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ABSTRACT 

 

 

MODELING AND FIELD EVALUATION OF THE STRENGTH OF SURFACE SOILS FOR 

VEHICLE MOBILITY 

 

 

 Surficial soil strength is a critical variable in vehicle mobility and terrain trafficability 

analysis and varies substantially in time and space with soil moisture and texture. Fine-resolution 

(5-30 m grid cell) patterns of soil strength and soil moisture are necessary for routing of off-road 

vehicle operations and must be estimated for applications when direct measurement is too 

expensive, labor-intensive, or dangerous. Rating cone index (RCI) is the in-situ method typically 

used in mobility applications to empirically evaluate the strength of surficial soils. The RCI method 

provides one simple parameter to evaluate soil trafficability, but in doing so fails to separately 

characterize the various mechanisms (compressibility, stress independent shear strength, stress 

dependent shear strength) that govern soil behavior in relation to vehicle traffic. Alternatively, the 

Bekker soil strength framework, which encompasses pressure-sinkage and shear strength soil 

properties, offers a mechanics-based representation of soil behavior and has received increased 

interest from the terramechanics community in recent years. However, because RCI has been the 

focus of the terramechanics community over several decades, predictive relationships to estimate 

Bekker parameters using basic spatially- and temporally-variable input data (soil moisture and soil 

composition) do not exist. The objective of this study is to develop and evaluate a framework for 

prediction of Bekker parameters (cohesion and friction angle) as a function of soil moisture and 

soil texture (percentage of sand and clay). A model, termed the Strength of Surface Soils 

(STRESS) model, is introduced to estimate shear strength of surface soils using soil moisture, 
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pedotransfer functions based on soil texture, and unsaturated soil mechanics. The STRESS model 

is paired with an existing soil moisture downscaling model, the Equilibrium Moisture from 

Topography, Vegetation, and Soil (EMT+VS) model. The pre-existing EMT+VS model includes 

two untested simplifications that make the model inconsistent with the STRESS model framework, 

so two previously neglected soil-related hydrologic considerations are introduced to the EMT+VS 

model: runoff and residual water content. The impacts of runoff and residual on soil moisture 

downscaling performance and spatial patterns of soil moisture are assessed at a test region in 

northeastern Colorado called Drake Farm with measured soil moisture data for model calibration 

and evaluation. The additions are successfully included in the EMT+VS model but the assumptions 

made in the pre-existing EMT+VS model are shown to be adequate for soil moisture downscaling. 

After assessing EMT+VS model additions, the STRESS model is applied to Drake Farm to 

produce spatial patterns of estimated friction angle and cohesion. Model estimates are compared 

to measured shear strength using a human-powered shear strength bevameter to evaluate the 

predictive capability of the STRESS model. The model is found to underpredict friction angle and 

overpredict cohesion at Drake Farm due in part to the use of class-average effective shear strength 

parameters that do not appear to adequately reflect the properties of surficial soils. Finally, the 

design and construction of two bevameters are summarized for field and laboratory measurement 

of Bekker parameters. The results of laboratory tests on the human-powered shear strength 

bevameter used in STRESS model evaluation are compared to traditional geotechnical strength 

testing to validate field-testing results and ensure repeatability of measurements. Additionally, the 

design and construction of a fully automated, laboratory-focused bevameter device with pressure-

sinkage and shear strength testing capabilities are described, but this bevameter is not used for 

testing in this study.  
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1. INTRODUCTION 

 

 

 

Assessing vehicle mobility is a challenge for any application in which a vehicle must 

traverse natural terrain.  Evaluation and prediction of terrain trafficability is crucial to agriculture, 

forestry, and military applications.  Military organizations in the United States and throughout the 

world are among the key developers and users of vehicle mobility analyses. Concerns of terrain 

trafficability led to the first formal mobility analyses after wet, soft soils caused vehicle 

immobilization in World War II (Rula and Nuttall, 1971). Over the several decades since World 

War II, the U.S. Army and North Atlantic Treaty Organization (NATO) have developed multiple 

iterations of a military mobility model, termed the NATO Reference Mobility Model (NRMM) to 

assist in military operations planning (Jurkat et al., 1975; Haley et al., 1979; Ahlvin and Haley, 

1992). Each version of the NRMM contains three modules to analyze mobility based on terrain, 

vehicle, and driver/operator variables. Within the terrain module, soil texture, volumetric water 

content (soil moisture), soil strength, slope, surface roughness, obstacles (e.g., vegetation, water), 

and other characteristics are analyzed to determine optimal routing and maximum attainable 

speeds. Soil strength is a critical variable in evaluation and prediction of off-road vehicle mobility. 

The strength of surficial soils is controlled by several material properties, including texture 

(percentage of sand, silt, and clay), density, water content, and organic matter content. Therefore, 

accurately characterizing soil moisture and corresponding moisture-variable soil strength is 

integral to vehicle mobility analysis.  

Terramechanics is a sub-discipline of mechanical engineering focused on off-road 

machine’s performance in relation to the terrain (Wong, 2010). Methods of characterizing soil 

strength for vehicle mobility differ from traditional geotechnical testing methods because the soil 
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conditions and applications differ greatly. In-situ testing methods are generally preferred in 

terramechanics to determine near-surface soil properties. The soil depth relevant to terramechanics 

applications (i.e. critical depth) can vary based on soil type, water content, density, and dimensions 

of the tire or track contacting the soil because the shear stress distribution below the tire or track 

depends on these variables. The critical depth can vary from what is considered to be the surficial 

layer (between 0 and 15 cm) to a depth of 60 cm.  In most relevant soils, the critical soil layer is 

the surficial layer, and terramechanics strength measurement methods are typically conducted on 

the surface to classify the behavior of this critical layer (Wong, 2010). Two in-situ methods are 

widely used to quantify surface soil strength: rating cone index (RCI) and the Bekker soil strength 

framework. Rating cone index (RCI) is measured by pushing a circular cone into the soil (Knight, 

1956). Force required to insert the cone into soil is divided by the area of the cone to produce the 

cone index (CI) of the specific measured soil. Cone index is calculated in pounds-per-square-inch 

(psi) but presented as a dimensionless value. For fine-grained soils, a remolding index (RI) is 

multiplied by CI to produce RCI. For coarse-grained soils, no RI is necessary and the term RCI is 

used interchangeably with CI. The RCI is compared to an empirically determined vehicle cone 

index (VCI) for a specific vehicle to determine if soil is trafficable on a go/no-go basis. The RCI 

method provides a single quantity to characterize soil trafficability, which according to Bekker 

(1956) depends on two primary aspects of soil behavior: stability (shear strength) and elasticity 

(compressibility). 

The RCI framework has been used in development of terramechanics databases for decades 

and therefore is the state-of-practice for the U.S. Army and NATO in mobility modeling. The RCI 

method is preferred to the Bekker method for simplicity and historic use in military applications 

(Rula and Nuttall, 1971). However, in many military mobility applications, even the simple RCI 
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measurement method can be too expensive, labor-intensive, or dangerous for extensive field 

measurement. For scenarios in which soil strength cannot be directly measured, RCI must be 

estimated as a function of basic soil properties and soil moisture. The U.S. Army has developed 

several models to predict soil moisture and soil strength (Smith and Meyer, 1973; Sullivan et al., 

1997; Mason et al., 2001; Frankenstein and Koenig., 2004). Each model relies on some variation 

of a simple water budget framework to estimate soil moisture. In each model, the water budget 

soil moisture estimates are applied to simple RCI predictive functions from Smith and Meyer 

(1973) to calculate RCI as a function of soil moisture and Unified Soil Classification System 

(USCS) classification. 

Although RCI has been the preferred soil strength framework of the U.S. Army and NATO 

over several decades, the Bekker soil strength framework has received increased interest in recent 

years (McCullough et al., 2017). Numerical models incorporating Bekker parameters as inputs 

(Choi et al., 2018) are increasingly used to predict speed-made-good and other trafficability 

metrics. Additionally, Williams et al. (2017) analyzed relationships between CI and several 

variables related to vehicle performance and showed poor correlations in many cases, indicating 

that CI is often not suitable for predicting soil strength for vehicle mobility.  

The Bekker method characterizes shear strength and compressibility using a bevameter 

(Bekker, 1956; 1960). The Bekker framework measures compressibility using a pressure-sinkage 

test and shear strength using a Mohr-Coulomb failure envelope (Coulomb, 1776; Mohr, 1900). 

This method lacks a simple metric to determine trafficability (such as the RCI-VCI comparison) 

but provides a more unique description of soil behavior for input into physics-based models (Choi 

et al., 2018) because shear strength and compressibility are considered separately. Shear strength 

is also further partitioned into frictional (exterior stress dependent) and cohesive (exterior stress 
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independent) strength components. The two-fold parameterization of shear strength holds the 

advantage of incorporation into complex terramechanics numerical models. Despite the 

advantages of the Bekker method, no model framework exists to predict Bekker parameters from 

basic soil properties for scenarios in which direct sampling is not an option.  

The objective of this study is to develop and evaluate a model framework for prediction of 

Bekker shear strength parameters as a function of soil moisture and soil texture. The resulting 

framework is termed the Strength of Surface Soils (STRESS) model. Like soil strength, direct 

measurement of soil moisture is often difficult or impossible. Therefore, soil moisture must also 

be estimated. The STRESS model is paired with the Equilibrium Moisture from Topography, 

Vegetation, and Soil (EMT+VS) model, an existing soil moisture downscaling model, to achieve 

fine resolution patterns of soil moisture and soil strength for vehicle mobility. Downscaled patterns 

of soil moisture from the EMT+VS model are input into the STRESS model along with soil 

textural data (percentage of sand and clay) derived from local data or large-scale databases to 

estimate spatial patterns of Bekker shear strength parameters using unsaturated soil mechanics. 

The pre-existing EMT+VS model neglects residual water content, making the pre-existing model 

inconsistent with the STRESS model framework. Additionally, runoff (another soil-related 

consideration), is also neglected in the pre-existing EMT+VS model. Thus, to generalize the 

EMT+VS model and address the prior simplifications, two soil-related hydrologic considerations 

(runoff and residual water content) are included in the EMT+VS model. Runoff and residual water 

content are implemented into the EMT+VS model and their effect on model performance and 

spatial patterns of soil moisture are examined at a test region in northeastern Colorado called Drake 

Farm. Chapter 2 (EMT+VS Model Development) describes the pre-existing EMT+VS model, 

introduces updates to the model, and summarizes the effects of those updates on model 
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performance and patterns of soil moisture. The STRESS model is then developed by applying 

unsaturated soil mechanics to surficial soils. The predictive performance of the STRESS model is 

evaluated using a shear strength bevameter at Drake Farm. Chapter 3 (STRESS Model 

Development) describes the STRESS model methodology and summarizes field evaluation 

procedure and results. A field-focused shear strength bevameter is designed and constructed for 

field evaluation of the STRESS model discussed in Chapter 3. Chapter 4 (Bevameter Design) 

describes design, construction and laboratory validation of the field-focused shear strength 

bevameter. Additionally, a laboratory-focused bevameter capable of performing both bevameter 

tests is designed and constructed but is not validated in the laboratory in this study. The design of 

this device is also discussed in Chapter 4. Conclusions, tables, and figures pertaining to each 

portion of the study are presented at the end of each chapter. A full list of references is provided 

at the end of the document. 
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2. EMT+VS MODEL DEVELOPMENT 

 

 

 

2.1 Introduction 

Volumetric water content (soil moisture) is a critical variable in many hydrologic, 

geomorphic, atmospheric, and biologic processes. Fine-resolution maps (10 – 100 m grid cells) of 

soil moisture are important for agricultural production (Holzman et al., 2014; Phillips et al., 2014), 

weather and climate modeling (Dirmeyer, 1999; Seuffert et al., 2002), and forest fire prediction 

(Bartsch et al., 2009). Additionally, soil moisture affects soil strength and compressibility, which 

are vital to terrain trafficability and vehicle mobility routing (Horn and Fleige, 2003).  

 Satellite remote sensing is used to estimate soil moisture but at a resolution that is too 

coarse for many applications. Advanced Microwave Scanning Radiometer-EOS (AMSR-E) 

(Njoku et al., 2003), Soil Moisture and Ocean Salinity (SMOS) (Kerr et al., 2010), and Soil 

Moisture Active Passive (SMAP) (Entekhabi et al., 2010; Reichle et al., 2017) measure soil 

moisture at resolutions ranging from 5 km to 60 km grid cells. Various downscaling methods can 

be used to produce fine-resolution soil moisture maps from coarse-resolution data. One 

downscaling technique uses optical/thermal data to estimate fine-resolution soil moisture patterns 

(Chauhan et al., 2003; Merlin et al., 2005; Merlin et al., 2006; Das et al., 2011; Song et al., 2014; 

Peng et al., 2016). Optical/thermal methods typically downscale soil moisture to a resolution of 1 

km grid cells based on the spatial resolution of the optical/thermal remote sensing data. Another 

method of downscaling aims to reproduce statistical properties of soil moisture patterns using 

empirical relationships with ancillary data (Crow et al., 2000; Kim and Barros, 2002; Mascaro et 

al., 2011). A third downscaling technique, called geo-information downscaling, infers soil 

moisture patterns from fine-resolution topographic, vegetation, and soil attributes. Many geo-
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information methods rely on empirical relationships between soil moisture and the fine-resolution 

attributes to predict patterns of soil moisture (Wilson et al., 2005; Busch et al., 2012). Other geo-

information downscaling methods use models for vadose-zone hydrology to represent major 

hydrologic processes (Pellenq et al., 2003; Coleman and Niemann, 2013; Ranney et al., 2015). 

These methods infer fine-resolution patterns of soil moisture by predicting the effects of 

topographic, vegetation, and soil characteristics on hydrologic processes in the vadose-zone.  

 The Equilibrium Moisture from Topography, Vegetation, and Soil (EMT+VS) model 

(Ranney et al. 2015) is a geo-information downscaling method that models the water balance in 

the hydrologically active soil layer using topographic, vegetation, and soil characteristics. 

Coleman and Niemann (2013) initially introduced the model as the Equilibrium Moisture from 

Topography (EMT) model to analyze topographic dependence and temporal instability of fine-

resolution soil moisture patterns. Ranney et al. (2015) generalized the model to accept fine-

resolution variations in vegetation and soil characteristics. Cowley et al. (2017) added precipitation 

and potential evapotranspiration (PET) downscaling to the EMT+VS model to assess their impacts 

on soil moisture patterns. Hoehn et al. (2017) generalized the model to accept multiple coarse grid 

cells as inputs. Werbylo and Niemann (2014) and Greico et al. (2018) evaluated the performance 

of the model when calibration data are limited or absent, and Deshon (2018) introduced a stochastic 

component to capture variability in soil moisture that cannot be explained by the deterministic 

inputs. The EMT+VS model has been applied at fine resolutions ranging from 10 m to 30 m grid 

cells and at depths ranging from the top 5 cm to 30 cm of the soil. The model has been applied to 

and evaluated at regions ranging from 6 ha (0.06 km2) to 239 km2.  

 Ranney et al. (2015) examined the effects of soil properties on soil moisture patterns by 

considering spatial variations of porosity and saturated vertical hydraulic conductivity in the 
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EMT+VS model. However, two important aspects of soil hydrology were not considered in that 

analysis: runoff and residual water content. Runoff is known to depend on antecedent soil moisture 

for both saturation-excess and infiltration-excess conditions. Studies have shown a link between 

saturation-excess runoff and antecedent soil moisture in temperate to subtropical regions with 

moderate to high annual precipitation (Western et al., 1998; Brocca et al., 2004, Wei et al., 2007). 

Fitzjohn et al. (1998), Zhang et al. (2011), and Schoener and Stone (2019) also demonstrated a 

relationship between runoff production and antecedent soil moisture in dry climates with sudden, 

high-intensity rainfall. Additionally, Fitzjohn et al. (1998) showed that runoff production can be 

highly variable in space due to fine-resolution variation in soil moisture and soil composition. 

Although numerous studies have examined the effects of antecedent soil moisture on runoff 

production, the impact of runoff production on the resulting soil moisture patterns is unknown. 

Runoff production could impact the spatial structure of fine-resolution soil moisture patterns, and 

thus affect soil moisture downscaling. If the quantity of water that can enter the soil is limited by 

the infiltration capacity (thus producing runoff), then the subsurface is expected to be drier. 

Additionally, runoff could travel downslope and infiltrate elsewhere, redistributing the moisture 

within a region. Runoff is neglected in the pre-existing EMT+VS model and the effect of runoff 

on soil moisture patterns is not currently assessed. 

 Residual water content is a component of soil water retention and flow behavior that was 

not considered by Ranney et al. (2015). Brooks and Corey (1964) introduced residual saturation 

as the volumetric water content at which hydraulic conductivity approaches zero. Soil water flux 

ceases at residual water content because soil surface adsorption and discontinuous flow paths 

disallow conduction of liquid water (Luckner et al., 1989). Recent studies have demonstrated the 

ability to infer spatial patterns of soil water retention parameters such as permanent wilting point, 
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field capacity, and porosity from spatial patterns of soil moisture (Bandara et al., 2014; Chandler 

et al., 2017). Although these studies do not include residual water content, such relationships 

between soil moisture and other soil water retention characteristics indicate the potential for a link 

between soil moisture and residual water content. Grayson et al. (2006) demonstrated the effect of 

residual water content on coarse-resolution soil moisture patterns by varying soil input data in a 

land-surface model over the whole of Australia. Placing a lower bound on soil moisture at residual 

water content scales hydrologic processes from residual to porosity rather than from zero to 

porosity. The effective degree of saturation depends on this lower bound and affects unsaturated 

hydraulic conductivity and evapotranspiration (ET). During dry conditions, soil moisture is at or 

very close to the residual and spatial patterns of soil moisture will be determined by spatial patterns 

of residual water content. The EMT+VS model presents an opportunity to investigate the effects 

of residual water content on soil moisture patterns at a much finer scale than previously studied by 

Grayson et al. (2006). 

