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ABSTRACT OF DISSERTATION 

IMMISCIBLE MULTIPHASE FLOW IN GROUND WATER HYDROLOGY: 
A COMPUTER ANALYSIS OF THE WELL FLOW PROBLEM 

A mathematical analogue of iimlliscible multiphase flow in porous 

media is derived considering three compressible fluids -- two liquids 

and one gas. Isothermal conditions are assumed so that fluid properties 

such as compressibility, density, viscosity, and solubility of gas in 

the liquid are functions of fluid pressure only. 

A well flow computer simulator is developed by discretizing the 

mathematical analo~ue with fully implicit finite differences. A Newton 

iteration scheme is utilized to solve the system of non-linear dif-

ference equations. 

The problem solved in this study is that of free surface gravity 

well flow, including the effect of partial penetration. A theoretically 

accurate solution is obtained concluding that unconfined well flow is 

a multiphase flow phenomenon affecting aquifer response. The importance 

of capillarity, of air dissolved in water, or water compressibility, as 

well as the effect of the multiphase flow approach upon the shape of 

the free surface are discussed. Practically, it is concluded that 

confined well flow analyses do not apply to free surface gravity well 

flow problems. 
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1. INTRODUCTION 

1.1 Problem Statement 

When liquids or gases filter into or through soils, other fluids 

are displaced or adsorbed. When the fluids are separated by sharp 

interfaces, the phenomenon is called immiscible multiphase flow. In 

this study, only immiscible fluids are considered; this phenomenon 

will simply be called multiphase flow. 

The general multiphase flow system of this study consists of a 

ground water reservoir with air overlaying fresh water, the fresh water 

in its turn overlaying brine, or of a petroleum reservoir with gas 

overlaying oil, the oil in its turn overlaying water or brine. The 

gaseous phase on top will never be in contact with the lowest liquid 

phase, such that the middle phase, oil or fresh water, will be the 

dependent phase. A pumped well will produce the dependent phase, 

oil or fresh water. In the petroleum technology, this is a typical 

coning problem where gas and water are coning into the oil phase 

under the effect of pumping, usually a confined system. In ground 

water hydrology, generally it can be a free surface gravity well flow 

problem, where air and salt water are coning into the pumped fresh 

water phase; more simply, when the air phase is missing, it can be a 

fresh water-salt water confined coning problem; when the salt water 

phase is missing, it can be an unconfined free surface gravity well flow 

problem. It is this last problem which is of interest in this study. 

To present, the problem of multiphase unconfined free surface 

gravity well flow is unsolved. Mathematical co~plexity is the 

obstacle. The multiphase flow process is represented by a s ystem 
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of non-linear partial differential equations, one for each phase, 

resulting from a combination of the continuity principle with Darcy's 

law. Avoiding the mathematical complexity of multiphase flow, a 

non-linear unconfined one phase flow equation can be obtained, assuming 

that the flow is horizontal and that all storage comes from the 

innnediate drawdown at the free surface. To date, even this relatively 

simple equation is not known to have an analytical solution, so that 

solutions of a linear confined horizontal flow equation were extended 

to the unconfined flow case. 

The only hope for solving the multiphase flow system is by 

numerical techniques. In the past, the numerical solution of the 

multiphase flow equation in radial flow coordinates was a very dif-

ficult and uneconomical problem, with computer time often exceeding 

real flow time. Therefore, very little numerical work, and only under 

confined flow conditions, has been done in radial coordinates. The 

main problem was computational instability near the well which resulted 

from high flow velocities in this region, and at the same time from the 

explicit evaluation (at the old time level) of coefficients in an 

implicit (at the new time level) difference scheme. In multiphase 

flow, these coefficients consist of highly non-linear saturation 

dependent functions. The completely implicit treatment of the finite 

difference equations is a way to avoid this computational instability 

but results in the simultaneous solution of a svstem of non-linear 

equations -- a difficult problem in itself. It is the fully implicit 

scheme which will be explored in the numerical approach of this study. 

The study of multiphase free surface well flow is important in 

the light of aquifer test analysis. It appears from the literature 
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that the practice of analyzing unconfined aquifer data with confined 

flow analytical solutions to obtain aquifer characteristics is highly 

questionable. It is the author's belief that fully saturated confined 

and free surface well flow are two totally different flow phenomena. 

Under some circumstances, especially in finer materials such as silt 

and clay aquifers, capillarity becomes important. A considerable 

portion of the unconfined flow phenomenon may take place in the cone 

of depression. This may affect the aquifer response to drainage or 

pumping. Also, when a well is pumped, the pressure declines around 

the well bore. Air dissolved in the water may evolve from solution 

and occupy space, decreasing the effective permeability to water. At 

first, the liberated air exists as small isolated bubbles, but may 

become continuous when a critical air saturation is attained. At this 

point, air would start to flow. If the well is pumped at a constant 

pressure, its discharge will decline. 

It is concluded that the free surface well flow problem is 

a multiphase flow phenomenon and should be treated accordingly. In 

the light of an ever increasing fresh water demand, the proper evalua-

tion of unconfined aquifer characteristics is of utmost importance. 

It is hoped that with this study a contribution is made toward better 

management of the total water resource. 

1.2 Objectives 

This dissertation is concerned with the question whether unconfined 

well flow is a multiphase flow phenomenon affecting aquifer response. 

An answer is pursued by: 
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(1) Development of a two-dimensional three-phase mathematical 

simulator of the well flow problem, by approximating the 

fundamental flow equations with finite differences. 

(2) Develop11£nt of a completely implicit difference analogue 

for solving the flow equations, attempting to make multiphase 

radial well flow models economically feasible. 

(3) Evaluation of the multiphase flow approach by comparing 

solutions obtained in this study with previous analytical 

approaches. 
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2. HISTORY OF MULTIPHASE FLOW 

2.1 Multiphase Flow and Ground Water Hydrology 

Multiphase flow in porous media is not a new concept. Petroleum 

engineers have been concerned with the simultaneous flow of liquids 

and gases for several decades; to date, through laboratory studies and 

mathematical simulation, three-dimensional three-phase flow problems 

are fairly well understood. 

Soil physicists and drainage and irrigation engineers, concerned 

with the infiltration and the distribution of water in the upper soil 

profile, realized as early as 1907 (Buckingham, 14) that in unsaturated 

soils, water will flow from points of higher head to points of lower 

head, causing differences in moisture content. To date, all analytical, 

numerical, and laboratory work in this field is still centered around 

the thesis of Richards, published in 1931 (47). He assumed that no 

flow occurs in the air phase, in other words, no pressure gradients, 

and that the movement of the water may be defined without reference to 

the other fluids (air) contained in the pores. 

As opposed to the abundant literature on multiphase flow in the 

petroleum industry, and on the Richards approach in the field of 

irrigation and drainage, literature on this subject in ground water 

hydrology is completely lacking . To date, all problems in ground water 

hydrology have been treated solely from a one phase flow point of view. 

In other words, the porous medium is always fully saturated with water 

and the flow or displacement of air is totally disregarded. It was 

realized, however, that the free surface flow problem is not a phenom-

enon in which water is instantaneously released from storage. This 
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assumption was used in all analytical studies of confined flow and was 

applied to unconfined flow problems. 

Physical aspects of multiphase flow such as capillarity, the 

extension of Darcy's law to unsaturated porous media, and the concept 

of relative permeability are beyond the scope of this study. They were 

previously discussed by i.a. Muskat (43), Scheidegger (49), Childs 

(15), Morel-Seytoux (42), Corey (18), and Bear et al. (1). 

2.2 Radial Multiphase Flow Simulation 

For extensive treatments of multiphase reservoir simulation the 

reader is referred to i.a. Breitenbach et al. (9, 10, 11), Dougherty 

and Mitchell (21), Earlougher (24), Fagin and Stewart (25), and Odeh 

(45). Because of numerical difficulties, very little simulation has 

been done in radial coordinate systems such as well flow problems and 

coning studies. The reasons for these numerical difficulties stem 

from the very nature of the radial coordinate system. Since detailed 

pressure and saturation distributions are required around the well 

bore, grid blocks near the well bore should be small, resulting in 

anisotropy in the geometry of the grid block configuration. Moreover, 

steep pressure gradients leading to high flow velocities do occur in 

the vicinity of the well bore. Also, due to the highly non-linear 

saturation dependent functions of the multiphase flow system, severe 

computational instability in the form of saturation oscillations in 

the grid blocks near the well bore often occurs. To retain stability, 

time steps are to be reduced considerably, often to the point where 

computer time exceeds real flow time. Hence, these studies became 

economically unfeasible. It is evidenced by the literature that 
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instability may result when the highly non-linear saturation dependent 

coefficients of the· finite difference equations are evaluated at the 

beginning of a time step and held constant throughout that time step. 

This technique is sometimes called "implicit-explicit" or also "mixed". 

Welge and Weber (71) studied single well coning behavior with 

two-phase, two-dimensional, incompressible fluid flow equations, solved 

by the alternating direction implicit procedure. Several examples of 

water and gas coning calculations, including studies in both laboratory 

models and producing wells, are presented. They experienced the 

above described oscillation near the well bore, which they described 

as a drastic fluctuation yielding meaningless results. 

Blair and Weinaug (3) demonstrated the oscillatory behavior in a 

coning problem by comparing a fully implicit scheme with an implicit-

explicit scheme. In the fully implicit scheme, all quantities in the 

distance difference are evaluated at the new time level. For the same 

size time step, the fully implicit scheme gave a stable solution, 

whereas the mixed technique wildly fluctuated. By using the fully 

implicit scheme, they experienced an increase in computer time of two-

to-threefold as compared to the mixed techniques. The following 

advantages were mentioned: (1) The implicit difference equation is 

stable in cases where the mixed equation is not. (2) The implicit 

equation has lower time truncation than the mixed equation, permitting 

longer time steps to be taken. 

Spivak and Coats (55) state that in coning problems the numerical 

instability is due to the explicit handling of saturation dependent 

transmissibilities (transmissibility in their study is defined by the 

coefficients of the discretized flow equations) and production terms 
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in the finite difference solution of the flow equations. Their examples 

show that the implicit handling of production terms alone can result in 

a fivefold increase in permissible time step for a coning simulation with 

virtually no increase in computing time per time step. Updating the 

production terms without updating transmissibilities is questionable, 

although their concern of eliminating the instability encountered in 

coning simulation without introducing the complexity of the fully implicit 

scheme is well founded. 

From the above studies on modeling of coning problems it appears 

that the fully implicit finite difference scheme offers a great chal-

lenge for solving non-linear muliphase well flow problems. Unfortu-

nately, the fully implicit scheme results in a set of non-linear 

difference equations to be solved simultaneously. 

Newton's method, also called the Newton iteiation process or 

Newton linearization, is mathematically the most preferable of the 

several known methods for the solution of systems of non-linear 

equations because of its quadratic convergence (64). Practically, 

however, a very important limitation on Newton's method and, in fact, 

on all of the so-called functional iteration methods, is that it does 

not generally converge to a solution from an arbitrary starting point. 

Thus Newton's method may fail to converge if the initial estimate is 

not sufficiently close to the root. Its theory and extension to 

n-dimensional vector spaces appears in a number of standard textbooks 

on functional analysis or numerical analysis (27, 28, 35, Appendix A). 

Blair and Weinaug (3) demonstrated the applicability of Newton's 

method in coning problems. They concluded that the Newton method is 

entirely practical for multiphase flow problems. In their approach the 
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flow equations were solved simultaneously. In this study, however, it is 

thought that advantage can be taken of the quasi-linear nature of the 

pressure dependent functions. This can be done by reducing the three 

flow equations into a single equation in terms of pressure of one of the 

phases, and three saturation equations. The newton linearization 

process is first performed on the pressure equation which is then solved 

for pressures. Subsequently, the saturation equations are Newton-

linearized and iterated upon, until saturations are compatible with the 

first pressure iterate. This process is called a 'Newtonian iterate' 

and is repeated until a convergence criterion is met. It is felt that 

a more efficient Newtonian iteration scheme can be obtained by using 

this separation technique. One Newtonian iterate on pressure should 

often lead sufficiently close to the final answer. A similar separation 

technique of the flow equations is very popular in reservoir simulation. 

The pressure equation is obtained in a manner which eliminates all time 

derivatives, or differences, of saturations. The resulting pressure 

equation is then solved implicity, followed by an explicit updating of 

saturation; this separation principle was proposed independently by 

Stone et al. (61) and by Sheldon et al. (51) in 1960. 

It is apparent from this short literature survey that the numerical 

solution of the radial nultiphase flow equations may have become 

economically feasible and that existing methods can possibly be 

improved upon. 
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3. MATHEMATICAL ANALOGUE OF MULTIPHASE FLOW 

Mathematically, multiphase f low can be very conveniently described 

in terms of equations. The principle of continuity (mass balance) is 

combined with Darcy's law and with thermodynamic relationships which 

describe the pressure-volume-temperature behavior. For each of the 

different phases, a set of non-linear partial differential equations of 

the parabolic type will result, commonly called the fundamental flow 

equations. Complete derivations of these equations can for example 

be found in Muskat (43) and Breitenbach et al. (10). 

The following derivation is valid for isothermal three-phase, two-

dimensional flow. The i sothermal condition is assumed for simplicity. 

The derivation is done i n a general way such that either rectangular 

(vertical cross sections) or radial coordinates apply, depending upon 

the definition of cross-sectional area of flow in Darcy's law, and pore 

volume. The two dimensions considered in this study are the horizontal 

and the vertical. Radial symmetry is assumed. The three phases con-

sidered are two liquids and one gas. For convenience, the two liquids 

are given specific names, oil and water, with the understanding 

that they could have been any two other immiscible liquids. The gas 

phase will be in contact only with one of the liquids, oil in this case. 

Consequently, gas dissolves in the oil, but not in the water and also, 

only the gas-oil and oil-water capillary pressure relationships are to 

be considered. The two-phase air-water abstraction, as will be used 

in this study, is easily deduced from this general three-phase flow 

case, i.e., all characteristics and assumptions of the oil and gas 



I 
I 
I 
I 
I 
I 
I 
I 

11 

phases can be simply translated upon the air-water system, disregarding 

the third phase (water) in the general three-phase model. 

Because of the isothermal assumption, the fluid properties such as 

viscosity, density and gas-liquid solubility will only depend upon 

pressure. 

3.1 The Mass Balance Equations 

The mass balance in its simplest form for the differential element 

of Figure 1 states that for any of the phases the mass flow out of the 

(pq)x -o 
0 

0 

I (x , z ) 
0 0 

_,,)- - -

l.a 

f:,z 

I 
I 

f:,z 

I 
I 

--

Lb 

(pq) r +E 
0 

f. 

