 

in larger spatial scale features. It works by first performing a discrete cosine transform (DCT) on 

2D atmospheric fields, representing them in spectral space as a sum of cosine functions with 

different frequencies (Denis et al. 2008). The resulting spectral coefficients correspond to 

normalized wavenumbers that can be converted to actual wavelengths, which are then used in the 

construction of a bandpass filter that has the same shape as these spectral coefficients in 

wavelength/wavenumber space. Multiplying this bandpass filter with the spectral coefficients 

removes wavelengths outside of the user-specified band, which can then be converted back to the 

original domain via inverse DCT. A visualisation of atmospheric data and the spectral elements 

used for filtering are demonstrated in Figure 3.6. Figure 3.6a displays the initial 2D input field 

(here, a WRF relative vorticity dataset), Figure 3.6b illustrates the transformation of the data in 

Figure 3.6a to spectral space, and Figure 3.6c-d show the construction of 1D and 2D bandpass 

filters for wavelengths between 400 and 1000 km. The results from applying such filtering to an 

ERA5 vertically integrated water transport dataset and a WRF relative vorticity dataset are 

shown in Figure 3.7. Figure 3.7a and c illustrate the original, pre-filtered fields of ERA5 and 

WRF data, respectively, while Figure 3.7b and d illustrate the same corresponding fields after 

utilization of the filter. It is clear from Figure 3.7b and d that the application of the spectral 

filtering smooths the dataset and allows for easier identification of only large-scale relative 

vorticity features. Inclusion of this tool in tobac v1.5 quite clearly expands the package’s utility 

while reducing the amount of extra work needed for end users to pre-process data of interest. 
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This technique has previously been used to identify mesoscale vortices in convective permitting 

climate simulations (e.g., Kukulies et al. 2022, in review). 

 Overall, the 3D implementation and the spectral filtering tool add a great deal of 

scientific power to tobac by expanding on the types and dimensionality of contiguous structures 

that it can identify within datasets, allowing the tool to be used with more dynamically evolving 

phenomena, and providing an additional level of filtering to isolate atmospheric phenomena of 

interest. However, even more improvement of tobac can be achieved with the addition of 

procedural changes such as code optimization, homogenization of grids for different data, and 

treatment of PBCs. These procedural adaptations are discussed at length in the following section. 

3.4. tobac v1.5 – Procedural Improvements 

a. Code Optimization 

Several inefficiencies were identified across the body of code, and subsequently, 

alterations were made to each module to enhance their overall computational speed. Making 

these changes led to speedups on the order of 100x for feature detection and 1,000,000x or more 

for tracking. The scaling of these modules’ speeds as a function of the number of features, a 

proxy for data size and complexity, between tobac v1.2 and v1.5 can be seen in Figure 3.8, with 

feature detection in Figure 3.8a and tracking in Figure 3.8b. To provide a single example of what 

this means when using tobac on a moderately sized dataset (3000 x 5000 points, 288 timesteps), 

performing feature detection on a full day of GOES-16 IR data only takes about a minute of 

computing time now, where it originally took around an hour with tobac v1.2 when holding the 

computer system used constant. This has implications for the tractability of using tobac v1.5 with 

larger datasets: analyses on especially large datasets (10s-100s of TB) that would take weeks to 
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perform with tobac v1.2 now only take hours to days, which expedites the research that can be 

conducted with this tool. 

b. Remapping Data on Different Grids 

Beyond recognizing that the efficiency of tobac needed to be improved to make certain 

analyses tractable, we also understood that researchers working with data from different sources 

often have a need to combine these datasets in some way. This process can be greatly 

complicated by observing platform nuances such as viewing angle and field of view; temporal 

frequency and spatial resolution; and the dynamic range of the data. Issues such as differing 

fields of view and spatial resolution have particularly strong implications for the uses of 

objective analysis tools like tobac due to the projection of data onto different spatial grids. 

Within the framework of tobac, we have introduced a new data processing tool which allows for 

the combination of datasets (both models, both observational, and even a mix of the two) so that 

tobac can be more easily used with a broader variety of data. One case for the use of this tool is 

in observational analysis of convection via radar and satellite datasets, which we demonstrate in 

Figure 3.9. Features detected from NEXRAD reflectivity data exceeding a 30 dBZ threshold are 

shown in Figure 3.9a. These features are then used as markers to segment a GOES-16 satellite-

observed brightness temperature dataset, pictured in Figure 3.9b. The satellite brightness 

temperature data have been remapped to the same grid as the radar data prior to performing the 

segmentation process, so that features are correctly located within the segmentation field of 

interest. Ultimately, the segmentation outlines shown in Figure 3.9b depict the anvils 

corresponding to each radar reflectivity feature, except for the top-right feature marked by the 

grey dot in Figure 3.9b, which is a convective core that does not yet have an associated anvil. 
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c. PBC Treatments 

As noted in the introduction, idealized numerical models often utilize PBCs in order to 

isolate simulations from external forcings and reduce the influence of the lateral model 

boundaries on the simulation behaviour. With PBCs, phenomena flowing out of one end of the 

model boundary simply re-enter the domain at the opposite boundary for that dimension. 

However, v1.2 of tobac did not have any capabilities for recognizing the continuity of features, 

segmentation masks, or cell tracks which crossed or were split into multiple parts by boundaries, 

and the code base required these improvements for use with model configurations including 

PBCs in one or both lateral dimensions. 

 Most of the changes needed for PBC treatments in feature detection lie within the 

identification of contiguous regions separated by an artificial boundary and the positioning of 

features which exist across both sides of a boundary. In the original v1.2 procedure, a failure to 

recognize when contiguous fields are split by artificial model boundaries leads to an erroneous 

multiplication of detected features at these boundaries, which further cascades into unphysical 

segmentation fields and cell tracks. A depiction of PBC feature detection with tobac v1.2 and 

tobac v1.5 being performed on an LES model 2D column maximum vertical velocity field can be 

seen in Figure 3.10. Figure 3.10a shows the overall data field (with values less than 0.5 m/s 

masked in grey), and Figure 3.10b visualizes the initial field of labelled regions identified at a 

0.5 m/s threshold prior to utilizing our PBC treatment. Figure 3.10b contains a total of 6 different 

regions due to the multiple boundary crosses exhibited by this vertical velocity field and would 

produce 6 different features if a PBC treatment was not applied, despite it being plainly apparent 

that this field should be a single unified region. After performing our PBC treatment which 

overwrites the labelled fields, the resulting unified label can be seen in Figure 3.10c, which 
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would be correctly identified as the single feature it actually is. Utilizing the PBC treatment in 

the zonal direction also facilitates the use of tobac with some global model and observational 

datasets, and represents the first steps towards enabling global tracking. The PBC treatment for 

segmentation largely follows the same principles as that for feature detection, except it requires 

adjustments, rather than complete unifications, to be performed when segmentation masks 

collide at a model boundary. Beyond these, the PBC procedures for feature detection and 

segmentation are quite similar. 

 The tracking procedure for PBCs differs from that for both feature detection and 

segmentation due to the key purpose of the PBC treatment being to link cell tracks that already 

exist. Provided that one has performed the PBC treatment within feature detection, propagating 

features will be crossing boundaries in a smooth manner without the introduction of specious 

features. An example of the PBC tracking approach can be seen in Figure 3.11: Figure 3.11a 

displays the erroneous recognition of two distinct cell tracks from an evolving feature crossing 

the periodic boundary, while Figure 3.11b shows the correct identification of a single cell track 

with the PBC tracking approach. This new capability enables a much more robust assessment of 

cloud lifecycles and other such temporal processes in models with PBCs that would otherwise 

produce a disjoint or garbled picture with non-PBC tracking. As discussed above with relation to 

feature detection, this PBC code is an important step towards the addition of global feature 

detection, segmentation, and tracking into tobac. At present, cylindrical (zonal) global tracking 

(which can be used on GPM data, for example) is enabled within this framework, but features 

living near or crossing over the poles are still an issue that must be addressed in future versions 

of this package. 
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3.5. Summary and Conclusions 

Our overall goals for the improvements to tobac detailed within this manuscript were to 

enhance the package’s scientific capabilities and utility, improve its efficiency, and incorporate 

new tools for data processing and more complex analyses. The inclusion of these changes, as 

well as the previously existing flexibility of tobac and its variable- and grid-agnostic (i.e., 

capable of working on any gridded dataset) nature, make tobac simultaneously one of the most 

powerful and malleable objective analysis tools that presently exist in our field. 

 From a scientific point of view, the inclusion of the vertical dimension allows for 

identification, discretization, and tracking of far more complex meteorological structures than 

tobac v1.2 could perform. It also allows users to better capture the spatiotemporal evolution of 

clustered phenomena that are difficult to isolate in 2D projections of 3D data. The included 

spectral filtering tool also improves the scientific utility of tobac by providing a method for users 

to isolate specific frequencies of interest in the data they are using, precluding the need for 

external data processing or the use of datasets that have already been smoothed. 

 The procedural enhancements made to tobac as a part of v1.5 also lead to a vast 

expansion in the capabilities of this package. First and arguably foremost, the computational 

efficiency improvements, ranging from 100x to over 1,000,000x speedup depending on the 

module being used and the nature of the data, allow users to conduct analyses in far less time 

than was possible before. Such efficiency improvements allow users to leverage higher 

resolution data and overall larger datasets than tobac could reasonably manage previously. The 

data regridding procedures that are now included also enable the combined use of multiple 

different datasets existing on different grids. Such uses include tracking convective cores on 

radar and identifying anvil regions with satellite data, and modelling the mechanical lofting of 
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dust in haboob events to compare to satellite observations of the overall dust outflow. The new 

spectral filtering tool also expands the types of different data that users can include for their 

analyses – for example, detecting and tracking of African Easterly Waves that are obscured by 

noise in satellite wind field observations. Finally, adding the capability to recognize and robustly 

address PBCs has also widened the utility of tobac by enabling its use with these common 

idealized model setups. 

 Although we have made a number of thorough modifications to the tobac code base as a 

part of v1.5, future updates are already in the works as part of the next major release, tobac v2, 

and an active, international community of developers continue to maintain its code base. While 

much of the future improvements are still under discussion, some of the key elements that are 

planned for the next major release include integration with the TiNT is not TITAN (TiNT; Raut 

et al., 2021) tracking package, and a transition away from tobac’s current memory-intensive data 

structures to data structures that allow for out-of-memory computation instead. The overarching 

vision for tobac v2 is, at present, to continue development and enable better support for Big Data 

use cases. 
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3.6. Figures 

 

Figure 3.1: Demonstration of tobac feature detection and segmentation of NEXRAD radar 

reflectivity data from the Cheyenne, WY radar on 25 May 2017 during the C3LOUD-Ex field 

campaign (van den Heever et al., 2021). Panel (a) shows the actual radar data, panel (b) displays 

the objectively identified radar reflectivity features for a threshold of 30 dBZ as red dots, and 

panel (c) shows the reflectivity segmentation regions associated with the features as differently 

colored outlines. 

 

Figure 3.2: An illustration comparing cross-sections of 2D and 3D updraft four-threshold feature 

detection on the same model 3D vertical velocity field. Panel (a) shows the projection of column 

maximum vertical velocity and the multiple features contained in this area, while panel (b) 

shows a cutaway 3D isosurface plot of a 3D updraft detected at the 10 m/s threshold covering the 

same area as panel (a). Black, blue, magenta, and red shading indicate pixels exceeding the 1 

m/s, 3 m/s, 5 m/s, and 10 m/s thresholds, the white dots illustrate feature positions within each 

cross-section, and the white line in panel (a) represents the location of the front-left cutaway in 

panel (b), ahead of which (in y-point space) transparent isosurfaces are used to reveal the 

complex inner structure of the updraft via the opaque isosurfaces. 
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Figure 3.3: A depiction of tobac v1.5 (top row, vertical cross section) and tobac v1.2 (bottom 

row, plan view) feature detection and tracking for a scenario with upper-level cirrus moving over 

cumulus cloud developing in a sheared environment. Each column’s panels are depictions from 

the same time. The tobac v1.2 approach pictured in the bottom row fails to capture the temporal 

evolution and vertical propagation of the cumulus cloud due to the overlying cirrus, and even 

incorrectly recognizes the cumulus in panel (f) as a completely new feature and track from its 

earlier stage in panel (d), while the tobac v1.5 approach (top) correctly identifies both the 

cumulus and cirrus clouds as independent features and tracks their vertical positions over time. 

