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ABSTRACT

AEROSOL PARAMETERIZATIONS IN SPACE-BASED NEAR-INFRARED RETRIEVALS

OF CARBON DIOXIDE

The scattering effects of clouds and aerosols are one of the primary sources of error when

making space-based measurements of carbon dioxide. This work describes multiple investigations

into optimizing how aerosols are parameterized in retrievals of the column-averaged dry-air mole

fraction of carbon dioxide (XCO2
) performed on near-infrared measurements of reflected sunlight

from the Orbiting Carbon Observatory-2 (OCO-2). The primary goal is to enhance both the pre-

cision and accuracy of the XCO2
measurements by improving the way aerosols are handled in

the NASA Atmospheric CO2 Observations from Space (ACOS) retrieval algorithm. Two studies

were performed: one on using better informed aerosol priors in the retrieval and another on re-

ducing the complexity of the aerosol parameterization. It was found that using ancillary aerosol

information from the Goddard Earth Observing System Model, Version 5 (GEOS-5) resulted in a

small improvement against multiple validation sources but that the improvements were restricted

by the accuracy and limitations of the model. Implementing simplified aerosol parameterizations

that allowed for the retrieval of fewer parameters sometimes resulted in small improvements in

XCO2
, but further work is needed to determine the optimal way to handle the scattering effects

of clouds and aerosols in near-infrared measurements of XCO2
. With several multi-million dollar

space-based greenhouse gas measurement missions scheduled and in development, the massive

amount of measurements will be an incredible boon to the global scientific community, but only if

the precision and accuracy of the data are sufficient.
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Chapter 1

Introduction

1.1 Greenhouse Gases and Climate

The radiative balance of Earth is governed by a number of factors. One such factor is the

composition of the atmosphere. Despite representing a relatively small fraction of the total number

of molecules in the air, gases such as carbon dioxide (CO2) and methane (CH4) have the ability to

trap a substantial amount of heat [1, 2]. This results in Earth being warmer than if there were no

atmosphere at all, which has been likened to a “greenhouse effect."

Since the industrial revolution, humans have directly contributed to a substantial rise in the

concentration of greenhouse gases (GHGs) in Earth’s atmosphere [2]. This, in turn, has resulted in

an imbalance in the radiative budget of Earth, the direct consequence of which is rising global tem-

peratures. The atmospheric concentration of CO2 has increased by around 46% from pre-industrial

times to 2017, from 280 parts per million (ppm) to around 405 ppm, with humans emitting about

37 billion tons of CO2 to the atmosphere each year [3]. This has happened primarily because

of the burning of fossil fuels, biomass burning, cement production, and land use change. As of

2011, anthropogenic CO2 represents 1.82 Wm−2 of radiative forcing [2]. However, this forcing

and the year-to-year CO2 concentrations are not constant and the mechanisms behind what drives

this variability are not fully understood.

Our current trajectory is likely to result in an increase in natural disasters such as heat waves,

droughts, and floods [2]. There have been a number of attempts by the global community to try

and limit future emissions, including the Kyoto Protocol, Copenhagen Accord, and more recently

the Paris Agreement. However, how humans will act in the future is difficult to predict. This means

there is considerable uncertainty surrounding the future of Earth’s climate and the world must be

prepared for a wide range of potential scenarios. Figure 1.1 shows future warming predictions,
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based on the Intergovernmental Panel on Climate Change (IPCC) Representative Concentration

Pathways (RCPs).

Figure 1.1: Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model simulated time series
from 1950 to 2100 for the change in global annual mean surface temperature relative to 1986-2005. Time
series of projections and a measure of uncertainty (shading) are shown for scenarios RCP2.6 (blue) and
RCP8.5 (red). Black (grey shading) is the modeled historical evolution using historical reconstructed forc-
ings. The mean and associated uncertainties averaged over 2081-2100 are given for all RCP scenarios as
colored vertical bars. The numbers of CMIP5 models used to calculate the multi-model mean is indicated.
Taken from [2].

In an attempt to limit GHG emissions, the United Nations Framework Convention on Climate

Change (UNFCCC) was created in 1994. The first major effort to address global emissions was

the UNFCCC’s Kyoto Protocol, adopted in 1997. This committed numerous countries to limit

their emissions to “a level that would prevent dangerous anthropogenic interference with the cli-

mate system." However, one of the largest emitters, the United States of America, did not ratify

the Protocol. Since then, there has been an amendment (the Doha Amendment) to extend those

commitments that has been signed by a fraction of the original countries. At the 21st session of

the Conference of the Parties (COP21) of the UNFCCC in 2015, the Paris Agreement was im-

plemented in order to limit the increase in globally averaged temperatures to less than 2 degrees

Celsius (◦C) above pre-industrial levels. Each party at COP21, representing more than 200 coun-

tries, defined and submitted their own nationally determined contribution (NDC) and agreed to
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report their GHG emissions to the UNFCCC. These NDCs represent each party’s emission reduc-

tion goals and contributions to the global effort to stay under 2 ◦C.

1.2 Understanding Carbon Dioxide Absorption Mechanisms

Carbon dioxide measurements represent one of the primary sources of information that the

scientific community has at its disposal to study the current state of Earth’s atmosphere as well

as predict potential climate scenarios. CO2 measurements are fed into carbon transport inversion

models, which are used to track the gas as it is transported around the atmosphere and subsequently

estimate carbon sources and sinks and their associated uncertainty. That is, where CO2 is emitted

and absorbed on the surface of the earth, as CO2 does not have sources or sinks in the atmosphere

itself. The natural carbon cycle is driven primarily by photosynthesis and respiration by plants [4]

and the solubility of CO2 in the ocean [5]. The magnitude of these natural processes is much larger

than that of the anthropogenically emitted CO2 but on average the natural sources emit about

the same as the natural sinks, creating a balance. Although many of the processes that govern

the lifecycle of CO2 are known, the exact locations, magnitudes, and mechanisms behind these

sources and sinks remains unknown. About half of the anthropogenically emitted CO2 remains

in the atmosphere. The other half is absorbed by net carbon sinks. Figure 1.2 shows that for

2007-2016 it is estimated that 10.7 gigatons of carbon (GtC, where one GtC is equivalent to 3.67

gigatons of CO2) per year are emitted into the atmosphere from fossil fuel burning, industry, and

land-use change. About 4.7 GtC yr−1 of this stays in the atmosphere, while the land sink absorbs

around 3.0 GtC yr−1 and the ocean sink absorbs 2.4 GtC yr−1.

The partition between oceanic and terrestrial sinks is uncertain and can vary significantly from

year to year. Carbon sources and sinks on land, specifically, likely vary more than the oceanic

sink and thus have an even higher degree of uncertainty associated with them [7]. Several factors

influence the atmosphere-land CO2 exchange including CO2 fertilization, changes in nitrogen de-

position, forest regrowth, deforestation, and changes in forest management. Currently, it is thought

that the European and North American carbon sinks are the result of forest regrowth in abandoned

3



Figure 1.2: Carbon budget for 2007-2016. Fluxes are given in GtC yr−1 with 1-sigma uncertainties. Taken
from [6].
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lands, a decrease in forest harvest, boreal warming, and CO2 and NO2 fertilization. There is some

evidence that the tropics are influenced by CO2 fertilization as well [2]. However, there remains

considerable uncertainty in estimates of the current flux patterns and, importantly, the exact mech-

anisms behind these sources and sinks and how they will act in the future. CO2 measurements help

reduce the uncertainty surrounding these sources and sinks because carbon transport inversion

models become more accurate when they ingest accurate and precise CO2 measurements [8–11].

Space-based measurements, specifically, provide vastly more global coverage than the currently

available network of ground-based measurements. Figure 1.3 demonstrates the expected reduc-

tion in uncertainty for eight-day-mean CO2 surface fluxes when space-based measurements of the

column-averaged dry-air mole fraction of carbon dioxide (XCO2
) from the Japanese Greenhouse

gas Observing SATellite (GOSAT; [12]) measurements are ingested.

Figure 1.3: Expected uncertainty reduction provided by GOSAT for the estimation of eight-day-mean CO2

surface fluxes. Values are (1 - σa/σb) where σa is the posterior error standard deviation and σb is the prior
error standard deviation. Taken from [11].

In addition to answering questions about the fundamental processes that govern the global

carbon cycle, space-based CO2 measurements have the potential to improve anthropogenic GHG
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emission estimates. Emission reduction goals are traditionally based on “bottom-up" inventories,

created by aggregating data from a multitude of sectors and industries that impact the carbon bud-

get for a given nation. Current global inventories include the Emission Database for Global Atmo-

spheric Research (EDGAR; [13]), Carbon Dioxide Information Analysis Centre (CDIAC; [14]),

and the Open-source Data Inventory for Anthropogenic CO2 (ODIAC; [15, 16]). However, these

inventories contain considerable uncertainty. Global estimates are thought to be accurate to within

6-10%, but for individual countries, especially in the developing world, those uncertainties can

be much larger as they lack the resources to adequately track emissions [17]. Additionally, emis-

sions from the developing world represent an ever-growing fraction of the total global emissions.

A potentially more accurate way to constrain these estimates is by creating “top-down" emission

estimates. That is, estimates from direct measurements of atmospheric CO2.

1.3 The Importance of Carbon Dioxide Measurements

While well-calibrated ground-based networks of GHG measurements exist, including about

145 stations organized by the World Meteorological Organization (WMO) Global Atmospheric

Watch (GAW) [18], they are insufficient when it comes to spatial resolution for CO2 and CH4. As

shown in Figure 1.4, coverage is lacking in scientifically important regions including the tropics,

much of the global oceans, much of Africa, and arctic and boreal regions. Additionally, they lack

the coverage to identify or quantify emissions on national scales in order to produce top-down GHG

inventories or to provide information about regional scale natural sources and sinks of CO2 [19].

Satellites GHG measurements, however, have the potential to complement the existing in situ

network. While there are technical limitations with space-based instruments, their measurements

are not beholden to geographic or political boundaries and thus represent a significant improvement

over in situ data in terms of global coverage. In order for space-based measurements to be of use to

the scientific community, precision and accuracy requirements must be defined and subsequently

met. Scientifically, high precision is necessary because even the largest CO2 sources and sinks

only produce small changes in the column CO2.
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Figure 1.4: The GAW global network for CO2 in the last decade. Taken from [18].

Early estimates of the required CO2 precision demanded a monthly averaged column precision

of better than 2.5 ppm for an 8◦ by 10◦ footprint in order for satellite measurements to be of

more use to carbon transport inversion models than just having ground-based in situ measurements

[8]. Figure 1.5 shows that the theoretical decrease in uncertainty in CO2 fluxes is reduced as the

precision of the XCO2
measurements is improved.

More recent studies have estimated that an accuracy of better than about 0.5% (∼2 ppm for

CO2) is required for space-based measurements to be of use in estimating regional carbon fluxes

[9,20–24]. In terms of precision, even a bias of a few tenths of a ppm can be detrimental to carbon

transport inversion models [9, 10, 25]. For example, [10] showed that a few tenths of a ppm bias

in XCO2
on a regional scale introduced a carbon flux error of over 0.7 GtC yr−1 over temperate

Eurasia. Retrievals of XCO2
are constantly improving and are beginning to approach the level

of precision and accuracy needed to study regional sources and sinks [26–31], individual power

plants [32], cities [33], etc. However, current single measurement random errors of 0.4 to 1.2 ppm

and systematic biases between 1 to 2 ppm still exist over much of the globe [34–36]. Thus, further

work is needed to maximize the quality of these data in order for current and future missions to be

able to properly answer questions about the carbon cycle.
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Figure 1.5: Plot of uncertainty in GtC yr−1 against the precision (in ppm) of column-integrated data. The
dotted horizontal line shows the prior uncertainty while the dash-dot horizontal line shows the case for the
in situ surface network. Taken from [8].
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The first space-based instrument to be able to detect CO2 from space was the High-Resolution

Infrared Radiation Sounder (HIRS-2; [37]) onboard the Television and Infrared Operational Satel-

lite Next Generation (TIROS-N) Operational Vertical Sounder (TOVS; [38]), launched in 1978.

However, the estimated accuracy on these thermal infrared measurements was around 10 ppm,

which is about the same magnitude as the entire natural seasonal cycle of CO2 [39].

The first dedicated instrument to measure CO2 from space was the SCanning Imaging Absorp-

tion SpectroMeter for Atmospheric CHartographY (SCIAMACHY, [40]). It was launched by the

European Space Agency (ESA) in March of 2002 on board the Environmental Satellite (ENVISAT)

and functioned until May of 2012, when communication with ENVISAT was lost. SCIAMACHY

had a 30 by 60 km2 footprint and measured in eight spectral bands, spanning from the ultraviolet to

the shortwave infrared. SCIAMACHY made observations that resulted in continental and seasonal

scale variations of CO2 to be observed for the first time [41, 42].

The first mission whose primary objective was to measure GHGs was the Greenhouse gas

Observing SATellite (GOSAT), launched on 23 January 2009 by the Japan Aerospace Explo-

ration Agency (JAXA), National Institute of Environmental Science (NIES), and the Ministry of

the Environment (MOE) of Japan. It contains the Thermal and Near Infrared Sensor for Car-

bon Observation-Fourier Transform Spectrometer (TANSO-FTS), which allows for near-infrared

measurements of CO2 and CH4, among other things. Near-infrared measurements have a nearly

uniform sensitivity to CO2, from the surface up to the middle troposphere. This allows for the

column average of CO2 to be estimated. GOSAT also contains the Cloud and Aerosol Imager

(TANSO-CAI) for use in cloud and aerosol screening. GOSAT represents a substantial improve-

ment in footprint resolution over SCIAMACHY, with an approximate footprint size of 10.5 km.

Figure 1.6 shows some of the early XCO2
results from GOSAT.

While NASA had originally planned to launch their own GHG measuring satellite in February

of 2009, known as the Orbiting Carbon Observatory (OCO), the launch failed. It took until 2

July 2014 before the spare instrument, named the Orbiting Carbon Observatory-2 (OCO-2), was

launched into orbit at the head of the NASA Afternoon Train [43]. OCO-2 represents a further
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Figure 1.6: The global distribution of XCO2
for 20-28 April 2009 from GOSAT TANSO-FTS spectra with

signal-to-noise greater than 100 and for cloud-free scenes over land. Taken from [12].

improvement in near-infrared footprint resolution, coming in at approximately 1.29 km by 2.25

km with eight footprints contained along a 10 km swath. Further details about OCO-2, the primary

mission studied in this work, can be found in Section 1.3.1.

In December of 2016, the China Meteorological Administration (CMA), Ministry of Sci-

ence and Technology of China (MOST), and the Chinese Academy of Sciences (CAS) launched

TanSat [44], which contains the Atmospheric Carbon-dioxide Grating Spectrometer (ACGS) and

Cloud and Aerosol Polarization Imager (CAPI). TanSat has similar geometric properties to OCO-

2, including an 18 km swath containing nine footprints with 2 km by 3 km resolution. Chinese

agencies have also launched the Feng-Yun 3D (FY-3D) Greenhouse gases Absorption Spectrome-

ter (GAS) and the GaoFen-5 (GF-5) Greenhouse-gases Monitoring Instrument (GMI) satellites in

November 2017 and May 2018, respectively. Little published information is currently available on

these two missions.

Besides the current suite of near-infrared measurements of GHGs, thermal infrared instruments

can also measure CO2, but only in certain parts of the atmosphere as they are not typically sen-
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sitive to near the surface. This vertical weighting means that these measurements are unable to

resolve surface fluxes and are thus of less use to carbon transport inversion models. Besides HIRS,

discussed above, these instruments include the Atmospheric Infrared Sounder [45], the Infrared At-

mospheric Sounding Interferometer [46], and the Tropospheric Emission Spectrometer [47]. Solar

occultation measurements have also been taken by SCIAMACHY as well as a Fourier Transform

Spectrometer (FTS) onboard the Atmospheric Chemistry Experiment (ACE) on SciSat [48]. These

measurements produce profiles of GHGs, but the lack of measurements below approximately 5

km due to viewing and geometric restrictions again precludes them from studying surface carbon

fluxes.

1.3.1 The Orbiting Carbon Observatory-2

OCO-2 is in a 98.8 minute sun synchronous orbit with a 13:36 local time equatorial cross-

ing time for its ascending node. OCO-2 measures near-infrared reflected sunlight in three high-

resolution spectral bands using a three-channel imaging grating spectrometer and, like other near-

infrared instruments, is sensitive to the whole column of CO2. It has a repeat cycle of typically 16

days, but because of the narrow footprint (eight adjacent footprints of 1.29 km by 2.25 km), does

not actually measure much of the earth. OCO-2 is also unique in that its primary mission is only to

measure CO2. Along with GOSAT, OCO-2 is restricted to daytime measurements of near-infrared

reflected sunlight. Figure 1.7 shows an example of the eight OCO-2 footprints and corresponding

radiances, taken from the OCO-2 Algorithm Theoretical Basis Document (OCO-2 ATBD; [49]).

OCO-2 takes measurements in three primary modes: nadir, glint, and target. Nadir mode is

when the satellite points directly down to make measurements below the satellite. This mode

is effective over land, where the surface bidirectional reflectance distribution functions (BRDFs)

allow for incoming sunlight to be scattered in a semi-lambertian manner and thus sufficient light

is typically reflected straight upwards, regardless of sun angle. Glint mode, designed for use over

ocean, follows the “glint spot" of sunlight reflected off of the liquid water surface. The reflectance

of sunlight over water is primarily a function of wind speed and is well-characterized [50]. Target
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Figure 1.7: Spatial layout of 8 cross-track footprints for nadir observations over Washington, D.C. Taken
from the OCO-2 ATBD [49].
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mode is where OCO-2 dithers back and forth over a small target spot on the surface. This is used

primarily to target Total Carbon Column Observing Network (TCCON; [51]) stations for use as

validation. Figure 1.8 shows the setup of nadir, glint, and target mode observations. Full details of

the instrument can be found in the OCO-2 ATBD.

Figure 1.8: Schematic of the OCO-2 observation modes: nadir (a), glint (b), and target (c). Taken from the
OCO-2 ATBD [49].

1.3.2 Future Missions

GOSAT-2 was launched on 29 October 2018 and carries TANSO-FTS-2 and TANSO-CAI-2.

