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ABSTRACT

DEEP AND SHALLOW OVERTURNING CIRCULATIONS IN THE TROPICAL

ATMOSPHERE

This dissertation examines the dynamics of zonally symimeteep and shallow overturning
circulations in the tropical atmosphere. The dynamics &geussed in the context of idealized an-
alytical solutions of the equatorig@tplane version of the Eliassen meridional circulation eiumna
that arises in balanced models of the Hadley circulations €Hiptic equation for the meridional
circulation has been solved analytically by first perforghavertical normal mode transform that
converts the partial differential equation into a systenoafinary differential equations for the
meridional structures of all the vertical modes. These dienal structure equations can be solved
via the Green’s function, which can be expressed in termsdlplic cylinder functions of half-
integer order. The analytical solutions take simple formwiio special cases: (1) Forcing by deep
diabatic heating that projects only onto the first internalde in the absence of Ekman pump-
ing; (2) Forcing by Ekman pumping in the absence of any dialbegtating. Case (1) leads to deep
overturning circulations, while case (2) leads to shalleerturning circulations. Both circulations
show a marked asymmetry between the winter hemisphere antheuhemisphere overturning
cells. This asymmetry is due to the basic anisotropy intcediby the spatially varying inertial sta-
bility coefficient in the Eliassen meridional circulatiogueation. A simple physical interpretation
is that fluid parcels forced near the equator to overturn laypaliic and frictional processes tend to
move much more easily in the horizontal direction becausedhistance to horizontal motion (i.e.

inertial stability) is so much less than the resistance tticad motion (i.e., static stability).
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CHAPTER 1

INTRODUCTION

The winter and summer hemisphere Hadley cells are well krfeatures of the tropical atmo-
spheric circulation. They consist of ascending motione&limsthe equator, divergent flow at upper
tropospheric levels, convergent flow toward the ITCZ nearsilvdace, and descending motion in
the subtropics. In addition to this deep circulation, Zhah@l. (2004) have presented evidence
for a shallow meridional circulation (SMC) in the easterniRacAs schematically illustrated in
Fig. 1.1, this shallow overturning circulation resemblies tleep overturning circulation in many
respects, but its cross-equatorial return flow occurs jbswva the top of the frictional boundary
layer. This SMC is observed as southerly flow at the lowedl&with a shallow return northerly
flow between 1 and 5 km, in contrast to the well-known northédw of the deep Hadley circu-
lation, found between 10 and 12 km. Wang et al. (2005) fouatlttie SMC is strongest between
85°W and125°W, with a tendency to become deeper toward the west, whicghséebe correlated
with the increase of the inversion height toward the wesiljger et al. 1961; von Ficker 1936).
Its meridional extent also varies in the zonal directionr &ample, east of05°W the SMC is
confined betweeh°S and the northern Intertropical Convergence Zone (ITCZ)ctvhiccurs at
~ 10°N, whereas near20°W the SMC penetrates th°S.

Zhang et al. (2004) and Nolan et al. (2007) attributed theseaaf the SMC to sea surface
temperature (SST) gradients. In particular, Nolan et &07) analyzed the SMC as a large-scale
sea-breeze type circulation, driven by north-south SSdigrds with shallow convection in the
ITCZ region. They suggest that these SST gradients inducsyre gradients that produce the
SMC,; they find that a stronger SMC occurs when deep conveatiaghd ITCZ is absent. In a

later paper, Nolan et al. (2010) performed idealized sitmuig of the ITCZ and its multilevel
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FiG. 1.1. Schematic cross section of the deep (dashed lines}tzadtbw (solid

lines) meridional circulations in the tropical eastern iRac From Zhang et al.

(2004).
flows. These multilevel flows include: Boundary Layer InfldBL(), Shallow Return Flow (SRF),
Midlevel Inflow (MLI) and Upper-Level Outflow (ULO). In theistudy the SRF is analyzed as a
sea-breeze-like response to surface gradients of preasdréemperature, in particular, a strong
meridional SST gradient near the equator. Their simulatsimow that both the SRF and the MLI
are robust features of the ITCZ in the eastern Pacific. LindaahNigam (1987) proposed this
mechanism of surface temperature and pressure gradieetplain low-level wind in the trade
cumulus boundary layer, and they found that SST and its gnéslare correlated positively in the
vertical through the depth of the trade cumulus layer.

From previous global analyses, it appears that shallowdiweral circulations occur in several
other parts of the globe. For example, Trenberth et al. (26@@ied the mean annual cycle of the
divergent wind and vertical motion using both the NCEP-NCARnaysis and the ECMWEF re-
analysis. They applied a complex empirical orthogonal fiemc(CEOF) analysis to the divergent
wind, which produced two dominant modes of overturning tigtwout the tropical and subtrop-
ical troposphere. The first mode (CEOF1) is the deep overigrglobal monsoon mode in the

troposphere, with a maximum in vertical motion at approxeha400 hPa, divergence in the up-

per troposphere (with a maximum at 150 hPa), and convergente lower troposphere with a



maximum at 925 hPa (ECMWF) or 850 hPa (NCEP). The Hadley ciioniathe Pacific and At-
lantic Walker cells, and the Asia-Africa transverse cedl part of this deep overturning mode. The
CEOF1 has a maximum in July and a secondary maximum in January.

The CEOF2 is the lower-tropospheric overturning cell cesdexbout 800 hPa, where it reaches
its maximum vertical velocity, with outflow from 750 to 350 &Rnd inflow peaking at 925 hPa.
This second mode is strong over Africa, migrating back anthfacross the equator with the
seasons. It is also observed in the Middle East, Austrdtia,ttopical eastern Pacific and the
Atlantic. The upward motion peaks &©°N in August and ai0°S in February. The downward
motion peaks a25°N in February and at0°S in August. Two examples from the Trenberth et al.
(2000) analysis are shown in Figures 1.2 and 1.3. FigureHo®s the regional meridional cross
section of the divergent flow, averaged betwé@or W and90°W, for July. This example illustrates
the simultaneous occurrence of deep and shallow Hadley. dallcontrast, Figure 1.3 shows the
regional meridional cross section of the divergent flow,raged betweers0°W and 10°E, for
January. This example illustrates the occurrence of thiéashéladley cell during a period when
the deep Hadley cell is largely absent.

Observational insights into the role of sea surface tentpexan boundary layer processes in
the eastern tropical Pacific have been provided by Wallaes. ¢1989) and Deser et al. (1993).
They found that northward moving boundary layer flow, upomssing into the cold SST tongue
at 1°S, is stabilized to such an extent as to inhibit the downwardulent mixing of northward
momentum from aloft, due to the high static stability (Chel&t al. 2000b). As this low-level air
subsequently flows across the equator and over the SST lfmmria at2°N (i.e., toward warmer
waters), the boundary layer is destabilized, leading toeiased turbulence and therefore increased

downward mixing of northward momentum. The low-level witnli$ displays strong horizontal



divergence as it moves through the frontal zone. These warthwinds are influenced by the
El Nino/Southern Oscillation and the annual cycle, with stroffigev during the cold seasons, in
particular during cold seasons of warm years. Satellitegmsaand SST data were used by Deser
et al. (1993) to test the hypothesis that cool low-level wibhtbwing across the SST front in the
equatorial eastern Pacific produce stratiform clouds omtren side of the front. When the front
is strong (weak), there is a maximum (minimum) of cloudine&sstrong (weak) front is found
during cold (warm) ENSO episodes. Lindzen and Nigam (198Fyied that the motion in the
lower layer of the trade cumulus boundary layer is due to tlesgure gradients resulting from the
SST distribution. Similar results were found by Back andtBegton (2009a), who showed that
the distribution of convergence is primarily due to bouydayer temperature gradients related to
SST gradients.

It appears that all SMCs undergo marked seasonal cyclesinggtheir peak in different sea-
sons at different longitudes: Spring over West Africa, Sueniover the Atlantic Ocean and Fall
over the Eastern Pacific. SMCs can be classified into two typdabe maritime ITCZ type and (ii)
the summer monsoon type (Zhang et al. 2008). Stratocumibusi€ are found north and south
of the equator. Using data from EPIC 2001 to study the atmerspboundary layer over the cold
tongue and ITCZ, de Szoeke et al. (2005) found that during thheab fall, a weak return circula-
tion is present above the boundary layer aloatyV, between 1.2 and 2.8 km heigBtN and&8°N
with average speed of 1.25 m's The area betweetrfN and3°N shows the highest cloud frac-
tion of stratocumulus and they lay over the convective miteg@r, whereas stratocumulus south
of the equator are found near the inversion base. The auihterpret these southern clouds as
residual stratocumulus maintained by cloud-top radiatveling. The area over the cold tongue

displays occasional thin altostratus clouds above the denyriayer. The radiative cooling caused



by the presence of these clouds strengthens the SST gmdehiances the southeast trade winds
and therefore increases precipitation in the ITCZ regiortmof the equator. The authors then
argue that, if the cloud-radiative effect over the south@aific is removed, the boundary layer
clouds almost disappear south of the equator and the piatgwi in the ITCZ north of the equator
would be reduced by 15%-20% over the eastern Pacific. Thermaminet cloud-induced radia-
tive cooling found by Wang et al. (2005) through the use ohadr steady state primitive equation
model, was 2 K day!, which drives an anomalous surface southerly flow of 21h #ccording

to Masunaga and L'Ecuyer (2010), clouds offset the net tamdidy 10—-15 W m? throughout the
year in the tropical southeast Pacific. If these clouds weteresent, a double ITCZ would also
be present during the boreal Fall. This short-wave refledb high clouds of the southern ITCZ
produces a meridional asymmetry of the annual mean cliogyodf the absorbed shortwave flux,
with a marked difference of 40 W M between1(0°S and10°N (Masunaga and L'Ecuyer 2011).
Using the same data from EPIC 2001, McGauley et al. (2004)ddle strongest meridional wind
between 0 and°N; however, these winds do not accelerate due to the forditigesstrong pressure
gradient found in the boundary layer. The meridional presgmadient reverses sign above 1 km
at certain latitudes, resulting in reversal of the meridionind near 1200 m, where the northerlies
are strongest neafN.

The treatment of the circulation betweHitS andl0°N as a sea-breeze circulation (Nolan et al.
2007) does not account for important mechanisms such asatiaion of the Coriolis parameter
with latitude, which causes important variations in thertiiaé stability. Vorticity in the region of
the ITCZ produces Ekman pumping out the boundary layer. Th&t fikely horizontal trajectory
for this air is toward an area with low inertial stability loresistance to displacement due to the

Coriolis force), i.e., equatorward rather than poleward reh@e inertial stabilitys%y? is larger



and the inertial stability more effectively retards the floin the present study we explore the
hypothesis that Ekman pumping out of the boundary layer esafrthe driving mechanisms for
the SMC.