The colored circles denote different features at their present times in each panel, with the colored 

X’s indicating their position at previous times and the dotted lines representing the 

corresponding tracks. The symbol t here denotes a generic starting time, while ∆t denotes the 

timestep from scene to scene. 
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Figure 3.4: Demonstration of 3D segmentation using (a) the original “column” versus (b) the 

“box” seeding method, showing the differences in output produced by the different methods. 3D 

feature detection was performed on LES numerical model vertical velocity data from the 

Regional Atmospheric Modeling System (RAMS) v.6.2.14, with segmentation being performed 

on the corresponding model total condensate field. Segmentation in panel (b) used a uniform box 

seed size of 5 in x, y, and z. 
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Figure 3.5: Demonstration of 3D tracking in tobac on NEXRAD radar reflectivity data. The top 

row shows the plan view in latitude-longitude space, while the bottom row consists of latitude-

altitude cross sections corresponding to each of the times presented in the plan view above – 

thus, (a) and (e); (b) and (f); (c) and (g); and (d) and (h) are all pairs. The red dot shows the 

present feature location, while the red line trailing behind it shows the detected track. 

 

Figure 3.6: Visualization of spectral decomposition of atmospheric input fields and construction 

of a bandpass filter that can be specified by the user and is used to filter the input data.  a) 2D 

input field with atmospheric data at one time step, here: hourly relative vorticity at 500 hPa 

[10^5] of a 4km WRF simulation over South East Asia. b) The same data after the DCT, 

represented by spectral coefficients as a function of wavelengths in x and y direction. c) 
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Response of constructed bandpass filter as a function of wavelength. The two red lines indicate 

the cut-off wavelengths that can be specified by the user (here: 400 and 1000 km). d) Same 

bandpass filter but in 2D spectral domain with same shape as b) but zoomed in to show the filter 

response for wavelengths between 400 and 1000 km. 

 

Figure 3.7: Examples for hourly atmospheric input fields (a, c) and their corresponding spectrally 

filtered fields (b, d). a) Vertically integrated water vapor transport (IVT) [kg m-1 s-1] from ERA5 

at 2021-01-27 10:00:00 UTC showing an atmospheric river over the San Francisco Bay area  b) 

Same as in a) but spectrally filtered for wavelengths > 1000 km, c) Relative vorticity at 500 hPa 

[10^5 s-2] from a WRF simulation with 4km grid spacing over Southeast Asia for 2008-07-18 

05:00:00 UTC (when Typhoon Kalmaegi hit Taiwan) d) Same as in c) but spectrally filtered for 

wavelengths between 400 and 1000 km. Note that the typhoon over Taiwan only becomes visible 

in the vorticity field after the filtering has been applied, because the original vorticity field is 

dominated by sub-mesoscale noise. 
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Figure 3.8: A benchmark comparison of tobac speed between version 1.2 (Heikenfeld et al. 

2019) and version 1.5, demonstrating the increase in speed using a full day of GOES-16 Channel 

10 IR imagery from 12 June 2021 on a) feature detection at 230 K, with number of features on 

the abscissa and time taken to run feature detection on the ordinate, and b) as in a, but for 

tracking. 

 

Figure 3.9: A depiction of the output from the new procedure for differently gridded data 

included in tobac v1.5. Panel (a) shows NEXRAD radar reflectivity in dBZ from the Goodland, 

KS site at 15:56 UTC on 26 May 2021, as well as the associated features detected at a 30 dBZ 

threshold marked by grey dots which represent different convective cores. Panel (b) shows 

GOES-16 satellite observed brightness temperature in K (initially on a different grid from the 

radar data), as well as the segmentation masks associated with each of these features as 

differently coloured outlines. The segmentation outlines shown in panel (b) are produced after 

regridding the satellite data to the same grid as the radar data and depict the upper-level cirrus 

shields associated with the different convective cores seen in the radar data. 
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Figure 3.10: Illustration of PBC treatment algorithm for feature detection. Panel (a) shows the 

original column-maximum vertical velocity field (values less than 0.5 m s-1 masked); (b) depicts 

the six individual feature detection labels produced at a 0.5 m s-1 threshold without the PBC 

treatment; and (c) presents the correct unified label post-treatment for PBCs. 

 

Figure 3.11: A depiction of 2D tobac tracking with and without accounting for PBCs. Panel (a) 

shows the two discrete cells that would be identified by tobac v1.2 when a feature crosses a 

boundary; panel (b) illustrates the single, unified cell that is produced with the PBC tracking 

procedure. 
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CHAPTER 4:  DYNAMIC AND THERMODYNAMIC ENVIRONMENTAL 

MODULATION OF TROPICAL CONGESTUS AND CUMULONIMBUS IN THE 

MARITIME CONTINENT 

4.1.  Introduction 

The Maritime Continent (MC) has long been identified as a region vital to the global 

energy and water balance (Riehl and Malkus 1958; Ramage 1968). The role of the MC in the 

climate system is, in turn, influenced by cumulus, congestus, and cumulonimbus clouds, the 

three modes comprising tropical convection (Johnson et al. 1999). Because of the important role 

of the MC in the climate system and its wide variety of convective morphologies, it is an 

excellent natural laboratory to study convective cloud processes. Here we focus on congestus and 

towering cumulonimbus, or together Congestus and Cumulonimbus Clouds (CCCs), as they are 

crucial for vertically transporting momentum, energy, water, trace gases, and aerosol particles 

between the boundary layer and upper troposphere (Riehl and Malkus 1958; Ramage 1968; 

Dickerson et al. 1987; Su et al. 2006; Barth et al. 2015). CCCs are also vital contributors to the 

atmospheric radiative balance through anvil radiative forcing (Slingo and Slingo 1988), are 

critical to driving the large-scale atmospheric circulation (Riehl and Malkus 1958), and influence 

inter- and intraseasonal oscillations (Riley et al. 2011; Zuluaga and Houze 2013; Riley Dellaripa 

et al. 2018; Toms et al. 2020a,b). Storm environments, including their thermodynamic, dynamic 

(e.g., shear and convergence), and aerosol properties, may have significant impacts on elements 

of CCC lifecycle, e.g., development, maintenance, and dissipation (e.g., Austin 1947; Bhat et al. 

1996; Holloway and Neelin 2009; Masunaga 2013; Bergemann and Jakob 2016; Posselt et al. 

2019). However, the relationship between CCC properties and their formation environments is 

still not well-understood. Indeed, convective parameterizations in global and regional climate 
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models have often struggled to accurately represent the interactions between CCCs and their 

environment, particularly within the MC (Neale and Slingo 2003; Jourdain et al. 2013).  

The overarching goal of this research is to investigate the influence that local initial 

environmental characteristics have on the properties and lifetimes of tropical CCCs. Previous 

work has examined the sensitivity of CCC properties in the tropics to environmental 

characteristics through both observational (Holloway and Neelin 2009, 2010; Tobin et al. 2012; 

Kumar et al. 2014; de Oliveira and Oyama 2015; Schiro et al. 2016; Louf et al. 2019) and 

numerical modeling studies (Grabowski and Moncreiff 2004; Jensen and Del Genio 2006; 

Takemi 2007a,b, 2014, 2015; Hannah 2017; Posselt et al. 2019; Storer and Posselt 2019; Grant et 

al. 2020; Toms et al. 2020b; Chen et al. 2021). Each of these studies has related several 

properties of CCCs, such as cloud top height or precipitation rate, to environmental 

characteristics, such as Convective Available Potential Energy (CAPE), vertical wind shear, and 

humidity.  

Prior observational approaches have typically allowed for the simultaneous sampling of 

many convective cloud modes and assessing the large-scale environments supporting their 

formation. For example, Louf et al. (2019) used a long-duration ground-based radar dataset to 

examine the response of monsoonal convective clouds to changes in the bulk environment, and 

found that rainfall is sensitive to CAPE, Convective INhibition (CIN), humidity, and large-scale 

ascent. However, while Louf et al. (2019) examined large-scale environmental controls that are 

instructive for climate models, they did not sample the local environments responsible for the 

initiation, organization, and evolution of individual CCC entities. Similar limitations are also 

present in other observational work focused on this problem (Holloway and Neelin 2009, 2010; 

Tobin et al. 2012; Kumar et al. 2014; de Oliveira and Oyama 2015; Schiro et al. 2016), and are a 
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natural result of the resolution and associated shortfalls of remote sensors in characterizing local 

thermodynamic and dynamic environments of CCCs.  

Numerical modeling studies, on the other hand, can sample the initial environments 

responsible for individual cloud systems. Such modeling studies have typically examined a 

single storm or collections of storms while systematically varying the local environmental 

conditions such as CAPE, humidity, vertical wind shear and aerosols (Grabowski and Moncreiff 

2004; Grabowski 2006; Jensen and Del Genio 2006; Takemi 2007a,b, 2010; Kirkpatrick et al. 

2011; van den Heever et al. 2011; Storer and van den Heever 2013; Takemi 2014; Hannah 2017; 

Posselt et al. 2019; Storer and Posselt 2019; Grant et al. 2020; Park et al. 2020). However, even 

when previous studies have applied realistic perturbations, they have not necessarily spanned the 

full range of observed convective environments and morphologies, nor have they taken into 

account the relationships between large-scale and local conditions in influencing CCC lifecycle.  

There has been some work combining the strength of the observational approach—the 

ability to sample storms in the natural environment—with numerical models, which allow 

formation environments and storm properties to be sampled throughout the domain at high 

resolution (Takemi 2015; Toms et al. 2020b). However, both of these studies focused on the role 

of the large-scale environments alone, such as the Boreal Summer Intraseasonal Oscillation 

influences on CCC properties (and vice-versa in the case of Toms et al. 2020b), rather than on 

the role played by the local initial environment within the context of the large-scale environment. 

Few, if any, existing studies have examined how local initial environmental characteristics 

influence CCC properties throughout CCC lifetimes. This is particularly important when trying 

to determine why the storm strength, storm organization and storm orientations of various CCCs 

vary when contained within the same large-scale environment.  
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To elucidate robust relationships between local environmental characteristics and storm 

properties, we need a statistically significant sample of convective clouds developing under a 

wide range of realistic environments and environmental perturbations. Here we employ an 

approach in which the simulation is initialized using observational conditions and the local cloud 

environments are allowed to develop naturally and heterogeneously, as with observational 

studies. This approach enables an assessment of the relationship between individual CCC storm 

properties and their local initial environment characteristics. We make use of a high-resolution, 

large-domain simulation that is allowed to evolve over a long time period, resulting in millions 

of CCCs, each formed by different local initial environments. Each simulated CCC in the model 

output is identified and tracked in time using a convective tracking algorithm. We then determine 

both the initial environmental characteristics and the temporally evolving CCC properties for 

each simulated CCC.  

This research quantifies the initial thermodynamic and dynamic environmental influences 

on the following properties of CCCs: (a) convective intensity (updraft strength and precipitation 

rates); (b) storm organization (cloud adjacency); and (c) storm morphology (linear or non-linear). 

The definitions and requirements for these properties are further clarified in Section 4.3. 

Throughout this paper we will refer to these three aspects of CCCs as the storm properties. The 

immense dataset of simulated CCCs in their naturally evolving simulated environments allows 

for the creation of a robust statistical profile of the relationship between initial environmental 

characteristics and CCC properties over their lifetimes.  

4.2. Numerical Model and Experiment Setup 

The Regional Atmospheric Modeling System (RAMS; Cotton et al. 2003; Saleeby and van 

den Heever 2013) version 6.2.14 was employed to conduct the numerical experiments. RAMS 
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has been widely used to model tropical deep convection and has been shown to produce a 

realistic depiction of these tropical convective properties (van den Heever et al. 2011; McGee 

and van den Heever 2014; Storer and Posselt 2019; Toms et al. 2020a,b; Grant et al. 2020). We 

performed a month-long simulation over a domain of 1800 x 1950 km at a horizontal grid 

spacing of 1km and vertical grid spacing of 100 to 300m, with frequent temporal output 

(Δ𝑡#5,65,=5 mins). This large-domain, high-resolution, long-duration simulation produced robust 

statistics of CCC lifecycle for nearly two hundred thousand individually resolved CCCs. 

Full model simulation and parameterization configuration information is provided in Table 4.1, 

but some of the more critical parameters are now described in more detail. The model simulation 

period extended from 15 August 2019 to 20 September 2019 and was approximately spatially 

and temporally coincident with the Southwest Monsoon period of the NASA Cloud, Aerosol and 

Monsoon Processes Philippines Experiment (CAMP2Ex; Reid et al. 2022) field campaign. 

CAMP2Ex made extensive observations of clouds, convection, and environments around the 

Philippines. The potential for future comparisons of this modeled dataset with the observations 

made in the field was one of the primary reasons for selecting this period and geographic region. 

Our model grid was centered on the Philippine Archipelago (Figure 4.1a), and a wide range of 

convective morphology, typical of the MC, was captured in these simulations (Figure 4.1b,c).  

To ensure the large-scale environments in our simulation were representative of those in 

the MC region, we nudged the lateral boundaries with the ERA-5 reanalysis dataset (Hersbach et 

al. 2020). As we did not nudge the center of the domain, we do expect some drift from the 

observations in time on the mesoscale. Initial assessments of the model output show that the 

modes of convection produced closely match those typically found in this environment (Figure 
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4.1b), and that the large-scale and synoptic-scale features realistically transited the domain 

during the simulation (not shown). A similar result was found in Toms et al. (2020b).  

