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ABSTRACT

MEAN VARIANTS ON MATRIX MANIFOLDS

The geometrically elegant Stiefel and Grassmann manifolds have become organizational tools

for data applications, such as illumination spaces for faces in digital photography. Modern

data analysis involves increasingly large-scale data sets, both in terms of number of samples

and number of features per sample. In circumstances such as when large-scale data has been

mapped to a Stiefel or Grassmann manifold, the computation of mean representatives for

clusters of points on these manifolds is a valuable tool.

We derive three algorithms for determining mean representatives for a cluster of points

on the Stiefel manifold and the Grassmann manifold. Two algorithms, the normal mean

and the projection mean, follow the theme of the Karcher mean, relying upon inversely

related maps that operate between the manifold and the tangent bundle. These maps are

informed by the geometric definition of the tangent bundle and the normal bundle. From

the cluster of points, each algorithm exploits these maps in a predictor/corrector loop until

converging, with prescribed tolerance, to a fixed point. The fixed point acts as the normal

mean representative, or projection mean representative, respectively, of the cluster. This

method shares its principal structural characteristics with the Karcher mean, but utilizes a

distinct pair of inversely related maps. The third algorithm, called the flag mean, operates

in a context comparable to a generalized Grassmannian. It produces a mean subspace of

arbitrary dimension. We provide applications and discuss generalizations of these means to

other manifolds.
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1. INTRODUCTION

In the introduction to this thesis, we provide background information about nonlinear man-

ifolds. In particular, we highlight the geometry of matrix manifolds. We explore literature

describing the geometry foundational to Stiefel and Grassmann manifolds, literature focused

on the computation of manifold means, and literature relating to nonlinear manifold anal-

ysis. The geometric setting of matrix manifolds will be referenced for the construction of

each of our mean representative algorithms.

1.1 Matrix Manifolds

This section briefly summarizes the geometric structure of matrix manifolds, the mathemat-

ical setting for this thesis. Specifically, we provide an explicit description of the tangent and

normal spaces at each point of the Stiefel and Grassmann manifolds. These manifolds are

frequently used to perform analysis on subspaces or pools of data points.

First, let us define a manifold. A n-dimensional topological manifold is a topological space

which looks locally like n-dimensional Euclidean space. A differentiable manifold allows

for defining tangent vectors and tangent spaces. Riemannian manifolds are differentiable

manifolds that have a metric on the tangent space that allows measurements of distances,

angles, etc. The Stiefel and Grassmann manifolds are examples of Riemannian manifolds,

and we will describe the particular structure of their tangent spaces below.

1.1.1 Stiefel Manifold

The Stiefel manifold St(n, p) is defined as the collection of all ordered p-tuples of orthonormal

vectors in Rn. Thus, points on the Stiefel manifold are in one-to-one correspondence with
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n×p orthonormal matrices. For example, St(3, 2) includes the three distinct points


1 0

0 1

0 0

,


−1 0

0 1

0 0

, and


−1 0

0 −1

0 0

.

We measure the distance between two points, X and Y , on the Stiefel manifold as

d2
S(X, Y ) = trace(X − Y )T (X − Y ). This is simply the standard Euclidean 2-norm nat-

urally applied to Stiefel manifold matrices embedded in Rn×p.

Let P be a point on the Stiefel manifold N = St(n, p) and let Y be the n×p orthonormal

matrix corresponding to P . The tangent space to N at P is the vector space of all n × p

matrices ∆ such that Y T ∆ is skew symmetric, i.e. Y T ∆ + ∆T Y = 0. The normal space to

N at P is the vector space of matrices {Y S} where S is any p × p symmetric matrix. We

find the geometric framework for this description in [11].

1.1.2 Grassmann Manifold

The Grassmann manifold Gr(n, p) is defined as the collection of all p-dimensional subspaces

of Rn. For example, Gr(3, 2) is the set of all planes through the origin in R3. For compu-

tations, we utilize orthonormal matrix representatives for points on the Grassmannian. In

other words, an n × p matrix Y , with Y T Y = I, is a representative for the p-dimensional

subspace spanned by the columns of Y , denoted [Y ]. Consider that [Y ] ∈ Gr(3, 2) is the xy-

plane for choices of orthonormal basis matrix Y such as


1 0

0 1

0 0

,


−1 0

0 1

0 0

,


−1 0

0 −1

0 0

,

or any other orthonormal matrix that has column space equal to the xy-plane.

Given two p-dimensional subspaces [X] and [Y ] of Rn, there are p principal angles 0 ≤

θ1 ≤ θ2 ≤ ... ≤ θp ≤ π
2

between [X] and [Y ]. The principal angles may be computed as

the inverse cosine of the singular values of XT Y , where X and Y are orthonormal matrix
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representatives for [X] and [Y ], respectively. We measure the distance between two points

[X] and [Y ] on the Grassmann manifold Gr(n, p) as dG([X], [Y ]) =
√∑p

i=1 θ2
i . This is

known as the arc length metric and imposes a particular, commonly used geometry on the

Grassmann manifold.

Let V be a fixed p-dimensional subspace of Rn and let Y be an n × p orthonormal

matrix whose column space is equal to V . Let V = [Y ] be the corresponding point on the

Grassmann manifold M = Gr(n, p). The tangent space to M at [Y ] can be identified with

the vector space of all n× p matrices ∆ such that Y T ∆ = 0. The normal space to M at [Y ]

can be identified with the vector space of matrices {Y S} where S is any p× p matrix. This

characterization does not depend on the choice of representative Y for [Y ]. The geometric

framework for this description is presented in [11].

1.1.3 The Concept of Mean Representatives

Suppose we have a cluster of points on the Stiefel or Grassmann manifold. We desire to

compute a mean representative for the cluster. While a mean within a vector space is easy

to compute, performing the task on a matrix manifold is not obvious. The Karcher Mean is

one algorithm to calculate a matrix manifold mean, which is described in 1.1.4. On the other

hand, we constructed a suite of new manifold mean methods. We have devoted a chapter

of this thesis to each of these algorithms. They are titled the normal mean, the projection

mean, and the flag mean. After presenting our three new algorithms, we will offer a chapter

containing applications and a computational complexity analysis. As a point of reference

and comparison, we describe the Karcher mean in this introduction.

1.1.4 Karcher Mean

The Karcher mean [6] enables computation of a mean representative for a cluster of points on

the Grassmann manifold. The algorithm exploits Exp and Log maps in a predictor/corrector

loop until convergence to a fixed point. This fixed point minimizes the sum of the squared
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distances to the given points subject to the constraint of lying on the manifold. The key

technique is to reduce the manifold problem to a vector space mean computation by utilizing

tangent spaces to the manifold.

The Karcher mean [µKM ] ∈ Gr(n, p) of C points {[Xi]}C
i=1 ∈ Gr(n, p), XT

i Xi = Ip, is the

solution of

argmin
[Y ]∈Gr(n,p)

C∑
i=1

dG([Y ], [Xi])
2

Algorithm 1, borrowed from [6], is used to compute [µKM ] and shares features with our

algorithms. The Gexp and Glog maps, defined in [6], are a family of maps parametrized by

the Grassmann manifold. At each point of the Grassmann manifold and for suitably defined

neighborhoods, the Gexp and Glog maps are mutual inverses.

Algorithm 1 Calculate [µKM ] on Gr(n, p)

Require: [Xi] ∈ Gr(n, p), 1 ≤ i ≤ C; ε > 0
Ensure: XT

i Xi = I
µ ⇐ X1

repeat

δ ⇐ 1
C

C∑
i=1

Glog(µ, Xi)

µ ⇐ Gexp(µ, δ)
until ||δ||F < ε
µKM ⇐ µ
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2. A NORMAL/TANGENT BUNDLE ALGORITHM FOR AVERAGING POINT

CLOUDS ON GRASSMANN AND STIEFEL MANIFOLDS

In this paper, we derive iterative algorithms for determining representatives for a cluster

of points on the Grassmann manifold and on the Stiefel manifold. Each of the algorithms

depend upon a pair of maps parametrized by the underlying manifold. Based on a charac-

terization of the tangent and normal space at each point, the pair of maps allow one to move

from the manifold to a given tangent space and vise-versa. Iterating in a manner similar to

the Karcher mean algorithm, we observe rapid convergence to a fixed point which acts as a

mean for the cluster.

2.1 Introduction

In computational data analysis it is common to appeal to established geometric theory to

develop algorithms and process data [29, 7, 26, 17, 10, 19, 14, 25, 1]. As a particular example,

the Grassmann manifold and Stiefel manifold are matrix manifolds which have found use as a

setting in which to classify and make comparisons between large data sets [18,9,28,11,12,24].

Given a cluster of points on either of these manifolds, we describe procedures to find a single

point, on the manifold, which represents the cluster. The algorithms for the Stiefel manifold,

St(n, p), arise from its natural embedding in Rn×p as the set of all full rank orthonormal n×p

matrices. The algorithms for the Grassmann manifold, Gr(n, p), arise from its realization as

a quotient space of St(n, p). These models of the manifolds lead to an explicit description

of the normal and tangent spaces at each point. These explicit descriptions lead to maps

which are used to build iterative algorithms for each manifold. For each algorithm, the input

is a cluster of points and the output is a single point which arises as a fixed point of the

iteration. The fixed point can be taken as a mean representative of the cluster.
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2.2 Mathematical Background

This section summarizes the mathematical setting that we consider. In particular, it provides

an explicit description of the tangent and normal spaces at each point of the Grassmann and

Stiefel manifolds.

2.2.1 Stiefel Manifold

The Stiefel manifold St(n, p) is defined as the collection of all ordered p-tuples of orthonormal

vectors in Rn. Thus, points on the Stiefel manifold are in one-to-one correspondence with

n× p orthonormal matrices. We measure the distance between two points, X and Y , on the

Stiefel manifold as d2
S(X, Y ) = trace(X − Y )T (X − Y ).

Let Y be an n×p orthonormal matrix corresponding to a point on St(n, p). The tangent

space to St(n, p) at Y is the vector space of all n × p matrices ∆ such that Y T ∆ is skew

symmetric, i.e. Y T ∆ + ∆T Y = 0. The normal space to St(n, p) at Y is the vector space of

matrices {Y S} where S is any p × p symmetric matrix. The geometric framework for this

description is presented in [11].

2.2.2 Grassmann Manifold

Let R denote the field of real numbers. The Grassmannian Gr(n, p) = GrR(n, p) is defined

as the collection of all p-dimensional subspaces of Rn. We can give Gr(n, p) a geometric

structure by expressing it as a homogeneous space for a matrix group. For instance, since

points on Gr(n, p) correspond to p-dimensional subspaces of Rn, we can represent a point

via an n × p orthonormal matrix. In other words, an n × p matrix Y , with Y T Y = I, is

a representative for the p-dimensional subspace spanned by the columns of Y , denoted [Y ].

However, if Q is an orthonormal p × p matrix then Y and Y Q represent the same point

on Gr(n, p) since they have the same column space. Thus there is a surjective map from

St(n, p) to Gr(n, p) by mapping an orthonormal n× p matrix Y to its column space [Y ] and

the fiber above [Y ] is {Y Q | Q ∈ O(p)}.
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Thinking of Y as the first p columns of an orthonormal n× n matrix, we can obtain the

identification Gr(n, p) = O(n)/(O(n−p)×O(p)) (where O(n) denotes the orthogonal group

of real, orthonormal, n × n matrices). More specifically, if we begin with a point in O(n)

with block structure [Y |W ], where W is an orthonormal n × (n − p) matrix, we can right

multiply by any matrix of the form

 O(p) 0

0 O(n− p)


and generate a matrix in O(n) for which the first p columns span the same subspace as Y .

Given two points [X], [Y ] on Gr(n, p) there is a p-tuple of principal angles, 0 ≤ θ1 ≤ θ2 ≤

... ≤ θp ≤ π
2
, between the corresponding subspaces VX , VY . The first principal angle, θ1, is

defined as the minimum angle that occurs between vectors in VX and vectors in VY . The first

principal vectors u1 ∈ VX , w1 ∈ VY are a pair of unit length vectors achieving this minimum

angle. The kth principal angle is defined iteratively as the smallest angle that occurs between

vectors in VX and vectors in VY subject to the constraint of these vectors being orthogonal

to all previously obtained principal vectors. In other words,

θ1 = min{arccos
(< u,w >

|u| · |w|

)
|u ∈ VX , w ∈ VY }.