Both instruments have improved specifications compared to the original GOSAT mission including

additional bands and an intelligent pointing algorithm. In March of 2019 the instrument backup

to OCO-2 will be launched as the Orbiting Carbon Observatory-3 (OCO-3) to the International

Space Station (ISS) [52]. It will have a different pointing system than OCO-2 which will allow for

new opportunities to map large target areas including cities, forests, and coastlines. The ISS’s low

inclination orbit will also allow OCO-3 to make measurements of the same location at different

times of the day, allowing for investigations into the daily variability of CO2. Being on the ISS

will also allow for the use of co-located measurements from other instruments on the platform,

including the NASA Global Ecosystem Dynamics Investigation (GEDI, successfully launched on
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5 December 2018), the NASA Ecosystem Spaceborne Thermal Radiometer Experiment on Space

Station (ECOSTRESS), and the JAXA Hyperspectral Imager Suite (HISUI).

There are several CO2 measuring satellites planned for the years 2019-2023, including Mi-

croCarb, GeoCarb [53, 54], Feng-Yun 3G, and GOSAT-3. MicroCarb is being developed by the

Centre National d’Etudes Spatiales (CNES) of France. It is similar to other near-infrared sensors

but will have an additional oxygen absorption band for better aerosol detection. NASA’s GeoCarb

will be the first satellite dedicated to measuring GHGs from geostationary orbit. This will allow

for imaging of the Americas potentially multiple times a day. Little is known about Feng-Yun 3G,

but it is supposed to be a broad-swath (100 km) imaging grating spectrometer. GOSAT-3 will be

an upgraded version of GOSAT-2, with enhanced precision and additional channels. Figure 1.9

shows a timeline of the past, current, and future missions for both CO2 and CH4.

Figure 1.9: Timeline of space-based greenhouse gas measurement satellites.

The current and planned space-based GHG missions will be an incredible boon to the scientific

community, but only if the data are precise and accurate. The number of global measurements will

soon no longer be the limiting factor, but rather the quality of the data itself.
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1.4 Retrieving Carbon Dioxide from Satellites

As discussed in Section 1.3, one of the primary ways to measure CO2 concentrations from

space is by detecting sunlight that has been reflected off the earth’s surface with hyper-spectral

resolution instruments. The number of CO2 molecules in the column of air seen by the instrument,

or the “light path", is then estimated and eventually converted to a column-average CO2. This

method is conceptually shown in Figure 1.10.

Figure 1.10: The light path is conceptually shown as the yellow beam emitting from the sun, getting re-
flected off the surface of the Earth, and being detected by the satellite.

OCO-2 makes use of this method using its three-channel imaging grating spectrometer. The

three channels are: a band centered on an oxygen absorption feature at 0.76 µm (the O2 A-band),

a relatively weak CO2 absorption band located in the near-infrared around 1.61 µm (the weak CO2

band), and a stronger CO2 absorption band in the near-infrared at 2.06 µm (the strong CO2 band).

These three bands are used in conjunction to deduce the average amount of CO2 in the column of

air seen by the instrument’s sensors. The single value of CO2 in the column of air is specifically

known as the column-averaged dry-air mole fraction of carbon dioxide, or XCO2
:
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XCO2
=

∫

∞

0
NCO2

(z)dz
∫

∞

0
Nd(z)dz

(1.1)

where NCO2
(z) is the molecular number density of CO2 with respect to dry air at altitude z and

Nd(z) is the molecular number density of dry air at altitude z. Because the fraction of oxygen in air

is well known (0.20935 parts per part) and near uniform globally, Equation 1.1 can be simplified

to:

XCO2
= 0.20935

∫

∞

0
NCO2

(z)dz
∫

∞

0
NO2

(z)dz
(1.2)

where the number density of O2 and CO2 can be estimated using measurements of reflected

sunlight in the O2 A-band, weak CO2 band, and strong CO2 band. An example of the measured

spectra of all three near-infrared bands from OCO-2 is shown in Figure 1.11.

Figure 1.11: An example of measured radiances from OCO-2 in the O2 A-band (left), weak CO2 band
(center), and strong CO2 band (right). Taken from [55].

The properties of the three near-infrared bands for OCO-2 are given in Table 1.1.

Table 1.1: Properties of the three near-infrared bands used by OCO-2 to retrieve XCO2
.

Band Spectral Range Spectral Range # Channels Resolving Power
(cm−1) (µm) (λ/δλ)

O2 A 12950-13190 0.758-0.772 1016 >17,000
Weak CO2 6166-6286 1.594-1.619 1016 >20,000
Strong CO2 4810-4897 2.042-2.082 1016 >20,000
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The XCO2
retrieval algorithm used in this study was the NASA Atmospheric CO2 Observations

from Space (ACOS) algorithm (see [56] and [49] for details). It is currently on build 9 (B9), but the

majority of this work was done using the previous version (B8). The differences between B8 and

B9 were minor and only impacted a small number of retrievals. B10 is currently in development,

with an expected public release in spring of 2020.

1.4.1 Optimal Estimation

The ACOS algorithm employs optimal estimation to retrieve XCO2
[57]. This method is useful

for combining observations and prior knowledge about a given measurement (“a priori" informa-

tion). In near-infrared measurements of GHGs, the detected radiances alone are insufficient to

properly constrain all the parameters that impact the estimated variables of interest. This is known

as an “under-constrained" problem. Thus, prior information about a given measurement is em-

ployed to help guide the estimates. Complete details of the algorithm can be found in the OCO-2

ATBD [49]. Optimal estimation of XCO2
uses a set of variables, or a “state vector", to create a

modeled set of radiances, described in Section 1.4, that match the radiances measured by the satel-

lite, moderated by prior knowledge of the different state vector elements. This is done by using the

state vector parameters found in the forward model, F:

y = F(x,b) + ǫ (1.3)

where y is a vector of the simulated radiances, F is the forward model, x is the state vector, b

is a set of other fixed input parameters, and ǫ is instrument and forward model errors. The OCO-2

forward model is designed to simulate radiances using a solar model, radiative transfer (RT) model,

and instrument model [49, 58, 59].

The state vector elements are listed in Table 1.2. The parameters selected for inclusion in the

state vector typically represent physical quantities to which the measured spectra are sensitive.

The exact parameters included in the current ACOS state vector have been refined over the past

several years and details on many of them can be found in [56] and [49], with various updates
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contained in [60]. Of note, a CO2 profile of 20 layers is retrieved by the algorithm and then used

to calculate the total XCO2
. Other retrieval algorithms use their own unique covariance matrices

and CO2 profile parameterizations, discussed in Section 1.6. Aerosols, surface characteristics,

and Empirical Orthogonal Functions (EOFs), etc. are all included in the state vector to allow the

retrieval to optimally fit the measured radiances. Certain parameters that impact the measured

radiances are not retrieved, either because their impact is negligible, e.g. ozone absorption, or the

impact is very well characterized, e.g. Rayleigh scattering.

The simulated radiances, y, are used in an inverse model to try and minimize the χ2 cost

function given by:

χ2 = (F(x)− y)TS−1
ǫ (F(x)− y) + (x− xa)

TS−1
a (x− xa) (1.4)

where Sǫ is the observation error covariance matrix, xa is the a priori state vector, and Sa is the

a priori error covariance matrix. The a priori state vector and its corresponding error covariance

matrix are derived from several sources including the Goddard Earth Observing System Model,

Version 5 Forward Processing for Instrument Teams (GEOS-5 FP-IT; [62]) for the meteorological

variables and zonally averaged seasonal cycles coupled with a typical atmospheric growth rate

for CO2. In optimal estimation, the prior and posterior errors are assumed to be Gaussian. The

expected value, x̂, is given by:

x̂ = xa + (KTS−1
y K+ S−1

a )−1KTS−1
y (y −Kxa) (1.5)

where Sy is the a posteriori error covariance matrix and K is the Jacobian, which is the partial

derivative of the radiance spectrum for each state vector element:

Kij =
∂Fi(x)

∂xj

(1.6)

The Levenberg-Marquardt modification of the Gauss-Newton method [57] is then used to iter-

atively minimize the cost function described by 1.4:
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Table 1.2: State vector elements of the ACOS XCO2
retrieval algorithm, adapted from [60].

Name Quantities A Priori Value A Priori 1σ Error Notes
CO2 20 TCCON [56] On sigma

pressure levels1

Temperature Offset 1 0 K 5 K Offset to
prior profile

Surface Pressure 1 GEOS-5 FP-IT 4 hPa
H2O Scale Factor 1 1.0 0.5 Multiplier on

prior profile
Aerosol Type 1,2 OD2 2 MERRA-23 ± factor of 7.39
Water, Ice Cloud OD2 2 0.0125 ± factor of 6.05

Aerosol Type 1,2 Height4 2 0.9 0.2
Water Cloud Height4 1 0.75 0.4

Ice Cloud Height4 1 Tropopause5 0.2
Aerosol Type 1,2 Width 2 0.05 0.01

Water Cloud Width 1 0.1 0.01
Ice Cloud Width 1 0.04 0.01

UTLS Aerosol OD2 1 0.006 ± factor of 6.05
Albedo Mean Land 1/band Prior Calc. 1.0
Albedo Slope Land 1/band 0.0 0.0005
Albedo Mean Ocean 1/band 0.02 {0.2,0.2,1e-3}
Albedo Slope Ocean 1/band 0.0 1.0

SIF Mean6 1 Prior Calc. 0.008 Land only
SIF Slope 1 0.0018 0.0007 Land only

Wind Speed 1 GEOS-5 FP-IT 5 m/s Ocean only
Dispersion Shift 1/band 0.0 0.4 of channel FWHM

Dispersion Stretch 1/band 0.0 1 pm/channel
EOF Amplitudes 3/band 0.0 10.0

1 CO2 profile contain 20 or fewer elements, depending on the surface pressure.
2 Optical Depth at 0.76 µm.
3 Monthly climatology from 2006.
4 Peak heights of the Gaussian distributions.
5 Estimate from GEOS-5 FP-IT parameters.
6 See [61].
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xi+1 = xi + (KT
i Sǫ

−1Ki + (1 + γ)S−1
a )−1[KT

i S
−1
ǫ (y − F(xi)) + S−1

a (xa − xi)] (1.7)

where xi is the initial state vector, xi+1 is the updated state vector, and Sǫ is the observation

error covariance matrix. xi+1 is then re-run through the forward model and the result is used to

try and again find the minimum χ2. This iterative process is repeated until certain thresholds are

reached that indicate the algorithm has converged to a state vector containing optimal values that

minimize the cost function.

1.5 Cloud and Aerosol Errors in XCO2
Retrievals

While there are many issues that can result in reduced accuracy and precision in near-infrared

estimates of CO2, including calibration errors, spectroscopic errors [63], instrument noise, im-

proper forward model assumptions, etc., one of the most significant issues that arises when mea-

suring XCO2
is the presence of clouds and aerosols. The main reason clouds and aerosols can

ruin a retrieval is due to light path modification. In order to precisely measure the light path, as

described in Section 1.4, the number of molecules in the column must be established. If clouds

and aerosols are present they can scatter the reflected sunlight in different directions which can

drastically alter the length of the light path seen by the sensor and result in significant errors when

calculating XCO2
(see Section 1.5.1). Various screening methods are employed to remove scenes

with measurements that are obviously contaminated by clouds and aerosols (see Section 1.5.2), but

no scene is entirely free from scattering particles. It has been shown that not including state vector

parameters relating to the scattering and absorption of these remaining aerosols and clouds can

lead to significant errors in retrievals of XCO2
. These errors often exceed 1% (∼4 ppm) and can

be tens of ppm for high optical depth scenes [64–66]. Figure 1.12 demonstrates the XCO2
errors

induced as a function of aerosol optical depth for a retrieval that does not include any state vector

elements relating to cloud and aerosols, known as a “non-scattering" or “clear-sky" retrieval.
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Figure 1.12: Residual aerosol-induced XCO2
error as a function of aerosol optical thickness at 0.77 µm

for a non-scattering retrieval at a solar zenith angle of 30◦ (left) and 60◦ (right). Filled and open boxes
correspond to scenes with aerosol optical thickness less and greater than 0.3, respectively. Dotted gray lines
indicate 1% error limits on XCO2

. Adapted from [66].

Even when scenes are heavily filtered to remove clouds and aerosols, a non-scattering XCO2

retrieval performs about 20-40% worse than one that includes a way to account for scattering

effects [67]. More specifically, errors in the optical properties or vertical distribution of optically

thin clouds and aerosols, such as smog, smoke, sea salt, and dust, can result in biases in the

retrieved CO2 [68,69]. [70] notes that, “a more reliable treatment of the scattering by optically thin

clouds and aerosols will be critical for retrieving XCO2
and XCH4

in the presence of fossil fuel or

biomass plumes, since aerosols are co-emitted with CO2 and CH4." This is especially important

over large cities, power plants, and tropical rainforests, which are all of scientific interest in the

GHG community but typically associated with clouds and aerosol emissions. Thus, understanding

the mechanistic behavior of carbon sources and sinks is dependent on a proper handling of clouds

and aerosols.

1.5.1 Scattering Effects of Clouds and Aerosols

Aerosols suspended in the atmosphere are capable of scattering sunlight. Sources include nat-

ural sources such as dust blown up from the surface, sea salt spray from the ocean, and organic

carbon from biomass burning. These aerosol originate from the surface and are typically confined

to the troposphere with a lifetime on the order of a few weeks. Volcanic emissions can inject gases

and aerosols into the stratosphere, where the lack of fast removal mechanisms results in a lifetime
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of a few years. Anthropogenic aerosols, usually created from the burning of fossil fuels, tend to be

highly variable in their concentration and physical properties.

When light interacts with a particle it can be scattered, absorbed, or transmitted. Equation 1.8

describes the size parameter, x, that dictates what type of scattering occurs for a given particle size

and light wavelength:

x =
2πr

λ
(1.8)

where λ is the wavelength and r is the radius of a spheric particle. In the near-infrared, the

interaction between typical atmospheric aerosols (with r ranging from approximately 0.1 to 10

µm) and photons from the sun is best described by Mie scattering (x & 1). Cloud droplets also fall

in this range, with radii of approximately 5 to 50 µm and x & 1.

In addition to clouds and aerosol, air molecules themselves can result in Rayleigh scattering

(x ≪ 1). This effect is most prominent in the O2 A-band, due to the shorter wavelengths, but is

included for all three bands in ACOS because it is easily and quickly calculated.

1.5.2 Screening Methods

The scattering and absorption effects of clouds and aerosols on near-infrared measurements

of CO2 are problematic for two reasons. First, the effects are difficult to quantify and light path

modifications that are improperly accounted for can lead to large errors in the retrieved state vector

(see Section 1.5). Second, the presence of thick cloud or aerosol layers, even if properly parame-

terized in the retrieval to avoid large biases, means that reflected sunlight is not reaching near the

surface, where the primary sources and sinks of CO2 are located. Thus, these above-cloud/aerosol

measurements would be of less use anyways. Because of this, substantial effort has been put to-

wards developing screening methods designed to remove measurements contaminated by cloud or

aerosol layers. The two primary filters applied before running the ACOS retrieval on measured

radiances from OCO-2 are known as the O2 A-band Preprocessor (ABP; [71]) and the Iterative
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Maximum A-Posteriori Differential Optical Absorption Spectroscopy (IMAP-DOAS) Preproces-

sor (IDP; [72]).

The ABP works by retrieving surface pressure using only the O2 A-band with Rayleigh scatter-

ing. If this surface pressure deviates by several hectopascals (hPa) from the prior surface pressure,

it is likely that a cloud or aerosol layer is present in the scene and is scattering photons back to-

wards the satellite before they hit the surface. The ABP is extremely fast and not computationally

expensive because it does not attempt to actually parameterize any clouds or aerosols. The primary

weakness of the ABP is its lack of sensitivity to very low cloud and aerosol layers, which can have

similar light path lengths to that of the surface and are thus difficult to detect.

The IDP attempts to remove contaminated scenes by independently estimating XCO2
and XH2O

from both the weak and strong CO2 bands using a simple non-scattering retrieval. The ratio of

these two measurements, for example XCO2
from the weak CO2 band divided by XCO2

from

the strong CO2 band, is then used as a scattering metric. Because cloud and aerosol particles

typically have wavelength-dependent absorption properties, the scattering effects modify the weak

CO2 band differently than the strong CO2 band. This leads to a ratio that deviates from unity in the

presence of a cloud or aerosol layer. In the absence of scattering, a non-scattering retrieval should

produce ratios of near unity. While the ABP struggles to identify low-level contamination, the IDP

excels at identifying aerosols at any height, due to their wavelength-dependent optical properties.

Combining the ABP and IDP results in the ability to detect and remove most but not all scenes

containing clouds or aerosols [71]. For example, Figure 1.13 demonstrates that the cloud detection

algorithms developed for use on OCO-2 measurements agree well with the cloud determination

algorithm from the Moderate Resolution Imaging Spectroradiometer (MODIS; [73]) on the NASA

Terra satellite.

Because not all measurements contaminated by clouds and aerosols can be removed, near-

infrared retrievals must therefore include scattering parameters in their state vectors in order to

avoid errors.
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Figure 1.13: Combined glint and nadir gridded contingency table data for real OCO-2 measurements made
in December 2014. Data are binned on a 4◦ by 4◦ lat/lon grid. Scenes for which MODIS and OCO-2 cloud
screenings agree are shown. Adapted from [71].

1.6 Aerosol Parameterizations in Near-Infrared Measurements

of GHGs

Typically, one or more pieces of information about clouds and aerosols are solved for in addi-

tion to XCO2
in GHG retrieval algorithms applied to near-infrared measurements. Some common

methods include retrieving various optical properties of an aerosol type [12, 74, 75], retrieving

vertical aerosol information [49, 75–77], retrieving parameters directly related to the photon path

length [78], and parameterizing aerosols with a single isotropic scattering layer [79]. All these

methods are intended to act as proxies to the real scattering effects of clouds and aerosols in the

column in order to allow an accurate XCO2
to be retrieved. However, it is not clear that any one

method is best and additional research, including robust intercomparison studies, is needed to de-

termine the optimal setup.

The latest operational OCO-2 XCO2
retrieval algorithms, ACOS B8 and B9, include nine pa-

rameters related to clouds and aerosols, which describe an ice cloud, water cloud, and three aerosol

types. However, retrieved aerosol optical depths (AODs), a measure of the extinction of sunlight

due to atmospheric scattering particles, from ACOS generally compare poorly to the highly accu-
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rate AErosol RObotic NETwork (AERONET, [67,80]). This indicates that the way ACOS handles

the scattering effects of clouds and aerosols can potentially be improved.