4.3 CCC Identification and Tracking 

We employed a modified version of the Tracking and Object-Based Analysis of Clouds 

(tobac) algorithm v1.2 (Heikenfeld et al. 2019; Chapter 3) to track 200,000 CCCs, including the 

storm properties and the surrounding environmental characteristics at 5-minute intervals 

throughout the CCC lifecycle. tobac is a comprehensive framework capable of identifying cloud 

features and volumes and tracking clouds over time.   

a. Tracking Step 1: CCC Feature Identification 

To track CCCs and calculate their properties, we first began by identifying two-

dimensional cloud features. We used the mid-level (3-8 km) maximum updrafts (hereafter Wmax) 

to identify convective features. A minimum Wmax of 1 m s-1 was used as our threshold for 

tracking CCCs. This threshold is lower than that of the continental cloud study of Heikenfeld et 

al. (2019) as tropical marine convection typically has weaker mid-level updrafts (Zipser and 

Lemone 1980).   

Figure 4.2a and b demonstrate the ability of tobac’s feature identification algorithm to 

simultaneously identify hundreds of updrafts and updraft clusters, respectively, across the 

simulation domain at each point in time. The selection of a single feature point from a 2D field 

of vertical velocity by tobac is detailed in Heikenfeld et al. (2019), and an example of this for 

isolated convection is demonstrated in Figure 4.2c. Each updraft in these examples had only one 

identified feature, namely the the maximum updraft velocity, as indicated by the dots. From this, 

each CCC’s Wmax was logged. Our feature identification required storms to have a positive Wmax. 

This requirement did, at times, result in some dissipating CCCs not being identified and tracked.  
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However, as the developing and mature phases of the CCCs were identified using this technique, 

their initial environments can be derived, and most of their lifecycle is trackable. This approach 

differs from those that rely on precipitation for storm identification and/or tracking in which the 

early storm lifecycle is often missed due to the time it takes to produce precipitation. 

b. Tracking Step 2: Full-cloud volume segmentation 

As CCCs are 3D phenomena, using only a single point or column measurement to 

identify each CCC would unrealistically depict storm properties and processes. Instead, we used 

tobac’s segmentation component, which utilizes a 3D watershedding algorithm to associate 

cloudy grid points with the updraft feature detected in Step 1. In keeping with Heikenfeld et al. 

(2019), the watershedding algorithm used the 3D total condensate field with a minimum 

threshold of 0.5 g kg-1 to determine what we classify as cloudy and non-cloudy points.   

Figure 4.2d depicts an example produced by this algorithm at a single vertical level at a 

single time. In this figure, the updraft features (dots; identical to those in the other panels of  

Figure 4.2) are shown within each of their separately detected cloud segments (various contoured 

colors in the background). Rather than being limited to a simple radius or column around the 

singular detected feature point (maximum midlevel updraft velocity in this case), the entire cloud 

volume was determined for each CCC from which cloud statistics were then calculated. 

c. Tracking Step 3: CCC Tracking 

Each of the feature detection (Tracking Step 1) and segmentation steps (Tracking Step 2) 

was performed at every output time of the simulation (i.e., every 5 min). To track the identified 

features, we used the trackpy (Allan et al. 2021) integration in tobac (Heikenfeld et al. 2019). 

Storm splitting and merging were treated as follows. Features that merged at time t+Δtoutput were 

linked to the feature at time t that had the direction of travel most similar to the initial feature. 
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Similarly, for storms that split, the feature at time t+Δtoutput closest to the predicted position was 

linked to the original feature at time t, and the feature further away from the predicted track was 

identified as a new feature. Storm tracking was performed throughout the analysis period of 30 

days.  

 Some of the initially tracked storms were removed as part of a quality control process. 

First, we eliminated all tracked CCCs from the database that were within the lateral boundary 

nudging zone at any point in their lifetime. Next, we removed tracked storms that initiated or 

passed over land to prevent terrain effects from complicating the analysis of what are primarily 

maritime convective storms. This resulted in a database of storms comprised entirely of a 

maritime lifecycle. Finally, we deleted all tracked storms with lifetimes less than 15 minutes, as 

we would expect the minimum storm lifetime for deep convection in the maritime continent to 

be at least 20 minutes (Toms et al. 2020b). We saw no substantive difference in our results (other 

than the number of storms tracked) when mandating a 10 or 20-minute maximum storm time, 

and thus the selection of this threshold does not appear to impact the results. After these quality 

control steps were performed, our tracked CCC database consisted of 182,149 tracked convective 

storms. 

d. Determining CCC Properties 

We next characterized the CCC properties of interest (i.e., intensity, organization, and 

morphology) for each CCC in our database. Although many metrics could be used to quantify 

CCC properties, we selected a specific metric to facilitate the automated identification. For 

example, the term “intensity” can have many different definitions depending on the context, 

including updraft strength (Zipser and Lutz 1994), lightning flash rate (Fuchs et al. 2015), the 

height of specific radar reflectivities (Zipser et al. 2006), or precipitation rates (Cecil et al. 2005). 
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We selected both updraft strength and precipitation rates as metrics for CCC intensity. We used 

the maximum mid-level (3 to 8 km) vertical velocity over the tracked lifetime of the CCC for the 

updraft intensity. This is the same quantity used by tobac to identify features and is therefore 

intimately tied to our tracking. An example of characterizing CCC updraft intensity is included 

in Figure 4.2a and c, which show tracked tobac features colored by their maximum midlevel 

updraft. For storm precipitation intensity, we used the maximum precipitation rate of the CCC at 

the surface over its tracked lifetime. Calculating the total integrated precipitation amount for 

each individual storm was not possible because tobac relies on an updraft of at least 1 m/s to 

track the storm feature. As such, precipitation that falls during a storm’s dissipating phase (in 

which updrafts may be weak to non-existent) will not be counted in the total. To calculate the 

precipitation rate for a single CCC, we sampled only those points included in tobac’s 

segmentation on the model level nearest the surface and stored the maximum precipitation rate 

from all points within this segmented area over the lifecycle of the CCC. As tobac did not 

necessarily capture the end of each CCC lifecycle, we may not have captured the strongest 

precipitation rates if they occurred in the dissipating phase.  

For storm organization, we chose to classify any two CCCs as organized if their tobac-

determined cloud segmentations were adjacent at any vertical level at any time during their 

lifetime. Similar distance-based metrics for determining convective organization have been 

previously used in the literature (Tobin et al. 2012; White et al. 2018). White et al. (2018)’s 

approach to describing convective organization is conceptually similar to what we use here, 

labeling individual convective cores as part of a larger organized system if they have adjacent 

clouds.  
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Figure 4.2d demonstrates how this algorithm identifies organized storms. The 

background shading of this plot indicates various segmentation areas, with each different color 

representing a different CCC segmented area at 2 km AGL. Overlaid on the segmentation 

horizontal cross-section are identified CCC features, whose locations match those in Figure 4.2c, 

but are colored by their organizational status. The three CCCs identified by points colored green 

are considered part of the same storm system (i.e., Cluster 1) and are therefore organized, and the 

two CCCs that are colored blue are considered part of their own, also clustered, system (i.e., 

Cluster 2), whereas each of the features colored black are considered separate Isolated CCCs. It 

is worth noting that the segmented area denoted by the grey feature in the center of the domain is 

not touching the brown segmented area, despite the fact that they are identified as part of the 

same convective cluster. While they are not touching at this level, the two segmentations do 

touch at several other levels higher up in the atmosphere (not shown), demonstrating that this 

approach works in a 3D perspective. If a CCC was identified as part of a storm cluster at any 

point in its lifetime, it was labeled as a Clustered storm point, whereas only tracked storms that 

were never part of a larger system were labeled as Isolated. The result of applying this algorithm 

is shown in Figure 4.2b, where the colored points are considered Clustered and the black points 

Isolated.  

Finally, we used linearity to quantify the morphology property of CCCs. Only those 

CCCs that were already classified as organized were considered. Linearity was quantified by the 

aspect ratio of the minimum bounding rectangle, where the latter was defined as the smallest 

rectangle that can encompass all detected CCCs that were part of a single organized complex at 

any one time. This objective requirement is somewhat similar to the subjective definitions of 

linearity present in the existing literature in which linearity in the convective elements is required 
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rather than in the entire cloud field (Parker and Johnson 2000, Gallus et al. 2008). If the 

minimum bounding rectangle had an aspect ratio of at least 3:1, meaning its two longer sides 

were at least three times as long as its two shorter sides, the storm morphology was considered 

Linear at that time; otherwise, we classified it as Nonlinear. Although our selection of the 3:1 

ratio was somewhat arbitrary, we tested ratios between 1.5:1 and 10:1 and found the trends to be 

insensitive to these specifications. As storm clusters change over time, they may move from a 

Linear to a Nonlinear morphology or vice versa. We required that a storm be Nonlinear or Linear 

for at least 75% of its lifetime for it to be classified as such. 

e. Determining CCC Environmental Properties 

All of the storm properties need to be related to unique CCC formation environments in 

order for us to answer our science question. To determine the CCC formation environments we 

began by identifying the point at which the CCCs are first tracked by tobac. At this point, the 

storm already had a Wmax of at least 1 m s-1, meaning that the environment is not necessarily 

exactly representative of the storm’s initial formative environment. Instead, we sampled the 

environment 5 minutes (i.e., one Δ𝑡#5,65,) before the first CCC updraft is detected (i.e., 5 

minutes before the storm has an updraft of at least 1 m s-1). As we do not have any previous 

tracking information before the CCC is first detected, we must determine a spatial point or set of 

points to sample the prior environment. Here, we choose to sample the environment by taking 

the mean of the environment falling within a circle of 5km radius around the point of first 

updraft identification. All of the points with a total condensate amount >0.1 g kg-1 are excluded 

to ensure that we are sampling the cloud-free environment, and a minimum of 5 cloud-free points 

per level was required to calculate a valid environment. Our results were not sensitive to the 

radius threshold when tested between 5 and 15 km surrounding the point or the temporal 
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threshold, and when tested between 5 and 15 minutes before initial storm identification. The 

initial environments were calculated in this manner for each individual CCC in the database.  

Throughout this work, we also employed scalar environmental parameters that were 

derived from the mean vertical environmental profiles discussed above. Convective Available 

Potential Energy (CAPE, here using surface-based CAPE) and precipitable water were calculated 

by the MetPy v1.0 library (May et al. 2020). The vertical wind shear values were determined by 

first calculating the mean wind profile for each CCC as described above and then calculating the 

vertical wind shear as a vector magnitude shear (e.g., -(𝑢7	89 − 𝑢':*); + (𝑣7	89 − 𝑣':*); for 

the 0-Z km vertical wind shear, where Z can be any altitude). Where wind shear is reported 

separately as directional and speed shear, these are calculated for directional as (using 0-1 km as 

an example) |°<89 − °':*|, where ° represents the wind direction in degrees, and for speed shear 

as 4𝑉<89666666666⃗ 4 − 4𝑉':*6666666⃗ 4, where |𝑉6⃗ | represents the wind speed in m s-1 (Markowski and Richardson 

2006). Means and standard deviations of these scalar storm environment parameters were 

computed by determining the scalar parameter for each individual initial environment and then 

calculating the arithmetic mean or standard deviation. Owing to the large dataset of CCCs used 

here, the environment calculations were performed using the jug python library (Coelho 2017). 

Where statistical significance is discussed, we employ the student’s t-test at an 𝛼 = 0.01 to 

determine whether two means were statistically significantly different. 

Maximum values of the CCC properties (e.g., maximum cloud top height) are assessed 

by determining the maximum value throughout a single CCC tracked lifetime unless otherwise 

noted. Vertical microphysical profiles are calculated for each CCC and time by taking the mean 

vertical profile within the CCC using the tobac-derived segmentation data. Each CCC is assigned 

a time-averaged mean vertical profile for each of the eight microphysical mixing ratios. The 
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overall means are calculated by taking the arithmetic mean of all CCC time-averaged mean 

vertical profiles in the bin of interest. Vertical velocity Contoured Frequency by Altitude 

Diagrams (CFADs; Yuter and Houze 1995) are calculated based on the total frequency of 

vertical velocities over all CCCs in the bin using a bin width of 0.2 m s-1, and discarding the 

vertical velocities between -0.2 and 0.2 m s-1.  

4.4. Results 

 Various bulk characteristics of our full tracking dataset of 182,149 CCCs are summarized 

in Figure 4.3. The number of CCCs varied over time with changing synoptic conditions (Figure 

4.3a). The strength and depth of the CCCs also varied. Figure 4.3b shows a histogram of the 

maximum vertical velocity over the CCC’s lifetime. Although there is no comprehensive 

observational dataset of updraft vertical velocities over this region, the range of storm maximum 

vertical velocity simulated in our deep convective storms is largely in line with other numerical 

simulations of tropical deep convection (van den Heever et al. 2011; Hannah 2017; Posselt et al. 