Figure 1. Differential element for developing the mass balance equations. 
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element subtracted from the mass flow into the elenent is the rate 

change of mass (change in storage), at aquifer conditions, i.e.: 

in which: PA = 

qA 

Vb = 

cf> = 

fluid density 

flow rate at 

a 
at 

at aquifer conditions 

aquifer conditions 3 (FT /day) 

bulk volume of differential element 

porosity 

S fluid saturation. 

(1) 

Proceeding now for one of the phases, say oil, it can be also said 

that the net mass flow or the left hand side of equation 1 is the mass 

rate of depletion (l1ROD) of the differential element: 

(MROD) = (p q ) o oA oA x +£ 

in which: 

0 

x = center of mass of differential element 
0 

= flow rate sink(+) or source (-), connnonly called 
the production term 

subscript o = oil phase 

o = distance of left face of element to center of mass 

( 2) 

£=distance of right face of element to center of mass. 

Considering the mass flow function as a continuously differentiable 

function in time and space, it can be expanded about the center of 

mass (x) of the differential element by Taylor series: 
0 

and also: 

(3) 
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+ .L ( ) ax poA qoA X 
0 

(4) 

In the limit, when 6x goes to zero, the second order terms and 

higher of equations 3 and 4 can be neglected. This argument holds only 

when deriving a differential equation. When deriving finite differences, 

however, by Taylor series expansion, second and higher order terms 

cancel because of the linearity principle between nodes in the discre-

tization process. After subtracting equation 3 from equation 4, and 

substituting the result into equation 2, the following expression for 

MROD is obtained (note: £ + o = 6x) 

(HROD) 
0 

a 
(p q A) 6x ± p

0 
q

0
p ox oA O.ti. x 

0 

(5) 

The complete mass balance equation then in two dimensions for oil 

flow under aquifer conditions becomes 

(6) 

It is practical to translate equation 6 to surface conditions or 

atmospheric conditions. For this purpose it will suffice to define a 

factor B, commonly called formation volume factor (F.V.F.) in the 

petroleum technology; it is a ratio which relates aquifer volumes to 

surface volumes, hence, a fluid compressibility factor. If it is fur-

ther assumed that the bulk volume, Vb , is invariable, that the 

porosity is constant in time, and that during a time step the surface 

(atmospheric) pressure is invariant in space and time, the mass balance 

equation finally becomes: 
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(7) 

The assumption of constant porosity in time can create serious problems 

in subsiding unconfined aquifers. The· problem of subsidence is not 

considered in this study. 

Analogously, the mass balance equation for water would be: 

a (qBoAol t,.x + az tiz (8) 

To obtain the gas balance equation, two separate mass flows are t o 

be considered, (1) mass f low of free gas, and (2) mass flow of gas in 

solution in the oil. With the definition of Rs , the solution gas 

ratio, to relate a standard volume of gas dissolved in a standard 

volume of liquid (oil) at aquifer conditions, the gas balance equation 

can be conveniently written as: 

l_ (qgA + 
ax B g 

in which 

gas). 

Rs 
B 

0 

a !ix+ -az (

qgA + Rs 
B B g 0 

tiz = 

(9) 

is the total gas production term (free gas plus solution 

3.2 The Fundamental Flow Equations 

To obtain the fundamental flow equations from the mass balance 

equations 7, 8 and 9, it suffices to accept the validity of Darcy's law 

under multiphase flow conditions, in which for each of the phases 

permeability is now a function of saturation. Rigorous discussions of 

the validity of this postulate were made previously in the literature 
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(15, 43, 44, 49). The flow potential involves a pressure force, a 

capillary pressure force and a gravitational force. Capillary pressure 

conveniently relates pressures of the diff erent phases. This relation-

ship is: 

in which capillary pressure 

Pnw = pressure in the nonwetting phase 

pressure in the wetting phase. 

(10) 

Discussions of the phenomenon of capillarity, its dependence on satura-

tion and its importance in multiphase flow are numerous (15, 18, 42, 43) . 

Unfortunately, capillary pressure is not a single valued function of 

saturation but is affected by hysteresis (1, 15, 42). In this study of 

gravity drainage of an aquifer by a pumped well, a single valued 

capillary pressure versus saturation relationship obtained under 

draining conditions applies. 

With Darcy's law, the capillary pressure relation, and using the 

oil pressure as the reference pressure, the volumetric flux terms "q" 

become: 

A k kro ( Vpo +poAgVh) 
µo 

=_A k krg 
µ 

g 

~A= _ A k krw 
µw 

( Vp 
0 

(Vp 
0 

(11) 

(12) 

(13) 
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in which: po = oil pressure 

pcog capillary pressure between the oil and gas phases 

PCOW = capillary pressure between the water and oil phases 

p = fluid density 

h elevation above a reference plane 

k = perneability (intrinsic) 

kr = relative permeability (fraction of k) 

A cross-sectional area of flow 

µ f luid viscosity 

g acceleration of gravity 

V gradient 

Subscript A= aquifer conditions. 

Substituting equations 11, 12 and 13 into equations 7, 8, and 9, 

the fundamental flow equations result 

a ( k kro A ~ <I> + ( k kro A ax B 6x az B µ z 0 µO X O 0 

V qi _L 
b at 

(14) 

(15) 

a (k krg A 
ax Bg µg X 

a <I> k kro + _i 
dZ 

<l <P <l<P \ ____g_ k kro ,, __ g + Rs ax A 
B µ X 

0 0 

+ B 
0 

~'.s S ) 0 

+ Rs---'--- A
2 

~z ~z dZ B µ 0 
0 0 

(16) 
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(17) 

(1 8) 

(1 9) 

Equations 14, 15, and 16 are non-linear parabolic partial differential 

equations, each havinh the two dependent variables, pressure and satura-

tion. They are linked bv the fo llowing saturation relationship: 

s + s + s 1.0 (20) 
0 p, W 

Together with equation 20, they constitute the mathematical analogue of 

three-phase flow in porous media. To date, numerical methods are the 

only means for solving them. 

To summarize the above deriv~tion the important assumptions and 

conditions under which the equations hold Rre listed below. Their 

significance is given in the previous text. 

Two dimensional flow ( x ,z or r,z directions with radial symmetry) 

Three-phase f low (oil, gas, water): phases immiscible 

Isothermal flow (fluid properties only function of pressure ) 

Darcy's law app lies under multiphase flow conditions 

The ~as !Jhase i s in contact wi th the oil phase only, and t herefore 
on l y disso lve s in oil 

Gas dis so lved in t he oil retains its molecular identity (no 
chemical bounding) 

Surface conditions are invariant in space and time 

Pore volume is incompressible. 
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4. CO~fPUTER SHIDLATION OF ~IDLTIPHASE FLOiJ 

The construction of the computer simulator requires the flow region 

(vertical cross section) to be superimposed by a discrete grid system. 

Figure 2 shows an isolated grid block (central block) together with its 

neighboring grid blocks, or cells, and (i,j) indexing. 

z i,j-1 

x or r i-1,j i,j i+l,j i 

i,j+l j 

Figure 2. Grid system used for discretization 
of the continuous equations. 

The network of reservoir elements, or the computation grid, conforms 

to the geometry of the actual reservoir system. The fundamental flow 

equations 14, 15 and 16 in discretized form apply to each of the in-

dividual elements; in other words, a mass balance is performed on each 

of the blocks. 

4.1 The Finite Difference Form of the Flow Equations 

The finite differences used to discretize the differentials of 

equations 14, 15 and 16 will be of a fully implicit nature, \Jhich r.i.eans 
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that the flow equations are discretized at the new time level. Using 

centered finite differences, the r-component of the oil equation in the 

grid configuration of Figure 1 becomes 

Ar) i-1/2,j 

4> 

+ /: kro A\ i+l/2,j 
\ o µo 1 

o. 1 . 1- ,J 
t, r 

4> -<I> 
0 i+l,j 0 i,j 

t, r 

The subscript i+l/2,j means that the function (k kro A) is to 8 0µ0 } 

(21) 

be representative for both cells (i,j) and (i+l,j), which is explained 

in section 4.2. 

To conveniently write the rather lengthy finite difference forms 

of the flow equations, the following notations will be defined and 

adhered throughout this dissertation. 

k kro b 
0 A co = 

µo 

k krg b 
--~ A = CG 

µg 

k krw b w 
A cw = µ 

w 

in which 1 
b = B. 

(22) 

The subscripts i-1/2, i+l/2, j-1/2, and j+l/2 will be respectively 

replaced by the letters W, E, N, and S, the idea being the West, 

East, North and South side of a cell. A difference operator is defined 
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as follows 

l'ICO M>
0 
= COW ( ) - / ) - + CQ -~ 

o. l . o. . NI o .. l o .. 
1- ,J 1,J \ 1,J- 1,J 

+ cos (~ - ) o. ·+1 o .. 1,J 1, 

+ co (~ - 0 l E o.+l . o .. l ,J l,J 

(23) 

Note that CO, CG, and CW stem from the contraction of CO, CG, 

and CH with the spatial increment fir or Liz in the denominator of 

the spatial differences of equation 21. 

With the above definitions in mind the fundamental flow equations 

in discretized form become 

(b S ) n] + q 
0 0 0 

V [ (b S ) n+l 
lit g g 

(b S )n + (Rs b S )n+l_ (Rs b S
0

)n] + qg 
g g O O 0 

V [ (b S ) n+l 
lit w w (b S ) n] + q 

w u -w 

(24) 

(25) 

(26) 

The superscripts n and n+l respectively refer to the present 

and new time level. The coefficients CO, CG, and CW are seen to be 

written at the new time level and since they are pressure and saturation 
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dependent, equations 24, 25 and 26 constitute a systeE of non-linear 

equations to be solved simultaneously. 

4.2 The Flow Coefficients of the Discretized Flow Equations 

The flow coefficients CO, CG, and CW of the flow equations 

determine the ability of flow between any two cells, and hence they 

should involve the mediuM and f luid properties of both cells. 

In Figure 3, two cells (cell 1 and 2) in the r-direction of a 

radial coordinate system are considered. 

'-
'-

'\. 
...... \. 

0 ' \ 
/ 1 \. m 2 \ 

L / ' \ 
\ 0 \ l'..z 

i,j \ i ,j+l \ 

k,-- /'ir 
1 

~,<l 1'..r2~ 

Figure 3. Segment of annulus, showing blocks in radial 
coordinate system. 

Let m represent the f ace (vertical) between cell 1 and 2. At 

any point in the r-direction, the rate of flow of any of the phases is 

defined by Darcy' s law: 

q 2n r 6 z (27) 
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Since fluid and medium properties are constant in space within any 

one cell, it is possible to integrate the differential equation 27 from 

the center of cell 1 to its face n to come up with an expression of 

flow between these two points: 

(28) 

Likewise, 

(29) 

and by continuity 

(30) 

From equation 28 and 29 one obtains: 

(31) 

q ·{2 r2 1("i 
t:.r2 j b 2 

2 
<P - <P = (32) 2 m 2n k2 kr2 t z2 
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Adding equation 31 and 32 and rearranging, an expression of the 

f low between two blocks is obtained 

2n(k kr ~z) 1 (k kr ~z) 2 q 

(33) 

If discontinuities in permeabilities are allowed to occur at the 

nodes of the cells, so that permeabilities would change from node to 

node, if the relative permeability is assigned at the cell from which 

the flow emanates (upstream block), and if the pressure dependent 

functions b and µ are averaged over the two blocks, then equation 

33 simplifies to give 

2n(k 
q c kru l~h-2 (34) 

The subscript U stands for upstream and the constant c is a 

conversion factor depending upon the units of p, k and µ. Finally, 

the flow coefficients of the oil phase in an (i,j) configuration in 

the r-direction can be defined as: 

cew = C 

2 n (k~ z). . 1,J 
r .. 

£.n i ,J 
r . 1 . 
1- ,J 

(35) 
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/b \ 2,r (k.t.z)i ,j o ' 
COE = c kroU i u l 

ri+l,j 0 iE 2-n r. 1,j 

Following an analogous procedure the flow coefficients in the z-

direction become 

ki-1,j r~+l/2,j - r~-1/2,jl 
1,J 1,J-

( 

t:i z. . + t:iz. • 1 ) 

k .. 
1,J 

1,J 1,J 
[ 

tiz. . + liz. ·+i) 

4.3 The Solution Process with Newton Linearization 

The Newton linearization is an iterative technique, a general 

(36) 

(37) 

(38) 

discussion of which in n-dimensonal vector spaces is given in Appendix 

A. In this section only the pertinent aspects of the Newton method, as 

they fit into the following solution scheme, will be explained. 

The "residual" approach is taken to solve the system of equations; 

a description of the residual approach is given in Appendix B. The 

main reason for following the residual approach is that the final 

algebra of the equations comes out to be very simple due t o cancellation 

of a number of terms which is characteristic of the :~ew ton technique when 
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applied to the residual system. Moreover, when this process is done with 

a combination of single and double precision, extreme accuracy can be 

obtained when desired. In this study, single precision was utilized 

throughout because of the large mantissa length (60 bits) of the CDC 

6400 computer used in this study. 

The innovation in the proposed technique of this study is the fact 

that the Newton process is applied separately to one pres.sure equation 

and three saturation equations, whereas in earlier work (2) the Newton 

process was applied simultaneously to pressure and saturations of the 

system of equations 24, 25 and 26. By separating the pressure equation 

from the saturation equations advantage is taken of the quasi-linear 

behavior of the pressure dependent functions in the flow coefficients. 

With respect to saturations, however, the problem is highly non-linear. 

Very often, one Newtonian iterate on pressures will lead sufficiently 

close to the new time step values of pressures and hence a more ef-

ficient Newtonian process is attained. 

4.3.1 The pressure equation - The first step in the solution pro-

cess is to combine equations 24, 25 and 26 into one equation with oil 

pressure as the only dependent variable. Saturations are evaluated at 

the present iteration level in obtaining an improved pressure solution 

from this pressure equation. 