 Greico et al. (2018) compared the performance of the locally calibrated EMT+VS model 

for all previously examined test regions. Model performance was plotted as a function of the spatial 

average soil moisture. For several regions, the model performs best under moderate soil moisture 

conditions and decreases for particularly dry or wet dates. The poorer performance for extreme 

conditions is important because such conditions are often the most critical for applications such as 

agriculture and vehicle mobility (Wong, 2010; Wijewardana et al., 2018). Implementing runoff 

and residual water content into the EMT+VS model has the potential to improve model 

performance for these extreme conditions. Wet conditions are likely to occur shortly after storm 

events, so those soil moisture patterns might depend on runoff production. During dry conditions, 
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soil moisture patterns are expected to reflect the pattern of residual water content as shown by 

Grayson et al. (2006) at larger scales. 

The objectives of this study are to examine the effects of runoff production and residual 

water content on spatial patterns of soil moisture and to determine whether these factors improve 

soil moisture downscaling. A conceptual runoff expression and residual water content are 

implemented in the EMT+VS model, and the pre-existing and generalized EMT+VS models are 

applied to a test region (Drake Farm) that has soil moisture observations available for model 

calibration and evaluation. During the period of observation, Drake Farm was managed in three 

distinct manners. In earlier years, the field was under a non-irrigated wheat-fallow crop rotation 

with a varying spatial pattern of vegetation. Numerous high intensity rainfall events produced 

measured runoff at a flume near the field’s edge. Native grasses were planted over the entire site, 

and an intermediate period occurred in which the grasses were not yet mature. This intermediate 

portion is not considered in this study. In later years, the native grasses have become fully mature, 

and no runoff has been observed at the flume despite the occurrence of several large rainfall events. 

All three model versions (pre-existing, runoff, residual) are calibrated separately for the initial and 

final land management periods, and the results are compared to determine the effects of runoff and 

residual water content on soil moisture downscaling. The calibrated model parameters are also 

compared between the two land management conditions to understand why the runoff production 

behavior changed between the two periods. 

2.2 Methods and Materials 

2.2.1 Pre-existing EMT+VS Methodology 

The EMT+VS model simulates a water balance over the hydrologically active layer, which 

is the soil layer between the surface and any semi-impervious layer that might induce lateral flow. 
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Four hydrologic processes are included in the water balance: infiltration f , deep drainage G , 

lateral flow L , and ET E . Key inputs to the model are spatial average (or coarse resolution) soil 

moisture on the date of interest and fine-resolution topographic, vegetation, and soil data. The 

model outputs a fine-resolution soil moisture map on the same date. Detailed descriptions and 

complete equations for the model are provided by Coleman and Niemann (2013), Ranney et al. 

(2015), and Cowley et al. (2017).  

The EMT+VS model’s infiltration expression starts with a spatial average precipitation 

rate that includes both storm and inter-storm periods. The spatial average is downscaled based on 

orographic effects (Cowley et al., 2017) to produce a fine-resolution pattern of precipitation. The 

spatial average precipitation itself eventually cancels out of EMT+VS model equations and does 

not need to be specified. Interception by the canopy is then included to determine the throughfall 

pattern. In the pre-existing EMT+VS model, all throughfall is assumed to infiltrate.  

 Deep drainage is characterized using Darcy’s Law and assuming flow is gravity driven. 

The Campbell (1974) equation is used to estimate vertical unsaturated hydraulic conductivity. 

Lateral flow is also described using Darcy’s Law with horizontal unsaturated hydraulic 

conductivity from Campbell (1974) and including anisotropy. The hydraulic gradient in the 

horizontal direction is a power function of topographic slope, and the thickness of the 

hydrologically active layer can vary with topographic curvature (Heimsath et al., 1999). The ET 

expression first downscales the spatial average PET to account for elevation effects (Cowley et al., 

2017). The resulting PET is then partitioned into radiation and aerodynamic terms according to 

the Priestley-Taylor assumption (Priestley and Taylor, 1972). The radiation term accounts for 

topographically induced variations in insolation. Actual ET is determined from the PET based on 



  12 

the magnitude of soil moisture. Shading of the soil surface by vegetation and the portion of the 

roots in the hydrologically active layer are also considered.  

Fine-resolution soil moisture is estimated using an analytical approach developed by 

Coleman and Niemann (2013). The modeled layer is assumed to be at equilibrium, and therefore 

the effects of hysteresis are neglected. Four explicit solutions are calculated under the assumption 

that each outflow term (deep drainage, lateral flow, radiation ET, aerodynamic ET) dominates the 

water balance. The final soil moisture estimate θ  is calculated as a weighted average of the four 

solutions: 

 G G L L R R A A

G L R A

w w w w

w w w w

θ θ θ θθ + + +
=

+ + +
  (2.1) 

where 
G
θ , 

L
θ , 

R
θ , and 

A
θ  are the soil moisture estimates if deep drainage, lateral flow, radiation 

ET, and aerodynamic ET dominate, respectively, and 
G

w , 
L

w , 
R

w , and 
A

w  are the weights 

associated with each process. Each explicit solution is calculated as a function of the spatial 

average soil moisture and the fine resolution topographic, vegetation, and soil attributes. The 

weights are determined from the magnitude of each outflow term in the water balance and depend 

in part on the spatial average soil moisture. 

2.2.2 EMT+VS Model with Runoff 

Runoff occurs when throughfall exceeds the soil’s infiltration capacity. Runoff can be 

represented in the EMT+VS model by estimating an infiltration capacity based on soil properties 

and inducing runoff when throughfall exceeds infiltration capacity. Green and Ampt (1911) 

introduced a soil-dependent infiltration model that is widely used in modern modeling tools such 

as the Hydrologic Engineering Center - Hydrologic Modeling System (HEC-HMS) 

(Scharffenberg, 2016) and Gridded Surface Subsurface Hydrologic Analysis (GSSHA) (Downer 
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and Ogden, 2006). The Green-Ampt model has also been shown to produce similar results to 

Richards equation (Hsu et al., 2002; Dussaillant et al., 2003). The Green-Ampt model relies on the 

assumption of an abrupt wetting front. Water is assumed to move downward into the soil column 

with a sharp distinction between the saturated soil and the soil at the uniform initial water content. 

If the infiltration capacity limits the infiltration rate, the Green-Ampt model can be used to estimate 

infiltration rate as: 

 
( )

, 1
f s i

P s v

P

f K
F

ψ θ θ −
= + 

  
  (2.2) 

where 
P

f  is the infiltration rate during a storm, 
,s v

K  is saturated vertical hydraulic conductivity, 

f
ψ  is suction head at the wetting front, 

s
θ  is porosity, 

i
θ  is initial soil moisture, and 

P
F  is 

cumulative infiltration. Although time does not appear in the equation, 
P

f  decreases as 
P

F  

increases during a storm. In the brackets of Eqn. [2.2], the first term represents the effects of 

gravity, while the second term represents the effects of the capillary gradient. The deep drainage 

and lateral flow expressions in the EMT+VS model assume that flow is gravity driven, so the 

capillary gradient is also neglected here. Equation [2.2] then simplifies to: 

 
,P s v

f K=  (2.3) 

While this infiltration expression is simplistic, preliminary tests with the EMT+VS model showed 

that including the capillary term provided little improvement in performance while adding several 

parameters. 

Infiltration during a storm can either be limited by the available throughfall or by the soil’s 

infiltration capacity. Thus, a generalized infiltration expression can be written to account for both 

scenarios: 
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( )

,

1
min

i F

P

s v

P O V
f

K

λ −= 


 (2.4) 

where i
P  is spatial average rainfall intensity during a storm, 

F
O  is a function that accounts for 

orographic effects on precipitation as described by Cowley et al. (2017), λ  is the vegetation’s 

interception efficiency, and V  is the fractional vegetation cover. Rearranging variables, the 

infiltration equation can be rewritten as: 

 ( )1
P i F F

f PO V Iλ= −  (2.5) 

where 
F

I  is an infiltration function that is defined as: 

 

( )
,

1

min

1

s vF

i F

KI

PO Vλ


= 
 −

 (2.6) 

 This infiltration function transitions abruptly from throughfall-limited infiltration to soil-

limited infiltration when ( ), / 1 1
s v i F

K PO Vλ − =  . This sharp break is likely unrealistic due to 

sub-grid variations in soil properties, so a smooth function was selected to replace the segmented 

infiltration function. The selected function must have a lower bound for the input 

( ), / 1
s v i F

K PO Vλ −   at zero and no upper bound. Additionally, the function’s output must begin 

at zero and increase monotonically to one. The cumulative distribution function for an exponential 

distribution meets these requirements. Using this function, 
F

I  can be rewritten as: 

 
,

1 exp
(1 )

r s v

F

i

K
I

P V

υ
λ

  = − − 
−  

  (2.7) 

where 
r

υ  describes the rate at which 
F

I  transitions between zero and one. Figure 2.1 shows a 

comparison between the pre-existing EMT+VS model’s infiltration function ( 1
F

I = ), the 
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segmented infiltration function (Eqn. [2.6]), and the exponential infiltration function (Eqn. [2.7]). 

The exponential function closely approximates the segmented function when 
r

υ  = 2, so this value 

is used throughout this study. The average rainfall intensity i
P  is a new model parameter, which 

is expected to vary date by date as different storms occur.  

The EMT+VS model simulates equilibrium including both storm and inter-storm periods, 

so Eqn. [2.7] must be generalized to account for both types of periods. The original infiltration 

equation is therefore updated to be: 

 (1 )
F F

F PO V Iλ= −   (2.8) 

where P  is the average precipitation rate including both storm and inter-storm periods (which still 

eventually cancels out of the model). i
P  remains present within the 

F
I  function. Note the 

distinction between i
P  and P , where i

P  represents spatial-average precipitation intensity while a 

storm is occurring, and P  is the spatial average precipitation rate considering both storm and inter-

storm periods. For simplicity, runoff generated at one location is assumed to be transported out of 

the region and does not get redistributed to downslope locations.  

2.2.3 EMT+VS Model with Residual Water Content 

Residual water content is defined as the soil moisture below which hydraulic conductivity 

is zero (Brooks and Corey, 1964; van Genuchten et al., 1991). At very low soil moisture, soil pore 

water is immobilized because all liquid water is adsorbed to soil particles and the water phase is 

discontinuous (Luckner et al., 1989; Vanapalli et al., 1998). Residual water content is included in 

the EMT+VS model by adjusting all flow processes so they cease when soil moisture reaches 

residual water content 
r

θ . A degree of saturation term ( )/
s

θ θ  appears in the pre-existing 

EMT+VS model to estimate unsaturated hydraulic conductivity and to account for soil moisture 
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limitations on ET. In the EMT+VS model with residual water content, that degree of saturation 

term is replaced with an effective saturation term ( ) ( )/
r s r

θ θ θ θ− − . Thus, deep drainage and 

lateral flow do not occur below the residual water content (for reasons of adsorption and 

discontinuous flow paths as described previously). ET is also zero below the residual water 

content. van Genuchten (1980) defined residual water content as the soil moisture at the permanent 

wilting point, which is typically assumed to be 1500 kPa. In practice, residual water content can 

represent the water content at a suction between 1500 kPa and 1*106 kPa, depending on curve-

fitting techniques, quantity of data, and capabilities of measurement equipment (Nitao and Bear, 

1996; Vanapalli et al., 1998). Therefore, residual water content represents the soil moisture at the 

permanent wilting point or drier. At all water contents less than permanent wilting point, 

transpiration no longer occurs because plants cannot generate high enough suction to draw water 

out of the soil (Laio et al., 2001; Porporato et al., 2001). In a model by Laio et al. (2001) that 

determines evaporation as a function of soil moisture, evaporation is assumed to converge to zero 

at a soil’s hygroscopic water content. The model estimates very low magnitudes of evaporation at 

soil moisture values between the hygroscopic state and permanent wilting point. Because residual 

water content likely falls between these two values, the very small ET that occurs below residual 

is neglected.  

2.2.4 EMT+VS Equations with Runoff and Residual 

 Implementing both model updates produces the following generalized analytical soil 

moisture solutions: 

 ( )G r r

DDI

DDI
θ θ θ θ= + −   (2.9) 

 ( )L r r

LFI

LFI
θ θ θ θ= + −   (2.10) 
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 ( )R r r

REI

REI
θ θ θ θ= + −   (2.11) 

 ( )A r r

AEI

AEI
θ θ θ θ= + −   (2.12) 

where θ  is spatial average (or coarse resolution) soil moisture, r
θ is spatial average residual water 

content, DDI is deep drainage index, LFI  is lateral flow index, REI  is radiation ET index, and 

AEI  is aerodynamic ET index. DDI , LFI , REI , AEI are the spatial averages of the indices. The 

indices are defined as: 

 ( ) ( )
1

,

1 v

F F

s r

s v

O V I
DDI

K

γλ
θ θ

 −
= −  

  
  (2.13) 
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  (2.15) 
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  (2.16) 

where 
v
γ  is vertical pore disconnectedness index, 

0δ  is the thickness of the hydrologically active 

layer where topographic curvature is zero, ι  is anisotropy of hydraulic conductivity, A  is upslope 

contributing area, S  is topographic slope, 
h
γ  is horizontal pore disconnectedness index, c  is the 

linear dimension of the fine-resolution grid cells, ε  is a parameter that relates horizontal hydraulic 

gradient to slope, κ  is topographic curvature, minκ  is the minimum topographic curvature for 

which the active layer is present, α  is the Priestley-Taylor coefficient minus one, 
p

E  is the spatial 
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average PET, ω  controls the elevation dependence of PET, Z  is elevation, Z  is spatial average 

elevation, 
P

I  is potential solar radiation index (PSRI) (Dingman, 2002), 
r

β  controls the effect of 

soil moisture on radiation ET, η  is the portion of transpiration that is derived from the modeled 

soil layer, µ controls the effect of shading on soil evaporation, and 
a

β  controls the effect of soil 

moisture on aerodynamic ET. Finally, the weights are calculated as: 

 

v

r
G

w
DDI

γ
θ θ −

=  
 

  (2.17) 

 

h

r
L

w
LFI

γ
θ θ −

=  
 

  (2.18) 
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r
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w
REI

β
θ θ −

=  
 

  (2.19) 

 

a

r
A

w
AEI

β
θ θ −

=  
 

  (2.20) 

The weights and explicit solutions are applied to Eqn. [2.1] to determine the final soil moisture 

estimate within each fine resolution grid cell. 

 Runoff production and residual water content can vary between fine resolution grid cells 

in the EMT+VS model, but spatial variations in runoff and residual rely entirely on spatially 

variable vegetation and soil data. One can show that if vegetation and soil properties are spatially 

constant, then the infiltration function cancels out of all EMT+VS model equations and therefore 

has no effect on the model results. For the same case, residual water content remains in a portion 

of the EMT+VS model, but it drops out of some calculations and has a lesser impact on EMT+VS 

model results. 
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2.2.5 Test Site Description and Available Datasets 

The EMT+VS model was applied to Drake Farm, a former farm field in northeastern 

Colorado. Drake Farm has been the subject of various hydrologic studies (e.g., Green et al., 2009; 

Green and Erskine, 2011) but has not been used for soil moisture downscaling in the past. This 

region was selected because it has soil moisture data corresponding to multiple vegetation 

conditions, soil texture data at multiple locations, and runoff monitoring near the field’s edge. 

Drake Farm has an area of approximately 100 ha. The field was farmed in a wheat-fallow 

rotation (WFR) for multiple decades through 2012. In 2013 and 2014, the field was converted into 

a Conservation Reserve Program (CRP) site, and a blend of native grasses and alfalfa was planted. 

A transitional period occurred between the WFR period and the CRP period prior to the native 

grasses and alfalfa becoming fully mature. In 2015, the native grasses and alfalfa became mature 

and the CRP period began. Only the WFR and CRP periods are considered in this study. Vegetation 

at the site currently consists of native grasses, alfalfa, shrubs, and invasive weeds. The climate is 

semiarid with average annual precipitation and PET of 350 and 1200 mm, respectively (Green and 

Erskine, 2011). Soil moisture data from a portable time domain reflectometry (TDR) device are 

available for the WFR period (2012 and prior) and the CRP period (2015 to present). During the 

WFR period, soil moisture data are available for the top 30 cm of the soil on 10 dates ranging from 

7 May 2003 to 1 July 2009. The measurement locations typically follow the orientation of the 

wheat-fallow crop strips, but the exact locations vary date by date. An example soil moisture 

sampling pattern from 24 June 2004 is shown in Fig. 2.2a. During the CRP period, soil moisture 

observations for the top 15 cm of the soil were collected in a star pattern consisting of 65 points 

on the northeastern side of the field (Fig. 2.2b). Adjacent points in each prong of the star are 25 m 

apart.   For the CRP period, soil moisture data are available on 8 dates ranging from 18 April 2016 
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to 22 May 2018. A 17.4 ha rectangular region is defined around the star pattern and used as the 

EMT+VS application region (Fig. 2.2). Although some WFR observations extend beyond the 

rectangle, this region is used to allow a direct comparison between the WFR and CRP cases. A 

digital elevation model (DEM) is available for the site on a 5 m grid and is shown underlying the 

soil moisture measurement locations in Fig. 2.2a and 2.2b.  