2019; Storer and Posselt 2019; Grant et al. 2020).  

Our suite of tracked storms also varies in the maximum cloud top height reached by the 

CCCs over their lifetime (Figure 4.3c). As we require the presence of an updraft between 3-8 

km, our tracked maximum cloud top height distribution begins above 3 km AGL (Figure 4.3c). 

The distribution is bimodal, with peaks around 6 km and 15 km AGL, and a relative minimum 

between 8-13 km AGL. The bimodality indicates that we are capturing terminal congestus, 

whose cloud tops are typically found around just above the freezing level inversion (~5 km in the 

tropical summer MC; Johnson et al. 1999) and towering cumulonimbus, which continue past the 

freezing level, typically topping out around the equilibrium level.  
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a. Convective Environments associated with Storm Intensity 

 Our science question first asks about the impacts of the environment on storm intensity. 

To this end, we have stratified our tracked database of CCCs into three bins for each of the 

vertical velocity and precipitation metrics we are using to define intensity. First, for vertical 

velocity, we divide the dataset into velocity bins and define St_W (CCCs with Wmax
 ≥ 10 m s-1), 

Md_W (CCCs with 10 > Wmax ≥ 5 m s-1), and Wk_W (CCCs with 5 > Wmax ≥ 1 m s-1). For 

precipitation intensity, we have stratified the dataset based on percentiles of the maximum 

precipitation rate sampled: St_PCP (≥66th percentile), Md_PCP (66th to 33rd percentile), and 

Wk_PCP (≤33rd percentile). It is important to note that the storm updraft intensity bins and the 

precipitation intensity bins are not the same, and that CCCs in the St_W bin are not necessarily 

the same as those in the St_PCP bin and vice versa, i.e., the strongest storms dynamically do not 

necessarily produce the heaviest precipitation, and the heaviest precipitation is not necessarily 

produced by the strongest dynamical storms. A further exploration of the overlap between the 

precipitation and vertical velocity bins is discussed in Section 4.4.a.2. 

4.4.a.1 Storm Updraft Intensity 

 The three bins of updraft intensity approximately represent two of the classifications of 

moderate-to-deep convection cloud top height (Johnson et al. 1999) in the MC: cumulonimbus 

(i.e., the St_W and most Md_W CCCs) and terminal cumulus congestus (i.e., the Wk_W CCCs; 

Figure 4.4a). The St_W CCCs nearly all have maximum cloud tops substantially higher than the 

freezing level inversion (~5 km AGL), whereas the Wk_W CCCs almost all have cloud tops 

around or below the freezing level. In keeping with previous findings (LeMone et al. 1998; 

Johnson et al. 1999; Luo et al. 2009; Sheffield et al. 2015), this suggests that the latent heat of 

glaciation is an important contributor to the vast majority of Md_W and St_W CCCs throughout 
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the MC. Figure 4.4b shows the mean hydrometeor vertical profiles by vertical velocity and 

indicates that there is more latent heating from condensation, freezing, and deposition (as 

indicated by the larger ice and liquid hydrometeor average mixing ratios) in St_W CCCs than in 

the Md_W and Wk_W CCCs. While the total amount of both ice and liquid monotonically 

increases with increasing storm Wmax, the ratio of ice to total condensate stays approximately the 

same in all three vertical velocity bins. It is noteworthy that in the areas above the freezing level 

(~6 km), the sample sizes for Wk_W are relatively small as few of these CCCs reach this cloud 

top height. The differences between in-cloud properties that are coincident with the three Wmax 

bins help to explain why Wmax varies, but these properties are all modulated by initial 

environments, which we now explore. 

Diversity in cloud properties, especially around some congestus remaining terminal and 

some continuing to develop into cumulonimbus suggest that there are environmental factors 

influencing the storm lifecycle. Figure 4.5 demonstrates the mean difference between the initial 

thermodynamic environments in the three storm Wmax bins. The St_W environments are on 

average both warmer and moister than both the Md_W and Wk_W CCCs at the surface (as 

demonstrated by the plotted change in temperature versus the Wk_W bin), and are colder aloft 

(i.e., above 550 hPa; Figure 4.5a). While the St_W and Md_W CCCs are generally moister than 

the Wk_W CCCs below 250 hPa, this trend is not monotonic, as Md_W CCCs are overall moister 

than St_W CCCs above 700 hPa (Figure 4.5c). Given that the trend in column integrated 

moisture is monotonic, with the St_W CCCs having higher precipitable water on average than 

Md_W CCCs (Figure 4.6b; Table 4.2), the enhanced moisture near the surface in St_W is enough 

to compensate for its relatively lower moisture above 700 hPa. It is possible that this overall 

increase in moisture above 700 hPa in the Md_W CCCs relative to the St_W CCCs could be a 
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signal that St_W CCCs are more robust to dry layers aloft, whereas the Md_W CCCs are more 

sensitive to such layers, requiring more moisture throughout the initial column to survive. 

The differences in temperature and low-level moisture result in a statistically significant 

increase in mean CAPE in the St_W (mean CAPE 1802.8 J kg-1) versus Md_W (1550.9 J kg-1) 

and Wk_W (1489.7 J kg-1) CCCs (Table 4.2; Figure 4.6a). While larger CAPE values will 

inherently lead to an increase in vertical velocity, CAPE is not the sole discriminator in CCC 

strength. In fact, the Md_W and Wk_W storm mean CAPE values are quite similar (Table 4.2; 

Figure 4.6a). This suggests that relatively high CAPE is a necessary but not sufficient condition 

for strong CCC updraft velocities in the MC. 

As higher CAPE alone is not the discriminator between CCC updraft intensity, it is 

necessary to explore other environmental controls. Above the surface, the moisture content of the 

air will also impact the updraft velocity through entrainment and subsequent mixing. Some of 

these impacts can be seen in Figure 4.6b and Figure 4.7b-c. St_W CCC initial environments have 

similar column moisture to their Md_W counterparts, but more column moisture on average 

(Figure 4.6b; Table 4.2) than their Wk_W counterparts. Thus, the Md_W CCCs have significantly 

less CAPE but similar PW to the St_W CCCs, and similar CAPE but more PW than the Wk_W 

CCCs, suggesting that the PW plays a more significant role than CAPE in determining storm 

intensity. Even in high CAPE (>2000 J kg-1) situations, if the environment is drier (<63 mm 

precipitable water), it is more likely that a Wk_W CCC will form rather than a St_W CCC (Figure 

4.7b). Further, we can see from Figure 4.6b that half of all St_W CCCs had initial precipitable 

water values above 64 mm, with three quarters of them above 63 mm. CCCs with stronger Wmax 

require more moist environments in the lower levels (i.e., lower than 650 hPa) because when 

relatively dry environmental air is entrained into the storm, condensation and deposition rates 
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decrease resulting in less latent heating and reduced buoyancy. Furthermore, moist air is more 

buoyant than dry air. That said, sufficiently moist environments appear to be necessary but not 

sufficient conditions for the formation of intense CCCs; without the necessary CAPE (i.e., below 

~1500 J kg-1), it is more likely that a Wk_W storm forms than a St_W storm for all PW amounts 

(Figure 4.7b).  

CAPE and precipitable water both describe the thermodynamic state of the air entrained 

into growing CCCs, but does not directly describe the dynamical state. Deep layer vertical wind 

shear, to first order, increases entrainment (Hannah 2017; Peters et al. 2020). The impact of deep 

layer vertical wind shear is evident in Figure 4.6e-f, where it can be seen that increases in the 

average environmental 0-5 km and 2-7 km vector magnitude wind shear are associated with 

weaker storm updraft velocities. However, this trend reverses when considering the impacts of 

the 0-1 km and 0-3 km shear (Figure 4.6c-d). We speculate that this may be because weak and 

moderate storms that are more sheared in the lower levels never fully develop and instead either 

remain below the 3 km height threshold for detection or never develop into cumulus clouds to 

begin with.  

The interplay between CAPE and shear can be further seen in Figure 4.7a, which shows 

the relationship between lower level (0-3 km) wind shear and CAPE. Although strong values of 

wind shear (> 10 m s-1) are less common, for sufficient CAPE, St_W CCCs are more likely at 

stronger lower-level wind shear values. The distribution within the CAPE-shear phase space 

closely mirrors that of the CAPE-PW phase space, albeit with more Wk_W CCCs than St_W 

CCCs in the high CAPE/high shear zone (top right). When examining precipitable water and 0-3 

km wind shear simultaneously (Figure 4.7c), we see a less coherent relationship, with low shear 

and low precipitable water resulting in more frequent Wk_W CCCs. This further reinforces that, 
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as long as wind shear is not so strong that it is causing initial convection to terminate due to 

excessive entrainment, it is not as strong a control of vertical velocity as the initial CAPE and 

precipitable water. The strong dependence of CCC vertical velocity on CAPE and precipitable 

water and the relatively weak dependence on wind shear has also been previously reported 

(Posselt et al. 2019; Storer and Posselt 2019). However, these previous studies primarily focused 

on the role played by each environmental factor independently (Posselt et al. 2019) or on small 

perturbations (Storer and Posselt 2019), whereas here we show the co-dependence of these 

parameters across a wide range of values. In summary, these results demonstrate that both high 

CAPE and precipitable water are individually necessary but not sufficient to produce the 

strongest third of CCCs in our simulations.  

4.4.a.2 Storm Precipitation Intensity 

We now focus on CCC precipitation rate by examining how the precipitation bins map 

onto the vertical velocity bins and vice-versa (Table 4.3). Globally, storms with the strongest 

updraft velocities are not necessarily those that are the biggest precipitation producers (Zipser et 

al. 2006; Hamada et al. 2015). In this case, at least 50% of the storms in each of the precipitation 

bins are in their corresponding vertical velocity bin (e.g., >50% of St_PCP CCCs are St_W 

CCCs) as can be seen along the top- left to bottom-right diagonals of Table 4.3. However, that 

said, there are a number of CCCs whose precipitation intensity doesn’t match with their vertical 

velocity and vice versa. Only 67.6% of the St_PCP CCCs are also St_W CCCs (top part of Table 

4.3). Some of this is due to the fact that there are more St_PCP CCCs than St_W CCCs owing to 

how the bins were constructed, but even when removing this effect and looking at the number of 

St_W CCCs that are also St_PCP CCCs, we see that 18.1% of St_W CCCs produce moderate 

amounts of precipitation (Md_PCP CCCs), as opposed to the heaviest precipitation rates 
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(St_PCP). This suggests that there may be other important environmental controls on 

precipitation intensity that divides strong dynamical storms (St_W CCCs) into heavy and less 

heavy precipitation producers.   

The role of CAPE, PW and vertical wind shear in determining the precipitation rates is 

shown in Figure 4.8. It is evident from this figure that the precipitation rate depends somewhat 

on CAPE (Figure 4.8a). However, unlike the Wmax stratification, the St_PCP CCCs have nearly 

the same CAPE (1691.5 J kg-1) as the Md_PCP CCCs (1651.7 J kg-1), but there is a significant 

difference between the CAPE of St_PCP CCCs and Wk_PCP (1501.8 J kg-1) CCCs. This is in 

contrast to the relationship between CAPE and the vertical velocity bins. Stronger vertical 

velocities (i.e., those in St_W) are supported by colder environments aloft (Figure 4.5a), resulting 

in higher overall CAPE, whereas the strongest precipitating storms are supported by warmer 

environments throughout the column (Figure 4.5b).  

Many of the lowest precipitation rate CCCs are also the weakest Wmax CCCs (76.6%; 

Table 4.3). There is a clear statistically significant difference in the PW between the strongest 

and weakest rain producers. At all levels below 250 hPa, the mean St_PCP initial dew point 

temperature is between 0.1 and 0.5 K greater than the Wk_PCP initial environment (Figure 4.5b). 

The relationship between precipitation rate and PW can also be seen in Figure 4.9b-c. With 

sufficient CAPE (>1000 J kg-1), the difference between the initial environments of St_PCP 

CCCs and Wk_PCP CCCs is based on precipitable water, with a threshold of ~64 mm 

precipitable water and sufficient CAPE (>1000 J kg-1) required to reach the strongest 

precipitation rates.  