1.6.1 ACOS Aerosol Parameterization

The ACOS aerosol parameterization contains five atmospheric particle types: a water cloud,

ice cloud, two aerosol types from a Modern-Era Retrospective analysis for Research and Applica-

tions, Version 2 (MERRA-2; [81]) climatology, and a stratospheric aerosol type. This MERRA-2

climatology is the monthly mean for one year (2006) for each of the five MERRA-2 aerosol types

(dust, organic carbon, black carbon, sea salt, sulfate). The two types chosen to be included in the

state vector are the two with the highest climatological mean AOD for a given month and location.

For example, if dust and organic carbon are the two largest AODs of the possible five in the month

of July for a given location, then they are selected as the two aerosol types to be retrieved for any

July OCO-2 measurement for that location. MERRA-2 actually contains 15 different aerosol types

with up to five size bins per type and a relative humidity dependence for some of the types. For

simplicity, these are aggregated into the five types used in ACOS B8 (dust, organic carbon, black

carbon, sea salt, sulfate). A typical fractional bin density and relative humidity were assumed for

each type in order to aggregate them (see [49] for complete details).

The vertical profiles of these aerosol types are described by Gaussian distributions. The ver-

tical height, described by the mean of the Gaussian distribution, and magnitude, described by the

amplitude of the Gaussian distribution, are retrieved for each of the two aerosol types, the water

cloud, and the ice cloud. The magnitude of the stratospheric aerosol type is solved for, but the

height is fixed. The widths of the five Gaussian profiles are fixed, as it has been shown that the

radiances are not especially sensitive to the width of a cloud or aerosol layer [66, 82]. The prior

Gaussian profiles are shown in Figure 1.14 and described by Equation 1.9.

f(x) = A ∗ exp

{

−
(x− xa)

2

2σa
2

}

(1.9)
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where xa is the vertical height of the peak of the Gaussian, x is the height at each level, and σa

is the Gaussian width. The magnitude, A, is normalized such that the total aerosol or cloud optical

depth value of the column equals the integrated optical depth of the Gaussian curve.

In all, nine variables are included in the state vector that are designed to parameterize the clouds

and aerosols in the scene. Additionally, the natural log of the AOD is the parameter solved for that

describes the magnitude of each Gaussian. This is to prevent the algorithm from attempting to

retrieve a negative AOD, which would result in the retrieval crashing due to current algorithmic

limitations. The retrieved height of the Gaussian represents the fraction of the surface pressure. For

example, if the surface pressure is 1000 hPa and the retrieved height parameter is 0.5, the Gaussian

profile will be centered at 500 hPa.

For each of the five aerosol types solved for in the retrieval, assumptions have been made about

their physical properties. The ACOS forward model is designed to be sensitive to the absorption

cross sections, single-scatter albedos, and phase matrices of the cloud and aerosol types. The

optical properties for the water clouds are calculated from Mie theory, assuming a Gamma particle

size distribution with an effective radius of 8 µm. The ice clouds are assumed to have an effective

radius of 70 µm and were compiled from MODIS Collection 6 [83]. The method by which the

MERRA-2 types are aggregated is described in detail in [49]. For example, the composite mass

extinction coefficient (ke) is calculated by:

ke = ke,1f1 + ke,2f2 (1.10)

where f1 and f2 are the fraction of each subtype by aerosol density, with f1 + f2 = 1. Thus, the

aggregated mass extinction coefficient, mass scattering coefficient, single-scattering albedo, and

phase function quantities can be trivially calculated.

1.7 Outline

Chapter 2 provides a summary of work done on improving the aerosol priors in retrievals

of XCO2
performed on near-infrared measurements [84]. Chapter 3 discusses simplified aerosol
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Figure 1.14: Prior Gaussian profiles of the lower tropospheric aerosol types (red), water cloud (blue), ice
cloud (purple), and stratospheric aerosol (green). The local AOD per unit pressure at 755 nm is plotted as
a function of the relative pressure. The lower tropospheric aerosol prior AOD is not fixed as for the other
types, but rather is taken from a climatology described in the text. Taken from [60].
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parameterizations in both synthetic and real retrievals of XCO2
[85]. Chapter 4 draws conclusions

and discusses the implications for future GHG missions. Appendix A presents a study on the

retrieval and validation of the total column water vapor product from OCO-2 [86].

28



Chapter 2

The Impact of Improved Aerosol Priors on

Near-Infrared Measurements of Carbon Dioxide

2.1 ACOS Aerosol Parameterization

As discussed in Section 1.6.1, the ACOS XCO2
retrieval algorithm takes a prior state vector

with associated uncertainties and uses optimal estimation to determine the posterior state vector

that best minimizes the modeled radiance residuals as compared to the measured radiances. One

choice that impacts how well the retrieved cloud and aerosol parameters perform, and subsequently

how well XCO2
is retrieved, is the use of prior information to constrain the problem by adding ad-

ditional information beyond the spectra themselves. Often, a constant or climatological value with

high uncertainty applied to it is used for the aerosol setup. Here, we test the hypothesis that us-

ing more realistic aerosol priors will allow the retrieved aerosol parameters to better represent the

scattering of light in the column and thus reduce the error in retrieved XCO2
. Specifically, we ex-

amine the impact of using co-located modeled aerosols from the Goddard Earth Observing System

Model, Version 5 (GEOS-5; [62]) as prior information on the retrieved XCO2
from real OCO-2

measurements. Global atmospheric models, such as GEOS-5, are highly sophisticated and contain

many layers of complex physics to represent aerosol processes in the atmosphere including aerosol

dynamic schemes and size-resolved aerosol microphysics [87]. However, atmospheric models do

not perfectly represent reality. There are still large differences between individual models, which

are restricted by uncertainties in aerosol emission source characteristics, knowledge of atmospheric

processes, and the meteorological field data used [88]. Despite this, it is hypothesized that these

models will still be of use in the XCO2
retrievals. We also examine the uncertainties applied to the

aerosol priors in the current OCO-2 XCO2
retrieval algorithm to see if using a lower uncertainty, in

conjunction with a more realistic aerosol prior, results in an improvement in XCO2
against multi-
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ple validation sources. Finally, we test whether vertical aerosol information from GEOS-5 can be

successfully ingested. These results, along with those of Chapter 3, impact not only OCO-2, but

XCO2
from GOSAT, TanSat, and several other future space-based GHG missions that will also be

significantly influenced by the scattering effects of clouds and aerosols.

2.2 Validation Datasets

Here, we use two datasets to evaluate the quality of the OCO-2 XCO2
retrievals in the context of

testing the aerosol parameterization. While we expect the retrieved aerosol parameters to improve

with the use of a more accurate prior, the retrieved aerosols are still only designed to be effective

scattering parameters and thus we will not evaluate their quality. The first validation dataset is

32,175 retrievals co-located with 13 TCCON and AERONET sites across the globe. The second is

30,827 retrievals matched with an ensemble of global CO2 models where we consider the truth the

median of the CO2 models in places where they agree to within 1 ppm. These two validation sets

complement each other in that TCCON is known to be highly accurate, but with limited spatial

coverage. The model validation dataset likely has larger uncertainty than TCCON, but provides

excellent spatial coverage.

2.2.1 TCCON and AERONET Validation Dataset

The TCCON validation dataset contained 32,175 OCO-2 measurements taken from 17 Septem-

ber 2014 to 2 May 2016. We co-located the OCO-2 measurements in time and space with the

AERONET and TCCON, which were required to both be present and operational at a given site.

The co-location criteria was within 1◦ latitude/longitude and +/- 30 minutes and the sites selected

for use are shown in Figure 2.1. As TCCON stations are all located on land, only a small fraction

of co-located measurements are over water surfaces.

Table 2.1 lists the TCCON sites used in this study. The measurements were selected from a set

of OCO-2 “lite" files [89] that had been pre-filtered (see Section 2.3). We then post-processed the
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Figure 2.1: TCCON and AERONET sites used in this study.

retrievals with multiple custom filters in an attempt to remove all scenes contaminated by clouds

or aerosols.

Table 2.1: TCCON stations used in this study.

TCCON station Dates Used Reference
Ascension Island Sep 2014–Dec 2015 [90]

Caltech, Pasadena, CA, USA Sep 2014–May 2016 [91]
Darwin, Australia Sep 2014–May 2016 [92]

Edwards (Armstrong), CA, USA Sep 2014–Mar 2016 [93]
Garmisch, Germany Sep 2014–Nov 2015 [94]
Karlsruhe, Germany Sep 2014–May 2016 [95]
Lamont, OK, USA Sep 2014–May 2016 [96]

Manaus, Brazil Oct 2014–Jun 2016 [97]
Orléans, France Sep 2014–Nov 2015 [98]

Paris, France Sep 2014–Sep 2015 [99]
Park Falls, WI, USA Sep 2014–May 2016 [100]

Saga, Japan Sep 2014–Feb 2016 [101]
Sodankylä, Finland Sep 2014–Apr 2016 [102]
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2.2.2 Model Validation Dataset

Besides validation against the highly accurate but sparsely located TCCON, a set of global

CO2 models was assembled in order to examine spatial errors. We co-located 30,827 OCO-2

measurements in time and space with a suit of nine global carbon models [9, 25, 31, 103–107].

Only points where all the models agreed to within 1 ppm of XCO2
were used. Work by [60]

has shown that using this methodology produces similar error statistics to that of the TCCON

validation. The median XCO2
of the nine models for each of the 30,827 measurements was used

as the truth metric. The OCO-2 measurements were selected by sorting all the measurements into

a 4◦ latitude by 4◦ longitude spatial grid and filling all grid boxes with up to 10 observations. This

allowed for excellent global coverage while limiting the demand on the available computational

resources needed to run the retrievals.

2.3 Filtering and Bias Correction

As OCO-2 struggles with scenes containing clouds and aerosols, multiple strategies are used

to try and filter out any scene that is contaminated by scattering particles. For both validation

datasets, the O2 A-band Preprocessor (ABP; [71]) and Iterative Maximum A-Posteriori Differ-

ential Optical Absorption Spectroscopy (IMAP-DOAS) Preprocessor (IDP; [72]) were applied to

every measurement before being selected to run through the retrieval. For each validation set, the

approximately 30,000 measurements used in this study were those that had successfully passed

through the preprocessors. These measurements were determined to be clear enough to be run

through the retrieval. After removing measurements that failed to converge, post-processing filter-

ing techniques were applied to remove additional low-quality retrievals that were not screened out

by the preprocessors. These filters included the reduced χ2, a delta pressure parameter (from ABP),

and the CO2 and H2O ratios (from IDP). Thus, all tests are being done on a mostly clear dataset and

conclusions cannot be drawn about how these retrieval modifications impact the results if scenes

with thick cloud or aerosol layers are present. Additionally, as the TCCON stations are located on

land, the final post-filtered TCCON validation dataset only contained land measurements and thus
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no conclusions can be made about OCO-2 measurements over ocean for the TCCON validation

study.

Despite heavy pre- and post-filtering of the dataset to remove cloud and aerosol layers, no

atmospheric column is truly free from scattering particles. Thus, a bias correction is typically

applied to the final XCO2
in an attempt to mitigate retrieval errors [60]. In the operational B8

product, considerable effort is put into developing a multi-parameter bias correction that reduces

the XCO2
bias against several independent truth metrics. In this work, a single parameter bias

correction was selected for each validation dataset for simplicity and to ensure a fair comparison

across different setups. Additionally, it is hypothesized that an improved aerosol setup might

reduce the need for a complex bias correction. The parameter chosen was that which had the

largest correlation with XCO2
error. When comparing to TCCON, the retrieved XCO2

was bias

corrected by removing a linear fit between the XCO2
error (retrieved XCO2

- TCCON XCO2
) and the

difference between the retrieved surface pressure and the prior surface pressure (“dp"). This was

the most correlated parameter in the majority of our TCCON tests and thus was selected as the bias

correction parameter. This parameter is correlated with XCO2
biases because any unparameterized

clouds and aerosols in the column can make the retrieval think there is a lower surface pressure

than in reality. Thus, bias correcting this mistake out is designed to bring the retrieved surface

pressures back to realistic values and can approximately account for the improperly parameterized

clouds and aerosols. In the case of the model validation dataset, the bias correction parameter was

the solar zenith angle. Physically, this represents the removal of artificial biases induced by longer

air masses. The reason why this parameter was selected over dp is that the model dataset has

excellent latitudinal coverage and thus the air mass is weighted more than dp. TCCON, however,

is spatially limited and thus the air mass dependence is not as prevalent when searching for optimal

bias correction parameters.
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2.4 Modeled Aerosol Priors

As discussed in Section 1.6.1, the OCO-2 retrieval algorithm has several aerosol parameters

in its state vector. The prior values for most of these parameters in B8 are fixed or taken from a

monthly MERRA-2 climatology. Here, we discuss several methods in which we test the use of

instantaneous, 3D modeled aerosol data as prior information to improve upon the current priors

with the hope of increasing the precision and accuracy of the final OCO-2 XCO2
product.

The GEOS-5 Forward Processing for Instrument Teams (GEOS-5 FP-IT; [62]) atmospheric

model, created and maintained by the NASA Global Modeling and Assimilation Office, is de-

signed specifically for instrument teams in that the entire period (2000-current) is run using the

same GEOS-5 version to maintain consistency and avoid any unwanted biases from updates to

the model. For this work, GEOS-5 FP-IT version 5.12.4, hereafter referred to as GEOS-5, was co-

located in time and space with the OCO-2 measurements. GEOS-5 is on a 0.625◦ longitude by 0.5◦

latitude horizontal grid with 72 vertical layers extending to 0.01 hPa with a time-step of 3 hours.

The model was linearly interpolated in space and the nearest 3-hour model update was chosen in

time. For example, if the OCO-2 measurement was taken at 1900 UTC, the 1800 UTC model run

was used. The GEOS-5 aerosol scheme contains 15 different types with up to five different size

bins for each type, which we aggregate into five unique types: dust, organic carbon, black carbon,

sea salt, sulfate. The aggregation process weights by the typical relative amount of optical depth

contributed by each type at 760 nm and uses a typical relative humidity value for the hygroscopic

types. Each type has a unique optical properties, including the single-scattering albedo, extinc-

tion coefficient, and refractive index. Further details can be found in [49]. GEOS-5 ingests Terra

MODIS AOD, Aqua MODIS AOD, and Multi-angle Imaging SpectroRadiometer (MISR; [108])

aerosol information. AERONET measurements are not used for this product as the data latency is

unacceptably large. Figure 2.2 shows that GEOS-5 AODs correlate better with AERONET com-

pared to both the climatological MERRA-2 AODs and the corresponding retrieved AOD values

from OCO-2 B8. Thus, using the model and assigning it some confidence should result in an

improved correlation in retrieved OCO-2 AODs compared to AERONET.
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Figure 2.2: Left: MERRA-2 climatological AOD vs. AERONET AOD. Middle: OCO-2 B8 retrieved AOD
vs. AERONET AOD. Right: GEOS-5 co-located AOD vs. AERONET AOD. The AERONET AODs are
the means of the AODs at 675 nm and 870 nm. Overpass means are plotted.

Our primary hypothesis in this work is that using instantaneous modeled aerosol data as prior

information will result in smaller XCO2
errors when compared to the current operational setup that

uses a monthly climatology. Figure 2.3 shows the first of the two aerosol types selected when using

the MERRA-2 monthly climatology and when using the interpolated GEOS-5 model field. Certain

features, such as Saharan dust and biomass burning, are generally realistically placed in the clima-

tology but the day-to-day variations of the atmosphere are not present and thus the climatology is

not representative of the true state of the atmosphere for a given OCO-2 measurement location. For

example, dust is selected over large portions of the high northern latitudes in the GEOS-5 model

field, but rarely in the MERRA-2 monthly climatology.

Three methods of varying complexity were chosen to ingest the instantaneous model data:

• Using the top two aerosol types and their corresponding AODs

• Using the top two aerosol types and fitting the amplitude, mean, and variance of a Gaussian

distribution to the modeled vertical profile of both types

• Using the top two aerosol types and solving for a scale factor on an interpolated 20-layer

modeled aerosol profile
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Figure 2.3: Top: primary aerosol type selected for the month of July using the MERRA-2 climatology.
Bottom: primary GEOS-5 aerosol type selected for 1 July 2016 0Z. Aerosol types are dust (DU), sea salt
(SS), black carbon (BC), organic carbon (OC), and sulfate (SU).
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The methodology for selecting which two (of the five) aerosol types to be included in the state

vector is simply sorting them by AOD at 760 nm and selecting the two largest values. The ice

cloud, water cloud, and stratospheric aerosol type were always retrieved. The ice cloud and water

cloud characteristics were kept the same as B8, while the stratospheric aerosol’s optical depth prior

and corresponding uncertainty were determined by our setups described below.

2.4.1 Types and Optical Depths

The first method simply takes the top two aerosol types based on sorting by each type’s AOD

and uses their corresponding AODs as prior information for each type. This method is the simplest

of our tests and does not rely on any modeled vertical aerosol information.

2.4.2 Types and Gaussian Fits

The second method takes the largest two aerosol types, as before. The 72-layer GEOS-5 aerosol

profiles for both types are then interpolated onto the 20-layer OCO-2 vertical grid. The amplitude,

mean, and variance of a Gaussian curve are then fit to that 20-layer profile and the amplitude

(optical depth), height, and width of that Gaussian are fed in to the retrieval as prior information.

An example is shown in Figure 2.4. Occasionally, the fit is a poor representation of the vertical

profile. This is often the case with the sulfate type, which can have both a lower tropospheric peak

and a stratospheric peak, resulting in a profile that cannot be represented with a single Gaussian. To

avoid this issue, the sulfate type, if selected, was fit to below 400 hPa and the stratospheric aerosol

type (discussed in Section 1.6.1) was a separate Gaussian fit for the profile above 400 hPa. This

method was chosen to test the hypothesis that ingesting vertical information from the model will

lead to an improved parameterization of the scattering and, subsequently, a more accurate XCO2
.

