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ABSTRACT 
 

 

A NEW APPROACH TO ADDRESSING TWO PROBLEMS IN PHARMACOKINETICS  

 

AND PHARMACODYNAMICS USING MACHINE LEARNING 

 

 

In this work, machine learning was applied to develop solutions for two problems related 

to drug pharmacokinetics (PK) and pharmacodynamics (PD). The first problem was finding a way 

to easily predict important pharmacological measures accurately representative of those from 

simulation results computed via a sophisticated model for drug absorption via oral dosing. This 

model (OpenCAT: Open source Compartmental And Transit model) comprises a system of 

differential equations describing the absorption of drugs into the gastrointestinal tract, including 

such factors as drug dissolution and spatially-distributed absorption, metabolism, and transport. 

For this problem, a machine learning framework was built to develop a self-contained random 

forest representation of the model predictions that could be queried for critical PK parameters such 

as maximum plasma concentration (Cmax), time at which the maximum concentration occurs (tmax), 

and the area under the concentration-time curve (AUC). The random-forest representation was 

able to generate predictions for the targeted PK parameters close to the solution of the original 

OpenCAT model over a wide range of drug characteristics. The second problem involved 

predicting the pharmacodynamics (cholinesterase reactivation) of antidotes for nerve agents.  In 

this case, a machine learning framework was built to use experimental data and corresponding 

theoretically-derived chemical descriptors to predict the pharmacodynamics of new candidate 

antidotes against both tested and untested nerve agents. Overall, this project has demonstrated the 
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utility of machine learning approaches in the fields of drug pharmacokinetics and 

pharmacodynamics. 
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Project Objective 

Pharmacokinetics (PK) is the quantitative study of drug absorption, distribution, 

metabolism, and elimination (ADME). It is the field of pharmacology that addresses “what the 

body does to the drug”. Pharmacodynamics (PD) is the field of study concerned with the effects 

of drugs on the biochemistry and physiology of the organism and attempts to quantify “what the 

drug does to the body.” The two fields are complementary, and both are necessary in the 

development, assessment, and approval processes for nearly all drugs.  Moreover, both PK and PD 

analyses are extensively used in the field of toxicology to help assess the safety and risk associated 

with environmental pollutants.  

The project described here focused on developing a novel approach to solving two 

problems in drug pharmacokinetics and pharmacodynamics. Each of the main chapters of this 

work detail the problem and approach taken to solve a problem.  

In Chapter 1, the aim is to describe the bridge between results from physiologically-based 

pharmacokinetic (PBPK) modeling via the OpenCAT model with the universe of machine 

learning. PBPK models have proven useful in describing the pharmacokinetics of drugs in a variety 

of contexts (Ando, Hisaka, & Suzuki, 2015)]; however, because these models are grounded in 

ordinary differential equations (ODEs), they are often difficult to incorporate into a larger 

simulation framework or be utilized in contexts where ODE solvers are computationally intensive 

or inconvenient. Thus, the successful development of the machine learning-based alternative with 

the ability to circumvent PBPK models and accurately predict PK parameters could offer an 

attractive alternative to drug-development scientists.  
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In Chapter 2, the focus is to describe the work aimed at describing how machine learning 

techniques can be used to facilitate the development of antidotes to nerve agents. In particular,  

this chapter focuses on how the synthesis of in vitro  data and computational estimation of chemical 

properties can be used within a machine learning environment to provide predictive power to 

identify potential compounds that could act as antidotes against both quantified and unquantified 

nerve agents. 
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1 Chapter I: Machine Learning as Means to Augment the Utility of PBPK models 

 

1.1 Introduction 

In the process of drug discovery and evaluation, potential drug candidates are generally 

screened based on their ADME (absorption, distribution, metabolism, and excretion) properties. 

These are often determined using in vitro  analysis and in vivo  animal model (Gobeau, Stringer, 

Buck,, Tuntland, & Faller, 2016). Alternately, investigators can make use of the biologically-based 

mathematical models implemented in computational frameworks (i.e., in silico approaches) to 

make predictions about these properties. In silico  methods have the potential to reduce drug 

development and assessment time and reduce the number of in vivo  experimental procedures 

required for compound selection and development (Agoram, 2001). One of the most promising of 

such techniques is physiologically based pharmacokinetic (PBPK) modeling, which has a long 

history of use in the risk assessment for environmental pollutants and has begun to be used with 

increasing frequency in the drug development process.  

For orally-administered drugs, where details of drug absorption are particularly important, the 

PBPK ACAT (advanced compartmental and transient) model is often used to predict critical 

pharmacokinetic quantities. This model, developed by Agoram et al. (Agoram, 2001), is an 

improved version of CAT model described by Yu and Amidon (1999) (Yu & Amidon, 1999). The 

ACAT model focuses on the  human gastrointestinal (GI) tract and consists of nine compartments 

linked in series, each of them representing a different segment of the GI tract (stomach, duodenum, 

two jejunum compartments, three ileum compartments, caecum, and ascending colon). To account 

for the drug that is unreleased, undissolved, dissolved, and absorbed (entering the enterocytes), a 
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further compartments subdivision was applied (Djuris, 2013). Figure 1-1 shows the structure of 

this model (Agoram, 2001).      

 

Figure 1-1 ACAT model schematic                           

  In addition to the investigation of dissolution-rate limited absorption, the ACAT model 

facilitates the exploration of the effect of drug formulation release rate on oral pharmacokinetics. 

This model has been tested by a number of investigators, including Lalka et al (Lalka, Griffith, & 

Cronenberger, 1993)., who investigated the ability of the model to improve PK prediction for drugs 

that undergo significant first-pass metabolism and Ando et al. (Ando, Hisaka, & Suzuki, 2015), 

who examined the  model predictions across a wide range of drugs.  

Although PBPK models, like the ACAT model, have proven very useful in predicting drug 

PK, because for such models, to obtain the targeted PK parameters one has to follow a multi-steps 

procedure with each step require some knowledge of computer programing. For this application, 

one must prepare and execute some MCSim codes involving solving systems of ordinary 
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differential equations to obtain concentration profile/s for drug/s. Next, the resulted profile/s 

require further statistical processing to calculate the targeted PK parameters. This procedure is not 

convenient to everyone and is often difficult to implement in certain environments, 

computationally intensive, and difficult to incorporate into larger simulation frameworks. A novel 

approach to address these limitations involves machine learning (ML). In particular, a self-

contained computing modules (or callable function) could be created that would take as input drug-

specific information and would output key pharmacokinetic parameters, such as maximum 

concentration (Cmax), time at which the maximum concentration occurred (tmax), area under the 

concentration-time curve (AUC), clearance rate (CL), and mean residence time (MRT). In this 

chapter, we show how such a module can be created based on machine learning algorithms trained 

on PBPK model output. Though machine learning is increasingly used in drug discovery 

(Hartmanshenn, Scherholz, & Androulakis, 2016) there is little work in the literature on using ML 

to facilitate pharmacokinetic analyses for drugs. 

Such a callable ACAT function could potentially replace much of the tedious work associated 

with coding and running the ACAT PBPK model; moreover, such a module could be incorporated 

into a larger drug evaluation framework that could facilitate more rapid screening of drug 

candidates.  

1.2 Methodology  

1.2.1 Data Gathering and preparation  

Drug properties were collected to span the four categories of the Biopharmaceutics 

Classification System (Charalabidis, Sfouni, Bergström, & Macheras, 2019): Class I - high 

permeability, high solubility; Class II - high permeability, low solubility; Class III - low 
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permeability, high solubility; and Class IV - low permeability, low solubility. To compute drug 

pharmacokinetics, an open-source implementation of the ACAT model was created using current 

literature information related to the ADME associated with oral drug administration and GI 

physiology. This model, OpenCAT (Bois, 2018) was implemented using the MCSim language and 

software (GNU MCsim, 2020).  

To span drug properties across the classes in the Biopharmaceutics Classification System, 

the following physical properties were varied: molecular weight, molar volume, acidic dissociation 

constant, effective permeability, precipitation rate constant, drug solubility, particle radius, and 

drug density. The values of each property were distributed uniformly based on the limits for actual 

drugs found in the literature. In addition to the above properties, ratios of the drug unbound fraction 

over its partition coefficient in each compartment, metabolic parameters, dose magnitude, and 

subject body weight were varied. All told, these parameter variations led to 15,000 different 

combination of parameters to be explored. These data were then used as input to OpenCAT model, 

resulting in a plasma concentration-time profile for each combination.  