Soil texture data (sand, silt, and clay percentages) over the top 30 cm of soil are available 

at 215 points spanning the entire farm field (McCutcheon et al., 2006). We developed gridded 

maps for the sand and clay percentages in ArcGIS using tension spline interpolation (Fig. 2.2c and 

2.2d). Tension spline interpolation (Mitas and Mitasova, 1988) was selected because it produced 

smoother, more natural interpolated patterns than other available methods (kriging, inverse 

distance weighting, and natural neighbor methods). Tension spline interpolation requires 

specification of a weight parameter, which determines the tension of the interpolated surface. Low 

tensions can produce maxima and minima that exceed the bounds of the measured data. At higher 

tensions, the surface becomes less smooth. As the weight value approaches infinity, the pattern 

approaches a spatial average except at points with measured data. The tension was set to 100 

because this value avoids unrealistic overshoots that occur with lower weights and maintains 

smoothness that is lost as the weight approaches infinity.  

Split sample testing was used to evaluate the predictive performance of the interpolated 

surfaces for various weight values. Five samples, each consisting of 50% of the soil dataset, were 

randomly selected and interpolated to produce maps of the sand and clay percentages using a range 

of weights. The spatial average of the randomly selected training dataset was also used as an 

estimate of the spatial pattern (this map is equivalent to using an infinite weight). The resulting 

soil texture maps were compared to the remaining 50% of data not used for training, and a root 



  21 

mean square error (RMSE) was calculated for each of the five split samples. The average RMSE 

among the five split samples is shown in Fig. 2.3a and 2.3b for each interpolation method. Overall, 

the RMSE is larger for the sand percentage (Fig. 2.3a) than the clay percentage (Fig. 2.3b), but the 

range of sand percentages is also larger than the range of clay percentages in this field. In both 

cases, the RMSE decreases with increasing weight, and the spatial average provides the best 

predictive performance of any method considered. However, the spatial average includes no spatial 

variation beyond the observation points, so this method is not applicable for testing the effects of 

runoff and residual water content on downscaled soil moisture patterns. This exercise demonstrates 

that the inferred spatial variations in soil texture contain significant errors despite the seemingly 

large number of available observations.  

For each vegetation pattern, soil adjusted vegetation index (SAVI) (Huete, 1988) was 

calculated from Landsat 7 or 8 multispectral imagery (depending on availability of data) to 

represent fractional vegetation cover. Table 2.1 provides the date that was used to calculate SAVI 

for each vegetation pattern. Soil moisture sampling from the CRP period was conducted after the 

native grasses had become well established, so only one vegetation pattern, obtained from June 

2018, was used for the entire CRP period. A late spring date was selected because green vegetation 

provides the most reflectance and therefore allows for the most accurate characterization of 

fractional vegetation cover from SAVI. The 30 m Landsat imagery was interpolated to 5 m to 

match the DEM resolution. Spline interpolation was used for consistency with the soil texture 

interpolation. A weight of 25 was selected to avoid overshoots and maintain smoothness as 

described earlier. All fractional vegetation patterns are displayed in Fig. 2.4. 

Precipitation and runoff were continuously monitored at Drake Farm over the entire soil 

moisture monitoring period. Precipitation was measured using two weighing rain gauges near the 
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eastern and western boundaries of the field. Runoff was measured using a flume near the eastern 

boundary of the field. The associated catchment is largely comprised of the eastern portion of the 

Drake Farm field (Fig. 2.1). Detailed descriptions of the catchment, rainfall gauges, and flume are 

provided by Green and Erskine (2011). In total, 46 runoff events were measured from 2002 to 

2014 throughout the WFR and transitional periods. Although several large rainfall events have 

occurred since the CRP native grasses became fully mature around 2015, no runoff has been 

measured at Drake Farm since 2014. 

2.2.6 Model Application 

Raw soil moisture, elevation, and soil composition data were processed to obtain 

appropriate EMT+VS model inputs. The spatial average soil moisture θ  was calculated as the 

average of all soil moisture observations on a given date. Topographic inputs elevation Z , slope 

S , upstream contributing area A , curvature κ , and PSRI 
p

I  were calculated from the DEM. Soil 

hydraulic parameters (
s

θ , 
,s v

K , 
r

θ , and the calibration bounds for 
v
γ  and 

h
γ ) were estimated using 

pedotransfer functions. However, applicability of pedotransfer functions is hindered by 

compatibility with available inputs and desired outputs. For consistency with past EMT+VS 

research, 
s

θ , 
,s v

K , and the calibration bounds for 
v
γ  and 

h
γ  were estimated using pedotransfer 

functions from Cosby et al. (1984). The method from Rawls and Brakensiek (1985) was selected 

to obtain residual water content 
r

θ  because it is the only available method that requires only 

porosity, percentage of sand, and percentage of clay as inputs. Soil properties were estimated from 

various other pedotransfer schemes including neural network predictions from ROSETTA 

(Schaap, 2001) by first estimating additional input properties from SSURGO (Soil Survey Staff, 

2018) or other sparse data from Drake Farm. These pedotransfer outputs were used in preliminary 
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EMT+VS model calibrations, and the pedotransfer function was found to have only a small effect 

on the model results.  

The pre-existing EMT+VS model, EMT+VS model with runoff, and EMT+VS model with 

residual were all applied separately to the WFR and CRP periods. In all cases, orographic 

precipitation was neglected due to low topographic relief over the test region (hence, 1
F

O = ). 

Similarly, 
minκ  was set equal to -999,999 because past research has shown that the EMT+VS 

model consistently performs better when the soil thickness is considered spatially constant (i.e. 

minκ  is a large negative number) (Coleman and Niemann, 2013; Ranney et al., 2015). 
0δ  was set 

to 20 cm based on a soil survey conducted at Drake Farm, which shows a surface soil layer depth 

of 20 to 30 cm. α  was set to 0.26 following previous EMT+VS model applications and studies of 

the Priestley-Taylor assumption (Eichinger et al., 1996; Coleman and Niemann, 2013). 
p

E  was 

set to 3.29 mm/day based on the site description presented in Green et al. (2011). 

The remaining parameters were calibrated to maximize average Nash-Sutcliffe coefficient 

of efficiency (NSCE) (Nash and Sutcliffe, 1970) among all soil moisture measurement dates. 

Remaining parameter bounds for calibration were selected based on theoretical bounds or locally 

available data. For the EMT+VS model with runoff, a distinct i
P  value was calibrated for each 

soil moisture observation date. Bounds for i
P  were determined from maximum and minimum 

measured hourly precipitation intensity at Drake Farm from 2016 to 2018. For the cases with 

residual water content, a calibrated residual adjustment factor d  was multiplied with 
r

θ  in the 

model to allow for flexibility in the magnitude of residual water content. This approach allows the 

model to calibrate residual water content to zero if a residual does not improve model performance. 
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Table 2.2 summarizes the calibration bounds for all relevant EMT+VS model parameters (the 

calibrated values are discussed later).  

2.3 Results and Discussion 

Figure 2.5 displays the soil moisture patterns from the pre-existing EMT+VS model, the 

EMT+VS model with runoff, and the EMT+VS model with residual for a dry and wet date during 

the WFR period. Overall, spatial patterns of soil moisture during the WFR period show little spatial 

variation. Figure 2.5a shows the pre-existing EMT+VS model output for the dry date. This soil 

moisture pattern has wetter and drier patches that closely resemble the interpolated soil textural 

patterns (see Fig. 2.2c and 2.2d). Specifically, regions of higher clay content and lower sand 

content are wetter due to their lower hydraulic conductivity, which requires a larger θ  for the soil 

to drain. Also, regions with higher sand content and lower clay content have lower porosity. A 

lower porosity reduces θ  because unsaturated hydraulic conductivity and ET depend on /
s

θ θ . 

Thus, when 
s

θ  is reduced, θ  must be reduced so that the outflows from the soil balance the inflow. 

Figure 2.5b displays the pre-existing EMT+VS model output for a wet date during the WFR period. 

The primary feature of this soil moisture pattern is the wet valley bottom running west to east 

through the middle of the region. The valley bottom is wet because it has a large upslope area and 

thus receives the most lateral flow. Lateral flow is more important during wetter conditions. The 

wet date also shows secondary effects of the soil texture patterns for the same reasons discussed 

with Fig. 2.5a. 

The results from the EMT+VS model with runoff are shown in Fig. 2.5c and 2.5d. For the 

dry date, a similar pattern to Fig. 2.5a is observed, but the spatial structure has changed somewhat. 

When runoff is included, 
,s v

K  affects both the infiltration and the outflows. Thus, regions with 

high clay content and low sand content have both less infiltration and less drainage, and the 



  25 

resulting soil moisture pattern has a weaker resemblance to the soil texture pattern. The spatial 

average of the infiltration function F
I  is 0.99 on this date, indicating that only a small amount of 

runoff occurs. For the wet date, the pattern in Fig. 2.5d is similar to the pre-existing case (Fig. 

2.5b) with the wet valley bottom and secondary soil effects as discussed previously. As for the dry 

date, F
I  is 0.99, which indicates that nearly all precipitation infiltrates. The i

P  values vary for the 

dry (216 mm/d) and wet (125 mm/d) dates (Table 2.3), but the effect of 
,s v

K  dominates Eqn. [2.7] 

the effects of runoff are nearly identical in both cases.  

Fig. 2.5e shows the soil moisture pattern from the EMT+VS model with residual on the 

dry date during the WFR period. Comparing Fig. 2.5a and 2.5e, some small changes have occurred 

in the spatial structure of the soil moisture pattern. The residual adjustment factor d  was calibrated 

to 0.56, which produces a spatial average residual water content r
θ  of 0.056. When residual is 

included, the soil texture pattern affects both the upper and lower bounds of θ . Thus, the soil 

moisture pattern still resembles the soil texture pattern, but that dependence has changed somewhat 

from Fig. 2.5a. In general, a larger residual reduces the spatial variation in the soil moisture pattern, 

but in this case only a small change is observed due to the small residual and low spatial variation 

in the pre-existing EMT+VS model patterns. Figure 2.5f displays the soil moisture with residual 

water content on the wet date. The soil moisture pattern is very similar to the pre-existing case 

(Fig. 2.5b) but the dependence on the soil texture has changed slightly. 

Figure 2.6 presents maps of soil moisture from the pre-existing EMT+VS model, the 

EMT+VS model with runoff, and the EMT+VS model with residual for a wet date and dry date 

during the CRP period. Soil moisture patterns during the CRP period display more spatial variation 

than the WFR period. Figure 2.6a displays the pre-existing EMT+VS model output on a dry date. 

The soil moisture pattern on the dry date resembles both the current vegetation pattern (Fig. 2.4f) 
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and the soil texture pattern (Fig. 2.2c and 2.2d). Regions with higher fractional vegetation cover 

are wetter mostly due to vegetation shading the soil surface. The shading reduces soil evaporation 

and produces wetter conditions. The southwestern corner of the region is significantly wetter than 

the rest of the region (Fig. 2.6a). This wetness is a combined effect of soil and vegetation. The 

southwestern corner has relatively high fractional vegetation cover and very low hydraulic 

conductivity due to high clay percentage. The shading and reduced drainage result in an especially 

wet region. Figure 2.6b shows the pre-existing EMT+VS model output on the wet date. As was 

observed in the WFR period, the most prominent feature is the wet valley bottom. Like the dry 

date, the southwestern corner is the wettest portion of the region. 

The soil moisture from the EMT+VS model with runoff is shown in Fig. 2.6c and 2.6d. 

The dry date shows a similar behavior to the pre-existing model. The pattern once again resembles 

the pattern of fractional vegetation cover and the southwestern corner is particularly wet. Figure 

2.6d shows the wet date, which is also similar to the pre-existing model output. The valley bottom 

and southwestern corner are the wettest portions of the region. The spatial average infiltration 

function F
I  is equal to 0.98 for both the wet and dry dates, again indicating that little runoff occurs. 

The i
P value for the dry date is 259 mm/d and for the wet date is 255 mm/d (Table 2.3), so little 

temporal variation in runoff occurs between the two dates. 

Figure 2.6e and 2.6f show the soil moisture from the EMT+VS model with residual water 

content. On both the wet (Fig. 2.6e) and dry date (Fig. 2.6f), the soil moisture maps are identical 

to the pre-existing EMT+VS model results because the residual adjustment factor d  is calibrated 

to zero for the CRP period. Thus, residual water content has no effect on the EMT+VS model 

results during the CRP period.  
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Table 2.2 summarizes the calibrated parameter values for the WFR and CRP periods and 

provides some insights into the reasons the soil moisture patterns differ between the two periods. 

Because all model versions for a given period display similar behavior, the three models are 

compared as a group between the two periods. First, the aerodynamic ET exponent 
a

β  decreases 

from the WFR period to the CRP period. This change reflects a change in the moisture limitation 

function that estimates ET from PET. The moisture limitation function is known to depend on 

vegetation type and condition, so this change likely reflects the change in vegetation type (Lowry, 

1959). Another parameter that changes substantially is the portion of transpiration that is derived 

from the modeled soil layer η . This parameter decreases from the WFR period to the CRP period, 

which indicates the CRP vegetation extracts less of its water from the modeled soil layer (i.e. near 

the ground surface). The parameter that quantifies the effect of elevation on PET ω  also shows a 

notable change. However, due to the small topographic relief over the region, this change has little 

effect on the soil moisture results. The change in the fractional vegetation cover (Fig. 2.4) also 

contributes to the differences in soil moisture patterns. The vegetation patterns in the WFR period 

range from bare soil, with a spatial average fractional vegetation cover 0.09V = , to mature wheat 

in one set of crop strips ( 0.22V = ). The CRP period has higher fractional vegetation cover than 

any WFR pattern ( 0.25V = ). The higher vegetation cover affects evaporation (via shading), 

transpiration, and interception and therefore influences the spatial patterns of soil moisture.  

Figure 2.7a and 2.7b summarize the NSCE calculated on each application date for each 

model version. For purposes of interpretation, if the spatial average was directly used as a predictor 

of the soil moisture pattern, the NSCE value would be zero. If a downscaled pattern exactly 

reproduced the measured soil moisture pattern, the NSCE value would be one. Downscaled soil 

moisture patterns typically have NSCE values below 0.4 due to substantial errors in the soil 
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moisture observations relative to spatial variance (Busch et al., 2012). For the WFR period, the 

pre-existing EMT+VS model produces a positive NSCE value for only two of ten dates with an 

average NSCE of -0.023 over all dates (Fig. 2.7a). The pre-existing EMT+VS model likely has 

low NSCE values during this period for multiple reasons. First, the larger measurement depth used 

during the WFR period (30 cm) shows less spatial variation and less correlation with site 

characteristics than the 15 cm measurement depth used during the CRP period. The average spatial 

standard deviation of the measured soil moisture is 0.026 in the WFR period and 0.030 in the CRP 

period. However, the CRP period has dates with much higher spatial variation in soil moisture (the 

range in spatial standard deviation values is 0.010 for the WFR period and 0.021 for the CRP 

period). Second, the EMT+VS model is forced to use the spatial patterns of soil texture to infer 

soil hydraulic properties and thus the soil moisture. Despite the large number of observations 

points, the spatial variations of soil texture were shown to contain significant errors in Fig. 2.3. 

Including runoff in the EMT+VS model improves the NSCE values for all dates in the 

WFR period except one, which has a very small decrease (Fig. 2.7a). The runoff case also has 

positive NSCE values for all dates except one and an average NSCE value of 0.048 over all dates. 

The most notable improvements are for dates with higher θ , which also tend to have measured 

antecedent runoff (dates with antecedent runoff are denoted with stars in Fig. 2.7a). In this study, 

any measured runoff event that occurred less than one month prior to soil moisture sampling is 

considered an antecedent runoff event due to an observed lag time between precipitation and soil 

moisture response at Drake Farm. Thus, another reason for the poor performance of the pre-

existing model that runoff is not considered. By allowing i
P  to vary temporally (Table 2.3), the 

revised EMT+VS model can determine the optimal magnitude of runoff on each date. Finally, the 
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residual case shows small improvements in NSCE on most dates.  However, NSCE is still negative 

on eight out of the ten sampling dates, and the average NSCE over all dates is -0.019 (Fig. 2.7a). 

For the CRP period, the pre-existing EMT+VS model produces positive NSCE values for 

all eight dates (Fig. 2.7b). In contrast to previous EMT+VS model applications (Greico et al., 

2018), the model performs best under especially dry and wet conditions. The average NSCE for 

all dates is 0.203, which is similar to downscaling the performance at other test regions (Coleman 

and Niemann, 2013; Ranney et al., 2015; Cowley et al., 2017; Greico et al., 2018). The four wettest 

dates show notable differences in their NSCE values. The pre-existing EMT+VS model assumes 

equilibrium and the only variable that changes in time is θ . Thus, it neglects any hysteresis and 

always produces the same soil moisture pattern for a given θ . While θ  is very similar on each of 

those four dates, each observed soil moisture pattern depends on its unique history of wetting and 

drying. When runoff is included, several dates show moderate increases in NSCE (Fig. 2.7b). The 

average NSCE increases to 0.220. The smaller change in performance for the CRP period is 

consistent with lack of runoff measured at the flume during this period. Localized runoff may have 

occurred at various points in the field, but widespread runoff did not occur for any considered date. 

The EMT+VS model with residual is identical to the pre-existing EMT+VS model during the CRP 

period, so the NSCE values remain unchanged.  

Average RMSE for each model version is shown in Fig. 2.8a and 2.8b. For the WFR period, 

the pre-existing model produces an average RMSE value of 0.0268 (Fig. 2.8a). This value is close 

to the measurement error of a TDR device (Huisman et al., 2001) and indicates that the average 

error of the EMT+VS model is low despite the low NSCE values. The contrast between the NSCE 

and RMSE values is caused by the low spatial variation in measured soil moisture over the region. 