The relationship between increasing precipitation rate and low-level wind shear are 

similar to the relationship between low-level wind shear and increasing Wmax (Table 4.2; Figure 
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4.8c-f). At low levels (i.e., 0-1 km shear), wind shear monotonically increases with increasing 

precipitation rate (Figure 4.6c). However, similar to Wmax, the mid-level shear (i.e., 0-3, 0-5, and 

2-7 km; Figure 4.6d-f) precipitation relationship is more complex. In each of these cases, the 

Md_PCP CCCs have the lowest mean mid-level shear of the three bins (Table 4.2). Further, we 

see a similar interplay between 0-3 km shear and the thermodynamic variables (Figure 4.9a and 

c) as in the Wmax bins (Figure 4.7a and c), with enhanced shear resulting in more frequent 

St_PCP CCCs at lower CAPE and precipitable water values. We speculate that this too is 

because of changes to entrainment. Md_PCP CCCs have the driest initial environments in the 

mid-levels (i.e., 700-300 hPa; Figure 4.5d), so their relatively lower shear is necessary to reduce 

overall entrainment of this very dry air. Wk_PCP CCCs are necessarily precipitating at a lower 

rate partially due to the relatively higher entrainment caused by the stronger shear. 

b. Stratifying by convective organization 

 Examining the results of the storm organization stratification, we see that there are many 

more Clustered systems than Isolated systems (Table 4.4). It is also obvious that Isolated storms 

generally have lower cloud top heights and smaller total hydrometeor mixing ratios than 

Clustered storms (Figure 4.10a-b; above 15 km there are few Isolated storms, so the average ice 

mixing ratios here are driven by those outliers). Further, we see that Isolated storms have more 

frequent positive vertical velocities below the melting level inversion (Figure 4.10c). This raises 

two primary questions: 1) Why do Isolated storms reach the upper levels less frequently? and 2) 

What then is the difference in Clustered and Isolated storm initial environments?  

It is evident from Figure 4.11 that Isolated CCCs are characterized by initial 

environments that have higher CAPE, lower PW and lower vertical wind shear than their 

Organized counterparts. Alternatively, Organized CCCs have initial environments of lower 



89 

 

CAPE, higher PW and greater vertical wind shear than their Isolated counterparts. The increase 

in CAPE, coupled with the overall decrease in cloud top height in Isolated storms compared with 

Clustered CCCs, suggests that for Isolated storms to reach the mid-levels, they need greater 

buoyancy to survive the impacts of the entrainment of the drier environmental air. Clustered 

CCCs, by definition, have adjacent clouds and hence are generally better protected from lateral 

entrainment of dry air than Isolated CCCs (Becker et al. 2018). As CCCs grow vertically, their 

growth can also be limited by cloud-top entrainment, which will have a much more profound 

impact on Isolated CCCs than on Clustered CCCs owing to the much drier column (Figure 4.5e).  

Examining both lateral and cloud-top entrainment, Isolated CCC growth is more easily slowed or 

stopped by entraining this relatively drier air, resulting in lower cloud top heights overall despite 

stronger atmospheric instability.  

While the cloud adjacency and resulting changes to entrainment explain the difference in 

cloud top heights between the two CCC types, this doesn’t explain why Isolated CCCs stay 

isolated. Lower precipitable water is certainly a contributor, as initiating convection is more 

difficult in a relatively drier environment. However, there are also significant differences in wind 

shear, with Organized storms having larger wind shear (Figure 4.11c-f; Table 4.4). This is 

largely in keeping with our understanding of the role of wind shear in organizing convection 

(Klemp and Wilhelmson 1978; Weisman and Klemp 1982; LeMone et al. 1998; Johnson et al. 

2005). The Isolated CCCs are found only to occur in environments characterized by weaker 

vertical wind shear. The enhanced entrainment associated with stronger vertical wind shear and 

drier overall environment appears to prevent the development of Isolated CCCs.  



90 

 

c. Organized Storm Linearity 

 Long linear squall lines are a persistent feature in the MC (see, e.g., the squall line feature 

near 7.5N, 118E in Figure 4.1b, c; LeMone et al. 1984; Takahashi and Keenan 2004; Reid et al., 

2015; Hassim et al. 2016; Vincent and Lane 2016). Of course, not all Clustered convection 

examined in the previous section are linear. Many Clustered systems are nonlinear or more 

circular in nature (see, e.g., the large convective feature at 15N, 127E in Figure 4.1b; Miller and 

Fritsch 1991; Inoue et al. 2008).  

 As Figure 4.12 demonstrates, Linear CCCs share many similar characteristics with their 

Nonlinear counterparts. Linear storms have, on average, slightly stronger updrafts than 

Nonlinear storms (Figure 4.12c), with ~76% of Linear CCCs falling within the St_W or Md_W 

intensity categories compared with ~72% of Nonlinear CCCs. However, it is notable that while 

Linear CCCs primarily have stronger vertical velocities in the lower portions of the storm, 

especially below the freezing level, that the Nonlinear organized systems more frequently have 

stronger updraft velocities well above the freezing level (Figure 4.12c). Looking at Figure 4.12b, 

one can see that the average ice and liquid hydrometeor mixing ratios are similar between the 

two storm morphologies, with Linear CCCs having slightly higher mixing ratios than Nonlinear 

CCCs, especially below the freezing level, likely driven by the slightly stronger vertical 

velocities. Overall, the in-cloud properties between the two CCC types are similar, other than the 

obvious difference in overall system morphology.  

 Changes in storm system linearity appear to be driven by changes in the initial 

environment. Linear storm environments have warmer temperatures near the surface and colder 

temperatures above ~650 hPa and are significantly drier throughout most of the atmospheric 

column (Figure 4.5d). As such, Linear systems are characterized by environments with larger 
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average CAPE and more limited precipitable water (Figure 4.13a-b). It is likely that this larger 

average CAPE in the Linear CCCs is the primary driver of the increased lower-level vertical 

velocities compared with the Nonlinear CCCs.  

Vertical wind shear is also statistically significantly different between the two storm 

system types for all but 2-7 km shear, with nonlinear storm systems having larger vertical wind 

shear magnitudes throughout the low to mid-levels (Figure 4.13c-f, Table 4.4). We see this 

dependence on weaker shear promoting Linear storms at all precipitable water values (Figure 

4.14c), indicated by the stark horizontal divide along 7.5 m s-1 of the 0-3km shear figure The 

relationship between CAPE and lower-level wind shear is somewhat more complex (Figure 

4.14a). At low CAPE values (i.e., <1000 J kg-1), Nonlinear CCCs are less frequent even at lower 

wind shear. As CAPE increases, Linear CCCs become more frequent and are more frequent with 

increasing wind shear through 7.5 m s-1 of 0-3 km shear.   

The wind shear described so far has been vector magnitude wind shear, which includes 

the impacts of both directional and speed shear. When separating out directional and speed shear, 

we see that for almost all of the levels of shear calculated here that the average Nonlinear 

directional and speed shear are both higher than the average Linear shear, with directional wind 

shear being more different than speed shear between most Linear and Nonlinear CCCs (Figure 

4.15). The 2-7 km speed shear is, however, slightly greater in the Linear CCC environments than 

in the Nonlinear environments (Figure 4.15h). In all shears analyzed (except for 2-7 km speed 

shear), we see a larger standard deviation in shear in Nonlinear than Linear systems (Figure 

4.15; Table 4.4).  

The enhanced Nonlinear CCCs with increasing wind shear is a somewhat surprising 

result, as in exisiting literature it has been shown that Linear systems are typically correlated 
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with stronger vertical wind shear (LeMone et al. 1998; Johnson et al. 2005; Grant et al. 2018). It 

is worth noting that both the Linear CCCs and Nonlinear CCCs in this study are considered 

“organized convection” by our definition, where by “organized” we mean that each CCC is 

touching another CCC; the only difference is whether cells are organized linearly or nonlinearly. 

As we demonstrated in Section 4.4b, organized CCCs have increased initial environmental wind 

shear versus their isolated counterparts, reinforcing the role of wind shear in organizing 

convection, be it linear or non-linear.  

A complete process-level study would be required to entirely understand the relationship 

between wind shear and linearity, but we will briefly speculate here on the cause. Wind shear, 

especially directional wind shear, appears to be the primary difference between the Linear and 

Nonlinear CCCs observed here. Such wind shear modulates the momentum transport through 

convective systems. Changes to the momentum transport could result in changes to the 

downdrafts and therefore the location of new convective initiation. Further, as has been widely 

demonstrated (Mapes 1993; Shige and Satomura 2001; Lane and Moncrieff 2015; Grant et al. 

2018), gravity waves are also important regulators of tropical convection, especially organized 

convection. In a high directional shear environment, these gravity waves could be sheared apart 

or could be moving in multiple distinct directions, enhancing convection in a nonlinear fashion.  

4.5. Summary and Discussion 

In this study, we have examined how the storm properties of intensity, organization, and 

linearity of Maritime Continent deep convective cloud (CCC) features are governed by their 

initial thermodynamic and dynamic environments. A high-resolution long-duration numerical 

model simulation, together with a tracking and segmentation package, were employed to produce 

a dataset of the lifecycles of nearly two hundred thousand individual CCCs and their associated 
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initial environments in the Maritime Continent (MC) summer. This novel methodological 

approach enabled detailed storm-by-storm sampling of both the storm initial environments and 

storm properties in a large-scale, realistic MC environment over a month-long duration.  

Using this dataset of CCC properties and formation environments, we have been able to 

draw the following conclusions:  

1. Large CAPE and large PW are both necessary conditions for the development of strong 

vertical velocities within the CCCs in the Maritime Continent. Even with extremely high 

CAPE (e.g., >2500 J kg-1), relatively high (approximately 63 mm) precipitable water is 

necessary for the formation of strong updraft velocities (Section 4.4.a.1).  

2. Many (80.9%) of the CCCs with the strongest vertical velocities produce the strongest 

precipitation rates, but only 67% of the strongest precipitating CCCs have the strongest 

updraft velocities. The primary differentiator between strongly precipitating CCCs and 

weakly precipitating CCCs is precipitable water, with CAPE playing an important, albeit 

lesser, role. (Section 4.4.a.2) 

3. CCC organization is primarily driven by vertical wind shear, with organized CCCs 

having stronger wind shear. While Isolated CCCs have stronger vertical velocities below 

the freezing level, they have significantly lower cloud tops. We hypothesize that such 

cells are more exposed to environmental entrainment relative to organized CCCs. 

(Section 4.4b)  

4. Linear CCCs have significantly weaker vertical wind shear than nonlinear CCCs in both 

the low- (0-1 km, 0-3 km) and mid-levels (0-5 km, 2-7 km). This relationship holds true 

whether examining the shear as a vector magnitude value or when separating out 

directional and speed shear (except for 2-7 km speed shear, which is slightly larger in 



94 

 

linear CCCs on average than nonlinear CCCs). We speculate that the cause of this 

surprising result is because of changes to momentum transport or gravity waves with 

certain orientations of the shear vector, although a full process-level study would be 

necessary to confirm this speculation.  (Section 4.4c)  

These four conclusions have a number of implications for future research and operations. 

Entrainment appears to play an important role in CCC intensity, organization, and linearity. 

Higher-resolution simulations that more robustly represent the impacts of entrainment should be 

completed to fully understand this dependence, as a 1 km horizontal grid spacing is not sufficient 

to resolve all of the turbulent eddies that are responsible for lateral entrainment. Further, higher 

temporal resolution observations of CCCs should also be pursued to quantify the effects of 

entrainment on various storm modes.  

Our results around wind shear, notably that linear systems have lower average wind shear 

than nonlinear systems, are surprising. The sensitivity of mid-latitude organized systems to shear 

has been well demonstrated, with increasing wind shear generally resulting in more linear 

systems as long as the cold pools are sufficiently strong (Rotunno et al. 1988; Weisman and 

Rotunno 2004). Results in the tropics have been more mixed, with linear systems having a wide 

variability in the environmental vertical wind shear (Houze and Cheng 1977; LeMone et al. 

1998; Grant et al. 2018). Follow up studies should be completed to fully understand the 

relationship between wind shear and organized linear systems, organized nonlinear systems, and 

isolated systems in the tropics. Wind shear clearly plays an important role in organization and 

linearity, but process-level studies will be necessary to elucidate the wind shear-linearity 

relationship discovered here.  
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While we have covered the environmental sensitivity to dynamics and thermodynamics, 

this analysis has not considered the role of another important environmental parameter, that of 

aerosol. In the simulation examined in this work, we keep aerosol type and loading constant 

throughout the simulation. In the natural world, especially in the MC, aerosol concentrations and 

type can vary significantly (Atwood et al. 2017), and has long been understood to play an 

important role in changing cloud properties and lifetimes (Twomey 1977; Albrecht 1989). Future 

work should examine how these cloud and precipitation properties change with aerosol 

conditions, as well as the covariance with dynamic and thermodynamic conditions.  
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4.6. Tables and Figures 

Table 4.1: Model Features and Experiment Setup Parameters 

Model Parameter Description 

Grid ∆x=1km, 1950x1800 grid points (1950 km x 1800 km); ∆z 

= 50 m stretched to 300m over 100 vertical levels at a 

stretch ratio of 1.03 

Radiation Harrington (1997) 2-stream radiation; aerosol radiative 

effects on 

Microphysics RAMS double-moment bin emulating microphysics 

(Saleeby and van den Heever 2013) 

Aerosol Static aerosol profile (i.e., no advection, sources, or sinks) 

of sulfate-type; 600 kg-1 at the surface; radiatively and 

microphysically active 

Turbulence Scheme Smagorinsky (1963) with vertical diffusions based on Hill 

(1974) 

Surface Scheme LEAF-3 (Lee 1992; Walko et al. 2000) 

Initial and Boundary 

Conditions 

Open radiative lateral boundaries (Klemp and Wilhelmson 

1978) nudged using ERA-5 Reanalysis hourly data; 

nudging at the lateral and top boundaries at a 900 s 

timescale; no central domain nudging 

SSTs Reynolds et al. (2007) daily SST data 

Timestep and Duration Timestep of 2.5s; model simulation run from 00Z 15 

August 2019 to 00Z 21 September 2019. Data from 00Z 15 
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August to 00Z 22 August are discarded from the analysis to 

allow for a model spinup period. 