Suppose that along the iteration process the k-th estimate of 

equations 24, 25 and 26 is obtained: 

V [(b S )k - (b S )n] - q 
6t O O o O O 

k r 
0 

(39) 
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~CGkbct>k + ~Rs &1+1 M>n+l 
g 0 

V S )k S )n S )k n k 
- - [(b (b + ( Rs b - (Rs b S

0
) ] - qg = r 

M g g g g 0 0 0 0 
'"' 

(40) 

~ct Mk V [ (b S ) k (b S ) n] k ( 41) - qw = r 
w ~t w w w w w 

The terms k r 
0 

k r g , and rk are defined as the res.idual errors. 
w 

Subtracting equation 39 from 24, 40 from 25, and 41 from 26, assuming 

that gravity and capillary pressure terms at the k-th and (n+l)-th 

level are approximately the same, and that the pressure dependent 

functions of the coefficients CO, CG, and CW can be evaluated at 

time level n, the following equations in terms of oil pressure are 

obtained 

~CO~o* ·o (b s l1 = 
0 0 

k r 
0 

6CG 6p* + 6Rs CO 6p* - V [(b S )n+l - (b S )k + (Rs b S )n+l 
o ·o 6t g g g g o o 

6CW 6p* 
0 

in which 

- (Rs b S ) k] 
0 0 

k - - r g 

V [ ( S )n+l 
~t bw w (b s l1 w w 

n+l k p* = p - p 

k r 
\-l 

(42) 

(43) 

(44) 

The pressure dependent functions of the coefficients CO, CG and 

CW are evaluated at time level n, because of their nearly constant 

behavior with respect to pressure throughout a time step. ,\lso, Newton 

linearizing these coefficients is not fruitful because of the nearly 

linear pressure dependent functions involved; moreover, it adds to the 
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complexity of the problem without noticeable improvement. It can be 

shown that if the coefficients were linearized with respect to pressure 

neglecting second order terms, (p*) 2 , the term 6CO 6p~ of equation 42 

would become 6( :~ pk) 6 p~ ; the derivative term between parentheses is 

constant for all practical purposes throughout a time step for nearly 

linear functions. Variations in time of pressure and hence of pressure 

dependent functions can be considerable, and, therefore, the non-

linear pressure dependent terms of the right hand side of equations 42, 

43 and 44 are linearized by the Newton linearization process. For the 

oil equation as an example, the right hand side is approximated as 

follows 

[(b 
0 

S )n+l 
0 

(b 
0 

and if it is temporarily assumed that 

ab 
0 

0 

- (b 
0 

= S* 
0 

small, the expression for the right hand side becomes 

[ (b S ) n+l 
0 0 

(45) 

is negligibly 

(46) 

To distinguish all linearized terms from other difference terms, 

they will be left in partial differential notation, with the understand-

ing that in a finite difference scheme they should be written as 

6b/6p evaluated at k. 

Analogous expressions are obtained for the water and gas phase 

f unc tions. The solution gas terms, however, in the right hand side of 

equation 43 are second order non-linear. The approximation is performed 

as follows 
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[(Rs b S )n+l_(Rs b ~ k . * bk+~ p* Sn+l_( Rs b S )k 
( 

a~s ) ( ab ) 
Rs+ apo po . o apo o o 0 0 0 

(47) 

Neglecting second order terms and again temporarily assuming 

approximately equal to 

[ (Rs b 
0 

,.k 
.) 

0 
(or S*: 0), equation 47 becomes 

0 

ab 
0 

ap 
0 

aRs 
ap p~ 

0 

Incorporating the ideas of equations 46 and 48 into equations 42, 

43 and 44, the following "linear" equations with respect to p* are 

obtained 

V !'.CO L'.p* -
0 l'.t 

ab 
0 

ap 
0 

k r 
0 

(48) 

(49) 

!'.CG L'.p* + !'.Rs CO L'.p* 
0 0 

V [ k -s 
l'.t g ( ab' + sk(R~ abo + bk aRs)] p* = 

ap O ap O ap 0 
0 0 

k - r (50) g 

!'.CW L'.p* - V 
0 l'.t 

ab 
w 

ap 
w 

p* = 
0 

k 
- r w 

To obtain these equations the same assumption regarding capillary 

pressure as ~~de for obtaining equations 42, 43 and 44 was made. 

At this point, it is rather clear that the Newton linearization 

process as applied in this study leads to a much better approximation 

of the time derivative. As a matter of fact, truncation due to large 

time step size is practically annihilated. To make this point clear, 

(51) 
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consider a continuous function of pressure, represented in Figure 4 by 

linear splines from the data tables. 

f(p) 

n p p 
n+ p 

Figure 4. Example of truncation error due to 
time step size. 

The abscissa shows the position of pressures at the present time 

level n, at the new time level n+l, and also at an intermediate level 

somewhere along the iteration process. To represent the time derivative, 
n+l n 

i.e., p - p no longer cords from position n to n+l are L'.t 

taken, shown by the dashed line, but improved value of k is as an p 

obtained by adding the derivative of the function to its present value. 

It is the above consideration which makes the Newton method such 

a powerful tool for highly non-linear equations. 

For convenience, equation 49 is multiplied by Rs 

from equation SO. After having multiplied equation 49 
equation SO by ( ! l -. and equation 51 

b 1,J g 
by(+) .. , 

b 1,J . w 

and subtracted 

by ( ! ) . . , 
ho i,J 

these three 
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equations are added to each other to obtain one linear equation in 

the correction term for oil pressure. 

o* • . 0 

1 1 CG Ap* + t - 1 t.CW t.p* t.CO t.p* + t.Rs. ACG Ap* + k 0 k 0 bk o b o b b o. g .. g .. w. 
1.,j l.,J l.,J 1.,j 

s b' s b 
V 0 0 g g 0 0 o* ( S b' S b') R's+ ;w w -- + + At b b b •• 0. 

i,J 1.,j 0 g g 

=[- k r 
0 

1 
k b g 

1 
b w i,j 

in which the prine denotes a derivative. 

This equation can also be written in a simple way as 

AO p~ . - A_ __ , p~ 1 . - A p~ . 1 - A P~+l . - A p~ ·+1 1.,J -~ 1.- ,J N 1.,J- ·r; 1. ,J S 1.,J 

where 

Rk -(b~)i,j r~-(b~) (rk k k 
) -(~ k = Its r r 

i,j g 0 i,j w 

k 
R •• 1,J 

+y_[(s b~r ( b't + ( SW :: r AO f\,1 + J\1~ + AS + AE + s _[ 
6t o b g b 

0 g 

+(s0 

I k l b Rs 
0 

b I g J 

(:k)i,j 
+ ( L) n k 

COW + ( 1 k) . . '\., = cow (Rs,, Rs .. ) CGW 
bk i,j I'/ 1.,J b i, J 0 g g 

+(:k)i · Ct-.'W 
w ,J 

(52) 

(53) 

(54) 

(55) 

(56) 
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with analogous expressions for A ~-E ' N 
and The residual error 

terms r , r and r are defined by equations 39, 40 and 41. 
0 g W 

In matrix notation, equation 53 becomes 

Ap* = - R (57) 

In a two dimensional problem the A matrix is a sparce five 

diagonal matrix (11). After havinp, solved this system for p* , the 

correction vector, then the new pressures are simply computed from the 

following algorithm 

n+l 
p 

k p + p* 

The above linear system can be solved by any classical matrix 

solver or by iterative processes applicable to parabolic equations. 

Anisotropy, mainly resulting from the grid configuration of this radial 

flow problem makes the alternating direction implicit iterative method 

very unsuitable. 

The method used in the model of this study is a Corrected Line 

Successive Over Relaxation (LSORC). This LSORC was recently developed 

by Watts (69) and was presented at the Annual Meeting of Reservoir 

simulation of the Society of Petroleum Engineers, February 1970, Denver. 

The algorithm of the method as used in this model was developed by Dr. 

R. A. Wattenbarger of Scientific Software Corporation, Denver. The 

LSORC method converges sufficiently fast that the proper choice of a 

relaxation parameter is not too critical. It was shm,m by Watts to be 

particularly suitable for highly anisotropic cases. The power of the 

method lies in the fact that a correction is made to a whole column at 

a time so as to annihilate the total residual of the column which is 
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most efficient when the columns are oriented in the direction of the 

isotropy of the problem. 

Thus, in matrix terminology, the elements of an estimated solution 

vector, on the whole, are brought closer to their correct values. This 

"column correction" must be coupled in some way with an iterative matrix 

inversion method, for which the successive overrelaxation (LSOR) with 

the lines oriented along the correction columns, seems to be the most 

suitable one. 

4.3.2 The saturation equations - After having obtained an improved 

pressure estimate from equation 53, the next step in the solution pro-

cess is to substitute these improved pressures into equations 24, 25 

and 26, and Newton iterate on saturations until compatible with the new 

pressure solution. This is the very non-linear part of the problem and 

usually several iterations are required for the saturation solution to 

converge to the latest pressure level. The Newton linearizations are 

performed on the kr(S) functions in the same manner as described in 

the previous section. Hence, relative permeabilities and also capillary 

pressures follow up the saturations by one iterate. The p (S) 
C 

rela-

tionships are thus not Newton linearized because relative permeability 

and capillary pressure are physically interrelated (18). 

Extracting the kr(S) functions out of the coefficients CO, CG 

and CW, equations 24, 25 and 26 can be rewritten as follows 

V [(S b )n+l 
t.t O 0 

(S 
0 

(58) 
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- (S b )n + (S Rs b )n+l - (S P~ b )n] + a (59) 
0 0 0 ·g g g 0 

V [( b )n+l - (S b )n] + a = "Kt s", w w w v 

where CO' , CG', and CW' are CO CG and CW as defined before, 

except for the relative permeability terms. 

Suppose that the k-th saturation iterate of equations 58, 59 and 

60 is obtained • 

k ti~n+l V r bn+l b:] k ti kro(S ) CO' 
ls~ 

Sn - qo = u 
0 0 M 0 0 0 

k CG' M k k CO' Mn+l V [sk bk Sn bn ti krg(S) + tikro(S) Rs tit g g 0 0 g g g g 

+ Sk (Rs b )n+l Sn (Rs bo)nl - q = Uk 
0 0 0 g g 

ti krw(Sk)CW' Mn+l - y_ { Sk bn+l - Sn 
b:) 

k 
- qw = u w w ti t w w w w 

(60) 

(61) 

(62) 

(63) 

Again, the terms u 
0 

u , and u are the residual errors. Note g w 

that the gas potential ~g is superscripted with a k because its 

capillary pressure term is saturation dependent and hence, also the gas 

pressure. Assuming again that is approximately equal to 

then subtracting the k-th iterate from the (n+l)-th solution, one 
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obtains 

where S* = Sn+l - Sk. 

V [bn+l S* 
M g g 

34 

lT < 

tit 
k S* = - u 

0 0 

+ (Rs b )n+l S*] 
0 0 

k = - u g 

V 
tit 

bn+l S* = 
w w 

k u w 

(64) 

(65) 

(66) 

The kr(Sn+l) functions are approximated by the Newton lineariza-

tion as follows 

hence, 

akr :: as S* 

Incorporating this idea into equations 64, 65 and 66, one obtains 

ti la a~:g ) k S* CG' M>n+l + ti( a krot S* Rs g g as o 
0 

~[bn+l 
tit g S* + (Rs 

CO' ti<I>n+l 
0 

b. )n+l 
0 

S*] 
0 

= 

k u 
0 

- u 

(67) 

k 
0-

(68) ,-
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bn+l S* 
w w 

k - u w 
(69) 

The residual errors u , u and u are defined bv equations 61, 
0 g W 

62 and 63. 

Equations 67, 68 and 69 are linear equations in S* , which is the 

correction to be added to Sk to obtain improved values of saturations. 

The solution process proceeds then in reevaluating relative permeabili-

ties and capillary pressures to obtain improved coefficients of the 

flow equations from which a still better estimate of saturations results, 

until convergence. 

As mentioned in the section on flow coefficients to determine the 

flow between two blocks, the relative permeability is evaluated at the 

block from which the fluid emanates (upstream block). In a fully 

implicit scheme this is justifiable since the flow direction does no 

longer rely on data from the beginning of a time step, as is the case 

in an implicit-explicit scheme, with possibility of a reversed flow 

picture at the end of a time step. Moreover, in a fully implicit 

scheme, the upstream approach for flow towards a well makes it possible 

to solve for saturations simultaneously, a column at a time, since 

saturations in a particular column will only depend upon the saturations 

upstream. Hence, if the columns are oriented parallel to the well bore 

and starting the solution process with the exterior column, a tridia-

gonal matrix per column and per phase will result. These tridiagonal 

matrices are easily solved by Gauss elimination using the Thomas 

Algorithm. 
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From equations 67, 68 and 69, the following algorithms are 

obtained. 

D00 S* DON S* - DO S* = RO. 
o. OU s OU 1,j 
1,j 

DG0 S* -D~ S* - DG S* = RG. 
g .. s Ru 1,j 
1,J 

DW0 S* DW S* DWS S* = R\1. 
w. N WU WU 1,j 
1,j 

The structure of the coefficients DO, DG and DW will depend 

upon the flow picture. Figure S demonstrates the two extreme flow 

pictures possible for a block. The East (E) and West (W) flows will 

always be as shown in Figure S for flows towards a well located west-

ward. 

N ON 

i7 

_w 
i,j 

_., E 
"" 

_., w i,j 
E 

...... ...... 

l~ 

s OS 

Sa Sb 

Figure 5. Possible flow pictures at any block £or 
defining the coefficients of equations 
70 , 71 , and 72 . 

(70) 

(71) 

(72) 

However, the North (N) and South (S) flows will be either all into the 

block (Figure Sa) or all out of the block (Fi8ure Sb) or any combination 

of into or out of. The decision on the dir~ction of flow is based on 
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the r.iagnitude of the potentials. For example, if the flow is toward 

the block (Figure Sa), then the North and South blocks are both upstream 

ones and the North and South coefficients are defined as follows 

DON = co' ( •: 1 . l _ •: 1 ·) (a,~:r -N 1,J- 1,J 1,J 

(73) 

DOS CO' (•n+l •n+l l ('-t) s g. ·+1 g .. 1,J 1,J 
i,j 

(74) 

with analogous expressions for gas and water, if the directions are the 

same. 

If the flow is all out of the blocks (Figure Sb), then the block 

(i,j) itself becomes an upstream block with respect to both North and 

South flows, and the magnitudes of the North and South coefficients are 

added into the central (main diagonal) coefficients no0 , nc
0 

, and 

DW0 • Naturally, for this case the off diagonal elements of the tri-

diagonal matrix are zero. Practically, a combination of the above 

extreme cases almost always occurs. 