The first principal vectors u1 ∈ VX , w1 ∈ VY satisfy

arccos(< u1, w1 >) = θ1, ‖u1‖ = ‖w1‖ = 1.

The kth principal angle is defined by

θk = min{arccos
(< u,w >

|u| · |w|

)
|u ∈ VX , w ∈ VY ; u ⊥ uj, w ⊥ wj for j < k}.
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The kth principal vectors uk ∈ VX , wk ∈ VY satisfy

arccos(< uk, wk >) = θk, ‖uk‖ = ‖wk‖ = 1; uk ⊥ uj, wk ⊥ wj for j < k.

The p principal angles between the subspaces VX and VY are necessarily independent of

the choice of basis for VX and VY . It is a remarkable fact that the principal angles can

be computed as the inverse cosine of the singular values of XT Y where X and Y are any

orthonormal representatives for [X] and [Y ]. The independence of the singular values of

XT Y from the choice of orthonormal matrix representatives of [X] and [Y ] is a consequence

of the following fact: If A, B are orthonormal p × p matrices and if X ′ = XA, Y ′ = Y B

then the singular values of XT Y are equal to the singular values of X ′T Y ′. Details on the

connection between the singular values of the matrix product and principal angles between

corresponding subspaces can be found in [8]. For this paper, we define the distance between

two points [X] and [Y ] on the Grassmann manifold Gr(n, p) as dG([X], [Y ]) =
√∑p

i=1 θ2
i .

Since the metric is defined in terms of the principal angles between VX and VY and since

principal angles are invariant under the action of the orthogonal group, the metric itself is

orthogonally invariant.

Let Y be an n × p orthonormal matrix whose column space corresponds to a point [Y ]

on Gr(n, p). The tangent space to Gr(n, p) at [Y ] is the vector space of all n × p matrices

∆ such that Y T ∆ = 0. The normal space to Gr(n, p) at [Y ] is the vector space of matrices

{Y S} where S is any p× p matrix. This characterization does not depend on the choice of

representative Y for [Y ]. Again, the geometric framework for this description is presented

in [11].

2.2.3 Closest Orthonormal Matrix

Let T be a full rank n× p matrix with thin SVD given by T = UΣV T . As observed by [20],

the closest orthonormal matrix to T , with respect to the Frobenius norm, is given by UV T .
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In other words

B = arg min
XT X=I

||X − T ||F = UV T .

To see this we rewrite the optimization problem as

B = arg max
XT X=I

tr(XT T ).

Through the Lagrange function, we obtain the solution

B =
1

2
TΛ−1 (2.2.1)

where Λ is a full symmetric matrix of Lagrange multipliers.

Substitution of (2.2.1) into BT B = I yields Λ2 = 1
4
(T T T ), so Λ = 1

2
(T T T )

1
2 . Using

T = UΣV T and UT U = Ip, we get

Λ =
1

2
(V Σ2V T )

1
2 =

1

2
V ΣV T .

Finally, from (2.2.1),

B =
1

2
TΛ−1 =

1

2
UΣV T (2V Σ−1V T ) = UV T .

To ensure this unique stationary point is a maximum for B, we compute the Hessian with

respect to X, which is −2Λ = −V ΣV T . As the eigenvalues of the Hessian are the negatives

of the singular values of T , the Hessian is negative definite. Now, the second order sufficient

condition states that we have a maximum for B, and thus a minimizer for the original

objective function.
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2.3 Manifold Normal Maps

For both the Grassmann and the Stiefel manifolds, this section describes explicit maps from

“the tangent space to the manifold at P” to “a manifold neighborhood of P”. One can view

each parametrized family of maps as a continuously differentiable map from the “tangent

bundle to the Grassmann (resp. Stiefel) manifold” to the “Grassmann (resp. Stiefel) man-

ifold” whose restriction to each tangent space behaves well at the origin. Such maps have

been referred to as retraction maps [22,2,4] and serve a useful role in building algorithms on

manifolds. With suitably restricted domains, each of the maps in this section has an inverse

which can also be described in explicit terms. We use each map, together with its inverse,

to construct an iterative algorithm (in the spirit of the Karcher mean algorithm) that takes

a cluster of points on a manifold as input and produces a single representative point on the

manifold as output.

2.3.1 Grassmann Manifold Normal map

Let [Y ] be a point in G = Gr(n, p) (with Y an n × p orthonormal matrix). Let T[Y ] be

the tangent space to G at [Y ] and let T ∗
Y = T[Y ] + Y . Thus if T ∈ T ∗

Y then we can write

T = Y + ∆ with Y T ∆ = 0. In the following Proposition, we verify that T is full rank.

Proposition 2.3.1. If ∆ ∈ T[Y ] then Y + ∆ has rank p.

Proof. Consider the thin singular value decomposition (SVD), Y + ∆ = UΣV T , where U is

an n×p orthonormal matrix, Σ is a p×p diagonal matrix, and V is a p×p orthogonal matrix.

Note that Y T ∆ = 0 and that Y T Y = Ip. Multiply each side by Y T to obtain Ip = Y T UΣV T .

Since each matrix has rank at most p and since their product has rank p, we conclude that

each matrix in the product has rank exactly p. In particular, UΣV T has rank p.

10



Let T be an n × p matrix. Recall from 2.2.3 that if the thin SVD is T = UΣV T , then

the closest orthonormal matrix to T is UV T . With this in mind, define RG,Y : T[Y ] → G by

RG,Y (∆) = [UV T ]

where Y + ∆ = UΣV T . Note that the map depends on Y instead of [Y ].

The image of this map is a neighborhood Nb[Y ] of [Y ] on G. Now we identify the inverse

map R−1
G,Y : Nb[Y ] → T[Y ]. Let [X] be a point in Nb[Y ] and let T ∗

Y = T[Y ]+Y . Since RG,Y maps

points on T ∗
Y to the nearest point on G, the inverse map should be a normal vector to G at

the point [X]. Thus we seek a normal vector XS, S of size p×p, such that XS = Y +∆ with

∆ ∈ T[Y ] (an intuitive picture is shown in Figure 2.1). This requires that Y T (XS − Y ) = 0,

which implies XS = X(Y T X)−1. We note that Y T X is nonsingular unless [X] intersects the

null space of [Y ] non-trivially. It follows that R−1
G,Y ([X]) = X(Y T X)−1 − Y. Note that if A

is a p × p orthogonal matrix, then R−1
G,Y ([XA]) = XA(Y T XA)−1 − Y = X(Y T X)−1 − Y =

R−1
G,Y ([X]). In other words, the map is well defined on G.

T*[Y]

MXS [X]

Y

Fig. 2.1: Our derivation centers on the point of intersection of the shifted tangent space T[Y ] + Y
and the normal space to the Grassmann manifold at [X].

In the following Proposition, we verify algebraically that (R−1
G,Y ◦ RG,Y ) is the identity

map.

Proposition 2.3.2. If T ∈ T[Y ], then (R−1
G,Y ◦RG,Y )(T ) = T .

Proof. Let T ∈ T[Y ]. Consider the SVD decomposition T + Y = UΣV T . Since T is in T[Y ],

11



we have Y T T = 0 so Y T (T + Y ) = Ip and Y T U = V Σ−1. Therefore

(R−1
G,Y ◦RG,Y )(T ) = R−1

G,Y ([UV T ])

= UV T (Y T UV T )−1 − Y

= U(Y T U)−1 − Y

= U(V Σ−1)−1 − Y

= T + Y − Y

= T.

We will use the pair of maps RG,Y (T ) = [UV T ] (with T + Y = UΣV T ) and R−1
G,Y ([X]) =

X(Y T X)−1− Y in an iterative algorithm to produce the Grassmann manifold normal mean

of a set of points on G.

2.3.2 Stiefel Manifold Normal map

Parallel to the Grassmannian case, we let TY be the tangent space to S = St(n, p) at Y .

Define RS,Y : TY → S by

RS,Y (∆) = UV T

where Y + ∆ = UΣV T is the thin SVD. The image of RS,Y is a neighborhood NbY of Y on

St(n, p).

We next formulate the inverse map R−1
S,Y : NbY → TY . Let X be a point on NbY . We

define the map so that R−1
S,Y (X) is of the form Y + ∆ for some ∆ ∈ TY and is in the normal

space to S at X. To achieve this, we require a normal vector XS, where S is a p × p

symmetric matrix, such that XS = Y + ∆. Skew symmetry generates the equation

Y T (XS − Y ) + (XS − Y )T Y = 0.

12



Noting that Y T Y = Ip we have

MS + ST MT = 2Ip (2.3.1)

where M = Y T X. Pairing (2.3.1) with the symmetry equation S − ST = 0 yields a system

of equations that can be solved for Ŝ. We then write

R−1
S,Y (X) = XŜ − Y.

The computation of Ŝ is as follows. Let a(i) and a(i) denote the ith column and ith row of

A, respectively. Suppose 1 ≤ i ≤ j ≤ p. From (2.3.1) we obtain m(i)s
(j) + s(i)T m(j)

T = 2δij,

or

m(i)s
(j) + m(j)s

(i) = 2δij (2.3.2)

where δij is the Kronecker delta. From symmetry, for all 1 ≤ i < j ≤ p, sij − sji = 0, and

due to redundancy of the linear equations of (2.3.2), we have

m(i)s
(j) + m(j)s

(i) = 0, 1 ≤ i < j ≤ p

m(i)s
(i) = 1, 1 ≤ i ≤ p.

(2.3.3)

We combine these p2 equations into a sparse linear system As = b. Note that s = vec(ST ),

b is of size p2 × 1 and contains 0’s and 1’s, and A is of size p2 × p2 and contains elements of

M , 0’s, 1’s, and −1’s. We solve for s and reshape s to arrive at Ŝ, of size p× p.

We will use the pair of maps RS,Y (T ) = UV T (with T + Y = UΣV T ) and R−1
S,Y (X) =

XŜ−Y (with Ŝ as described above) in an iterative algorithm to produce the Stiefel manifold

normal mean of a set of points on S.

13



2.4 Normal Mean Algorithms

Using each pair of inversely-related maps, we describe an iterative algorithm to compute the

normal mean for a collection of points on either the Grassmann manifold or Stiefel manifold.

Figure 2.2 depicts the underlying idea of a manifold mean. The center white point is the

origin in the tangent space and identifies the point on the manifold corresponding to this

space. Essentially, [Y ] (resp. Y ) is the normal mean of a finite set of points P ⊂ Gr(n, p)

(resp. P ⊂ St(n, p)) if their images in T[Y ] (resp. TY ) sum to be the origin. To find such a

point, we begin with a guess, [µ] (resp. µ), for the mean and then use R−1
G,µ (resp. R−1

S,µ) to

map the elements of P to the tangent space T[µ] (resp. Tµ). We then average them within

the tangent space to get a vector δ. Mapping δ to the manifold using RG,µ (resp. RS,µ)

yields an updated mean approximation [µ] (resp. µ). We repeat until ||δ||F < ε for some

prescribed ε, which implies that [µ] (resp. µ) is “centered”.

2.4.1 Algorithm for Grassmann Manifold

The fundamental maps that are used in the algorithm are RG,Y (T ) = [UV T ] (with T +

Y = UΣV T ) and R−1
G,Y ([X]) = X(Y T X)−1 − Y . Recall that while R−1

G,Y ([X]) is defined in

terms of the choice of representative X for [X], its value does not depend on the choice of

representative. However, our maps are also defined in terms of a representative Y for [Y ]. In

order to establish an algorithm on Gr(n, p), we need properties that are independent of the

choice of representative. The next Proposition provides one of the steps in this direction.

Proposition 2.4.1. If A is a p × p orthogonal matrix and if X, Y are n × p orthonormal

matrices then R−1
G,Y A([X]) = (R−1

G,Y ([X]))A.

14



Proof. Since R−1
G,Y ([X]) = X(Y T X)−1 − Y , we have

R−1
G,Y A([X]) = X((Y A)T X)−1 − Y A

= X(AT Y T X)−1 − Y A

= X(Y T X)−1(AT )−1 − Y A

= X(Y T X)−1A− Y A

= (X(Y T X)−1 − Y )A.

= (R−1
G,Y ([X]))A.

Corollary 2.4.2. Let P be a finite set of C points in Gr(n, p). If A is a p × p orthogonal

matrix and if Y is an n× p orthonormal matrix then

1

C

∑
[Xi]∈P

R−1
G,Y ([Xi]) = 0 ⇐⇒ 1

C

∑
[Xi]∈P

R−1
G,Y A([Xi]) = 0.