The NSCE value quantifies the model’s error relative to the spatial variability. When spatial 
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variability is low, NSCE is sensitive to small differences between measured and modeled soil 

moisture. When runoff is included in the model, RMSE improves slightly to 0.0258. Including 

residual water content in the EMT+VS model also improves the RMSE slightly (from the pre-

existing model) to 0.0267.  

During the CRP period, pre-existing EMT+VS model produces a RMSE value of 0.0263 

(Fig. 2.8b). Thus, despite the higher NSCE value observed for the CRP period, RMSE is only 

slightly smaller for the CRP period. When runoff is included in the model, RMSE again shows a 

slight decrease to 0.0261. Thus, the small improvement in NSCE values produces only a small 

improvement in the RMSE values. The EMT+VS model with residual water content is identical 

to the pre-existing EMT+VS model during the CRP period, so the RMSE is the same as the pre-

existing model performance.   

Performance of the EMT+VS model versions was also evaluated by calibrating the models 

with a subset of the soil moisture dataset and then evaluating performance using the data that was 

withheld from the calibration. For each land management period, one date was withheld from 

calibration and the model was evaluated for the withheld date. This process was repeated until 

each date was withheld from the calibration. When the model was applied to the withheld date, the 

average value of i
P  from the calibration period was used. 

For the WFR period, the pre-existing EMT+VS model, the EMT+VS model with runoff, 

and the EMT+VS model with residual produce average NSCE values of -0.054, -0.052, and -0.058, 

respectively, for the dates withheld from the calibration. These NSCE values are lower than when 

all dates were used for calibration, and a smaller improvement in performance is observed when 

runoff is included. The average RMSE value for the dates withheld from calibration is 0.041 for 

all three models, which is higher than the RMSE values when the full dataset is considered. For 
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the CRP period, the preexisting, runoff, and residual water content versions of the model produce 

average NSCE values of 0.184, 0.179, and 0.184, respectively, for the dates withheld from the 

calibration. The withheld date produces RMSE values of 0.030, 0.031, and 0.030 for the pre-

existing EMT+VS model, the model with runoff, and the model with residual, respectively. Again, 

NSCE is lower and RMSE is higher than the previously discussed calibrations, and performance 

is relatively unchanged by model additions. However, these results indicate that including runoff 

in the EMT+VS model is only successful when a date-specific i
P  is used. Additionally, residual 

water content was calibrated to be zero or close to zero in all cases and therefore also has a 

negligible impact on EMT+VS performance in these cases.  

A full generalized model containing both runoff and residual water content was also 

considered. The WFR and CRP periods both show similar results to the separately-calibrated 

models. For the WFR period, daily values of i
P  are more similar to one another than the separately-

calibrated runoff model and most values are close to 100 mm/d. Residual adjustment factor d is 

calibrated to 0.60 and the full generalized model produces an average daily NSCE of 0.01. The 

full generalized model from the CRP period is identical to the EMT+VS model with runoff, 

because d is calibrated to zero. The average NSCE is again 0.220. 

The three EMT+VS model version were also compared at multiple other application 

regions. The models were applied at the Tarrawarra (Western and Grayson, 1998), Nerrigundah 

(Walker et al., 2001), and Cache la Poudre (Ranney et al, 2015) catchments. All three catchment 

have been used for EMT+VS model downscaling in the past (Coleman and Niemann, 2013; 

Ranney et al., 2015). These additional catchments produce similar results to Drake Farm. The 

EMT+VS model with runoff causes slight improvements in model performance with respect to 

NSCE and RMSE at Tarrawarra and Nerrigundah as well as minor changes in spatial patterns of 
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soil moisture. At Cache la Poudre, 
F

I  is equal to one over the entire region, so including runoff 

does not affect EMT+VS results. At all three regions, d  is calibrated to zero and therefore residual 

water content has no impact on EMT+VS downscaling. 

2.4 Conclusion 

This study implemented runoff and residual water content into the EMT+VS soil moisture 

downscaling model. Runoff was included by allowing temporally varying precipitation intensity 

and estimating the soil’s infiltration capacity using the vertical saturated hydraulic conductivity.  

This infiltration capacity can be derived from the Green-Ampt (1911) model if gravity dominates 

the vertical hydraulic gradient. Residual water content was included by assuming that all 

hydrologic fluxes cease when soil moisture is at or below residual water content. The EMT+VS 

model was applied to a new test region (Drake Farm), which was managed in a wheat-fallow 

rotation for many years and then placed in a Conservation Reserve Program. The impact of these 

model additions on the fine scale soil moisture patterns and model performance was examined.  

 Runoff was found to have only small effects on the calibrated model’s soil moisture 

patterns for both the WFR and CRP periods. Including runoff decreases the soil moisture at 

locations with greater fine-grained content. Fine-grained soil has lower saturated hydraulic 

conductivity, which reduces the infiltration capacity. The lower infiltration capacity induces more 

runoff and produces drier soil after the storm. Including runoff produces only small increases in 

model performance as measured by NSCE and RMSE for both periods. A greater increase in model 

performance occurs for the WFR period when runoff was observed at a flume near the edge of the 

field.  

 Residual water content was also found to have small effects on the calibrated model’s soil 

moisture patterns for both management periods. In general, increasing residual water content 
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decreases the spatial variation in the fine resolution soil moisture patterns. Residual water content 

reduces the range of soil moisture over which hydrologic processes occur in the soil.  Thus, when 

residual is included, smaller variations in moisture are sufficient to balance the inflows and 

outflows in the soil.  For the WFR period, the calibrated residual water content is non-zero, but the 

improvement in performance is very small. For the CRP period, residual water content was 

calibrated to zero and therefore had no effect on the soil moisture downscaling. 

 Runoff and residual water content provide small improvements in model performance 

partly because the soil moisture variations that they induce depend on soil texture variations. Soil 

texture observations at 215 locations were used in a spline interpolation method to determine the 

gridded soil texture patterns, but the spatial average sand and clay percentages were found to better 

estimate the soil texture than the interpolated patterns.  Thus, the variations in soil moisture that 

runoff and residual water content produce in the model are likely poor estimates of the real soil 

moisture variations from those mechanisms. 

The small improvements in performance may also occur because Drake Farm has relatively 

small spatial variations in soil moisture. Thus, much of the observed spatial variation is likely 

measurement error and cannot be reproduced by any model. The low spatial variation in moisture 

causes the NSCE values for the WFR period to be near zero even though RMSE values are similar 

to typical measurement errors.  

 Overall, the results support neglecting runoff and residual water content in soil moisture 

downscaling.  However, the impacts of runoff and residual water content on the EMT+VS model 

results should be assessed at additional application regions that span a variety of topographic, 

vegetation, and soil conditions. Regions with frequent and substantial runoff would be of particular 

interest. Runoff could have a greater effect on soil moisture patterns and show greater 
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improvements in downscaling performance if runoff is more common.  Additionally, regions 

where residual water content has been studied and is significant should be examined. Finally, the 

effects of runoff and residual water content on EMT+VS model downscaling should be assessed 

for a case in which more reliable soil data are available. A region with measured soil texture in 

every downscaling grid cell or where soil interpolation is shown to be more accurate should be 

examined. More accurate soil data may also result in improved performance when runoff and 

residual are considered. Although various other test sites considered in this study produced results 

similar to Drake Farm, none contain substantial runoff over the soil moisture sampling period or 

more reliable soil data than Drake Farm, and therefore these conditions are of interest to future 

EMT+VS model investigation. 
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2.5 Tables and Figures 

 

 

 

Table 2.1. Vegetation patterns used in Drake Farm EMT+VS analyses. The east management strips begin on the eastern side of 

the field and alternate with the west management strips. Asterisks indicate dates for which antecedent runoff was measured at the field 

outlet within 1 month of the soil moisture observations. 

Management Period Vegetation Cover Landsat Date Associated Soil Moisture Dates 

WFR Failing wheat in east 

management strips 

16 April 2003 7 May 2003* 

 Wheat in west 

management strips 

29 June 2004 24 June 2004 

 Wheat in east 

management strips 

24 June 2005 19 October 2004, 17 June 2005*, 

24 May 2007 

 Full site bare 27 August 2005 10 August 2005*, 31 July 2007* 

 Barley on eastern side, 

corn on western side  

27 June 2009 17 June 2009*, 26 June 2009*, 1 

July 2009* 

CRP Native grasses and 

invasive weeds 

4 June 2018 5 May 2016, 24 June 2016, 5 

October 2016, 13 October 2016, 

18 April 2017, 26 April 2017, 25 

May 2017, 22 May 2018 
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Table 2.2. EMT+VS parameter bounds and calibrated values for Drake Farm. All parameters shown are dimensionless 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter 

 

Lower 

Bound 

 

Upper 

Bound 

WFR CRP  

Pre-

Existing 

EMT+VS  

EMT+VS 

with 

Runoff 

EMT+VS 

with 

Residual 

Pre-

Existing 

EMT+VS  

EMT+VS 

with 

Runoff 

EMT+VS 

with 

Residual 

ω  0 0.01 0.001 0.0003 0.002 0.008 0.008 0.008 

r
β   0.2 5 4.90 4.94 4.95 4.86 4.36 4.86 

a
β  0.2 5 0.60 0.37 0.76 0.21 0.21 0.21 

λ   0 1 0.70 0.64 0.78 0.79 0.73 0.79 

η   0 1 0.78 0.58 0.82 0.36 0.16 0.36 

µ   1 3 1.92 1.26 2.26 1.77 1.77 1.77 

ι   0 100 30.5 12.2 32.2 48.7 8.39 48.7 

v
γ   13.5 20.8 19.8 18.9 17.3 19.7 14.1 19.7 

h
γ   1 20.8 4.00 2.95 4.24 3.99 2.97 3.99 

ε   1 3 1.50 1.55 1.28 1.28 1.07 1.28 

d   0 1 - - 0.56 - - 0 
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Table 2.3. Calibrated spatial-average storm intensities for each measurement date. Upper and 

lower calibration bounds are 6.10 mm/d and 793 mm/d, respectively. 

 

WFR Period CRP Period 

Date θ  i
P  (mm/d) Date θ  i

P  (mm/d) 

7 May 2003 0.210 235 5 May 2016 0.216 255 

24 June 2004 0.236 254 24 June 2016 0.112 259 

19 October 2004 0.217 251 5 October 2016 0.085 232 

17 June 2005 0.242 132 13 October 2016 0.117 186 

10 August 2005 0.154 125 18 April 2017 0.125 180 

24 May 2007 0.146 216 26 April 2017 0.208 198 

31 July 2007 0.219 159 25 May 2017 0.204 101 

17 June 2009 0.226 234 22 May 2018 0.205 190 

26 June 2009 0.235 247 - - - 

1 July 2009 0.228 226 - - - 
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Fig. 2.1. Comparison of the pre-existing EMT+VS model’s infiltration function, the segmented 

infiltration function, and the exponential infiltration function with 2
r

υ =  
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Fig. 2.2. Drake Farm topography, soil moisture observation locations, and soil 

composition including: (a) topography with WFR soil moisture measurement locations on 24 

June 2004, (b) topography with CRP soil moisture measurement locations (consistent for all CRP 

dates), (c) interpolated pattern of sand percentage, and (d) interpolated pattern of clay 

percentage. Black squares denote the region of all EMT+VS analyses in this study. 
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Fig. 2.3. Split sample evaluation of interpolated maps of (a) sand and (b) clay percentages. Dots 

represent average RMSE among five randomly selected split sample tests where 50% of data was 

used for training and 50% of data was used for evaluation. Error bars denote maximum and 

minimum RMSE among the five tests. The weight parameter is dimensionless. 
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Fig. 2.4. Drake Farm fractional vegetation cover patterns estimated as SAVI from Landsat 

imagery including: (a) failing wheat in east management strips, (b) wheat in west management 

strips, (c) wheat in east management strips, (d) full site bare, (e) barley and corn, and (f) CRP 

with native grasses, shrubs, and invasive weeds. Note that the east management strips begin on 

the eastern edge of the site and alternate with west management strips. East management strips 

are strips with higher fractional vegetation cover in (c). Dates of Landsat imagery included in 

labels. 
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Fig. 2.5. Spatial patterns of soil moisture from the EMT+VS model for the WFR period. The dry 

date is 24 May 2007 ( 0.146θ = ) and the wet date is 17 June 2005 ( 0.242θ = ). 
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Fig. 2.6. Spatial patterns of soil moisture from the EMT+VS model for the CRP period. The dry 

date is 24 June 2016 ( 0.112θ = ) and the wet date is from 05 May 2016 ( 0.216θ = ) 
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Fig. 2.7. EMT+VS model daily NSCE for (a) WFR period and (b) CRP period. Stars in (a) 

denote dates with observed runoff at the field outlet. No such stars are shown in (b) because no 

runoff was observed over the measurement period.  
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Fig. 2.8. EMT+VS model average RMSE over all sampling dates (see Fig. 2.7) for (a) WFR 

period and (b) CRP period. Error bars denote minimum and maximum daily RMSE for each 

model. 
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3. STRESS MODEL DEVELOPMENT 

 

 

 

3.1 Introduction 

 Assessing vehicle mobility across natural terrain requires knowledge of the traversed soil 

strength. The strength of surficial soils is controlled by several constitutive properties, including 

texture (percentage of sand, silt, and clay), density, and water content. Water in soil pores can 

develop either positive or negative pressure depending on soil water content, external loading, and 

drainage conditions, and these pressures can either increase or decrease soil strength. The concept 

of effective stress is used to account for the effects of soil pore water on shear strength and 

deformation (Terzaghi, 1925; 1936). However, effective stress is generally neglected in 

terramechanics analyses based on simplifying assumptions (Reece, 1964), or empirical 

relationships are used to implicitly incorporate effective stress (e.g., Smith and Meyer, 1973). 

However, the contribution of soil pore water on the soil strength parameters of unsaturated soils 

(soils with water contents less than saturation) is critical to developing models to assess the effect 

of variation in soil moisture on soil strength (Bishop and Blight, 1963; Fredlund et al., 1978; Lu 

and Likos, 2004; Lu et al., 2010) in terramechanics mobility models.  

In-situ testing methods are preferred in terramechanics to determine near-surface soil 

properties. The soil depth relevant to terramechanics applications (i.e. critical depth) can vary 

based on soil type, water content, density, and dimensions of the tire or track contacting the soil 

because the shear stress distribution below the tire or track depends on these variables. The critical 

depth can vary from the surficial layer (between 0 and 15 cm) to a depth of 60 cm.  In most soils, 

the critical soil layer is the surficial layer, and terramechanics strength measurement methods are 

typically conducted on the surficial soils to classify the behavior of this critical layer (Wong, 2010). 
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Two in-situ methods are widely used to quantify surface soil strength: rating cone index (RCI) and 

the Bekker soil strength framework. Rating cone index (RCI) is measured by pushing a circular 

cone into the soil (Knight, 1956). Force required to insert the cone into soil is divided by the area 

of the cone to produce the cone index (CI) of the specific measured soil. Cone index is calculated 

in pounds-per-square-inch (psi) but presented as a dimensionless value. For fine-grained soils, a 

remolding index (RI) is multiplied by CI to produce RCI. For coarse-grained soils, no RI is 

necessary and the term RCI is used interchangeably with CI. The RCI is compared to an 

empirically determined vehicle cone index (VCI) for a specific vehicle to determine if soil is 

trafficable on a go/no-go basis. The RCI method provides a single quantity to characterize soil 

trafficability, which according to Bekker (1956) depends on two primary aspects of soil behavior: 

stability (shear strength) and elasticity (compressibility). 

The RCI framework has been used in development of terramechanics databases for decades 

and therefore is the state-of-practice for the U.S. Army and NATO in mobility modeling. The RCI 

method is preferred to the Bekker method for simplicity and historic use in military applications 

(Rula and Nuttall, 1971). However, in many military mobility applications, even the simple RCI 

measurement method can be too expensive, labor-intensive, or dangerous for extensive field 

measurement. For scenarios in which soil strength cannot be directly measured, RCI must be 

estimated as a function of basic soil properties and soil moisture. The U.S. Army has developed 

several models to predict soil moisture and soil strength (Smith and Meyer, 1973; Sullivan et al., 

1997; Mason et al., 2001; Frankenstein and Koenig., 2004). Each model relies on some variation 

of a simple water budget framework to estimate soil moisture. In each model, the water budget 

soil moisture estimates are applied to simple RCI predictive functions from Smith and Meyer 
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(1973) to calculate RCI as a function of soil moisture and Unified Soil Classification System 

(USCS) classification. 

Although RCI has been the preferred soil strength framework of the U.S. Army and NATO 

over several decades, the Bekker soil strength framework has received increased interest in recent 

years (McCullough et al., 2017). Numerical models incorporating Bekker parameters as inputs 

(Choi et al., 2018) are increasingly used to predict speed-made-good and other trafficability 

metrics. Additionally, Williams et al. (2017) analyzed relationships between CI and several 

variables related to vehicle performance and showed poor correlations in many cases, indicating 

that CI is often not suitable for predicting soil strength for vehicle mobility.  

The Bekker method characterizes shear strength and compressibility using a bevameter 

(Bekker, 1956; 1960), measuring compressibility using a pressure-sinkage test and shear strength 

with a torsional ring interpreted with a Mohr-Coulomb failure envelope (Coulomb, 1776; Mohr, 

1900). This method lacks a simple metric to determine trafficability (such as the RCI-VCI 

comparison) but provides a more unique description of soil behavior for input into physics-based 

models (Choi et al., 2018) because shear strength and compressibility are considered separately. 

Shear strength is also further partitioned into frictional (exterior stress dependent) and cohesive 

(exterior stress independent) strength components. The two-fold parameterization of shear strength 

holds the advantage of incorporation into complex terramechanics numerical models. Despite the 

advantages of the Bekker method, no model framework exists to predict Bekker parameters from 

basic soil properties for scenarios in which direct sampling is not an option.  