2.4.3 Types and Scale Factors

The third and most complex method takes the largest two aerosol types sorted by AOD, as

before. The 72-layer GEOS-5 aerosol profiles for both types are then interpolated onto the 20-

layer OCO-2 vertical grid. A scale factor applied to the interpolated profile is then solved for
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Figure 2.4: Example of fitting Gaussians to the GEOS-5 AOD profiles. Upper row is black carbon (black),
dust (yellow), and organic carbon (green). Lower row is sulfate (orange) and sea salt (blue). Dashed grey
lines are the Gaussian fits to the profiles.
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by the retrieval. Because the ACOS retrieval solves for the natural log of the AOD, we solve

for an additive scalar which acts as a multiplicative scaling factor when converted to AOD. This

means that if the retrieval determines that the scale factor should be 1.5, the GEOS-5 AOD profile

magnitude will be multiplied by 1.5. This method is similar to that of [76], except here we are

using a vertical aerosol profile co-located in time and space as the prior, while they use a constant

aerosol profile. This method was chosen to test the hypothesis that Gaussian fits are insufficient to

realistically parameterize the shapes of true vertical aerosol profiles in the XCO2
retrieval.

2.4.4 Aerosol Prior Uncertainties

In addition to these three techniques used to modify the aerosol priors, the prior uncertainty

must also be considered when using optimal estimation. In the operational ACOS XCO2
retrieval

algorithm, the uncertainty on the aerosol parameters is typically very loose. For example, a prior

AOD (τ ) of 0.1 is approximately -2.3 in ln-space. Assigning the B8 uncertainty of 2.0 to ln(τ )

gives 1-sigma values of -4.3 and -0.3 in ln-space, which equates to about 0.014 and 0.74 in optical

depth. This large prior uncertainty is due to the lack of confidence in the monthly climatological

priors and because it is believed that the radiances themselves should provide enough information

to properly constrain the results. However, using this new instantaneous setup allows us to de-

crease the prior uncertainty because we have more confidence in the GEOS-5 model compared to

the monthly climatology, as demonstrated by Figure 2.2. The three setups chosen to test are using

the operational uncertainty (“high uncertainty"), 25% of the operational uncertainty (“low uncer-

tainty"), and fixing the prior aerosol values (“no uncertainty"). For example, using our first method

above (Section 2.4.1) with low uncertainty means solving for the AODs of the two selected aerosol

types with 25% of the operational uncertainty assigned to the prior values. This means that instead

of a 1-sigma uncertainty of 2.0 on ln(τ ), we assign a value of 0.5. This equates to a 1-sigma uncer-

tainty range of between 0.06 and 0.16 on a prior AOD of 0.1. Table 2.2 lists all the test setups and

the corresponding uncertainties on the retrieved ln(τ ) and, except for the scalar profile tests, the

retrieved height. The third method, solving for a 20-layer profile (Section 2.4.3), does not lend it-
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self to assigning single values of uncertainty equivalent to the other two setups. Thus, we assigned

layer uncertainties of ln(10), 0.5, and 0.001 for each layer to represent the operational, low, and

fixed setups. We also ran the operational retrieval with low and no uncertainty on the AODs in an

attempt to isolate the impact of only modifying the prior uncertainties. When ingesting vertical in-

formation in the second and third methods, we also reduced the uncertainty of the retrieved height.

The width was effectively never retrieved, as it was always assigned an uncertainty of 0.001.
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Table 2.2: Prior uncertainties of retrieved ln(τ ) and heights (H) for all retrieval variants. The first entry (B8 + MERRA-2 Climatological Types &
AODs with high uncertainty) is equivalent to the operational ACOS retrieval uncertainties. The prior 1-sigma uncertainties on the natural log of the
stratospheric AOD are slightly lower, at 1.8, 0.45, and 0.001 for the three uncertainty levels, respectively.

Retrieval Type High Uncertainty Low Uncertainty No Uncertainty
B8 + MERRA-2 Climatological Types & AODs στ=2.0, σH=0.2 στ=0.5, σH=0.2 στ=0.001, σH=0.2

B8 + GEOS-5 Types & AODs στ=2.0, σH=0.2 στ=0.5, σH=0.2 στ=0.001, σH=0.2
B8 + GEOS-5 Types & Gaussian AODs/Heights στ=2.0, σH=0.2 στ=0.5, σH=0.05 στ=0.001, σH=0.0001

B8 + GEOS-5 Types & Scalar Profile στ, layer=ln 10 στ, layer=0.5 στ, layer=0.01
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After processing all 12 retrieval variants, applying similar post-filtering, and matching re-

trievals to ensure a fair comparison, 19,471 retrievals remained in the TCCON validation dataset

while 17,355 retrievals remained in the model validation dataset. For both datasets and all tests,

there were no significant outliers when it came to the percentage of retrievals that converged or

remained after post-filtering. Typically, the setups with loose priors had slightly more retrievals

fail to converge and the more complex schemes lost more retrievals in post-filtering, but only by a

few hundred.

2.5 Results

In this section we discuss the impact of using better informed aerosol priors in the OCO-2 XCO2

retrieval by comparing our test setups to both TCCON and an ensemble of global XCO2
models.

2.5.1 TCCON Validation Results

Figure 2.5 shows the results of our test setups alongside the operational retrieval variants (top

row). Here, we can see the impact that different prior information and different prior uncertainties

have on the retrieved XCO2
when compared to TCCON.

For our nine GEOS-5 test setups, when examining the standard deviation of the error (σ),

correlation coefficient (R), and mean absolute error (MAE) versus TCCON, the values are typically

best for the setups where only the types and the AODs are ingested (second row). When we apply

a Gaussian fit to the modeled profiles and use those heights and widths as priors (third row), we

see an increase in the scatter against our validation source along with a worse MAE and R. Finally,

when we solve for a scalar on the modeled aerosol profile (bottom row), we see the largest scatter

in XCO2
against TCCON, worst correlations, and highest MAEs. It therefore appears that trying to

incorporate vertical information from the aerosol model leads to a worse XCO2
.

The only GEOS-5 test setup with errors and a correlation coefficient better than the operational

retrieval is the middle panel of the second row (green triangles), where the types and AODs were

ingested with low uncertainty. This may indicate that it is reasonable to assign some confidence
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Figure 2.5: Retrieved OCO-2 XCO2
(y-axes) against TCCON XCO2

(x-axes). Overpass means are plotted.
The first row is the operational retrieval (B8). The second row is ingesting GEOS-5 types and AODs, the
third row is ingesting GEOS-5 types and Gaussian profile priors, and the fourth row is ingesting GEOS-5
types and solving for a scalar to the prior aerosol profile. The left column is high uncertainty, the middle
column is low uncertainty, and the right column is no uncertainty (see Table 2.2). For each panel, R is
the correlation coefficient, σ is the standard deviation of the error against TCCON, and MAE is the mean
absolute error against TCCON.
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in the modeled AODs from GEOS-5, rather than leaving it mostly unconstrained. The operational

retrieval with low uncertainty (blue triangles) does relatively well, but slightly worse than the

original B8 (blue squares).

For all retrieval setups, fixing the aerosol input (right column) results in worse error statistics.

This is likely because models are not perfect and by entirely removing the retrieval’s ability to fit

for aerosol effects on the radiances it results in large errors in XCO2
. Keeping the prior aerosol

uncertainty the same as the operational retrieval (left column), however, appears to allow too much

freedom and the aerosol parameters revert to the operational values, regardless of what the prior

values are. This is because we are assigning almost no confidence to the prior, so all the information

comes from the retrieval. This shows the utility of having semi-constrained aerosol priors to guide

the XCO2
retrieval algorithm. The only row where the low uncertainty test does better than the high

uncertainty test is when we ingest types and AODs. This again indicates that it may be beneficial

to use GEOS-5 modeled types and AODs and assign them some level of confidence that is greater

than the B8 constraint.

2.5.2 Model Validation Results

While TCCON gives a robust estimate of the statistical errors for our test setups, it does not

allow for regional analysis because of the sparsity of the network. The CO2 model median valida-

tion technique, described in Section 2.2.2, allows for an assessment of regional errors in the test

setups compared to a truth metric. For this work, the most promising aerosol setup in the TCCON

validation study was selected for further analysis. That is, ingesting the GEOS-5 types and AODs

with low uncertainty. Figure 2.6 shows the operational (B8) XCO2
error and the GEOS-5 aerosol

prior setup XCO2
error while the top panel of Figure 2.7 shows the difference of the absolute value

of the XCO2
errors for the two setups.

Here, regional differences can be seen. Over Northern Africa and Central Asia the operational

retrieval (top panel of Figure 2.6) is often biased high, which results in a large XCO2
scatter in those

regions. The GEOS-5 aerosol setup (bottom panel of Figure 2.6), however, shows that those high
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Figure 2.6: Top: 4◦x4◦ binned XCO2
error against model validation for B8. Bottom: 4◦x4◦ binned XCO2

error against model validation for the GEOS-5 types & AODs with low uncertainty setup. Grey bins repre-
sent no data.
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Figure 2.7: Top: 4◦x4◦ binned absolute value of B8 XCO2
error against the model validation minus the

absolute value of the GEOS-5 Types & AODs with low uncertainty XCO2
error against the model validation.

Middle: 4◦x4◦ binned absolute value of B8 XCO2
error against the model validation minus the absolute value

of B8 with low uncertainty XCO2
error against the model validation. Bottom: 4◦x4◦ binned absolute value

of B8 with low uncertainty XCO2
error against the model validation minus the absolute value of GEOS-5

Types & AODs with low uncertainty XCO2
error against the model validation. Green grid cells represent

an improvement relative to the model validation while brown grid cells represent a worse comparison. Grey
bins represent no data.
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biased bins have mostly been removed. The difference plot (top panel of Figure 2.7) demonstrates

an improvement in the error of around 1 ppm for many grid cells in Northern Africa and Central

Asia. An additional regional difference is in the Southern Ocean, where the GEOS-5 aerosol setup

develops a new high bias of 0.4 ppm in many of the bins, compared to B8 which has a bias of

nearly zero (+0.1 ppm). Over the remaining land and ocean regions there is minimal change in

XCO2
between the two datasets. While of interest, comparing retrieval setups over the Amazon

and high latitudes is difficult due to the lack of measurements. This is because these regions are

typically cloudy around solar noon or lack the necessary amount of reflected sunlight to make an

accurate retrieval, respectively, so they have been filtered out.

Regarding the plots just discussed, three factors could be contributing to the regional changes

in XCO2
between B8 and the GEOS-5 aerosol prior setup. First, the decrease in prior uncertainty

to 25% of B8. Second, the two selected aerosol types. Third, the modified AOD priors of the two

aerosol types. In order to isolate the first effect, the middle panel of Figure 2.7 shows a comparison

between B8 and B8 with low uncertainty. Here, we can see that the impact of simply reducing the

prior uncertainty on the retrieved AODs is substantial and accounts for a considerable portion of

the improvement over Northern Africa and Central Asia, with the standard deviation of the error

being reduced from 2.12 ppm to 1.92 ppm. The ocean remains nearly unchanged, along with much

of the remaining land surface.

Now that we have isolated the impact of reducing uncertainty, we can compare B8 with low

uncertainty to GEOS-5 types & AODs with low uncertainty to determine what impact, if any,

using the constrained GEOS-5 aerosol types and priors has on the XCO2
error. The bottom panel

of Figure 2.7 shows that this change is beneficial over Central Asia (σXCO2
error reduced from 2.07

ppm to 1.94 ppm for measurements over land between latitudes 16 N and 56 N and longitudes

52 E and 152 E), has a minimal effect over the Northern Africa (σXCO2
error changed from 1.63

ppm to 1.62 ppm for measurements over land between latitudes 6 S and 38 N and longitudes 20

W and 52 E), and a detrimental effect over the Southern Ocean (σXCO2
error increased from 1.86

ppm to 1.95 ppm and a positive bias of 0.4 ppm for measurements south of 45 S). This suggests
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that the improvement in the scatter of the XCO2
error against model validation over the Northern

Africa was primarily due to the reduction in uncertainty in the prior AODs, and not the co-located

GEOS-5 aerosol prior types and values themselves. Over Central Asia, however, the improvement

seems to be a combination of reducing the uncertainty and using instantaneous types and/or AODs.

Over the Southern Ocean, using GEOS-5 types and prior AODs results in an increase in scatter and

a high bias of 0.4 ppm.

Next, we attempt to distinguish between the impact of using GEOS-5 aerosol types and using

their corresponding AODs as prior information. The areas of interest are Central Asia, where using

instantaneous priors improved the XCO2
retrieval, and the Southern Ocean, where it worsened the

XCO2
retrieval. The top panel of Figure 2.8 shows the binned prior AOD for B8, which is derived

from a monthly MERRA-2 climatology (as discussed in Section 1.6.1), while the bottom panel

shows the binned prior AOD for our test setup which uses the co-located GEOS-5 modeled data.

In general, slightly more variation is seen in the GEOS-5 priors, which is to be expected, as the

monthly climatology is a mean of an entire month and thus removes most synoptic variability. The

most prominent change, however, is the significant reduction in prior AOD over Northern Africa

and Central Asia. The GEOS-5 aerosol setup has a 30% lower mean prior AOD than B8. This

is likely because the MERRA-2 climatology was created by simply averaging an entire month

of data together, including all instances where the optical depth was large due to dust storms,

pollution events, biomass burning, etc. Those scenes, however, are typically removed by OCO-

2’s pre-screeners (ABP and IDP, described in Section 2.3) before being processed through the

retrieval code and thus the GEOS-5 prior map only includes scenes that were determined to be

sufficiently clear to perform retrievals on. This suggests that the MERRA-2 monthly climatology

aerosol prior may be artificially high and not entirely appropriate for use in the operational retrieval

algorithm. This is also seen in Figure 2.2, where there are several MERRA-2 climatology AODs

that are significantly high biased against AERONET. Figure 2.2, however, is only data from 13

AERONET sites and is thus not representative of the global differences.
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Figure 2.8: Top: 4◦x4◦ binned prior AOD for B8, derived from a MERRA-2 monthly climatology. Bottom:
4◦x4◦ binned prior AOD for B8 + GEOS-5 Types & AODs with low uncertainty, derived from co-located
GEOS-5 AODs. White bins represent no data.
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In optimal estimation the final, optimized state vector represents a weighted combination of the

prior information and the measurement, not just the state of the prior. The top panel of Figure 2.9

shows the retrieved AOD for B8 while the bottom panel shows the retrieved AOD for the GEOS-5

aerosol setup. Here, we see an even more dramatic difference in retrieved AODs over the Northern

Africa and Central Asia. Over land in these two regions, the retrieved AOD is 52% lower for the

GEOS-5 aerosol setup. This is partially due to the reduced uncertainty on the prior AODs for the

GEOS-5 aerosol setup, which prevents it from deviating substantially from the prior.

While the differences in XCO2
over Central Asia correlate with a large difference in the mag-

nitude of the retrieved AOD, the same cannot be said of the XCO2
differences over the Southern

Ocean, as those differences in retrieved AOD are small (8.9% increase in the GEOS-5 test setup

over the Southern Ocean). Additionally, the middle panel of Figure 2.7 demonstrated that the

reduction in uncertainty alone had a minimal impact on this region.

The changing of one or both of the aerosol types when going from the MERRA-2 monthly

climatology to the instantaneous GEOS-5 setup could be the explanation for the positive 0.4 ppm

bias in XCO2
. Of the 17,355 global retrievals remaining after post-filtering, 32% have one or both

aerosol types different while only 0.7% have both aerosol types different. To test this hypothesis,

we ran an additional set of retrievals similar to the GEOS-5 types & AODs with low uncertainty,

but not changing the types. Figure 2.10 demonstrates that changing the types has almost no effect

on the Southern Ocean and overall has a small and sporadic effect (note the reduced scale). The

mean difference between ingesting GEOS-5 AODs and types and only ingesting GEOS-5 AODs

for retrievals where the type actually changed is about 0.01 ppm with a standard deviation of about

0.2 ppm. Only a small fraction of retrievals had XCO2
differences larger than 0.5 ppm (2.3% of

all retrievals). Thus, the selection of an appropriate AOD prior and uncertainty is much more

important than the exact aerosol properties in our retrieval parameterization.

After further investigation, the modification to the stratospheric aerosol prior and its corre-

sponding uncertainty is likely the cause of the Southern Ocean 0.4 ppm high bias in the GEOS-5

aerosol setup. As detailed in [60], ACOS B7 contained a high bias over water at high southern
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Figure 2.9: Top: 4◦x4◦ binned retrieved AOD for B8. Bottom: 4◦x4◦ binned retrieved AOD for B8 +
GEOS-5 Types & AODs with low uncertainty. White bins represent no data.
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Figure 2.10: 4◦x4◦ binned absolute value of GEOS-5 Types & AODs with low uncertainty XCO2
error

against the model validation minus the absolute value of GEOS-5 AODs with low uncertainty XCO2
error

against the model validation. Green grid cells represent an improvement relative to the model validation
while brown grid cells represent a worse comparison to the model validation. Grey bins represent no data.

latitudes due to both the presence of stratospheric aerosol from the Calbuco eruption in 2015 as

well as ice build up on the OCO-2 focal plane arrays. Here, we have unintentionally replicated this

issue, as the stratospheric aerosol priors from GEOS-5 are near zero (as opposed to a global prior

value of 0.006 used in B8). Figure 2.11 demonstrates that when B8 solves for a large stratospheric

AOD in the Southern Ocean, GEOS-5 cannot because it starts with a lower prior and is unable to

sufficiently increase it. This result in a significant positive bias in XCO2
(bottom of Figure 2.6).

When the retrieved B8 stratospheric AOD is greater than 0.012 in the Southern Ocean, the GEOS-5

aerosol setup incurs a positive bias of approximately 1.4 ppm (compared to the positive 0.4 ppm

bias for all Southern Ocean retrievals). This indicates that in measurements where large strato-

spheric AODs are needed to fit the radiances, the lack of AOD usually appears to lead to a high

bias in XCO2
.

To further test this hypothesis, we ran a set of retrievals where we reverted the stratospheric

aerosol prior AOD and prior uncertainty back to B8 values (0.006 and a 1-sigma uncertainty on
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Figure 2.11: Retrieved stratospheric AOD from B8 versus retrieved stratospheric AOD from B8 + GEOS-5
Types & AODs with low uncertainty for the Southern Ocean. Color represents the change in the absolute
value of the XCO2

error between the two retrieval types, where green demonstrates an improvement over
B8 and brown represents a worsening.
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the ln(AOD) of 1.8). This revealed that the 0.4 ppm bias in the Southern Ocean mostly disappears,

as the high bias is reduced back to approximately +0.1 ppm, in agreement with B8.