Over the past several decades, considerable understaoiditgdley cell dynamics has been
obtained through the use of idealized analytical and nurakmodels of zonally symmetric flow.
For example, using the Held and Hou (1980) numerical modeboélly symmetric Hadley cells,
Lindzen and Hou (1988) simulated the seasonal migratiohede cells in response to the north-
south migration of the sea surface temperature maximumir Tégults show that, as the center
of the heating moves off the equator, the latitude sepaydtie winter and summer cells moves
much further into the summer hemisphere while the summébeebmes negligible. The summer
cell is the one found in the hemisphere where the ITCZ is latatdile the winter cell is found
in the opposite hemisphere. Using a high resolution versidhe numerical model, steady state
solutions were found, and the meridional streamfunctioeseveomputed for cases with the heat
source located at the equatotN2 and 6N. Symmetric cells centered on the equator were found
when the heat source is located at the equator, but when #tsbrce is at 2\, the winter cell is
50% stronger than the symmetric cells, while the summeligéklf the strength of the symmetric
cells. The latitude where the two cells meet is no longer tiea @f maximum vertical velocity;
instead, it remains near the latitude of the heat source. Wheeheat source is located ath\g
the winter cell dominates and it is more than four times aensé as the symmetric cells. The
meridional displacement of the ITCZ was studied by Kang &t28l08) using a GCM coupled to
a slab mixed layer ocean. In their experiments, the nortegtratropics are cooled and the south-
ern extratropics are warmed by a cross-equatorial flux dertbe mixed layer, in simple words,

heat is substracted from one hemisphere and simultaneaddbd to the other hemisphere. This



procedure forced a southward displacement of the ITCZ andidefce is created in the tropics
of the cooler hemisphere, favoring low-level clouds. Thgnametry between the summer hemi-
sphere and winter hemisphere Hadley cells was also exphyréthck et al. (1989) and Hack and
Schubert (1990) using dynamical arguments based on thesEhameridional circulation equa-
tion (with variable coefficients: static stability, barmgtity and inertial stability) and by Schubert
et al. (1991) based on potential vorticity dynamics. Thegedical arguments are quite different
than those used by Lindzen and Hou (1988) since they are setlmmn a steady state assumption,
but rather involve wind and mass fields that are evolving st&tes that satisfy the Charney-Stern
necessary condition for combined barotropic-baroclingtability. Another possible aspect of the
dynamics was noted by Tomas and Webster (1997), who poithatstrong cross-equatorial flow
can lead to an area in the meridional plane, between the@utprad the zero absolute vorticity sur-
face, wheref (f + () < 0, i.e., the absolute vorticityf + ) has the opposite sign of the Coriolis
parameterf, which is the condition for inertial instability. Whetherigtpotential instability plays
an important role in the Hadley circulation remains an opeestjon.

To address both the deep and shallow overturning probldregpresent study uses a zonally
symmetric, equatoriab-plane model. From the governing equations for this singalifnodel we
derive a meridional circulation equation for the streanction. This equation has two variable
coefficients—the static stability and the inertial stdhililt also has two forcing effects—the dia-
batic heating, which appears in the interior equation, &edtoundary layer frictional pumping,
which appears in the lower boundary condition. By assuminagd the diabatic heating and the
boundary layer pumping are confined to the ITCZ region, otiees of circulations not related
to the present study are eliminated. The meridional cittaeequation is solved analytically us-

ing vertical and horizontal transform methods. These ditallysolutions serve as the basis for



a better understanding of the processes that force deephatidve overturning circulations and
the dynamics that leads to large asymmetries between wietaisphere and summer hemisphere
Hadley cells.

The dynamics are presented in the context of idealized aoalysolutions of the meridional
circulation equation that arises in the zonally symmetraded of the Hadley circulation. Under
certain simplifications of its coefficients, this elliptiapial differential equation for the meridional
circulation can be solved by first performing a vertical stomm to obtain a horizontal structure
equation from which arises the concept of a spectrum of Rokesigths. In the tropics, Rossby
lengths are large and Rossby depths are small, so the int@goilation associated with Ekman
pumping cannot penetrate deep into the troposphere. Tipegeiof this dissertation is to examine
several other dynamical aspects, which in addition to thgottyesis of sea surface temperature
gradients, appear to play an important role in understayitie SMC. The three dynamical aspects
examined here are: (i) Ekman pumping out of the boundaryrlaythe high vorticity region of
the ITCZ; (ii) low inertial stability in the equatorial regip causing most of the Ekman pumped air
to be returned across the equator; (iii) a spectrum of smadisBy depths, causing the return flow
to be trapped just above the boundary layer.

The arguments presented here are based on the assumptiatao€dd zonal flow. If the
zonal flow is balanced in the sense that it is continuouslyvawp from one geostrophically bal-
anced state to another, then the meridional circulatioreterthined by the solution of a second
order partial differential equation in the, z)-plane. According to this “meridional circulation
equation”, the streamfunction for the poleward and veltieation is determined by the following
factors: the meridional derivative of the diabatic heatititee Ekman pumping at the top of the

boundary layer, the static stability, and the inertial 8igb Although solutions of the meridional



circulation equation generally yield poleward and veltieglocities that are much weaker than
the zonal velocity, the poleward and vertical directiorns e directions of large gradients, so the
relatively weak meridional circulation is crucial for zdrieow evolution.

The remainder of this dissertation is organized as folloilmsChapter 2, data from the “Year
of Tropical Convection (YOTC)” is used to examine the boreahser wind fields and cloud
distributions in the eastern Pacific, where the SMC has beariqusly observed. The design of
a simplified, zonally symmetric model of the deep and shalitadley circulations is presented
in Chapter 3. This chapter presents the governing equatsewign 3.1), the vertical transform
method that transforms the meridional circulation equafrom a partial differential equation in
(y, z, t) into a system of partial differential equations(in ¢) for the meridional structure of each
vertical mode (section 3.2), and finally the solution of #heartial differential equations via both
a Green’s function method (section 3.3) and a Hermite tmansinethod (section 3.4). Chapter 4
discusses the analytical solutions obtained in Chapten®emgrating on two interesting cases: (1)
Deep overturning circulations, representing the deep &jacifculation forced by diabatic heating
in the ITCZ region; (2) Shallow overturning circulations,this case forced by Ekman pumping
out of the top of the boundary layer in the high vorticity mgiof the ITCZ. Conclusions are
given in Chapter 5. Several detailed mathematical derimatad the differential equation solution

methods are given in the appendices.
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CHAPTER 2

AN OBSERVATIONAL ANALYSIS OF THE EASTERN PACIFIC USING YOTC DATA

Analysis from the research program known as the Year of Tad@onvection (YOTC) (Waliser
et al. 2012) is used in this chapter to examine the relatipnshSSTs, clouds, and low-level cir-
culation features over the Eastern Pacific during borealnsem The temporal resolution of the
YOTC analysis fields is 6 h and the horizontal resolutiof.i§ x 0.5° with 15 irregularly spaced
vertical levels between 1000 and 100 hPa. YOTC analysesvaitalle for the 2-yr period be-
tween May 2008 and April 2010. Although originally propodedobe a 1-yr research program,
YOTC was extended for an additional year in order to captoté ha Nina and El Nino phases of
an ENSO cycle. In this chapter we only consider analyses thantboreal summer of 2009, during
which time the Multivariate ENSO Index ranged from 0.36 tB@corresponding to weak warm
anomalies over the Eastern Pacific. The excellent agreebsween ECMWF and QuikSCAT
surface divergence and vorticity analyses over the tréftestern Pacific, found by McNoldy
et al. (2004), gives us confidence that the ECMWF-based YOT{ysewmare accurately depicting
conditions over this region. However, it must be kept in mimak the YOTC analyses provide only
2 years of data.

During May, an area of warm water known as the Western HersigopWarm Pool (WHWP)
starts to develop in the Eastern Tropical Pacific. The eimtutf SSTs over this region in boreal
Spring, Summer and Fall 2009 is shown in Fig. 2.1. The WHWP, ddfas the region covered
by water warmer than 28:& (Wang and Enfield 2001, 2005; Enfield and Lee 2005), prowaaes
environment conducive for producing deep convective coarald upper-level cirrus. The 28%
isotherm and the oceanic mixed layer have an annual avergg of 25 m. The WHWP is

divided into four regions: Eastern North Pacific (ENP), GaflfMexico, western Tropical North
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FIG. 2.1. Sea surface temperatur€) for May, July, and September 2009. Note
the development of the cold tongue along the equator, thef®®T just north of
the Galapagos, and SSTs warmer tBarC in September.
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Atlantic (TNA) and Caribbean. These four regions corresptindreas of hurricane genesis and
development.

High and low cloudiness superimposed with surface winds tivs region for September
2009 are shown in Figs. 2.2 and 2.3. Low clouds are usuallpddoetween the surface and
2 km while high clouds are located above 8 km. As seen herddwal-trade winds from the
Southern Hemisphere converge strongly with those of theélHdan Hemisphere forming an ITCZ
at approximatelyl0°N (Fig. 2.3). High level clouds can be seen near the averaggiqo of
the ITCZ (low-level wind convergence) whereas low-levelutls are found south of the ITCZ,
including the southeastern Pacific, which correspond tasacd maximum meridional low-level
wind (Fig. 2.2). As it was pointed out by Philander et al. (89%hin layers of stratus clouds
develop in regions of subsidence where the surface windsoeste water vapor from the ocean.
A strong low-level atmospheric inversion traps this moistfarming stratus clouds at the base of
the inversion.

Low-level convergence associated with the ITCZ in the eadtepical Pacific is located be-
tween 2.8N and 13N (Figs. 2.4-2.6), with maximum surface southerly winds\ssn the equator
and 5N (e.g., Fig. 2.10). These results are consistent with th&&aat divergence patterns found
in Fig. 3 of McNoldy et al. (2004), although their averagewes are over 4 years (1999-2002). The
strongest values of low-level divergence are found betvikerequator and°X, with less-well-
defined convergence often occuring ned® bnoting of course that the YOTC data sample pnly a
brief period during the transition from La Nina to El Nino. bng these summer months, cyclonic
vorticity is present north of 8\, zero relative vorticity near’N (white shading) and anticyclonic

vorticity south of 7N (Figs. 2.7-2.9).
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FIG. 2.2. Fractional high-level cloud cover (scale on right)l aarface wind (with
the reference 10 n1$ vector shown at the bottom).

By July the ITCZ is genallly located betweetiN8and 10N (Fig. 2.5), and it continues moving
north until September, when it reaches its northernmosttipas often slightly north of 10N
(Fig. 2.6). Strong low-level southerly winds south of the&CH display magnitudes between 4 to

7 m s (Fig. 2.10), and start decreasing in magnitude and horaantent during October (not

shown).

As mentioned in Chapter 1, as part of the SMC, a shallow retum (tortherly winds) near

the equator has been observed over the Eastern Pacific iowlstl 2—5 km of the atmosphere.

14



September Low Level C\ouds and wind, 2009
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FiG. 2.3. Fractional low-level cloud cover (scale on right) aodface wind (with
the reference 10 n1$ vector shown at the bottom).