The objective of this study is to develop and evaluate a model framework for prediction of 

Bekker shear strength parameters as a function of soil moisture and soil texture. The resulting 

framework is termed the Strength of Surface Soils (STRESS) model. The STRESS model applies 
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soil moisture estimates from an existing soil moisture downscaling model, the Equilibrium 

Moisture from Topography, Vegetation, and Soil (EMT+VS) model (Coleman and Niemann, 

2013; Ranney et al., 2015) and uses unsaturated soil mechanics to estimate surficial soil strength. 

The predictive performance of the STRESS model is evaluated using a bevameter shear device at 

a field site in northeastern Colorado. 

3.2 Background 

Bekker soil shear strength theory is based on the Mohr-Coulomb failure criterion 

(Coulomb, 1776; Mohr, 1900), illustrated in Fig. 3.1. The Mohr-Coulomb equation is typically 

presented as: 

 tan
f f

cτ σ φ= +  (3.1) 

where 
f

τ  is shear stress at failure (i.e. shear strength), c  is cohesion, 
f

σ  is normal stress on the 

failure plane, and φ  is friction angle. Shear strength of a soil is a function of applied normal stress 

and two soil properties: cohesion and friction angle. In soil, cohesion quantifies the shear strength 

effect of electrostatic interparticle forces and is independent of applied normal stress (y-intercept 

in Fig. 3.1). Friction angle describes shear resistance due to interparticle friction and is the 

arctangent of the slope of the linear-fit line in Fig. 3.1. Cohesion and friction angle are fit from 

experimental data by measuring shear strength at failure at multiple normal stresses and 

determining the optimal linear fit for Eqn. [3.1]. The true failure envelope of soils has been shown 

to be nonlinear, with considerable variation between friction angles measured near the origin and 

those measured at high normal stresses (Penman, 1953; Bishop et al., 1965; Atkinson and Farrar, 

1985; Day and Axten, 1989). As shown in Fig. 3.1, the Mohr-Coulomb equation is generally fit to 

an intermediate portion of the nonlinear Mohr-Coulomb failure envelope and used assuming linear 

behavior for all relevant stress conditions. Note that Eqn. [3.1] defines the Mohr-Coulomb failure 
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envelope in terms of total stress σ , which is defined as the normal stress applied to soil via external 

loading and weight of overlying soil. 

Effective stress (Terzaghi, 1925; 1936) accounts for the effects of pore water pressure on 

soil deformation and shear strength. Khalili et al. (2004) describe effective stress as a concept that 

“converts a multiphase, multistress porous medium to a mechanically equivalent, single-phase, 

single-stress state continuum”, which allows for “application of the principles of continuum solid 

mechanics to fluid-filled deformable porous media”. Effective stress σ ′  is calculated by adjusting 

total stress to account for pore water pressure 
w

u  in saturated soil: 

 
w

uσ σ′ = −  (3.2) 

Note that pore water pressure and pore air pressure discussed in this study are gage pressure. 

Effective stress is based on the concept that pore water pressure reduces or increases interparticle 

normal stress and therefore reduces or increases stress-dependent frictional shear resistance. The 

Mohr-Coulomb equation is updated to account for effective stress and an alternative pair of shear 

strength parameters are defined: effective cohesion c′  and effective friction angle φ′ . The 

effective stress shear strength parameters are measured in a saturated state taking into account soil 

pore water pressure and are assumed to be constant material properties for a given soil in 

geotechnical engineering practice (Terzaghi et al., 1996). 

Effective stress is traditionally used in analysis of saturated soil (Terzaghi et al., 1996), and 

measurement of pore water pressure in saturated soil is relatively straightforward. Characterizing 

effective stress in unsaturated soil is more complex. Matric suction is the cumulative effect of 

capillarity, surface tension, and surface adsorption of pore water in an unsaturated soil and 

manifests as negative, or tensile, pressure in soil pore water. The effect of matric suction on 

effective stress and therefore soil strength must be characterized to conduct effective stress analysis 
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in unsaturated soil. In general, matric suction increases effective stress and soil strength, but this 

relationship is complex. Reece (1964) describes the decision to neglect effects of pore water 

pressure and matric suction in terramechanics, citing assumptions of fully drained behavior (

0
w

u = ) in coarse-grained soil or fully undrained behavior ( 0σ ′ = ) in fine-grained soil that remove 

the need for effective stress and simplify soil strength analysis. However, in neglecting effective 

stress, the soil-air-water system is grossly and unrealistically oversimplified in soils with water 

contents between saturation and dry. Therefore, Bekker shear strength parameters are total stress 

strength parameters that vary with respect to water content (Bekker, 1956; Dwyer et al., 1974; 

Wong, 1980) and must be treated as empirical (water content specific) parameters.  

Multiple models have been introduced to incorporate effective stress in unsaturated soil 

and better conceptualize unsaturated strength and deformation. Bishop’s method (Bishop, 1959; 

Bishop and Blight, 1963) calculates effective stress as a function of matric suction: 

 ( ) ( )a a w
u u uσ σ χ′ = − + −  (3.3) 

where 
a

u  is pore air pressure and the difference between pore air pressure and pore water pressure 

( )a w
u u−  is matric suction. The quantity ( )a

uσ −  is net normal stress. Bishop’s χ  parameter 

defines the contribution of matric suction to effective stress. Application of Bishop’s method has 

been shown to be problematic due to theoretical and experimental difficulties in determining 

Bishop’s parameter (Jennings and Burland, 1962). The second method of incorporating effective 

stress into unsaturated soil analysis is suction stress. Suction stress was first introduced by Lu and 

Likos (2004) as “the net interparticle force generated within a matrix of unsaturated granular 

particles due to the combined effects of negative pore water pressure and surface tension”. Lu and 

Likos (2006) later generalized the definition to also include van der Waals forces and double layer 
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forces. Lu et al. (2010) introduced the first closed form equation for effective stress in unsaturated 

soil with a method of estimating suction stress: 

 ( ) s

a
uσ σ σ′ = − −  (3.4) 

where sσ is suction stress and is estimated as: 

 

1

1 1
n n

s e n
e

S
Sσ

α
−

 
= − − 

 
 (3.5) 

The term 
e

S  is effective saturation and is calculated as ( ) ( )e r s r
S θ θ θ θ= − − . The variable θ  is 

volumetric water content and the parametersα , n , 
r

θ , and 
s

θ , cumulatively referred to as van 

Genuchten water retention parameters (van Genuchten, 1980), are approximately the inverse of air 

entry pressure, pore size distribution index, residual water content, and porosity, respectively. 

Equation [3.5] can be rewritten as: 

 ( )s

e a w
S u uσ = − −  (3.6) 

The suction stress method (Eqn. [3.5] and [3.6]) is equivalent to Bishop’s method if Bishop’s  

parameter is assumed to be equal to effective saturation. The assumption 
e

Sχ =  is commonly used 

to estimate Bishop’s parameter and was considered by Bishop and Blight (1963). Vanapalli and 

Fredlund (2000) showed that this estimate of Bishop’s parameter performs well in the range of 

suction from 0 kPa to 1500 kPa but performs poorly over a greater range of suction. Various other 

methods have been introduced to estimate Bishop’s parameter as a function of matric suction. 

Khalili and Khabbaz (1998) introduced a unique relationship between Bishop’s parameter and the 

suction ratio ( ) ( )a w a w b
u u u u− − , where ( )a w b

u u−  is the air entry suction of a soil. This method 

was found to perform well under the set of laboratory conditions used in the study. 
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Fredlund et al. (1978) developed a model for evaluating shear strength of unsaturated soil 

by altering the Mohr-Coulomb formula rather than extending the effective stress equation. The 

effects of net normal stress and matric suction on shear strength are considered separately and a 

friction angle with respect to matric suction bφ  is introduced in addition to the traditional effective 

stress friction angle: 

 ( ) ( )' tan tan b

f a a w
c u u uτ σ φ φ′= + − + −  (3.7) 

The Fredlund method is theoretically robust and evaluates shear strength with respect to two 

nonmaterial stress state variables (net normal stress and matric suction). In comparing the Bishop, 

Fredlund, and Lu methods, concerns arise with the Bishop or Lu methods described previously 

when the Bishop or Lu methods use degree of saturation to describe the stress state of the soil. 

Fredlund et al. (2012) argued that degree of saturation, a material variable, cannot be used to 

describe the stress state of a soil because stress state variables are traditionally independent of 

material properties. Lu and Likos (2004) offered a counterpoint to this argument, presenting the 

justification that state variables “are those that are required to completely describe a system for the 

phenomenon at hand”, and in unsaturated soil, material variables that describe the relative quantity 

of each phase (soil, water, air) are necessary to completely define the system. While traditional 

application dictates that stress state variables should be independent of material variables, the 

fundamental definition of a stress state variable does not inherently preclude the use of material 

variables to describe stress state phenomena. Further, the Fredlund method does not avoid the 

complexities involved in accounting for the effects of matric suction on soil strength, as the new 

friction angle with respect to matric suction (a material variable) is defined to describe the 

relationship between matric suction and shear strength. The three methods, while distinct in their 

theoretical underpinnings and parameterizations, are numerically equivalent in quantitative 
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descriptions of unsaturated soil behavior when degree of saturation is used as a proxy for reduction 

in moisture derived soil strength with decreasing water content. However, while the Lu method 

relies on van Genuchten soil parameters for which pedotransfer functions from soil texture data 

are readily available, the Fredlund method introduces a new parameter that is difficult to estimate 

from soil compositional data and is not consistent with traditional Terzaghi effective stress. 

Therefore, only the Lu method is considered in this study. 

3.3 Methods and Materials  

3.3.1 STRESS Model Development 

A conceptual diagram of the STRESS model procedure is shown in Fig. 3.2. The STRESS 

model is designed to output soil shear strength parameters as a function of soil moisture and 

texture. The shear strength parameters estimated by the model are equivalent to Bekker total stress 

strength parameters but are estimated by accounting for effects of variable soil moisture. The 

STRESS model is paired with the EMT+VS model, a soil moisture downscaling model (Coleman 

and Niemann, 2013; Ranney et al., 2015). The EMT+VS model downscales coarse-resolution (1-

60 km grid cell) soil moisture using fine-resolution (10-30 m) topographic, vegetation, and soil 

data to produce fine-resolution (10-30m) estimates of soil moisture. The EMT+VS model 

simulates an equilibrium water balance over the hydrologically active soil layer, which is defined 

as the surface soil layer over which most lateral flow occurs. The STRESS model is developed to 

use EMT+VS soil moisture outputs as input for moisture-variable soil strength estimation, but the 

STRESS model can also be applied independently from the EMT+VS model with measured soil 

moisture data. Soil textural data (percentage by mass of sand and clay) are obtained from 

international or local soil databases such as ISRIC-WISE (Batjes, 2016) or SSURGO (Soil Survey 

Staff, 2018). If available, soil texture can also be input from local measured values.  
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The STRESS model applies the Lu method (Lu et al., 2010) to estimate terramechanics 

strength parameters. Effective friction angle is constant over the full range of water content from 

zero to saturation (Fredlund et al., 1978). Therefore, STRESS estimates a constant friction angle 

for all moisture conditions. The cohesion value for an unsaturated soil measured by a bevameter 

captures soil strength contributions from electrostatic forces between soil particles (effective 

cohesion) and effects of pore water (apparent cohesion). The STRESS model reproduces Bekker 

cohesion by combining effective and apparent cohesion to produce a parameter termed moisture-

variable cohesion cθ . 

 The STRESS model outputs use empirical relationships to first estimate effective stress 

strength parameters and van Genuchten’s water retention parameters (van Genuchten, 1980). 

Existing data relating effective stress strength parameters to soil texture are limited, particularly in 

a terramechanics (near surface) setting. In the STRESS model procedure, United States 

Department of Agriculture (USDA) soil classification is determined from percentages of sand and 

clay and an empirical conversion from USDA to USCS classification from Garcia-Gaines and 

Frankenstein (2015) is used to estimate USCS classification. Effective stress strength parameters 

are estimated as USCS class average values from the United States Naval Facilities Engineering 

Command (NAVFAC) Foundations and Earth Structures Design Manual (1986) and the USDA 

Transportation Engineering Manual (1981). Table 3.1 summarizes various class average effective 

strength parameters and those selected for use in the STRESS model. The justification for class-

average parameter used in the STRESS model is also provided in Table 3.1.  

The predictive performance of the STRESS model is limited by the generality of these 

binned parameters. However, the STRESS model is designed to be improved as data is compiled 

to better characterize texture-moisture-strength relationships in soil and allow for better prediction 



  56 

of effective shear strength parameters using basic soil data. As a dataset is compiled to relate soil 

texture to effective shear strength parameters, continuous relationships may be developed to 

overcome these binning errors, and the predictive capabilities of the STRESS model will likely 

improve. 

Many pedotransfer schemes exist to predict van Genuchten soil water retention parameters 

as a function of basic soil data. However, applicability of pedotransfer functions is hindered by 

compatibility with available inputs and desired outputs. For consistency with EMT+VS model 

development (Ranney et al., 2015), the pedotransfer function from Cosby et al. (1984) is used to 

estimate porosity using percentage of sand and clay as input. Then, sand and clay percentages are 

used along with Cosby et al. (1984) porosity as input into the pedotransfer scheme from Rawls and 

Brakensiek (1984) to estimate the remaining parameters: 
r

θ , α , and n . Note that the van 

Genuchten pedotransfer functions used in this study were developed for agriculture applications. 

Additionally, a site-specific residual adjustment factor d  may be calibrated within the EMT+VS 

model to adjust the magnitude of residual water content to best fit measured soil moisture data; 

when available, this parameter is also incorporated in the STRESS model.  

The STRESS model outputs are determined by combining the estimated effective stress 

strength parameters with unsaturated soil strength theory. Because effective friction angle is 

constant with respect to soil moisture (Fredlund et al., 1978), output effective friction angle from 

STRESS is equal to the class-average effective friction angle from Table 3.1. Moisture-variable 

cohesion combines effective cohesion from Table 3.1 with a contribution of matric suction to 

suction stress based on Lu et al. (2010). Applying the closed-form equation for effective stress 

from Lu et al. (2010) to the effective stress Mohr-Coulomb formulation yields: 

 ( ) tans

f a
c uτ σ σ φ′ ′ = + − −   (3.8) 
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Pore air pressure is assumed to be atmospheric in surficial soils relevant to terramechanics 

applications. Setting pore air pressure equal to zero and rearranging the equation produces: 

 ( )tan tans

f
cτ σ φ σ φ′ ′ ′= − +  (3.9) 

The equation now resembles a total stress shear strength envelope consistent with the Bekker 

framework: 

 tan
f

cθτ σ φ= +  (3.10) 

where the Bekker friction angle φ  is equal to effective stress friction angle and moisture-variable 

cohesion is calculated by combining effective cohesion and effects of matric suction on soil 

strength: 

 tans
c cθ σ φ′ ′= −  (3.11) 

Apparent cohesion is defined by Oh et al. (2012) as the “shear stress resulting from the 

mobilization of the isotropic tensile stress [i.e. suction stress] by the internal friction”. This 

definition is directly represented in the second term of Eqn. [3.13], which describes the portion of 

suction stress that is mobilized by interparticle soil friction. Note that suction stress is a negative 

quantity and therefore moisture-variable cohesion will be greater than or equal to effective 

cohesion. 

 Figure 3.3 displays class-average STRESS model estimates for moisture-variable cohesion 

versus soil moisture for various soil types. These graphs are based on Eqn. [3.13] and are 

determined from class-average soil properties and the suction stress equation in Eqn. [3.5] and 

[3.6] (Lu et al., 2010). Currently, moisture-variable cohesion is artificially capped at the value of 

moisture-variable cohesion when matric suction equals 1500 kPa, which varies based on soil type. 

In the current suction stress framework (Lu et al., 2010), suction stress (and therefore moisture-

variable cohesion) approaches infinity as soil moisture approaches residual water content. This 
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behavior is unrealistic and exists due to shortcomings in characterizing soil water retention 

behavior in the adsorbed regime, which Zhang and Lu (2019) aim to address in their updated 

suction stress formulation. At low water contents, most or all water is adsorbed to soil particles 

and does not contribute to suction stress in the same way as capillary water. An upper bound on 

matric suction is imposed at 1500 kPa because Vanapalli and Fredlund (2000) showed the 

generalization for Bishop’s equation ( ) ( )
a e a w

u S u uσ σ′ = − + −  to perform well within the range 

of suction from 0 to 1500 kPa.  High moisture variable cohesion is anticipated to yield favorable 

mobility calculations, and the specific magnitude of moisture-variable cohesion for a dry silt, clay, 

loam, or sandy clay loam are anticipated to be unimportant. Note than in Fig. 3.3, residual water 

content is assumed to be zero because the residual adjustment factor was calibrated to zero in 

EMT+VS model calibrations at the test site used in this study, as shown in Chapter 2. 

3.3.2 Data Collection and Model Evaluation 

The STRESS model was applied at a field site in northeastern Colorado to evaluate model 

performance. Drake Farm is a former farm with an area of approximately 100 ha. The elevation of 

the region ranges from 1559 m to 1588 m and slopes range from 0% to over 13% (Fig. 3.4a). Drake 

Farm was farmed in a wheat-fallow crop rotation for multiple decades until 2012 when the field 

was transitioned to a Conservation Reserve Program (CRP) site. A native grass blend was planted 

in 2013 and 2014, but the former strip-cropping pattern is still apparent in the vegetation at the site 

(Fig 3.4b). Soils at the site are aeolian silt and sand deposits, but the field has been tilled 

extensively and therefore spatial soil patterns are not representative of natural deposition. 215 

points of measured soil textural data are available over the top 30 cm of soil (McCutcheon et al., 

2006). Point soil data is interpolated using tension spline interpolation with a weight parameter of 

100 as discussed in Chapter 2 to produce a smooth, best-approximation spatial soil pattern (Fig. 
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3.4c, 3.4d). A complete description of the field site is found in Green et al. (2009) and Green and 

Erskine (2011).  