Two of the measures of interest when evaluating drug ADME are the maximum drug 

concentration, Cmax, and the time at which the maximum concentration occurs, tmax. Also, of 

interest are the area under the concentration-time curve, AUC, which a measure for the actual drug 

exposure, 
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and the total clearance, CL,  

 

1.2.2 Model building 

The approach when building the machine learning model was to use the results from PBPK 

simulations in which parameters were systematically varied over appropriate ranges to develop a 

model that could map between drug properties as inputs and important pharmacokinetics 

parameters as outputs. The specific approach used to achieve this aim was random forest (RF) 

regression implementation (Random Forest Regression, 2020) from The Python package scikit-

learn(v 0.22.2) (sci-kit learn machine learning in python, 2020) . 

There are several important elements when building such a machine learning model, 

including optimizing the regressor’s hyper parameters, optimizing the size of the training set out 

of the data set, and assessing feature importance (Appendix I).  

The fact that we have multiple PK parameters (i.e., labels) associated with each drug related 

properties combination (i.e., features) suggested two approaches to the design of our RF model. 

The first approach would be to create distinct individual regressors, one to predict each PK 

parameter. The second approach would be to develop a single, multi-output (MO) regressor that 

can predict a vector of PK parameters such that each component of the predicted vector represents 

a PK parameter. The key factor used in determining which of these approaches was relevant was 

the degree to which the predictions matched the ‘data’ from the PBPK model.   
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1.2.2.1 Individual regressor   

See Appendix I for details about the characteristics and approach used to develop the 

individual regressors. 

1.2.2.2 Multi-output regressor  

Within the software framework used, the RF regressor natively supports multi-output 

classification/regression problems. In the multi-output problem, the regressor is to predict a vector 

of the required outputs (labels) based on the set of input features.  

1.2.2.3 Parametric (feature) variations  

The range and number of values used for each of the PBPK parameters are shown in Table 

1-1ACAT parameters' distribution These values comprised the RF model features.   

Table 1-1ACAT parameters' distribution 

Parameter Abbreviation Lower 

bound 

Upper 

bound 

unit 

Molecular 

mass 

MM 200 1200 𝑔/𝑔𝑚𝑜𝑙 
Molar 

volume 

Mol_vol 200 1200 𝑚𝑙/𝑚𝑜𝑙 
acidic 

dissociation 

constant 

pKa 0 14 ND 

particle 

radius 

G_radius 5 50 µm 
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drug density G_Density 1 2 𝑔/𝑚𝑙 
Drug 

Solubility 

Solubility 1×104
 1×106 µg/L 

precipitation 

rate constant 

K_precip 1×10-2 1 hr-1 

Effective 

permeability 

of GI tract 

epithelia 

Peff 1 7 ND 

ratios of the 

drug 

unbound 

fraction over 

its partition 

coefficient in 

compartment 

i 

Kpuui 1×10-2 1 ND 

Dose 

magnitude 

Dose 1 5×103 µmol 

Subject body 

mass 

BDM 45 125 Kg 

metabolic 

parameters 

Km_met_vitro 1×10-2 1×104 µM 

Vmax_met_vitro 1×10-6 1×10-2 µmol/min. mg microsomal proteins 
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1.2.2.4 Methods 

The general modeling workflow is shown in Figure 1-2. The core of the methodology was 

as follows: for each variation of features, a PBPK simulation was conducted and the outputs 

(labels) Cmax, tmax, and AUC/dose were computed. In total, 15000 combinations were simulated to 

create the dataset.  Results were evaluated based on the mean squared difference between the RF 

model predictions and those from the full PBPK model. 

Training and test sets were randomly taken from the full datasets as follows:  

• 20 % of the original dataset was reserved for accuracy verification.  

• The remaining 80% of the dataset was split into training and testing datasets. 
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Figure 1-2 Flowchart detailing the construction of the random forest model 
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1.3 Result and Discussion  

1.3.1 Individual regressor  

1.3.1.1 Full features training  

The predictions of these trained regressors compared to the actual output of the OpenCAT 

model is shown in Figure 1-3. The mean squared error (MSE) for the individual regressors (Cmax, 

tmax, AUC/dose) was 0.025, 0.002, 0.043 for the training data and 0.103, 0.007, 0.145 for the testing 

datasets.  

 
Figure 1-3 individual regressor accuracy full feature training 
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In general, most of the values predicted by the RF models were within 20% of those of the 

differential equation-based OpenCAT model. In order to further quantify the accuracy of the 

regressor predictions, histogram plots were generated to show the probability of obtaining a 

prediction with a certain error percentage for each regressor Figure 1-4 . The abscissa of the 

histogram plots is error percentage ranged from -100% to +100%. The axis has been divided in to 

11 bins creating a bin with a width of 20. The ordinate of the plots represents the probability of 

obtaining certain error percentage out of a regressor divided by the bin’s width.  

  
Figure 1-4 Histogram representation of individual regressor accuracy 

The probabilities of the RF model being within 20% of the OpenCAT model predictions 

are 0.765, 0.968, and 0.820 for Cmax, tmax, and AUC/dose, respectively. Encouragingly, all the three 

histograms show low to zero probability of getting predictions with error percentage greater than 

40%.  
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In evaluating a RF model, it can be important to assess the influence of each of the features 

on the accuracy of the predictions. Figure 1-5 shows the results of such an assessment.  

 
Figure 1-5 Feature importance for the individual regressors 

This figure shows that the features of most importance in predicting Cmax were the dose 

magnitude, the patient’s body weight, the two metabolic constants, and the ratio of the drug 

fraction unbound over its partition coefficient in the liver (Kpuuliver) are the most influential 

features. For tmax, the metabolic constants were again important constants along with Kpuuliver. 

Finally, for the prediction of AUC/dose, Kpuuliver, the metabolic constants, and the patient’s body 

weight were the most important features.  
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1.3.1.2 Training using reduced features  

To evaluate the extent to which a reduced set of features would affect the regressor 

accuracy, an additional set of simulations was conducted. The goal of this study was to determine 

(i) which set of reduced feature set would lead to the lowest mean squared error compared to the 

OpenCAT predictions and (ii) to compare the accuracy of predictions from the reduced feature set 

with those from the full feature set.  

The reduced feature set was found by iteratively computing the feature importance among 

the three PK measures that reduced the overall MSE. The resulting features corresponding to the 

lowest overall MSE for the Cmax regressor were (i) dose magnitude, (ii) patient’s body weight, 

(iii&iv) the two metabolic constants, and(v) Kpuuliver. For the tmax regressor the reduced feature set 

that correspond to the lowest MSE consists of (i&ii) the two metabolic constants, (iii) Kpuuliver , 

(iv) patient’s body weight, (v) Kpuucolon, and (vi) Kpuustomach. Finally, for the AUC/dose regressor 

the reduced set consists of (i) Kpuuliver, (ii&iii) the two metabolic constants, (iv) the patient’s body 

weight, and (v) Kpuucolon . 

Similar to the previous analysis, histograms were generated to indicate the probability of 

obtaining a prediction within a certain error percentage when training with a reduced features set 

Figure 1-6. 
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Figure 1-6 individual regressor accuracy Histogram Reduced features training 

In this case, the probabilities of the RF model being within 20% of the OpenCAT model 

predictions are 0.826, 0.982, and 0.9 for Cmax, tmax, and AUC/dose, respectively. The histograms 

show exceptionally low probability of predicting a PK parameter value with an error percentage 

greater than 40 %. 

1.3.2 Multi-output regressor   

1.3.2.1 Full features training   

For end-user convenience and to eliminate the computational expense that is associated 

with training a standalone regressor for each PK, a regressor was developed to predict all the PK 

parameters at once. Initially, the training of this multi-output classifier was carried out using the 

full features dataset. The predictions of this trained multi-output regressor compared with the 

outputs of the OpenCAT model is shown in Figure 1-7. As for the individual regressors, the mean 
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squared error versus the OpenCAT results was used as the evaluation metric for the approach. In 

this case, this value was computed to be 0.0487 and 0.175 for training and testing data sets 

respectively.  

 

Figure 1-7 Accuracy of the multi-output regressor using full feature training 

The three panels of the figure represent the three components of the predicted vector that 

results from the multi-output classifier. The corresponding probability histograms are shown in 

Figure 1-8, which depicts the probability of obtaining a predicted value for a PK parameter within 

a certain error percentage range. 
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Figure 1-8 Multi-output regressor accuracy Histogram Full features training 

In this case, the probabilities of the MO regressor being within 20% of the OpenCAT model 

predictions are 0.763, 0.844, and 0.493 for Cmax, tmax, and clearance rate, respectively. As with the 

previous regressors, the histograms show very low probability of predicting a PK parameter value 

with an error percentage exceeding 40 %. 