Except for the possible addition of North and South coefficients, the 

main diagonal coefficients are defined as 

D00 
V (bn+l). _ - CO' (•n+l •n+l) (¥s:f = tit 0 1,J w 0. 1 . o. . as .. 1- ,J 1,J O 1,J 

(75) 

DG0 
V (bn+l)_ . - CG~ (•n+l •tl .) ( • .~rgr = tit g 1,J g. 1 . 1- ,J 1,J g .. 1,J 

(76) 

V (bn+l). . (•n+l •n+l J /4s:9k DW0 - CW' \a krw =- · as tit W 1,J w wi+l,j wi,j w •• 
1., J 

(77) 
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Finally, the right hand sides of equations 70, 71 and 72 are 

RO. 1,j 

RG . . 1,J 

RW •• 1,J 

•:+1 J ta kro r k 
= co' l·n+l S* + u 

E 0 i+l,j 
as 

0 ·+1 . 
0 

1,J 0 1 ,J 

= CG' (4>n+l - ~n+l l ( a krg s~k+l 
E g ·+i . g. . as g 

1 ,J 1,J o 'i+l,j 
+ uk V (Rs b )~+: S* g - tit O 1,J O. • 1,J 

+ Rs CO' (•n+l W W o. l . 1- ,J 

+ Rss CO' (•n+l 
S o. ·+1 1,J 

+ Rs CO' (•n+l N N o . . l 1,J-

+ Rs CO' (•n+l E E o.+l . 1 ,J 

= CW' E (
~n+l 
wi+l,j 

_ 0n+l w kro 
s~- . o. . as 1,J 0 1,J 

_ 0n+l J ( • kro 
s~ o. . as 1,J 0 u 

_ 0n+l) (• kro 
s~ o. . as 1 ,J 0 u 

_ 0 n+ 1 ) ( a kro s1 o. . as o 
1,J O ·+1 . 1 ,J 

a krw 
as w )

k+l 
S* 

w ·+1 . 
1 ,J 

(78) 

(79) 

(80) 

Saturations are solved this way for all three phases separately as 

opposed to what is often done, solve for saturations of two phases and 

obtain the saturation of the third phase from the saturation relation-

ship, equation 20. The reason for doing it this way is that otherwise 

slightly incorrect fluid volumes, resulting from solving the system for 

fairly large time steps (overshoot), could never be corrected for by 

adjusting pressures on a volumetric error basis. In other words, after 

having obtained saturations compatible with the latest pressure 
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estimate, one Newton iteration cycle is completed, and the next step 

now is to readjust pressures. The best way is to do it on a volumetric 

basis with the following condition 

1.0 - S - S 
0 g s w o.o (81) 

If this condition does not hold, there is either too much or too little 

fluid in a block and the phases will have to be compressed or expanded 

accordingly. 

A time step is finally solved for when the residuals of both the 

pressure equation and the saturation equations are annihilated. In 

practice, the convergence criterion is not so strongly stated; con-

vergence is satisfied when pressures and saturations vary less than a 

given value. 

4.4 Initial and Boundary Conditions 

4.4.1 The grid system - From comparisons with analytical solutions 

(one phase fully saturated flow, confined flow, fully penetrating well) , 

the grid configuration of Figure 6 was shown to approximate the well 

bore pressures very well (see also Figure 8). 

i 

l FREE SURFACE OR 
j 1 2 / CONFINED n 

1 0 t. 0 0 ' 
2 () 0 a 0 

0 C. 0 J C 

FACE OF p C " .., - ' EXTERIO R 
WELL BORE .. C u 0 ' RADIUS 

0 C 0 C 

(' C, .. C 

m () C, C, (' 

'-- M IMPEIDIBABLE BASE 

Figure 6. Grid system used in this study. 
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The first and the last column of pressures are respectively right 

at the edge of the well bore and right at the exterior boundary. Since 

pressures away from the well vary logarithmically with distance 

(approximately for unsteady llRlltiphase flow), the radii from the well 

bore center to the center of the cells are logarithmically distributed 

so that log(br) is a constant. For numerical convenience only half 

br is taken at the well bore and at the outside boundary. 

The system is set up as a closed one (no flow across boundaries) 

and from there the different type boundary conditions will be constructed. 

From a programming point of view, the no flow boundary condition is ve ry 

conveniently satisfied by assigning zero values to the flow coefficients 

across the boundary. 

4.4.2 Possible boundary conditions - Since the reservoir is 

overlaying an impermeable base, the lower boundary is taken care of 

throughout by a no flow condition. Mathematically, the potential 

gradient normal to the boundary is zero; in terms of the numerical model, 

the south coefficients of the lower row are all zero. 

At the exterior radius boundary, the well bore boundary and along 

the top of the aquifer, the following possible conditions may exist: 

1. No flow boundary conditions. 

2. Pressure boundary conditions. 

3. Flow rate boundary conditions. 

4.4.2.1 Well bore boundary conditions - At the well bore, a 

combination of conditions one and two or conditions one and three are 

possible depending upon which portion of the well is perforated 

(screened). 
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As the computer program is presently written, the no flow 

condition is automatically taken care of. 

The flow rate boundary condition is easy to incorporate, i.e., a 

value is assigned to the production terms "q" of equations 24, 25 and 26. 

In practice, an oil production is assigned. The gas and water produc-

tions are computed from the following relationships. 

(

krg b /µ 
= q g g + 

w kro b /µ 
0 0 

These relationships show that production will depend upon the 

ratios of the mobilities of the phases, which is true if the magnitude 

of the potential drops in the different phases are the same. By 

mobility in the petroleum technology is meant the term kr/µ. In 

practice, this condition of equal potential drops in the different 

phases very closely holds. The gas production of course, is composed 

of two terms: free gas and solution gas. 

Since gas and water productions are saturation dependent they are 

taken up in the Newton linearization scheme and readjusted after each 

saturation iterate as follows 

( krg b /µ k 
k+l n+l +-1- b. krg s; + Rs) g g 

qg = qo kro b /µ kro I:). s 
0 0 g 

k+l - n+l (krw bJµw r +-1- tJ. krw S* - qo kro b /µ kro tJ. s w 
0 0 w 

This way, convergence is considerably accelerated. 

(82) 

(83) 

(84) 

(85) 
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The pressure boundary condition does not create any problems with 

regard to solving the pressure equation. Except for the main diagonal 

of equation 53, which is set equal to 1.0, all coefficients and the right 

hand side of this equation are set equal to zero for all the perforated 

blocks where a pressure is assigned. The pressure solution thus shows 

a flow towards or away from the well bore, but due to the fact that 

mathematically a no flow condition exists at the well bore, the satura-

tion solution shows an accumulation or a depletion of fluids in those 

blocks. This accumulation (or depletion) then is the basis for 

estimating the magnitude of fluid production terms compatible with the 

pressure solution; it is considered as a volumetric correction rate, 

liq ' to be added to the latest estimate of q. The total volumetric 

correction rate can be expressed as follows 

ti q ti q ti V 0 +__:-_g_ + (1.0 - s - s - s ) (86) = b b b tit 0 g w 
0 g w 

Again the different phases will produce according to the mobility 

ratios. Therefore, substituting equations 82 and 83 into equation 86, 

and after rearranging, the following expression is obtained for liq 
0 

ti q 
0 

= 
1 

(

krgb /µ g g 
b kro b /µ g O 0 

After having computed liq 
0 

first, the correction is added to the 

latest estimate of with which and are computed from 

equations 82 and 83. 

(87) 
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Obviously, equation 87 becomes invalid as soon as kro is zero. 

The oil phase is no longer producing at this moment. As long as krg 

and krw are not zero, however, gas and water can still be produced 

and if the well is not yet shut down, and qw can be computed with 

an equation obtained similarly to equation 87, i.e. 

V 

!:, q = 
!:,t (1.0 - S - S - S) 

(88) g 

(89) 

The third possibi l ity is that both krg and kro are zero, but 

krw not; the expression for !:,~ becomes 

t:, q = b w w 

This process of computing production terms implicitly requires a 

double sweep of the last column (well column) in each saturation 

iterate, the first sweep to detect an accumulation (or depletion) of 

fluids, the second sweep to annihilate the accumulation (or depletion) 

of fluids by considering it as a volumetric correction rate. 

(90 ) 

4.4.2.2 Boundary conditions along top of aquifer - In case 

of a confined aquifer, the no flow condition holds and is automatically 

taken care of. 

In case of an unconfined aquifer the north side is physically open 

to the atmosphere, but mathematically closed. The boundary condition 

is one of constant atmospheric air pressur~. This case is very 
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analogous to the well pressure condition and hence it can be expected 

to be treated in a similar way. A depletion, however, rather than an 

accumulation of fluids in the upper row blocks is now taking place, so 

that the q values assume negative signs and are to be considered as 

recharge. 

The "free surface", if it can be defined in this multiphase flow 

model, would be defined by the line of atmospheric pressure in the 

liquid phase. For modeling the "free surface" the method just described 

was behaving perfectly. The computational work, however, because of the 

double saturation sweep, as explained in section 4.4.2.1, is a little 

longer but the cumulative material balance error remained very small 

-5 3 throughout (10 FT). 

4.4.2.3 The exterior radius boundary conditions - At the 

exterior radius boundary, a no flow condition was assigned throughout 

this study. Boundary effects are minimized by taking the outside 

radius large enough (10,000 ft). Boundary conditions two (pressure) and 

three (flow rate) at the exterior boundary are incorporated in the 

model, but were not used. 

4.4.3 Initial conditions - As mentioned earlier, all runs of this 

study were made using the oil-gas phases to represent an air-water 

system. A hydrostatic pressure distribution was assumed as the initial 

condition. Above a region completely saturated with water, a region 

partly saturated with water existed in equilibrium with the assigned 

Pc (S) relationship. 

Since compressibility factors are included in this study it is 

rather difficult to compute a perfectly equilibrated initial condition. 

Therefore, to allow the fluids to settle, the first few time steps were 
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run without pumping. Very slow convergence was noticed, though, in the 

pressure equation, since this is a near steady state condition leading 

up to a nearly elliptic pressure equation. The diagonal dominancy of 

the coefficient matrix is diminished. 

4.5 The Computer Program 

The computer program was coded in FORTRAN IV EXTENDED for a CDC 

6400 computer with a core memory consisting of 64,000 storage locations. 

A careful arrangement of storage for this two-dimensional, three phase 

model was imperative. For this purpose, the program was segmented into 

computational entities. In each segment the exact amount of core was 

specified by reallocating only the needed variables for that segment. 

With this tremendous storage saving technique grid systems as large as 

30 by 30 are being handled. Tape and disk are extensively used for 

temporary storage. 

All two-dimensional variables were stored in one-dimensional 

arrays which is, from a computing point of view, an enormous time 

saving: it takes some computing time to locate variables in a two-

dimensional array, whereas a simple algorithm in the program easily 

identifies two-dimensional variables from the one-dimensional array. 

The treatment of input data is considered an important part of 

the program in terms of saving man hours. All input data are read in 

at once in the beginning on a separate tape or disk unit. The first 

four columns of each data card carry a mnemonic name (see Appendix C) 

making it possible to go back on tape and search for any single bit of 

information and bringing it in central memory. If the data do not 

satisfy a check on correctness or if they are found to be out of order, 
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an error messa~e is printed. Depending upon the seriousness of the 

incorrectness it can be decided to discontinue the run. The input data 

are separated into single point data, array data, pressure and saturation 

dependent data, and time step data such as new boundary conditions and 

time step size. Appendix C shows how pressure and saturation dependent 

data are organized in the form of interpolation tables. Linear inter-

polation is used throughout, which is accurate if enough data points 

are used. Experience showed (11) that higher order interpolation did 

not give significantly better results besides being very time consuming. 

That this is an important factor in multiphase flow is easily understood 

since for each block of the grid system all pressure and saturation 

dependent functions have to be evaluated for each phase and at each 

iteration. To speed up the process of interpolation a latest entry 

point index is kept in central memory since it is very likely that 

the next entry will be close, if not the same, to the previous entry; 

it minimizes searching time tremendously. 

The overall structure of the program is diagrammatically shown in 

Figure 7. Each segment shown operates independently. 

4.6 Validity of the Simulator 

An analytical solution of the multiphase flow equations does not 

exist; also, a rigorous proof of convergence of the finite difference 

solution does not exist. Hence, no direct way of showing the correct-

ness of the simulator is available. Its verification will thus mainly 

depend upon argumentation based on correctness of equations, and on 

model performance. 

The first step in this syllogistic proof is to accept the flow 

equations as the true mathematical analogue of multiphase flow. They 
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SEGMENT 1 

READ INPUT DATA ON 
TAPE 

INITIALIZE DATA FROM 
TAPE 

I 

COMPUTE TRANSMISSIBILITIES 
(EAST AND SOUTH) FROM MEDIA 

PROPERTIES AND STORE 

SEGMENT 2 

READ t:,.T 
NEW BOUNDARY CONDITIONS 

YES 

MULTIPLY TRANSMISSIBILITIES 
BY b/µ 

COMPUTE COEFFICIENTS OF FLOW 
EQUATIONS (EQS. 35,36,37,38) 

COMPUTE RESIDUALS (EQS. 39,40,41) 

SET UP COEFFICIENTS OF PRESSURE 
EQUATION (EQ. 53) 

SOLVE FOR 
PRESSURES 

Figure 7. Diagram oft e computer simulator. 
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SEGMENT 3 

RECOMPUTE COEFFICIENTS OF 
FLOW EQUATIONS 

RECOMPUTE RESIDUALS 
SET UP COEFFICIENTS OF SATURATION 

EQUATIONS 

NO 

SOLVE FOR 
SATURATIONS 

SET UP COEFFICIENTS 
OF PRESSURE EQUATION 

SOLVE FOR 
PRESSURES 

PRINT 

TIME STEP 

Figure 7. (Continued) Diagram of the computer simulator. 
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are derived from a true statement of continuity. Their validity will 

depend upon the validity of Darcy's law as the force law. As stated 

earlier, evidence of the validity of Darcy's law is rather plentiful 

under the assumptions stated. This leads to the acceptance of the 

correctness of the equations. The flow equations have further been 

checked with experimental results both from laboratory tests and from 

field tests (Welge and Weber, Soengkowo, Blair and Peaceman, and many 

others). 

Next, the question arises as to how good is the solution that is 

obtained by the proposed computational algorithm. Obviously, a con-

siderable amount of ingenuity is involved in the construction of a 

finite difference scheme. As long as the discretization used does 

not violate the continuity principle, i.e., as long as mass is conserved, 

a good finite difference scheme to represent the continuous partial 

differential equations is obtained. It was further proved analytically 

by different numerical analysts (Douglas, Smith, Lees, Rose) that, as 

the grid spacing approaches zero, convergence to the actual solution 

is obtained, by using finite differences for solving linear parabolic 

partial differential equations in rectangular regions. Similar proofs 

are not available for discretized non-linear partial differential 

equations when applied to systems which are not rectangular or which 

have variable grid spacing. Nevertheless, based on experience of many 

researchers (10, 21, 22) it can be concluded that finite difference 

methods for solving non-linear equations do give good results. The 

correctness of these results mainly depends upon truncation errors which 

stem from the discretization process. Space truncation errors are 

usually not significant if a sufficiently small mesh spacing is used. 
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Time truncation errors, however, are usually rather severe, because of 

the tendency to take as large a time step as possible for economical 

reasons. This, indeed, is a problem in the classical mixed techniques 

(implicit-explicit) in which the flow coefficients are time truncation 

dependent apart from the time derivative itself. This time truncation 

error is practically annihilated with the fully implicit scheme as 

applied in this study (cf. section 4.3.1). Finally, the numerical 

solution obtained is a good solution of the finite difference equations , 

since in the solution process residuals are indeed vanishing. 