The EMT+VS and STRESS models were conducted to produce spatial plots of moisture 

and soil strength parameters over a subsection of the Drake Farm region for three dates. The region 

of interest, referred to in Fig. 3.4 as “Analysis Region”, was selected for EMT+VS and STRESS 

analysis because of availability of measured soil moisture data for model calibration (as seen in 

Chapter 2), and proximity to Fort Collins, CO, USA for field measurements of soil strength. All 

analyses in this study are conducted over this region. The EMT+VS model parameters were 

calibrated to maximize Nash-Sutcliffe coefficient of efficiency (NSCE) (Nash and Sutcliffe, 1970) 

using eight dates of measured soil moisture from a portable time domain reflectometry (TDR) 

device, which measures depth-integrated soil moisture over the top 15 cm of soil. The soil moisture 

dataset used for calibration consists of eight dates of measured soil moisture with 65 measurements 

each. Spatial average soil moisture of the calibration dataset ranges from 0.086 on the driest date 

to 0.216 on the wettest date. All EMT+VS model calibration details, including calibrated 

parameters, correspond to the CRP period described in Chapter 2. Calibrated model parameters 

are then used to downscale soil moisture on all soil strength measurement dates using a spatial 

average of measured soil moisture data on the date of interest (analogous to the input from a coarse 

resolution soil moisture remote sensing data source). Downscaled soil moisture from the EMT+VS 

model and interpolated soil textural patterns are input into the STRESS model to estimate friction 

angle and moisture-variable cohesion.  

 Soil moisture, cohesion, and friction angle were measured with a bevameter (described in 

Chapter 4) at 21 locations within the analysis region (Fig. 3.5).  Seven 30- by 30-m regions were 

defined at various locations throughout the region to encompass a variety of topographic, 
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vegetation, and soil attributes. Green et al. (2009) selected several similar regions over the entirety 

of the Drake Farm field for measurement of steady state infiltration rates. The regions from Green 

et al. (2009) that fall within the analysis region were used in this study and three additional regions 

were defined to encompass regions of extreme soil texture (high interpolated sand percentage or 

clay percentage). The 30- by 30-m regions were drawn to encompass a grid of 36 digital elevation 

model (DEM) cells. Three DEM cells were selected in a triangle pattern within each 30- by 30-m 

region to achieve a target dataset of 21 total measurement locations over the Analysis Region. At 

these locations, measured effective friction angle and moisture-variable cohesion were compared 

to parameter estimates from the STRESS model using both input soil moisture from the EMT+VS 

model. Soil strength and soil moisture data were collected on three dates: a dry date (13 June 2019), 

a moderate/wet date (25 April 2019), and a wet date (2 May 2019).  

The bevameter is an in-situ soil strength measurement device that was introduced by 

Bekker (1960) and has been recreated in various forms over several decades (Wong, 1980; 

Apfelbeck, 2011). A human-powered shear strength bevameter was designed and constructed to 

conduct field testing for this study (Fig. 3.6). The apparatus details and calibration of the shear-

strength bevameter are provided Chapter 4. Normal force is applied by dead weight and shear 

stress is induced in the soil using a moment arm at the top of the device that is rotated manually. 

For each sampling location, the soil must be sheared three separate times at different normal 

stresses to calculate shear strength parameters. Because each individual shear test at a given normal 

stress causes soil deformation, each of the three shear tests corresponding to one sampling location 

must be conducted at distinct points near the sampling location (Fig. 3.7). The distinct sampling 

points were selected to encompass similar vegetation and surface characteristics, with no more 

than one meter between the specified sampling location and the three distinct sampling points.  
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Soils at Drake Farm typically did not exhibit a peak and ultimate shear strength, and many 

soils exhibited an increase in shear stress with increasing deformation and continuous shear plate 

sinkage throughout the test. For consistency between tests, shear stress at failure was defined as 

the shear stress at 60 degrees of angular displacement. This point was selected based on the results 

of preliminary laboratory bevameter tests (as shown in Chapter 4), in which 60 degrees marked 

the approximate transition from elastic to plastic behavior (i.e. the shear stress-displacement curve 

changes slope). 

Bevameter field testing procedure was developed based on an extensive review of 

bevameter design and testing literature. Based on the literature, normal stresses of 19.2 kPa, 38.9 

kPa, and 58.7 kPa were selected. At each testing location, depth-integrated soil moisture was 

measured over the top 5 cm using a POGO Hydraprobe portable soil moisture measurement device 

(Stevens Water Monitoring Systems, Inc., Portland, OR, USA) device. For each of the three testing 

points for each sampling location, vegetation was removed with electric gardening shears to trim 

grass and weeds and remaining litter was removed by hand (Fig. 3.7). Normal stress was applied 

to the bare soil surface and the shear annulus was rotated at a rate of 1 rpm until shear failure. Data 

were processed using a laptop computer. Torque was recorded and converted to shear stress using 

the equation: 

 
( )3 3

3

2
o i

T

r r
τ

π
=

−
 (3.12) 

where T  is measured torque and 
o

r  and 
i

r  are outer and inner radii of the shear annulus, 

respectively. The procedure to transform shear strengths to strength parameters is described in 

Chapter 4. An equation to account for grouser height from Reece (1964) is used in conjunction 

with the Mohr-Coulomb equation to determine cohesion and friction angle. The equation is fit 
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using linear least squares regression. Of note, this interpretation of the shear plane may be biased 

by development of oblique failure planes during shearing (Karafiath and Nowatzki 1978); 

additional research into prevention of oblique failure planes via a surcharge plate, or interpretation 

following the procedure outlined by Liston (1973) is needed. 

3.4 Results and Discussion 

Patterns of soil moisture from the EMT+VS model and soil strength parameters from the 

STRESS model were prepared for all three dates of soil strength sampling. Figure 3.8 displays 

modeled patterns of soil moisture. The dry date of data collection has a measured spatial average 

soil moisture 0.063θ =  (used as input for the EMT+VS model), which is drier than any date used 

for EMT+VS model calibration. The soil moisture pattern on the dry date contains very little 

spatial variation (Fig. 3.8a). Slight soil effects are observed in the northeast corner, and the 

southwest corner is slightly wetter as observed in all CRP plots in Chapter 2. Comparing EMT+VS 

model output to measured soil moisture on this date produces an RMSE value of 0.017. This value 

is lower than the typical measurement error of a TDR device (Huisman et al., 2001) and indicates 

that the predictive error of the model is low. The moderate/wet sampling date has a measured 

0.192θ = . This date shows topographic effects in the soil moisture pattern, as the topographic low 

(valley bottom) is wetter than the rest of the site (Fig. 3.8b). Additionally, vegetation and soil 

effects combine to produce a soil moisture pattern that mimics the strip-cropping pattern that is 

still apparent in the vegetation pattern. Comparing downscaled soil moisture to measured data at 

the 21 sampling locations produces an RMSE value of 0.035. The wettest date of sampling was 

measured to have 0.264θ =  and is shown in Fig. 3.8c. The wet date again displays the wet valley 

bottom as well as impacts from the interpolated soil pattern. The soil pattern is apparent on the 

western half of the region, illustrating the effect of soil composition on soil moisture at this site 
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under relatively wet conditions (Green and Erskine, 2011). A RMSE of 0.038 is calculated for the 

wet date, again suggesting low predictive error of the EMT+VS model.  

Spatial patterns of soil strength from the STRESS model are shown in Fig. 3.9. Plots in 

Fig. 3.9 show dependence on both soil texture and soil moisture. The predicted pattern of effective 

friction angle from the STRESS model (Fig. 3.9a) is independent of soil moisture and is 

determined based on class-average values from estimated USCS classification based on values 

reported in Table 3.1. The Drake Farm analysis region shows relatively low spatial variation in 

soil type (from clay loam to sandy loam), and therefore the pattern of effective friction angle 

consists of only three discrete values distributed over various portions of the region. Spatial 

patterns of moisture-variable cohesion were produced using spatial patterns of soil moisture from 

the EMT+VS model as input. The dry date (Fig. 3.9b) contains high moisture-variable cohesion 

values for most of the region. Under drier conditions, the soil develops high magnitudes of suction 

stress, which lead to high apparent cohesion and moisture-variable cohesion values. Lower 

moisture-variable cohesion is observed over regions with higher sand content, because moisture-

variable soil strength in sands is minimal compared to finer-grained soils (Fig. 3.3; Lu et al., 2010). 

The sandy regions develop moisture-variable cohesion ranging from 12 kPa to 58 kPa, whereas 

the regions with higher clay content are generally capped at maximum moisture-variable cohesion, 

which is equal to the moisture-variable cohesion at 1500 kPa of matric suction and varies from 95 

kPa to 189 kPa. Under dry conditions shown in Fig. 3.9b, the spatial pattern of moisture-variable 

cohesion mimics the pattern of soil moisture, but because soil moisture contains little spatial 

variability and magnitudes of moisture-variable cohesion are high, the effect of soil moisture on 

moisture-variable cohesion is not visually apparent. The moderate/wet sampling date (Fig. 3.9c) 

shows combined effects of soil textural and soil moisture patterns. Regions with high clay content 
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estimated to have higher moisture-variable cohesion (21 to 47 kPa) than regions with higher sand 

content (1.3 kPa to 14 kPa) due to higher suction stress generated in fine-grained soils. Moderate 

soil moisture effects on moisture-variable cohesion are apparent in Fig. 3.9c, as drier regions 

develop higher suction stress and higher moisture-variable cohesion. The wet condition (Fig. 3.9d) 

contains almost no moisture variability. Under wet conditions, moisture-variable cohesion values 

are near zero (<10 kPa) and the cohesive strength (independent of external stress) of the soil 

originates dominantly from effective cohesion. The spatial pattern of moisture-variable cohesion 

closely resembles the spatial pattern of effective cohesion, which is determined from class average 

values (Table 3.1).  

Measured soil strength parameters at Drake Farm were compared to estimated values from 

the STRESS model to determine the predictive performance of the model. Effective friction angle 

(Fig. 3.10) is independent of soil moisture and therefore is predicted to be constant on all 

measurement dates. The STRESS model consistently underestimates effective friction angle at 

Drake Farm with an RMSE of 11.3 degrees. Because the estimates are class-averages, they do not 

vary significantly over the range of soil types present (Table 3.1) and therefore do not capture local 

variability based on subtle variations in soil texture. A continuous pedotransfer function to predict 

effective friction angle using sand and clay percentages and other ancillary variables such as 

density could allow for variation within a given soil type and improve the predictive performance 

of the EMT+VS model.  

Comparisons of measured and predicted moisture-variable cohesion for the three dates at 

Drake Farm are shown in Fig. 3.11. This plot illustrates that for spatial average soil moisture 

between 0.063 and 0.264, the STRESS model overestimates moisture-variable cohesion at some 

locations and underestimates at others.  Cohesion from all dates produce an RMSE value of 58.2 
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kPa with measured moisture-variable cohesion ranging from 0 to 9.59 kPa and predicted moisture-

variable cohesion ranging from 1.0 to 189 kPa. The source of most of the observed error is the dry 

date, which has an RMSE of 110 kPa. As shown in Fig. 3.11, the STRESS model predicts high 

moisture-variable cohesion for most of the Drake Farm analysis region. Under dry conditions, a 

surficial soil layer consisting of less than 2-3 cm of dry, loose, sandy soil was observed during 

field sampling. The grousers on the underside of the bevameter shear plate only penetrate to a 

depth of 1.59 cm, therefore the measured soil strength parameters correspond to this loose, sandy 

layer. No moisture-variable cohesion is measured for a loose, sandy soil because suction stress 

depends on soil pore structure,  suction stress is higher for denser soils with smaller pores. 

Therefore, the discrepancy between measured moisture-variable cohesion and the high predicted 

moisture-variable cohesion is substantial. A stiffer, higher-strength soil layer was observed to exist 

directly below the loose superficial layer, which became apparent in taking soil moisture 

measurements on the dry date. The prongs of the Hydraprobe device were difficult to manually 

insert to a depth of 5 cm due to the strength of the underlying soil layer. This strength behavior is 

due to the same moisture-variable cohesion that the STRESS model aims to reproduce but was not 

captured in surficial bevameter testing. For future field testing, the loose surficial layer should be 

removed prior to sampling to capture the moisture-variable strength behavior relevant to vehicle 

mobility.  

 The moderate/wet and wet dates contain more moderate overestimates and underestimates 

of moisture-variable cohesion. In general, moisture-variable cohesion is overestimated more 

frequently than underestimated. These overestimates are hypothesized to occur for multiple 

reasons. First, the class-average values for effective cohesion are overestimated for the few soils 

(MH, CL, CH) for which effective cohesion is not estimated to be zero in the STRESS model. 
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Although these soils are fine-grained and are expected to have some nonzero effective cohesion, 

class-average values in Table 3.1 relevant to geotechnical engineering applications are not 

representative of class average conditions in surficial soils. Geotechnical laboratory test specimens 

are carefully prepared and compacted to a specified density, which is typically greater than the 

natural density of a surficial soil. The effective cohesion parameter represents electrostatic 

interparticle forces such as van der Waals forces and the strength of these forces depends on the 

distance between soil particles. Thus, effective cohesion of a natural surficial soil will be lower 

than that of a compacted fill or soil deeper below the ground surface if all other variables are equal. 

The substantial overprediction of moisture-variable cohesion that occurs at several points on the 

moderate/wet date and wet date is a result of overpredicting effective cohesion in fine-grained 

soils, specifically CL. Additionally, the STRESS model predicts USCS classification, which 

depends on both particle size and plasticity, using an empirical conversion from USDA 

classification (Garcia-Gaines and Frankenstein, 2015), which depends only on particle size. This 

conversion likely introduces error in predicting class-average parameters because no direct 

relationship exists between USCS and USDA. For example, the STRESS model predicts clay loam 

in USDA to be a low plasticity clay (CL) in USCS, which may not be accurate and may lead to an 

overestimate of effective cohesion and an underestimate of effective friction angle based on class-

average values. Another potential source of error is uncertainty in interpolated soil texture patterns, 

as shown Chapter 2. Interpolated spatial patterns of sand and clay percentage at Drake Farm were 

shown to have relatively high error despite 215 points of measured soil texture. This predictive 

error exists because of the repetitive tilling that occurred at Drake Farm for multiple decades in 

addition to the inherent variability and uncertainty that exists in spatial interpolation of soil data. 
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Underestimates of moisture-variable cohesion shown on the wet date are likely caused by 

uncertainty in soil data that leads to inaccurate estimates of suction stress.  

In general, the results for all three dates indicate that terramechanics-specific pedotransfer 

functions are necessary to accurately predict effective stress strength parameters and van 

Genuchten parameters. Natural surficial soils exhibit different behavior than the geotechnical and 

compacted agricultural soils for which the class-averages and pedotransfer functions used in the 

STRESS model were prepared. All relevant soil properties are dependent on density, and the 

STRESS model currently neglects all density effects. Creating pedotransfer functions specific to 

terramechanics applications would partially address the issue of density-specific soil properties, 

but density should also be considered as a pedotransfer input to completely characterize the effect 

of density on various soil properties. 

3.5 Summary and Conclusion  

This study introduces the STRESS model to predict strength parameters of unsaturated 

surficial soils for vehicle mobility. The STRESS model is paired with the EMT+VS soil moisture 

downscaling model to predict soil moisture and soil strength as a function of basic topographic, 

vegetation, and soil data, and coarse resolution soil moisture. The STRESS model uses 

pedotransfer functions and unsaturated soil mechanics to predict soil shear strength parameters 

(cohesion and friction angle) that may be input into numerical terramechanics models.  The model 

was applied to a test region in northeastern Colorado and bevameter measurements were collected 

to evaluate predictive performance. The following conclusions can be made from this study: 

1. In general, the STRESS model captures the approximate magnitude of Bekker strength 

parameters when compared to field-measured values. Although high moisture-variable 

cohesion values predicted by the STRESS model are not currently captured in field testing, the 
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effect of suction stress on soil strength is known to occur at lower water contents. The 

bevameter field testing methodology should be amended to capture the true strength behavior 

relevant to terramechanics.  

2. Friction angle estimates from the STRESS model are limited by existing class average soil 

strength databases. The class-average values of effective friction angle do not capture natural 

variability and are incapable of representing soils that are stronger or weaker than the average 

soil within a given soil textural class. Results at Drake Farm show values that are generally 

underestimated. 

3. Cohesion estimates from the STRESS model are limited by class average cohesion estimates 

from soil strength databases. The effective cohesion values of fine-grained soils are 

overestimated by the model. The model can also overestimate suction stress and therefore 

moisture variable cohesion due to uncertainty in soil input data. 

4. More data are required to improve the predictive performance of the STRESS model. A dataset 

relating effective shear strength parameters to soil texture percentages for surficial soils 

relevant to terramechanics is required to develop continuous predictive relationships. 

The STRESS model should be applied to other test regions to gain a better understanding 

of the model’s predictive capability. Additional test regions should be selected based on varying 

topography and soil conditions. Measured soil moisture data must be available or should be 

collected as part of STRESS model verification. Measured data can be compared to predicted data 

following the process outlined herein.
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3.6 Tables and Figures 

 

 

 

Table 3.1 Comparison of class average effective stress strength parameters. The columns corresponding to USBR are derived from a 

dataset of 17 soils from the western United States. The third set of values is from the United States Department of Agriculture Forest 

Service Slope Stability Reference Guide (1994), which compiles values from the USDA Transportation Engineering Handbook (1981) 

and only provides class-average friction angles for coarse-grained soils. 