As with regressors described earlier, it is enlightening to assess the feature importance of 

the multi-output regressor. Figure 1-9 illustrates the results of this assessment.  
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Figure 1-9 Feature importance for the multi-output regressor 

This figure illustrates that dose magnitude, patient’s body weight, the two metabolic 

constants, and the ratio of the drug fraction unbound over its partition coefficient in the liver were 

found to be the features most influential in the decision making process inherent in this regressor. 

These influential features were then used to train a reduced feature MO regressor in a 

similar manner to that described earlier. The accuracy of this regressor was then assessed via 

probability histograms Figure 1-10. 
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Figure 1-10 Multi-output regressor accuracy using reduced features training 

The probability for obtaining a prediction that falls within the 20% error range for the 

values of the maximum plasma concentration, time at which this maximum value occurs, and for 

AUC/dose were 0.814, 0.886, and 0.565, respectively. 

1.3.3 Comparison of regressor performance 

A brief summary of some of the salient results noted above is contained in Table 1-2, which 

compares the agreement between the regressor output versus that of the OpenCAT model at 

various probability thresholds. 
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Table 1-2 Probability of obtaining agreement with the openCAT model 

Approach / PK parameter ±20 ±40 

Cmax t max AUC/dose Cmax tmax AUC/dose 

Individual regressor with full 
feature training 

0.765 0.968 0.820 0.928 0.990 0.949 

Individual regressor with reduced 
feature training 

0.826 0.982 0.9 0.957 0.997 0.977 

Multi-output regressor with full 
feature training 

0.763 0.844 0.493 0.927 0.961 0.765 

Multi-output regressor with 
reduced feature training 

0.814 0.886 0.565 0.946 0.976 0.820 

 

Table 1-2 shows that the probability of generating a prediction with high agreement with 

the OpenCAT model increases remarkably when a reduced feature training is utilized in building 

an individual regresssor for each targeted PK parameter. The results in this table suggest that, in 

the case of the MO regressor, the longer the output vector the more accuracy will be lost, with the 

last components suffering the most. This behavior may be due to the fact that when building a MO 

regressor the machine assumes a relationship among the components of the labels that might not 

be true for all applications.  

1.3.4 Regressor prediction validation  

For the sake of validating the predictions of the trained regressors, the PK predictions of 

individual reduced features trained regressor -which possess the highest probability of generating 

predictions within the range of 20 % error- was compared with both experimental results from the 

literature and predictions from the OpenCAT model for a variety of drugs. To critically evaluate 

the predictions, drugs were chosen across all four classes of the bio-pharmaceutical classification 

scheme (Charalabidis, Sfouni, Bergström, & Macheras, 2019).The resulting values for the PK 

parameters are depicted in the Figure 1-11. 
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Figure 1-11 Experimental results vs ACAT and RF predictions 

 Figure 1-11 shows that our regressors generally predict PK parameters in close agreement 

to those for the full OpenCAT model. As expected, the agreement with respect to data {1. 

(Critchley, Critchley, Anderson, & Tomlinson, 2005) , 2. (Kim, et al., 2002) , 3. (Friedman, et al., 

1992 ) , 4. (Arafat, et al., 2005) , 5. (Smith, Jokubaitis, Troendle, Hwang,, & Robinson, 1993) , 6. 

(Stout, et al., 2011) , 7. (Link, et al., 2008) , 8. (Hecken, Tjandramaga, Mullie, Verbesselt, & 

Schepper, 2015) , 9. (Kale & Agrawal, 2015) , 10. (Lin, Tian, Tian, Zhang, & Mao, 2011) } is 

similar to that of the full model. In certain cases, the OpenCAT model has relatively poor predictive 

capabilities for certain drug types. 

1.4 Conclusion    

One of the major aims of the work described in this chapter was to investigate the 

potential of machine learning algorithms to help address a significant problem related to 
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pharmacology and toxicology by creating an alternative method for PK parameter 

estimation. In particular, random forest regressors were trained based on a large data set 

generated through simulation conducted using the OpenCAT differential equation-based 

model. The training of these RF regressors made them capable of predicting PK parameters 

associated with a broad range of orally administered drugs. Although the predictions 

generated by RF regressor generally agree well with those derived from OpenCAT 

predictions, both set of predictions are occasionally far from the experimentally obtained PK 

parameters (Figure 1-11). Aside from the OpenCAT model, other oral absorption models 

have been developed (Ando, Hisaka, & Suzuki, 2015). It may be that a RF regressor could 

be developed to leverage the strengths of each such model to provide a good level of PK 

parameter prediction across disparate drug classes.  
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2    Chapter II: Machine Learning to inform the development of antidotes for nerve agent 

poisoning 

 

2.1 Introduction  

The first nerve agent was synthesized by a German scientist conducting industrial research for 

the development of pesticides (Tucker, 2007). These agents fall within the general class of 

organophosphorus compounds (OPs), which include insecticides such as chlorpyrifos and 

diazinon. OPs interfere with both the central CNS and the peripheral PNS branches of the nervous 

system by irreversibly inhibiting acetylcholinesterase the enzyme responsible for the breakdown 

of the neurotransmitter acetylcholine in the synaptic cleft (Costanzi, Machado, & Mitchell, 2018). 

The accumulation of the neurotransmitter caused by OP exposure can lead to an overstimulation 

of cholinergic neurotransmission accompanied by various overt adverse health effects. In the 

unfortunate event of exposure to a nerve agent, a person could experience irritating symptoms such 

as vomiting; involuntarily muscle twitching; paralysis; and death, primarily resulting from 

respiratory failure or seizures (King & Aaron, 2015). 

Owing to the potent toxicity of this family of compounds, they have been used in numerous 

military applications as chemical warfare agents. In response, the military and some civilian 

organizations have sought antidotes to reduce the lethality of these compounds should anyone be 

exposed through warfare, terrorist attacks, or accidents. The conventional treatment regimen for a 

poisoning caused by a nerve agent is a combination of three drugs, each of which serves a specific 

purpose (Chambers J. E., et al., 2016). Specifically, an oxime (e.g., pralidoxime or 2-PAM) will 

be given to reactivate acetylcholinesterase (AChE), atropine will be injected to antagonize the 
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muscarinic acetylcholine receptors, and a benzodiazepine (e.g., diazepam) will be administered to 

alleviate agent-induced seizures. 

Unfortunately, the current treatment regimen has a number of limitations. First, the 

administration of atropine will adequately antagonize the muscarinic acetylcholine receptors, but 

not the nicotinic receptors. Second, none of the currently known antidotes is a broad-spectrum 

antidote and all of them lack the ability to reactivate the inhibited acetylcholinesterase once it ages 

(Moshiri, Darchini-Maragheh, & Balali-Mood, 2012). Finally, the FDA-approved oximes are 

deficient with respect to their ability to cross the blood–brain barrier (BBB) and thus poorly 

reactivate AChE in the central nervous system (CNS) (Chambers J. E., et al., 2016).  

To improve this critical therapeutic element, a series of oximes candidates were designed, 

synthesized, and tested by  colleagues at Mississippi State University (Chambers et al.). Due to the 

enhanced lipophilicity of these candidates, they have a better ability to cross the BBB and 

reactivate inhibited brain cholinesterase (ChE) (Chambers, Chambers, Meek, & Pringle, 2013). 

Since the hazard associated with nerve agents is significant, only a handful of laboratories can test 

these compounds. To overcome this issue, Chambers et al. synthesized surrogates for the nerve 

agents sarin and VX to investigate the ChE reactivation potential of the oximes candidates both in 

vitro  and in vivo (Meek, et al., 2012). The oxime candidates (substituted phenoxyalkyl pyridinium 

oximes) were designed with the objective of maximizing BBB penetration and ChE reactivation. 

Their set of candidate chemicals was developed based on the investigators’ knowledge of the 

relevant chemistry and biology, with choices being limited by the feasibility of synthesis of the 

desired molecules. 

Though the domain-specific knowledge of Chambers et al. was critical in establishing a set of 

candidate molecules, there was no attempt to systematically utilize their experimental results to 
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make predictions outside of those for the dataset nor to use the information to design new oximes 

or assess the reactivation potential of existing oximes against untested nerve agents or OP 

insecticides.  

The aim of the work described in this chapter was to bridge this knowledge gap through the 

development and use of machine learning techniques and to provide a tool that could be used for 

the rational design and analysis of candidate OP antidotes.  

2.2 Methodology  

The overall workflow for the model building and analysis is shown in Figure 2-1 It 

comprised the following essential steps: (i) Converting chemical structure into SMILES, (ii) 

Converting SMILES into their respective descriptors, (iii) Creating a dataset to fulfill the required 

goal, and (iv) Building the ML model and initiating the training, testing, and verification 

procedure. Each of these steps will be detailed in the following sections.  
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Figure 2-1 Flowchart detailing the construction of the ML model to predict antidotes' 

reactivation fraction 
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2.2.1 Data gathering  

The data used in the present study were obtained from Chambers et al. These data comprised 

in vitro  reactivation values corresponding to each oxime and surrogate nerve agent or OP 

combination tested.   