The goal of the iterative algorithm is to find an element [Y ] ∈ Gr(n, p) such that

1
C

∑
[Xi]∈P

R−1
G,Y ([Xi]) = 0. While the previous proposition and corollary show that the final

answer is independent of the choice of representative Y for [Y ], the next proposition shows

how to construct a sequence of points on Gr(n, p) such that each point in the sequence is

also independent of the choice of representative.

Proposition 2.4.3. Let P be a finite set of C points in Gr(n, p). If A is a p× p orthogonal

matrix and if Y is an n× p orthonormal matrix then

RG,Y (
1

C

∑
[Xi]∈P

R−1
G,Y ([Xi])) = RG,Y A(

1

C

∑
[Xi]∈P

R−1
G,Y A([Xi])).
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Proof. We have

RG,Y (
1

C

∑
[Xi]∈P

R−1
G,Y ([Xi])) = RG,Y (

1

C

∑
[Xi]∈P

(Xi(Y
T Xi)

−1 − Y ))

= RG,Y ((
1

C

∑
[Xi]∈P

Xi(Y
T Xi)

−1)− Y )

= [UV T ]

where UΣV T is the thin SVD of ( 1
C

∑
[Xi]∈P

Xi(Y
T Xi)

−1)− Y + Y . In a similar manner

RG,Y A(
1

C

∑
[Xi]∈P

R−1
G,Y A([Xi])) = RG,Y A(

1

C

∑
[Xi]∈P

R−1
G,Y ([Xi])A)

= RG,Y A(
1

C

∑
[Xi]∈P

(Xi(Y
T Xi)

−1 − Y )A)

= RG,Y A((
1

C

∑
[Xi]∈P

Xi(Y
T Xi)

−1)A− Y A)

= [UV T A]

since UΣV T A is the thin SVD of ( 1
C

∑
[Xi]∈P

Xi(Y
T Xi)

−1)A − Y A + Y A. We conclude by

remarking that [UV T ] = [UV T A].

Given a finite collection of points P ⊂ Gr(n, p) and an initial point [Y0] ∈ Gr(n, p), we

can consider the sequence of points [Y0], [Y1], [Y2], . . . on Gr(n, p) where

[Yt+1] = RG,Yt(
1

C

∑
[Xi]∈P

R−1
G,Yt

([Xi])).

By Proposition 2.4.3, this is a well defined sequence of points on Gr(n, p). More precisely,

the sequence is independent, at each step, of the choice of representative Yt for [Yt].

Algorithm 2, found below, uses the properties of the maps RG,Y and R−1
G,Y to build an

iterative algorithm that is very much in the spirit of the Karcher mean algorithm from [6].
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In the Karcher mean algorithm, the corresponding maps are Exp and Log maps derived

from the model of Gr(n, p) and St(n, p) as quotients of SO(n). The geometric intuition that

drives the algorithm is captured in Figure 2.2.

Fig. 2.2: Three points on the matrix manifold and their associated tangent vectors. Upon conver-
gence of the algorithm the center white point is both the origin of the tangent space and
the average value of the three tangent vectors.

Algorithm 2 Calculate Normal Mean, [µN ], on Gr(n, p)

Require: [Xi] ∈ Gr(n, p), 1 ≤ i ≤ C; ε > 0
Ensure: XT

i Xi = I
[µ] ⇐ [X1]
repeat

δ ⇐ 1
C

C∑
i=1

R−1
G,µ([Xi])

[µ] ⇐ RG,µ(δ)
until ||δ||F < ε
[µN ] ⇐ [µ]

2.4.2 Principal angles, orthogonally invariant functions, and F -Normal means

Given two p-dimensional subspaces [X] and [Y ] of Rn, there are p principal angles 0 ≤ θ1 ≤

θ2 ≤ ... ≤ θp ≤ π
2

between [X] and [Y ]. The principal angles may be computed as the inverse

cosine of the singular values of XT Y [8].
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Definition 2.4.4. Consider the p-tuple of principal angles between [X] and [Y ], Θ([X], [Y ]) =

(θ1, . . . , θp). We define Θ([X1], [Y1]) > Θ([X2], [Y2]) if the vector Θ([X1], [Y1])−Θ([X2], [Y2])

is non-negative with at least one positive entry.

Let F : Gr(n, p) × Gr(n, p) → R be a bivariate function on the Grassmann manifold.

Let O(n) denote the orthogonal group. If F ([X], [Y ]) = F ([AX], [AY ]) for any [X], [Y ] ∈

Gr(n, p) and any A ∈ O(n), then F is said to be orthogonally invariant. If F is orthogonally

invariant then the value of F ([X], [Y ]) can be written in terms of the principal angles between

[X] and [Y ].

Definition 2.4.5. We say that a bivariate function F on Gr(n, p) respects natural distance

functions if

• F is orthogonally invariant

• F ([X], [Y ]) ≥ 0 with equality if and only if [X] = [Y ].

• Θ([X1], [Y1]) > Θ([X2], [Y2]) =⇒ F ([X1], [Y1]) ≥ F ([X2], [Y2]).

The orthogonal invariance of F allows us to think of F as a function on the set S =

{(x1, . . . , xk)|0 ≤ x1 ≤ · · · ≤ xk ≤ π/2}.

Given a continuous, bivariate function F on Gr(n, p) that respects natural distance func-

tions, there are two useful modifications that can be made to Algorithm 2 by weighting the

averaging stage of the algorithm by the function F . These are found below.

Perhaps the main advantage of the F -Normal Mean is the ability to dampen (or exag-

gerate) the effect of outliers. For instance, by having the function F saturate quickly for

relatively small values of Θ([X1], [X2]), a single outlier will have little effect on the output of

Algorithm 3. An advantage of the Directional F -Normal Mean is to fundamentally change
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Algorithm 3 Calculate F -Normal Mean, [µN ], on Gr(n, p)

Require: [Xi] ∈ Gr(n, p), 1 ≤ i ≤ C; ε > 0
Ensure: XT

i Xi = I
[µ] ⇐ [X1]
repeat

δ ⇐ 1
C

C∑
i=1

F ([u], [Xi])R
−1
G,µ([Xi])

[µ] ⇐ RG,µ(δ)
until ||δ||F < ε
[µN ] ⇐ [µ]

Algorithm 4 Calculate Directional F -Normal Mean, [µN ], on Gr(n, p)

Require: [Xi] ∈ Gr(n, p), 1 ≤ i ≤ C; ε > 0
Ensure: XT

i Xi = I
[µ] ⇐ [X1]
repeat

δ ⇐ 1
C

C∑
i=1

F ([u], [Xi])
R−1
G,µ([Xi])

‖R−1
G,µ([Xi])‖

[µ] ⇐ RG,µ(δ)
until ||δ||F < ε
[µN ] ⇐ [µ]
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the metric that is implicitly being used on Gr(n, k). For instance, by choosing a function F

that is more heavily dependent on the value of the first principal angle or by choosing F to

be the Fubini-Study metric, etc.

2.4.3 Algorithm for Stiefel Manifold

The Stiefel Normal Mean is nearly identical to the Grassmann Normal Mean. The main

difference is in the functions that are used in the iteration. In particular, the pair of maps

we use are RS,Y (T ) = UV T (with T + Y = UΣV T ) and R−1
S,Y (X) = XŜ − Y (with Ŝ as

described in Section 2.3.2). Contrary to the Grassmann case, we do not have to worry about

whether the maps are well defined on an equivalence class. This simplifies the discussion to

a presentation of the algorithm.

Algorithm 5 Calculate Normal Mean, µN , on St(n, p)

Require: Xi ∈ St(n, p), 1 ≤ i ≤ C; ε > 0
Ensure: XT

i Xi = I
µ ⇐ X1

repeat

δ ⇐ 1
C

C∑
i=1

R−1
S,µ(Xi)

µ ⇐ RS,µ(δ)
until ||δ||F < ε
µN ⇐ µ

2.5 Conclusions

From a model of the Stiefel manifold as a submanifold of Rn×p and a model of the Grassman-

nian as a quotient object of the Stiefel manifold, explicit matrix descriptions of the tangent

and normal space to each of these manifolds can be formulated. These descriptions allow

the building of pairs of maps, parametrized by the underlying manifold, whose composition

is the identity on a suitably restricted neighborhood. The pair of maps are used to derive

an iterative algorithm for determining a normal mean representative for a cluster of points
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on the Grassmann and Stiefel manifolds. This is reminiscent of the use of the Exp and

Log maps on a Lie group to build the Karcher mean of a set of points. The similarities

between the normal mean algorithm and the Karcher mean algorithm extend to the setting

of computational complexity. However, by relying on maps different from Exp and Log, the

normal mean algorithm provides alternate mean representations that are flexible and have

the potential to capture different characteristics in a large data set.
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3. TANGENT BUNDLE PROJECTION ALGORITHM FOR REPRESENTING POINT

CLOUDS ON GRASSMANN AND STIEFEL MANIFOLDS

We derive an iterative algorithm for determining a representative for a cluster of points on

the Stiefel manifold. The algorithm depends upon the tangent bundle projection operator

and its inverse, which is developed according to a characterization of the tangent and normal

space at each point of the manifold. From the cluster of points, the algorithm exploits these

maps in a predictor/corrector loop until converging, with prescribed tolerance, to a fixed

point. The fixed point acts as a projection mean representative of the cluster. This method

shares structural characteristics with the normal mean and Karcher mean, but utilizes a

distinct pair of inversely related maps. We furnish analysis towards a similar algorithm on

the Grassmann manifold.

3.1 Introduction

The Grassmann manifold and Stiefel manifold are matrix manifolds which have become

prominent settings in which to represent and make comparisons between large data sets

collected under a variation of state. Given a cluster of points on either of these manifolds,

we describe a procedure to find a single representative point. The (hypothetical) algorithm

for the Grassmann manifold is based on an explicit description of the normal and tangent

spaces to the manifold arising from a standard realization as a quotient space. The algorithm

for the Stiefel manifold arises from its natural embedding in Rn×p as the set of full rank

orthonormal n× p matrices.
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3.2 Mathematical Background

Section 2.2 provides basic definitions for Grassmann manifolds and Stiefel manifolds. In

addition, the geometric setting for each of these objects, as differentiable manifolds, is de-

scribed. Suggestions for further reading are provided. Therefore, we limit our discussion

here.

We identify the geometry of the Grassmann manifold necessary for our current appli-

cation, following the framework presented in [11]. Let [Y ] be a point on the Grassmann

manifold M = Gr(n, p), where Y is a particular n×p orthonormal matrix representative for

the column space of Y . Recall that the tangent space to M at [Y ] is identified with the set of

all n×p matrices ∆ such that Y T ∆ = 0, and the normal space to M at [Y ] is identified with

the set of matrices {Y S} where S is any p× p matrix. Given [Y ] ∈M and an n× p matrix

X, the projection map to the tangent space at [Y ] is defined as ΠG,[Y ] : Rn×p → T[Y ]M,

ΠG,[Y ](X) = (I − Y Y T )X. Note that this map is not well-defined on Grassmannian points,

since, in general, every Grassmannian point is an equivalence class of matrices with different

projections. We explain further in Section 3.3.1.

Similarly, we state the necessary geometric framework of the Stiefel manifold found in [11].

Let Y be a point on the Stiefel manifoldN = St(n, p), where Y is a n×p orthonormal matrix.

Recall that the tangent space to N at Y is identified with the set of all n × p matrices ∆

such that Y T ∆ + ∆T Y = 0, and the normal space to N at Y is identified with the set

of matrices {Y S} where S is any p × p symmetric matrix. On the Stiefel manifold, given

Y ∈ N and an n× p matrix X, the projection map to the tangent space at Y is defined as

ΠS,Y : Rn×p → TYN , ΠS,Y (X) = Y (Y T X−XT Y )
2

+ (I − Y Y T )X. This is well-defined on the

set of n× p orthonormal matrices, and therefore on the Stiefel manifold St(n, p).
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3.3 Computing the Projection Retraction

Our purpose is to build an iterative algorithm to determine a mean representative, in the

vein of the normal mean. This requires both a map from the manifold to the tangent space,

and the inverse map from the tangent space to the manifold.

3.3.1 Grassmann Manifold Projection Inverse

In order to secure a projection mean algorithm for the Grassmann manifold, we need to begin

with a projection map that is well-defined on Grassmannian points. However, in general,

given [X] ∈ M = Gr(n, p), ΠG,[Y ](XA) 6= ΠG,[Y ](X) for A orthogonal. In other words, the

known Grassmann manifold tangent space projection operator is not invariant to choice of

orthogonal basis for [X], and thus cannot be used for our Grassmann mean algorithm.