 

USCS 

Classification 

 

NAVFAC (1986) 

 

USBR (1998) 

USDA (1981) (via USDA, 1994) STRESS Model Parameters 

Loose Dense 'c (kPa) 'φ (°) 

'c (kPa) 'φ (°) 'c (kPa) 'φ (°) 'c (kPa) 'φ (°) 'c (kPa) 'φ (°) Value Reasoning Value Reasoning 

GW 0 >38   - 35 - 45 0 
Gravel and sand (GW through SC) are coarse-

grained materials and are considered 

cohesionless in soil mechanics practice 

(Terzaghi, 1943). These soils do not develop 

interparticle cohesive forces. Low plasticity silt 

is a fine-grained soil but has been shown to 

exhibit cohesionless behavior (Vanapalli et al., 

1996; Vanaut et al., 2002). In the loose 

condition expected in natural surficial soils 

(Hunt and Gilkes, 2002; Goldsmith et al., 

2001), zero cohesion is predicted as a 

conservative estimate.  

35 Friction angles for loose soil from USDA (1981) via 

USDA (1994) due to applicability to surficial soils. Low 

density soils are consistent with effective plant growth 

(Hunt and Gilkes, 1992; Goldsmith et al., 2001). 

Therefore, natural surficial soils are anticipated to be low 

density. For soils with a range of friction angles, the 

median value is chosen. 

GP 0 >37 8.1 42.2 - 33 - 43 0 
33 

GM - >34   - 33 - 43 0 
33 

GC - >31   - 33 - 43 0 
33 

SW 0 38   - 31 - 41 0 
31 

SP 0 37   - 31 - 41 0 
31 

SM 20 34 20.7 34  29-31 - 39-41 0 
30 

SC 11 31 19.3 32.7     0 
31 See below justification for CL through CH 

ML 9 32 4.80 35.2  26  36 0 
26 See above justification for GW through SM 

CL 13 28 15.2 28.1     13 
Cohesion is often considered the primary 

source of shear strength of high plasticity soils 

(Terzaghi, 1943). Even in a loose state, the 

nonzero values from NAVFAC (1986) provide 

a realistic estimate. 

28 Friction angles from NAVFAC (1986) are used for SC, 

ML, MH, and CH because no values are provided by 

USDA (1981). Although NAVFAC (1986) does not 

contain a density-related component, these values are 

typically used in US government applications. 

MH 20 25       20 
25 

CH 22 19 32.4 20.5     22 
19 

USCS Classifications are defined as follows: GW = well-graded gravel, GP = poorly-graded gravel, GM = silty gravel, GC = clayey gravel, SW = well-graded sand, SP = poorly-graded sand, SM = silty sand, SC = clayey sand, ML = low plasticity silt, CL = low 

plasticity clay, MH = high plasticity silt, CH = high plasticity clay 
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Fig. 3.1 Schematic illustration of linear fit failure envelope and true nonlinear failure envelope. 

f
τ  is shear stress at failure, σ  is normal stress (in terms of total applied stress), φ  is friction 

angle, and c  is cohesion. 
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Fig. 3.2. Diagram of STRESS model framework 
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Fig. 3.3. Class-average STRESS model estimates for moisture variable cohesion ( cθ ) for various 

USCS soil types. Effective stress friction angles (φ′ ) of each soil class are also included in the 

legend. 
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Fig. 3.4. Drake Farm field site description, including region of analysis of this study denoted 

with a black rectangle, including (a) digital elevation map (DEM), (b) aerial photograph, (c) 

interpolated percentage of sand by mass with soil sampling locations, (d) interpolated percentage 

of clay by mass with soil sampling locations 
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Fig. 3.5. Soil strength sampling locations (21 locations) over the analysis region, with 

underlying aerial photograph from September 2017 
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Fig. 3.6. Human-powered shear strength bevameter applied at Drake Farm 
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Fig. 3.7. Drake Farm soil strength sampling location with three testing points. Flag denotes GPS-

specified sampling location. 
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Fig. 3.8. Spatial soil moisture patterns from EMT+VS model on soil strength sampling dates. (a) 

dry date, 13 June 2019 ( 0.063θ = ), (b) moderate/wet date, 25 April 2019 ( 0.192θ = ), (c) wet 

date, 2 May 2019 ( 0.264θ = )  
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Fig. 3.9 STRESS model soil strength patterns for (a) friction angle (degrees), (b) moisture-

variable cohesion on dry date (13 June 2019) (kPa), (c) moisture-variable cohesion on 

moderate/wet date (24 April 2019) (kPa), (d) moisture-variable cohesion on wet date (2 May 

2019). Soil moisture input for moisture-variable cohesion from EMT+VS model output for same 

dates. 
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Fig. 3.10. Comparison of measured to predicted friction angle values at Drake Farm 
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Fig. 3.11. Comparison of measured to predicted moisture-variable cohesion values at Drake 

Farm 
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4.    BEVAMETER DESIGN 

 

 

 

4.1 Introduction 

The bevameter is a device used to measure near surface soil strength in terramechanics. 

Bekker (1956) states that shear resistance and deformation are the two key soil properties for 

assessing vehicle mobility. Thus, parameters that represent the shear strength and compressibility 

of a soil are necessary to adequately characterize soil for vehicle mobility modeling. The 

bevameter measures these properties in a natural, in-situ condition using two tests. The pressure-

sinkage test is used to measure compressibility. A flat circular or rectangular steel plate is pressed 

into the soil at a constant rate, and force and vertical displacement are measured. Bekker-Wong 

pressure-sinkage parameters are fit to the data to characterize compressibility. The shear test is 

conducted using an annular shear ring with grousers on the underside. A constant normal force is 

applied to the soil surface by the annular plate and the shear plate is rotated at a constant rate, 

inducing a horizontal shear plane in the soil. The torque generated is then recorded as a function 

of angular displacement. Bekker shear strength parameters are calculated to quantify resistance to 

shear.  

 Despite approximately six decades of bevameter research, a paucity of bevameter data 

exists in the field of terramechanics. Additionally, the bevameter design and measurement 

procedures lack standardization. Each bevameter design has been unique (Dwyer et al., 1974; 

Wong, 1980; Apfelbeck et al., 2011) because each device has been designed for specific research 

purposes. The objective of this study is to design, construct, and calibrate multiple bevameter 

devices for field and laboratory testing based on previous designs. The first device is a laboratory-

focused bevameter with automated electrical controls and capability to complete both pressure-
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sinkage and shear tests. This device is designed to enable field operation but requires several 

people for transportation and testing. The second device is a simpler, human-powered bevameter 

shear strength device. This device relies on human-applied force to induce shear stress in the soil 

and dead weights to apply normal stress. The shear-strength bevameter is designed for efficient 

field testing and easy transportation. Bevameter design parameters were identified from a review 

of operational parameters in the literature. The designs of both bevameters are provided. A 

laboratory testing campaign is summarized for the shear-strength bevameter device. Test results 

from the field-focused shear strength bevameter are compared to traditional geotechnical shear 

strength testing results on specimens prepared under identical conditions to validate the bevameter 

design and testing procedure. Laboratory validation for the laboratory-focused bevameter is not 

included as part of this study.  

4.2 Background 

Rating cone index (RCI) has been the preferred method of quantifying soil strength in 

terramechanics vehicle mobility applications due to ease of measurement and simplicity of 

application (Rula and Nuttall, 1971). However, the need for mechanical strength parameters for 

complex terramechanics models has reinvigorated interest in the bevameter (McCullough et al., 

2017). The bevameter offers a more robust method of estimating soil properties and allows for a 

better understanding of individual processes that govern soil vehicle interaction. The pressure-

sinkage test is one of the two bevameter tests and is used to measure soil compression behavior 

(Fig. 4.1a). The laboratory-focused bevameter contains pressure-sinkage capabilities, although no 

pressure-sinkage laboratory validation occurred as part of this study. A flat circular or rectangular 

plate is pushed into the soil at a constant rate and force and vertical displacement are measured. 

Bekker-Wong pressure-sinkage parameters are fit to the data to characterize soil compressibility.  
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The second test procedure is used to measure soil shear strength (Fig. 4.1b). The bevameter 

shear test is based on traditional Mohr-Coulomb strength theory (Coulomb 1776; Mohr 1900). A 

circular shear annulus with grousers on the underside (Fig. 4.1b) is fully pressed into the soil to 

achieve a constant normal stress. The shear ring is then rotated at a constant rate until the soil fails 

in shear along a horizontal failure plane that is induced in the soil at the bottom of the grousers. In 

this way, the bevameter shear test is analogous to a torsional ring shear test. Applied torque is 

converted to shear stress using the following equation: 

 
( )3 3

3

2
o i

T

r r
τ

π
=

−
 (4.1) 

where τ  is soil shear stress, T  is applied torque, and 
o

r  and 
i

r  are outer and inner radii of the 

shear annulus, respectively. Depending on the application of bevameter testing, the maximum or 

ultimate shear stress is recorded as shear stress at failure (
f

τ ) for a given constant normal stress. 

The bevameter shear procedure is repeated at a minimum of three normal stresses to characterize 

the relationship between shear stress at failure at a corresponding applied normal stress (σ ). Shear 

strength parameters cohesion ( c ) and friction angle (φ ) are fit from a linear Mohr-Coulomb failure 

envelope fit to the data: 

 tan
f f

cτ σ φ= +  (4.2) 

The bevameter was originally introduced in 1960 by the terramechanics community and 

the ensuing decade contained substantial research with the device (Janosi and Hanamoto, 1961; 

Wills, 1964; Liston et al., 1966; Hegedus and Liston, 1966; Spanski, 1966). However, interest in 

the bevameter was sparse from the 1970s through the early 2010s (Dwyer et al., 1974; Wong, 

1980; Wong, 1984; Apfelbeck et al., 2011). Over the past decade, bevameter research has once 

again increased in the context of extraterrestrial exploration as NASA and similar organizations 
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use the device to examine strength of planetary soil simulants or Martian and Lunar soils (Edwards 

et al., 2017). Available literature was examined to develop a generalized bevameter design and 

operation procedure. A list of operational parameters compiled from the literature and used to 

define desired parameters for the bevameter devices in this study is provided in Table 4.1. 

Bevameter design parameters vary substantially throughout the literature. Many devices 

are vehicle-mounted, hydraulic-powered systems. The majority of bevameters described in the 

literature perform pressure-sinkage and shear strength testing separately using different systems, 

primarily due to limitations in control system capabilities. More recent devices (Apfelbeck et al., 

2011) conduct both bevameter tests with a single, compact machine and rely on electrical power 

and feedback controls for all application and measurement of force and torque.  

Bevameter pressure-sinkage devices in the literature use a hand crank (Spanski, 1966; 

Dwyer et al., 1974) or piston (Wong, 1980; Apfelbeck et al, 2011; Edwards et al., 2017) to apply 

vertical downward force in pressure-sinkage testing. Vertical motion considerations include 

maximum applied force, maximum stroke (length of extension), and extension (sinkage) rate. If a 

piston is used for force application, the device must be capable of applying a dynamic load for 

pressure-sinkage testing. Multiple sinkage plates should also be used and should contain a range 

of sizes that are representative of vehicle loading. Table 4.1 summarizes literature values for all 

relevant pressure-sinkage parameters. 

In shear strength testing, normal force is applied to the soil surface using dead weight 

(Spanski, 1966; Dwyer et al., 1974; Wong, 1980) or using a piston (Apfelbeck et al., 2011; 

Edwards et al., 2017). If a piston is used, a single device can be used for pressure-sinkage and 

shear strength testing. However, this method requires programming an electrical control system to 

maintain a constant normal force on the soil surface. Normal forces applied during pressure 
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sinkage testing are typically greater than the forces applied during shear strength testing, so the 

design parameters discussed in the previous paragraph dictate piston considerations for a 

bevameter design that uses a single piston for both bevameter tests. Torque can be applied during 

a shear strength test by manually turning a mechanism attached to the bevameter shaft (Spanski, 

1966; Dwyer et al., 1974) or using a motor (Wong, 1980; Apfelbeck et al., 2011; Edwards et al., 

2017). Considerations for shearing the soil are maximum applied torque and rate of rotation (i.e. 

shearing rate). Shear plate properties should be representative of a vehicle tire or tank track, but 

small enough to be practical for field and laboratory testing. Shear plate considerations are inner 

and outer radii of the shear annulus, grouser depth, and number of grousers. Table 4.2 contains all 

literature values for relevant shear testing parameters. 

4.3 Bevameter Design 

Target operational parameters were selected based on the range of reported literature values 

(Tables 4.1 and 4.2). For the laboratory-focused device, maximum normal force was selected to 

remain low enough to be counterweighted by the weight of the machine and a modest quantity of 

additional dead weight (3600 N). The maximum normal stress corresponding to the smallest 

pressure-sinkage plate (diameter=5.08 cm) is 1776 kPa and the maximum normal stress 

corresponding to the largest pressure-sinkage plate (diameter=15.2cm) is 198 kPa. The maximum 

normal stress applied in shear testing is 355 kPa based on the selected shear plate dimensions (

15.2cm, 10.2cm
o i

r r= = ). Maximum torque was selected using a similar reasoning as normal 

force, by limiting torque to minimize likelihood of tripod feet slipping on soil surface in reaction 

to soil shearing. The maximum normal load and torque of the field-focused shear strength 

bevameter were selected to mimic the design parameters for the laboratory-focused device, while 

accounting for limitations of dead weight and human effort. 



84 

4.3.1 Laboratory Bevameter Device 

Hydraulic, pneumatic, and electrical systems were considered to power the laboratory-

focused bevameter. Hydraulic systems require a hydraulic motor and reservoir and were deemed 

too cumbersome for efficient operation under manual transport. Pneumatic systems have the 

potential to rupture under field use and require a compressed air source (e.g., air compressor). 

Therefore, an electrical system was selected to provide adequate force and torque while remaining 

easy to transport. A tripod design was selected for field-capable structural efficiency.  

Figure 4.2a shows the laboratory-focused bevameter with parts labeled. Figure 4.2b shows 

the pressure sinkage testing plates and Fig. 4.2c and 4.2d show the side and bottom of the shear 

testing plate, respectively. Additionally, Table 4.3 summarizes the mechanical and electrical 

components with force and torque application and measurement capacities for comparison with 

target design properties. Linear force is provided by a Parker ETH032M05 mechanical linear 

actuator with parallel BE233 motor (Parker Hannifin, Cleveland, OH, USA). Torque is supplied 

by a Parker BE343J electric motor with integrated encoder paired with a Carson Eliminator 70:1 

planetary gearbox to increase torque output and decrease rate of rotation (Carson Manufacturing, 

Carson City, NV, USA). Force and torque are measured using an Interface 2816 2-axis Torsion 

Load Cell (Interface, Inc., Scottsdale, AZ, USA). Vertical deformation is measured using Omega 

LDI-128 LVIT sensor (Omega Engineering, Inc., Norwalk, CT, USA). All tripod legs and 

structural members are constructed from commercially available aluminum T-slotted framing. 

Aluminum mounting plates, stainless-steel load cell mounts, and stainless-steel testing plates were 

custom machined in Fort Collins, CO, USA; design drawings for these components are provided 

in the Appendix. Force, torque, and deformation rate controls are provided using a Copley XE2 

digital servo drive (Copley Controls, Canton, MA, USA). The electrical design allows for the use 
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of analog outputs from the multi-axis load cell (force, torque), motor encoder (shear rate), and 

LVIT sensor (sinkage rate) to control the various testing parameters involved in pressure-sinkage 

and shear testing.  

4.3.2 Field-Focused Shear Strength Bevameter 

Figure 4.3 is a photograph of the field-focused shear strength bevameter with labeled 

components. The only electrical component, an Interface TS12 Shaft Style Reaction Torque 

Transducer (Interface Inc., Scottsdale, AZ, USA), is shown in Table 4.3 to compare the torque 

sensor capacity to target bevameter design torque. The field-focused shear strength bevameter is 

powered by human-applied force and dead weight is used to apply normal stress. Therefore, the 

need for hydraulic, pneumatic, or electronic force application and control is eliminated. A tripod 

design was also selected for the field-focused shear strength bevameter for stability. A moment 

arm at the top of the device is rotated by users to generate shear stress in the soil. The moment arm 

is connected to the torque transducer via a steel shaft. Another steel shaft connects the torque 

transducer down to the shear annulus at the soil surface. The shaft passes through two sleeve 

bearings, which are connected to a structural frame and are incorporated to ensure proper shaft 

alignment.  The frame is constructed from commercially available T-slotted framing. The field-

focused shear strength bevameter uses the same shear annulus as the laboratory bevameter (Fig. 

4.2c, 4.2d). 

4.4 Materials and Methods 

A soil referred to as “Filter Sand” was used for bevameter laboratory validation. Sieve, 

hydrometer, Atterberg limit, specific gravity by pycnometer method, and standard Proctor 

compaction testing were conducted to classify and characterize the soil. Results of laboratory 

classification are summarized in Table 4.4. Bevameter laboratory testing was conducted in a 90 
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cm diameter galvanized steel tank with a height of 58 cm. The target density for laboratory testing 

was set to 85% of standard Proctor maximum dry density (Table 4.3) to simulate natural in situ 

soil density (Goldsmith et al., 2001; Albright et al., 2010). The typical standard Proctor curve is 

approximately parabolic, but several factors such as grain size distribution have been shown to 

influence the shape of the curve and produce atypical behavior (Johnson and Sallberg, 1962). The 

Filter Sand displayed a flat compaction curve with little variation in dry density with varying water 

content. Thus, the sand was loosely deposited into the testing tank to achieve the target density. 