To examine the characteristics of the SMC over this regiomane detail, Figs. 2.11-2.13 show
monthly-averaged cross sections of YOTC meridional windsveen85°W and 95°W for the

months of May, July and September 2009, respectively. Tipemupanels, which show the full
depth of the troposphere, reveal the traditional deep Hadieulation with a stronger cross-
equatorial cell and upper-level northerlies to the soutlhef ITCZ. To better reveal details of
the lower-level SMC, the bottom panels of Figs. 2.11-2.13i$0an the 1000-600 hPa layer. As

noted in earlier figures, low-level winds converge betwgd and10°N during these months. To
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May divergence at 1000 hPa, 2009
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FIG. 2.4. May divergence (scale at right in unitsiof°> s~!) and streamlines at
1000 hPa.

the south of the ITCZ, low-level southerlies with peak spdsetsveen 6 and 7 nT$ are observed
betweer20°S and10°N. Above the southerlies, a weak northerly (1-2 mh)seturn flow centered
near2.5°N is observed between 700 and 800 hPa. Although not shown theseshallow return
flow in the YOTC analyses deepens and its meridional exten¢ases towards the west, consistent
with the findings of Wang et al. (2005). Some strengtheninthefSMC between May and the
later months is consistent with wind profiler observatiamsf this region (Zhang et al. 2004). To
the north of the ITCZ, low-level northerlies are present talydetweenl0°N and20°N, with no

evidence of a shallow southerly return flow to the north. Nbtg the northerly maximum in July
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July divergence at 1000 hPa, 2009
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FiG. 2.5. July divergence (scale at right in units16f° s~!') and streamlines at
1000 hPa.

found near12°N and 900 hPa is partially a reflection of the Papagayo Jet {@hek al. 2000a)
which has a peak northerly component near 925 hPa.

The characteristics of the SMC, and in particular, the nolgheturn flow between 800 hPa
and 700 hPa in the 2009 YOTC analyses are largely consisiémtive Tropical East Pacific ob-
servations of this flow presented in Zhang et al. (2004). Wiibh consistency between model
analyses and observations, examining additional yearsdehanalyses and interannual variabil-

ity patterns, would be helpful in understanding the vatigbof the SMC in this region.
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September divergence at 1000 hPa, 2009
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FIG. 2.6. September divergence (scale at right in unit)of s~!) and streamlines
at 1000 hPa.

In the following two chapters we derive and solve the equtior a simple, zonally symmetric
model that elucidates some of the fundamental dynamicsesietllleep and shallow overturning

circulations.
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May vorticity at 1000 hPa, 2009
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July vorticity at 1000 hPa, 2009
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September vorticity at 1000 hPa, 2009
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v (m/s) cross section along 85—95W May 2009

FiG. 2.11. May meridional wind (m3s) cross section, averaged over the longitude
range 88W-95°W.
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v (m/s) cross section along 85—95W July 2009

FIG. 2.12. July meridional wind (m3) cross section, averaged over the longitude
range 85W-95W.
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v (m/s) cross section along 85—95W Sept. 2009
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FiG. 2.13. September meridional wind (m'$ cross section, averaged over the
longitude range 83V-95°'W.
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CHAPTER 3

THE ZONALLY SYMMETRIC MODEL AND THE MERIDIONAL CIRCULATION EQUATION

In order to gain insight into the dynamics of the shallow aeem Hadley circulations, this
chapter considers zonally symmetric motions in a stratitedhpressible atmosphere on the equa-
torial 5-plane. The limitation to zonally symmetric motions is a8ty one, because it precludes
simulation of Walker-type circulations. However, as welkkae, the zonally symmetric model
can yield insight into situations such as the one depictelignre 3.1, which shows a typical,
boreal summer 6.7im water vapor image of the eastern Pacific from the GOES Weéslita
Under clear sky conditions, the 6um channel is sensitive to the vertically averaged humidtity i
the 200-500 hPa layer, so the dark blue areas on either sithe 6T CZ indicate regions of low
humidity in the upper troposphere, and hence regions of mgthsubsidence in the downward
branches of the summer hemisphere and winter hemisphereyHaidd Walker cells. The com-
plete explanation of atmospheric water vapor distribigioan be quite complicated and involve
several different physical processes, such as the stngf@nrd folding processes associated with
the Rossby wave pattern just east of Hawaii in Figure 3.1. detailed discussions of tropical
moisture distributions, including trajectory analysigidhe concept of “time since last condensa-
tion,” see Sun and Lindzen (1993), Soden and Fu (1995),#adatd Hartmann (1997), Galewsky
et al. (2005), Sherwood et al. (2006), Cau et al. (2007), ameB& et al. (2013). In spite of the
intricacies involved in comprehensive explanations gbical water vapor distributions, it appears
that, during much of the year, the explanation of the wateovaistribution in the eastern Pacific
is simpler than in many other areas. An important part of tkidanation lies in the dynamics of
the Hadley cells, with the winter hemisphere Hadley cellihgna large meridional extent and a

large overturning mass flux. These are the aspects on whighalefocus.
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FiG. 3.1. The 06 UTC 25 June 2013 water vapor image [(6xj from the GOES
West satellite. The image is typical of the eastern Pacifi;dithe boreal summer
when the ITCZ is located near 10—-15N. The dark blue areas bereside of the
ITCZ indicate regions of low humidity in the upper tropospiieand hence regions
of enhanced subsidence in the downward branches of the sunemgésphere and
winter hemisphere Hadley cells. For a detailed discussiof.D m radiance-
to-humidity transformation formulas, see Soden and Brénineg(1993, 1996) and
Jackson and Bates (2001).

In the theory presented here, only the flow in the inviscieiiotr (i.e., above the 900 hPa
isobaric surface) is explicitly considered. The effectthaffrictional boundary layer will appear as
the lower boundary condition on the inviscid interior. Theidation of the time dependent problem

for the meridional circulation is given in section 3.1. Thelgem consists of a partial differential
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equation in(y, z, t), with appropriate boundary and initial conditions. Thislplem can be solved
by a variety of methods. The methods used here are analgiwhlprovide important insights
into the dynamics. As described in section 3.2, the first gteplves application of a vertical
transform that converts the original partial differengajuation in(y, z, ¢t) into a system of partial
differential equations iffy, ¢). Two different analytical methods have been used here t@gbke
partial differential equations ify, ¢). The first method, described in section 3.3, uses the Green’s
function approach (evanescent basis functions). Thiscagbr yields the most physical insight
into the quasi-balanced meridional flow and the fundamessgmmetry between the summer
hemisphere and winter hemisphere Hadley cells. The secatdoah, described in section 3.4,
uses the Hermite transform approach (oscillatory basistfons). This approach yields the most
physical insight into the transient aspects of the flow andparticular, how zonally symmetric
inertia-gravity waves can be emitted due to pulsating cotwe in the ITCZ. The primary results
obtained in this chapter are the mathematical statemertieofrteridional circulation problem,
given below in (3.11)—(3.15), the analytical solution oé tlitered version of this problem, given
below in (3.42), (3.44), and (3.45), the analytical solutaf the fully time dependent problem,
given below in (3.56)—(3.58), and finally a second analytiepresentation of the filtered solution,

given below in (3.60). An extensive discussion of thesetsmig is given in Chapter 4.

3.1. DERIVATION OF THE TIME DEPENDENT MERIDIONAL CIRCULATION EQWTION

As the vertical coordinate we use= H In(py/p), wherep, = 900 hPa, T, = 293 K, and
H = RT,/g = 8581 m. We consider the case of weak zonal and meridional flow arakwe
baroclinicity, so that the/(0u/dy) andw(du/0z) terms in the zonal momentum equation, the
v(0v/0y) andw(0v/0z) terms in the meridional momentum equation, andui#l’/dy) term in

the thermodynamic equation can be neglected. Under thesengsions, the governing equations
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for zonally symmetric flow are

En — Byv =0, (3.1)

ov 0¢p B
o + Byu + 8_y =0, (3.2)

d9 g

i jTOT, (3.3)
81} ow w
8y 5 T 0, (3.4)

8t cp

whereu andv are the zonal and meridional components of veloeitys the log-pressure vertical
velocity, ¢ is the geopotential; = 2Q2/a is the constant northward gradient of the Coriolis param-
eter, anda are the Earth’s rotation rate and radius, awél z) = (¢/7y)[(dT/dz) + (kT /H)]

is the square of the buoyancy frequency, which is computad the specified mean temperature
profile T(z). The diabatic heating has been assumed to have the spat@idEnce)(y, ) and
the time dependence

St)=1—(1+~t)e ", (3.6)

with the constanty specifying the sharpness of the switch-on functitin). Figure 3.2 displays

four S(t) curves for the particular values™! = 3, 6, 12, 24 hours. Equations (3.1)—(3.5) consti-
tute a system of five equations in the five unknowns, w, ¢, T', so long as the diabatic forcing
is considered known. We have avoided use of a “parameteEnvatlating the diabatic heating to
u,v,w, ¢, T. Obviously, adding an equation in this manner has the seugadvantage that our
confidence that this additional equation is an accuraterigiign of nature is much lower than our

confidence that (3.1)—(3.5) are accurate descriptionstof@aBecause of this, we attempt here to
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see what physical insights can be gained about the meridoincalation without making use of

such comparatively uncertain parameterization relations

SM)=1-(1+ye"

T T

S(t)

"0 6 12 18 24
t [h]

Fic. 3.2. Plots of the switch-on functios(¢) for the four choicesy™! =

3, 6, 12, 24 hours. The “filtered solutions” discussed in sections 3.8 ad are
valid for the “slow switch-on” cases, i.e., for large valusfsy L.

We shall now combine (3.1)—(3.5) in such a way as to obtaimglesiequation for the stream-
function of the meridional overturning circulation. We lrepy multiplying the zonal wind equa-
tion (3.1) bySy and the thermodynamic equation (3.5)(gy 75 ), and then make use of the merid-

ional wind equation (3.2) and the hydrostatic equation)(3t#reby obtaining

o [0 0?

oy (—5?) + (—W + BQyQ) v =0, (3.7)
0 (0¢ B gS(t)
5 (5)+ v =2 (38
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The next step in the derivation is to elimingt&y/0t) between (3.7) and (3.8), thereby obtain-
ing
Ow 0? ov  gS(t)oQ
NP—— — [ = ) — =2 :
dy ((%2 Ty ) 0z ¢,y Oy (3:9)
We can now regard (3.4) and (3.9) as a closed systemandw. One way of proceeding with
this system is to make use of (3.4) to express the meridianaulation (v, w) in terms of the

streamfunction) by

ey = _6_¢ and e #fy = a—w, (3.10)
0z dy

and then to use (3.10) in (3.9) to obtain a single equation.iThis procedure yields the partial
differential equation given below in (3.11). Assuming that- 0 asy — +oo and thatw vanishes
at the top boundaryz(= zr), we obtain the boundary conditions given below in (3.12) éh113).
Concerning the lower boundary condition, we assume that ¢cheahvertical velocity (i.e., the
physical height vertical velocity) is specified at the lovisobaric surface: = 0 (i.e., the top
of the boundary layer). The appropriate linearized vergibthis lower boundary condition is
(09/0t) + g(0v/dy) = gS(t)W(y) atz = 0, whereW(y) is the specified meridional distribution
of the physical height vertical velocity at= 0 and where we have assumed a time dependence
S(t) identical to that for the diabatic heating. From (3.7), weodlave 0/9y)(0¢/0t) — (6?0t +
B%y?)(0/0z) = 0 atz = 0. Eliminating (0¢/0t) from these last two relations, we obtain the
lower boundary condition given below in (3.14). Concernihg tnitial conditions, we assume
that the meridional circulation and its tendency both va@ig = 0. In summary, the meridional

circulation problem is

Py [P 9 o\ _ gS(t)oQ
2 z/HY ¥ v 2,21 Y z/HZ V| _ %
N7e By + (8752 0% ) 0z (6 82) Ty Oy’ (3.11)
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with boundary conditions

Y — 0 asy — +oo, (3.12)
=0 at z = zp, (3.13)
0% 0? 2 2\ 0¥ ow B
and with initial conditions
w:Oand%zoatt:O. (3.15)

Note that the diabatic forcing appears through the righdhside of the interior equation (3.11)
while the frictional forcing appears through the right haside of the lower boundary condition
(3.14).