The last step in this heuristic proof of validity is based on 

qualitative and quantitative performance of the model. Test runs can 

be set up for which intuitively the answers are known; or also, limiting 

cases can be checked for agreement with theory. For example, a test 

run was made modeling a confined homogeneous and isotropic aquifer with 

a fully penetrating pumped well. Gravity was neglected and the aquifer 

was fully saturated with one of the wetting phases. Exact analytical 

solutions f or this strictly horizontal radial case with flow rate 

boundary conditions (62) do exist. The numerical solution behaved as 

was predicted by the analytical solution. Results of the flow rate 

boundary condition case are shown in Figure 8. The storativity factor, 

S, needed to obtain the analytical solution was computed from the com-

pressibility factor, B , which in its turn was obtained from the 

formation volume factor (F.V.F.) data as used in the numerical model. 

All physical characteristics appear on Figure 8. The relationship 

between storativity and compressibility derived by several authors (1) 

is 

S = pg(a + n B)b 
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in which n is the porosity, a is the aquifer conpressibility factor 

which is zero in this case, and b is the aquifer thickness. Verv close 

agreement is obtained, realizing that only six grid blocks were utilized 

to model an aquifer with well radius of one foot and exterior radius of 

10,000 feet. The results of the numerical simulator only differ by 0.3 

percent from the Theis solution if both solutions were applied to an 

artesian aquifer with piezometric head of 200 feet of water. 7h ese 

results also indicate the validity of the Theis solution very close t o 

the line sink. Conversely, the results also indicate that pressure at 

the well bore is well represented with the grid block configuration as 

used in this study (cf. section 4.4.1). 

Several multiphase flow cases for which there are no analytical 

solutions were run and analysed with respect to their behavior. In one 

case, a gravity-less confined medium was modeled without any pumping. 

Pressure and saturation distributions, initially uniform throughout, 

did not vary after a time step as would be expected. 

Good test runs, particularly useful for debugging purposes, are 

the ones that exploit the conditions of symmetry. Several of these 

\<1ere run. Other test runs involved the effects of capillarity and 

gravity. The following test case was of particular interest in the 

petroleum technology; gas, oil, and water were overlaying each other 

in a confined reservoir. The well was screened only in the middle of 

the oil phase. Gas and water were coning into the oil phase. The 

usefulness of this case lies in the fact that optimum schedules may be 

derived at to obtain maxir.rum withdraual of oil. 

It is concluded that, based on tae above heuristic argumentation, 

the sioulator is considered to be a valid nrultiphase flow solver under 

the conditions and assumptions stated. 
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5. RESULTS AND DISCUSSION 

The dis cuss ion of the resul t s o f this study is centered around t he 

"free surface" gravity well flow pr oble m. As long as the flow is con-

fined in a fully s a tura t ed me di um, analyt i cal solutions as suming 

horizontal flow pred ic t the be hav i or well; these solutions are very 

adequate for confined aquifer tes t analysis. Because of the lack of 

analy tical solutions o f uncon f ined f r ee surface flow, unconfined aqui f e r 

data are always analysed f rom a con f ined f low point of view. With 

respect to this approach, Stallman (59) concludes one of his papers on 

aquifer test analysis as f ollows: 

"Analysis of pumpinp; tests made in unconfined aquifers 

should be a fertile field for anyone slightly inclined 

toward pessimism". 

The results of this study, obtained from the most complete 'free 

surface' well flow analogue to date will show why indeed the analysis of 

data of unconfined aquifers, when fitted with confined flow analytical 

solutions, is so controversial and leads to so many contradictory con-

clusions. 

The solution obtained from the two-phase "free surface" gravity 

flow model differs in many aspects from confined (artesian) flow 

analytical solutions. Therefore, the results of this study will be 

compared as much as possible with these solutions and evaluated with 

respect to aquifer tes t analysis. To better appreciate this comparative 

discussion a brief account of analytical solutions used with underlyin g 

assumptions follows. 
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5.1 Brief Account of Analytical Solutions 

Present theories of aquifer tests are all more or less based on 

solutions of the one-dimensional radial confined flow equation (1, 32, 

62, 63). Some of these solutions account for the effect of partial 

penetration (30), others account for delayed yield from storage (7). 

Notwithstanding its restrictions, the Theis solution is most generally 

used. The basic assumptions, underlying the Theis solution are: 

(1) Confined flow of infinite areal extent. 

(2) Instantaneous release from storage. 

(3) All flow is horizontal (no vertical flow coMponents). 

(4) Fully penetrating well. 

(5) The well is considered to be a sink (infinitesimally narrow 
well). 

(6) Constant aquifer thickness, b. 

(7) No gravity effect. 

(8) Homogeneous, isotropic medium. 

When applied to a water table aquifer, the Theis solution becomes 

subject to the Dupuit-Forchheimer assumptions, which also implies that 

the free-water surface is the streawiine bounding the flow region and 

that a linear relationship exists between flow rate and aquifer thick-

ness. 

Important aspects arising in unconfined aquifers, not or only 

partially considered in analytical analyses, but often realized by 

ground water hydrologists (59), are: 

(1) Effect of vertical flow components on drawdown. 

(2) Storage release by expansion of water. 

(3) Variable specific yield (delayed yield from storage) and role 
of the capillary zone with this respect, i.e., flow in the 
"cone of depression". · 
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(4) Partial penetration of wells under free surface flow 
conditions 

The numerical model is not restricted by any of the above four 

aspects. Hence, a fair chance exists to evaluate their magnitude of 

importance. 

5.2 Case Study 

Two unconfined well flow cases were run: 

Case 1: Low permeability aquifer (13.7 FT/DAY) with medium 
characteristics of a Columbia sandy loam (see Appendix 
C for detailed aquifer and fluid properties). 

Case 2: High permeability aquifer (219.2 FT/DAY) with medium 
characteristics of an unconsolidated sand (see Appendix 
C). 

It was felt that within the objectives of this study these two 

cases would suffice to demonstrate the original solution obtained. The 

availability of funds for this one man project was a major factor in 

determining the number of cases to be studied. 

Specification of property 

Medium 
Permeability 

Porosity 

Residual water saturation 

Initial saturated thickness 

Well screen (percent of 
initial saturated thickness) 
Pumping rate 
Grid system 

Total time of analysis 
Computer time (central 
processor) 

Case 1 Case 2 

Columbia sandy loam unconsolidated sand 

13. 7 FT /DAY = 5000 
Milli-Darcies 

0.5 

20 percent 

136 feet 

Lower 45 percent of 
aquifer thickness 

43,200 FT3 /DAY 
6 columns, 8 rows 

7.780 DAYS 
560 seconds 

219.2 FT/DAY= 80,000 
Milli-Darcies 

0.5 
10 percent 

139 feet 
Lower 43 percent of 
aquifer thickness 

86,400 FT3 /DAY 
6 columns, 8 rows 

6.675 DAYS 
840 seconds 

Table 1. Summary of important characteristics of Case 1 and Case 2. 
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Table 1 summarizes the most important characteristics of Case 1 

and Case 2. Each case is run at a constant pumping rate until a definite 

flow pattern has developed. 

5.3 Analysis of Case 1 

5.3.1 Equipotential lines, isopiestic lines; and flow pattern -

After nearly eight days of pumping a definite flow pattern had developed 

with little change taking place in the potential and free surface 

profiles. This eight day period seemed long enough to analyse all aspects 

of the results. The potentiometric map of an r-z cross-section is 

plotted in Figure 9, on semi-log paper, the r-direction (abscissa) being 

the log scale. In order not to misinterpret Figure 9, the potentiometric 

map is also plotted on normal scale paper in Figure 10, diagrammatically 

showing a few flow lines as well. 

It is readily seen from this flow pattern that tremendous volumes 

of water emanate from a distance away from the well and that very little 

flow is contributed from near the well bore, above the screen. Two 

factors seem to interact in determining this flow configuration: gravity 

and the radial nature of flow. That the flow pattern is very much 

affected by gravity is readily observed from the flow diagram. It is 

admitted that the vertical flow component becomes small at, say, 250 feet 

away from the well; however, at the same time it should be realized that 

the cross-sectional area of flow in the horizontal plane increases by 

a factor of radius squared as one moves away from the well. 

The dashed line on Figures 9 and 10 is the line of atmospheric 

pressure which corresponds to the definition of the free surface. A 

point of inflection is noticed along this curve. In time, this point of 

inflection moves away from the well bore and the rate of drawdown near 
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the well bore becomes smaller and smaller (under constant pumping 

conditions). This curve in no way corresponds to what is often seen as 

the free surface profile around well bores, suggested by t he Theis 

solution, corrected or not for the effect of partial penetration. 

All lines of equal pressure (see pressure map, Appendix D) ending 

above the well screen have the same physical appearance as the dash 

lines of Figures 9 and 10; however, equal pressure lines ending below 

the top of the screen cone down. Therefore it seems clear that fully 

screened wells, if they occur, should behave very 11R1Ch like partially 

penetrating wells; the flux across the well screen is not a constant 

and is largest near the pump (usually bottom of aquifer) where suction 

head is greatest. Horeover, the moment a fully penetrating well is 

pumped, the effective portion of the screen (effective area of flow) 

is very rapidly much less than its original fully penetrating length. 

Equipotentials will still look as before. A possible flow field for 

a fully penetrating well is suggested in Figure 11 applicable to 

a two-phase flow system. 

In summary, the last paragraph, by induction, says that so called 

fully penetrating wells operate as if they were partially penetrating. 

The difference between fully and partially penetrating wells would then 

be the dip of the line of atmospheric pressure very close to the well 

bore until it becomes a seepage face, affecting very little the over-

all free surface, radial gravity flow phenomenon. 

This solution in no way agrees with the horizontal flow concept of 

analytical analyses of confined f low, in which the flux throu gh the 

screen is a constant and in which the full length of the screen is always 

exposed to the entire aquifer thickness. 
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SEEPAGE FACE (ATI-OSPHERIC PRESSURE) 

PENETRATING PUMPED WELL 

LINE OF ATMOSPHERIC 
PRESSURE 

EQUIPOTENTIALS 

50 100 150 200 

r (FT) 

Figure 11. Possible flow field of a fully penetrating well. 

It is important to point out again that the analytical analysis is 

good as long as the flow is confined and fully saturated, but as soon 

as it is applied to free surface flow it becomes subject to the 

absurdities introduced by the Dupuit-Forchheimer assumptions •. The 

Theis solution, whether or not corrected for the effect of partial 

penetration, cannot be visualized as the solution for the position of 

the free surface. In the Dupuit-Forchheimer context, the free surface 

is a streamline, all flow below it being horizontal. Researchers who 

realized the importance of gravity in free surface flow problems 

attempted to visualize the flow picture as shown in Figure 12 by 

combining the Theis solution "free surface", a streamline, with a set 

of streamlines emanating from it. 
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(

UMPED 

II 

WELL 

IMPERMEABLE BASE 

Figure 12. Unconfined gravity flow as visualized in the 
literature. 

5.3.2 Potential distribution along bottom of aquifer - A very 

significant result is obtained when the potential behavior of the 

model of this study along the bottom of the aquifer (horizontal flow) 

is compared with the piezometric head obtained from the Theis solution 

corrected for partial penetration (Hantush, 1962). In the analytical 

analysis the effect of partial penetration is negligible at a distance 

away from the well bore approximately equal to 1.5 the aquifer thickness. 

Figures 13, 14 and 15 demonstrate the analogous behavior of the analyti-

cal solution and the potential distribution along the bottom of the 

model aquifer. At 0.49 days (Figure 13) the line representing the 

analytical solution lies slightly above the line of the numerical 

solution. At 3.49 days (Figure 14) the line of the analytical solution 

lies below the line of the numerical solution. As time goes on these 

two solutions remain parallel but seem to move further apart (compare 

Figure 13 with 14). In Figure 14, this behavior was also compared along 

a horizontal line 13.5 feet below the original position of the free 
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surface. The similarity in behavior is no longer true. For comparative 

purposes the definition of free surface as used in Figures 13, 14 and 15 

deviates a little from the line of atmospheric pressure and is simply 

obtained from converting the saturation in a block to a water level in 

the block; for example, a 10 feet high block with a saturation of 60% 

and a residual of 20% means a water level at 5 feet in the block. 

The significance of this result is that analytical solutions for 

confined aquifers represent the piezometric head in the confined 

aquifer but cannot be used to fit free surface data obtained from 

unconfined aquifers. Moreover, the analytical solution of partial 

penetrating wells in confined aquifers does not apply near the free 

surface in unconfined aquifers. 

5.3.3 Potential distribution in time - Potential drops at 

different values of radii are plotted versus the logarithm of time in 

Figures 16, 17 and 18. At any time, these figures better explain the 

relative position of the curves then explained in Figures 13, 14 and 15 . 

where they get closely together. 

The potential distribution curves as well as the free surface 

drawdown curves, although to a smaller extent, have a relatively steep 

portion, a flatter portion with a point of inflection and again a 

steeper portion. This inflection curve is also observed when drawdown 

is plotted versus the logarithm of 2 r /t as demonstrated in Figure 19. 

Regarding the above behavior of the numerical results, a quotation of 

Stallman (59) follows: 

"Commonly plots of the logarithm of observed drawdown versus 

the logarithm of t/r2 show a steep slope after pumping begins, 

then a relatively flat segment, then a steep slope. The last 
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segment of data generally yields sensible values of specific 

yield if equations of artesian flow are used for analysis. The 

shape of the first parts of the data plots depends upon the items 

that follow, which generally are not accounted for in analysis of 

test data from unconfined aquifers: (1) variable effective 

specific yield; (2) artesian release from storage below the water 

table; (3) vertical flow components; (4) thinning of the 

saturated zone as drawdown increases; (5) observation well 

characteristics; (6) heterogeneity." 

The writer of this study feels that, in the light of this two 

phase, compressible fluid, gravity flow model, the above inflecting 

behavior is almost entirely accounted for by storage release by expansion 

of water for the following reasoning. Figures 16, 17 and 18, and also 

Figure 13, show that the initial drop in potential along the bottom of 

the aquifer, right after pumping starts, is greater in the numerical 

model than predicted by the analytical solution. The curve representing 

the numerical solution gradually becomes less steep until it inflects 

at about 0.7 days. Beyond the point of inflection this curve tends to 

become parallel, but not quite, with the curve representing the 

analytical solution. Physically, this means that after the initial 

pressure drop due to a sudden pumping effect, water pumped comes mainly 

from storage release by expansion of water in the aquifer. In a radial 

flow system this phenomenon is considerable since tremendous volumes 

of water are involved a short distance away from the well bore. 