2.2.2 Determining the model features  

The features for use in the model were molecular descriptors of both the oxime antidote and 

the nerve agent/OP. These features included i. constitutional descriptors; ii. 1D-descriptors (i.e. 

list of structural fragments, fingerprints); iii. 2D-descriptors (i.e. graph invariants); and iv. 3D-

descriptors (e.g., quantum-chemical descriptors). 

First, to convert the data to a form suitable for input to descriptor calculators, the chemical 

structures from Chambers et al. were converted to simplified molecular-input line-entry system 

notation (SMILES) (SMILES - A Simplified Chemical Language, 2020) which is a specification 

of a molecular structure using ASCII strings. These SMILES representations were confirmed 

through the use of the molecular structure drawing program, ACD/ChemSketch (ACD) . 

Next, the SMILES strings were used as input to several different open-source or freely-

available descriptor calculation codes, namely Mordred (Moriwaki, Tian, Kawashita, & Takagi, 

2018) (>1800 descriptors), PaDEL-Descriptor (PaDEL-Descriptor, 2020) (1875 descriptors), and 

ChemoPy (DS, QS, QN, & YZ, 2013)(1135 descriptors).  Owing to differences in nomenclature 

and descriptor definitions among these software packages, the total unique number of descriptors 

was infeasible to determine. Each set of descriptors was used separately in the workflow and the 

set that contained the best predictors for the outputs of interest was selected.  
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2.2.3 Model building and verification 

See Appendix I for details about the background and approach to model building. 

In essence, using the data from Chambers et al.), a XGboost model - which is another tree 

based model that train trees in sequence with every tree correcting the mistake made by the 

previous tree- (A Gentle Introduction to XGBoost for Applied Machine Learning, 2020) was 

developed to predict the enzyme reactivation (label) based on a set of molecular descriptors 

(features). 

As described in Chapter I, a feature importance analysis was conducted to identify the 

features with the most influence on the label. From these primary features, a reduced feature set 

regression model was developed.  

2.2.4 Developing and characterizing new candidate antidotes  

The oximes designed by Chambers et al., were all of a similar chemical structure: 

  , 

However, the set of chemicals was constructed by varying certain structural features, namely the 

R group, location of this group in the first aromatic ring, and linker length, n. The specific 

parameters (see Appendix II for details) were limited to those leading to molecules that could be 

readily synthesized. Owing to resource constraints, Chambers et al. were not able to synthesize 

and test all variations of the molecular structures based on these specific parameter sets. However, 

by examining the set of structures synthesized versus those that are possible, a list of ‘missing’ 
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oximes was created. That is, compounds that were feasible, but were not prioritized by Chambers 

et al. for synthesis and characterization.  

2.3 Results and Discussion 

2.3.1 Reduced feature training 

The set of reduced features used in this analysis consists of features produces by the Mordred 

package (Moriwaki, Tian, Kawashita, & Takagi, 2018).  

Figure 2-2 shows the MSE associated with the reduced features training for four nerve agent 

surrogates. The endpoint of interest (or regression label) was the reactivation fraction when tested 

in an in vitro  rat tissue system. The process of developing the optimal reduced feature set was as 

follows: The first reduced set was created containing only the most influential feature. For the 

second set, the two most influential features were incorporated. Subsequent sets included one more 

feature at the time to form a new set until all of the features had been added. Figure 2-2 shows the 

MSE associated with variations in the reduced features set. The lowest trough of the curves 

corresponds to the reduced feature set showing the  best predictive ability versus the training data.  
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Figure 2-2 Mean squared error associated with various reduced features sets 

Figure 2-3 shows the importance associated with each individual feature. The importance of 

feature according to this figure will eventually reach zero which indicates no contribution from 

this feature is necessary for the internal decision-making process of the regressor.  
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Figure 2-3 Feature (descriptor) importance 

After the reduced feature set was found, the regressor was tested against the full (training plus 

test) data to determine the predictive capability of the regressors. Figure 2-4 shows the result of 

this comparison, where dots represent the error percentage corresponds to each antidote/surrogate 

combination and the two solids lines represent a prediction envelope of ±10 %. This figure shows 

that when using these optimized trained regressors, most of the predictions fall within the 

envelope.  



33 
 

 
Figure 2-4 Prediction error for reactivation based on various surrogate challenges 

The next step in the verification was to compare regressor predictions against data for 

which no similar training data had been used. In other words, the comparison Table 2-1 was based 

completely on samples for which the regressors had no prior knowledge. Table 2-1 shows the 

results of this comparison for all of the nerve agent surrogates (PIMP, NEMP, DFP, and PXN). In 

general, the predictions are in reasonable agreement with the data. In practice, such predictions are 

useful to Chambers et al. when they are expected to be within about 25% of the experimentally 

determined value. 
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Table 2-1 Measured (M) versus predicted (P) fraction reactivation for tested surrogates  

Id n R_group PIMP  

(M | P) 

NEMP  

(M | P) 

DFP  

(M | P) 

PXN  

(M | P) 

MSU 002 3 4-02N- 0.37 | 

0.366 

Training 

set 

0.69 | 

0.507 

0.28 | 

0.105 

MSU 013 3 3-

CH=CHCH=CH-4 

0.65 | 

0.596 

0.57 | 

0.578 

0.45 | 

0.633 

Training 

set 

MSU 033 3 3,4-Cl2- 0.55 | 

0.651 

0.62 | 

0.657 

Training 

set 

0.4 | 0.246 

MSU 036 4 2,6-([CH3]2CH)2- 0.53 | 

0.621 

0.58 | 

0.594 

Training 

set 

0.23 | 

0.299 

MSU 066 5 4-Ph-C(CH3)2- 0.48 | 

0.453 

Training 

set 

0.44 | 

0.517 

0.15 | 

0.117 

MSU 073 5 4-

CH3CH2C(CH3)2- 

0.34 | 

0.311 

Training 

set 

0.42 | 

0.393 

0.13 | 

0.105 

 

2.3.2 Potential new antidotes 

After verifying the functionality of the optimized regressor, a new study commenced to look 

predicting the reactivation of the ‘missing’ oximes described earlier (section 2.2.4). Appendix II 

contains structural information for the list of tested oximes (denoted by ‘MSU 0XX’) and the 

‘missing’ oximes (denoted by ‘CSU 0XX’). Following the procedure outlined earlier, the 

descriptors for these candidate oximes were computed and used as features in the regressor to 

predict the label fraction reactivation. Table 2-2 shows the regressor predictions for several 
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candidate and tested oximes against two surrogate nerve agents: PIMP and NEMP. These results 

suggest that some of the untested antidotes would outperform many of the tested ones.  

Table 2-2 Predicted reactivation fraction for promising oxime compounds 

PIMP NEMP 

Id n R_group Reactivatio

n 

Id n R_group Reactivatio

n 

MSU 016 3 4-Ph-C(:0)- 0.78 MSU 081 3 2-

CH=CHCH=CH

-3 

0.80 

MSU 021 4 2,5-Cl2- 0.72 MSU 021 4 2,5-Cl2- 0.76 

CSU_023 5 4-O2N- 0.331 CSU_004 3 2,5-Cl2- 0.622 

MSU 009 5 4-CH3-0 0.30 MSU_04

4 

3 4-Br- 0.62 

MSU_03

1 

4 3-0-C(:0)-

CH=C(CH3)

-4 

0.27 MSU_03

7 

4 3-CH3-4-Cl- 0.61 

 

2.3.3 Expanding the library of nerve agents and insecticides 

One of the issues with nerve agent antidotes is that they may not be effective against exposure 

to agents other than those one for which they were designed. Thus, the ability to evaluate the 

enzyme reactivation for oximes against a range of agents and other OPs is critically important. To 

fill this need, a regressor design approach was developed to create a tool to make such predictions. 

A key element of this approach was to include the full set of descriptors for both the oxime and 

the OP as features and to be able to assess the contribution of descriptors from both molecule types.  
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Like the methods employed previously, the regressor was trained with a dataset separate 

from that used for verification. Again, the agreement in reactivation fraction between the 

predictions and data was assessed. This comparison is shown in Figure 2-5, where points represent 

the error percentage corresponds to each sample and the two solids lines represent a error envelope 

of ±10%.  