The meridional circulation problem (3.11)—(3.15) can bétemn in a slightly simpler form by
definingy(y, 2, t) andQ(y, z) as

Dy, 2,t) = P(y, 2, t)e”
(3.16)

Qy,z) = Qly, z)e*/*.

Using (3.16) in (3.11)—(3.15) we can write the meridionatciation problem in the form

0 (O > Y gS(t) 9Q
N — + [ = + 3% - = —= 3.17
0y? * (8152 Ty ) (822 4H? Ty Oy’ (317
with boundary conditions
2@—>0 as y — £oo, (3.18)
b =0 at 2=z, (3.19)
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b oW

2 2

e — fr— —_— prmy .2
g—ay2 + (—&2 + 3%y ) (az 2H> gS(t) a9y at =0, (3.20)
and with initial conditions

zﬁ—()andaa—f—Oatt—O. (3.21)

Note that (3.17) has a convenient form because of the absdribe e/ factors that occur in
(3.11). Because of the linearity of the problem and the aatemt superposition principle, we can
separately calculate the responses to the two forcingtsféew then add these to obtain the total
response. This approach will be adopted in Chapter 4, whereegponse to diabatic forcing is
discussed in section 4.1 and the response to Ekman pumpiigrisssed in section 4.2.

The meridional circulation problem (3.17)—(3.21) congss the primitive equation, equatorial
(-plane version of the balanced problem first formulated bgdsken (1952). Because of the sim-
plifications introduced into (3.1) and (3.5), barocliniotes (i.e., cross derivative terms) are absent
from (3.17) and the inertial stability factor takes the siifigd form 3%42. Baroclinic effects can
be important in the overturning circulations of tropicalkctynes, where they lead to substantial
tilts in the eyewall updrafts (Schubert and McNoldy 2010pbwéver, as discussed by Hack et al.
(1989), baroclinic effects play only a minor role in the HagdCtirculation.

It is interesting to note that the lower boundary conditiBr20) relates a combination of,
(84 /9z), and(9%¢) /dy?) to the physical height vertical velocity at the top of the boundary layer.
The importance of formulating the lower boundary conditiothis way has been emphasized by
Haynes and Shepherd (1989), who have studied solutionsedftherical coordinate version of
the meridional circulation equation. As we shall see in tegtrsection, a consequence of the
mathematical form of the lower boundary condition (3.20pislightly generalized version of

the Sturm-Liouville eigenvalue-eigenfunction problent tbe vertical structure functions, with
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the eigenvalue appearing in both the second order ordinégrehtial equation and in the lower

boundary condition, as will be seen below in (3.24)—(3.26).

3.2. VERTICAL TRANSFORM OF THE MERIDIONAL CIRCULATION EQUATION

We seek solutions of (3.17)—(3.21) via the vertical transfpair

_ 1 /zT By, 2, 1) Zm(2) N2(2) dz + 0(y, 0, 1) Z(0), (3.22)
9Jo

o

Dy, 2,t) =D U . (3.23)

m=0

In other words, the streamfunctiar(y, z, t) is represented in terms of a series of vertical structure
functions 2, (z), with the coefficients),,(y,t) given by (3.22). The reason for the last term in
(3.22) arises from the lower boundary condition (3.20), & lmecome apparent shortly. The

vertical structure functiong,, (=) are solutions of the Sturm-Liouville eigenvalue problem

2z, Z, Nz,

_ — _ 3.24
dz2  4H? ghy, (3.24)
Z,=0 at z = z7, (3.25)

Z Z Z
A2 "= atz=0, (3.26)

dz  2H  h,
with eigenvalues (or equivalent depths) denoted fy A discussion of the transform pair (3.22)—
(3.23) is given in Appendix A, along with a proof thag, > 0. The derivation of the solutions
to the eigenvalue problem (3.24)—(3.26) for the speciat cdsonstantV? is given in Appendix
B. For the caseV = 1.2 x 1072 andzr = 13 km, the eigenvalues,, are given in the second
column of Table 3.1. The corresponding eigenfunctigngz) for m = 0,1, 2, 3,4 are displayed

in Figure 3.3. In the remainder of the derivation in this gettwe retain the generality of allowing
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10+ \ i

(6]
Zm(2)
FiIG. 3.3. Vertical structure functiong,,(z) for the external mode: = 0 and the
first four internal modesn = 1, 2, 3, 4. As discussed in Appendix B, these vertical

structure functions are solutions of the Sturm-Liouviltelplem (3.24)—(3.26) with
the constant buoyancy frequendy= 1.2 x 10~2 st andz; = 13 km.

the buoyancy frequency to be a functionzofHowever, for simplicity, the sample solutions shown
in Chapter 4 are for the special case of constanfn interesting possibility (not explored here) is
that N (z) could have reduced values just above the boundary layeelirsimulating an “effective
N” associated with shallow moist convection.

To take the vertical transform of (3.17), we first multiplyoly Z,,,(z) and integrate over from
0 to zp. The integral originating from the second order verticaliviive term in (3.17) is then

integrated by parts twice to yield

82 2T 82 6 n . dZm 27
e [ im0z ey (G 7) [0 2D g 220
0
82 2r dQZm Zm S t a zr
+ (@ + ﬁzyQ) /0 Uy, z,t) < dZQ(Z) _ 4};’22)) dz = ip;o) 8_y/0 O(y, 2) Zm(2) dz.

(3.27)
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To simplify (3.27) we first use (3.24) in the third term andrnhgse (3.19) and (3.25) to show
that the upper boundary term vanishes. To evaluate the loagndary term we first use (3.20) to
eIiminateaz/?/az and then group the resultirﬁjgﬁ/ay2 term with the first term of (3.27). Similarly,
we use (3.26) to eliminatéZz,,/dz and then group the resulting,, / h,,, term with the third term

of (3.27). This procedure simplifies (3.27) to

[ 020 M0+ 00,0200}

Yy
—g%m(@”? ){ / $ )20 V) o+ 000.0.02,0) ) (329
_CpTody{/ Oy, 2) 2 () dz + W(y) Z ()}.

Then, with the use of (3.22), we obtain the meridional stiteeequation

a%&m(ya t) 1 azzﬁm(yu t) 2 27 aFm<y)
_ = 2
with boundary conditions
&m(y, t) — 0 as y — +oo, (3.30)
and the initial conditions
Gm(y,t) =0 and awma—(ty’t) —0 at t=0, (3.31)

where the forcing tern#,,(y) on the right hand side of (3.29) is given by

T Qly, 2)

E,(y) =
(y) el

Z(2)dz +W(y)Z,(0). (3.32)
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To summarize the results of this section, we have used thieakransform pair (3.22)—(3.23)
to reduce the patrtial differential equation (3.17) to theidhenal structure equations (3.29), with
a single forcing term (3.32) that combines the diabaticifgyderm Q(y, z) with the frictional
boundary layer forcing termV(y). After solution of the meridional structure equations @.r

U (y, t), the solution for)(y, z, t) can be recovered from (3.23).

3.3. SOLUTION OF THE FILTERED MERIDIONAL STRUCTURE EQUATIONS VIAGREEN S FUNC

TIONS

In general, if the diabatic and frictional forcing vary sligvin time, thed?/9t* term in (3.29)
can be neglected. This is the special case we shall expldhasisection. In this “slow forcing”
case, the meridional circulation has no memory of the passirfg and is diagnostically determined
by the current forcing only. Thus, the initial conditions.38) are no longer needed, and the

meridional structure equation (3.29) simplifies to the diagfic equation

d%;m(y? t) y2 N o dFm (y)
T () = SO (333)
with boundary conditions

@m(y, t) — 0 as y — +oo, (3.34)

where the Rossby length, is given by

1/4
_ (R T e

by, = <452 ) =€, ok (3.35)

with Lamb’s parameter defined by, = 4Q%a?/(gh,,). The spectra of equivalent depths,,

Rossby lengths,,,, and Lamb’s parametets, for m = 0,1, 2,...,10 are shown in Table 3.1.
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TABLE 3.1. The spectra of equivalent depths, gravity wave speedégh,,)'/?
(with approximate values in parentheses), Rossby lengths: [gh,,/3%]'/* (for
Hermite functions) anél,, = [gh.,/(45%)]'/* (for parabolic cylinder functions), and
Lamb’s parameters,, = 4Q%a?/(gh,,) for the eleven values of: listed in the left
column. The values have been computed from (B.5) and (B.dibhgu; = 12.91
km,g=98ms2a=06371km,Q=7292x10°s!, N=12x10"2%s!, and
H = 8581 m.

Boo~v~ouobwNrk oS

| B (M) | (gh)* (M SY) | by (kM) | by (kM) [ € |
7074 | 2633 (—) | 3391 | 2398 | 12.44
226.7 | 47.14 (47.94)| 1435 | 1015 | 388.4
60.55 | 24.36 (24.47)| 1032 | 729.4 | 1454
27.26 | 16.35 (16.38) | 845.0 | 597.5 | 3229
15.41 | 12.29 (12.30)| 732.7 | 518.1 | 5715
9.882 | 9.841 (9.848) | 655.6 | 463.6 | 8910
6.870 | 8.205 (8.210) | 598.6 | 423.3 | 12815
5.051 | 7.036 (7.038)| 554.4 | 392.0 | 17431
3.869 | 6.158 (6.159) | 518.6 | 366.7 | 22757
3.058 | 5.474 (5.476)| 489.0 | 345.8 | 28792
2478 | 4.927 (4.928)| 464.0 | 328.1 | 35538

We now solve (3.33) and (3.34) via the Green’s functiof)gy, v'), which are the solutions of

the ordinary differential equations

G, vy 1 y—1
_ 7 =__94 3.36
T TR ( b ) ’ (3.36)

m m

with the boundary conditions

Gn(y,y') — 0 as y — +oo, (3.37)

where the Dirac delta functiod((y — v')/b,,), vanishes foy # 3/ and satisfies

i/y’—ir(s y_y/
b, y— b,
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The Green’s functioit-,, (v, y') is constructed from the parabolic cylinder functians(z), which
satisfy

d*D,(y/bm) 1 2 B
—a ot (v +5 - %) Dy (y/bm) = 0. (3.39)

Note that the order = —1/2 parabolic cylinder function®_>(y/b,,) and D_, 5(—y/by,) are
solutions of the homogeneous version of (3.36). The funeti®_, »(x) andD_ jo(—z) for =3 <
x < 3 are plotted in Figure 3.4. The half-integer order parabojiinder functions have also been

used by Dias and Pauluis (2009) in their study of convegtigelipled waves along the ITCZ.