Beyond the inflection point this phenomenon of "artesian" storage 

release is diminishing but not disappearing, because a pressure decline, 

albeit small after the initial pressure drop, is continuously going on. 
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It is important to notice that the effect of water release by expansion 

is being felt at approximately the same time in the aquifer: compare 

Figure 16 (at r = 6.31 feet) with Figure 18 (at r = 251 feet) with re-

spect to the occurrence of the point of inflection. 

In a real field situation, aquifer compressibility may be consider-

able. It is quite understandable that aquifer compressibility then will 

play a role in a sense that it may accentuate the above described 

behavior. 

5.3.4 Results obtairted strictly related to multiphase flow 

5.3.4.1 Effect of capillarity - It has been observed quite 

frequently that calculations of specific yield made with data obtained 

in the beginning of an aquifer test differed considerably from cal-

culations made with data of the end of the test (59, 72). Wenzel (72), 

as an example, computed a specific yield of 0.01 just after pumping 

started, 0.1 after 50 minutes of pumping, and about 0.22 after 48 hours 

of pumping. In the light of past fully saturated flow analyses this 

variable effective specific yield was explained as "delayed yield from 

storage". When confined flow analysis is applied to unconfined flow, 

it is assumed that all contributions from storage come from the 

immediate lowering of the water table, but field observations indicate 

that porous materials do not drain instantaneously as water levels are 

lowered. Capillarity is the phenomenon responsible for this field 

observation. 

Since capillary forces are accounted for in this multiphase 

numerical model, the effect of the so called "delayed yield from 

storage" should be observable when comparing results to analytical 

solutions which do not account for delayed yield from storage. Not much 
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though, is revealed by the curves of Figures 16, 17 or 18. They show 

that at any given distance from the well bore the pumping effect is 

felt much earlier in the numerical model (curve of potential distribution) 

than predicted by the analytical model (curve of piezometric head), but 

that the analytical model soon catches up and bypasses the numerical 

model with respect to drawdown. However, interaction with the phenomenon 

of storage release by expansion of water makes it difficult to exactly 

evaluate "delayed yield from storage". As time goes on and as the 

pumping effect is felt farther and farther with drawdowns becoming very 

small, the effect of capillarity should gradually become smaller and 

smaller too. Indeed, computations of specific yield at different times 

show that a limiting value is approached when times grow large. Note 

that the analytical solution is not a valid criterion for evaluating 

delayed yield from storage by comparing its solution with the numerical 

results of this study, mainly because confined flow behaves differently 

than unconfined flow. 

Capillarity is not the object of detailed analysis in this study. 

Although its effect is incorporated on a macro-scale, it is realized that 

a detailed distribution of saturation above the water table cannot be 

obtained, the vertical dimension of the blocks being the same order of 

magnitude of the capillary effect under hydrostatic conditions. 

5.3.4.2 Effect of air dissolved in water - Data for the 

amount of air dissolved in water under aquifer conditions were taken 

from Dodson and Standing (2). These data behave corresponding to 

Henry's law, i.e., a linear law for gases dissolved in liquid solvents 

as a function of pressure. The data (see Appendix C) show that at 

atmospheric pressure 0.0338 cubic feet of air are dissolved in water. 
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It is realized that under certain circumstances the above amount 

of dissolved air might be either overestimated or underestimated. How-

ever, practically all ground water originates as surface water; the 

following situation is quite possible. Consider an aquifer continuously 

pumped and recharged. During the process of recharging considerable 

amounts of air may be trapped and eventually partly dissolve with 

increasing pressure in the water body, which would lead to a larger 

amount of air dissolved in the water than the amount assumed in this 

study. The assumed amounts are certainly not exaggerated but rather 

reflect average aquifer conditions. 

Before showing the results regarding air dissolved in water, it 

may be useful to describe the following mechanism. When an aquifer is 

suddenly being pumped, the pressure in the aquifer will sharply drop 

in the vicinity of the well bore. This causes air to evolve from 

solution first as small isolated bubbles, and to occupy space which was 

previously occupied by the water. As the pressure keeps dropping, more 

air will evolve from solution and at the same time expand, until the 

bubbles coalesce and continuous filaments of air are being formed. This 

is the so called residual air saturation (critical gas saturation in the 

petroleum technology) at which air starts to flow. It is easily seen 

that during this process the permeability to water significantly 

decreases. 

Figure 20 shows what occurred in time in this two-phase, free 

surface gravity flow simulator. The water desaturation curve in the 

bottom block adjacent to the well screen goes with the left ordinate; 

the pressure curve of the same block goes with the right ordinate. 

Pressure is seen to sharply drop the moment pumping begins (time zero) 
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and then more gradually. The air saturation is seen to gradually 

increase (water saturation decreases) until it reaches residual 

saturation (Sa= 0.10, Sw = 0.90). At this moment (0.7 days) the air 

in this block becomes a continuous phase and starts flowing. All air 

coming out of solution or expanding after 0.7 days, which is very little 

because of the slow pressure drop, readily flows out; physically, this 

is easily understood because of the very low resistance to flow of air. 

Hence, air saturation remains constant after 0.7 days. The saturation 

results show that beyond 0.7 days the air phase saturation is building 

up in the block next to the one adjacent to the well bore, but very 

slowly (Sa= 0.047 after 7.78 days of analysis). 

The significance of the above result may be summarized as follows: 

first, the effective permeability near the well bore is significantly 

affected by air evolving from solution; relative permeability has drop-

ped from 1.0 to 0.875 (see Appendix C, input data of Case 1). Secondly, 

this drop in effective permeability in turn affects the potential dis-

tribution around the well bore, in a way that the pumping effect will 

extend further away from the well bore than it would if no gas evolved 

from solution, simply to overcome the lower permeability near the well 

bore. 

5.3.4.3 The free surface boundary condition - Two phase flow 

is not uniquely responsible for the shape of the free surface. The 

effect of partial penetration of the well and gravity seem to be the 

governing factors in determining the shape of the free surface around 

the well bore (see Dagan, page 1060, Figure 1). Two-phase flow, however, 

will allow one to locate the line of atmospheric pressure (free surface) 

and also to study the effect of capillarity as related to the problem 

of delayed yield from storage. 
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The nature of the behavior of the drawdown curve in time and space, 

however, reveals that f low in the so called cone of depression 

(unsaturated zone, capillary zone) is insignificant with respect to the 

total flow phenomenon and hence that delayed yield from storage as 

explained by capillarity, has very little bearing upon the solution. It 

should be clear by now that confined flow analysis does not apply to 

unconfined free surface gravity flow. There is a variety of undetermined 

factors involved when confined flow analysis is applied to unconfined 

flow, and adjusting the confined flow solutions to fit unconfined flow 

data is highly questionable. 

No~eworthy of mentioning is the computation of air flow into the 

upper row of blocks, intimately related to the treatment of the free 

surface boundary condition (cf. section 4.4.2.2). With a pumping rate 

at the well bore of 43,200 CF/DAY, the rate of air flow into the upper 

row of blocks is expected to be nearly the same. This result is indeed 

obtained (see Appendix D, sample computer output: gas production map) . 

Difference in volume of water at aquifer conditions and water at surface 

(atmospheric) conditions accounts for the slight discrepancy. Differences 

in air and water rates are sometimes larger, however, than explainable 

by compressibility of water; these differences can easily be understood 

when it is realized that the convergence criterion on saturations is 

0.0001 (i.e. maximum allowable value of S* , cf. Chapter 4). Grid 

blocks a distance away from the well are quite large with tremendous 

pore volumes. The grid block with radius of 251 feet, for example, has 
7 3 a pore volume of 4 x 10 FT, so that a value of S* , say 0.00005, w 

satisfying the convergence criterion is equivalent to 2.0 x 103 FT3 of 

water. 
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Figure 21. Aerographs of top row grid blocks at different distances 
from well bore; Case 1. 
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Varying rates of air flow into the blocks with radii of 39.8 feet, 

251 feet and 1,585 feet, are shown as a function of time in Figure 21. 

The shape of these areographs (i.e., rate vs. time curve, cf. hydrograph) 

is exactly related to the behavior of the free surface, regarding the 

point of inflection moving away from the well bore as pumping goes on. 

The point of inflection of the free surface curve is 39.8 feet away 

from the well at about 0.35 days, which is when the peak of the aero-

graph occurs. At 251 feet, the air rate is increasing but would soon 

reach a maximum when the point of inflection of the free surface curve 

reaches that distance, and then decrease. At 1,585 feet, the effect of 

pumping is gradually being felt. 

The above result is rather pleasing from a numerical solution point 

of view, since it is more or less a balance of materials on a macro-

scale, and an argument in favor of the correct mathematical treatment 

of the free surface boundary condition. 

5.4 Analysis of Case 2 

5.4.1 Results of Case 2, compared with Case 1 - The results of 

Case 2, the high permeability case, do not reveal any new striking 

features of two-phase, free surface, compressible fluid, gravity flow. 

The results of course, are different from Case 1, in that the same 

phenomena are interacting but at different times than in Case 1. For 

this reason, the discussion of Case 2 will consist of a brief enumeration 

pointing out similarities and important differences with Case 1 

(1) The flow pattern as shown on the potentiometric map of 
Figure 22 is analogous to the flow pattern of Case 1. 

(2) The potential decline toward the well bore along the bottom 
of the aquifer at any time is much less steep than in Case 1; 
an example after two days of pumping is shown in Figure 23. 
The effect of pumping, however, extends much farther for the 
same period of analysis. 
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(3} Again, there is no agreement between the free surface curve 
and the curve of potential drop along the bottom of the 
aquifer. Both show a drawdown of the same order of magnitude 
thoug~ (Figure 23), close to where the curves intersect. 

(4) When the potential decline toward the well bore along the 
bottom of the aquifer is compared with the piezometric head 
of analytic soiutions along the bottom of the aquifer at any 
time then again these solutions are analogous in behavior; 
the two solutions compared are parallel in space and close 
together for a short while after pumping starts. As time 
grows large, the two solutions remain parallel in space but 
get further and further apart in time; as in Case 1 the 
analytical solution lies below the numerical solution. An 
example after two days of pumping is shown in Figure 23. 
There is no reason, however, for these two solutions to 
remain close together, since two different flow phenomena are 
solved for. Permeability seems to influence the rate of 
divergence of the two solutions (compare Case 2 with Case 1). 

(5) The potential distribution in time at the bottom of the 
aquifer again shows a minor inflection of the curves at about 
0.02 - 0.03 days (Figures 24, 25 and 26) instead of at 0.7 
days for Case 1. Hence, the higher the permeability, the 
sooner the effect of storage release by expansion of water 
diminishes. 

(6) The behavior of the potential distribution in time at the 
bottom of the aquifer, when compared with the analytical 
solution for piezometric head, is analogous to Case 1. The 
potential drop of the numerical solution is larger at first, 
but then the curve proceeds with a less steeper slope than 
the slope of the curve of the analytical solution. Both 
solutions cross each other at about 0.03 days (0.7 days for 
Case 1). Again, there is no reason to obtain agreement be-
tween numerical and analytical results. 

(7) Aerographs are shown in Figure 27. The point of inflection 
of the free surface curve is at a radial distance from the 
well bore of 251 feet after 5.5 days of pumping. The total 
air inflow rate along the upper row of blocks nearly adds 
up again to the pumping rate (86,400 CF/DAY). 

(8) Air coming out of solution near the well bore is not nearly 
as spectacular as in Case 1 • . This is understandable because 
the larger permeability results in a much smaller pressure drop 
toward the well bore. Air saturation reached its residual 
(critical) value of 0.05 at 1.715 days of pumping in the 
upper block of the two blocks facing the well screen. In the 
lower block, the air saturation reached its residual value at 
6.68 days of pumping. The relative permeability of water at 
residual air saturation is 0.92. 
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5.5 Aquifer Test Analysis and Unconfirted Free Surface Flow 

In this study, two-phase, free surface compressible fluid gravity 

flow was modeled. The results were shown to be quite dif ferent f rom 

confined flow analysis. In fact, it is shown that the confined flow 

analysis does not apply to unconfined flow. 

From the literature it appears that obtaining reasonable aquifer 

constants is a matter of luck. Accounts of contradictory results, 

meaningless results, and inconsistencies are more numerous than accounts 

of successful aquifer tests. The chance of obtaining reasonable un-

confined aquifer constants with confined flow analyses seems to depend 

upon the nature of the observation well, or on the depth of penetration 

of the piezometer tube, or on the time during which the data were taken. 

Some researchers will recommend that drawdown measurements be made only 

after several days of pumping and at large distances away from the well 

bore. Others will advocate the measurements to be made during the first 

day of pumping or even the first hours. Observation wells are either 

screened throughout or only partially. In other instances, piezometer 

tubes are recommended either open in the upper portion of the saturated 

thickness or open in the lower portion. 

This variety of opinions and guidelines is understandable in the 

light of the results of this study. Depending upon what, where, and 

when measurements are made it is possible to obtain reasonable results. 

Consider for example Case 1, the low permeability case. If drawdown 

measurements were obtained from a piezometer open at the bottom of the 

aquifer and located near the well bore, there is a fair chance for the 

analyst to obtain acceptable aquifer constants, if he made ~is measure-

ments beyond one day of pumping (Figure 17) ~ If for the same case, the 
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piezometer tube were only open at the top, he would not get any reasonable 

results at all. Although the data may be perfect, they are not apt to fit 

exactly a confined flow analytical solution. His conclusion will be 

wrongly that his data are not reliable. 

Figures 28 and 29 are examples of what can happen in actual aquifer 

test analyses. The dr awdown data in this simulated aquifer test come 

from the numerical sol ution of Case 2 at a distance of 251 feet away 

from the well bore. I n Figure 28 the data would correspond to piezometer 

measurements at the bottom of the aquifer, whereas in Figure 29, the 

data would correspond to piezometer measurements at the top of the 

aquifer. A "type" curve of W(u) versus u (1,26,32) is superimpose d 

upon the curve of drawdown versus 2 r /t. The inflection of the latter 

curve in Figure 28 was explained earlier in terms of storage release by 

expansion of water. A portion of the type curve covers the data curve 

only beyond the effect of storage release by expansion. The permeabili ty 

computed from the The i s solution was four times too large. The com-

putation of specific yield was meaningless. In Figure 29, curves coul d 

not be matched over a certain length of the type curve and no computa-

tions were made. 