 
Figure 2-5 Prediction error for the extended library 

The histograms shown in Figure 2-6 was generated for the purpose of quantifying the 

accuracy of our regressor. The plot indicates that the probability of getting a predicted value for a 

reactivation fraction associated with antidote-nerve agent combination with an error percentage of 

± 10% is 0.88 with extremely low probability of obtaining predictions with error percentage greater 

than 50%.  
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Figure 2-6 Histogram view of the prediction error for the extended library 

After assessing the accuracy of the regressor, the library of OPs was expanded by adding 

seven new compounds to the original library. The chemicals in the updated library were broken 

into three groups:  

i. nerve agent surrogates: nitrophenyl isopropyl methylphosphonate (NIMP), 4-

nitrophenyl ethyl dimethylphosphoramidate (NEDPA), and phorate oxon.  

ii. insecticides: diazoxon and chlorpyrifos oxon.  

iii. nerve agents: [2-(Diisopropylamino) ethyl]-O-ethyl methylphosphonothioate ethyl 

(a.k.a VX) and (RS)-Propan-2-yl methylphosphonofluoridate (a.k.a. sarin).  

Based on this updated library, predictions of enzyme reactivation were made using the 

regressor Table 2-3 . 
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Table 2-3 Predicted fraction reactivation for some untested agents and OPs 

Id surrogates insecticides nerve agent 

 Phorate_oxon NIMP NEDPA Diazoxon Chlorpyrifos_oxon Sarin VX 

MSU_001 0.526 0.5097 0.6138 0.4324 0.5221 0.2598 0.3559 

MSU_002 0.312 0.3222 0.4457 0.2735 0.319 0.1422 0.1473 

MSU_007 0.404 0.3802 0.4455 0.3037 0.4115 0.2304 0.2254 

MSU_014 0.452 0.4618 0.6064 0.4486 0.4795 0.2152 0.2877 

MSU_045 0.592 0.6724 0.6846 0.4792 0.5569 0.3647 0.4624 

MSU_052 0.381 0.4795 0.5085 0.3653 0.392 0.152 0.2669 

MSU_056 0.452 0.5329 0.5128 0.3169 0.4568 0.2272 0.3348 

 

This table was shared with Chambers et al. who then generated a set of verification 

reactivation data for the surrogate phorate oxon. As shown in Table 2-4 the predictions are in 

reasonable agreement with the data for most of the oximes. According to Chambers et al., because 

this type of tool would likely be used, not as a quantitative predictor, but as a screening tool, this 

level of accuracy is probably sufficient. 
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Table 2-4 Comparison of the fraction reactivation for Phorate_oxon  

Identifier Fractional reactivation (measured | predicted)   

MSU_001 
0.579 | 0.526 

MSU_002 
0.479 | 0.312 

MSU_007 
0.446 | 0.404 

MSU_014 
0.435 | 0.452 

MSU_045 
0.502 | 0.592 

MSU_052 
0.62 | 0.381 

MSU_056 
0.249 | 0.452 

 

2.4 Conclusion  

One of the major aims of the work described in this chapter was to investigate the potential of 

machine learning algorithms to help address a significant problem related to pharmacology and 

toxicology. Specifically, a major objective was to develop and assess a machine learning tool to 

help in the design of phenoxyalkyl pyridinium oximes (Chambers & Meek, 2020)  as nerve agent 

antidotes. Though no mechanistic insights were gained by examining the most influential features 

for the XGboost regressor, the tool was still useful in making predictions in two important cases: 

(i) new oximes that could be used to reactivate AChE following exposure to OPs and (ii) assessing 

the reactivation potential for a given oxime against new (untested) OP challenges. It is anticipated 

that a tool such as this will be useful in the future design of antidote compounds to treat nerve 

agent and OP insecticide poisoning.  
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Appendices 

Appendix I: Relevant details of machine learning approach 

Introduction 

Machine learning is a method of data analysis that automates analytical model building. It is 

a branch of artificial intelligence (AI) based on the idea that systems can ‘learn’ from data, identify 

patterns, and make decisions with minimal human intervention. Machine learning can be used to 

solve regression, classification, and clustering problems (Machine Learning For Beginners, 2020) 

In the case of the OpenCAT analysis, predicting pharmacokinetics parameters is a regression 

problem since the outputs are continuous. Various machine learning techniques are known to be 

useful when confronted with such problem. For such problems, a variety of techniques are 

available, including decision trees, random forests regressions, and neural networks.  

Each technique possess its unique way of approaching the final decision and which plays the 

most important role in one technique outperforming the others when dealing with a certain problem 

However, the ultimate goal of all techniques is to build an understanding of the relationships 

among variables and their corresponding outputs and determine the levels of influence among 

variables and their effects on reaching a certain decision. The “No Free Lunch” theorem (Wolpert 

& Macready, 1997), which basically states that “no one machine learning technique is the best for 

all problems”, necessitates and exploration of various techniques for each problem of interest. 

Moreover, even for the same problem of interest, the performance of a given machine learning 

technique is altered based on the size and the structure of the data set.  

As the name implies, a random forest (RF) is a collection of decision trees working in concert. 

One can think of a decision tree as a series of yes/no questions and subsequent branches asked 

about the data that eventually lead to a predicted class (or continuous value in the case of 
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regression). In the instance of the random forest regression, the decisions made by different trees 

will be averaged in an appropriate way, as oppose to a ‘voting’ procedure that takes place when a 

classification problem is to be solved. Two concepts distinguish random forest from a simple 

collection of decision trees. The first concept is the random sampling of training dataset when 

building a tree and the second is the random subsets of features considered prior to nodes’ splitting. 

Random forests can used in cases of complex, non-linear relationships, and in contrast to a neural 

network, a RF is relatively transparent in terms of the decisions made to arrive at a decision. 

Despite this advantage, one must take care to avoid model over-fitting and/or under-fitting 

(OF/UF). In this work, Python (v3.7.0) (Python, 2020)was used to help to automate the workflow. 

The Python package scikit-learn(v 0.22.2) (sci-kit learn machine learning in python, 2020) was 

used to conduct the RF analyses. 

An alternative to RF models is gradient boosting (GB) (A Gentle Introduction to the Gradient 

Boosting Algorithm for Machine Learning, 2020) The key difference between these approaches is 

that GB trains models in succession, with each new model being trained to correct the errors made 

by the previous ones. Models are added sequentially until no further improvements can be 

achieved. Another crucial distinction between RF and GB is the ability of the GB to handle data 

sets that contain missing data.   In this work, XGBoost (A Gentle Introduction to XGBoost for 

Applied Machine Learning, 2020) was used to perform the GB calculations.  

Model building  

Optimizing a regressors’ hyperparameters  

Much of machine learning focused on balancing computational expense against prediction 

accuracy. To achieve this balance, several model parameters can be adjusted and optimized. 
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Optimization of so-called hyperparameters is essential in many instances, especially when dealing 

with large data sets or data set that involves a large number of features. A hyperparameter is a 

parameter whose value is set before the learning process begins. In the present analyses, the scikit-

learn method RandomizedSearchCV was used to automatically try different combination of 

regressor hyperparameters to optimize the accuracy of the model. Using this method as core 

functionality, a Python script was developed to facilitate an efficient workflow. The first part of 

the script split the data set into training and testing subsets. To eliminate any bias in the training-

testing split process, the code created multiple training-testing sets, keeping the size of the testing 

set fixed among all permutations. Next the randomized search method was employed to determine 

the optimal hyperparameters for a given permutation. Finally, each fitted regressor was tested by 

calculating the mean squared error of its predictions versus the data and the regressor was saved 

for future utilization.  

Optimizing the size of the testing set  

The size of the training and testing data sets plays an important role in determining the 

quality of a regressor and whether the regressor has been over-fitted or under-fitted. To assess the 

effects of dataset size, another Python script was built to vary size of the testing set as a fraction 

of size of the original data set. Smaller training data sets could be important if the optimization is 

computationally expensive. The second purpose of this step was to detect and eliminate regressor 

OF/UF. The script was designed to try various fractional sizes and for each size, optimize 

hyperparameters, train and test the regressor, and compute the mean squared errors. By examining 

the difference between the MSE related to the training set and that associated with the test set, the 

extent of OF/UF could be assessed.  

https://en.wikipedia.org/wiki/Parameter
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Characterizing feature importance  

In this step the importance of each feature in influencing the decision that to be made by 

each regressor was determined. Aside from helping to establish models with tractable numbers of 

features, the feature importance analysis has the potential to assist in the design of experiments. 

The scikit-learn method “feature_importance” was used as the core element of this analysis. Again, 

a Python script was created to iterate through training-testing splits, optimize hyperparameters, 

and fit and test regressors. In addition, a metric associated with the influence of each feature on 

the regression decision was computed for each permutation.  