DI/Z(X) D—1/2('X)

-3 -2 -1 1 2 3

FiG. 3.4. Parabolic cylinder function8_, ,(x) andD_; jo(—x) for =3 < z < 3.
The functionD_, »(x), shown by the blue curve, satisfies the— oo boundary
condition and is used to construct the Green'’s functiony, v') north ofy’. Sim-
ilarly, the functionD_, »(—x), shown by the red curve, satisfies the— —oo
boundary condition and is used to construct the Green’stimm¢-,,,(y,y') south

of 3/. Because these two parabolic cylinder functions are swiatof the Weber
differential equation (3.39) witlr = —1/2, their second derivatives are zero at the
equator but become large away from the equator. All the taicuns presented
here use the Mathematica function ParabolicCylinderD.
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Because of the lateral boundary conditions given in equg84), only the solutioty,,,(y, v') =
a1D_12(—y/byy,) is valid for —oo < y < ¢ and only the solutioldr,,, (v, y') = asD_12(y/bm) iS
valid for ¢/ < y < oo, Wherea; anda, depend on/. The two factorsy; anda, are determined
by requiring that,,(y, v') is continuous ay = ¢’ and that the jump in the first derivative satisfies

y'+
bin {dG—m] = —1, (3.40)
dy 1,

which is obtained by integrating (3.36) across a narrowaegurrounding, = ', making use of
the delta function property (3.38). The two algebraic et for «; anda, can be solved with

the aid of the Wronskian
— D_yja(—a)—— = V2. (3.41)
This procedure results in

1 D—1/2(y//bm)D—1/2(_y/bm) if —co<y<y

V2
D71/2(—y'/bm)D71/2(y/bm) if y <y < 0.

Plots ofG,,(y, y') for y’ = —1500, —750, 0, 750, 1500 km andm = 0, 1, 2 are shown in Figure 3.5.
For larger values ofn the jump in the derivative of7,,(y,y’) aty = ' is larger and the Green’s
function is more confined to the region nea& /.

To express the solutioni;m(y,t) in terms of the Green’s function, we multiply (3.33) by

Gn(y,y'), multiply (3.36) by,.(y,t), and then take the difference of the resulting equations
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FiG. 3.5. Green’s function&,,(y, ') for y/ = —1500, —750, 0, 750, 1500 km and
for m = 0 (top panel);n = 1 (middle panel), and» = 2 (bottom panel). These
curves have been computed from (3.42). Note that, becaude 6f, factors in
(3.42), the Green’s functions become more confined as thiakemode indexn
becomes larger.

to obtain
0 N0y, t) - 8Gm(y,y')>
—( Gy, — (Y,
0y< " N o " (3.43)
dF,, N _
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Integrating (3.43) ovey, using the boundary conditions (3.34) and (3.37), usingl#ia function
property (3.38), and finally using the Green'’s function syatmy propertyG,,.(v', y) = Gn(y,v'),

we obtain (3.45). In summary, the solution of the meridianaiulation problem is

Uy, 2,t) = e PN "y, 1) Zm(2), (3.44)
m=0
where
P _ = dFm(QI) / /
) = =b5(0) [ G )y (3.45)

The solution for the streamfunction is obtained by first aldting £, (/) from (3.32), then calcu-
lating ¢, (y, t) from (3.45), and finally calculating(y, z, t) from (3.44). Although this procedure
generally involves the calculation of two integrals andr#imite sum, there are two interesting spe-
cial cases where the formulas (3.44) and (3.45) are corahtlesimplified. These simple Hadley
circulation models are discussed in Chapter 4.

The next section presents an alternative procedure foralléien of (3.29)—(3.30). This alter-
native procedure uses Hermite transforms instead of Gsdanttions and results in the filtered
solution (3.61), which is simply a different mathematicapresentation of the solution (3.44)—
(3.45). Readers wishing to now examine plots of the soluiBof4)—(3.45) should skip directly to
Chapter 4. Section 3.4 can then be read later, especiallydsgtivishing to explore the transient,

inertia-gravity wave aspects of the problem.

3.4. SOLUTION OF THE MERIDIONAL STRUCTURE EQUATIONS VIAHERMITE TRANSFORMS

In section 3.3 we used Green’s functions to solve the prol{@20)—(3.31) for the case in
which the diabatic and frictional forcing varies slowly iime, so that thé?/0t* term in (3.29)

could be neglected. The neglect of th&/0t> term results in a filtered model, i.e., a model that
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does not simulate transient inertia-gravity waves. In #igstion we return to the complete prob-
lem (3.29)—(3.31), including thé*/dt* term. We solve this complete problem using Hermite

transforms. The Hermite transform pair for the streamfiamcts

= () Ho(y/bm), (3.46)
n=0
Bumlt) = / B )Mo (/B )y, (3.47)

whereb,, = v/2b,, (with numerical values given in the fourth column of Tabl&)3and where the

meridional structure functior®,, (y/b,,) are related to the Hermite polynomidi, (1 /b,,) b

Holy/bn) = (7327n1) * H(y /by )e 20/ (3.48)

(S

Since the Hermite polynomials satisfy the recurrencei@laty /b,,) H,,(y/byn) = 3 Hps1(y/bm) +
nH,_1(y/b,) and the derivative relatiodH,(y/b,,)/dy = (2n/by)H,_1(y/by), it is easily

shown that the meridional structure functighs(y/b,,) satisfy the recurrence relation

(/b Ha(y/bm) = () Hama (/) + (” - 1) Hanlufh), (349)
the derivative relation
b, ) (N i)~ (M5 ) HastufB) (@50)

INote that theh,,, definition of Rossby length is convenient when working wittrgbolic cylinder functions (section
3.3), while theb,,, definition of Rossby length is convenient when working witerkite functions (section 3.4).
This situation arises because the two functions (for integere related by, (y/b,,) = (7'/?n))~ /2 D, (y/b,,).
Another way of understanding this situation is to simplyentitat the parabolic cylinder functions are defined by the
differential equation (3.39), which includes a facigk, while the Hermite functions are defined by the differential
equation (3.51), which does not include this factor.
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and the second order equation

d? 2 - 2n +1 z
(G2~ 1) o) = = (25 ) Mol (351)

The first two meridional structure functions até(y/b,,) = 7 1e 2®/5)" and H,(y/b,) =
2271 (y /by, )e~2¥/5»)  from which all succeeding structure functions can be caepusing the
recurrence relation (3.49). Computiftg,(y/b,,) via its recurrence relation is much preferable to
computingH,,(y/b,,) Vvia its recurrence relation and then computikg(y/b,,) by evaluation of
the right hand side of (3.48), because the former methoddawiplicit calculation of the factor

2"n! for largen. The Hermite functions satisfy the orthonormality relatio

0 1 n' =n,
/ Ho () Ho (/) dy = (3.52)
- 0 n #n.

S

Note that (3.47) can be obtained through multiplication3#6) byH,, (y/b.,), followed by inte-

gration overy and use of (3.52). Plots 6{,,(yy/b,,) forn = 0, 1,2, 3, 4 are shown in Figure 3.6.
To take the meridional transform of (3.29), we first multitlipy #,,(y/b,,) and integrate over

y. The integral originating from the second ordederivative term in (3.29) is then integrated by

parts twice, making use of the boundary conditions (3.20yjeld

IR (ﬁ—;)m@/bm)dy

— ghim%/ G (Y, 1) H(y/bn) dy = S(t) /_Z dF;lny(y)Hn(y/bm) dy.

(3.53)
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FIG. 3.6. The Hermite function®{,,(y) forn = 0, 1, 2, 3, 4. The dimensionless

argumentj is defined byj = y/b,,..

To simplify (3.53) we first use (3.51) in the integrand of thstfintegral. We then make use of

(3.47) to simplify (3.53) to the second order ordinary diffietial equation

Pty

with the initial conditions

An

Amn =0 d
P an o

=0 at t =0,

where the inertia-gravity wave frequeney,, is given by
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and the forcing by

:__/ dF Ho(y/bm) dy (3.57)

The solution of (3.53) consists of the sum of the homogensoligion and a particular so-
lution. As is easily checked by direct substitution into5@, the solution satisfying the initial

conditions (3.54) is

() = Zm { (72(”’%”‘ —] ?) cos(Vpnt) — (%) S (Vynt)

Vi |\ Wi +7%) Vi +7°)
2 32 2t
Vinn T 77 Vinn + 77

In summary, the solution of the original meridional cirdida problem (3.11)—(3.15) is obtained

(3.58)

by combining (3.16), (3.23), and (3.46) into

Uy, 2, t) = Z/2H22¢mn Zon(2)Ho(y/bm), (3.59)

m=0 n=0

Whereﬂmn(t) is given by (3.57). The full transient solution for the str@anction is obtained
by first calculatingF;,,,, from (3.56), then calculatindmn(t) from (3.57), and finally calculating
¥(y, z,t) from (3.58).

The spectral space solution (3.58) can be considered toeébsuim of three parts, with the
first part consisting of the oscillatory termss(v,,,,t) andsin(v,,,t), the second part consisting
of the steady state terifi,,,, /2 ., and the third part consisting of the decaying term withah#&
factor. For large times (i.eyt > 1), the third part is negligible and the oscillatory termsresgent
inertia-gravity waves that have propagated far from anyiced region of forcing. Thus, no matter
how slowly or rapidly the forcing terms are switched on, tmafisteady state Hadley overturning

circulation (near the forcing region) is computed by u&lh&(t) = F,,,/V2,, in (3.59).
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To understand the conditions for which the filtered solui®accurate at all times, consider
the case in which < v,,,,,. Then, the solution (3.58) simplifies considerably sineedbefficients
of the cos (v, t) andsin(v,,,,t) terms become very small compared to unity, while the secioed |

in (3.58) approacheS(t). Then, the spectral space solution (3.58) simplifies to

- FonS(t
U (t) = iy ( ), (3.60)
so that the physical space solution (3.59) becomes
oo [e.¢] an B
Wy, z,t) = S(t) e 1Y D 3 2 (2] Hu(y/brn). (3.61)

m=0n=0 ™"

Since the time dependence on the right hand side of (3.63)ts the ¢ (y, z, t) field develops
in lockstep with the forcing, i.e., there is no time delayvbetn the forcing and the response,
no matter how far one is from the forcing. Since this représéaction at a distance,” it should
be regarded as a filtered approximation of the actual dyrgmalid only in the case of “slowly
varying forcing.” To better understand how slow the forcimgeds to be, use (3.56) to rewrite the
conditiony < v,,, as

b (3.6h) (2n +1)"Y2 if m =0,
ATl — (3.62)

cm(2n + 1)1/2
(8.5h) (2n 4+ 1)"2 if m =1,

where, for illustration, the last approximate equalityas f» = 0 (the external mode) and = 1
(the first internal mode). Thus, for the external mode andfitiseinternal mode, the ! = 24

h curve in Figure 3.2 yields a forcing that is probably slovoegh for the filtered approximation
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to be reasonably accurate, but the! = 3 h curve yields a forcing that excites a non-negligible
inertia-gravity wave response, especially for the highézgrnal modes.

It should be noted that the solution (3.41)—(3.42), obtitieough the use of Green’s func-
tions, and the solution (3.60), obtained through the usesoftite functions, are simply two differ-
ent mathematical representations of the same physicdl@olun other words, plots generated by
evalution of (3.60) are identical to those generated byutiai of (3.41)—(3.42). In Chapter 4 we
shall consider some sample solutions resulting from somecpkarly simple forcing distributions.
For physical interpretation of the slowly changing, quaalanced meridional circulation, we shall
find the Green’s function representation more useful.