To conclude this section, the following example, drawn from the 

literature, is discussed. Weeks (70) and Dagan (19) analyzed data 

obtained from the same unconfined aquifers. Weeks used the Hantush (30) 

analysis for partially penetrating wells. Dagan, on the other hand, 

analyzed the data with an analytical solution which includes the vertica l 

flow component. In short, Dagan described the free surface boundary 

condition with a non-linear time dependent partial differential equation 

to account for the flux across the free surrace; this flux in its turn 
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depends upon the potentia 1. distribution inside the solution region, 

given by Laplace's equation. Dagan succeeded in solving this system of 

two equations analytically after first linearizing the condition at the 

free surface. His solution shows analogous shapes of the free surface 

as obtained by the author of this study (Dagan, Fig. 1, p. 1060) • . 

However, his solution adopts the usual assumptions of constant effective 

porosity, small drawdowns and fully saturated flow. The field data 

were obtained from piezometers, open at approximately 12 feet below the 

watertable. To fit his analytical solution with the field data, Weeks 

concluded that the aquifer had a horizontal to vertical permeability 

ratio of 20 to 1. Dagan contradicts this result completely by obtaining 

a horizontal to vertical permeability ratio of 2 to 1. 

The author of this study would tend to believe Dagan's result and 

would like to point out the value of Dagan's solution, which has not 

drawn much attention in the literature. His solution is obtained under 

unconfined aquifer conditions, including the vertical velocity components; 

tabular results, however, could be easily obtained by computer for a 

broad range of parameters. 

5.6 Computational Aspects of the Model 

Time step sizes in Case 1 as well as in Case 2 ranged from 0.01 days 

in the beginning of the analysis to 0.15 days toward the end of the 

analysis, with a throughput of 10 in the blocks adjacent to the well 

screen. By a throughput of 10 is meant that during a time step 10 times 

the amount of the pore volume flows through a block. 

A criterion for time step size was not developed. A solution 

obtained by Newton iteration depends upon the goodness of an initial 
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guess to start the iteration process (see Appendix A). This initial 

guess should be sufficiently close to the new solution. Huch depends 

upon the interpretation of "sufficiently close". Hence, time step size 

with the Newton iteration technique is most likely a process of trial. 

In this study, time step sizes were gradually increased until the 

solution "blew". Punched output, however, of pressure and saturation 

results of the last running timestep were obtained. This punched out-

put could then be used to restart the run from the last punched output 

on, using smaller time steps. Loading and compiling of the punched card 

deck each time was eliminated by keeping the program on tape in binary 

form. Normally, loading and compiling time for this nearly 3,000 punched 

card model consisted of 58 seconds central processor time and 108 

seconds peripheral processor time (CDC 6400 computer, SCOPE system with 

FORT RAN EXTENDED , VE RS ION 3 • 2) • 

The Newton iteration process is said to be particularly suitable 

for "physically oriented" problems. It seems, however, that the 

inflection in the solution does not quite correspond to this idea of 

"physically oriented problems", and that this is most likely the reason 

why these rather small time step sizes had to be used. Indeed, diver-

gence problems always originated in the region of inflection of the 

solution. 

With convergence criteria on S* of 0.0001 and on p* of 0.001 

the computer time required to solve for 1 time step was 4.0 seconds on 

an average for this 6 x 8 grid system. Convergence criteria were 

normally satisfied after the second or third pressure iterate. The 

first pressure iterate was usually followed by three saturation iterates, 

the second pressure iterate by two saturation iterates, and the third, 

if any, by one. 
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An evaluation of this fully implicit Newton iteration solution 

procedure with respect to implicit-explicit methods cannot be made for 

this unconfined flow case. It is believed though, that the implicit-

explicit methods would be restricted in time step size for the same 

reason as is the Newton iteration method, i.e., the inflection of the 

flow field. Therefore, a comparision of performance of both methods 

should be very similar to comparisons published by Blair and Weinaug 

(3) for confined flow coning models. Limited funds did not permit 

further experimentation. 
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6. CONCLUSIONS 

A continuous mathematical analogue of multiphase flow was derived; 

a well flow computer simulator was developed by discretizing the 

mathematical analogue with fully implicit finite differences. A positive 

answer to the question of concern in this study whether unconfined well 

flow is a multiphase flow phenomenon affecting aquifer response is 

obtained. The following conclusions were drawn: 

(1) Solving the multiphase radial flow equations with fully 
implicit finite differences and Newton iteration to solve t he 
system of non-linear difference equations is practical in 
ground water hydrology. 

(2) An original solution is obtained for free surface gravity well 
flow which is shown to be a multiphase flow phenomenon 
affecting aquifer response. 

(3) Gravity combined with the radial nature of flow seem to be 
the governing factors in determining the flow configuration , 
which deviates entirely from confined horizontal flow concepts. 

(4) The free surface profile shows a point of inflection which 
moves away from the well bore as pumping continues. The free 
surface profile is nearly horizontal near the well bore in 
case of partially penetrating wells; open to a lower portion 
of the saturated thickness. It is concluded by deduction 
that so-called fully penetrating wells nearly operate as 
partially penetrating wells; a second inflection in the free 
surface (atmospheric pressure) curve would exist near the 
well bore, very little affecting the overall radial gravity 
flow phenomenon. 

(5) An analogous behavior of the Theis solution, corrected for 
the effect of partial penetration, and the multiphase flow 
model is observed only along the bottom of the aquifer, 
where flow is horizontal. 

(6) Storage release by expansion of water is considerable during 
the first few hours of pumping and explains the inflection 
in the curves of drawdown vs. log r 2 /t, commonly observed in 
f ield data. Permeability affects the extent of this storage 
release. In a real field situation aquifer compressibility 
may be considerable. It is quite understandable that a quifer 
compressibility then will play a role in a sense that it may 
accentuate the inflecting behavior of these curves. 
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(7) The nature of the behavior of the drawdown curve in time and 
space reveals that flow in the so called cone of depression 
is insignificant with respect to the total flow phenomenon 
and hence, that delayed yield from storage, as explained by 
capillarity in this model, has very little bearing upon the 
solution. The overall drawdown in radial flow is too slow 
for capillarity to be a critical factor. 

(8) Air dissolved in the water is an important part of the flow 
phenomenon affecting the effective permeability near the well 
bore. The lower permeability the faster the air phase reaches 
its residual saturation near the well bore. 

(9) The confined flow analysis does not apply to unconfined gravity 
flow; in other words, confined flow and unconfined gravity 
flow are two different flow phenomena. There is a variety of 
undetermined factors involved when confined flow analysis is 
applied to unconfined flow, and adjusting the confined flow 
solutions to fit unconfined flow data is highly questionable . 
A good example is trying to explain discrepancies between 
unconfined flow data and confined analysis by "delayed yield 
from storage". 

(10) The Newton iteration method for solving multiphase free sur-
face gravity well flow problems seems to be affected by the 
inflecting behavior of the solution which does not seem to 
correspond to the concept of "physically oriented problems" ; 
this probably explains the rather small time step sizes. 

Finally, it is concluded that, regarding reconnnendations, the 

multiphase flow approach for solving unconfined gravity flow problems 

is a fertile field for future work. The well flow problem of this 

study is a good initiative and could now be studied under a variety of 

factors to determine the magnitude and extent of their effect upon the 

solution. This could lead to some practical guidelines for unconfined 

aquifer test analysis. 
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APPENDIX A 

THE NEWTON ITERATION PROCESS FOR SOLVING SYSTEMS OF 

NON-LINEAR EQUATIONS 

Because of its quadra·tic convergence, the Newton iteration process 

was selected: to solve the sys tern of non-linear equations as represented 

by equation 24, 25 and 26. The proof of quadratic convergence is 

presented in many standard textbooks on numerical analysis (27) or on 

functional analysis (35). 

For n-dimensional systems, as is the one in. this study, the process 

can be described as follows. Consider the following system of non-

linear equations in the dependent variable p 

F .. p .. - F. 1 .p. 1 . - F . +l ·P·+1 . - F .. 1P• . 1 - F. ·+1P· ·+1 1.,J 1.,J ,' 1.- ,J 1.- ,J 1. ,J 1. ,J 1.,J- 1.,J- 1.,J 1.,J 

+ H .. = 0 1. ,J 
(A-1) 

The coefficients F and H are fucntions of p, therefore, the 

system is non-linear in p. In vector form equation A-1 can also be 

written as 

f (p) = 0 (A-2) 

Suppo,se .. k 
p is a present solution estimate of the system f (p). 

Then, an improved estimate can be obtained by linearizing the system 

A-2, involving derivatives of evaluated at k p • This _linearized 

problem now is a system of linear algebraic equations, which is solved 

-for ~p , an increment. This "correction" increment is added to 
_,_k 
p 

to give an improved solution 

convergence is obtained. 

This process is iterated until 
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In mathematical terms the process can be sunnnarized as follows. 

To linearize the system -'-k f(p ), it is represented by the first two 

-+k p terms of its Taylor series at 

-'"k M 
= f(p) + j~l (_,,_k+l _ _,,_pk.) 

pj J 
(A_:3) 

The right hand side of this equation is the linear vector function 

of ----k p which best approximates the non-linear function 

the tangent hyper plane to the surface f(pk) 

A-3 the following linear system is obtained 

-'-k+l ---k f(pk) p = p i,j f(pk) 
t~l -'-

P_g, 

which is the general step in the iteration process, 

It is 

From equation 

(A-4) 

In this Newton iteration process the convergence very much depends 

upon a good first gu~ss 
..,.0 
p This often leads to time step restrictions 

when initial conditions are used as a first guess. Fortunately, for 

physically oriented problems, as is the one in this study, initial con-

ditions are usually good enough for 'an initial guess without a too 

severe limitation on time step size. What happens if 
.... () 
p is far away 

from the solution is a question i~possible to answer; some solution may 

eventually be approached or it may jump around the space for quite a 

distance and quite a number of steps. Bounds set to this kind of 

oscillation often leads to convergence. 
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APPENDIX B 

THE RESIDUAL APPROACH FOR SOLVING SYSTEMS OF 
EQUATIONS 

The residual approach for solving systems of equations simultaneously 

proceeds as follows in matrix notation (11). Suppose the matrix equation 

[A] [P] = [B] (B-1) 

is to be solved for the new vector P If the new P vector is 

defined as an initial guess, Pk , at new values of P , plus an error 

* vector, P , being the difference between initial guess and final 

answer , i • e . , 

(B-2) 

then matrix equation B-1 can be rewritten as 

[A] [Pk] + [A] [P*] = [B) (B-3) 

or 

[A] [P*] = [B] - [A] [Pk] · (B-4) 

or also 

[A) [P*] = [r] (B-5) 

where the r vector is the residual error and is defined by the right 

hand side of equation B-4. Depending upon the computer hardware, it is 

sometimes advisable to compute the r vector by double precision using 

the latest P values. Any matrix solution technique can then be used 

to solve for the correction vector, P*, by single precision. This 

vector is then substituted in equation B-2, using double precision, to 

come up with an improved new value. This process can be repeated until 

the desired accuracy is obtained. The residual approach is very power-

ful, because .extreme accuracy can be obtained when desired. 
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APPENDIX C 

INPUT DATA 

The aquifer properties selected for Case 1 correspond to a 

Columbia sandy loam with an average permeability of 5000 milli-darcies 

(13. 7 FEET/DAY). The saturation dependent data were obtained from 

Laliberte, Corey and Brooks (39). The fluid properties were obtained 

from Dodson and Standing (20). The well bore is screened over the 

lower 45 percent of the initial saturated thickness (136 feet), with a 

constant pumping rate of 43,200 FT3/DAY. 

The following four pages are a computer listing of the input data 

and are self explanatory. 
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6 5 .2)4)5R 

0 . I) 

. Bo 
• 4 f) 

• ') 0 
. uo 
• u () 
• ') 0 
• ,) ll 
• \) 0 
u.o 
• 2() 
.60 

1 • lJ 0 
1. 00 
I • '.J 0 
l • ;" l 
1.00 
1° 00 o.o 

0 
() 

0 
() 

(j 

0 
0 
0 

1 0 . 

O,o 

1 C, 
5oou, 

:>0()lJ • 
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i1KF'i : PHESS1JR( 
l U.36530 0 1n,3A5100 10.165300 11.365300 
ll.?15269 1) ,21~?69 13.215269 11.2152&9 
lB,63~518 18.612538 1R.h32538 1~.632538 
25, 13 4246 l~.L~4z4A ;_>5,134246 ?5,1)4?.~ 
3? .71Q 'hl 1;> ,119941 32,719'141 l?,1)9941 
4 l, 389Ro2 41. l/39802 4 l, 389802 41, 389>:!02 
5 2 .??719 ~ 5 2 ,221792 SZ,?27792 52,227792 
n5.?3•1~K 6~ 0 2343 59 ~S,23435R 65,2343S8 

<;AT r, 
• fl 0 

• rl ' ) 
• n ~I 

,nn . (\ () 
,n n 
• n ,1 

SATn 
,20 
·60 

1,00 
l , o 0 
1 • 00 
1.00 
1,0 0 
l • r r.1 

SAHi 
u 
I ; 

(1 

0 
r, 
0 
(I 
') 

.. r;/1 S SI-\ T1H,AT iUI\J 
• ri i, I • t~ (i 

• 4 i1 • V 
. uo ,0 0 
, n1J ,oo 
,:lO ,UO 
.oo ,00 
. UO ,OU 
. no ,vo 

.: OyL SATIJRATION 
.20 ,20 
,60 .60 

1. 00 1.uo 
1,0 () 1.00 
1,0 0 l,OU 
1, r.o 1.00 
l, i) (I I , 0 (I 
1. 00 ],1)0 

~AlER SAlURATION 
0 0 
() () 

() I) 
0 ll 
J u 
,.1 

\ l 
IJ 

0 
(/ 

0 

, l:l n 
,40 
,on 
• (l 0 
.oo 
,00 
.oo 
,nn 

,20 
.60 

1.00 
1,00 
1,00 
1,00 
1,00 
1,00 

n 
n 
(l 
I) 
n 
0 
n 
(l 

RAD : RADlJ (l,10RMALLYolF' R~IEL AND Rf.XT ARE' READ lf'f 

fJf.L Z 
1s 

THE RADII ARE LOGARITHMTCALLY DISTRIBUTEO• 
THE OTHER OPTION IS TO A55JGN RADII 8V 
MAKlNf, IJSE OF THE A~RA'f CARD 

.. DELTA Z ARRAY 
l 5 20 2n 30 ,,, 

Kµ 
C:MNT 
i,.;z 
CMNT 
[!l;OA 
C:MNT 
(i() 

--------------------------------------------- ·----------------------------; 
1r1. o.~~ 



I 
I 
I 
I 
I 

I 
I 

I 
I 
I 
I 
I 
I 
I 
I 

QG 

(J\tl 
CMNT 
CMNT 
CMNl 
CMNT 
CMNT 
tNOQ 
CMNT 
Ct.INT 
C'-'NT 
CMNT 
CMNT 
CMNT 
CMNf 
C:MNt 
CMNt 
CMNt 
l'!MNT 
CMNT 
CMNl 
PVTO 
l'VTO 
PVTO 
~VTO 
PVTO 
l>VTO 
PVTO 
CMNT 
tMNt 
PVTG 
PVTG 
PVTG 
~VTG 
PVTG 
PVH, 
PVTG 
CMNT 
CMNT 
PVTW 
PVTW 
PVTW 
PVTW 
PVTw 
J.:'VTW 
PVTW 
CMNT 
CMNT 
CMNT 

(). 
0. 
O• 
(l. 