Assessing model performance  

A crucial step in the development process for each regressor was an assessment of its 

prediction accuracy for a label’s value compared to a specified subset of the available data. As 

noted earlier, the MSE was used as a metric; however, the coefficient of determination was used 

in other cases, depending on the purpose of the trial. 

In order to visualize the accuracy of the regressor two types of plots were generated. The first type 

shows the relationship between the actual data and the predicted values. Dashed lines were often 

added as the boundaries of the prediction envelope. The second illustrative plot type was a 

histogram that shows the probability of obtaining values from the regressor within a certain 

percentage of the data.   
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Appendix II: Details of candidate antidotes 

Generic oxime 2D structure: 

 

Identifi

er 

Link

er 

lengt

h  

R_group 
Identifi

er 

Link

er 

lengt

h  

R group 
Identifi

er 

Link

er 

lengt

h  

R group 

CSU_0

01 
3 4-Cl- 

MSU 

001 
4 4-Cl- 

MSU 

044 
3 4-Br- 

CSU_0

02 
3 4-CH3CH2C(:0)- 

MSU 

002 
3 4-02N- 

MSU 

045 
4 4-Br- 

CSU_0

03 
3 4-CH3-0- 

MSU 

003 
4 4-CH3C(:0)- 

MSU 

046 
5 4-Br- 

CSU_0

04 
3 2,5-Cl2- 

MSU 

004 
5 4-CH3C(:0)- 

MSU 

047 
5 2,3,5-(CH3)3- 

CSU_0

05 
3 4-Ph 

MSU 

005 
4 4-CH3-0 

MSU 

048 
5 

3-

CH=CHCH=CH-4 

CSU_0

06 
3 4-CH3- 

MSU 

006 
4 

3-

CH=CHCH=

CH-4 

MSU 

049 
4 4-Ph-0- 

CSU_0

07 
3 3-Cl- 

MSU 

007 
3 H- 

MSU 

050 
4 4-Ph-CH2- 

CSU_0

08 
3 2-CH3-4-02N- 

MSU 

008 
4 H- 

MSU 

051 
4 4-Ph-CH2C(:0)- 
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CSU_0

09 
3 2,6-([CH3]2CH)2- 

MSU 

009 
5 4-CH3-0 

MSU 

052 
3 2,3,5-(CH3)3- 

CSU_0

10 
3 4-Ph-0- 

MSU 

010 
5 4-Cl- 

MSU 

053 
3 4-Ph-CH2-O- 

CSU_0

11 
3 4-Ph-CH2- 

MSU 

011 
6 4-CH3C(:0)- 

MSU 

054 
5 4-Ph-CH2-O- 

CSU_0

12 
3 

4-

(CH3)3CCH2C(C

H3)2- 

MSU 

012 
4 

4-

CH3CH2C(:0

)- 

MSU 

055 
5 

4-

(CH3)3CCH2C(C

H3)2- 

CSU_0

13 
3 

2-CH3-4-

(CH3)3C- 

MSU 

013 
3 

3-

CH=CHCH=

CH-4 

MSU 

056 
4 2,4,5-Cl3)- 

CSU_0

14 
3 2,4-[(CH3)3C-]2- 

MSU 

014 
3 4-CH3C(:0)- 

MSU 

057 
4 2,3,5-(CH3)3- 

CSU_0

15 
3 4-CH3(CH2)6-0- 

MSU 

015 
5 

4-

CH3CH2C(:0

)- 

MSU 

058 
4 

2-CH3-4-

(CH3)3C- 

CSU_0

16 
3 4-Br-3,5-(CH3)2- 

MSU 

016 
3 4-Ph-C(:0)- 

MSU 

059 
4 2,4-[(CH3)3C-]2- 

CSU_0

17 
3 4-Ph-C(CH3)2- 

MSU 

017 
4 4-Ph-C(:0)- 

MSU 

060 
4 

4-

CH3CH2C(CH3)2

- 

CSU_0

18 
3 2-Br-4-Cl- 

MSU 

018 
5 4-Ph-C(:0)- 

MSU 

061 
4 4-CH3(CH2)6-0- 

CSU_0

19 
3 3-02N-4-Cl- 

MSU 

019 
6 4-CH3-0- 

MSU 

062 
4 

4-

(CH3)3CCH2C(C

H3)2- 



52 
 

CSU_0

20 
3 2-Ph-CH2- 

MSU 

020 
4 4-Ph-CH2-O- 

MSU 

063 
4 4-Br-3,5-(CH3)2- 

CSU_0

21 
3 2,6-Br2-4-CH3- 

MSU 

021 
4 2,5-Cl2- 

MSU 

064 
3 

4-

CH3CH2C(CH3)2

- 

CSU_0

22 
4 4-CH3-0- 

MSU 

022 
6 

3-

CH=CHCH=

CH-4 

MSU 

065 
5 2,4,5-Cl3)- 

CSU_0

23 
5 4-02N- 

MSU 

023 
4 4-02N- 

MSU 

066 
5 4-Ph-C(CH3)2- 

CSU_0

24 
5 H- 

MSU 

024 
4 4-Ph 

MSU 

067 
4 4-Ph-C(CH3)2- 

CSU_0

25 
5 4-CH3-0- 

MSU 

025 
4 

2-

CH=CHCH=

CH-3 

MSU 

069 
4 2-Br-4-Cl- 

CSU_0

26 
5 4-Ph 

MSU 

026 
4 4-CH3- 

MSU 

070 
3 2,4,5-Cl3)- 

CSU_0

27 
5 4-CH3- 

MSU 

027 
6 4-Ph 

MSU 

071 
4 2,4-Cl2- 

CSU_0

28 
5 3-Cl- 

MSU 

028 
4 3-Cl- 

MSU 

072 
5 4-Ph-CH2- 

CSU_0

29 
5 3,4-Cl2- 

MSU 

029 
4 3,4-Cl2- 

MSU 

073 
5 

4-

CH3CH2C(CH3)2

- 

CSU_0

30 
5 2,4,6-Cl3- 

MSU 

030 
3 2,4,6-Cl3- 

MSU 

074 
5 2,5-Cl2- 
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CSU_0

31 
5 2,6-([CH3]2CH)2- 

MSU 

031 
4 

3-0-C(:0)-

CH=C(CH3)-

4 

MSU 

075 
5 4-Ph-CH2C(:0)- 

CSU_0

32 
5 4-Cl-3,5-(CH3)2- 

MSU 

032 
5 

3-0-C(:0)-

CH=C(CH3)-

4 

MSU 

076 
4 4-(CH3)3C- 

CSU_0

33 
5 4-Ph-0- 

MSU 

033 
3 3,4-Cl2- 

MSU 

077 
4 3-02N-4-Cl- 

CSU_0

34 
5 

2-CH3-4-

(CH3)3C- 

MSU 

034 
4 

2-CH3-4-

02N- 

MSU 

078 
4 2-Ph-CH2- 

CSU_0

35 
5 2,4-[(CH3)3C-]2- 

MSU 

035 
3 

3-0-C(:0)-

CH=C(CH3)-

4 

MSU 

080 
5 

2-

CH=CHCH=CH-3 

CSU_0

36 
5 4-CH3(CH2)6-0- 

MSU 

036 
4 

2,6-

([CH3]2CH)2

- 

MSU 

081 
3 

2-

CH=CHCH=CH-3 

CSU_0

37 
5 4-Br-3,5-(CH3)2- 

MSU 

037 
4 3-CH3-4-Cl- 

MSU 

083 
4 2,6-Br2-4-CH3- 

CSU_0

38 
5 2-Br-4-Cl- 

MSU 

038 
4 

2,6-Cl2-4-

02N- 

MSU 

085 
4 2,4-Br2- 

CSU_0

39 
5 2,4-Cl2- 

MSU 

039 
4 2,4,6-Cl3- 

MSU 

086 
3 4-(CH3)3C- 

CSU_0

40 
5 4-(CH3)3C- 

MSU 

040 
3 

4-Ph-

CH2C(:0)- 

MSU 

090 
3 2,4-Br2- 

CSU_0

41 
5 3-02N-4-Cl- 

MSU 

041 
3 

4-Cl-3,5-

(CH3)2- 

MSU 

091 
5 2-CH3-4-02N- 
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CSU_0

42 
5 2-Ph-CH2- 

MSU 

042 
4 

4-Cl-3,5-

(CH3)2- 

MSU 

092 
5 2,4-Br2- 

CSU_0

43 
5 2,6-Br2-4-CH3- 

MSU 

043 
3 4-CH3-0    
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Appendix III: antidotes’ reactivation fraction (original data)  

All data represent measurements from in vitro systems using brain cells from rats. 