On the other hand, let us suppose, for the sake of the following analysis, that we have

determined a well-defined Grassmann tangent space projection. Let Nb[Y ] be a neighborhood

of [Y ] on the Grassmannian M. Then our hypothetical tangent space projection is Π̃G,[Y ] :

Nb[Y ] → T[Y ], with

Π̃G,[Y ]([X]) = T

for [X] ∈ Nb[Y ] and T ∈ T[Y ].

We want to compute the inverse of Π̃G,[Y ]. We know that, as a projection, Π̃G,[Y ] maps

[X] ∈ Nb[Y ] to a point in T[Y ]M, with motion orthogonal to T[Y ]M. We illustrate the

projection map in Figure 3.1.

The inverse map must operate completely within the normal space to M at [Y ]. There-

fore, given T ∈ T[Y ]M, we seek the point on M closest in Frobenius norm to T + Y with

motion restricted to the normal space to M at [Y ]. The closest orthonormal matrix to T +Y

will be the representative for the closest Grassmannian point. We recall that normal space

vectors at [Y ] have the form Y S where S is a p × p matrix. This problem is illustrated in

Figure 3.2.

24



T

[Y]

M

[Y]

[X]

0

Fig. 3.1: The hypothetical tangent space projection map for the Grassmann manifold.

T*[Y]

M
YS

[Y]T+Y

Fig. 3.2: Our derivation exploits the point of intersection of the normal space to the Grassmann
manifold M and M itself.

The desired matrix S solves the following optimization problem:

minimize
S

‖Y S‖2
F

subject to (Y + T + Y S)T (Y + T + Y S) = I.

Under the observations that Y T T = 0, Y T Y = I, and

‖Y S‖2
F = trace(Y S)T (Y S), the optimization problem simplifies to

minimize
S

trace(ST S)

subject to ST S + S + ST + T T T = 0.

Based on the constraint, we make the substitution ST S = −S − ST − T T T . Noting that
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trace(−S − ST − T T T ) = −2trace(S)− trace(T T T ), we arrive at

maximize
S

trace(S)

subject to ST S + S + ST + T T T = 0.

Then we define R = S + I and since RT R = ST S + S + ST + I, we write

maximize
R

trace(R)

subject to RT R = I − T T T.

We note that we must have the columns of T with 2-norm no greater than 1. Otherwise

finding such an R will be infeasible over R. Now let A be the symmetric matrix I − T T T .

Then RT R = A gives p2 constraint equations, but with redundancy as the ij equation is a

repeat of as the ji symmetric equation. We may write a Lagrangian with a full symmetric

matrix Λ of Lagrange multipliers:

L(R, Λ) = tr(R)− tr(Λ(RT R− A)).

We seek a maximum by determining a stationary point for L(R, Λ). The following are the

partial derivatives of L:

∂L

∂R
= I −R(Λ + ΛT ) (3.3.1)

∂L

∂Λ
= RT R− A.

Now we set both partials equal to 0. From (3.3.1) and recalling that Λ = ΛT , we conclude

that

R =
1

2
Λ−1. (3.3.2)

Substitution of (3.3.2) into RT R = A yields (Λ−1)2 = 4A, so Λ−1 = 2A
1
2 . Finally, from
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(3.3.2),

R = A
1
2 .

Translating, S = R− I = A
1
2 − I = (I−T T T )

1
2 − I. In other words, the orthonormal matrix

Y + T + Y ((I − T T T )
1
2 − I) = T + Y (I − T T T )

1
2 is a representative for the closest point

on the Grassmann manifold to T + Y , with motion restricted to the normal space to the

manifold at [Y ].

We have

Π̃G,[Y ]([X]) = T

as the projection map of X to the tangent space of the Grassmann manifold at [Y ]. The

inverse is

Π−1
G,[Y ](T ) = T + Y (I − T T T )

1
2 .

We verify in one direction. Let Y , Y T Y = I, be a matrix representative for the point [Y ] on

the Grassmann manifold and let T ∈ T[Y ]. Since Y T T = 0,

ΠG,[Y ](Π
−1
G,[Y ](T )) = (I − Y Y T )(T + Y (I − T T T )

1
2 )

= T + Y (I − T T T )
1
2 − Y (I − T T T )

1
2

= T.

3.3.2 Stiefel Manifold Projection Inverse

On the Stiefel manifold, we can compute the inverse of the well-defined projection operator,

ΠS,Y (X) = Y (Y T X−XT Y )
2

+ (I − Y Y T )X. We know that ΠS,Y maps X ∈ N = St(n, p)

to a point in TYN , with motion orthogonal to TYN . Thus the inverse map must operate

completely within the normal space to N at Y . Therefore, we seek the closest point on N

to T + Y , T ∈ TYN , with motion restricted to the normal space to N at Y . Since on the

Stiefel manifold, normal space vectors at Y have the form Y S where S is a p× p symmetric
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matrix, we seek the S that solves the following optimization problem:

minimize
S

‖Y S‖2
F

subject to (Y + T + Y S)T (Y + T + Y S) = I, S = ST .

Under the observations that Y T T + T T Y = 0, Y T Y = I, and

‖Y S‖2
F = trace((Y S)T (Y S)), the optimization problem simplifies to

minimize
S

trace(ST S)

subject to ST S + S + ST + ST Y T T + T T Y S + T T T = 0, S = ST .

We approach this problem by constructing the Lagrangian.

L(S, Λ1, Λ2) = tr(ST S + Λ1(S − ST ) + Λ2(S
T S + S + ST + ST Y T T + T T Y S + T T T ))

Taking partial derivatives, we have

∂tr(ST S)

∂S
= 2S

and

∂tr(Λ1(S − ST ))

∂S
= 0,

where we have used the fact that Λ1 is symmetric. Also

∂tr(Λ2S
T S)

∂S
= S(Λ2 + ΛT

2 ),

∂tr(Λ2(S + ST ))

∂S
= ΛT

2 + Λ2,

and

∂tr(Λ2(S
T Y T T + T T Y S))

∂S
= Y T TΛT

2 + Y T TΛ2.
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In all,

∂L(S, Λ1, Λ2)

∂S
= 2S + S(Λ2 + ΛT

2 ) + Λ2 + ΛT
2 + Y T TΛT

2 + Y T TΛ2.

The system of equations obtained by setting the partials to zero

∂L

∂S
=

∂L

∂Λ1

=
∂L

∂Λ2

= 0

and noting that Λ2 is symmetric, is

0 = S + SΛ2 + Λ2 + Y T TΛ2

0 = ST − S

0 = ST S + S + ST + ST Y T T + T T Y S + T T T.

(3.3.3)

We proceed to solve for S in the first equation of (3.3.3):

S = −(I + Y T T )Λ2(I + Λ2)
−1. (3.3.4)

Let M = Y T T and K = Λ2(I + Λ2)
−1, and substitute (3.3.4) into the third equation of

(3.3.3) to get

0 = KT (I + T T Y )(I + T T Y )T K − (I + MT M)K −KT (I + MT M) + T T T

where we have used the fact that M + MT = 0. Since Λ2 and (I + Λ2)
−1 are symmetric, it

can be shown that they are simultaneously diagonalizable, and therefore their product, K,

is symmetric. Letting A = I + MT M , B = I + T T Y , Q = −T T T , and R = I, we have the

continuous Algebraic Riccati Equation (CARE)

0 = −KBRBT K + AK + KA + Q. (3.3.5)

Note that Q is symmetric, so it has a Cholesky factorization Q = CT C, which is required
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for a CARE. Much effort towards solving CARE’s is evident in the literature [16,3]. We can

solve (3.3.5) for a single K based on a Schur method in a Control Systems Toolbox from

Matlab, or a new distribution of SciPy using the function call,

K = solve continuous are(A, B, Q, R).

Given K we obtain Λ2 = (I − K)−1K, and determine S from (3.3.4). However, there is a

family of solutions K to (3.3.5), not just one. We need to be able to generate the entire

family, and then select the K that makes S symmetric. This is a cumbersome prospect. An

alternate, simplified, problem formulation (see below) requires solving a different CARE.

3.3.3 Alternate Stiefel Projection Inverse

This is an alternate method to compute the inverse of the projection operator for the Stiefel

manifold, ΠS,Y (X) = Y (Y T X−XT Y )
2

+ (I − Y Y T )X. We know that ΠS,Y maps X ∈ N =

St(n, p) to a point T ∈ TYN , with motion orthogonal to TYN . Thus the inverse map must

operate completely within the normal space to N at Y . Therefore, we seek the closest point

of N to Y + T with motion restricted to N at Y . Since on the Stiefel manifold, normal

space vectors at Y have the form Y S where S is a p × p symmetric matrix, we seek the S

that solves the following problem:

minimize
S

‖Y S‖2
F

subject to (Y + T + Y S)T (Y + T + Y S) = I, S = ST .

Expanding the first constraint, ST S +(I +T T Y )S +ST (I +Y T T )+T T T = 0, where we have

used the fact that Y T T + Y T T = 0 and Y T Y = I. Letting A = I + Y T T , B = I, Q = T T T ,

R = −I, and using the symmetry S = ST , our constraints are expressed by the continuous
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algebraic Riccati equation (CARE)

−SBR−1BT S + AT S + SA + Q = 0. (3.3.6)

Note that Q = T T T satisfies the factorization requirement for a CARE. We can solve (3.3.6)

for a single S in a Control Systems Toolbox from Matlab, or a new distribution of SciPy

using the function call,

S = scipy.linalg.solve continuous are(A, B, Q, R).

Since this S may not be the solution we want, we need to exhaustively identify all solutions

to the CARE, which can be executed in Bertini for p small [5]. We observe a finite set of

2p−1 real solutions S to (3.3.6). As long as X is selected in a neighborhood of Y , the matrix

Y +T +Y Ŝ is seen to be equal to X when Ŝ is selected as the minimum norm S solving the

CARE. We offer an example to illustrate in 3.3.4.

Summarizing,

ΠS,Y (X) =
Y (Y T X −XT Y )

2
+ (I − Y Y T )X

is the projection map of X to the tangent space of the Stiefel manifold at Y . For T ∈ TYN ,

the inverse is

Π−1
S,Y (T ) = Y + T + Y Ŝ

where Ŝ is determined using (3.3.6) and the minimum norm criterion.
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3.3.4 Stiefel Projection Inverse Example

We demonstrate by example that ΠS,Y and Π−1
S,Y are related as inverses. Select Y,X ∈

St(6, 3) as

Y =



−0.1258 0.3650 0.4525

−0.6761 0.3656 −0.4548

−0.2394 0.1663 −0.3722

−0.4435 0.2045 0.6642

−0.2039 −0.2428 0.0007

−0.4811 −0.7776 0.0935


and

X =



0.0283 0.3836 0.4547

−0.7164 0.4404 −0.3008

−0.2979 0.1915 −0.3129

−0.2487 0.2656 0.7396

−0.2245 −0.2145 0.0578

−0.5338 −0.7111 0.2335


.

Here we have dS(Y,X) = 0.3758, which is relatively small. Then

T = ΠS,Y (X) =



0.1501 0.0275 0.0202

−0.0621 0.0690 0.1476

−0.0657 0.0205 0.0517

0.1788 0.0708 0.0975

−0.0284 0.0258 0.0539

−0.0721 0.0603 0.1323


.

Now the solution set to the continuous algebraic Riccati equation (3.3.6) with this Y and

T contains 4 unique real solutions. The members of this set took a total of 3.1 seconds to
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compute with Bertini [5]. The solution with smallest Frobenius norm is

Ŝ =


−0.0350 −0.0031 0.0016

−0.0031 −0.0078 −0.0141

0.0016 −0.0141 −0.0271

 .

Now we see that

Π−1
S,Y (T ) = Y + T + Y Ŝ =



0.0283 0.3837 0.4551

−0.7164 0.4403 −0.3010

−0.2979 0.1915 −0.3132

−0.2487 0.2657 0.7401

−0.2245 −0.2145 0.0577

−0.5338 −0.7110 0.2335


which is approximately X, and equal to X when we include more digits of precision in the

entries of Y , X, T , and Ŝ.