In concluding this chapter it is interesting to note that{ &ecomes large$(t) — 1 and the
forced divergent circulatiofw, w) comes into steady state. However, as can be seen from (811) an
(3.5), the zonal flow and the temperature continue to evdlvéact, as we shall see in Chapter 4,
they evolve in such a way that the associated potentialoiyrfield develops local extrema in the
ITCZ, leading to a zonal flow that satisfies the Charney-Steoessary condition for combined
barotropic-baroclinic instability. Thus, one should napect the evolving zonal flow to remain

zonally symmetric for more than approximaely 10-15 days.
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CHAPTER 4

DEEP AND SHALLOW OVERTURNING CIRCULATIONS

The analytical solutions of the meridional circulation atjan are given by (3.44) Wit{ivm(y, t)
defined by (3.45) and the Green'’s functi@n,(y, v') defined by (3.42). In this chapter we first see
how these formulas simplify for the case in which the diabatid frictional forcing is localized
in the ITCZ (section 4.1). Then, two special cases are coraideSection 4.2 considers the spe-
cial case of deep diabatic heating, which forces a deepuwwing circulation with an asymmetry
between the summer hemisphere and winter hemisphere Heellsy This asymmetry maximizes
when the ITCZ is centered approximately 1200 km off the equ&ection 4.3 considers the spe-
cial case of frictional forcing through Ekman pumping in aroa latitude band, which produces

a shallow overturning circulation.

4.1. RESPONSE TO LOCALIZEDITCZ FORCING

Consider the response to a forcing that is localized withinT&Z region, i.e.,F,,,(y) is as-
sumed to vanish everywhere except in the latitudinal rapnge: y < 1., wherey; andy, are

constants. Within this region the forcing is assumed to dependent of, i.e.,

Fom ity <y<uys
Fn(y) = (4.1)

0 otherwise,

where the constants,, specify the projection of the forcing onto the vertical med#Vith these
assumptions, the forcing terr(@@/ay) and(0W/0y) on the right hand sides of (3.17) and (3.20)

vanish everywhere except along the edges of the ITCZ, wheyeltacome infinitely large over an
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infinitesimally thin layer. Thus, the circulation in the, z)-plane will consist of a counterclock-
wise turning gyre on the southern edge of the ITCZ and a closiwirning gyre on the northern
edge of the ITCZ.

Use of (4.1) in (3.45) now yields

~

R Y

Y2+ dF /
dy’

/
dy +Gm(y,y2)/m_ i
(4.2)

= S(0) b | Gy, 12) = Gonl 1) .
where the final line in (4.2) follows from the fact that the mav integral acrosy = y; is F,,,

while the narrow integral acrogs= y, is —F,,. Use of (4.2) in (3.44) yields the final solution

Ul 2,1) = SO e b Fo | Gonly, 12) = Gy, 1) | Zn(2), (4.3)
m=0

where the Green’s functions,, (y, y1) andG,,(y, y2) are given in (3.42).

4.2. FRODUCTION OF DEEP OVERTURNING CIRCULATIONS THROUGH DIABAT FORCING

In this section we consider the case in which there is noidmetl forcing and the diabatic

forcing projects only onto the first internal mode, so that

ngax
Fp = Lomax 4.4
LT TN (4.4)
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where(Q,.., iS a constant. Then, the solution (4.3) can be written as

Rl
Wl zt) = 2,2

[D 1/2(y2/b1) — D_1/2(y1/b1) }D 1/2(=y/b1) if —oo<y <y, (4.5)

D_1/5(y2/b1)D_1/2(=y/b1) — D_1/2(=y1/b1)D_1/2(y/b1) if 1 <y <,

\ [D—1/2(_y2/b1> - D—1/2(—y1/bl)}D—1/2(y/b1) if yo <y <oo.

Figure 4.1 shows isolines af(y, z,t) computed from (4.5) using(t) = 1 and the parameters
zr = HIn(9/2) ~ 12.91 km, Quax/c, = 5 Kday ', N = 1.2 x 1072 s7!, and the four ITCZ
positions(y1, y2) = (0, 500), (500, 1000), (1000, 1500), (1500, 2000) km. Note that the asymmetry
between the winter hemisphere Hadley cell and the summeispéere Hadley cell becomes larger
as the ITCZ shifts off the equator due to the anisotropy of tleetial stability (Hack et al. 1989).
Another way to view the meridional circulation is in termspaircel trajectories, or more precisely,
the projection of parcel trajectories onto the z)-plane for our zonally symmetric flow with non-
zero zonal winds. A collection of such three-day traje@siis shown in Fig. 4.2. From a rough
count of the number of three-day segments needed for a cterplele, one can estimate that the
overturning time of the Hadley cells is on the order of seMeranths, depending of course on how
far poleward the cycle extends.

To understand how a localized ITCZ diabatic heating can caaeeero(01'/0t) over a large
region outside the ITCZ, consider the thermodynamic eqodtd’/dt) + (Tp/g9) N?w = (Q/cp).
As shown in Fig. 4.3, thé0oT'/0t) field attributable to ITCZ diabatic heating tends to be small
compared t@)/c,, but to extend from approximateBp°S to30°N. Outside the ITCZ(Q/c,) =0
but there is weak subsidence over a large area, sq#13tot) is small and positive over a large

area. Within the ITCZ(Q/c,) peaks out at 5 K day and(7,/g) N*w is positive, nearly reaching
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FIG. 4.1. Diabatic heating=*/#Q(y, z)/c,, shown in color, and streamfunction
Y(y, z), shown in the black contours with solid lines indicating> 0 and dashed
lines indicatingyy < 0, and with a contour interval of 400 7vs~!. The maxi-
mum magnitude of)(y, z) is 2852 n¥ s71. The(y, z) field has been computed
from (4.5). For thee */#Q(y, z)/c, field, the maximum value is 3.5 K day,
with changes in shading every 0.5 K ddy Four ITCZ positions are shown: (a)
(y1,92) = (0,500) km; () (y1,y2) = (500,1000) km; (€) (y1,42) = (1000, 1500)
km; and (d)(y1, y2) = (1500,2000) km.
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this same peak value, $07°/0t) in the ITCZ is also small and positive. Note that both/c,)
and (T, /g) N*w are discontinuous across the edges of the ITCZ, but, as sefeig.id.3, their
resulting tendency0T’/0t) is continuous. It is interesting to note from Fig. 4.3 that; fTCZ
positions within10° latitude of the equator, there is very little localizatidrtloe resulting temper-
ature anomaly. However, when ti€/c,) field occurs nea0° latitude, as in Indian Monsoon
convection, the temperature response becomes much maizéxt: Note that our assumption that
(Q/c,) = 0 outside the ITCZ neglects the effects of radiative cooling,tbat radiative cooling, if
uniform iny, would not appear in the right hand side of (3.7).

It is interesting to note that the determination of the temuikes7; andw,, shown in Figs. 4.3
and 4.4, highlight the difference between the present @mbrdo ITCZ and Hadley dynamics
and the steady-state approach used by Schneider (197d) aHélHou (1980), and Lindzen and
Hou (1988). The present approach makes no steady-statapissn and focuses attention on the
solution of the meridional circulation equation, which do®t explicitly appear in the steady state
models.

As listed in Table 3.1, the equatorial Rossby length for the finternal mode i$; = 1025
km. In general terms, the Rossby length {iplane theory) is often considered as the approximate
distance over which compensating subsidence will occurtol@epoint source of diabatic heating
(Eliassen 1952). However, this simpfeplane argument does not capture the basic anisotropy of
tropical dynamics, which is easily seen in thetructure of the Green’s functions shown in Fig.
3.5. For example, in Fig. 4.1d the compensating subsidextea@s approximately 1000 km north
of the ITCZ, but extends approximately 3500 km south of the ITOZs anisotropy is reflected in
all the fields shown in Figs. 4.1-4.4 and is a fundamentalcsgehe Green’s functions shown in

Fig. 3.5.
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FIG. 4.3. Log-pressure vertical velocity(y, z), shown in color, and temperature
tendencyT;(y, z), shown in the black contours with the zero contour indicated
bold. Forw, blue indicates subsidence and red indicates ascent, Withges in
the shading every 0.2 cnts Note that thew field is discontinuous at the edges
of the ITCZ, but theT,(y, =) field is continuous. The contour interval féf(y, z)

is 0.2 K day!. The maximum magnitude af(y, z) is 1.801 cm s*. Four ITCZ
positions are shown: (&), y2) = (0,500) km; (b) (1, y2) = (500, 1000) km; (c)
(y1,92) = (1000, 1500) km; and (d)(y1, y2) = (1500, 2000) km.
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FIG. 4.4. Zonal wind tendency;(y, z), shown in color, and meridional wind
v(y, z), shown in the black contours with solid lines indicating thaulies ¢ > 0),
dashed lines indicating northerlies € 0), and bold lines indicating the zero con-
tours. The contour interval far(y, z) is 0.4 m s per day. The maximum magni-
tude forv(y, 2) is 2.141 m s*. Forw,(y, z), blue indicates;; > 0 and red indicates
u; < 0, with changes in the shading every 1.0 m slay-!. The maximum mag-
nitude foru(y, z) is 7.403 m s! per day. Four ITCZ positions are shown: (a)
(y1,92) = (0,500) km; (b) (y1,y2) = (500, 1000) km; (c) (y1, y2) = (1000, 1500)
km; and (d)(y1, y2) = (1500,2000) km.
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A simple formula for the partition of the total ITCZ mass fluxiveen the summer hemisphere
and winter hemisphere Hadley cells can be found by consigehe cas€y, — y;) — 0, but
Qmax — o0 in such a way that the produ€t,...(y» — 1) = constant. Equation (4.5) then reduces

to

9S(t) Quax(y2 — 1)

7z/2HZ
(& z
¢, ToN2\/2 1(2)

V(y,2,t) =

/ . 4.
D’ 5(y1/b1)D_1/2(—y/b1) if —oco<y<u (4.6)

D/—1/2<_3/1/b1)D—1/2<3//bl> if y1 <y<oo,

whereD" | ,(z) = dD_y1/2(z)/dz and D", ,(—x) = dD_y»(—x)/dz. Note thaty(y, z, ) is

discontinuous ay = y; and that the total upward mass fluxzas given by

gS(t> Qmax(yZ - yl)

—2/2H z (). 4.7
& TyN? e 1(2) (4.7)

¢<y1+a 2y t) - ¢(?/1—a Zs t) =

Then, the fractional mass fluxes in the two cells are

Fractional Mass
w(lyl—i_’ z, t) 1

Flux of Summer | = Y (Y S S = ED/_1/2(—yl/bl)D71/2(y1/bl),

Hemisphere Cell
(4.8)
Fractional Mass
_¢<y1 —H %, t)

] 1
Flux of Winter | = Pt o) — Ol 2 0) = —ED/,UQ(yl/bl)D—l/Q(_yl/bl)'

Hemisphere Cell
(4.9)

Plots of (4.8) and (4.9), as a function of the ITCZ positignare shown in Fig. 4.5. The maximum
asymmetry between the winter and summer hemisphere callgoevhen the ITCZ is located

1200-1300 km off the equator, in which case the winter celieaapproximately twice the mass
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flux of the summer cell. Such cross-equatorial mass tratspead to large cross-equatorial mois-
ture and energy transports, as discussed by Kang et al. X200 theoretical result, obtained
using the equatoriak-plane approximation, is in close agreement with the nucaédalculations

of Hack et al. (1989), who used the exact spherical coordinatsion of the Eliassen meridional

circulation equation.

