# Linking Pacific Storms to North American Heat Waves

Andrea Jenney, David. A Randall



# Background

Eastward-propagating tropical Indian Ocean and West Pacific storm system well-understood to influence global weather in the *winter*.

Heat waves are #1 cause of weatherrelated deaths in the US, but remain poorly-predicted, especially at long leadtimes

Question: Is there a link between the *summertime* version of this storm system and US heat waves?



## PURPOSE

- Increase predictability of deadly heat waves
- Improve understanding of summer links between tropical and extratropical weather

## Methods

- 1) Define heat waves in a way significant to public health
- 2) Determine historical anomalous heat wave probability following storm events.



Machine learning algorithm groups US weather station into regions based on extreme temperature similarity





### Results



#### FIGURE KEY

- Vertical axis (#1-8) represents storm position in cycle
  → 1 = over Indian Ocean; 8 = over West Pacific
- Horizontal axis numbers describe how many days into the future heat wave activity is being composited over
- Colors indicate increased (orange) or decreased (blue) frequency of heat waves
- Gray diamonds indicate significance at 95% confidence using block bootstrap test

#### SIGNIFICANCE

There is significant anomalous heat wave activity occurring following a storm propagation event (stripes of the same color from upper left to lower right) for some US regions (e.g., Pacific cluster of weather stations between days 40 to 0).

#### HOW IT WORKS

- Jet stream acts as 'waveguide'; planetary waves can not propagate through westward winds
- Composites (figure above) for storms only when average wind speed in green box > 7 m/s



Red (blue): Winds blow eastward (westward)

## Conclusion

- For some regions of the US, the persistent storm system in the Indian Ocean and West Pacific seems to influence heat wave activity.
- This signal is stronger for certain conditions of the jet stream (jet "entrance" shifted further south)

## **Impact**

- Findings suggest strong potential for use in seasonal to subseasonal heat wave forecasting
- Save human lives and protect property
- Test climate models

# **Future Work**

- Use simplified global atmospheric circulation model to verify dynamical mechanism
- Develop statistical model using combination of storm system and jet stream information and test heat wave forecast skill