3.4 Projection Mean Algorithm

Using these pairs of inversely-related maps, we describe an iterative algorithm to compute

the projection mean for a collection of points on either the Grassmann manifold or Stiefel

manifold. Figure 3.3 depicts the concept of a manifold mean, which is repeated here to

contribute to a more self-contained chapter. The center white point defines the particular

shifted tangent space, and thus the set of shifted tangent vectors resulting from projecting

the set of given manifold points to the shifted tangent space. Essentially, [Y ] (resp Y ) is the

projection mean of a set of points on Gr(n, p) (resp St(n, p)) if their scaled images on T[Y ]

(resp TY ) sum to be the origin. To find such a point, we begin with a guess, [µ] (resp µ), for

the mean and then use Π̃G,[µ] (resp ΠS,µ) to project the manifold points to the tangent space

T[µ] (resp Tµ). We scale the tangent vectors by the manifold distances, and then average
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them within the tangent space to get a vector δ. Mapping δ to the manifold using Π̃−1
G,[µ]

(resp Π−1
S,µ) yields an updated mean iterate [µ] (resp µ). We repeat until ‖δ‖F < ε for some

ε, which implies that [µ] (resp µ) is “centered”. The algorithms we develop are Algorithm 6

and Algorithm 7.

Fig. 3.3: Three points on the matrix manifold and their associated tangent vectors. Upon conver-
gence of the algorithm the center white point represents the mean subspace. (The points
are represented in 3D for purposes of illustration. They actually correspond to points on
a matrix manifold.)

Algorithm 6 Calculate [µproj] on Gr(n, p)

Require: [Xi] ∈ Gr(n, p), 1 ≤ i ≤ C; ε > 0
Ensure: XT

i Xi = I
µ ⇐ X1

repeat

δ ⇐ 1
C

C∑
i=1

Π̃G,[µ]([Xi])

‖Π̃G,[µ]([Xi])‖F

dG([µ], [Xi])

µ ⇐ Π̃−1
G,[µ](δ)

until ‖δ‖F < ε
µproj ⇐ µ
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Algorithm 7 Calculate µproj on St(n, p)

Require: Xi ∈ St(n, p), 1 ≤ i ≤ C; ε > 0
Ensure: XT

i Xi = I
µ ⇐ X1

repeat

δ ⇐ 1
C

C∑
i=1

ΠS,µ(Xi)

‖ΠS,µ(Xi)‖F

dS(µ, Xi)

µ ⇐ Π−1
S,µ(δ)

until ‖δ‖F < ε
µproj ⇐ µ
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4. FLAG MEAN: A GEOMETRIC VARIABLE-DIMENSION SUBSPACE AVERAGE

Given a set of subspaces, perhaps of varying dimension, of an ambient space, we develop

an pair of algorithms to compute a mean subspace of flexible dimension. The distinction

between the pair of formulations is the choice of metric in the optimization problem. We

call these means Flag Means, due to the nested relationship demonstrated by flag means of

increasing dimension. The connection between the flag mean and the Karcher mean allows

valuable comparison. In particular, the Karcher mean is guaranteed to exist for a local

neighborhood of points on the Grassmann manifold, which are fixed dimension subspaces.

For added theoretical insight, we draw upon the connection to Multiset Canonical Correlation

Analysis.

4.1 Motivation

As previously outlined, in computational data analysis it is common to appeal to established

geometric theory to develop algorithms and process data. The Grassmann manifold and

Stiefel manifold are matrix manifolds which have found use as a setting in which to classify

and make comparisons between large data sets. Given a cluster of points on these manifolds,

we have described procedures to find a single point, on the manifold, which represents the

cluster. These means can be used to reduce the cost of classification algorithms or to aid

in clustering tasks. More generally, given a collection of subspaces, perhaps of of different

dimensions, as opposed to points on a particular manifold, we investigate how to compute a

mean representative.
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4.2 Mathematical Background

A favorable setting for data organization and classification is the Grassmann manifold. The

Grassmann manifold Gr(n, p) is the set of all p-dimensional subspaces of Rn. Orthonormal

matrix representatives for points on the Grassmannian are identified to perform computa-

tions. More precisely, a n× p matrix Y , Y T Y = I, is a representative for the p-dimensional

subspace spanned by the columns of Y , denoted [Y ]. Given a cluster of N points on Gr(n, p),

{[Xi]}N
i=1, with XT

i Xi = I, we may compute a mean, [µ] ∈ Gr(n, p). One approach is to com-

pute the Karcher mean, [µKM ], using the iterative procedure found in [6]. The Karcher mean

depends upon principal angles. Given two p-dimensional subspaces [X] and [Y ] of Rn, there

are p principal angles 0 ≤ θ1 ≤ θ2 ≤ ... ≤ θp ≤ π
2

between [X] and [Y ]. The principal angles

may be computed as the inverse cosine of the singular values of XT Y [8]. Intuitively, [µKM ]

is identified as the p-dimensional subspace of Rn, given by [µKM ] = argmin
[µ]

N∑
i=1

d([µ], [Xi])
2,

where we measure the distance d([X], [Y ]) as the square root of the sum of the squares of the

principal angles between the subspaces [X] and [Y ]. The Karcher mean iterative algorithm

is guaranteed to converge for a cluster of points located within a certain convergence radius.

On the other hand, we consider forming a new mean, called the flag mean. Suppose that

we are given N subspaces of Rn, of any, perhaps variable, dimension. Let {Xi}N
i=1, XT

i Xi = I,

be orthonormal matrices whose column spaces are the N given subspaces, denoted {[Xi]}N
i=1.

We consider two formulations of the flag mean, based on two distinct optimization problems.

In the first, we work with the cosines of the principal angles. In the second, we utilize the

squares of the cosines of the principal angles. In each case, we generate a q-dimensional flag

mean, 1 ≤ q ≤ r, where r is the dimension of the union of the {[Xi]}. We compute the flag

mean by forming an orthonormal basis of q vectors. The name “flag mean” arises from the

fact that the q-dimensional flag mean is a proper subspace of the (q + 1)-dimensional flag

mean, resulting in a nested sequence of flag means. This sequence is a flag, by definition.
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4.3 Flag Mean Formulation 1

4.3.1 Finding the First Flag Mean Vector

Appealing to the concept of center of mass, we seek a unit vector û(1) that minimizes the sum

of the distances between û(1) and each of the subspaces [Xi]. Note that the ‘hat’ notation

denotes a unit vector. Hence we write

minimize
u

N∑
i=1

d(u, [Xi])

subject to uT u = 1.

(4.3.1)

As it is common to use principal angles to measure distance between subspaces, we let

d(u, [Xi]) = θi where θi is the principal angle between the line containing u and [Xi]. In

other words, θi is the solution of the problem

minimize
ki

arccos uT ki

subject to kT
i ki = 1, ki ∈ [Xi].

The updated optimization problem from (4.3.1) would be

minimize
u

N∑
i=1

θi

subject to uT u = 1.

(4.3.2)

However, (4.3.2) does not have a unique solution û(1) in many cases. In place of (4.3.2), we

consider maximizing the sum of the cosines of the principal angles. Thus, we want to find

the û(1) that achieves

maximize
u,ki

N∑
i=1

uT ki

subject to uT u = 1, kT
i ki = 1, ki ∈ [Xi].

(4.3.3)
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This updated problem eliminates many of the ambiguities in solution vector. However, given

two subspaces [X1] and [X2] equal to the x and y axis, respectively, in R2, the selection of

either diagonal would solve (4.3.3). We observe that orthogonality and sign issues remain

obstacles to solvability.

We note that ki ∈ [Xi] implies that ki = Xiαi for some p-dimensional vector αi. Also,

1 = kT
i ki = αT

i XT
i Xiαi = αT

i αi, so we have

maximize
u,αi

N∑
i=1

uT Xiαi

subject to uT u = 1, αT
i αi = 1.

Writing a Lagrange function for this optimization problem, with Lagrange multipliers λ and

{µi}N
i=1, we have

Λ(u, α1, ..., αN , λ, µ1, ..., µN) =
N∑

i=1

uT Xiαi − λ(uT u− 1)−
N∑

i=1

µi(α
T
i αi − 1). (4.3.4)

We compute the following vector partial derivatives:

∂Λ

∂u
=

N∑
i=1

Xiαi − 2λu (4.3.5)

∂Λ

∂αi

= XT
i u− 2µiαi, 1 ≤ i ≤ N (4.3.6)

∂Λ

∂λ
= uT u− 1

∂Λ

∂µi

= αT
i αi − 1, 1 ≤ i ≤ N.

We seek a stationary point for Λ, so we set the partials equal to 0. From the relations given

by (4.3.5) and (4.3.6) we can develop a two-phase iterative procedure to first, find the {αi}

given iterate uk, and second, to find updated uk+1 from these {αi}. We solve for αi in the
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equation resulting from (4.3.6) to get

αi =
XT

i u

2µi

, 1 ≤ i ≤ N.

Although µi is unknown, we can circumvent its value by appealing to the fact that αi is a

unit vector. First notice that µi = 1
2
cos θi > 0. Therefore, regardless of scalar µi,

αi =
XT

i u

‖XT
i u‖2

, 1 ≤ i ≤ N.

Next we solve for u in the resulting equation from (4.3.5) to get

u =

N∑
i=1

Xiαi

2λ
.

Again, we can bypass λ by realizing that u is unit length and λ =
N∑

i=1

1

2
uT Xiαi =

N∑
i=1

µi > 0,

so

u =

N∑
i=1

Xiαi

‖
N∑

i=1

Xiαi‖2

.

It follows that, given an initial guess for û(1), û0, we can iteratively converge to û(1) using

Algorithm 8. Note that the ‘hat’ notation is used to imply normalization. Convergence to the

globally optimal û(1) is assured when the given subspaces occupy a single 2n-tant (quadrant,

octant, etc) in Rn, thus avoiding orthogonality and local maxima. This is reasonable to

assume for one dimensional subspaces generated via digital photographs, for example.

4.3.2 Finding the Remaining q − 1 Flag Mean Vectors

In order to build dimension for the q-dimensional flag mean, we determine q unit vectors that

are mutually orthogonal. Suppose we have already collected m−1 mutually orthogonal unit
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Algorithm 8 Calculate û(1) for Flag Mean 1

Require: [Xi], 1 ≤ i ≤ N subspaces of Rn; guess û0 ∈ Rn; ε > 0
Ensure: XT

i Xi = I
repeat

αi ⇐ XT
i ûk, 1 ≤ i ≤ N

uk+1 ⇐
N∑

i=1

Xiα̂i

until ‖ûk+1 − ûk‖2 < ε
û(1) ⇐ ûk+1

vectors {û(1), û(2), ..., û(m−1)}, û(i)T û(j) = δij. The computation of û(m) is a slight variation

of Algorithm 8. The only modification necessary to the Lagrangian in (4.3.4) is to add the

constraint that u is orthogonal to each û(j), 1 ≤ j < m. The resulting Lagrangian, including

Lagrange multipliers λ, {µi}N
i=1, and {δj}m−1

j=1 , is

Λ(u, α1,..., αN , λ, µ1, ..., µN , δ1, ...δm−1) =

N∑
i=1

uT Xiαi − λ(uT u− 1)−
N∑

i=1

µi(α
T
i αi − 1)−

m∑
j=1

δju
T û(j).

(4.3.7)

The partial derivatives of Λ remain the same as before, except

∂Λ

∂u
=

N∑
i=1

Xiαi − 2λu−
m−1∑
j=1

δjû
(j). (4.3.8)

Setting (4.3.8) equal to 0, solving for u, and letting s =
N∑

i=1

Xiαi yields

u =

s−
m−1∑
j=1

δjû
(j)

2λ
. (4.3.9)

To solve for δl, 1 ≤ l ≤ m− 1, we multiply on the left by û(l)T . Due to the requirements of
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orthogonality and unit length, we obtain

δl = û(l)T s.

Substituting in (4.3.9), we find that

u =

s−
m−1∑
j=1

û(j)T sû(j)

2λ
. (4.3.10)

Pairing (4.3.10) with (4.3.6) and recognizing that λ > 0 leads to the iterative procedure,

Algorithm 9.

Algorithm 9 Calculate û(m) for Flag Mean 1

Require: [Xi], 1 ≤ i ≤ N subspaces of Rn; guess û0 ∈ Rn; ε > 0; 1 < m ≤ q
Ensure: XT

i Xi = I
repeat

αi ⇐ XT
i ûk, 1 ≤ i ≤ N

s ⇐
N∑

i=1

Xiα̂i

uk+1 ⇐ (s−
m−1∑
j=1

û(j)T sû(j))

until ‖ûk+1 − ûk‖2 < ε
û(m) ⇐ ûk+1

4.3.3 Newton’s Method Solution

There are numerous other iterative algorithms that can be used to determine a critical point

for (4.3.4). One of these algorithms is Newton’s method, which is implemented here to find

a zero for the partial derivatives of (4.3.4). Here we only consider seeking û(1), although the

analysis could be extended to find û(m), m > 1, by substituting the partials of (4.3.7). We
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let

Θ =



µ1

...