O?O | | | | I | | | | I | | | | I | | | |

0.60 Winter Cell

0.50

0.40

Summer Cell

080 I I I I | I I I I | I I I I | I I I I
0 1000 <000 3000 4000

y; (km)

FIG. 4.5. Fractional mass flux carried by the summer hemisphackey cell (red)
and fractional mass flux carried by the winter hemispherdéieckll (blue), for the
case of an infinitesimally thin ITCZ at the distangerom the equator. Whem, =
1200 km, approximately 1/3 of the upward mass flux in the ITCZ is igarted to
the summer hemisphere Hadley cell and 2/3 is partitioneddavinter hemisphere
cell.
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4.3. RRODUCTION OF SHALLOW OVERTURNING CIRCULATIONS THROUGHEKMAN PUMPING

While the direct effects of friction are confined to the bourydayer flow in the lowest kilo-
meter, the inviscid interior is indirectly affected thrduthe meridional circulation produced by
the upward extension of the Ekman pumping at the top of thedany layer. To isolate the effects

of the upward penetration of Ekman pumping, consider the sawhichQ = 0 and

Whnax it 11 <y < ypo,
W(y) = (4.10)

0 otherwise,

whereW,,..x IS a constant. This results in

Foo = Whnax Zm(0), (4.11)
which leads to the final solution
¢(y> Z, t) = WmaxS(t) e_Z/QH Z mem(O) [Gm(y> y?) - Gm(ya yl)] Zm(z) (412)
m=0

Note that the shallow overturning solution (4.12) differsrh the deep overturning solution (4.5)
in the sense that (4.12) involves a sum over all vertical mode

Figure 4.6 shows isolines af(y, z,t) for the four casesy,,y2) = (0,500), (y1,y2) =
(500, 1000), (1000, 1500), (1500,2000) km, all usingS(¢) = 1, as will be the case in all the
following diagrams. Figure 4.7 shows essentially the samfierination in terms of three-hour
trajectories, while Figs. 4.8 and 4.9 show isolines of theidi@nal velocityv(y, z, t) and the log-
pressure vertical velocity(y, z,t). Since the upward penetration of the boundary layer pumping

is so restricted in tropical regions, only a small portioe (0 < z < 3 km) of the vertical domain

59



is displayed in Figs. 4.6—4.9. The main conclusion fromghresults is that Ekman pumping in the
tropical region does not penetrate very far in the verti€al example, for Ekman pumping in the
region1500 < y < 2000 km, the upward penetration is approximately 2 km (see Fig), 4vhile
for pumping in the regio’00 < y < 1000 km, the upward penetration is only 1 km. In addition,
boundary layer fluid that is pumped upward tends to flow equatad and poleward primarily in
a 1-2 km thick layer just above the top of the boundary laysrshown in Fig. 4.10 (which is the
shallow circulation counterpart of Fig. 4.5), most of thakdw return flow is in the equatorward
rather than the poleward direction.

Figure 4.11 shows isolines of the streamfunction that tesuhen both the diabatic and fric-
tional forcings act together. The result of this experimeotpared to the separate cases is a
stronger Hadley cell at low and mid levels away from the ITCZwgubsidence extending further
north and south toward the poles. The shallow meridionaltation patterns seem to be most ap-
parent when the ITCZ is close to the equator, i.e., in for Fgkla,b. In contrast, when the ITCZ is
far north of the equator, as in Fig. 4.11d, only a single despoccurs in each hemisphere and no
shallow meridional circulation is present. When Ekman purgmccurs very close to the equator,
the resistance to horizontal motion is so weak that the mengridional flow occurs very close to
the top of the boundary layer, i.e., there is very little upsvpenetration of the Ekman pumping.
Thus, very shallow Hadley circulations tend to occur whemBhk pumping occurs close to the

equator.

4.4, APOTENTIAL VORTICITY PERSPECTIVE

We have formulated the zonally symmetric balanced modelgu@j, z)-coordinates. In this
formulation the Eliassen meridional circulation equatemerges as a key part of the dynamics.

Another approach to this problem is to define an angular méounertoordinatey” by %ﬁYz =
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FIG. 4.6. Isolines of the streamfunctiai(y, z) for the shallow overturning case.
Note that here, and in the following three figures, the valtsrale extends up-
ward to only 3 km. Solid contours and red shading areyor- 0, with dashed
contours and blue shading for< 0. The contour interval is 400 fs~*. The max-
imum magnitude for)(y, z) is 1712 ni s~*. Four ITCZ positions are shown: (a)
(y1,52) = (0,500) km; (D) (y1,92) = (500, 1000) km; (c) (y1,%2) = (1000, 1500)
km; and (d)(y1, y2) = (1500,2000) km.
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FIG. 4.7. Parcel trajectories during the first three days foeehEkman pumping

displacements: (&1, y2) = (500, 1000) km; (b) (y1,y2) = (1000, 1500) km; and

(©) (v1,y2) = (1500,2000) km. Note the grid changes for each ITCZ displacement
%ﬁyQ — u, and then formulate the zonally symmetric balanced modielgug’, §)-coordinates,
wheref is the potential temperature. In this formulation an Ekasmeridional circulation equa-

tion does not arise. Instead, the dynamics reduces to atgdteorticity evolution equation and a

potential vorticity invertibility principle (an elliptigproblem), from which the balanced wind and
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FiG. 4.8. Meridional velocityv(y, z), with red indicating southerly flowu( > 0)
and blue indicating northerly flowv( < 0). The contour interval is 0.5 mS.
The maximum magnitude for(y, z) is 7.922 m s!. Three ITCZ positions are
shown: (a)(y1,y2) = (500,1000) km; (b) (y1,32) = (1000, 1500) km; and (c)
(y1,92) = (1500,2000) km.

mass fields are obtained. A more detailed discussion of fhpsoach can be found in Schubert

etal. (1991).

63



3000 —2000 —1000 0 1000 2000 3000
y (km)

FIG. 4.9. Log-pressure vertical velocity, with red indicatiagcent and blue indi-
cating descent. The contour interval is 0.5 mm, svith the zero contour indicated
in bold. The maximum magnitude far(y, 2) is 3.774 mm s'. Three ITCZ posi-
tions are shown: (&)1, y2) = (500, 1000) km; (b) (y1, y2) = (1000, 1500) km; and

(©) (v1,y2) = (1500,2000) km. Note that the vertical penetration depth is reduced
when the Ekman pumping is located near the equator.
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FIG. 4.10. Fractional mass flux carried by the summer hemisghadey cell and
fractional mass flux carried by the winter hemisphere Hadlel, for the case of
an infinitesimally thin ITCZ.

The above discussion motivates a potential vorticity pectipe of the results shown in section

4.1. The potential vorticity equation, derived from thegimal system (3.1)—(3.5), is

9q 9S(t) By (0Q @
o = e \a: T H) (4.13)
where
_ Ou, gBy (0T T
1= "oy T TV (az H) (4.14)
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FIG. 4.11. Isolines of the streamfunctiany, =) for the deep and the shallow over-
turning case. Solid contours and red shading are/for 0, with dashed contours
and blue shading for» < 0. The contour interval is 500 fns™'. The maxi-
mum magnitude of)(y, z) is 2852 M s~!. Four ITCZ positions are shown: (a)
(y1,y2) = (0,500) km; (b) (y1,y2) = (500, 1000) km; (€) (y1,y2) = (1000, 1500)
km; and (d)(y1, 12) = (1500,2000) km. TheQ(y, z) e=*/H shade interval is 0.5 K
day ! and the maximum diabatic heating is 3.496 K day
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is the potential vorticity anomaly. Figure 4.12 shows ise$ ofy;(y, z, t) as computed from (4.13).

In the ITCZ region the diabatic terig.S(t) Sy /(c,ToN?)|[(0Q/Dz) — (Q/H)] is dominant over
the meridional advection term v, producing a positive PV anomaly in the lower troposphere
and a negative PV anomaly in the upper troposphere. Becéatise @y factor in the diabatic term,
the diabatically produced PV anomalies are biased towargdheward edge of the ITCZ. Outside
the ITCZ, the diabatic term vanishes ¢y, z, t) is due entirely to the-5v term in (4.13).

Since, for larget, the zonal flowu(y, z,t) is in geostrophic balance and the temperature
T(y, z,t) is in hydrostatic balance, the right hand side of (4.14) aaepressed entirely in terms
of the geopotential, thereby making (4.14) an invertipiptinciple from which the balanced wind
and mass fields can be recovered from the PV via solution af@skorder elliptic problem. Thus,
the u,(y, z, t) fields shown in Fig. 4.4 and thE (v, 2, t) fields shown in Fig. 4.3 can be consid-
ered the balanced zonal flow field and mass field tendenciesias=d, through the invertibility
principle, with the PV tendencies shown in Fig. 4.12.

An important feature of the,(y, z,t) field shown in Fig. 4.12 is that there is a tendency to
reverse the poleward gradient of PV on the north side of tli&1in the lower troposphere and on
the south side of the ITCZ in the upper troposphere. Thus, ¢ksessary conditions for combined
barotropic-baroclinic instability are naturally evolgn Thus, evolving ITCZs seem to naturally

contain the seeds of their own destruction.
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FIG. 4.12. Potential vorticity tendency(y, z), computed from (4.13), with blue
indicatingq; < 0 and red indicating;; > 0. Four ITCZ positions are shown: (a)
(y1,92) = (0,500) km; (b) (y1,y2) = (500,1000) km; (€) (y1,y2) = (1000, 1500)
km; and (d)(y1, y2) = (1500, 2000) km.



CHAPTER 5

CONCLUDING REMARKS

An observational analysis of YOTC data has confirmed thetextc® of both a deep and a
shallow overturning meridional circulation in the east®acific. To understand the dynamics
of these meridional circulations, a zonally symmetric naate the equatorial3-plane has been
formulated and the associated meridional circulation 8qgndas been derived. This meridional
circulation equation is a partial differential equatior{in z, ¢). It contains two types of forcing: (1)
horizontal variation of the interior diabatic heating; E§man pumping at the top of the boundary
layer. Since the problem is linear, the meridional circola$ attributable to these two forcing
effects can be treated separately, and then the resulting tan simply be added together to
obtain the total response.

The meridional circulation equation has been solved aitaljy by first performing a ver-
tical transform that converts the partial differential atian in (y, z,¢) into a system of partial
differential equations iny, t) for the meridional structures of all the vertical modes. 3dpartial
differential equations have been solved via both the Gsefemiction approach (evanescent basis
functions) and the Hermite transform approach (oscillabasis functions). These two approaches
yield two different mathematical representations of thmsa@hysical solution. For understanding
the basic asymmetry between the intensities of the wintensghere and the summer hemisphere
Hadley cells, the Green’s function approach is preferakleabse of the efficiency of the mathe-
matical representation, which is simply a superpositiobnaf Green’s functions written in terms

of parabolic cylinder functions of Ol‘delf%.
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The analytical solutions take simple forms in two speciaesa (1) Forcing by deep diabatic
heating that projects only onto the first internal mode inahsence of Ekman pumping; (2) Forc-
ing by Ekman pumping in the absence of any diabatic heatinge CB leads to deep overturn-
ing circulations, while case (2) leads to shallow overtgneirculations. Both circulations show
a marked asymmetry between the winter hemisphere and suimen@sphere overturning cells.
This asymmetry is due to the basic anisotropy introducedbyspatially varying inertial stability
coefficient in the meridional circulation equation. A simghysical interpretation is that fluid
parcels forced near the equator to overturn by diabatic &antioihal effects tend to move much
more easily in the horizontal direction because the restgtdo horizontal motion (i.e. inertial
stability) is so much less than the resistance to verticdlondi.e., static stability). In fact, when
Ekman pumping occurs very close to the equator, the resistamhorizontal motion is so weak
that the return meridional flow occurs very close to the tofhefboundary layer, i.e., there is very
little upward penetration of the Ekman pumping. Thus, vdrgllew Hadley circulations tend to
occur when Ekman pumping occurs close to the equator.