2.6 Conclusions

In this study we investigated the impact of using better informed aerosol priors in the OCO-2

ACOS XCO2
retrieval algorithm applied to real measurements. We ingested aerosol information

from co-located GEOS-5 model data with varying levels of uncertainty and compared to two vali-

dation sources, TCCON and a global CO2 model suite.

We found that ingesting instantaneous AOD information with low uncertainty slightly reduced

the standard deviation of the XCO2
error against TCCON from 1.17 ppm to 1.13 ppm. More in-

terestingly, we found that attempting to ingest vertical information from GEOS-5 produced poor

results against TCCON, with mean absolute errors more than 50% larger than B8. We hypothe-

size that this is because accurate vertical placement of aerosol layers still represents a significant

challenge in global aerosol models [109]. This is due to the large uncertainty in processes related

to how aerosols are distributed vertically, partially because of the lack of constraint by global ob-

servations [110]. Additionally, fixing the ingested aerosol information also makes the retrieval

compare poorly to TCCON. This is, again, because the priors will always be imperfect, so the

OCO-2 ACOS XCO2
retrieval algorithm needs some amount of freedom to adjust the radiances.

A comparison to our model validation dataset reveals an improvement over Northern Africa

and Central Asia when using the GEOS-5 types and AODs with low uncertainty compared to B8,

with the scatter in XCO2
error being reduced from 2.12 ppm to 1.83 ppm. Additionally, we see a

new high bias in XCO2
of 0.4 ppm over the Southern Ocean. These regional differences in OCO-2

B8 compared to the GEOS-5 type and AOD low uncertainty prior test setup are likely caused by

one of the three modifications. First, reducing the uncertainty on the prior AODs in B8 results in

an improvement over Northern Africa and Central Asia. Figure 2.12 shows that by constraining

the prior AODs in B8, we prevent the algorithm from retrieving large AODs. Those retrievals that

solved for large AODs in B8 but smaller AODs in the low uncertainty setup generally have smaller
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XCO2
errors (green pixels in Figure 2.12). For retrievals where the B8 AOD is greater than 0.4

over Northern Africa and Central Asia, constraining the prior AODs with low uncertainty reduces

the XCO2
bias against the validation dataset by 0.55 ppm on average. Some retrievals are outliers,

in that they do worse when constrained (brown pixels in Figure 2.12). Around 8% of the retrievals

have an XCO2
error increase of greater than 0.5 ppm. This may be because those scenes actually

contain large AODs and thus constraining the priors is hindering the retrieval’s ability to properly

fit the radiances, but further investigation is needed on this topic.
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Figure 2.12: Retrieved AOD from B8 versus retrieved AOD from B8 with low uncertainty for North Africa
and Central Asia. Color represents the change in the absolute value of the XCO2

error between the two
retrieval types, where green demonstrates an improvement over B8 and brown represents a worsening.

Second, some of the high bias seen in B8 (top panel of Figure 2.6) is likely due to the MERRA-2

climatological priors being unrealistically high for the selected OCO-2 measurements. Physically,

when there is too much aerosol being retrieved, the CO2 absorption lines are filled in too much

because the retrieval thinks those photons are experiencing a shorter path length than they are in
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reality. The retrieval then must add more CO2 to deepen the absorption lines again to match the

measured line depths. This results in the observed high bias in B8 over Central Asia, which is

mostly removed when smaller, more appropriate AOD priors are taken from the GEOS-5 dataset

(bottom panel of Figure 2.7). However, the bottom panel of Figure 2.7 also showed that using

lower AOD priors alone had no significant net impact on Northern Africa. This difference may be

due to Northern Africa having a higher surface albedo than Central Asia. This results in a larger

fraction of the signal coming from the surface and less weight placed on any aerosols present. So

long as the retrieved aerosols are not very large, as discussed above, the XCO2
results over Northern

Africa may be less sensitive to the aerosol prior than other regions.

Third, the GEOS-5 types & AODs with low uncertainty setup resulted in a new high bias of 0.4

ppm in XCO2
relative to B8 over the Southern Ocean. It was initially hypothesized that the change

in aerosol types may have caused the high bias, but we showed that changing one or both of the

aerosol types has a minimal impact on the XCO2
in this setup. After additional tests, we found that

the GEOS-5 stratospheric AODs in the Southern Ocean were too small to be able to account for

actual stratospheric aerosol in the region along with the effects of an ice accumulation artifact in

the OCO-2 radiances. Reverting the stratospheric prior and uncertainty back to that of B8 mostly

eliminated the high bias in the Southern Ocean. This conclusion highlights the severe impact that

even a small amount of aerosols can have on the retrieved XCO2
.

This work is relevant for several missions set to launch in the near future, including OCO-

3, GOSAT-2, MicroCarb, TanSat-2, and GeoCarb. Algorithm development teams will have to

decide how they will account for clouds and aerosols in order to minimize errors in their CO2

measurements. While we have shown the benefits and limitations of using instantaneous modeled

aerosol data to inform the OCO-2 XCO2
retrieval, more work is needed to determine the optimal

aerosol parameterization for near-infrared measurements of CO2. These results may be of use in

guiding development for the next version of the OCO-2 ACOS XCO2
retrieval algorithm.
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Chapter 3

Simplified Aerosol Parameterizations in

Near-Infrared Retrievals of Carbon Dioxide

3.1 Simplified Aerosol Parameterizations

The primary goal of OCO-2 is to use hyperspectral measurements of reflected near-infrared

sunlight to retrieve XCO2
with high accuracy. This is only possible for measurements of scenes

nearly free of clouds and aerosols, but as some contamination will always be present, OCO-2 must

include aerosols in its state vector. The current OCO-2 retrieval algorithm contains, among other

things, nine parameters related to aerosols. However, there are only 2-6 pieces of information

about aerosols in the OCO-2 radiances. Figure 3.1, taken from [82], shows the averaging kernels

for various retrieved aerosol properties for multiple OCO-2-like instruments. The near-infrared

measurements are most sensitive to the aerosol height, effective radius, optical depth (“aerosol

column"), and size distribution width.

In this work, we investigate multiple simplified aerosol schemes in an attempt to minimize

errors in XCO2
by reducing the number of retrieved aerosol parameters to be within the range of

actual degrees of freedom. The retrieval variations in this chapter solve for between zero and six

aerosol parameters, as opposed to the nine in ACOS B8. The previous version of ACOS, B7, did

not include a stratospheric aerosol and thus only contained eight scattering parameters.

The expected benefits of a simplified aerosol parameterization are numerous. The first bene-

fit is faster convergence. This is not because the radiative transfer code is running significantly

faster than in the operational ACOS retrieval, but because a retrieval with a simplified state vector

tends to meet the convergence criteria after fewer iterations. If the simplified aerosol parameter-

ization can produce similar error statistics to the operational ACOS but with faster convergence,

it represents an opportunity to save computational resources. The second benefit is that the re-
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Figure 3.1: Averaging kernel diagonal elements related to aerosols for a solar zenith angle of 20◦. Taken
from [82].

trieval should be less nonlinear. The retrieval of GHGs from near-infrared measurements is a

nonlinear problem, but the ever-growing size of the ACOS state vector [60] has compounded this

problem. [111] has shown that small differences in the first guess of certain state vector elements

can lead to differences in the final retrieved XCO2
of several ppm. Reducing the size of the state

vector, specifically the number of elements related to aerosols, is hypothesized to reduce the non-

linearity of the forward model. However, we do not explicitly test this hypothesis in this work.

The third benefit of a simplified aerosol parameterization is greater throughput. In ACOS B8,

around 10-20% of retrievals that had passed the preprocessors (discussed in Section 1.5.2) still

fail to converge [60]. Many of these retrievals are unable to find a sufficient minimum in the cost

function due to nonlinearity in the forward model. Less nonlinearity could lead to the addition

of many successfully retrieved XCO2
measurements that would have failed to converge otherwise.

Additionally, [112] found that nonlinearity in the retrieval system results in XCO2
errors of 0.9

ppm for synthetic OCO-2 measurements. Finally, a simplified aerosol scheme would lead to more

interpretable aerosol results. In the current ACOS scheme, there is significant correlation between

the aerosol parameters which means the results are often physically implausible or uninterpretable.
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An aerosol parameterization with only a few parameters might allow for a more straightforward

validation of the retrieved aerosol variables. Additionally, the bias correction applied to ACOS B8

uses an ad-hoc mixture of several retrieved aerosol parameters. Simplifying this would allow for a

simpler bias correction setup.

In the following work, three simplified XCO2
retrieval aerosol parameterizations are investi-

gated:

• Two-band non-scattering retrieval

• One layer aerosol model

• Two layer aerosol model

The first and most simplistic method tested in this work is a two-band non-scattering retrieval.

In this setup, no cloud or aerosol parameters were included in the state vector. Additionally, the

O2 A-band was disabled and the surface pressure was not retrieved. Instead, the surface pressure

was fixed at the meteorological prior. This was done because in a non-scattering retrieval, the

algorithm will attempt to adjust the surface pressure to account for clouds and aerosols modifying

the O2 A-band radiances. It is forced to do this because it has no cloud or aerosol parameters to

tune. Rayleigh scattering is kept on, although the effects are small in the weak and strong CO2

bands. Previous work [67] has shown that even after heavy screening, a non-scattering retrieval

does 20-40% worse than its ACOS “full physics" counterpart, in terms of errors relative to the true

XCO2
. Thus, this test is included as a simple baseline against which to compare the other aerosol

parameterizations.

The second simplified aerosol parameterization is a one layer model. Here, a single scattering

layer is placed in the middle of the atmosphere at 0.5 times the prior surface pressure. The vertical

distribution is described by a Gaussian, given by Equation 1.9. The optical depth of a coarse aerosol

type (dust) and fine aerosol type (sulfate) are solved for, along with the height of the layer. The

types are the aggregated MERRA-2 types, described in Section 1.6.1. The width of the Gaussian,

as in B8, remains approximately fixed due to a lack of sensitivity [66, 82]. This results in three

59



aerosol parameters in the state vector. This setup is designed to test the hypothesis that a single

scattering layer is sufficient to parameterize the true cloud and aerosol scene observed by OCO-

2. Additionally, this setup is similar but not identical to the aerosol parameterization developed

by [75], and thus may serve as a useful comparison.

The third method is a two layer model, containing two Gaussian scattering layers. The first

aerosol layer is placed in the lower troposphere (0.9 times surface pressure) and is a mixture of a

coarse aerosol (dust) and a fine aerosol (sulfate), designed to account for low-level anthropogenic

and natural aerosols. The second layer is placed in the stratosphere (0.03 times surface pressure)

and is a mixture of a 70 µm ice cloud and sulfate MERRA-2 type, designed to account for cirrus

clouds, stratospheric aerosols, and an icing issue on the OCO-2 detectors [113]. For both layers,

the algorithm is allowed to solve for the magnitudes of each type and height of the peak of the

Gaussian. For example, in the lower tropospheric layer the optical depth of the coarse type, the

optical depth of the fine type, and the height of the mixture are solved for. The same is done for

the stratospheric layer. This results in a total of six aerosol parameters being solved for, instead of

nine in B8. Figure 3.2 shows a schematic of the two layer model setup.

Figure 3.2: Schematic of the two layer aerosol model designed to retrieve fewer aerosol parameters than
the operational algorithm.
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Table 3.1 describes ACOS B7, B8, and the three simplified aerosol parameterizations used

in this work. ACOS B7 is included to further investigate the impact of the stratospheric aerosol

component added in ACOS B8.

Table 3.1: Setup of the retrievals used in this work.

Retrieval Retrieve Aerosols? # Layers # Aerosol Parameters
ACOS B7 Yes 4 8
ACOS B8 Yes 5 9

Two-band non-scattering No 0 0
One layer model Yes 1 3
Two layer model Yes 2 6

3.2 Validation Datasets

In order to test these simplified aerosol schemes, two validation experiments were devised. The

first was a set of synthetic OCO-2 observations designed to span a range of realistic aerosol profiles,

viewing geometries, and surface albedos. The second was a set of real OCO-2 measurements co-

located with a highly accurate validation source (TCCON).

3.2.1 Synthetic Dataset

To examine the theoretical expected benefits of simplified aerosol parameterizations, a syn-

thetic OCO-2 dataset was created where the true XCO2
was known. This synthetic dataset was

designed to cover the full range of physical cloud and aerosol optical depths, heights, and types.

Additionally, three different surface albedos and three different solar zenith angles were selected.

Table 3.2 lists the exact values of the parameters used to create the synthetic observations. For

example, the first synthetic observation had an optical depth of 0.0, Gaussian height of 1.0 times

the surface pressure, an ice cloud type, a solar zenith angle (SZA) of 25◦, and a surface albedo of

0.18 in the O2 A-band, 0.25 in the weak CO2 band, and 0.15 in the strong CO2 band. Note that the

height of the Gaussian and scattering type are redundant in this example, because the optical depth
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is 0.0. Thus, by spanning all the parameters we create a matrix of 2,646 synthetic observations (7

* 6 * 7 * 3 * 3).

Table 3.2: Setup of the synthetic OCO-2 observations. A synthetic observation was created for every
possible combination of parameters listed.

Parameter # of Values Value(s)
Optical Depth 7 0.0, 0.01, 0.05, 0.1, 0.2, 0.3, 0.5

Gaussian Height1 6 1.0, 0.9, 0.5, 0.3, 0.1, 0.01
Gaussian Width 1 Fixed at 0.05

Type 7 Ice cloud, water cloud, dust, sulfate,
sea salt, organic carbon, black carbon

Solar Zenith Angle 3 25◦, 45◦, 60◦

Surface Albedo2 3 (0.18,0.25,0.15), (0.20,0.20,0.09), (0.21,0.29,0.18)
CO2 Profile 1 Fixed Profile
H2O Profile 1 Fixed Profile
O2 Profile 1 Fixed Profile

Temperature Profile 1 Fixed Profile
1 Surface pressure multiplier.
2 Values listed for all three bands. Selected to represent savannah, evergreen broadleaf forest, and crop-

land.

These parameters were selected to approximately span the full range of expected values for

state vector elements that are physically correlated with the scene’s cloud and aerosol content.

For example, we vary the surface albedo because the XCO2
retrieval can intermingle the retrieved

surface albedo and aerosol properties. Thus, it was deemed important to explore the full range

of possibilities. The optical depths range from a perfectly clear scene (optical depth of 0.0) to

that of a thin cloud or aerosol layer (optical depth of 0.5). It is assumed that the OCO-2 pre-

screeners, ABP and IDP, would catch any scene with an optical depth greater than 0.5, although

this may not be the case for low level clouds. The heights were selected to range from a Gaussian

centered at the surface (1.0 times the surface pressure) to centered in the stratosphere (0.01 times

the surface pressure). The types are simply the two clouds retrieved by ACOS (ice and water

clouds) along with the five possible aggregated aerosol types from MERRA-2. Three solar zenith

angles were selected to span the viewing geometry of the instrument. Three surface albedos were

selected to represent a few typical surface types across the earth. Because we were interested in
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how the results vary for different regional surface characteristics, this study was limited to creating

synthetic scenes over land, as the ocean’s albedo is effectively only a function of wind speed. The

width of the cloud or aerosol layer in these synthetic scenes was held fixed, as previous studies and

preliminary work showed that the results were mostly insensitive to the width.

We compare our modified retrievals to ACOS B8 in order to determine any improvement or

worsening in the errors. While operationally ACOS decides which aerosol types to use based on

a monthly climatology, here we have fixed it so dust and sulfate are the two types chosen in order

to simplify the interpretation of the results. All retrievals were bias corrected on the difference

between the prior and retrieved surface pressure, which, as expected, was highly correlated with the

XCO2
error. Additionally, the synthetic scenes were run through the ABP and IDP (see Section 2.3

for details) to remove scenes that would have been filtered out from the start.

3.2.2 TCCON Validation Dataset

After examining the synthetic results, the logical next step was to test our aerosol parameteriza-

tions on real OCO-2 measurements. The TCCON validation dataset contained 32,175 real OCO-2

measurements taken from 17 September 2014 to 2 May 2016. The sites used in this work are

shown in Figure 2.1. We co-located the OCO-2 measurements in time and space with AERONET

and TCCON to within 1◦ latitude/longitude and +/- 30 minutes. The measurements were selected

from a set of OCO-2 lite files [89], which had been pre-filtered using the ABP (see Section 2.3).

Additional custom filters were also applied in an attempt to remove all scenes contaminated by

clouds or aerosols. Thus, all these tests are being done on a mostly clear dataset and conclusions

cannot be drawn about how our retrieval modifications impact the results if thick cloud or aerosol

layers are present.

The simplified aerosol parameterizations are again compared to ACOS B8 to assess any poten-

tial improvements in the errors. The aerosol setup for B8 is described in Section 1.6.1. In addition

to ACOS B8, the previous version, ACOS B7, was also compared to the test retrievals. The pri-

mary difference between B7 and B8 was the addition of a stratospheric aerosol layer in B8. Thus,
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this comparison is relevant to this study because it allows us to further investigate whether or not

the stratospheric aerosol made a positive or negative impact in the ACOS retrieval.

A simple bias correction was applied to each of the five datasets. As in the previous chapter, a

single parameter bias correction was selected for simplicity. The parameter chosen was that which

has the largest correlation with the difference between the retrieved XCO2
and the TCCON XCO2

.

The retrieved XCO2
was bias corrected by removing a linear fit between the XCO2

error and the

selected variable. For ACOS B7, the weak CO2 band signal to noise ratio (SNR) was used. For B8,

the one layer model, and the two layer model the difference between the retrieved surface pressure

and the prior surface pressure (dp) was selected. For the two-band non-scattering retrieval, the

difference between the surface pressure from ABP and the prior surface pressure was used. This is

because the two-band non-scattering retrieval does not retrieve surface pressure itself. Differences

in surface pressure result in biases in XCO2
because, despite our best efforts to perfect the retrieval,

they modify the path length in unknown ways. Further investigation is needed to determine why

the B7 XCO2
biases are more correlated with the weak CO2 band SNR than dp.