PIMP: phthalimidyl isopropyl methylphosphonate 

NIMP: nitrophenylethylmethylphosphonate 

PXN:  paraoxon 

DFP: diisopropylphosphofluoridate 

Identifier PIMP NEMP PXN DFP 

MSU 

001 
0.54 0.52 0.56 0.23 

MSU 

002 
0.37 0.32 0.69 0.28 

MSU 

003 
0.34 0.36 0.73 0.2 

MSU 

004 
0.38 0.34 0.55 0.2 

MSU 

005 
0.53 0.53 0.76 0.3 

MSU 

006 
0.65 0.67 0.49 0.09 

MSU 

007 
0.37 0.41 0.32 0.17 
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MSU 

008 
0.41 0.33 0.48 0.16 

MSU 

009 
0.3 0.35 0.25 0.16 

MSU 

010 
0.39 0.34 0.52 0.08 

MSU 

011 
0.48 0.36 0.67 0.21 

MSU 

012 
0.34 0.33 0.76 0.27 

MSU 

013 
0.65 0.57 0.45 0.12 

MSU 

014 
0.4 0.25 0.6 0.18 

MSU 

015 
0.48 0.38 0.81 0.22 

MSU 

016 
0.78 0.62 0.54 0.18 

MSU 

017 
0.72 0.69 0.87 0.37 

MSU 

018 
0.71 0.56 0.66 0.2 



57 
 

MSU 

019 
0.42 0.31 0.41 0.17 

MSU 

020 
0.53 0.47 0.32 0.12 

MSU 

021 
0.72 0.76 0.32 0.15 

MSU 

022 
0.28 0.26 0.16 0.05 

MSU 

023 
0.46 0.37 0.73 0.25 

MSU 

024 
0.24 0.23 0.16 0.02 

MSU 

025 
0.43 0.62 0.35 0.13 

MSU 

026 
0.49 0.53 0.52 0.17 

MSU 

027 
0.25 0.24 0.27 0.03 

MSU 

028 
0.47 0.43 0.74 0.18 

MSU 

029 
0.71 0.74 0.42 0.16 
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MSU 

030 
0.38 0.48 0.77 0.14 

MSU 

031 
0.27 0.31 0.72 0.19 

MSU 

032 
0.52 0.58 0.62 0.29 

MSU 

033 
0.55 0.62 0.78 0.4 

MSU 

034 
0.14 0.38 0.68 0.22 

MSU 

035 
0.2 0.25 0 0.14 

MSU 

036 
0.53 0.58 0.65 0.23 

MSU 

037 
0.54 0.61 0.48 0.19 

MSU 

038 
0.38 0.37 0.72 0.17 

MSU 

039 
0.56 0.67 0.47 0.09 

MSU 

040 
0.56 0.44 0.47 0.17 
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MSU 

041 
0.54 0.7 0.51 0.17 

MSU 

042 
0.65 0.65 0.25 0.18 

MSU 

043 
0.35 0.45 0.72 0.27 

MSU 

044 
0.51 0.62 0.61 0.23 

MSU 

045 
0.57 0.67 0.86 0.39 

MSU 

046 
0.38 0.45 0.36 0.12 

MSU 

047 
0.49 0.56 0.84 0.37 

MSU 

048 
0.59 0.67 0.42 0.13 

MSU 

049 
0.31 0.42 0.51 0.14 

MSU 

050 
0.34 0.35 0.44 0.15 

MSU 

051 
0.53 0.48 0.59 0.19 



60 
 

MSU 

052 
0.47 0.55 0.47 0.23 

MSU 

053 
0.43 0.46 0.24 0.09 

MSU 

054 
0.29 0.36 0.24 0.04 

MSU 

055 
0.51 0.56 0.93 0.5 

MSU 

056 
0.51 0.55 0.56 0.22 

MSU 

057 
0.67 0.66 0.32 0.2 

MSU 

058 
0.39 0.19 0.25 0.12 

MSU 

059 
0.18 0.25 0.4 0.1 

MSU 

060 
0.36 0.33 0.22 0.12 

MSU 

061 
0.31 0.36 0.7 0.32 

MSU 

062 
0.41 0.45 0.94 0.36 
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MSU 

063 
0.46 0.69 0.31 0.17 

MSU 

064 
0.38 0.53 0.46 0.1 

MSU 

065 
0.51 0.6 0.63 0.27 

MSU 

066 
0.48 0.46 0.44 0.15 

MSU 

067 
0.46 0.57 0.38 0.14 

MSU 

069 
0.65 0.59 0.47 0.23 

MSU 

070 
0.16 0.46 0.43 0.06 

MSU 

071 
0.44 0.6 0.31 0.18 

MSU 

072 
0.3 0.32 0.42 0.15 

MSU 

073 
0.34 0.31 0.42 0.13 

MSU 

074 
0.58 0.7 0.67 0.17 
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MSU 

075 
0 0.55 0.6 0 

MSU 

076 
0.36 0.42 0.4 0.14 

MSU 

077 
0.21 0.34 0.61 0.24 

MSU 

078 
0.47 0.5 0.63 0.2 

MSU 

080 
0.58 0.68 0.86 0.49 

MSU 

081 
0.58 0.8 0.8 0.35 

MSU 

083 
0.31 0.44 0.23 0.01 

MSU 

085 
0.51 0.55 0.4 0.2 

MSU 

086 
0.34 0.38 0.35 0.14 

MSU 

090 
0.27 0.41 0.23 0.01 

MSU 

091 
0.31 0.42 0.52 0.2 
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MSU 

092 
0.36 0.37 0.81 0.28 
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Appendix IV: SMILES representation of candidate antidotes 

MSU 001 MSU 002 

 

 

 

 

 

 

c1cc(C=NO)cc[n+]1-CCCCO-c2ccc(Cl)cc2 

 

 

 

 

 

 

O=N(=O)-c1ccc(OCCCc2ccc(\C=N\O)cc2)cc1 

MSU 003 MSU 004 

 

 

 

 

 

 

 

c1cc(C=NO)cc[n+]1-CCCCO-c2ccc(C(=O)C)cc2 

 

 

c1cc(C=NO)cc[n+]1-CCCCCO-c2ccc(C(=O)C)cc2 

MSU 005 MSU 006 

 

 

 

 

 

 

 

c1cc(C=NO)cc[n+]1-CCCCO-c2ccc(OC)cc2 

 

c1cc2cc(OCCCC-[n+]3ccc(C=NO)cc3)ccc2cc1 

 

MSU 007` MSU 008 

N

OH

N
+

O

Cl O

N
+

N

OH

H

N

O

O

N OH

N
+

O

O

CH3

N
+

N

OH

H

O

O

CH3

N OH

N
+

O O

CH3

O

N
+

N

OH
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c1cccc[n+]1-CCCO-c2ccccc2 

 

 

 

 

 

 

 

c1cccc[n+]1-CCCCO-c2ccccc2 

MSU 009 MSU 010 

 

\c1cc(C=NO)cc[n+]1-CCCCCO-c2ccc(OC)cc2 

 

 

 

 

 

 

 

 

 

c1cc(C=NO)cc[n+]1-CCCCCO-c2ccc(Cl)cc2 

 

MSU 011 MSU 012 

 

 

 

 

 

 

 

 

 

c1cc(C=NO)cc[n+]1-CCCCCCO-c2ccc(C(=O)C)cc2 

 

 

c1cc(C=NO)cc[n+]1-CCCCO-c2ccc(C(=O)CC)cc2 

 

MSU 013 MSU 014 

N
+

O

N
+

O

N
+

N

OH

H

O

O

CH3

N
+

N

OH

H

O

Cl

N
+

N

OH

H

O

CH3 O

N
+

N

OH

O

H

CH3

O
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c1cc2cc(OCCC-[n+]3ccc(C=NO)cc3)ccc2cc1 

 

 

 

 

 

 

 

c1cc(C=NO)cc[n+]1-CCCO-c2ccc(C(=O)C)cc2 

MSU 015 MSU 016 

c1cc(C=NO)cc[n+]1-CCCCCO-c2ccc(C(=O)CC)cc2 

 

 

 

 

 

 

c1cc(C=NO)cc[n+]1-CCCO-c2ccc(C(=O)-c3ccccc3)cc2 

MSU 017 MSU 018 

 

 

 

 

 

 

 

 

 

 

 

 

c1cc(C=NO)cc[n+]1-CCCCO-c2ccc(C(=O)-c3ccccc3)cc2 

 

 

 