Output 5 minute data output 

 

Table 4.2: Environmental statistics for each Wmax bin (left half) and Precipitation Rate bin (right 

half). Each variable (other than count) is shown as the mean ± the standard deviation. 

 St_W Md_W Wk_W St_PCP Md_PCP Wk_PCP 

Number 48500 65329 68320 58050 56085 55558 

CAPE (J 

kg-1) 

1802.8 ± 

744.5 

1550.9 ± 

768.4 

1489.7 ± 

802.5 

1691.5 ± 

721.5 

1651.7 ± 

762.7 

1501.8 ± 

822.1 

Precipitable 

Water (mm) 64.4 ± 3.4 64.2 ± 3.7 63.1 ± 4.7 64.7 ± 3.6 63.7 ± 4.0 63.4 ± 4.1 

0-1km 

Shear (m s-1) 5.1 ± 3.0 4.7 ± 3.0 4.6 ± 3.1 5.1 ± 3.1 4.5 ± 2.9 4.5 ± 3.0 

0-3km 

Shear (m s-1) 6.2 ± 3.5 5.6 ± 3.4 5.6 ± 3.4 6.2 ± 3.6 5.4 ± 3.2 5.6 ± 3.4 

0-5km 

Shear (m s-1) 7.0 ± 3.8 7.1 ± 3.8 7.4 ± 3.9 7.3 ± 3.9 6.9 ± 3.7 7.3 ± 3.9 

2-7km 

Shear (m s-1) 7.2 ± 4.0 7.7 ± 4.0 8.0 ± 4.0 7.6 ± 4.0 7.5 ± 3.9 7.7 ± 3.9 

 

Table 4.3: (Top half of the table): Percentages of cells in each precipitation bin that are in each 

Wmax bin (i.e., 
#	-$	6"%*-6-,+,-#$	+$!	>!"#	?-$

0#,+)	#	-$	6"%*-6-,+,-#$	?-$
 ); (Bottom half of the table): Percentages in cells in 

each Wmax bin that are in each precipitation bin (i.e.,  
#	-$	6"%*-6-,+,-#$	+$!	>!"#	?-$

0#,+)	#	-$	>!"#	?-$
). 

Percentage of precipitation 

rate CCC in each Wmax bin 

St_W Md_W  Wk_W  

St_PCP 67.6% 31.0% 1.42% 

Md_PCP 15.6% 61.9% 22.5% 

Wk_PCP 0.837% 22.5% 76.6% 

Percentage of Wmax CCCs 

in each precipitation bin 

St_W Md_W 

 

Wk_W 

 

St_PCP 80.9% 27.4% 1.18% 
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Md_PCP 18.1% 53.1% 18.2% 

Wk_PCP 0.972% 19.3% 61.9% 

Table 4.4: As for Table Table 4.2, but for clustered, isolated, linear, and nonlinear cells. 

 
Clustered Isolated Linear Nonlinear 

Number 148088 34061 36133 54565 

CAPE (J kg-1) 1478.9 ± 782.6 1852.7 ± 731.8 1428.5 ± 755.9 1271.7 ± 798.2 

Precipitable Water 

(mm) 

64.5 ± 3.7 62.0 ± 4.5 64.9 ± 3.6 65.4 ± 3.6 

0-1km Shear (m s-1) 5.0 ± 3.1 4.1 ± 2.8 5.0 ± 3.0 5.8 ± 3.5 

0-3km Shear (m s-1) 6.0 ± 3.5 5.1 ± 3.1 5.7 ± 3.3 7.0 ± 4.0 

0-5km Shear (m s-1) 7.4 ± 4.0 6.5 ± 3.4 7.1 ± 3.8 8.6 ± 4.4 

2-7km Shear (m s-1) 7.8 ± 4.1 7.5 ± 3.8 7.7 ± 4.2 8.2 ± 4.2 

 

 

 

Figure 4.1: (a) The location, area, and topography of the large-domain, long-duration, high-

resolution numerical simulations conducted for this study. Shading indicates the topographical 

relief, and the black box shows the simulation domain. (b) A wide wide variety of convective 

modes, morphology, and scales is captured in this simulation as demonstrated by this image at 

04Z 26 August 2019. Shading indicates the integrated total condensate (mm). (c) The simulation 

is capturing the same modes of convection as observed, demonstrated by this Advanced 

Himawari Imager truecolor image from 04Z 26 August 2019, the same time as the model 

snapshot in (b). 
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Figure 4.2: Examples demonstrating the feature identification, segmentation, and tracking 

algorithms of tobac. (a) As in Figure 1b, but with tobac-identified storm features colored by 

maximum updraft velocity. The red box indicates the area featured in (c) and (d);  (b) as in (a), 

but with tobac-identified features colored by storm cluster, where isolated storms are colored 

using black, and all other colors indicate storms that are clustered with at least one other point; 

(c) the maximum midlevel vertical velocity (i.e., Wmax) (red and blue shading) and the features as 

identified by tobac (dots colored by Wmax ) in the region highlighted in (a); (d) an example of the 

segmentation analyzed by tobac, where the contours indicate regions in this 2D slice identified 

as individual segmented CCCs, with each color representing a different discrete CCC (shaded). 

Overlaid on this (colored contour lines) are the overall maximum extent of each of the features 

throughout the column.  The overlaid dots indicate the location of identified tobac features and 

are in the same locations as in (c), but they are colored by their convective cluster, with the green 

dots indicating one cluster (identified as cluster 1 as a demonstration), the blue dots indicating a 

different cluster (cluster 2), and black dots identifying Isolated CCCs. The five points labeled as 

either cluster 1 or cluster 2 are all Organized CCCs. 
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Figure 4.3: Bulk CCC characteristics for the duration of the simulation: (a) the number of CCCs 

per time period, with a moving average window of 6 hours; (b) histogram of CCC maximum W 

(m s-1) over time, binned into 1 m s-1 bins; (c) histogram of maximum CCC cloud top height (m) 

over time, binned into 1 km bins; (d) histogram of CCC maximum precipitation rate (mm hr-1) 

for all tracked, precipitating CCCs, binned into 2.5 mm hr-1 bins 
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Figure 4.4: Cloud statistics stratified by storm Wmax intensity. (a) Cloud top height histogram 

(bars) and kernel density estimate (i.e., a calculated estimation of the underlying probability 

density function which can be thought of as a smoothed histogram; Silverman 1986) (lines); (b) 

mean vertical profile of liquid (solid lines) and ice (dashed lines) mixing ratios and the ratio of 

ice mixing ratio to total condensate (dotted lines; top axis). In (a-b), the data are colored by their 

Wmax bins as defined in the text: St_W (light green), Md_W (teal), and Wk_W (dark blue). (c) 

vertical velocity CFAD difference between Md_W and Wk_W; (d) as in (c), but for the difference 

between St_W and Wk_W. 
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Figure 4.5: CCC initial thermodynamic environments: mean change in temperature (ΔT; solid 

lines in a, b, e, and f) and dewpoint (ΔTd; dashed lines in c, d, e, and f) stratified by each of our 

four CCC properties, where the change is as described in the legend. In all plots, the blue dotted 

line at approximately 575 hPa indicates the approximate freezing level, and the black vertical 

line indicates the 0 line from the abscissa. (a) Vertical velocity environmental temperature 
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stratification: Wk_W subtracted from St_W (light green) and Md_W (dark green); Md_W 

subtracted from St_W (blue). (b) Precipitation rate temperature stratification: Wk_PCP subtracted 

from St_PCP (orange) and Md_PCP (red); Md_PCP subtracted from St_PCP (purple). (c,d) As 

in (a,b), but for dewpoint temperature. (e) Organization stratification: Isolated subtracted from 

Clustered, including both temperature (solid lines) and dewpoint temperature (dashed lines). (f):  

as in (e), but for the linearity stratification: Nonlinear subtracted from Linear. 

 

Figure 4.6: Cell environments stratified by cell Wmax bin, where the bin colors are as in Figure 4. 

Shown are box plots of the distribution for the three Wmax bins where the mean is denoted by a 

red dot; the median by the horizontal line through the box; the edges of the box denote the 

quartiles, and the whiskers extend to the 2.5th and 97.5th percentiles; for (a) CAPE (J kg-1) (b) 

Precipitable Water (mm); (c) vertical wind shear from 0 to 1 km (m s-1); (d) vertical wind shear 

from 0 to 3 km (m s-1); (e) vertical wind shear from 0 to 5 km (m s-1); and (f) vertical wind shear 

from 2 to 5 km (m s-1). 
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Figure 4.7: 2-D histograms showing the absolute difference in frequency of St_W cells and  

Wk_W CCCs as a function of different environmental characteristics, where blue colors indicate 

more Wk_W storms and red colors indicate more St_W storms. (a) CAPE is on the ordinate and 

vertical wind shear from 0 to 3 km is on the abscissa; (b) as in a, but precipitable water is on the 

abscissa; and (c) as in a, but precipitable water is on the ordinate and vertical wind shear from 0 

to 3 km is on the abscissa. 

 

Figure 4.8: As in Figure 2.6, except for the cell precipitation rate bins 

 

Figure 4.9: As in Figure 2.7, but between St_PCP and Wk_PCP 
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Figure 4.10: Cloud segmentation statistics stratified by cell organization, where blue indicates 

clustered cells and orange indicates isolated cells. (a-b) as in Figure 4.4a-b but stratified by cell 

organization; (c) as in Figure 4.4e-f but for the difference between clustered cells and isolated 

cells. In (c), note that blue values indicate more frequent vertical velocities in that bin from 

isolated storms, whereas red values indicate more frequent vertical velocities in that bin from 

clustered storms 

 

Figure 4.11: As in Figure 6, except stratified by clustered convection (orange) and isolated 

convection (blue), where the definitions of clustered and isolated convection are defined in the 

text. 
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Figure 4.12: As in Figure 4.9, but stratified by linearity, where green indicates Linear organized 

cells and purple indicates Nonlinear organized cells. Note the change in color bar in (c) 

compared to Figure 4.9c 

 

Figure 4.13: as in Figure 4.6, except stratified by linear organized cells (green) and nonlinear 

organized cells (purple) 
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Figure 4.14: as in Figure 2.7, but for the difference in number of cells that are part of clustered 

linear convection to clustered nonlinear convection, with red colors indicating more linear cells. 

Note that the color scale has been reduced compared with Figure 4.7 and Figure 4.9, as the total 

number of clustered storms is smaller than the total number of storms. 

 

Figure 4.15: Linear and Nonlinear directional (degrees; a-d) and speed (m s-1; e-h) vertical wind 

shear components at 0-1 km (a, e), 0-3 km (b, f), 0-5 km (c,g), and 2-7 km (d, h). 
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CHAPTER 5: AEROSOL-INDUCED ENHANCEMENT OF CONGESTUS AND 

SUPPRESSION OF CUMULONIMBUS CLOUDS IN THE TROPICS  

5.1. Introduction 

Congestus and Cumulonimbus Clouds (hereafter CCCs), the middle and deep modes of 

convective clouds in the tropics, are essential contributors to precipitation production in the 

tropical atmosphere (Johnson et al. 1999). The latent heating released in association with tropical 

rainfall processes is especially relevant in the Maritime Continent (MC) through its influence on 

the global circulation (Hartmann et al. 1984; Keenan et al. 2000). In additional to local changes 

to the production of fresh water, as has been observed in Southeast Asia (Endo et al. 2009; Cruz 

et al. 2013), any changes to CCC precipitation in the MC can therefore also result in global 

impacts. Understanding how these convective clouds and their precipitation response to 

variations in the environment, particularly the aerosol environment, is therefore critical from 

both a regional and large-scale perspective. Hence, the science question we seek to address here 

is how does aerosol loading impact convective precipitation in the MC?  