3.3 Synthetic OCO-2 Observation Results

In this section we examine the results of running various simplified retrievals on our synthetic

measurements. Figure 3.3 shows the main results as a function of optical depth and height. This

figure has been filtered to remove scenes where large particles (dust, water clouds, and sea salt)

were placed at or above 0.5 times the surface pressure. This was done because retrievals on those

scenes gave significantly larger errors and it was determined that such scenes are physically un-

likely or would have been removed by various filtering techniques. Further investigation is needed

to determine why such scenes were not screened out by the ABP or IDP.

The first conclusion is that the standard deviation of the errors is small when the optical depth

(τ ) of the synthetic scene is very small (τ equals 0.0 or 0.01). This is unsurprising, as very few

particles are being perturbed by the scattering layer. However, once the optical depth reaches 0.05

the errors become considerably larger. This is especially true at heights above 0.5, where the light
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Figure 3.3: Synthetic aerosol matrix showing the standard deviation of the retrieved XCO2
error as a func-

tion of the true optical depth (τ ) and the true aerosol Gaussian height. ACOS B8 (blue), two-band non-
scattering (green), one layer model (purple), and two layer model (red) results are shown by the bars. Grey
bars represent tests where no retrievals remained after filtering.
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path modification effects of a cloud or aerosol layer become more severe. Interestingly, the errors

again become somewhat smaller (less than 0.5 ppm) when the true cloud or aerosol layer is placed

in the stratosphere (true height equals 0.01). ACOS B8 and the two layer model are designed with a

high-altitude aerosol layer in an attempt to account for these effects, but that does not explain why

the errors for the non-scattering and one layer model are also smaller at the highest altitudes. The

general trend of errors shows that, as expected, larger optical depths and higher cloud or aerosol

layers result in worse XCO2
errors. Some of the more extreme cases, for example a true optical

depth of 0.3 at a true height of 0.1, have smaller error bars because only a few retrievals properly

converged.

Several differences can be seen between the four retrievals tested on the synthetic measurement

matrix. Generally, the non-scattering retrieval has larger errors for most optical depths and heights.

However, a few cases, for example a true optical depth of 0.1 at a height above 0.1, had the

non-scattering retrieval perform far better than any of the other retrievals. This requires further

investigation, as the non-scattering retrieval has no way to account for the scattering particles and

thus should be severely biased in those scenarios.

In general, the one layer model tends to have slightly larger errors than both B8 and the two

layer model, which have similar errors for most setups. B8, the one layer model, and the two

layer model all have interesting scenarios in which they perform well or poorly. For example,

the one layer model does especially poor with a true optical depth of 0.1 at a height of 0.01.

Further investigation revealed that this is because the retrieval is unable to move its single layer

high enough. Additionally, the one and two layer retrievals do notably worse than B8 when the

optical depth is large (τ = 0.5). This may be because B8 includes a low-level water cloud that is

able to help fit the radiances better.

Regarding the solar zenith angle used to create the scenes, true SZAs of 25◦ and 45◦ have

similar errors for all retrieval variants. At 60◦, however, all but 7% of the retrievals (for B8)

fail to properly converge. This was somewhat expected, as a higher SZA means less signal for
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the retrieval to work with. Splitting the results by surface albedo produced subtle differences but

overall the results seem to be insensitive to the three surface types we selected.

The specific scattering type used in the simulation also impacts the results. For example, all

four retrieval variants perform well when the scene contains sulfate particles (Figure 3.4). This

is also the case for organic carbon and black carbon. However, the coarse particle types cause

problems in the retrievals, especially our test cases, at higher optical depths and higher altitudes.

Sea salt, for example, results in a large XCO2
scatter when it is placed above the middle of the

atmosphere. In this case, it should not impact real OCO-2 retrievals because sea salt is mostly

confined to near the surface. However, dust and water clouds can often be present at high altitudes

and negatively impact the retrievals. Further investigation is needed into why the retrievals perform

so poorly when large particles are at high altitudes.

As the two layer model performs about as well as B8 in terms of the standard deviation of the

error (Figure 3.3), the other potential benefits can be investigated. Specifically, the speed of the

two layer model is expected to be faster because the state vector is smaller, and less nonlinearity in

the retrieval should result in fewer iterations needed to find a sufficient minimum in cost function

space. Figure 3.5 shows the number of iterations needed to converge for the four retrieval tests as a

function of true optical depth and true Gaussian height. As expected, the non-scattering retrieval is

unburdened by aerosol radiative transfer calculations and thus is much faster than any of the other

tests. However, the one and two layer models also require on average fewer iterations to converge

than B8, especially for scenes with low true optical depths. For example, when the true optical

depth is 0.01 or 0.0, the one and two layer models take on average almost an entire iteration less

to converge (3.8 versus 3.0 iterations). This would result in around a 20% reduction in the amount

of processing time needed to retrieve XCO2
. Interestingly, the one layer model requires more

iterations than B8 and the two layer model when the true scene contains high-altitude particles

with optical depths greater than 0.01. This is likely because the prior retrieved Gaussian aerosol

layer height is 0.5 times the surface pressure and the retrieval needs additional iterations to push

the scattering layer high enough in the atmosphere.
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Figure 3.4: Synthetic aerosol matrix showing the standard deviation of the retrieved XCO2
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3.4 OCO-2 Observation Results

Having examined how the different retrieval variants perform on the synthetic observations, we

now move on to real OCO-2 measurements. Figure 3.6 shows the five retrieval types (now includ-

ing B7) tested on the TCCON validation dataset. ACOS B7 has the lowest correlation coefficient

(R), largest standard deviation of the error (σ), and largest mean absolute error (MAE) of any of the

tests. Here we can see that ACOS B8 represents a substantial improvement over B7. The addition

of the stratospheric aerosol to the state vector, as detailed in [60], results in overall better error

statistics against TCCON compared to B7. Most of the high outliers seen in B7 fall much closer to

the one-to-one line in the B8 plot.
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Figure 3.6: TCCON XCO2
compared to retrieved XCO2

values from OCO-2. The top left panel is ACOS B7
(blue), the top right panel is ACOS B8 (green), the bottom left panel is the non-scattering retrieval (purple),
the bottom center panel is the one layer model (red), and the bottom right panel is the two layer model
(orange). Overpass means are plotted, along with a one-to-one line in black. The correlation coefficient (R),
standard deviation of the error (σ), and mean absolute error (MAE) are given for each panel.
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3.4.1 Non-Scattering Retrieval

Our hypothesis is that a non-scattering retrieval is not subject to the biases caused by an inef-

fective aerosol scheme and that, with sufficient filtering, it may perform as well as the operational

retrieval. In this test, we have assumed that the prior surface pressure, taken from a model, is

sufficient to give us an accurate path length. Additionally, we have disabled the O2 A-band and

are thus assuming that any clouds or aerosols present in the scene do not impact the CO2 bands

substantially.

Figure 3.6 demonstrates that the two-band non-scattering retrieval works moderately well, in

agreement with [67]. It has better error statistics than B7, but performs worse than the other

three tests. However, the throughput on these non-scattering retrievals is higher than any of the

other tests. Of the 32,176 OCO-2 measurements in the validation dataset, which had already been

screened to remove most contaminated scenes, only one retrieval failed to converge. B8, the one

layer model, and the two layer model all had a few hundred retrievals fail to converge.

3.4.2 One Layer Model

The one layer model was designed to test the hypothesis that including one fine and one coarse

mode aerosol types and letting the retrieval mix them and retrieve appropriate AODs along with

the layer height should be sufficient to account for any scattering effects in the column. Figure 3.6

suggests that the one layer aerosol parameterization is insufficient in terms of performance when

compared to ACOS B8 and the two layer model against TCCON.

The lack of an upper atmospheric layer causes the algorithm to try and move the single layer

up to around 0.2 to -0.5 times the surface pressure from a prior position of 0.5 times the surface

pressure (note that because we are solving for a Gaussian, the retrieval is allowed to move the

retrieved height to less than 0.0 if it thinks only the bottom tail of the Gaussian should be included

in the column). This is effectively the top of the atmosphere, which is a clear sign that the retrieval

thinks it can fit the radiances better with a high altitude layer compared to a near-surface layer.

However, because of this the retrieval lacks a mechanism for accounting for scattering near the
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surface and thus the retrieved XCO2
suffers. To further investigate these results, an additional test

was done where only a single upper layer was included in the retrieval. This layer consisted of

sulfate and an ice type starting in the stratosphere (0.03 times the surface pressure), as in ACOS

B8. The hypothesis is that maybe we only need scattering particles in the stratosphere to account

for most of the path length modification. The results (not shown) were that a single upper layer

model does about as well as the two layer model in terms of R and the scatter of the XCO2
error,

although the initial bias is worse. This indicates that perhaps the retrieval needs a scattering particle

in the lower atmosphere, but further investigation is warranted.

3.4.3 Two Layer Model

As shown in Figure 3.6, the two layer model slightly out-performs ACOS B8. It has a lower

standard deviation of the XCO2
error (1.16 ppm vs. 1.18 ppm) and a better correlation coefficient

(0.823 vs. 0.818). The hypothesis tested here is that the retrieval needs scattering particles in

both the lower and upper atmosphere in order to properly fit the radiances, but that B8 is overly

complex. Despite having small optical depths, we need to solve for scattering properties at a high

altitude (the stratospheric aerosol and ice cloud layer) because they have a larger impact on the

path length modification.

To determine if dust and sulfate were the optimal choices for the lower layer aerosol types,

the sensitivity of the retrieval to the selected type was briefly tested. We ran an additional set of

retrievals where we used sea salt instead of dust as the coarse particle type in the lower layer. The

results (not shown) indicate that the retrieval performs approximately as well as the original two

layer model in terms of both scatter and correlation versus TCCON. This suggests that the exact

scattering properties of our chosen cloud and aerosol types may matter less than other factors. An

additional test to determine if we could simplify the retrieval futher was also performed. We fixed

the upper layer at its prior height instead of allowing it to move. This resulted in a slight worsening

of error statistics, suggesting that it is important to allow the heights to be solved for in the retrieval

in order for the radiance residuals to be optimally minimized.

72



As shown in Section 3.3, the simplified retrievals performed on synthetic radiances showed a

small reduction in the number of iterations needed to converge on an XCO2
solution. Interestingly,

the computational benefit on real retrievals is less prominent. The mean number of iterations taken

in the two layer model is approximately 3.9, compared to 4.1 for ACOS B8. The one layer model

actually takes more iterations, at 4.5 per retrieval. This is likely because the layer starts in the

middle of the atmospheric column and frequently needs additional iterations to move to the top

of the atmosphere, as discussed in Section 3.4.2. The two-band non-scattering retrieval, as in the

synthetic study, took the smallest average number of iterations, at 2.7.

In addition to the TCCON validation dataset, a test was run on the model validation dataset

described in Section 2.2.2 to look for regional differences between the two layer model and B8.

Figure 3.7 shows the results. While there are grid cells where the two layer model does better and

worse than B8, there are no obvious regional patterns in the XCO2
error. The primary feature is

that Northern Africa and Central Asia seem to be most sensitive to modifications to the aerosol

parameterization, which is in agreement with the results of Chapter 2.
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Figure 3.7: 4◦x4◦ binned absolute value of the two layer model XCO2
error against the model validation

minus the absolute value of the ACOS B8 XCO2
error against the model validation. Green grid cells repre-

sent an improvement relative to the model validation while brown grid cells represent a worse comparison
to the model validation. Grey bins represent no data.

73



3.5 Retrieving Aerosol Properties

As discussed in Section 3.1, the near infrared measurements made by OCO-2 are sensitive to

specific properties of a given scattering layer. The total amount of aerosol, height above the ground

of the particles, and size distribution of the particles all can significantly impact the measured ra-

diances. Because of this, some research groups retrieve specific aerosol properties such as the

single-scattering albedo and effective radius (see Section 1.6). In this section, we test a modified

version of ACOS that retrieves the optical depth, height, and effective radius of a single aerosol

layer. The hypothesis is that by allowing ACOS to retrieve information about the scattering parti-

cle’s size instead of fixing it, the retrieval will have more freedom to fit the radiances and retrieve

an accurate XCO2
.

We tested this methodology on a single synthetic orbit created by the Colorado State University

(CSU) Orbit Simulator [114]. For simplicity, we set the prior height to 0.5 times the surface

pressure, the width of the layer to 0.1 times the surface pressure, and the prior optical depth to

0.1 and gave the retrieval sufficient freedom to solve for the height and optical depth. The prior

effective radius was set to 4.0 µm with a 1-sigma uncertainty of 2.0 µm. The Cloud-Aerosol

Lidar and Infrared Pathfinder Satellite Observations (CALIPSO; [115]) dust type was selected to

represent the layer. This selection was somewhat arbitrary, but may have an impact on the results

as the different aerosol types all have unique properties independent of the effective radius, such

as the refractive index.

Figure 3.8 shows the results after applying a one-parameter bias correction. The most corre-

lated parameter for all four retrieval variants was the H2O ratio from the IDP. It is unclear why this

parameter was chosen instead of dp, which is usually selected. It may be an issue with the exact

setup of the synthetic retrievals, but further investigation would be required. Here we can see that

the two layer model and ACOS B8 are nearly identical, in agreement with the previous results. The

one layer model appears to have slightly more scatter against the true XCO2
, again in agreement

with the previous work. The effective radius retrieval, however, shows a much larger scatter in

XCO2
as well as large, latitude-dependent biases. Further work is needed to investigate the source
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of these issues. Potential causes include the selection of dust as the aerosol type and the fidelity at

which the scattering properties were computed. It is likely that running a two layer model where

the optical depth, height, and effective radius are solved for in a lower and upper layer could result

in reduced XCO2
errors. Previous results have shown the importance of having a scattering type in

the upper atmosphere, so this parameterization would adhere to those conclusions.
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Figure 3.8: XCO2
error of the four retrieval types for one synthetic OCO-2 orbit as a function of latitude:
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3.6 Conclusions

In this work, we have tested multiple simplified aerosol parameterizations on both real and

synthetic near-infrared measurements from the Orbiting Carbon Observatory-2. A non-scattering

(or “clear sky") retrieval, one layer model, two layer model, and one layer effective radius retrieval

were all investigated in terms of throughput and error against validation.

From our synthetic retrieval study (Section 3.3), it was found that the non-scattering retrieval

has better throughput than the other retrieval variants. Of the 2,646 measurements in our synthetic

aerosol matrix, several hundred failed to converge for all retrieval variants. These were the syn-
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thetic measurements in the upper right of Figure 3.3, with large optical depths and high altitudes.

However, 1,436 of the total measurements (54%) converged using the non-scattering retrieval,

compared to 47-48% for ACOS B8, the one layer model, and the two layer model.

The two layer model was often able to perform about as well as ACOS B8 in terms of the

scatter of the XCO2
error, although there are exceptions. For the entire synthetic matrix, ACOS B8

has a standard deviation of the error of 0.60 ppm, compared to the non-scattering retrieval (1.22

ppm), one layer model (0.73 ppm), and two layer model (0.67 ppm). However, these results vary

if the true optical depths or heights are subset. For example, if we only look at true optical depths

less than 0.1, ACOS B8 has a scatter of 0.30 ppm while the two layer model has a scatter of 0.32

ppm. The retrieval errors were also a function of the synthetic aerosol type, with the fine mode

aerosols resulting in smaller errors relative to the coarse mode aerosols (Figure 3.4). This suggests

that future work should be focused on screening and parameterizing coarse aerosol types.

One of the expected benefits of a simplified aerosol scheme is enhanced computational perfor-

mance due to a simplified state vector. Figure 3.5 demonstrates a small improvement in the overall

number of iterations needed to converge using the one and two layer models, relative to ACOS B8.

This improvement is more pronounced at low true optical depths; when the true optical depth is

less than 0.05 the one and two layer models take 20% fewer iterations than ACOS B8.

Investigating retrievals performed on real OCO-2 measurements led to similar conclusions to

that of the synthetic study. In terms of convergence, the dataset was already pre-screened to remove

most contaminated observations. However, only one non-scattering retrieval failed to converge for

our TCCON validation set (Section 3.4), compared to a few hundred for ACOS B8 and the one

and two layer models. Specifically, 473 retrievals fail for ACOS B8 and 331 fail for the two layer

model.

In terms of correlation, scatter of the XCO2
error, and MAE against TCCON, the two layer

model performs slightly better than ACOS B8 (Figure 3.6). The correlation coefficient improves

from 0.914 to 0.920, the standard deviation of the error is reduced from 1.18 ppm to 1.16 ppm, and

the MAE is improved from 0.93 ppm to 0.91 ppm. The one layer model performs marginally worse
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against TCCON compared to ACOS B8 and the two layer model. This is likely because the single

layer is sent to the upper atmosphere and the retrieval thus has no way to account for any tropo-

spheric scattering particles. The two-band non-scattering retrieval also performs marginally worse,

due to its inability to account for any scattering effects. As with the throughput statistics, this work

would benefit from an analysis on an unfiltered validation dataset to determine if some retrievals

that failed with ACOS B8 could be salvaged using the simplified aerosol parameterizations.

Overall, the two layer model performs about as well as ACOS B8. The expected benefits,

including a reduction in iterations and throughput improvements, appear to be limited. Further

studies include making improvements to the effective radius retrieval. Designing and testing a two

layer model with the effective radius being retrieved for both the lower tropospheric and strato-

spheric layer could prove more promising, as the retrieval would be solving for the most important

aerosol characteristics while also including the important high altitude scattering layer.
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Chapter 4

Conclusions and Discussion

4.1 Summary of Results

In this work we have developed and tested numerous aerosol parameterizations with the goal of

enhancing the precision and accuracy of near-infrared measurements of total column CO2 made by

the Orbiting Carbon Observatory-2. Because the current ACOS XCO2
retrieval algorithm is rela-

tively mature, large performance gains were not expected. However, this work shows promise and

it will hopefully be of use to future ACOS updates as well as other retrieval algorithms maintained

by several research groups across the globe for not only OCO-2 measurements but also the several

planned future greenhouse gas measurement missions.