In closing we note that the analytical solutions of the mendl circulation equation are con-
sistent with the extent and shape of upper troposphericalfions regularly observed in satellite
water vapor images, such as the one shown in Figure 3.1. Tgs® tropospheric dry regions
play an important role in our ability to observe the univevgth surface-based visible, infrared,
and millimeter/submillimeter telescopes. The best astnanal observatory sites are at high alti-
tudes in regions of persistently low upper troposphericawaapor, such as Mauna Kea, Hawaii,
the mountains of northern Chile, and the Canary Islands. Téigseare above the trade wind in-

version layer, which normally lies between 2000 and 2500 move the trade wind inversion the
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clear, dry air generally provides excellent observing é¢tods, but there can be important varia-
tions on synoptic, seasonal, and interannual time scaledigcussed by Businger et al. (2002),
forecasts of weather conditions can play an important mokelescope scheduling and observing
strategy at these sites.

This work has shown that Ekman pumping is a viable forcing mecsm for the Shallow
Hadley Circulation. However, diabatic heating due to shaloecipitating convection and surface
heating (in analogy with land/sea breezes, as discussedolgnit al. (2007, 2010)) are also
viable forcing mechanisms. Further research is neededderstand the relative importance of

these three forcing mechanisms.
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APPENDIX A

VERTICAL TRANSFORM

The mathematical principles underlying the vertical tfan® pair (3.22) and (3.23) are the or-
thonormality and completeness of the eigenfunctiBp$z), which we now discuss. Consider the
eigenfunctionZ,,(z), which is a solution of (3.24)—(3.26), and the eigenfunet#, (z), which is
a solution of (3.24)—(3.26) witm replaced byn’. To obtain the orthonormality relation, multiply
the equation foiZ,,(z) by Z,.(z), then multiply the equation fog, (z) by Z,,(z), and finally

integrate the difference of the resulting equations toiabta
G

The boundary terms in (A.1) can be evaluated with the aid eflibundary conditions (3.25)

)/ z, N%my%amg%%ﬁ—a@yig—

(A.1)

and (3.26). Then, for distinct eigenvaluégs,(# h,,) and for normalizedz,,(z), we have the

orthonormality relation

g zp i m=m'
/‘z () dz + 25 2,(0) Z,0(0) = (A.2)
0 if m#m.

To confirm that (3.22) is the proper transform for the expangB.23), we multiply (3.23) by

Z,»(z) and then integrate overto obtain

/0 T2 B (5) N2 dz = 3 () / U 2. N (2)dz. (AD)



Similarly, we multiply (3.2), evaluated at= 0, by Z,,,(0) to obtain

(Y, 00Zmw(0) = Y P (y) Zn(0) 2 (0). (A.4)

m=0

Multiplying (A.4) by g/N?, adding the result to (A.3), and then using the orthonoryatilation
(A.2), we obtain (3.1), confirming the validity of the trangh pair (3.1) and (3.2).

To prove that all the eigenvalues of the problem (3.24)-gBa2e positive, multiply (3.24) by

N2Z2 dZ,, dZ.\> [ Zn\°
Ghm i (Zm dz ) B ( dz > * (ﬁ) ‘ (A-5)

Integrating (A.5) over and making use of the boundary conditions (3.25) and (3w2é&)xbtain

Z,,(z) to obtain

i {é /OZT 22 (2) N2(z) dz + Zi(O)}

:/OZT{(dzCZ<Z))2+ <Z;n]§z)>2} dH%’

The right hand side of (A.6) is positive. Sind&* > 0, the term in braces on the left hand side of

(A.6)

(A.6) is also positive. Thus, all the eigenvalues are pasiiie.,h,, > 0 for all m.

To determine if the eigenfunctiorss,, (z) form a complete set, we first write (3.1) in the form

@/;m(y) = g/OZT [1 + 5(2’)] @@(y’ Z’)Zm(Z/)N2(Z’)dZ,, (A?)

whered(z’) satisfies
1

E/o 5(2)N*(2)dz' = 1. (A.8)
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Using (A.7) in (3.34), we obtain

by ) =+ / B {u IENDD Zm<z>zm<z'>} Bly, #)N*()d. (A.9)

146D Zn(2)Zm(z) = 6(2' - 2), (A.10)

which is the completeness relation. Although we shall net¢ @i general proof of (A.10), we shall
confirm it numerically for the special case of constanin Appendix B. For further discussions on
completeness relations, see Arfken and Weber (1990, se#) and Courant and Hilbert (1953,

\Volume |, section 6.3).
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APPENDIX B

CALCULATION OF THE EIGENVALUES h,,, AND THE EIGENFUNCTIONS Z,,(2)

To solve the Sturm-Liouville problem (3.24)—(3.26), catesi the idealized case in which the
buoyancy frequency is a constant given byv = 1.2 x 1072 s71. As we shall see, the solution
of the second order equation (3.24) has different forms dging on the eigenvalues,,. We
begin by exploring the possibility that one of the eigenealis given by, which is defined by
h = (2NH)?/g = 4328 m. The corresponding eigenfuncticf{ z) then satisfies?>Z /dz2 = 0, in
which case the solution satisfying the upper boundary ¢mmd{3.25) isé(z) = C(2r—2z), where
C'is a constant. The lower boundary condition is satisfigd if- z7[(1/H) — (1/h)]}C = 0. We
shall assume that the constantis specified in such a way that # [(1/h) — (1/H)]"' = 8731
m, so thatl + z7[(1/H) — (1/h)] # 0 andC = 0, meaning that the boundary value problem
does not have a nontrivial eigenfunction with correspogaigenvalué,, = h. Since we have
already shown that,, > 0, we now separately investigate the two cases:> h (Case 1) and

0 < h,, < h (Case 2).

Case 1. If the eigenvalues satisfy,, > 5, then the equation faE,,(2) is

d*Zn(2)  pp,

_Hmg ), B.1
dz? 22, 0 &1
where
2 N? /1 1
“—’;:—<T——>>0. (B.2)
ZT g h hm

In this case the vertical structure functions satisfying tipper boundary condition are

Zn(2) = Ay sinh[p, (1 — 2/27)], (B.3)
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whereA,, is the normalization factor. Through application of the ésoundary condition (3.26),

it can be shown that,, is the solution of

tanh(pu,,) = Hom (B.4)

(z0/W)[1 = h/2H — (2H i/ 21)?]

The transcendental equation (B.4) has only one solutionptéd by, and having the value

1o = 0.4686. The corresponding eigenvalaig is obtained from (B.2), written in the form
ho = h [1 — 2Hpo/2r)?] " ~ 7075m. (B.5)

The top line in the orthonormality relation (A.2) is satisfié the normalization factor is given by

9 . -1/2
g = {2 [t o) _ ]} ©o
g o

Case 2. If the eigenvalues lie in the range< h,,, < h, then the equation faE,,(z) is

d’Z,(z) v?
2 Z.,=0, B.7
iz 22 . (B.7)
where
v? 2 ( 1 1)
S =—|——=—=]>0. B.8
22 g \Phm h (B.8)

In this case the vertical structure functions satisfying tipper boundary condition are

Z(2) = By sinjyp, (1 — 2/27)], (B.9)

80



whereB,, is the normalization factor. Through application of the ésoundary condition (3.26),

it can be shown that,, is the solution of

() = I z}/z; + 2Hvm /1) (B.10)

After the transcendental equation (B.10) is solvedjprthe eigenvaluek,, can be obtained from

(B.8), written in the form
I [1+ (QHI/m/zT)ﬂ_l ~ h [1+ (2Hm7r/zT)2}_1 : (B.11)

The second (approximate) equality follows from the fact th& solutions of the transcendental
equation (A.10) are approximatedy, ~ mm form = 1,2, - - -, with the accuracy of the estimate
improving asm increases. The exact and approximate eigenvalues am ilisi@ble 3.1. Finally,

the top line in the orthonormality relation (A.2) is satisfi the normalization factor is given by

2or sin (v, ) cos(Vy, . 9 —1/2
B, = {NQQ [1 _ sin( 1)/m ( )] + sin (Vm)} . (B.12)

Note that the dependence of the normalization fackronm is weak because,, ~ mm, making
thesin(v,,) terms in (B.12) negligible, which leads 18),, ~ [2g/(N?27)]"/? ~ 3.2.

To summarize, the eigenvalue for the external mode is giye(Blb) wherey is the single
solution of the transcendental equation (B.4), while tigesvalues for the internal modes are given
by (B.11) wherey,, are the solutions of the transcendental equation (B.10g cdiresponding
eigenfunctions are

Apsinh[po(l — z/27)] m=0
Z(2) = (B.13)

B sin[v, (1 — z/zr)] m>1,
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where the normalization factors, and B,,, are given by (B.6) and (B.12). The first eleven eigen-

valuesh,,, (m = 0,1, ...,10) are listed in Table 3.1, while the first five eigenfunctioms plotted

in Fig. 3.1.
14 510 k.
z2=7 km
12 z=4 km
z=1 km
10

o

i

z (km)
% |

2
-
0 j|r | | |

0.0 0.3 0.6 0.9 1.2

FiG. B.1. Four plots of the left hand side of (B.15) for the chgiée= 1 km
(black),z = 4 km (blue),z = 7 km (red), anct = 10 km (green). The two sums on
the left hand side of (B.15) have been truncated at 800. These plots, and others
with different truncations, demonstrate that the left hamt of (B.15) converges
in the mean to the right hand side of (B.15), thereby configniire completeness
of the basis functiong,, (=) for the case of constam¥.

To numerically confirm the completeness relation (A.10)tfoe case of constant, we first

write it in the form

[+ 6(2)] (Zo(z’)Zo(é) +y Zm(z’)Zm(2)> = 5(< — 2), (B.14)
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where, for notational convenience, we have replacbky z. The numerical confirmation of (B.14)
is simpler if (B.14) is converted to an integrated form besmthen the two delta functions will
not appear. Thus, integrating (B.14) ovérfrom zero toz, making use of (B.13), and finally

multiplying by N2/g, we obtain

AgN2zp Zo(2) {cosh(pg) — cosh [uo(1 — 2z/27)]}
9gHo
= B,,N? .
+ Z T'ZTZm(z) {cos [vm(1 — z/21)] — cos(vm) }
m=1 m (B.15)
+ ) Zn(0)2,(2) =
m=0 0 if z<z.

Figure B.1 shows plots of the left hand side of (B.15) whea 1, 4, 7, 10 km and when 800 terms
are used in the summation over Note that, except for the Gibbs phenomenon nearz, the left

hand side of (B.15) converges to the unit step function asitimber of terms is increased. This
is numerical confirmation that (B.14) is valid and thereftirat the basis functions (B.13) form a

complete set in the special case of consfsnt
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