µN

λ

u

α1

...

αN



, ∆Θ =



∆µ1

...

∆µN

∆λ

∆u

∆α1

...

∆αN



, F (Θ) =



X1α1 + · · ·+ XNαN − 2λu

XT
1 u− 2µ1α1

...

XT
Nu− 2µNαN

uT u− 1

αT
1 α1 − 1

...

αT
NαN − 1



.

We want to use the approximation F (Θ+∆Θ) ≈ F (Θ)+F ′(Θ)∆Θ to iteratively find a zero

for F . We have

F ′(Θ) =



0 . . . 0 −2u −2λIn X1 . . . XN

−2α1 . . . 0 0 XT
1 −2µ1Ip . . . 0

. . . . . .

0 . . . −2αN 0 XT
2 0 . . . −2µNIp

0 . . . 0 0 2uT 0 . . . 0

0 . . . 0 0 0 2αT
1 . . . 0

...
. . .

0 . . . 0 0 0 0 . . . 2αT
N



.

Given a guess for Θ, Θ0, we can solve the linear system F ′(Θ0)∆Θ0 = −F (Θ0) for ∆Θ0.

Then we update Θ1 = Θ0 + ∆Θ0 and iterate until F (Θk) is less than some tolerance. The u

from within the final Θk is the first flag mean vector, û(1). This procedure, like any nonconvex

Newton’s method, is sensitive to initial value Θ0.
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4.3.4 Iterative Eigenproblem Solution

Another iterative algorithm to determine a critical point for (4.3.4) involves an iterative

eigenvector problem. Recall that solving for αi in the equation resulting from (4.3.6) yields

αi =
XT

i u

2µi

, 1 ≤ i ≤ N. (4.3.11)

Also recall that from (4.3.5),
N∑

i=1

Xiαi = 2λu. (4.3.12)

Substituting (4.3.11) into (4.3.12) gives

N∑
i=1

XiX
T
i

4µi

u = λu.

This motivates an iterative eigenvector problem. We may begin with a set {µi}, perhaps

determined based on computation of the principal angles between the given subspaces and

a sensibly chosen central vector, for which the first flag mean 2 vector is a good candidate

(see 4.4). Then we compute the largest eigenvector of
N∑

i=1

XiX
T
i

4µi

, which becomes û1 when

scaled to unit length. We may repeat computation of the {µi} based on principal angles,

and proceed to find largest eigenvector û2 of the updated matrix. We observe convergence

to a vector, û(1).

Making a reverse substitution to remove u yields a second eigenvector problem. By

stacking the equations given by the substitution, and letting α = [αT
1 . . . αT

N ]T , we have

[
X1

4µ1

. . .
XN

4µN

]T [X1 . . . XN ]α = λα.

It is interesting that eigenvectors α are not, in general, such that each of the αi is unit length.

However, upon convergence to a flag vector, we find that indeed, ‖αi‖ = 1 for all i.
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4.3.5 Discriminative Canonical Correlations Solution

We consider a final iterative algorithm that is motivated by the work of Kim et al [15].

This method requires the SVD. Discriminative Canonical Correlations (DCC) produces a

transformation T that separates between class instances while simultaneously condensing

within class instances. The DCC iterative algorithm for producing T is maleable to fit our

task. We know that the cosine of the principal angle between the line containing û and [Xi]

can be computed via the SVD. Consider the thin SVD

XT
i û = UiΣiVi

where Σi and Vi are 1× 1. Then by [8],

cos θi = Σi = ViU
T
i XT

i û.

As a result, (4.3.3) can be written as

maximize
u

N∑
i=1

(ViXiUi)
T u

subject to uT u = 1.

(4.3.13)

Notice that the maximum of (4.3.13) will be achieved when u points in the same direction

as
N∑

i=1

ViXiUi. In other words, the maximizer is

û =
N∑

i=1

ViXiUi. (4.3.14)

The corresponding iterative algorithm requires a guess for û0, from which the SVD of

each XT
i û0 may be computed. Then we compute û1 from (4.3.14), and repeat. We find that

this algorithm converges to û(1).
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4.4 Flag Mean Formulation 2

4.4.1 Standard Flag Mean 2

Now we consider a variation of the optimization problem in (4.3.3), in which we substitute

the squares of the cosines of the principal angles. Again, we write θi for the principal angle

between the line containing u and [Xi]. Then we aim to solve

maximize
u

N∑
i=1

cos2 θi

subject to uT u = 1.

(4.4.1)

In the following Proposition, we verify that cos2 θi = uT XiX
T
i u.

Proposition 4.4.1. cos2 θi = uT XiX
T
i u

Proof. Let Xi be an n × p orthonormal basis for [Xi], and let u ∈ Rn be unit length.

Consider the SVD decomposition uT Xi = UΣV T . We know that U = ±1 and Σ is 1 × n

with Σ11 = cos θi according to [8]. Then

uT XiX
T
i u = UΣV T V ΣT U

= U2 cos2 θi

= cos2 θi.

Because of Proposition 4.4.1, equivalent to (4.4.1) we have the following optimization

problem

maximize
u

uT (
N∑

i=1

XiX
T
i )u

subject to uT u = 1.

(4.4.2)
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Letting A =
N∑

i=1

XiX
T
i , this translates to the Lagrangian

L(u, λ) = uT Au− λ(uT u− 1).

Taking partial derivatives we have:

∂L

∂u
= 2Au− 2λu

∂L

∂λ
= uT u− 1.

Thus we solve Au = λu for eigenvectors û(1), ..., û(q), which are the eigenvectors corresponding

to the q largest eigenvalues in descending order. The flag mean of dimension q is the subspace

spanned by these q eigenvectors. See Algorithm 10. We note that since A is symmetric, these

q eigenvectors of A form an orthonormal set. This second formulation of the flag mean,

as with the first formulation, fails when there is certain orthogonality between the given

subspaces. On the other hand, the cosine squared cost function leads to a robust solution

that does not depend upon a seed vector for an iterative method.

Algorithm 10 Calculate {u(m)}q
m=1 for Flag Mean 2

Require: [Xi], 1 ≤ i ≤ N subspaces of Rn; 1 ≤ q ≤ r
Ensure: XT

i Xi = I

A ⇐
N∑

i=1

XiX
T
i

u(m) ⇐ m-th largest eigenvector of A, 1 ≤ m ≤ q

We remark that the computation of the eigenvectors of A becomes intractable for large n.

By appealing to the SVD, we realize that we can solve an equivalent reduced size problem.

Let X = [X1, X2, . . . , XN ], and note that A = XX T . Then by the thin SVD, X = UΣV T ,

which implies A = UΣ2UT . But then the Np left singular vectors of X are equal to the

Np largest eigenvectors of A. When Np < n, computing the thin SVD of X is faster than

computing the eigenvectors of A.
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4.4.2 Weighted Flag Mean 2

The ability to compute a weighted flag mean offers advantages under certain circumstances.

For instance, if we have a variable level of confidence in the given subspaces, we may opt

to scale the contribution of each subspace according to reliability. Alternatively, we could

weight the contribution of each subspace according to the dimension of the subspace, perhaps

to increase the impact of larger subspaces.

The second formulation of the flag mean allows for straightforward weighted mean cal-

culations. Recall that this flag mean is based upon the eigenvectors of A =
N∑

i=1

XiX
T
i . Let

{ci}N
i=1 be weights that are selected to correspond to the N given subspaces. Then we let

B =
N∑

i=1

ciXiX
T
i

and compute the eigenvectors of B, the sum of weighted summands. The weighted flag

mean of dimension q is the subspace spanned by the q eigenvectors corresponding to the q

largest eigenvalues, in descending order. See Algorithm 11. Our remark about computational

tractability for large n using the thin SVD of X applies here for X = [ X1√
c1

, X2√
c2

, . . . , XN√
cN

].

Algorithm 11 Calculate {u(m)}q
m=1 for Weighted Flag Mean 2

Require: [Xi], 1 ≤ i ≤ N subspaces of Rn; 1 ≤ q ≤ r; weights ci, 1 ≤ i ≤ N
Ensure: XT

i Xi = I

B ⇐
N∑

i=1

ciXiX
T
i

u(m) ⇐ m-th largest eigenvector of B, 1 ≤ m ≤ q

4.4.3 Connection to MCCA

The flag mean 2 formulation is intimately connected to Multiset Canonical Correlation Anal-

ysis (MCCA).
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Multiset CCA

Via et al [27] and Kettenring [13], among others, consider multiset extensions to Canonical

Correlation Analysis (CCA). They work with data matrices, which we relabel D1, . . . , DN ,

each matrix representing a different data set. In what follows we assume the matrices have

been replaced with orthonormal bases X1, . . . , XN .

Recall that for two data sets we may seek canonical vectors k1 ∈ R(X1) and k2 ∈ R(X2)

in order to solve

maximize
k1,k2

kT
1 k2

subject to kT
1 k1 + kT

2 k2 = 1.

(4.4.3)

Using the multiset formulation, this becomes

N∑
i=1

N∑
j=1

j 6=i

kT
i kj

subject to the constraints

ki ∈ R(Xi)

and
N∑

i=1

kT
i ki = 1.

Expressing ki as a linear combination, we write

ki = Xiαi

and form the Lagrangian

L(α) =
N∑

i=1

N∑
j=1

j 6=i

αT
i XT

i Xjαj − λ(
N∑

i=1

αT
i αi − 1)
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If we define the block column vector α as

α = [αT
1 , . . . , αT

N ]T

and

X = [X1, . . . , XN ]

then the Lagrangian takes on the form

L(α) = αT (X TX − I)α− λ(αT α− 1).

Solving the Lagrangian gives

X TXα = (λ + 1)α.

Thus the set of vectors

ki = Xiαi

obtained via the eigenvector problem are the canonical vectors of the multiset CCA.

For the subsequent sets of canonical vectors it can be shown that the above argument

extends to

k
(m)
i = Xiα

(m)
i

where α(m) is the eigenvector of X TX associated with the mth largest eigenvalue.

Singular Value Decomposition

Consider the thin SVD of the bases matrix X , i.e.,

Xα(m) = σ(m)û(m)
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and

X T û(m) = σ(m)α(m)

for each 1 ≤ m ≤ (Np). This is also written

X = UΣAT

where U = [û1| . . . |û(Np)] and A = [α̂(1)| . . . |α̂(Np)]. We observe that the canonical vectors

k
(m)
i = Xiα

(m)
i in multiset CCA are found by solving for A, the right singular vectors of X .

Flag Mean 2

We have observed that the eigenvectors {û(m)} that form our flag mean come from the

solutions to the eigenvector problem

XX T u = λu.

So, as we have already observed, these vectors {û(m)} are actually the left singular vectors

of X .

We now have an interesting connection between multiset CCA and our flag vectors {û(m)}

from the equation

û(m) =
Xα(m)

σ(m)
.

From this it follows that

û(m) =
1

σ(m)

∑
i

Xiα
(m)
i

or

û(m) =
1

σ(m)

∑
i

k
(m)
i .

In other words, each flag mean 2 vector is a scaling of the average of the canonical vectors

in multiset CCA.
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Connection to CCA-MAXVAR

We note that although û did not appear to be of any central interest to authors of the

multiset CCA paper [27], it was of interest to Kettenring (1971) [13] who called it z. He was

interested in finding z and yi to

minimize
N∑
i

‖z − aiyi‖2

where

yi = Difi

with the constraint that ‖yi‖ = 1.

This optimization looks very different from ours, and yet it has a similar objective: to

find a vector in the middle of a collection of data matrices. Via shows that the multiset CCA

produces the solution for z as

z =
Dα

N

with D = [D1, D2, . . . , DN ].

Thus, if one were to use orthonormal bases Xi in place of data matrices Di, then Ket-

tenring’s method for computing z is the same as ours.

Cosines to Basis Vectors

We examine an interesting alternate interpretation of flag mean 2, involving a different set

of squares of cosines. Remember that the flag mean vectors are determined to maximize the

sum of the squares of the principal angles:

N∑
i=1

cos2 θi =
N∑

i=1

uT XiX
T
i u.
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Notice that

uT XiX
T
i u =

p∑
j=1

(XT
iju)2

where Xij is the jth column of the ith orthonormal basis matrix. But then we have

∑
ij

(XT
iju)2 =

∑
ij

cos2 φij

where φij is the angle between u and the jth basis vector of the ith orthonormal basis.