Changes in the aerosol environment have long been identified as a source for changing 

cloud properties (Squires 1958), including suppressing warm rainfall (Squires and Twomey 

1960; Warner and Twomey 1968; Albrecht 1989). However, despite extensive efforts, there is 

still substantial uncertainty on how changing aerosol loading impacts convective cloud properties 

and precipitation (e.g., Tao et al. 2012; Boucher et al. 2013; Igel and van den Heever 2021; 

Marinescu et al. 2021). Much of the previous work examining aerosol-cloud interactions 

(hereafter ACI) on CCCs has investigated these processes by simulating or observing a single 

deep convective cloud or a small area at a time (Andreae et al. 2004; Xue et al. 2008; Noppel et 

al. 2010; Grant and van den Heever 2015; Saleeby et al. 2015; Ilotoviz and Khain 2016; Ilotoviz 
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et al. 2018). While these techniques can provide novel insights into how cloud properties are 

locally modulated by aerosol loading, they cannot demonstrate how these modulations feedback 

onto the large-scale environment and associated clouds.  

In addition to the past work examining ACI on one or a few clouds at a time, other  

previous work has examined aerosol impacts over larger fields of clouds (cloud scene) using 

observations (Koren et al. 2014; Storer et al. 2014) and numerical models (van den Heever et al. 

2011; Seifert et al. 2012; Storer and van den Heever 2013; Sheffield et al. 2015; Barthlott et al. 

2018; Marinescu et al. 2021; Barthlott et al. 2022). However, much of this work, with the 

exception of Seifert et al. (2012), has either examined a relatively short time period, limiting the 

feedbacks that can occur between ACI and the larger environment, or have been conducted in a 

2D idealized mode. These studies have generally found that as aerosol loading increases, 

convective precipitation decreases (Barthlott et al. 2018; Marinescu et al. 2021; Barthlott et al. 

2022). However, this is not a universal finding, with other studies indicating an increase in CCC 

precipitation with increasing aerosol loading (Seifert et al. 2012; Storer and van den Heever 

2013), and still others finding limited scene changes (van den Heever et al. 2011).  

As we enter the era of regularly run global cloud resolving models (Satoh et al. 2019; 

Stevens et al. 2019), an understanding aerosol-induced cloud processes within realistic long-

term, large-area simulations is critical. This study represents a novel first step in this direction in 

that aerosol impacts on surface precipitation within the tropics are evaluated through the use of 

large-domain, long-duration, high-resolution realistic simulation over the Maritime Continent. 

Such a setup allows for a large database of convective clouds and the inclusion of local through 

large-scale feedbacks included. This “basin-scale” simulation setup is needed to examine the 
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impacts of changing aerosol loading on the CCC precipitation system and prepare for the 

upcoming era of global cloud resolving models.  

5.2. Methodology 

a. Numerical Simulation Experiments 

To address our science question, a high-resolution, large-domain, long-duration set of 

simulation experiments in which only the aerosol loading was varied has been conducted using 

the Regional Atmospheric Modeling System (RAMS; Cotton et al. 2003; Saleeby and van den 

Heever 2013) version 6.2.14. RAMS has been widely used to examine ACI in a variety of 

different environments (van den Heever et al. 2006; Grant and van den Heever 2015; Saleeby et 

al. 2015; Bulatovic et al. 2021; Marinescu et al. 2021). 

The details of the model configuration are identical to the basin-scale simulation 

described by Freeman et al. (2022), but additional information especially relevant to these 

simulations will be included here. Each of the three simulations was run over a domain of 1800 x 

1950 km at a horizontal grid spacing of 1 km and vertical spacing stretched from 100 m to 300 

m, with a temporal output of 5 minutes. The three simulations made use of the same 

exponentially decaying aerosol profile with three different number concentration magnitudes 

(Figure 5.1a). The aerosol in these experiments was configured to be solely ammonium sulfate 

(𝜀=0.90) with a lognormal distribution (geometric mean diameter 40 nm, geometric standard 

deviation 1.8 nm) and was held constant at every grid point throughout each experiment. The 

aerosol particles were both radiatively and microphysically active. The most polluted experiment 

is denoted as HIGH (1200 mg-1 aerosol at the surface), the moderately polluted experiment as 

CTL (600 mg-1 at the surface), and the cleanest experiment as LOW (300 mg-1 at the surface). 

Each of the three experiments was simulated for one month, from 15 August 2019 to 20 
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September 2019, coincident with the NASA Cloud, Aerosol, and Monsoon Processes Philippines 

Experiment (CAMP2Ex) field campaign in the same area (Reid et al. 2022). The first week of the 

simulation was regarded as model spinup time and discarded from the analysis. The lateral 

boundaries were nudged with ERA-5 reanalysis (Hersbach et al. 2020), with a nudging zone of 

100 km from each boundary, updating hourly, in order to limit synoptic-scale drift of the 

simulation. This nudging zone is excluded from all analyses and statistics calculated.  

b. CCC Identification and Tracking 

 To examine changes on the individual cloud level, individual clouds were identified and 

tracked with tobac v1.3.0 (Heikenfeld et al. 2019; Chapter 3) in the same manner as Freeman et 

al. (2022). CCCs are tracked on their maximum midlevel (3-8 km) updrafts, with a minimum 

threshold of 1 m s-1. Cloud volume is then derived from these identified features using a 

watershedding algorithm (van der Walt et al. 2014), requiring at least 0.5 g kg-1 total condensate 

to be identified as part of the cloud. The quality control process used here only removed storms 

in the areas where the lateral boundaries are nudged, keeping all other tracked tobac storms.  

5.3. Results 

Two primary aerosol-related effects need to be considered as the aerosol loading is 

increased between these three experiments (LOW, CTL, HIGH). First is the aerosol direct effect 

(Charlson and Pilat 1969). This effect is fully represented in these experiments and results in 

decrease in the solar radiation reaching the surface in cloud-free regions through enhanced 

aerosol scattering with increased aerosol loading. The second effect are the aerosol indirect 

effects (Twomey et al. 1984; Albrecht 1989), which are also fully represented in these 

simulations and which result in an increase in the number concentration of cloud droplets as 

aerosol loading increases (not shown). Through the combination of these two effects, we see a 
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monotonic decrease in the total amount of precipitation of up to 3.4% as the aerosol loading 

increases from LOW and HIGH (Table 5.1). This decrease in precipitation with increasing 

aerosol loading is largely in line with other studies that only represent the aerosol indirect effect 

including Barthlott et al. (2018; 2022) and Marinescu et al. (2021). However, the literature is not 

uniform on this point. For example, in a similarly long-duration numerical simulation experiment 

performed by Seifert et al. (2012) over Germany, they observed an overall increase in 

precipitation with increasing aerosol loading across the domain (up to 20%, depending on case). 

With this slight decrease in total precipitation with enhanced aerosol loading as the backdrop, we 

will now examine changes to both individual clouds and scene-level changes to precipitation. 

a. Precipitation Distribution Changes 

We first examine the changes to precipitation over land and ocean regions. As the aerosol 

concentration increases, the total precipitation over land decreases more so than over ocean 

(Table 5.1), resulting in a greater percentage of the total scene precipitation occurring over the 

ocean in more polluted conditions (Figure 5.1b). This effect is especially pronounced during 

daytime heating (9:00 – 21:00 LT; Figure 5.1b) when the direct aerosol effect is most significant 

in reducing the amount of solar radiation reaching the surface, and hence the surface heating. In 

this suite of experiments, the sea surface temperatures are obtained from observations (Reynolds 

2007), and are not directly impacted by the aerosol-induced scattering of solar radiation. As 

such, the aerosol impacts on surface heating will only be realized over land. While this is a 

shortfall of using fixed ocean surfaces, the large oceanic heat capacities mean that the response 

of ocean surfaces to aerosol-induced changes in solar radiation is much slower than that over 

land, and that land will be more significantly affected by changes in radiation caused by the 

aerosol direct effect. Similar aerosol-induced trends in the precipitation between ocean and land 
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are therefore still expected, even if the magnitudes may differ. Enhanced aerosol loading 

therefore shifts the location of precipitation in the mixed land-ocean areas of the MC to be more 

prominently over maritime regions.  

b. Tracked CCC Changes 

Despite the decrease in oceanic and continental precipitation with increased aerosol 

loading, we see a monotonic increase in the number of tracked CCCs (Table 5.1), with a 

concomitant decrease in the strongest instantaneous precipitation rates (Figure 5.1c). There is 

also an overall increase (up to 10.7% between the HIGH and LOW experiments) in the number 

of tracked CCCs that never precipitate throughout their lifetimes as aerosol loading increases 

(Table 5.1). Furthermore, on average, tracked CCCs in the HIGH experiment precipitate 4.29% 

less long than in the LOW experiment (Table 5.1; Figure 5.2b). Increasing aerosol concentrations 

therefore lead to more total tracked CCCs, but the average CCC precipitates for a shorter time 

during its lifecycle, and more of the tracked CCCs do not precipitate at all. 

As the aerosol loading increases between these experiments, in addition to aerosol-

induced impacts on precipitation we also see substantial differences in the properties of the 

clouds. Examining CCC lifetime cloud top height, the HIGH experiment has 8.1% more terminal 

congestus clouds (defined here as a CCC that, while tracked, never extends above a cloud top 

height over 7 km; Johnson et al. 1999; Luo et al. 2009) than the LOW experiment. In 

comparison, the CTL experiment has 3.3% more terminal congestus clouds than LOW (Table 

5.1). The increase in the number of tracked terminal congestus clouds with increased aerosol 

loading will contribute, in part, to the reduced frequency of upscale growth upscale to 

cumulonimbus, which is supported by the reduced number of tracked cumulonimbus in the 

HIGH experiment compared with the CTL and LOW cases (Table 5.1). This overall trend 
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towards more terminal congestus clouds with lower lifetime cloud top heights and the 

accompanying decrease in cumulonimbus clouds is also demonstrated in Figure 5.2a.  

The increase in frequency of terminal congestus clouds and decrease of cumulonimbus 

clouds with increasing aerosol concentrations suggests that aerosol invigoration of primarily 

warm-phase terminal congestus clouds and their subsequent development into deeper 

cumulonimbus clouds is not prevalent. Further, when examining the precipitation produced by 

these terminal congestus clouds, we see an overall decrease in the storm maximum precipitation 

rate as aerosol loading increases (Figure 5.2c). This follows from the aerosol indirect effect, 

where increasing availability of cloud condensation nuclei (CCN) for the same liquid water 

content results in smaller cloud droplets, which in turn reduces collision-coalescence processes, 

and hence the production of rainfall through the warm rain process (Squires 1958; Albrecht 

1989). In addition to suppressing the warm rain process, the delay in rain production also allows 

for entrainment to have more time to erode the cloud and evaporate the condensate before the 

cloud can produce rainfall, a process that will be further facilitated by a shift in the cloud droplet 

spectrum to smaller sizes.  

When examining deeper cumulonimbus clouds, defined here as those clouds reaching a 

maximum cloud top height of greater than 7 km AGL, we see limited changes in maximum 

rainfall rates (Figure 5.2d). This suggests that for deeper convective clouds with more robust ice 

phase driven precipitation, there is less of an overall impact of increasing aerosol loading on the 

surface precipitation. The release of additional latent heating in association with the lofting and 

freezing of the more numerous but smaller cloud droplets (Andreae et al. 2004; Koren et al. 

2005, 2014; van den Heever et a. 2006; Rosenfeld et al. 2008; Igel and van den Heever 2021) 
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may offset the decrease in warm rain production by invigorating the deep convective updraft, 

however, the impacts appear small.  

c. Convective Cloud Organization 

 So far, we have primarily focused on individual cloud systems. However, a common 

feature in the summer MC are larger, organized cloud systems, which can produce heavy 

precipitation (LeMone et al. 1998; Reid et al. 2015; Ling et al. 2019). Here, we will examine 

organized cloud systems using the same definition of organized as in Chapter 4. This method 

labels an individual tracked cloud as clustered when the segmented volume of the cloud with a 

minimum total condensate of 0.5 g kg-1, as determined by the tobac tracking package, touches 

another tracked cloud at any point in its lifetime.  

 Using this definition, we see little change in the percent of tracked clouds that are defined 

as part of a cluster as a function of aerosol loading, with the LOW case having 77.5% of its 

tracked clouds classified as organized, CTL having 77.4%, and HIGH having 77.0%. Further, we 

see relatively little change in the precipitation properties between isolated and organized CCCs, 

as demonstrated in Figure 5.3. These results indicate that while increasing aerosol has substantial 

impacts on precipitation at the individual cloud level which results in changes to domain-wide 

statistics, aerosol impacts on the upscale organization of convection is largely unaffected. 