Chapter 2 investigated the potential for improved aerosol priors and how it impacts the retrieved

XCO2
from real near-infrared measurements from OCO-2. Aerosol information was ingested from

co-located GEOS-5 model data with varying levels of uncertainty and compared to both TCCON

and a global CO2 model validation suite. It was found that ingesting instantaneous GEOS-5 aerosol

types and AODs with low uncertainty slightly reduced the standard deviation of the XCO2
er-

ror against TCCON from 1.17 ppm to 1.13 ppm. Attempting to ingest vertical information from

the models produced poor results against TCCON, likely because accurate vertical placement of

aerosol layers still represents a significant challenge in global aerosol models. Additionally, fixing

the prior aerosol information also yielded poor XCO2
values. This is because modeled aerosols are

imperfect and thus the XCO2
retrieval needs some amount of freedom to adjust the aerosol parame-

ters in order to match the observed radiances. When comparing to the global CO2 model validation

dataset, we found that the GEOS-5 setup performs better than ACOS B8 over Northern Africa and

Central Asia, due to a combination of smaller prior aerosol optical depths and a lower prior aerosol

optical depth uncertainty. The lower prior uncertainty, specifically, prevents the algorithm from

retrieving very large AODs and helps prevent the XCO2
from being biased high. Over Northern
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Africa and Central Asia, use of the MERRA-2 climatology in B8 results in too large of an AOD

prior. This issue is correlated with a small XCO2
high bias over Central Asia. Finally, our work re-

iterated the importance of the stratospheric aerosol component introduced in ACOS B8, especially

over the Southern Ocean. Overall, the use of better informed aerosol priors shows promise but

is restricted by the accuracy and limitations of global aerosol models. This work, specifically the

implementation of aerosol type and AOD priors from GEOS-5, has contributed to the development

of the ACOS retrieval algorithm for both OCO-2 and OCO-3, due to be launched in March of 2019

and installed on the International Space Station shortly thereafter.

Chapter 3 presented our study on simplifying the ACOS XCO2
retrieval aerosol parameteriza-

tion with the hopes of improved throughput, better error statistics, and increased computational

speed. We examined retrievals run on both synthetic and real near-infrared measurements. The

synthetic retrievals revealed that the two layer model, where only six aerosol parameters were in-

cluded in the state vector instead of nine, performed slightly worse than ACOS B8, with a standard

deviation of the XCO2
error of 0.67 ppm compared to 0.60 ppm. These results varied depending

on the exact true optical depth and true aerosol layer height of the scene. The retrieval errors

were also a function of the specific aerosol type, with the fine mode aerosols resulting in smaller

XCO2
errors relative to coarse mode aerosols. Regarding computational speed, there was a small

improvement in the number of iterations needed to converge using the two layer model on the

synthetic radiances. Examining the simplified retrievals run on real OCO-2 measurements and

validated against TCCON showed that the two layer model performs slightly better than ACOS

B8, with a reduction in the standard deviation of the XCO2
error from 1.18 ppm to 1.16 ppm. The

two-band non-scattering retrieval and one layer model perform marginally worse, implying that

neither parameterization is complex enough to sufficiently capture the impact of scattering parti-

cles on the measured radiances. Overall, the two layer model performs about as well as ACOS B8

in terms of error against the validation sources, throughput, and computational speed. Additional

studies include testing on an unfiltered validation dataset and working to improve the effective

radius retrieval.

79



4.2 The Future of Space-Based Measurements of CO2

The world is beginning to understand the direness of climate change and many nations and

organizations are investing millions of dollars into new instruments and missions designed to mea-

sure greenhouse gases from space. Some of these include OCO-3, GOSAT-2, GOSAT-3, Micro-

Carb, TanSat-2, TROPOMI [116], and GeoCarb. The funding of these missions is predicated upon

the assumption that retrieval errors will continue to improve and that the defined accuracy and

precision requirements will be met. However, atmospheric scattering effects remain an unsolved

problem in the near-infrared retrieval community and thus many of these research groups will need

to continue to investigate how to best handle this issue in order to minimize their measurement er-

rors. This is especially true for current and future GHG missions that have large-scale mapping

capabilities because aerosol plume biases may masquerade as real GHG signals. Studying GHG

emissions over megacities and power plants will also be hindered because of co-located anthro-

pogenic aerosols and cloudy regions, such as tropical rainforests, may also contain significant

biases.

One strategy to try and solve this problem is to include additional instruments on the same

platform as a GHG sensor. GOSAT and GOSAT-2, for example, also have cloud and aerosol

imagers onboard, but so far these have primarily been used for screening. The ESA’s Sentinel-

7, currently in development, will contain a multi-angle polarimeter designed to reduce aerosol

induced XCO2
errors. Sentinel-7 will also contain an NO2 detector to retrieve the plume shape of

CO2 point sources in order to estimate their emission rate. Finally, discussions of future mission

concepts typically include a near-infrared sensor combined with a cloud and aerosol lidar. This

would allow for new methods of screening and the ability to ingest accurate vertical cloud and

aerosol information into the GHG retrievals, but such a mission would be relatively expensive.

The vertical cloud profiles would be especially useful, as little work has been done on trying to

use observations or models to try to improve the cloud priors, due to the small-scale nature of

clouds. Some preliminary work has investigated combining measurements from CALIPSO and

OCO-2, both in the NASA Afternoon-Train, but sensitivity and co-location issues proved difficult
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to overcome. Studies are also being performed on the 3-dimensional effects of cloud and aerosol

layers on the XCO2
retrievals [117] and on averaging multiple OCO-2 measurements together, both

with the goal of reducing small-scale biases.

Regarding the results of this work, further studies are needed to determine the optimal cloud

and aerosol parameterization for retrievals of XCO2
performed on near-infrared measurements. Fu-

ture work on improving the aerosol priors and their associated uncertainties should be combined

with any updates to the parameterization, but significant enhancements to the precision and accu-

racy of the XCO2
retrievals are unlikely, in part because the current ACOS retrieval is relatively

mature.
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358(6360):eaam5776, 2017.

[31] Junjie Liu, Kevin W Bowman, David S Schimel, Nicolas C Parazoo, Zhe Jiang, Meemong

Lee, A Anthony Bloom, Debra Wunch, Christian Frankenberg, Ying Sun, C. W. O’Dell,

K. R. Gurney, D Menemenlis, M Gierach, D Crisp, and A Eldering. Contrasting carbon

cycle responses of the tropical continents to the 2015–2016 el niño. Science, 358(6360),

2017.

87



[32] Ray Nassar, Timothy G Hill, Chris A McLinden, Debra Wunch, Dylan Jones, and David

Crisp. Quantifying co2 emissions from individual power plants from space. Geophysical

Research Letters, 44(19), 2017.

[33] Florian M Schwandner, Michael R Gunson, Charles E Miller, Simon A Carn, Annmarie

Eldering, Thomas Krings, Kristal R Verhulst, David S Schimel, Hai M Nguyen, David

Crisp, C. Frankenberg, M. Gunson, and H. Pollock. Spaceborne detection of localized

carbon dioxide sources. Science, 358(6360):eaam5782, 2017.

[34] H Lindqvist, C. W. O’Dell, S Basu, H Boesch, F Chevallier, N Deutscher, L Feng, B Fisher,

F Hase, M Inoue, R. Kivi, I. Morino, P. I. Palmer, R. Parker, M. Schneider, R. Sussmann,

and Y. Yoshida. Does gosat capture the true seasonal cycle of xco2? Atmospheric Chemistry

and Physics, 15(11), 2015.

[35] Christian Frankenberg, Susan S Kulawik, Steven C Wofsy, Frédéric Chevallier, Bruce

Daube, Eric A Kort, Christopher O’dell, Edward T Olsen, and Gregory Osterman. Using

airborne hiaper pole-to-pole observations (hippo) to evaluate model and remote sensing es-

timates of atmospheric carbon dioxide. Atmospheric Chemistry and Physics, 16(12):7867–

7878, 2016.

[36] Debra Wunch, Paul O Wennberg, Gregory Osterman, Brendan Fisher, Bret Naylor,

Coleen M Roehl, Christopher O’Dell, Lukas Mandrake, Camille Viatte, Matthäus Kiel,

D. G. Feist, S. G. Arnold, K. Strong, J. Mendonca, R. Kivi, P. Heikkinen, L. Iraci,

J. Podolske, P. W. Hillyard, S. Kawakami, M. K. Dubey, H. A. Parker, E. Sepulveda, O. E. G.

Rodriguez, Y. Te, P. Jeseck, M. R. Gunson, D. Crisp, and A. Eldering. Comparisons of the

orbiting carbon observatory-2 (oco-2) xco2 measurements with tccon. Atmospheric Mea-

surement Techniques, 10(6):2209–2238, 2017.

[37] A. Chédin, S. Serrar, N. A. Scott, C. Pierangelo, and P. Ciais. Impact of tropical biomass

burning emissions on the diurnal cycle of upper tropospheric co2 retrieved from noaa 10

satellite observations. Journal of Geophysical Research: Atmospheres, 110(D11), 2005.

88



[38] W. L. Smith, H. M. Woolf, C. M. Hayden, D. Q. Wark, and L. M. McMillin. the tiros-n

operational vertical sounder. Bulletin of the American Meteorological Society, 60:1177–

1187, 1979.

[39] R. J. Engelen and G. L. Stephens. Information content of infrared satellite sounding mea-

surements with respect to co2. Journal of Applied Meteorology, 43(2):373–378, 2004.

[40] H. Bovensmann, J. P. Burrows, M. Buchwitz, J. Frerick, S. Noël, V. V. Rozanov, K. V.

Chance, and A. P. H. Goede. Sciamachy: Mission objectives and measurement modes.

Journal of the atmospheric sciences, 56(2):127–150, 1999.

[41] M. Buchwitz, R. de Beek, S. Noël, J. P. Burrows, H. Bovensmann, H. Bremer, P. Bergam-

aschi, S. Körner, and M. Heimann. Carbon monoxide, methane and carbon dioxide columns

retrieved from sciamachy by wfm-doas: year 2003 initial data set. Atmospheric Chemistry

and Physics, 5(12):3313–3329, 2005.

[42] O Schneising, M Buchwitz, J Burrows, H Bovensmann, Markus Reuter, Justus Notholt,

Ronald Macatangay, and Thorsten Warneke. Three years of greenhouse gas column-

averaged dry air mole fractions retrieved from satellite - part 1: Carbon dioxide. Atmo-

spheric Chemistry and Physics, 8(14):3827–3852, 2008.

[43] T. S. L’Ecuyer and J. H. Jiang. Touring the atmosphere aboard the a-train. Physics Today,

63:36–41, 2010.

[44] Dongxu Yang, Yi Liu, Zhaonan Cai, Xi Chen, Lu Yao, and Daren Lu. First global car-

bon dioxide maps produced from tansat measurements. Advances in Atmospheric Sciences,

35(6):621–623, 2018.

[45] Joel Susskind, Christopher D Barnet, and John M Blaisdell. Retrieval of atmospheric and

surface parameters from airs/amsu/hsb data in the presence of clouds. IEEE Transactions

on Geoscience and Remote Sensing, 41(2):390–409, 2003.

89



[46] N Pougatchev, T August, X Calbet, T Hultberg, O Oduleye, P Schlüssel, B Stiller, K. S.

Germain, and G Bingham. Iasi temperature and water vapor retrievals–error assessment and

validation. Atmospheric Chemistry and Physics, 9(17):6453–6458, 2009.

[47] S. S. Kulawik, D. B. A Jones, R. Nassar, F. W. Irion, J. R. Worden, K. W. Bowman,

T. Machida, H. Matsueda, Y. Sawa, S. C. Biraud, M. L. Fischer, and A. R. Jacobson. Char-

acterization of tropospheric emission spectrometer (tes) co2 for carbon cycle science. Atmo-

spheric Chemistry and Physics, 10(12):5601–5623, 2010.

[48] Peter F Bernath, Charles Thomas McElroy, MC Abrams, Christopher D Boone, Mike But-

ler, Claude Camy-Peyret, Michel Carleer, Cathy Clerbaux, P-F Coheur, Réginald Colin,
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Appendix A

High-Accuracy Measurements of Total Column

Water Vapor from the Orbiting Carbon

Observatory-2

A.1 The Importance of Water Vapor

While the primary measurement of OCO-2 is column CO2, numerous other products are being

developed and validation, one of which is total column water vapor (TCWV). These measurements

are an ancillary product of the primary ACOS retrieval algorithm, with information coming from

three highly resolved spectral bands. Water vapor is important in how it influences the radiation

budget, hydrologic cycle, weather patterns, and climate change. Improved knowledge of water va-

por could lead to an enhanced understanding in all of these fields. Currently, global spaced-based

information on water vapor comes from a number of satellite instruments. First, there are sensors

that operate at microwave wavelengths such as the Special Sensor Microwave Imager [118], the

Advanced Microwave Scanning Radiometer Earth Observing System, the Advanced Microwave

Scanning Radiometer 2 (AMSR2), the Tropical Rainfall Measuring Mission Microwave Imager,

and the Global Precipitation Measurement Microwave Imager. Second, sensors that operate at

thermal infrared wavelengths such as the Atmospheric Infrared Sounder (AIRS; [45]), the In-

frared Atmospheric Sounding Interferometer (IASI; [46]), the Cross-track Infrared Sounder [119],

and the High-resolution Infrared Radiation Sounder [120]. Third, sensors that operate at near-

infrared wavelengths such as MODIS [121, 122] and the MEdium Resolution Imaging Spectrom-

eter (MERIS) [123, 124]. Finally, sensors that operate at visible wavelengths such as the Global

Ozone Monitoring Experiment-2 [125]. Over ocean, microwave and infrared sensors are typically

used, as the surface temperature and emissivity are relatively well-known. Over land, emissivity

constraints result in a preference towards near-infrared sensors.
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At the near-infrared wavelengths that OCO-2 observes, there are many H2O lines present. If

these absorption features and H2O’s foreign broadening impact on the CO2 lines are not accounted

for, biases are introduced into the XCO2
retrieval. Thus, one of the retrieved variables in the

ACOS algorithm is total column water vapor (TCWV), which is defined as the total gaseous water

contained in a vertical column of atmosphere. The unit of TCWV throughout this work is the

millimeter (mm), where 1 mm is equal to 1 kg/m2. Absorption coefficient tables (ABSCO v4.2)

were created using H2O lines from a custom list, similar to the line list used in the HIgh-resolution

TRANsmission molecular absorption database compilation (HITRAN2012; [126, 127]). The H2O

continuum model used is a custom version of the Mlawer-Tobin-Clough-Kneizys-Davies model

[128]. These ABSCO tables are used to supply absorption cross section values for the retrieved

gases and are critically important in retrieving nearly bias-free measurements. The inclusion of

TCWV in the ACOS retrieval leads to the following question: how well can OCO-2 retrieve H2O

information?

A.2 Theoretical Basis

As water is a nonlinear molecule with a net dipole moment, many rotational and vibrational

absorption features exist throughout the electromagnetic spectrum. OCO-2 resolves a number of

strong H2O absorption features in both its 1.61 and 2.06 µm bands. Figure A.1 shows an example

of absorption features in these bands, as seen through the OCO-2 spectral response function. While

the majority of the lines are due to carbon dioxide, many water vapor lines are also evident. In an

atmosphere devoid of clouds and aerosols, the relative line depth is directly related to TCWV. The

lines are well-resolved, and because of OCO-2’s high signal-to-noise ratio of several hundred to

greater than 1000 [129], even small changes in the relative line depth can be detected.

The ACOS algorithm uses the European Centre for Medium-Range Weather Forecasts Inte-

grated Forecast System (ECMWF IFS; [130]) for meteorological a priori information on tempera-

ture, water vapor, and surface pressure and retrieves a single scaling factor applied to the ECMWF

water vapor profile. This is done to reduce possible correlations between the retrieved XCO2
and
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Figure A.1: Simulated OCO-2 1.61 µm band (top panel) and 2.06 µm band (bottom panel) transmittance
spectra in a typical downward-looking observation, demonstrating the prevalence of water vapor absorption
features (blue) within the CO2| absorption bands (orange).

water vapor. Because the ACOS algorithm is given the precise spectral response function and SNR

of the instrument, the optimal estimation approach produces an estimate of the uncertainty in its

retrieved TCWV. This estimate is typically only 0.1-0.2 mm and includes errors due to both instru-

ment noise as well as cross-talk errors due to other retrieved variables such as aerosols and carbon

dioxide. However, the estimate does not include errors in the prescribed ECMWF vertical profile

of water vapor and may not fully account for errors due to clouds and aerosols, so it may be an

underestimate. This theoretical uncertainty therefore serves as a useful lower limit of the actual

TCWV retrieval error.

We next improve on this estimate by performing retrievals on simulated spectra in realistic

atmospheres created using the CSU Orbit Simulator [114]. These simulations include realistic rep-

resentations of the viewing geometry and surface reflectance, profiles of clouds and aerosols from

the Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument onboard the Cloud-

Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO; [115]), and meteorology

from ECMWF. Gaussian instrument noise is also added to the spectra. For more details on the
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methodology, see [56]. Scenes contaminated by clouds and aerosols are rejected via a spectral-

based cloud-screening technique [71, 131], as OCO-2 is only able to make accurate retrievals in

scenes nearly free of cloud and aerosol contamination. However, scenes passing this pre-filter may

still contain some clouds and aerosols, typically with an optical depth less than 0.3.

ACOS retrievals were then performed on scenes passing the cloud and aerosol pre-filter. To

challenge our retrieval, we set the prior meteorological data to be from the National Centers for

Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) Reanalysis-

1 [132], rather than from ECMWF, as a proxy for realistic errors in water vapor amount and

vertical distribution, as well as errors in the temperature profile and surface pressure. Despite these

errors sources, we were able to retrieve TCWV values with an almost perfect correlation with the

true water vapor (R=0.999) and effectively no bias (-0.08 mm) compared to the true TCWV used

to create the synthetic measurements (Figure A.2). The root mean squared deviation (RMSD)

between the retrieved TCWV and true TCWV was reduced from about 4 mm (7 mm) in the prior

(Table A.1) to 0.39 mm (0.75 mm) in the retrieval over land (ocean) (see Tables S1 and S2 in the

supplementary material). This mean error of about 0.6 mm is higher than the simple theoretical

estimate of approximately 0.1-0.2 mm likely because of additional cloud and aerosol light path

modification effects but also potentially because of errors in the prior temperature profile, surface

pressure, and water vapor profile shape.
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Figure A.2: The top panel shows a heatmap comparison of the prior OCO-2 TCWV, taken from the
NCEP/NCAR reanalysis, to the true synthetic TCWV (created using ECMWF). The bottom panel shows
a heatmap comparison of the retrieved OCO-2 TCWV to the true synthetic TCWV.
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Table A.1: OCO-2 Prior TCWV Validation: Simulations.