 

c1cc(C=NO)cc[n+]1-CCCCCO-c2ccc(C(=O)-c3ccccc3)cc2 

MSU 019 MSU 020 

O

N
+

N

OH

H

O

N
+

N

OH

H

O

CH3

N
+

N

OH

H

O

CH3

O

O

N
+

N

OH

H

O

N
+

N

OH

O

H

O

N
+

N

OH

H

O

O
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c1cc(C=NO)cc[n+]1-CCCCCCO-c2ccc(OC)cc2 

 

 

 

c1cc(C=NO)cc[n+]1-CCCCO-c2ccc(OC-c3ccccc3)cc2 

MSU 021 MSU 022 

 

c1cc(C=NO)cc[n+]1-CCCCO-c2c(Cl)ccc(Cl)c2 

 

 

 

 

c1cc2cc(OCCCCCC-[n+]3ccc(C=NO)cc3)ccc2cc1 
 

 

 

 

MSU 023 MSU 024 

N
+

N

OH

H

O

O
CH3

N
+

N

OH

O

H

O

N
+

N

OH

O

H
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Cl

N
+
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c1cc(C=NO)cc[n+]1-CCCCO-c2ccc(N(=O)=O)cc2 

 

c1cc(C=NO)cc[n+]1-CCCCO-c2ccc(c3ccccc3)cc2 

MSU 025 MSU 026 

 

 

 

 

 

 

 

 

 

c1cc2c(OCCCC-[n+]3ccc(C=NO)cc3)cccc2cc1 
 

 

c1cc(C=NO)cc[n+]1-CCCCO-c2ccc(C)cc2 

 

MSU 027 MSU 028 

 

c1cc(C=NO)cc[n+]1-CCCCCCO-c2ccc(c3ccccc3)cc2 

 

 

c1cc(C=NO)cc[n+]1-CCCCO-c2cc(Cl)ccc2 

MSU 029 MSU 030 

N
+

N

OH

O

H

N

O

O

N
+

N

OH

O

H

N
+

N

OH

O

H

N
+

N

OH

O

H
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N
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N
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O

N
+

N

OH

O

H
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c1cc(C=NO)cc[n+]1-CCCCO-c2cc(Cl)c(Cl)cc2 

 

 

c1cc(C=NO)cc[n+]1-CCCO-c2c(Cl)cc(Cl)cc2(Cl) 

 

MSU 031 MSU 032  

 

c1(=O)oc2cc(OCCCC-[n+]3ccc(C=NO)cc3)ccc2c(C)c1 

 

 

c1(=O)oc2cc(OCCCCC-[n+]3ccc(C=NO)cc3)ccc2c(C)c1 

MSU 033 MSU 034 

c1(=O)oc2cc(OCCC-[n+]3ccc(C=NO)cc3)ccc2c(C)c1 

 

c1cc(C=NO)cc[n+]1-CCCCO-c2c(C)cc(N(=O)=O)cc2 

MSU 035 MSU 036 

N
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c1(=O)oc2cc(OCCC-[n+]3ccc(C=NO)cc3)ccc2c(C)c1 

 

 

 

 

c1cc(C=NO)cc[n+]1-CCCCO-c2c(C(C)C)cccc2(C(C)C) 

MSU 037 MSU 038 

 

c1cc(C=NO)cc[n+]1-CCCCO-c2cc(C)c(Cl)cc2 

 

 

 

 

c1cc(C=NO)cc[n+]1-CCCCO-c2c(Cl)cc(N(=O)=O)cc2(Cl) 

MSU 039 MSU 040 

 

c1cc(C=NO)cc[n+]1-CCCCO-c2c(Cl)cc(Cl)cc2(Cl) 

 

 

c1cc(C=NO)cc[n+]1-CCCO-c2ccc(C(=O)C-c3ccccc3)cc2 

 

 

 

 

 

 

MSU 041 MSU 042 
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c1cc(C=NO)cc[n+]1-CCCO-c2cc(C)c(Cl)c(C)c2 

 

 

 

 

 

 

 

c1cc(C=NO)cc[n+]1-CCCCO-c2cc(C)c(Cl)c(C)c2 

MSU 043 MSU 044 

 

 

 

 

 

c1cc(C=NO)cc[n+]1-CCCO-c2ccc(OC)cc2 

c1cc(C=NO)cc[n+]1-CCCO-c2ccc(Br)cc2 

MSU 045 MSU 046 

 

c1cc(C=NO)cc[n+]1-CCCCO-c2ccc(Br)cc2 

 

 

 

 

 

 

 

c1cc(C=NO)cc[n+]1-CCCCCO-c2ccc(Br)cc2 
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c1cc(C=NO)cc[n+]1-CCCCCO-c2c(C)c(C)cc(C)c2 

 

c1cc2cc(OCCCCC-[n+]3ccc(C=NO)cc3)ccc2cc1  

MSU 049 MSU 050 

 

 

 

 

 

 

 

 

 

 

c1cc(C=NO)cc[n+]1-CCCCO-c2ccc(O-c3ccccc3)cc2 
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MSU 051 MSU 052 

 

c1cc(C=NO)cc[n+]1-CCCCO-c2ccc(C(=O)C-c3ccccc3)cc2 

 

 

 

 

 

 

 

 

c1cc(C=NO)cc[n+]1-CCCO-c2c(C)c(C)cc(C)c2 

MSU 053 MSU 054 

 

 

 

 

N
+

N

OH

H

O

CH3

CH3

CH3

N
+

N

OH

H

O

N
+

N

OH

O

H

O

N
+

N

OH

O

H

N
+

N

OH

O

H

O O

N
+

N

OH

H

CH3CH3

CH3



73 
 

 

 

 

 

 

 

 

 

 

 

c1cc(C=NO)cc[n+]1-CCCO-c2ccc(OC-c3ccccc3)cc2 

 

c1cc(C=NO)cc[n+]1-CCCCCO-c2ccc(OC-c3ccccc3)cc2 
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c1cc(C=NO)cc[n+]1-CCCCO-c2c(C)c(C)cc(C)c2 

c1cc(C=NO)cc[n+]1-CCCCO-c2c(C)cc(C(C)(C)C)cc2 
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c1cc(C=NO)cc[n+]1-CCCCO-c2ccc(C(C)(C)CC)cc2 

 

 

N
+

N

OH

O

H

CH3CH3

CH3

N
+

N

OH

O

H

CH3

CH3

CH3

CH3

N
+

N

OH

O

H

CH3

CH3

CH3

CH3

CH3

CH3

N
+

N

OH

O

H

CH3
CH3

CH3



75 
 

 

 

 

MSU 061 MSU 062 

 

 

 

 

 

 

 

 

 

c1cc(C=NO)cc[n+]1-CCCCO-c2ccc(OCCCCCCC)cc2 

 

 

 

 

 

 

 

 

 

 

c1cc(C=NO)cc[n+]1-CCCCO-c2ccc(C(C)(C)CC(C)(C)C)cc2 
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c1cc(C=NO)cc[n+]1-CCCCO-c2cc(C)c(Br)c(C)c2 

MSU 065 MSU 066 

 

 

 

 

 

 

 

 

 

c1cc(C=NO)cc[n+]1-CCCCCO-c2c(Cl)cc(Cl)c(Cl)c2 

c1cc(C=NO)cc[n+]1-CCCCCO-c2ccc(C(C)(C)-c3ccccc3)cc2 
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c1cc(C=NO)cc[n+]1-CCCO-c2c(Cl)cc(Cl)c(Cl)c2 

c1cc(C=NO)cc[n+]1-CCCCO-c2c(Cl)cc(Cl)cc2 
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MSU 074 MSU 075 

 

 

 

 

 

 

 

c1cc(C=NO)cc[n+]1-CCCCCO-c2c(Cl)ccc(Cl)c2 
c1cc(C=NO)cc[n+]1-CCCCCO-c2ccc(C(=O)C-c3ccccc3)cc2 
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c1cc(C=NO)cc[n+]1-CCCCO-c2c(C-c3ccccc3)cccc2 

 

 

 

 

 

 

 

 

c1cc2c(OCCCCC-[n+]3ccc(C=NO)cc3)cccc2cc1 
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c1cc(C=NO)cc[n+]1-CCCCO-c2c(Br)cc(C)cc2(Br) 
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c1cc(C=NO)cc[n+]1-CCCCO-c2c(Br)cc(Br)cc2 
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c1cc(C=NO)cc[n+]1-CCCCCO-c2c(Br)cc(Br)cc2 
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Appendix V: Python codes archives  

The codes used to achieve this works is archived in the following OSF repositories: 

Codes and other essential materials for chapter I could be found in: 

ACAT_RandomForest ; Identifier :  DOI 10.17605/OSF.IO/93RXS  
 

Codes and other essential materials for chapter II could be found in: 

 antidote_XGboost ; Identifier : DOI 10.17605/OSF.IO/C9264 
 