Summarizing, our optimization problem, and thus the geometric interpretation of û, can be

expressed in terms of {θi} or {φij}.

Novel Aspects of Flag Mean 2

In comparing our work to MCCA, we may identify a number of fresh contributions. To

begin with, we work with bases Xi from the beginning, instead of data sets Di. We solve

the eigenvector problem XX T u = λu, instead of X TXα = λα. Our novel form for the

optimization problem, in terms of squares of cosines of principal angles or basis vector angles,

provides additional insight into the geometry of the data fitting. We provide an interesting

connection between our work and MCCA using the SVD of X , and provide a different proof

of the fact that û is the average of the canonical vectors. Finally, we also observe the flag

structure of the vectors of the flag mean 2.
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5. APPLICATIONS OF MATRIX MANIFOLD MEANS

5.1 Normal Mean Experimental Results

5.1.1 KTH Action Data

As an illustration of the normal mean, we consider the KTH action video data set [21].

This data set consists of 600 video files, based on 25 subjects, 6 actions, and 4 scenarios.

The resolution of each grayscale image in the videos is 120× 160, meaning 19200 pixels per

image. We compute a Grassmann manifold normal mean, a Stiefel manifold normal mean,

and a Karcher mean of points generated from the video of subject 1 performing the action

of handwaving in scenario 1. First we normalize by subtracting the mean of video images 1

through 15 from each image. Then we form five orthonormal matrices, {X1, ..., X5}, Xi ∈

St(19200, 3) and [Xi] ∈ Gr(19200, 3), based on these mean-subtracted images, according to

the following procedure. We raster-scan images 1 through 3, concatenate them into a matrix

M1 of size 19200× 3, and find an orthonormal basis X1 = UV T for M1 using the thin SVD,

M1 = USV T . Likewise, we advance from image 4 through image 6, images 7 − 9, images

10− 12 and images 13− 15 to form the remaining Xi.

For all the mean computations recorded below, we used ε = 10−4. The three reshaped

column vectors of the Grassmannian normal mean of {[Xi]}5
i=1 are displayed in Figure 5.1.

Algorithm 2 took 91 iterations to converge. The three reshaped column vectors of the Stiefel

normal mean of {Xi}5
i=1 are displayed in Figure 5.2. Algorithm 3 took 28 iterations to

converge. The three reshaped column vectors of the Karcher mean of {[Xi]}5
i=1 are displayed

in Figure 5.3. The Karcher mean algorithm, Algorithm 1, took 78 iterations to converge.

We remark that another visualization tool is to stack the three photographs comprising a

particular 3-dimensional mean and view as an RGB color photograph.

54



Fig. 5.1: Reshaped Grassmannian normal mean column vectors from KTH action data.

Fig. 5.2: Reshaped Stiefel normal mean column vectors from KTH action data.

Fig. 5.3: Reshaped Karcher mean column vectors from KTH action data.

5.1.2 CSU PAL Faces

We now draw attention to the advantages of a Stiefel mean versus a Grassmannian mean,

by applying our algorithms to color photographs. We examine RGB photos of faces selected

from video sequences generated by the Colorado State University Pattern Analysis Lab.

In particular, we take five images from the video of the first subject engaged in protocol

2, smiling, under the lighting condition 2, which included frequent stark change in light

source. The resolution of each image is 1440× 1080, meaning 1555200 pixels in each of the

three color sheets. We raster-scan each color sheet and concatenate horizontally to obtain

five 1555200 × 3 matrices, M1, ...,M5. We form an orthonormal basis matrix Xi, [Xi] ∈

Gr(1555200, 3), for the column space of each of the Mi using the thin SVD Mi = XiSV T .

We also form an orthonormal basis Yi for Mi by using the Gram-Schmidt procedure [23], so

that Yi ∈ St(1555200, 3).

55



Based on ε = 10−4, we calculate the Grassmannian normal mean of the {[Xi]}5
i=1 using

Algorithm 2 and the Stiefel normal mean of the {Yi}5
i=1 using Algorithm 3, and note rapid

convergence. To allow the means, as well as the Xi and Yi, to be displayed as images, we

perform an affine transformation to scale the entries to be in the standard 0 to 255 range,

and reshape to the original image dimensions. The scaled and reshaped {Xi}5
i=1 are shown

in Figure 5.4, while the {Yi}5
i=1 are shown in Figure 5.5. From Figure 5.6, we observe that

the Stiefel mean preserves some color information. In contrast, the Grassmannian mean

has lost this information. This matches our intuition, as points on the Stiefel manifold are

particular orthonormal bases, while points on the Grassmann manifold are subspaces, each

represented by an equivalence class of orthonormal bases.

Fig. 5.4: Scaled and reshaped Grassmannian point representatives {Xi}5
i=1 from CSU PAL faces

data.

Fig. 5.5: Scaled and reshaped Stiefel points {Yi}5
i=1 from CSU PAL faces data.
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Fig. 5.6: Normal means for CSU PAL faces data. Left: One of the five original images. Center:
Grassmannian mean. Right: Stiefel mean. We observe that the blue of the shirt and the
red of the face are preserved better in the Stiefel mean.

5.2 Flag Mean Experimental Results

5.2.1 Mean of Two Intersecting Planes

As an example, we compute the flag mean of dimension q = 2 of two intersecting planes in

R3. The first plane, P1, is the xy-plane, represented by the orthonormal matrix

Y1 =


1 0

0 1

0 0

 .

The second plane, P2, is defined as the span of the vectors [1, 0, 0] and [0, 1
2
,
√

3
2

]. We use the

orthonormal matrix

Y2 =


1 0

0 1
2

0
√

3
2


to represent P2.

Upon application of the flag mean 1 algorithm to this pair of 2-dimensional subspaces of

R3, the first flag mean vector is û(1) = [1, 0, 0]. This result is to be expected because P1 and

P2 share this direction, so there is a minimum principal angle sum of 0 (see (4.3.1)). The
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second flag mean vector is û(2) = [0,
√

3
2

, 1
2
]. This result is also accurate, as û(2) lies at the

minimizing angle of exactly π
6

radians to both the xy-plane and P2. In Figure 5.7 we see P1

depicted in dark blue, P2 depicted in green, and the flag mean plane (the span of the vectors

û(1) and û(2)) depicted in red. Application of the flag mean 2 algorithm yields precisely the

same mean plane.

0

5

012345678910
0

2

4

6

8

10

12

14

16

18

Fig. 5.7: The flag mean plane of the two intersecting planes, P1 and P2, is depicted in red.

5.2.2 Mean for Four Image Planes

We construct four 2-dimensional image subspaces in R1120000. Each subspace is the span of

two vectors, obtained by raster-scanning images from the PAL Face Database. We select

subject 1 and pair an image of subject 1 with variable illumination but fixed pose with an

image of a distinct subject with the identical pose. Figure 5.8 displays the 8 (pre-raster-

scanned) grayscale face images, with subspace pairings running vertically.

We proceed to compute flag mean 1 with q = 8. We make the guess of û(0) = 1√
1120000

e

where e is a tall vector of 1’s. The resulting sequence of 8 flag mean vectors is computed

in 24.96 seconds, and is shown in Figure 5.9. Observe that the first flag mean vector lies
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Fig. 5.8: Original subspace pairings run vertically

in the common subspace direction of subject 1. The subsequent flag mean vectors display

attributes of the other subjects as well as subject 1. Flag mean 2 is admissible if we use

the reduced size SVD solution, as the large eigenvector problem is intractable. Using the

economy version takes only 2.12 seconds. The result is shown in Figure 5.10. For comparison,

the Karcher mean algorithm took 4 iterations or 11.70 seconds and the Grassmann manifold

normal mean algorithm took 5 iterations or 26.42 seconds on this face data set.

Fig. 5.9: Flag mean 1 vectors 1-8 run left to right, top to bottom. Notice the clarity of subject 1
in û(1).
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Fig. 5.10: Flag mean 2 vectors 1-8 run left to right, top to bottom. Again we can see sharply the
identity of subject 1 in û(1).

5.3 Computational Complexity Analysis

It behooves us to compare the computational complexities of the mean algorithms. We begin

by recording the computational cost of operations relevant to our algorithms, such as matrix

multiplication and the thin SVD. These are compiled in Table 5.1.

Tab. 5.1: Computational costs for revelant operations
Computation Complexity (worst case)
n× p by p× p matrix multiplication O(np2)
p× n by n× p matrix multiplication O(np2)
p× p matrix inverse O(p3)
n× p matrix thin SVD O(np2)
Solve linear system with A p2 × p2 O(p4) (reducible because of sparsity)
Solve n× n eigen problem O(n3)
Add two n× p matrices O(np)

Now suppose that we have N manifold points, each represented by a matrix of size

n× p. One may verify that the computational complexities of each of the algorithms are as

displayed in Table 5.2. In general, the Karcher mean and Grassmannian normal mean are

comparable in speed, while the Stiefel normal mean is slower and the flag means are faster.
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Tab. 5.2: Summary of matrix manifold mean methods. N is the number of subspaces, n is the
dimension of the ambient space, and p is the dimension of the subspaces

Algorithm Environment Computational Complexity
Normal Mean Grassmann 1 iter: O(Nnp2) + O(Np3)
Normal Mean Stiefel 1 iter: O(Nnp2) + O(Np4)
Projection Mean Stiefel TBD
Flag (cos sq) subspaces Entire flag mean: O(n3) or O(n(Np)2)
Flag (cos) subspaces 1 iter for 1 flag mean vector: O(Nnp)
Karcher Mean Grassmann 1 iter: O(Nnp2) + O(Np3)

5.4 Mean Benefit Comparisons

The novelty and advantages of these new means when compared to the Karcher mean are

manifold. The normal mean provides a mean on both the Grassmann and the Stiefel mani-

fold, and permits the F -normal mean variant. The flag mean can be computed over varying

dimension subspaces, while the Karcher mean requires fixed dimension subspaces. We can

generate an arbitrary dimension flag mean, while the Karcher mean is a subspace of di-

mension matching the given subspaces. The flag mean has flag structure. In other words,

there is an intrinsic ordering to the flag mean orthonormal basis, while the Karcher mean

orthonormal basis does not invite such interpretation. The flag mean 2 formulation has a

closed form eigenvector solution, versus an iterative solution. In addition, the flag mean

objective function involves cosines of principal angles in place of principal angles themselves,

which decreases sensitivity to outliers. For these reasons, and many others, the contribution

of these novel mean algorithms is highly significant.

61



6. CONCLUSION

We furnish a summary of the findings of this research. We have confidently developed the

normal mean on the Grassmann and Stiefel manifolds. We have derived a map from a point in

the tangent space of the Grassmann manifold to the closest Grassmannian point. This could

be coupled with a projection map that is well-defined on Grassmannian points to produce a

projection mean algorithm. We have offered evidence that the computation of a projection

mean on the Stiefel manifold reduces to exhaustively solving a continuous algebraic Riccati

equation, and selecting the minimum norm solution. Our work has generated two versions of

the flag mean, one of which utilizes principal angles and the other utilizes the square of the

principal angles. The former is solved via an iterative method, sensitive to initial condition,

while the latter is an eigenvector problem. A weighted flag mean was considered.