5.4. Conclusions 

 Aerosol impacts on congestus and cumulonimbus precipitation processes in the tropics, 

especially within the Maritime Continent (MC), have not been well studied from an integrated 

scene-wide perspective. In this work, we have investigated aerosol impacts on cloud-scale and 

scene-scale changes to congestus and cumulonimbus precipitation in the MC region using a suite 

of realistic large-domain (1950 x 1800 km), high-resolution (∆x = 1 km; ∆z = 50 to 300 m; 5 
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minute output), long-duration (~1 month) simulation experiments. The three experiments were 

identical except for their aerosol loading, which was increased between the LOW, CTL, and 

HIGH cases. Over one million total congestus and cumulonimbus clouds (CCCs) objects in 

which simulation were tracked using a convective cloud tracking algorithm. Using this suite of 

sensitivity experiments, we have drawn the following conclusions: 

1. Domain-wide precipitation decreased by 3.4% as aerosol loading was increased between 

the LOW and HIGH cases, driven both by aerosol-induced radiative and microphysical 

changes between the three experiments. This decrease in precipitation was stronger over 

land (-13.5%) than over ocean (-1.65%), forced by the more rapid response of the land 

surface to changes in incoming radiation than the ocean. Aerosol loading therefore results 

in a shift in the convective precipitation frequency and magnitude between land and 

ocean, with the maritime regions being the beneficiaries in more polluted scenarios.  

2. Despite the decrease in precipitation, more CCCs (+2.5%) were tracked as aerosol 

loading was increased, being primarily driven by a significant increase in terminal 

congestus clouds (+8.1%), while weak reductions in the frequency of cumulonimbus 

clouds (-1.3%) were also observed. The increase in congestus clouds is similar, although 

to a much smaller magnitude, to the results in van den Heever et al. (2011), but van den 

Heever et al. (2011) saw an increase in the number of cumulonimbus, contrary to what 

we see here.  

3. Aerosol loading has little change on the organization of CCCs. Further, organized and 

isolated CCCs demonstrate the same, although be it very weak, trends in precipitation as 

aerosol loading increases.  
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While this study focused on CCC precipitation, cumulus clouds, the smallest of the three 

canonical cloud types found in the tropical atmosphere (Johnson et al. 1999), are also likely to be 

affected by varying aerosol concentrations. Any variation in the cumulus field could then feed 

back onto the two larger cloud types through impacts on premoistening of the boundary layer. 

However, substantially higher resolution simulations and observations are necessary to capture 

aerosol impacts on these clouds. Further, future work should explore the impact that the aerosol 

direct effect has on sea surface temperatures, especially in the extensive littoral areas in the MC.  
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5.5. Tables and Figures 

Table 5.1: Percent differences of several domain-wide variables between the HIGH and LOW 

experiments (left; negative values indicate less in HIGH, while positive values indicate more in 

HIGH) and the CTL and LOW experiments (right). 

Value HIGH-LOW % 

Difference 

CTL-LOW % 

Difference 

Total Precipitation -3.41 % -1.63% 

Ocean Precipitation -1.65% -0.50% 

Land Precipitation -13.5% -8.12% 

Number of CCCs +2.45% +0.72% 

Number of nonprecipitating 

CCCs 

+10.7% +4.63% 

Total Cell Time Precipitating -4.29% -2.00% 

Number of terminal congestus 

CCCs 

+8.06% +3.28% 

Number of cumulonimbus CCCs -1.26% -1.00% 
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Figure 5.1: Domain-wide changes between the three simulation experiments. a) Static aerosol 

concentration (number mg-1) profile with height (km); b) Average diurnal cycle (time in local 

time) of percent of the total precipitation that occurs over water (i.e., a value of 100% indicates 

that all precipitation occurs over ocean); c) Probability distribution function of domain-wide 

precipitation rates (mm hr-1) for each of the three experiments 
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Figure 5.2: Cloud-by-cloud statistics of CCCs and their rainfall, using the tracked clouds from 

the tobac tracking algorithm. a) Total tracked CCC precipitation time histogram binned into 5 

minute bins for each of the three experiments; b) maximum tracked CCC cloud top height 

histogram, binned into 1 km bins, for each of the three experiments; c) histogram of cell 

maximum precipitation rate for terminal congestus clouds (defined as those having lifetime 

maximum cloud top heights less than or equal to 7 km) for each of the three experiments;  d) As 



121 

 

in c, but for cumulonimbus clouds (lifetime maximum cloud top heights greater than 7 km). Note 

the difference in scale along the ordinate and abscissa compared to c. 

 

Figure 5.3: Statistics of CCCs, stratified by organized and isolated precipitation a) Histogram of 

cell maximum precipitation rate for all tracked CCCs, binned into 5 mm hr-1 bins b) As in a, but 

divided into organized (solid lines) and isolated (dashed lines) CCCs. 
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CHAPTER 6:  CONCLUSIONS 

 

6.1.  Summary of Studies 

Convective clouds are critical contributors to both weather and climate. While the basic 

environmental properties leading to their formation and maintenance are broadly known, there is 

currently no unified theory linking joint changes in the environment to changes in convective 

cloud properties. Better tools, such as observing platforms and tracking software, are first 

necessary to better quantify and track convective clouds and the environments in which they live. 

With these improved tools, we can then begin to examine the relationships between convective 

clouds and their environments regionally, before assessing such relationships on a global scale. 

The overarching goal of the research presented in this dissertation has therefore been to examine 

the combinations of environmental parameters that produce convective clouds. Two tools were 

examined to enhance our capabilities to do so: (1) drones with the ability to accurately sample 

temperature, pressure, and humidity near convective clouds were evaluated, and (2) 

enhancements were made to a cloud object tracking package capable of identifying and tracking 

any atmospheric phenomenon, including convective clouds. This enhanced tracking package was 

then utilized to: (1) examine how tropical convective cloud intensity, organization, and 

morphology vary with joint changes to the thermodynamic and dynamic properties of the 

tropical convective environment; and (2) investigate how tropical convective precipitation varies 

both locally and regionally with changes to the aerosol environment.  

The goal of the first study presented in this dissertation (Chapter 2) was to examine the 

accuracy of eight different temperature, pressure, and relative humidity sensor siting locations on 
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a multirotor drone. Using a total of 82 flights, including 9 at night, the following conclusions 

were drawn:  

1. All sensor siting locations produced temperature data within 2 K of the more traditional 

but fixed tethersonde measurement, with the best location (on the landing gear, directly 

under the propeller) reaching an accuracy of -0.83 K ≤ T ≤ +0.61 K 

2. When examining temperature temporal gradients (e.g., the change in temperature over 

1 minute), the accuracy of the best sensor siting location improves slightly 

to -0.57 K ≤ T ≤ +0.63 K.  

3. Dewpoint temperature observations were overall worse than air temperature 

observations, but when examining temporal gradients, the accuracy of all tested drone 

sensor positions was within ± 2.0 K.  

4. Pressure errors were found to vary with wind speed  

Overall, this study validates the use of multirotor drones for sampling convective boundary layer 

environments including storm outflows, and gives confidence intervals for their measurements, 

enabling their future use in research.  

In the second study (Chapter 3), enhancements to the Tracking and Object-Based Analysis 

of Clouds (tobac) were presented. In this study, the following new or enhanced features were 

added: 

1. The ability to rapidly identify and track atmospheric phenomena within large datasets, 

with over a 1,000,000% improvement in tracking speed on the dataset used in Chapter 

4. 
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2. Identifying, tracking, and segmenting atmospheric phenomena can now be performed 

in three spatial dimensions, and can be done so in datasets with varying spatial 

coordinates, such as stretched vertical grids. 

3. Periodic boundary and zonal global tracking capabilities have now been added, 

enabling tobac’s use across a wide variety of both observational and modeling datasets 

This study significantly enhances tobac’s capabilities and enables it to be the universal 

atmospheric tracking tool of the future. tobac is already been used in NASA’s Cloud, Aerosol, 

and Monsoon Processes Philippines Experiment (CAMP2Ex; Reid et al. 2022) field campaign 

and the Department of Energy’s (DOE) Tracking Aerosol Convection Interactions ExpeRiment 

(TRACER) field campaign, and is slated for use in NASA’s upcoming Atmospheric Observing 

System (AOS) and Investigation of Convective UpdraftS (INCUS) missions.  

 The third study in this dissertation (Chapter 4) employed some of the tobac 

enhancements to examine how dynamic and thermodynamic environmental conditions influence 

convective properties in the tropical atmosphere. Using a database of nearly 200,000 clouds, the 

following conclusions were made: 

1. While previous studies have demonstrated the importance of CAPE and PW in 

convective development, this study demonstrate that large values of both CAPE and PW 

are necessary to support the strongest convective cloud vertical velocities found in the 

tropical atmosphere. Strength in either CAPE or PW alone is not sufficient to produce 

clouds with the strongest updrafts sampled. 

2. Many of the convective clouds that produce the strongest vertical velocities produce the 

strongest surface precipitation rates (80.9%), but only 67% of the convective clouds 

producing the strongest surface precipitation rates produce the strongest vertical 
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velocities. The primary differentiator between strongly precipitating convective clouds 

and moderate or weakly precipitating clouds is available moisture. 

3. Tropical convective cloud organization is primarily correlated with strong wind shear, 

and organized convective clouds tend to have higher cloud tops and live longer.  

4. Weaker wind shear is more likely to lead to linearly oriented organized convective cloud 

systems than nonlinear cloud systems. 

This study demonstrates the sensitivity of convective clouds to local environments that are 

supported by a variety of different large-scale synoptic patterns and links the variation in 

convective environments with variations in convective cloud properties, a first step toward 

building an understanding of the relationship between convective clouds and their environments 

globally.  

 The final study in this dissertation (Chapter 5) used a similar methodology as in Chapter 

4 to elucidate the impacts of aerosol particles on the cloud properties and precipitation of 

congestus and cumulonimbus clouds (CCCs) in the tropics. The following relationships were 

found in association with increased aerosol loading: 

1. A decrease in domain-wide precipitation by up to 3.4%, with the majority of this decrease 

occurring in terminal congestus clouds (clouds with lifetime cloud top heights lower than 

7 km) and little impacts on the precipitation of cumulonimbus clouds 

2. An increase in the total number of tracked CCCs (+2.5%), but an overall decrease in 

cloud top heights, with an increase in the number of congestus clouds (+8%) and fewer 

cumulonimbus clouds (lifetime cloud top height greater than 7 km; -1.26%) 
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3. An increase in the number of nonprecipitating clouds (+10.7%) and a decrease in the total 

amount of time that tracked congestus and cumulonimbus clouds spend precipitating 

(-4.29%) 

4.  Little difference to the organization of congestus and cumulonimbus clouds. 

This study demonstrates the relationships between aerosol particles and changes to precipitation 

both on the scales of an individual cloud and for a scene of clouds.  

6.2 Implications of this research and future work 

The research presented in this dissertation has advanced our understanding of the 

environments that produce convective clouds both through developing tools to sample these 

environments, and by examining the relationship between convective environments and the 

clouds that they produce within high-resolution, long-duration, large-domain numerical 

simulations. However, many new questions have been raised by this research, including the 

following:  

• How do the measurements from small (i.e., quad-rotor) drones compare to 

measurements made on the larger drones used in the study in Chapter 2? 

• Will forced aspiration and/or shielding produce more consistent pressure, 

temperature, and humidity observations on multirotor drones? 

• How can features that are defined relative to a larger field, such as cold pools, be 

tracked? 

• Can multiple variables (such as updrafts and downdrafts) be used simultaneously to 

identify and track a single convective cloud over its entire lifecycle? 

• How do observations compare to the numerical modeling results in Chapters 4 and 

5? 
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• Why are the tropical linear systems in Chapter 4 generally associated with weaker 

wind shear than nonlinear systems?  

• How does the environment-convective cloud relationship vary globally? 

• How does the aerosol environment influence the relationship between 

thermodynamic and dynamic environmental conditions and convective cloud 

properties? 

• How does the relationship between environmental conditions and convective 

clouds vary as a function of diurnal cycle? 

As we enter the era where individual convective clouds are able to be observed and 

simulated at high temporal and spatial resolutions, enhancing our understanding of the 

relationships between environments and convective clouds is possible. This dissertation 

represents some new steps toward achieving that overarching goal.  

This research, especially the improvements to tobac discussed in Chapter 3 and the 

subsequent novel approach towards quantifying convective environments, presents important 

implications for upcoming observational missions and modeling capabilities. The periodic 

boundary condition support added in tobac, in particular, represents the first steps toward true 

global tracking of atmospheric phenomena. This is becoming particularly important as global 

convection resolving models are already being developed and becoming more widely used. 

Further, the statistical approach leveraging this tobac tracking algorithm as performed in 

Chapters 4 and 5 can be used to enhance the capabilities of the upcoming NASA INCUS and 

AOS missions. Finally, the use of high-resolution, long-duration, large-area numerical model 

simulations, as in Chapters 4 and 5, coupled to observing system simulators to produce 
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Observing System Simulation Experiments (OSSEs), will also allow for a detailed comparison 

between model output and observations, enabling new understanding of model performance. 
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