Validation Mode N Surface Bias (mm) σ (mm) σµ (%) RMSD (mm)
True Scene N&G 21000 Land & Ocean 0.44 5.75 27.7 5.77

N 9813 Land 0.88 4.01 29.3 4.11
G 10287 Ocean 0.02 7.00 25.4 7.00

Table A.2: OCO-2 Retrieved TCWV Validation: Simulations

Validation Mode N Surface Bias (mm) σ (mm) σµ (%) RMSD (mm) Variance Reduced (%)
True Scene N&G 21000 Land & Ocean -0.10 0.59 2.9 0.60 98.9

N 9813 Land -0.13 0.36 2.9 0.39 99.2
G 10287 Ocean -0.08 0.74 2.7 0.75 98.9
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A.3 Data

We now extend our analysis to real OCO-2 data by comparing OCO-2 TCWV measurements

to four TCWV validation sources: SuomiNet [133], the AErosol RObotic NETwork (AERONET)

[80], the Integrated Global Radiosonde Archive (IGRA) [134], and the Advanced Microwave Scan-

ning Radiometer 2 (AMSR2) [135]. SuomiNet is a ground-based Global Positioning System (GPS)

network that measures TCWV concentrations using the time delay in the 1.6 and 1.2 GHz GPS sig-

nals. As a GPS satellite passes overhead, the transmitted signal is slowed by Earth’s atmosphere

and the time it takes to reach a given SuomiNet instrument on the ground is recorded. The delay

in this time is a function of how much water vapor is in the column of air, the temperature profile,

etc. Using a simple equation, TCWV can then be retrieved with an estimated accuracy of 1-2

mm [133]. AERONET is a ground-based sun-photometer network primarily designed to measure

aerosol properties. Each AERONET instrument tracks the sun as it travels across the sky and uses

measured radiances to infer column values of several quantities, including water vapor (using a

band around 0.94 µm via the Direct Sun Algorithm version 2) [136, 137] with a reported accuracy

of better than 2 mm [138]. IGRA is a collection of radiosonde and pilot balloon observations from

over 1,500 globally distributed stations. While primarily used for operational weather forecast-

ing, radiosonde observations have also been used for other applications including the verification

of satellite measurements. [139] found mean differences in TCWV between radiosondes and a

ground-based microwave radiometer of 0.9 mm. An exponential fit to each IGRA profile was

used to account for any water vapor present above the altitude at which the radiosonde stopped

taking data. Only Vaisala RS92s were used in this study, as they have been extensively validated

(e.g. [139, 140]). We also required each profile to contain at least 30 vertical measurements. The

primary limitation of these three ground-based networks is their lack of coverage over ocean and

sparse coverage over land, which restricted the number of co-locations as OCO-2’s orbit track is

less than 10 km wide and has a repeat cycle of approximately 16 days. Additionally, the infrequent

launch times of radiosondes (typically only 0Z and 12Z) further restrict the number of available

co-locations of IGRA with OCO-2. The fourth validation source, AMSR2, is a radiometer that
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measures water vapor at microwave wavelengths over ocean using horizontally and vertically po-

larized channels at 18.7, 23.8, and 36.5 GHz. It flies in the Afternoon Constellation a few minutes

behind OCO-2 and thus provides a substantial number of co-located measurements. [141] found a

RMSD between AMSR2 and a radiosonde dataset of 2.6 mm. For this work, the Remote Sensing

Systems 0.25◦ gridded TCWV product was used (version 7.2; [142]). The MODIS instrument

on NASA’s Aqua satellite, despite being in the Afternoon Constellation with OCO-2, was not se-

lected as a validation source, as its water vapor errors are likely larger than those from OCO-2

(e.g. [121, 143]). While a custom retrieval has been shown to have smaller errors than the op-

erational algorithm [144], our previously described validation sources over land were considered

sufficient.

To compare to OCO-2 TCWV measurements to SuomiNet and AERONET, co-location crite-

ria of 30 minutes in time and 0.1◦ latitude (about 11 km) in space were chosen. We examined

the potential of expanding the co-location thresholds in order to increase the number of matched

measurements but found that the differences between the OCO-2 and validation TCWV values

increased substantially for larger thresholds, indicating that the spatial and temporal variability of

water vapor imposes limits on the chosen co-location thresholds. Figure A.3 shows a minimum

in RMSD between OCO-2 and SuomiNet TCWV using a co-location distance threshold of about

0.1◦ latitude. Smaller spatial co-location thresholds than about 0.1◦ have a larger RMSD because

there are too few remaining SuomiNet measurements. In an attempt to increase the number of

IGRA co-locations, we allowed radiosondes within 0.1◦ to have been launched up to an hour be-

fore the corresponding OCO-2 measurement, as radiosonde balloons typically take 1-2 hours to

ascend through the atmosphere. We also applied a station surface pressure or station altitude dif-

ference threshold to ensure that OCO-2 was not measuring substantially shorter or longer path

lengths (and thus retrieving less or more water vapor, which is concentrated near the surface).

Against SuomiNet and IGRA, a surface pressure difference threshold of less than 10 hPa was used

while against AERONET an altitude difference threshold of less than 100 m was used. The chosen

thresholds removed expected biases that were appearing when OCO-2 measurements were sam-
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pling columns of air much higher or lower in elevation than the nearby SuomiNet, AERONET, or

IGRA station. We chose to reject data instead of trying to apply a custom water vapor correction

because water vapor is highly concentrated near the surface and thus any errors or uncertainty in

the correction could represent a disproportionately large fraction of the total TCWV.
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Figure A.3: RMSD between OCO-2 TCWV and SuomiNet TCWV as a function of co-location distance
threshold (dx).

OCO-2 measurements (ACOS B7 lite files; [145]) from 6 September 2014 to 10 February

2016 were used for this study. As was done for the simulated measurements, the pre-filter of

[71, 131] was used to eliminate scenes contaminated by clouds and aerosols. Despite this, some

poor retrievals remain in the dataset, typically due to uncorrected cloud and aerosol effects. The

ACOS B7 “lite" files used at the time of this writing only include data passing an additional “warn-

level" based filter (warn level less than 17, see [146] for details).

OCO-2 nadir and glint measurements over land and glint measurements over ocean were used

for this study. Glint geometry, where the satellite views a surface footprint near the sun-glint spot

on the earth’s surface, is primarily used over oceans but, due to satellite maneuvering restrictions,

is also used over land. Land has a sufficiently strong surface reflectance in glint geometry and

thus enables the use of glint measurements along with nadir (downward looking) measurements.
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Target mode measurements, where OCO-2 dithers across a specific target and gathers thousands

of measurements, were excluded from the main analysis. This was to avoid having the statistics

overly influenced by a large number of measurements co-located with a small number of validation

measurements. The target mode measurements, however, agreed with our overall conclusions

(Table A.3). Figure A.4 shows the location of the 282 SuomiNet stations, 83 AERONET stations,

12 IGRA stations, and 229,390 0.25◦x0.25◦ AMSR2 grid cells that had at least one co-located

OCO-2 measurement for this study.
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Table A.3: OCO-2 TCWV Validation

Validation Mode N Surface Bias (mm) σ (mm) σµ (%) RMSD (mm) Variance Reduced (%)
SuomiNet N&G 13306 Land 0.34 1.29 7.2 1.34 65.7

N 8026 Land 0.31 1.24 7.5 1.28 60.7
G 5280 Land 0.38 1.37 6.7 1.42 69.1
T 24787 Land 0.75 1.03 7.8 1.27 -23.4

AERONET N&G 2703 Land 1.42 1.51 9.0 2.07 68.7
N 1365 Land 1.41 1.28 7.6 1.90 74.7
G 1338 Land 1.43 1.72 10.1 2.24 63.6
T 34223 Land 0.97 1.95 13.7 2.18 -26.5

IGRA N&G 639 Land 0.41 1.74 8.6 1.79 55.0
N 416 Land 0.79 1.51 8.3 1.70 69.4
G 223 Land -0.30 1.90 8.0 1.93 -9.1

AMSR2 G 8923137 Ocean -0.44 0.81 2.8 0.92 86.6
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Figure A.4: Location of SuomiNet sites (purple), AERONET sites (green), IGRA sites (red), and AMSR2
grid cells (blue) that have a valid OCO-2 measurement co-located in time and space from 6 September 2014
to 10 February 2016.

As previously stated, OCO-2 uses ECMWF model output as its meteorological prior. This

gave us an opportunity to see if the OCO-2 retrieval is able to improve upon model output, which

would indicate that OCO-2 TCWV measurements may be useful in improving numerical prediction

models. Additionally, we co-located OCO-2 TCWV measurements with the Modern-Era Retro-

spective analysis for Research and Applications Version 2 (MERRA-2; [147]), to provide a model

comparison independent of the OCO-2 retrieval framework. MERRA-2 is a 3-hourly, 0.625◦x0.5◦

atmospheric reanalysis produced by the NASA Global Modeling and Assimilation Office.

A.4 Validation

Comparing OCO-2 TCWV measurements to our four validation sources, Figure A.5 demon-

strates that ACOS is able to retrieve TCWV with relatively high accuracy and small biases. The

ECMWF TCWV values, used as the prior, have RMSDs of about 2.2 mm, 3.4 mm, 2.6 mm, and

2.3 mm relative to SuomiNet, AERONET, IGRA, and AMSR2, respectively (Figure A.6 and Ta-

ble A.4). The OCO-2 retrievals (Figure A.5) are able to reduce these RMSDs down to about 1.3
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mm, 2.1 mm, 1.8 mm, and 0.9 mm. The correlation coefficients relative to the prior are improved

against all four validation sources and represent a reduction in error variance of 66%, 69%, 55%,

and 87% for SuomiNet, AERONET, IGRA, and AMSR2, respectively. The mean bias relative to

SuomiNet, IGRA, and AMSR2 are 0.3, 0.4 mm, and -0.4 mm, respectively, while the AERONET

TCWV measurements appear to be low biased by approximately 1.4 mm (see Table S3 in the sup-

plementary material). The slope of the best-fit line for AERONET is about 1.07 which equates to

a low bias of 7% relative to the retrieved OCO-2 TCWV values.
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Figure A.5: Heatmap comparison of the retrieved OCO-2 TCWV to SuomiNet, AERONET, IGRA, and
AMSR2 TCWV measurements.
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Figure A.6: Heatmap comparison of ECMWF TCWV to SuomiNet, AERONET, IGRA, and AMSR2
TCWV measurements.
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Table A.4: ECMWF TCWV Validation

Validation Mode N Surface Bias (mm) σ (mm) σµ (%) RMSD (mm)
SuomiNet N&G 13306 Land 0.11 2.21 12.4 2.21

N 8026 Land -0.16 1.98 12.3 1.99
G 5280 Land 0.53 2.46 12.0 2.51
T 24787 Land -0.15 0.93 7.5 0.94

AERONET N&G 2703 Land 2.07 2.70 15.4 3.41
N 1365 Land 1.92 2.54 14.7 3.18
G 1338 Land 2.24 2.86 16.0 3.63
T 34223 Land 0.12 1.73 12.9 1.74

IGRA N&G 639 Land 0.43 2.59 12.8 2.63
N 416 Land 1.04 2.73 14.8 2.93
G 223 Land -0.70 1.82 7.8 1.95

AMSR2 G 8923137 Ocean -0.74 2.22 7.6 2.34

In addition to ECMWF, MERRA-2 was also found to have worse error statistics than OCO-2,

relative to the validation sources. We found RMSDs of 2.8 mm, 3.4 mm, 3.3 mm, and 2.8 mm

relative to SuomiNet, AERONET, IGRA, and AMSR2, respectively (Figure A.7 and Table A.5). A

summary of the RMSDs between MERRA-2, ECMWF, and OCO-2 and the four validation sources

is shown in Figure A.8.

Table A.5: MERRA-2 TCWV Validation

Validation Mode N Surface Bias (mm) σ (mm) σµ (%) RMSD (mm)
SuomiNet N&G 10827 Land 0.75 2.65 14.0 2.75

N 6881 Land 0.43 2.35 13.6 2.39
G 3947 Land 1.29 3.03 13.8 3.29

AERONET N&G 2003 Land 1.84 2.90 16.2 3.43
N 1160 Land 1.66 2.48 14.8 2.98
G 843 Land 2.10 3.37 17.3 3.97

IGRA N&G 584 Land -0.80 3.19 16.1 3.29
N 382 Land -0.50 3.54 20.1 3.58
G 202 Land -1.39 2.28 9.5 2.67

AMSR2 G 8853389 Ocean -0.32 2.81 9.5 2.83

Regional biases were difficult to examine for SuomiNet, AERONET, and IGRA due to their

limited global coverage. The comparison of OCO-2 to AMSR2, however, showed small latitudinal

biases (<5%) in TCWV, with AMSR2 having larger TCWV values, especially in the tropics and
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Figure A.7: Heatmap comparison of MERRA-2 TCWV to SuomiNet, AERONET, IGRA, and AMSR2
TCWV measurements.
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Figure A.8: RMSD between MERRA-2, ECMWF, and OCO-2 TCWV and all four validation sources:
SuomiNet, AERONET, IGRA, and AMSR2.
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far southern latitudes (Figure A.9). Additional study is needed to identify the source of these

differences.
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Figure A.9: 2◦x4◦ binned percent difference in TCWV between OCO-2 (E1) and AMSR2 (E2): ((E1 -
E2)/(0.5 * (E1 + E2)) * 100). Black grid cells contain no data.

Finally, our results were not significantly dependent on the observation mode (nadir, glint, tar-

get) of OCO-2 nor were they dependent on the quality flag (a binary flag derived from several

metrics, which indicates the overall quality of the final XCO2
product) or warn level. For example,

the RMSD between OCO-2 and SuomiNet TCWV for all quality flags is 1.38 mm, compared to

1.34 mm for only “good" quality flags. This indicates that potentially many more OCO-2 mea-

surements with “low quality" XCO2
values may still have a TCWV measurement with comparably

small errors. This is partly because the precision requirements for TCWV are less stringent than

XCO2
, i.e. about 1 part in 10-60 (1 mm precision for a typical range of TCWV values) vs. 1 part

in 200 for XCO2
(2 ppm precision for typical XCO2

values).
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A.5 Water Vapor Conclusions

Our initial analysis of retrievals performed on synthetic measurements demonstrated that ACOS

can accurately retrieve TCWV in simulated conditions and that improvement over the prior in real

retrievals is to be expected. The comparison of OCO-2 TCWV measurements to four indepen-

dent validation sources revealed that OCO-2 is able to accurately and precisely measure TCWV.

Small biases and standard deviations were found when OCO-2 TCWV was compared to SuomiNet,

IGRA, and AMSR2, while it was found that AERONET may have a mean low bias of approxi-

mately 1.4 mm (7%). This is approximately in agreement with the 5-6% low bias in AERONET

found by [148]. The small biases between OCO-2 and SuomiNet (+0.34 mm), IGRA (+0.41 mm)

and AMSR2 (-0.44 mm) may partly be a result of biases in SuomiNet, IGRA and AMSR2 them-

selves, as absolute water vapor calibration is difficult to achieve. However, these bias and scatter

estimates, comprised of errors in OCO-2, errors in the validation sources, and spatial and temporal

co-location errors, still provide a useful upper limit on the true OCO-2 TCWV errors. Using the

most accurate validation source over land (SuomiNet) and our sole validation source over ocean

(AMSR2) leads to a TCWV RMSD upper limit of 0.9-1.3 mm. This range is larger than that pre-

dicted by our simulated tests. Potential reasons for the larger TCWV RMSDs between OCO-2

and the validation sources include imperfect spectroscopy, aerosol and cloud contamination, other

forward model errors, and co-location errors. The comparison of OCO-2 to the four validation

sources suggests that the error statistics of the OCO-2 TCWV product are not substantially differ-

ent over land and ocean. This is in contrast to other operational instruments that perform poorly

over certain surface types. MERIS, for example, is sensitive to aerosols and their distribution over

ocean surfaces, which can result in large errors (≥5 mm, [124]). OCO-2, however, is able to con-

tinuously view sun-glint during its orbits over ocean, resulting in high signal-to-noise ratios and

thus less sensitivity to aerosol layers.

As this study was done with the operational ACOS algorithm, which was designed for CO2 and

only contained H2O as an ancillary product, improvements specifically related to water vapor might

enable even more accurate H2O retrievals from OCO-2. Upgrades to the water vapor spectroscopy,
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improved aerosol parameterizations, and more elaborate water vapor retrieval schemes could all

result in more information about water vapor being extracted from the measured radiances. For

example, above-cloud retrievals of water vapor are likely possible with OCO-2, which would vastly

increase the number of valid measurements (as cloudy scenes are currently screened out). This

analysis, however, is beyond the scope of this study.

Our results give evidence that OCO-2 may be accurate enough to be used as a validation source

for reanalysis products as well as other methods of measuring TCWV (e.g. MODIS, MERIS, the

Suomi National Polar-orbiting Partnership, AIRS, IASI). Additionally, OCO-2 coverage, while

limited by its narrow yet dense ground-track, covers both land and ocean over much of the low-

and mid-latitudes. This means these TCWV measurements may be useful in improving numeri-

cal weather prediction models, which are dependent on the assimilation of accurate water vapor

measurements. However, further work must be done to determine if measurements from OCO-2

can provide water vapor information not already measured by other instruments. Besides showing

how OCO-2 is able to improve upon the ECMWF prior, we also briefly compared the MERRA-2

reanalysis product to our validation sources and found that OCO-2 would be able to improve upon

MERRA-2 as well. These model RMSDs, visualized in Figure A.8, are considerably larger than

the RMSDs between OCO-2 and the validation sources, which provides additional evidence that

OCO-2 TCWV measurements may be useful for numerical weather prediction and data assimila-

tion applications over land and ocean.

The results of this study show that OCO-2 is the first space-based instrument to accurately

measure the most important natural greenhouse gas (water vapor) simultaneously with the most

important anthropogenic greenhouse gas (carbon dioxide) [149], at high spatial resolution (1.3x2.3

km2). These OCO-2 TCWV measurements may be useful regarding the improvement of numerical

weather prediction models and reanalysis products along with acting as a validation source for

other instruments. Additionally, future satellites with OCO-2-like capabilities, such as OCO-3,

MicroCarb, GOSAT-2, and GeoCarb, may be able to measure water vapor with the same or better

accuracy than OCO-2.
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