The testing set-up was configured to elevate the laboratory bevameter above the steel tank and 

vertically align testing plates with the soil surface (Fig. 4.4a). The field-focused shear strength 

bevameter was placed atop the soil within the testing tank (Fig. 4.4b).  

Geotechnical shear strength testing was conducted on both soils for comparison with 

bevameter laboratory measurements. Direct shear testing (ASTM D 3080/D 3080M-11) was 

conducted at 25% of saturation and at a fully saturated state. Direct shear testing was conducted at 

normal stresses increments of 17.6 kPa, 33.4 kPa, and 49.2 kPa. Table 4.5 summarizes the 

volumetric and gravimetric water contents for the Filter Sand at the target density and level of 

saturation. Additionally, consolidated-undrained (CU) triaxial testing was conducted (ASTM D 

4767-95) at a confining stress of 41.4 kPa. Each test was prepared to the same target density used 

in bevameter testing. 

The bevameter shear plate has an outer diameter of 15 cm and an inner diameter of 10 cm 

(Fig. 4.2c, 4.2d). The plate contains 12 grousers at a depth of 1.6 cm (Fig. 4.2c, 4.2d). For 

laboratory testing of the field-focused shear strength bevameter, the three legs were set on the soil 

surface and were adjusted to align the bottom of the shear plate with the soil surface. The legs were 

fixed to the soil surface using stakes (8 mm diameter, 248 mm length). Three shear tests must be 
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conducted at different normal stresses for each set of shear strength parameters. The first normal 

load increment applied by the field-focused shear strength bevameter corresponds to the weight of 

the shear plate, shaft, torque sensor, and moment arm and results in a normal stress of 19.2 kPa 

based on the dimensions of the shear plate. The second load increment is applied by adding a plate 

weight with a mass of 20.4 kg, resulting in a normal stress of 38.9 kPa. Another identical plate is 

added for the final load increment, corresponding to a normal stress of 58.7 kPa. For each normal 

load, the user shears the soil by pushing horizontally on the moment arm to induce rotation at a 

constant rate of 1 rpm. Torque sensor data are recorded on a laptop computer and processed to 

produce plots of shear stress (τ ) versus angular displacement (δ ) for each normal stress (σ ). An 

example plot is shown in Fig. 4.5a. For each plot, shear stress at failure 
f

τ  is determined at 60 

degrees of angular displacement. As shown in Fig. 4.5a, 60 degrees is the approximate angular 

displacement at which the soil transitions from elastic to plastic behavior (i.e. the plot of 
f

τ  vs. δ

changes slope). Finally, 
f

τ  is plotted versus σ  and a linear function is fit to the data using linear 

least squares regression (Fig. 4.5b). Friction angle and cohesion are determined from the slope and 

intercept of the linear fit, respectively. An equation from Reece (1964) is used to consider the 

effects of grouser depth ( h ) on measured cohesive strength: 
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 (4.3) 

To ensure repeatability of measurements, a set of nine measurements was conducted at 

each normal stress on the Filter Sand at 25%S = . These tests were used to ensure that repeated 

measurements with the field-focused shear strength bevameter on the same soil produce similar 

results. Shear strength parameters were fit from the nine replicate measurements to ensure 

repeatability as well as for comparison with geotechnical strength data. Three replicate 
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measurements were conducted at each normal stress in the saturated state for comparison with 

geotechnical data. For the saturated case, three sets of measurements were conducted. Note that in 

the unsaturated state ( 25%S = ), measured cohesion is moisture-variable cohesion ( cθ ), 

combining capillary and effective cohesion. In the saturated state, measured cohesion is equal to 

effective cohesion ( 'c ). 

4.5 Results and Discussion 

Figure 4.6 summarizes the repeatability investigation conducted on the Filter Sand at 

25%S = . The nine curves of shear stress versus angular displacement corresponding to each 

normal stress increment are shown in Fig. 4.6a. The curves for each normal stress display general 

agreement, as similar shear stresses are measured in each set of tests. Shear stress at failure ranges 

from 13.7 kPa to 16.8 kPa for the first normal load increment (19.1 kPa), 21.2 kPa to 26.8 kPa for 

the second normal load increment (38.9 kPa), and 28.8 kPa to 34.9 kPa for the third normal load 

increment (58.7 kPa). No outliers or unusual curves exist to indicate that the field-focused shear 

strength bevameter measurements are not repeatable. The linear fits for each of the nine 

measurement iterations are shown in Fig. 4.6b. The linear fits also show acceptable agreement. 

Cohesion ranges from 3.98 kPa to 8.02 kPa with a mean of 5.93 kPa, and friction angle ranges 

from 18.2 degrees to 25.6 degrees with a mean of 22.8 kPa. Bareither et al. (2008) showed that 

direct shear testing on identical sands could yield variability in cohesion up to 40 kPa and up to 18 

degrees in friction angle when conducted using the same procedure at different laboratories. Based 

on this documented variability in geotechnical testing, repeated tests by the field-focused shear 

strength bevameter were deemed to provide acceptable bounds of variability between tests. 

A comparison between bevameter and geotechnical measurements is presented in Table 

4.6. Presented in Table 4.6 are minimum, mean, and maximum shear strength parameters measured 
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in the multiple test replicates. Bevameter-measured friction angle and cohesion are compared to 

companion values measured by direct shear and CU triaxial testing. Note that triaxial testing is 

conducted in a saturated state, so no values are available for direct comparison to the unsaturated 

( 25%S = ) case. Additionally, only one CU triaxial test was completed so the single set of shear 

strength parameters are presented as the mean values. Filter Sand shows agreement between 

friction angle measured using direct shear, CU triaxial, and bevameter methods with mean friction 

angle ranging from 25.6 degrees to 35.2 degrees. As discussed previously, Bareither et al. (2008) 

showed that shear strength parameters of identical sands can vary by as much as 18 degrees 

between direct shear tests conducted using the same procedure at different laboratories. 

Additionally, effective friction angles measured by triaxial and direct shear testing on the same 

soil with identical preparation have been shown to vary by approximately 5 degrees on average, 

with variation in excess of 9 degrees (Superfesky and Williams, 1978; Maccarini, 1993). This 

inherent variation between testing methods indicates that some variation between bevameter shear 

strength parameters and geotechnical loboratory testing shear strength parameters is anticipated. 

Further testing is required to analyze the relationship between friction angle measured using 

traditional geotechnical methods and the field-focused shear strength bevemeter, but the general 

agreement is observed in this study validates the field-focused shear strength bevameter for field 

testing. The lack of direct agreement between bevameter and geotechnical laboratory values is also 

the reason that field-focused methods such as the bevameter, and not geotechnical laboratory 

testing, are used in terramechanics. 

 Filter Sand also show similar cohesion between bevameter and geotechnical measurements 

(Table 4.6). Like friction angle, Bareither et al. (2008) showed that cohesion in sand can vary 

substantially (nearly 40 kPa) depending on individual laboratory testing. Similarly, Maccarini 
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(1993) measured cohesion values varying by up to 20 kPa between direct shear and consolidated 

drained (CD) triaxial testing. The slight variations observed between direct shear, CU triaxial, and 

bevameter testing are interpreted to demonstrate the ability of the field-focused shear strength 

bevameter to measure near-surface soil strengths in the field. Mean moisture-variable cohesion in 

unsaturated Filter Sand ranges from 5.93 kPa to 7.03 kPa and mean effective cohesion in the 

saturated condition ranges from zero to 4.81 kPa. Additionally, cohesion is measured to increase 

with decreasing soil moisture, as is observed in direct shear testing. These measurements capture 

the phenomenon of moisture-variable cohesion, which combines effects of capillary cohesion and 

effective cohesion. The change in measured cohesion from the saturated to unsaturated state is 

small because coarse-grained soils are known to develop low suction stress (Lu et al., 2010) and 

therefore low moisture-variable cohesion. These data illustrate the potential of the field-focused 

shear strength bevameter to measure moisture-variable cohesion. 

4.6 Summary and Conclusion 

An automated laboratory-focused bevameter and a manually powered field-focused shear 

strength bevameter were introduced. Both devices were designed and constructed based on a 

comprehensive review of existing bevameter literature. The automated laboratory bevameter can 

conduct both bevameter tests (pressure-sinkage and shear strength) in a controlled manner and the 

field-focused shear strength bevameter is designed for field shear strength sampling. The field-

focused shear strength bevameter was first tested in the laboratory for repeatability. Nine replicate 

measurements of shear stress versus angular displacement showed general agreement, as did the 

cohesion and friction angle values fit from the corresponding shear stress at failure versus normal 

stress data. Results from the field-focused shear strength bevameter were also compared to 

traditional geotechnical shear strength tests for validation. Friction angle and cohesion values were 
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shown to agree with values measured in direct shear and CU triaxial testing in an unsaturated and 

saturated state. 

 The bevameter devices should be further tested and evaluated in the laboratory. First, the 

laboratory bevameter should be validated in a similar manner to the evaluation of the field-focused 

shear strength bevameter in this study. Repeatability should be examined, and shear testing should 

be compared to geotechnical strength parameters. Pressure-sinkage test results should also be 

compared to traditional geotechnical compressibility measurements. Various testing variables and 

their respective effects on bevameter shear testing should also be examined, including shearing 

rate, grouser depth, applied normal stresses, and number of grousers. The effects of sinkage rate 

and plate diameter on pressure-sinkage results should also be examined. As part of the laboratory 

evaluation of these devices, a comprehensive database of soil strength parameters paired with soil 

texture, Atterberg limits, water retention parameters, and other relevant soil properties should be 

developed. Finally, a field-focused pressure-sinkage bevameter should also be designed, 

constructed, and validated.  
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4.7 Tables and Figures 

 

 

Table 4.1. Pressure-sinkage literature values and CSU bevameter design parameters. Note that the minimum, mean, and maximum 

corresponding to the plate diameter/side length column considers both side length of rectangular plates and diameter of circular plates. 

Either dimension can be used as the “characteristic dimension” in the Bekker-Wong pressure-sinkage equation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data Source Plate Shape 

Plate Diameter/Side 

Length (cm) 

Max 

Applied 

Load (N) 

Cylinder Stroke/ 

Allowable 

Sinkage (cm) 

Penetration Rate 

(cm/s) 

Wills 1964 nr nr 4450 nr 0.151 

Liston et al. 1966 Circular 5.08 489 15.2 2.54 

Hegedus and Liston 1966 Rectangular 
2.54 x 11.4, 5.0 x 

22.9 
nr nr nr 

Spanksi 1966 nr nr 2220 15.2 nr 

Dwyer et al. 1974 Circular 20.0, 25.0 14700 nr nr 

Wong 1980 Circular 5.00, 7.50, 10.0 8000 30 nr 

Wong et al. 1984 Circular 5.00, 7.50 600 nr nr 

Apfelbeck et al. 2011 Circular 2.54, 5.08, 7.62 nr nr 
0.048, 0.240, 

0.480 

Apfelbeck et al. 2011 Rectangular 1:1, 1:3, 1:5, 1:7 nr nr 0.48 

Edwards et al. 2017 Circular 7.62, 12.6 500 nr 0.1 

Minimum - 2.54 500 15.2 0.048 

Mean - 9.25 4423 20.1 0.58 

Maximum - 25.0 14700 30.0 2.54 

Lab.-Focused Device 

Parameters 
Circular 5.08, 7.62, 10.2, 15.2 3600 20 Max - 33.3 

nr = not reported      
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Table 4.2. Shear testing literature values and CSU bevameter design parameters 

 

 

 

 

 

 

Data Source 

Outer 

Radius 

(cm) 

Inner 

Radius 

(cm) 

Grouser 

Depth 

(mm) 

Number 

of 

Grousers 

Shearing 

Rate (rpm) 

Max 

Applied 

Normal 

Load (N) 

Max 

Applied 

Torque 

(Nm) 

Wills 1964 nr nr nr nr 1.20 nr 288 

Janosi and Hanamoto 

1961 
8.90 7.00 nr nr 10.0 nr nr 

Liston et al. 1966 9.30 6.40 nr nr nr nr nr 

Dwyer et al. 1974 30.0 20.0 25 25 nr 10000 600 

Wong 1980 34.0 27.0 2.50, 10.0 12, 24 nr 1100 822 

Apfelbeck et al. 2011 15.0 5.00, 10.0 
2.00, 5.00, 

7.50, 10.0 
6, 8, 12 

0.10, 0.20, 

0.30 
30 1.7 

Edwards et al. 2017 34.0 27.0 15.0 24 0.5 500 nr 

Minimum 8.90 6.40 2.50 6 0.10 30 1.7 

Mean 21.9 14.6 9.62 16 2.05 2908 428 

Maximum 34.0 27.0 25.0 25 10.0 10000 822 

Lab.-Focused Device 

Parameters 
15.2 10.2 19 12 Max - 70.9 3600 280 

Field-Focused Device 

Parameters 
15.2 10.2 19 12 Max - 15 3600 200 

nr = not reported        
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Table 4.3. Mechanical and electrical laboratory-focused bevameter components with comparison 

to target parameters 

Device 

Bevameter 

Component Function Capacity 

Desired 

Capacity 

 

 

 

 

 

 

 

Laboratory-

focused 

bevameter 

Parker 

ETH032M05 

Linear Actuator 

Vertical force 

application 
3600 N 3600 N 

Stroke 20 cm 20 cm 

Parker BE343J 

Electric Motor 

Torque 

application 
12.05 Nm 280 Nm 

Carson Eliminator 

70:1 Planetary 

Gearbox 

Increase torque of 

motor by a factor 

70 

Increases 

maximum motor 

output to 844 

Nm 

280 Nm 

Interface 2816 2-

axis Torsion Load 

Cell 

Vertical force 

measurement 
22240 N 3600 N 

Torque 

measurement 
339 Nm 280 Nm 

Omega LDI-128 

LVIT 

Vertical 

displacement 

measurement 

25 cm 20 cm 

Field-focused 

shear 

strength 

bevameter 

Interface TS12 

Shaft Style 

Reaction Torque 

Transducer 

Torque 

measurement 
200 Nm 200 Nm 
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Table 4.4. Laboratory soil properties 

Soil Property ASTM Method Filter Sand 

USCS Classification D 2487 – 17 SM 

USDA Classification N/A Sand 

Liquid Limit D 4318 – 17e1 N/A 

Plastic Limit D 4318 – 17e1 N/A 

Specific Gravity D 854 – 14 2.73 

Max. dry unit weight (kN/m3) D 689 – 12e2 16.3 

Target dry unit weight (kN/m3) N/A 13.8 

N/A = Not Applicable   

 

 

 

 

 

 

 

 

 

Table 4.5. Target volumetric water content (θ ) and gravimetric water content ( w ) for Filter 

Sand shear strength testing at corresponding values of saturation ( S ) 

 

  

 

 

 

 

25%S =  100%S =  

θ  w  θ  w  

12% 8.6% 48% 34% 



96 

Table 4.6 Bevameter and geotechnical shear strength comparison for Filter Sand 

 25%S =  100%S =  

c (kPa) φ  (°) c (kPa) φ  (°) 

 Min. Mean Max. Min. Mean Max. Min. Mean Max. Min. Mean Max. 

Direct Shear 5.96 7.03 8.14 30.5 31.8 33.6 1.84 2.61 3.38 34.9 35.2 35.6 

CU Triaxial N/A N/A 0 N/A N/A 27.1 N/A 

Bevameter 3.98 5.93 8.02 18.2 22.8 25.6 3.80 4.81 6.19 21.8 26.5 28.9 

N/A = Not Applicable    
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Fig. 4.1. Bevameter operational schematic including (a) profile view of pressure-sinkage test 

procedure, (b) profile view of shear strength test procedure 
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Fig. 4.2. Laboratory bevameter device and testing plates including (a) laboratory bevameter 

device (b) pressure sinkage plates, (c) shear annulus side view, (d) shear annulus bottom with 

grousers 
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Fig. 4.3. Field-focused shear strength bevameter with laptop and data acquisition (DAQ) 

components 
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Fig. 4.4. Bevameter laboratory testing setup including (a) laboratory-focused bevameter elevated 

above the testing tank to align testing plate with soil surface, and (b) field-focused shear strength 

bevameter shear device placed atop soil surface 
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Fig. 4.5. Example bevameter shear data for (a) shear stress versus angular displacement at three 

normal stresses, and (b) shear stress at failure versus applied normal stress with linear fit (Mohr-

Coulomb failure envelope) 
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Fig. 4.6. Field-focused shear strength bevameter repeatability results. Plots of (a) shear stress 

versus angular displacement and (b) shear stress at failure versus normal stress are shown for 

nine replicate measurements on Filter Sand at 25%S = . Linear Mohr-Coulomb fits are shown in 

(b). 
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APPENDIX 

 

 

 

 This appendix contains AutoCAD design drawings prepared for custom-machined 

components for the laboratory-focused bevameter. All items were constructed by a local machinist 

in Fort Collins, CO, USA. The items are presented from bottom to top of bevameter, starting with 

the shear plate components and pressure-sinkage plates and ending with the top guide plate which 

supports shafts used to ensure linearity in vertical motion.  
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Fig A.1. Shear ring bottom component 
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Fig. A.2. Shear ring cylinder component 
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Fig A.3. Shear ring top disk component
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Fig. A.4. Sinkage plate 1 
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Fig. A.5. Sinkage plate 2 
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Fig. A.6. Sinkage plate 3 
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Fig. A.7. Sinkage plate 4 
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Fig. A.8. 2-Axis torsional load cell bottom mount 
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Fig. A.9. 2-axis torsional load cell top mount 
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Fig. A.10. Bottom motor mounting plate 
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Fig. A.11. Top motor mounting plate 
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Fig. A.12. Bottom actuator mounting plate 



133 

 

Fig. A.13. Top actuator mounting plate
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Fig. A.14. Top guide plate 
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