We make a few observations about our results. The success of the normal mean was tied

to the unique point of intersection between a normal space and a tangent space for both the

Grassmann and Stiefel manifold. The intersection of the normal space and the Grassmann

manifold or Stiefel manifold is a family of orthogonal matrices, which increases problem dif-

ficulty. For the Grassmann manifold, the ideal member of this family can be selected but

there is no accompanying projection map. For the Stiefel manifold, we must generate the

entire set of solutions for a particular quadratic equation, which is demonstrated to be a non-

trivial, but approachable, continuous algebraic Riccati equation. In this way, it is clear that

the normal mean has a simpler derivation than the projection mean. Despite the difficulties

of the projection mean, we expect to soon develop practical projection mean algorithms,

first on the Stiefel, and then on the Grassmann manifold. Experiments show successful and

sensible results using both of the flag mean methods. In general, the orientation of bases

and initialization vector are major factors in the outcome of the first flag mean. We hope to

adjust the flag mean iterative method to be robust to initialization. The second flag mean
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method is stable, and provides an enlightening insight into the core theory of multiple-set

canonical correlation analysis.
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Appendix A

MATLAB CODES

A.1 Calculate Distance on Grassmann Manifold

%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Justin Marks, Colorado State University, June 2012
%
% dG function
% Input: representatives, A and B, for points [A] and [B] on Grassmann
% manifold
% Output: Distance, d, between [A] and [B], as measured by the square
% root of the sum of the squares of the principal angles
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%

function d = dG(A,B)

[U1,S1,V1] = svd(A,0);
[U2,S2,V2] = svd(B,0);
cosV = svd(U1'*U2); %vector of cosines of principal angles

d = 0;
for i=1:length(cosV)

mycos = min(1,cosV(i));
d = d + acos(mycos)ˆ2;

end
d = sqrt(d);

A.2 Calculate Distance on Stiefel Manifold

%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Justin Marks, Colorado State University, June 2012
%
% dS function
% Input: points A and B on the Stiefel manifold
% Output: Distance, d, between A and B, as measured by the
% 2−norm of the difference matrix
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%
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function d = dS(A,B)

d = sqrt(trace((A−B)'*(A−B)));

A.3 Calculate Karcher Mean of Grassmannian Points

%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Justin Marks, Colorado State University, June 2012
%
% GmuKM function
% Input: tensor, M, of matrices representing points on a Gr
% Output: representative, mu, for the Karcher mean, [mu], on Gr
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%

function mu = GmuKM(M)

maxiter = 1000;
eps = 10ˆ(−4); %control how small norm(delta) must be

numMat = size(M,3);
onMat = zeros(size(M));

%obtain orthonormal bases
for i=1:numMat

[U,S,V] = svd(M(:,:,i),0);
onMat(:,:,i) = U;

end

%initialization of mu
mu=onMat(:,:,1);

%compute first delta
delta = zeros(size(M,1),size(M,2));
for i=1:numMat

delta = delta+GLOG(mu,onMat(:,:,i));
end
delta = 1/numMat*delta;

%iterate to find KM
iter = 0;
while norm(delta,'fro')>=eps && iter<maxiter

iter = iter+1;
mu = GEXP(mu,delta); %map delta to the manifold: new mu
delta = zeros(size(M,1),size(M,2));
for i=1:numMat

delta = delta+GLOG(mu,onMat(:,:,i));
end
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delta = 1/numMat*delta; %ave corresp tangent v's: new delta
end
display(['KM took ' num2str(iter) ' iters to converge'])

%print the minimized quantity
TotalDist = 0;
for i =1:numMat

TotalDist = TotalDist + dG(onMat(:,:,i),mu)ˆ2;
end
display(['Sum sqrd dists btw muKM and manifold pts: ' TotalDist])

A.4 Subroutine for Karcher Mean: Compute Log

%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Justin Marks, Colorado State University, June 2012
% Extracted from Begelfor
%
% GLOG function
% Input: representative, Y, for point of tangency [Y] on Grassmann
% manifold, and representative X for [X],
% another point on the Grassmannian
% Output: T on the tangent space to Grassmannian at [Y],
% norm(T) is equal to the distance from [X] to [Y]
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%

function T = GLOG(Y,X)

%[U,S,V] = svd((eye(size(Y,1))−Y*Y')*X*inv(Y'*X),0); %orig idea
%[U,S,V] = svd((X−Y*(Y'*X))*inv(Y'*X),0);
quantity = X/(Y'*X)−Y; %shortcut
[U,S,V] = svd(quantity,0);

theta = diag(atan(diag(S)));
T = U*theta*V';

A.5 Subroutine for Karcher Mean: Compute Exp

%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Justin Marks, Colorado State University, June 2012
% Extracted from Begelfor
%
% GEXP function
% Input: representative, Y, for point of tangency [Y] on Grassmann
% manifold, and vector T in tangent space to manifold at [Y]
% Output: X, a representative for a point, [X], on Grassmannian
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% whose distance to [Y] is equal to norm(T)
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%

function X = GEXP(Y,T)

[U,S,V] = svd(T,0);
X = Y*V*diag(cos(diag(S)))+U*diag(sin(diag(S)));

A.6 Calculate Normal Mean of Grassmannian Points

%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Justin Marks, Colorado State University, June 2012
%
% GmuN function
% Input: tensor, M, of matrices representing points on a Gr
% Output: representative, mu, for the normal mean, [mu], on Gr
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%

function mu = GmuN(M)

maxiter = 1000;
eps = 10ˆ(−4);
numMat = size(M,3);
n = size(M(:,:,1),1);
p = size(M(:,:,1),2);

%obtain orthonormal bases
for i=1:numMat

[U,S,V] = svd(M(:,:,i),0);
M(:,:,i)=U;

end
%initialize mu by guessing one of the given points
mu = M(:,:,1);
%find the first delta
delta = zeros(n,p);
for i=1:numMat

delta = delta+R Ginv(mu,M(:,:,i));
end
delta = 1/numMat*delta;

iter = 0;
while norm(delta,'fro')>=eps && iter < maxiter

iter = iter+1
mu = R G(mu,delta); %map delta to the manifold: new mu
%compute the new delta
delta = zeros(n,p);
for i=1:numMat

delta = delta+R Ginv(mu,M(:,:,i));
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end
delta = 1/numMat*delta; %ave tangent v's: new delta

end
display(['G normal mean: ' num2str(iter) ' iters to converge'])

%print the quantity that the KM minimizes
TotalDist = 0;
for i =1:numMat

TotalDist = TotalDist + dG(M(:,:,i),mu)ˆ2;
end
display(['Sum sqrd dists btw muGN and manifold pts: ' TotalDist])

A.7 Subroutine for Grassmann Normal Mean: Compute Retraction

%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Justin Marks, Colorado State University, June 2012
%
% R G function
% Input: representative, Y, for point of tangency [Y] on Gr
% manifold, and vector T in tangent space to manifold at [Y]
% Output: X, the closest orthonormal matrix to T+Y
% (a representative for the closest point on the Gr, [X])
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%

function X = R G(Y,T)

[U,S,V] = svd(T+Y,0); %thin svd
X = U*V';

A.8 Subroutine for Grassmann Normal Mean: Compute Retraction Inverse

%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Justin Marks, Colorado State University, June 2012
%
% R Ginv function
% Input: Representatives for [Y], the point of tangency on Gr,
% and [X], another point on the Grassmannian
% Output: T on tangent space to Grassmannian at [Y],
% via normal retraction inverse map applied to [X]
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%

function T = R Ginv(Y,X)
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T = X/(Y'*X)−Y;

%check to ensure T is a tangent vector
error = norm(Y'*T,'fro');
if error>10ˆ−3

display('did not land on Grass Tangent plane');
end

%to allow for scaling vector
l = norm(T,'fro');
if l < 10ˆ(−6) %essentially zero vector

T = T*0;
else

pow = 1; %adjust power to control magnitude of tangent vector
scal = dG(Y,X)ˆpow; %scale length to power of manifold dist
T = T/l*scal;

end

A.9 Calculate Normal Mean of Stiefel Points

%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Justin Marks, Colorado State University, June 2012
%
% SmuN function
% Input: tensor, M, of matrices representing points on a Stiefel
% Output: mu, the normal mean on the Stiefel
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%

function mu = SmuN(M)

n = size(M(:,:,1),1);
p = size(M(:,:,1),2);
numMat = size(M,3);
maxiter = 1000;
eps = 10ˆ(−4); %how small norm(delta) needs to be to terminate

%obtain orthonormal bases
for i =1:numMat

[U,S,V] = svd(M(:,:,i),0);
M(:,:,i) = U*V'; %closest orthonormal basis

end

%initial guess of mu
mu = M(:,:,1);

%obtain first delta
delta = zeros(n,p);
for i=1:numMat
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delta = delta+R Sinv(mu,M(:,:,i));
end
delta = 1/numMat*delta; %initial delta

iter = 0;
while norm(delta,'fro')>=eps && iter<maxiter

iter = iter+1;
mu = R S(mu,delta); %map delta to the manifold: new mu
delta = zeros(n,p);
for i=1:numMat

delta = delta+R Sinv(mu,M(:,:,i));
end
delta = 1/numMat*delta; %ave tangent v's: new delta

end
display(['Stiefel normal mean: ' num2str(iter) ' iters to converge.'])

%print the quantity that the KM minimizes
TotalDist = 0;
for i =1:numMat

TotalDist = TotalDist + dG(M(:,:,i),mu)ˆ2;
end
display(['Sum sqrd dists btw muSN and manifold pts: ' TotalDist])

A.10 Subroutine for Stiefel Normal Mean: Compute Retraction

%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Justin Marks, Colorado State University, June 2012
%
% R S function
% Input: point of tangency, Y, on Stiefel manifold,
% and vector T in tangent space to manifold at Y
% Output: X, the closest point on the Stiefel manifold to T+Y
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%

function X = R S(Y,T)

[U,S,V] = svd(T+Y,0);
X = U*V';
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A.11 Subroutine for Stiefel Normal Mean: Compute Retraction Inverse

%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Justin Marks, Colorado State University, June 2012
%
% R Sinv function
% Input: Y, the point of tangency on Stiefel manifold,
% and X, another point on the Stiefel
% Output: T on tangent space to Stiefel at Y, via
% normal retraction inverse map applied to X
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%

function T = R Sinv(Y,X)

nr = size(Y,1);
nc = size(Y,2);
M = Y'*X;
S = zeros(nc);
A = zeros(ncˆ2);
b = [];

rowofA = 1;
for i=1:nc

for j=i:nc
if i==j;

A(rowofA,(i−1)*nc+1:i*nc) = M(j,:);
b = [b; 1];
rowofA = rowofA +1;

else
A(rowofA,(i−1)*nc+1:i*nc) = M(j,:);
A(rowofA,(j−1)*nc+1:j*nc) = M(i,:);
b = [b; 0];
rowofA = rowofA +1;

symCond = zeros(nc);
symCond(i,j)=1;
symCond = symCond − symCond';
A(rowofA,:) = symCond(:);
b = [b; 0];
rowofA = rowofA+1;

end
end

end

S=A\b;
S = reshape(S,nc,nc);
S=S';
T=X*S−Y;

%error checking
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if norm(Y'*T+T'*Y,'fro')>10ˆ−4
display('did not land on Stief Tangent plane');

end

%To allow for scaling of vector
l = norm(T,'fro');
if l < 10ˆ(−6)

T = T*0;
else

eps = 1;
T = T/l*eps*dS(X,Y);

end

A.12 Calculate Flag Mean Formulation 1 of Subspaces

%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Justin Marks, Colorado State University, June 2012
%
% muFLAG1 function
% Input: array, M, of matrices with column spaces defining
% subspaces of Rˆn and
% dimension d <= dim(span(union of the column spaces))
% Output: representative, mu, for the 1−norm flag mean
% of dim d, [mu]
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%

function mu = muFLAG1(M,d)

numsubsp = length(M);
n = size(M{1},1); %ambient space dim
maxIter = 1000;
progTol = 10ˆ−6; %designates some movement

%obtain orthonormal bases
for i = 1:numsubsp

X = M{i};
[X,S,V] = svd(X,0);
M{i} = X;

end

%find each of the d flag mean vectors iteratively
mu = zeros(n,d);
for vect = 1:d

u = ones(n,1)/sqrt(n); %guess
progress = 100;
iter = 0;
while progress >= progTol && iter<maxIter

sum=zeros(n,1);
for i = 1:numsubsp
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temp = M{i}'*u;
alpha=temp/norm(temp);
sum = sum+M{i}*alpha;

end
unew = sum;
for prev = 1:vect−1

prevvect = mu(:,prev);
unew = unew − prevvect'*sum*prevvect;

end
unew = unew/norm(unew);
progress = acos(abs(unew'*u)); %angle btw iterates: progress
u = unew;
iter = iter + 1;

end
mu(:,vect) = u;
display(['Vect ' int2str(vect) ': ' num2str(iter) ' iters'])

end

A.13 Calculate Flag Mean Formulation 2 of Subspaces

%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Justin Marks, Colorado State University, June 2012
%
% muFLAG2 function
% Input: array, M, of matrices with column spaces defining
% subspaces of Rˆn
% and dimension d <= dim(span(union of the column spaces))
% Output: representative, mu, for the 2−norm flag mean
% of dim d, [mu]
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%

function mu = muFLAG2(M,d)

numMat = length(M);
n = M{1};
n = size(n,1);
basisSum = zeros(n);

%obtain orthonormal bases
for i=1:numMat

[U,S,V] = svd(M{i},0);
basisSum = basisSum + U*U';

end

[mu, eigvals] = eigs(basisSum);
mu = mu(:,1:d);
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