O• 
(l. 

u. 'l 
() . 
u. 
0. 
u. 
o. 
(l . 

o.u 
(l. 
n. 
n • 
(l. 
0. 
(I. 
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d • o. o. 
lJ • u. n • 
[) . o. (l. 
,) . o. (l. 
u. o. (). 
d • v. 0. 

n. u. O• U• 0• O. 
o. u. D• u. 0, O. 

l•J. o.o 
l.llh(,l(i,1\1\10 Qw A~E THE. OTL • l1,\ S tt1.Nll WATt.R PROr,ur.TJ (H,J TEflMS 

1111 CASE OF A r,ONSfllillT ,H!~IIY ,THF. ~- ll-lST VALUE 15 A OIJ'1'4YtGI-IEATF"R THA~I 1 
ANIJ THE SEC:0'1111 UESlG~iATF~ T•IE VALUE" OF THE. CONSTA~•T ARRAY 
lN CASE OF A VARIA BLE l\q~AY , TH E Ft4ST VA.J..Ut. SHll11LO RF. A ZERn ANn ll-lF" 
SE.r,ONO ij~Cl'IMt.~ lMMQTERTAL. 

=a=s===•=•===•=======2=: ·=======s=========~==a===========s=====a=========== 
=•===•••••======= P ~ESSIJRt.• VoLlJMf:"' fE"IPERA TURE I NTEoPOL. AT I ON T A~LES:======== 

FLAG 

FLI\ G 

PRE«:; -·--o.n 
10. 

1 '+ • 7 
20. 
60. 
dO. 

----o.n 
l O • 0 
l '+ • 7 

20. 
1, o. n 

dO. 

----o. 
l n • 

1 '+ • 7 
cO. 
t> U • 
oO. 

':IU 
'3u 
':I .. 
VlSo 
1/15(_; 
VJSw 
IJt.NO 
Ot.NG 
llt:.Nw 

Vlc;o 

• Ot~ FOR~ATIUN VOLUM~ FACTOR 
" '3A::. FoRMATY\.J"-l VOL.UM~ FACTOR 
""NATER FORMAllON Vl)L ••MF !:'ACT OR 
= OTL vrscoSIIY (CENTTPnt5El 
= GAS VtScoSJIY (CENTtPnt,El 
= ~ATtq v1scnsITY (CEMT!~~TSEI 
: OtL DENSITY (SEE AP~Vl 
= ~AS DENSllY (SEE G~AVI 
= WAf~R DENSIIY (SEE r.PAV) 

Bu Ot~O ~5 

---- ·- ---· ... 
J. • o 1. V 

99~9. 
VI5G ----

99YQ. 
VI, •~ ----

l. 11OO0 06t> 
l • ,1 
0 QQ99Q;,S~ 
• Q '~ ~9 ~1,5t1 
.QQ "190q51j 

1. ;>'.") 
l • u r; 
1•0 

o.n 
0. 2~ 
0.01 

-· 1 • V 
l • il l 
I. 1,c 

l • 11 3::> 
l • v::, 
l • :J o 

]o94 

.onc37 

o.o 
,0230 
• {133~ 
• (14i.O 
• 1 3B0 
, 1 H~n 

o.n 

FLAG 999Q. 99Y9, 
OE.NSlTIES A~E ElfH~Q RFAU TN AS A F,,~c,tnN OF PPF~."~ rn~PUTEn W{TH F.v.~. 
Ff-!O ,'I DENSJTil:~ AT ATMO~PnER!C CnJUTTfuNS (OR STnc.c TA',1,<) ' 

-========~===================:======-====================================== 



I 

l 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 

CMNT 
CMNT 
CMNt 
CMNT 
C"' NT 
CMNt 
SATO 
SATO 
sAto 
SATO 
SAtO 
SAtO 
sAfo 
5Afo 
sa.to 
f Mlilt 
t "4Nt 
t111Nt 
E:I\IOT 
CMNT 
(.MNT 
CMNT 
GRCO 
QO 
QO 
DE.Lt 
DELt 
DELT 
PUNC ,.. 
CMNt 
ENO 

i09 

=========*••=========SATUHAT{0~ n•'• lNTEP~OLATinN TA~LF •=•••===•=•=••==== 
P~ = PFLATyVE Pf~MEA~lLlTV 
µLor,• 0r L •r.1S CAPILLARY PRt5SURf 
PCn~ = waT~R-nIL CAPILLAPY PRE«;«;URF 

5Ar ~~.OTL •K.~AS PK,~At PCOG 0 row --- ------ ---•·- ------ ---- -··-o• n o.o o• 0 v.o o.n n.o 
,1 0,0 o, J ~ o.o sin 

0 • ? 0,0 0.11 u,o 4.3347 
0,1 o,t?s o,?2~ 0,12s 3.~o 

0 • 3~ 0,JQO 0.2~ 0 • 190 2 •~~ 
n • 45 0 • 315 o.3~ o.315 2.0 
o-~o 0 • 875 o.~95 o,d7S o.~ 

l • n 1.0 1,0 110 O• O 
FLAG o.o n.v uao O• O 99Q9. 

Ttil: LAST VALUF: OF ::I\CH AHAAY IS A"I t ' tOICAlU~ FOP •Ji·4ETHE~ OP Mnt A Pi\~TlC tl• 
LA~ FtJ"lClION TS Cn'iSTANT • IT111JIC11TOR IIALUE iz 999Q. ,t-lEN Tl-tE li'fRST IIALIJE 
OF lHE ARRAY 1s TH:: co~«;lANTI 

=====•=•••=====s••==•••==••===•==••==••••=••••••••••••*•••••••=•••¥••••••== =••====•••••••••••••••==• 1~F.w TIMt STEP OATA•~•••••••••••••••••••••••••=•••• 
UELT ye; 11.ovc; TtiE LAST CA~n IN A sEt OF Ntw ttMI" sT~P CaPD5 

n 
l 
1 

.oso 

.o5n 

.051) 
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2. Input data: Case 2 
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APPENDIX C (continued) 

INPUT DATA 

The aquifer properties selected for Case 2 correspond to an 

uncons olidated sand with an average permeability of 80,000 ITlilli-darcies 

(219 FEET/DAY). The saturation dependent data were obtained from 

Laliberte, Corey , and Brooks (39). TI1e fluid properties were obtained 

from Dodson and Standing (20). The well bore is screened over the 

lower 43 percent of the initial saturated thickness (139 feet), with a 

constant pumping rate of 86,400 FT3 /DAY. 

The following four pages are a computer listing of the input data 

and are self explanatory. 



I 
I 
I . 
I 

I 
I 
I 

I 

' I 
I 
I 

I 

CMNT 
CMNT 
CMNT 
IMAX 
JMAX 
NCOM 
RWEL 
REXT 
CMNT 
CMNT 
C"'NT 
CMNT 
CMNT 
CMNt 
NEAS 
NWES 
N"40R 
CMNT 
CMNT 
CMNT 
tMNT 
C"INT 
OMEG 
CMNT 
SCON 
CMNT 
PCON 
PCON 
CMNT 
G.RAV 
CMNT 
CMNf 
CMNT 
CMNT 
CMNT 
CMNT 
CMNT 
CMNT 
CMNT 
CMNT 
C"1NT 
N01L 
NGAS 
NWAT. 
CMNT 
CMNT 
OEBll 
CMNT 
ENDS 
Cl~NT 
CMNT 
CMNT 
CMNT 
CMNT 
CMNT 
CMNT 

lil 

CASE 2 -----.. 
=========•=~===============JNPUf DAtA=•====••====•=====•==•=•==•=•=•===•=== 

ALL C~NT CARDS ARE tOMMENT CARDS AND ~RE NOT pUT ON TAPE 
6 
8 

soo 
1.0 

10000. 

1 
3 
2 

NEAStNWES.AND 
EAST UEST • AND 
l ASSIGNS A 
2 ASSIGNS A 
3 ASSIGNS A 

l • 3() 

.noo1 

.01 
•001 

IMAX• MAXIMUM l INDEX (NUMBER OF COLUMNS! 
JMAX • MAXIMUM J INDEX (NUM8ER OF ROWSI 
NCOM • NuMBE!l or COMP,U_t..A T.loN~ ( NUMBER OF TIME STEPS) 
RWEL = WELL RADtUS (FTl . 
REXT = E~TERtOR BOUNDARY RADIUS (FTl 
REXT = E~TERJOR ~OUNDARY RADIUS 

NNO~ OETEPMINE T~E fY-E OF BOUNDARY CONDITION AT ~HE 
NORTH SioE OF THE MODtL<WEST • ~ELL BOUNDARY l 
NO FLOW BOUNOAPY CONOtTION 
PRESSURE BOUNQARy CONDITION 
F'LOW RATE 

OHEG. ovER RELAKATION OMEGA 

SCON. coNVEqGENCE CRITERION ON SATURATIONS 

t;RAV :a GRAIIITY 
GRA • o. 0 
GQAV: 12,171+ 

NO G~AVITY EFFECT 
DENSITY OF FLUIDS IS USED 
SLUG/CUBie F'OOT 
SPECIFIC WEIGHT OF FLUIDS IS 
USEO ILB~/CUBtC FODtl 

PERF StANOS FoR PERFORATION Of THE GR1DS ALONG THE WELL BORE 
THE FIRST NUM8ER Is THE SuRsCRJpT OF THE PERFoPArEo ~ELL BLOr.~/ 
THE SECOND NUMBER tS THE PERFORATION 1NDEX. 
l • RLOc~ Is PEArORATEO (oTHERWISE. O) 
IF ND PERF CAQOS ARE USED•ALL PERF tNOICES ARE SET EQUAL TO ZERO 

l 
\ 
n 

NOlLtNGAS.NwAT ARE THE TURN ON nR QFF SwlTCHfS FOR THE •TL • 
GAS, ANO WATER PHASES( E•G• NWATaO MEANS N'n .tAHP PHASE! 

(l 
DEBU IS THE DEBUGGTNG SWITCH 

=•====s••••Z========•========s====•=====•====••=z=========•••========~===== 
=•=====•••========•===== ARRAY DATA•===•==•=••=••==•=•==•••=•===•=•===•=•• 
. WHEN THE ARRAY IS cONSTANT,rH~N THE VALU~ OF THE CONSTANT APPEARS ON 

fHE ARRAY NAME CARO IN COLU~NS 11-20 • -
WHEN THE ARAAy IS VARJABLE,rHEN A ZERO IS PUNCHED ON THE ARRAv NAME 
CARD I~ CnLUMNS 11-20, AND TH~ ARRAY IS PUNr.HFO PER Row w~IT~ T~E 
FORMAT 8tlX,F'ie0l • FOR EACrl NEW RO~•A NE~ CAQD TS STARTED• 



I 
lU 

PORO •S 
CMNT PORO :i PoROSJTY 
PRl!S O,o 
CMNT F'REs = PQESsu~E 

14,030000 H,030000 14.030000 14.030000 14.030000 l'+,030000 
14,6I 59Q6 14,615906 14.615906 14,615906 14,615~06 14,615906 
l0,034388 20,034388 28,034388 20,034388 20.034388 20.034388 

I 26,536728 26,536728 28 , 536728 26,536128 26,536728 26,536728 
34,123014 34,123014 34.1230}4 34.123014 34i123014 34,123014 
42,793350 42,793350 42,193350 •21793350 42,793350 42,793350 
53,631713 53,631713 53,631713 531631113 Sl,631?13 53,631713 

I 
66,638396 66,638396 66.638396 66,6383~6 66,638396 66,638396 

SAtG o,n 
CMNT SATG = GAS SATURATION 

.9 • g ,9 ,9 ,9 ,9 
,099989 ,099989 eOIJ9989 ;099989 ,099989 ,099989 

I 0 6 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 
0 b 0 i) 0 0 
0 i 0 0 0 0 

I 0 0 u 0 0 
SATO 8a6 
CMNT SATO = OTL SATURATlO~ 

it 1 n • 1 • l • 1 . ' 
I •900011 ,9oooil i900011 i90001J ,900011 ,900011 

l i 1 1 l 1 
1 i I l l 1 
l 1 1 l 1 1 
l 1 1 1 1 1 

I 1 i 1 1 1 l 
I i 1 1 1 1 

9ATW Oi il 
GMNT SATW "' WATER SATURAtlON 

I 0 0 0 0 0 0 u 0 0 0 0 0 
0 0 0 0 0 (J 
0 0 0 \) 0 b 
0 n 0 u 0 0 
0 n 0 u 0 0 
0 n 0 u 0 0 
0 0 0 u 0 " RAD I l O. 

CMNT QAO • RADII (NORMA~LY,IF RWEL ANO REXT ARE RE~ O y : , 
CMNT THE RADII ARE LOGARttHMtCALLY otsnuaurrn . 
t!MNT THE OTHER OPTION IS to ASSIGN RADII BV 
CMNT MAKlNG USE or fME AR~AY C~RO 
OELZ o.o 
CMNT OELZ • DELTA Z ARRAY 

50 
KR 

lo sonoo. 15 15 20 ?O 30 30 

CMNT KR = PE'RMEABiLITT ARRAY tN R•OIIU-CTtoN (M,0, l 
KZ 80000. 
CMNT l<Z = P~RMEABll.I'tY ARRAY TN t•OIRtctroN (MoO•) 
ENDA 
CMNt =~====••··•==•=====•===••••====•==••·••=••=••··················••=••··••=== 



I 

I 

I 

I 

QO 
QG 

QW 
CMIH 
CMNT 
CM:-JT 
CMl\l T 
CM1H 
END(~ 
CMNT 
CMNT 
CMNT 
CMillT 
CMiH 
CM•H 
CMl\lT 
CMNT 
CMNT 
CMNT 
CMl\lT 
CMNT 
CMNT 
PVTO 
PVTO 
PVTO 
PVTO 
PVTO 
PVTO 
PVTO 
CMNT 
CMNT 
PVTG 
PVTG 
PVTt, 
PVTG 
PV'TG 
PVfG 
PV re; 
CMNT 
CM1IIT 
PVTw 
PVT'II 
PVTW 
PVhl 
PVTw 
PVT"' 
PVTw 
CMNT 
CMl\lT 
CMNT 
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1 u, (). ' ) 

u." :J. n 
0 . v • (1 , o. 0 . 
0. I)• r.i. v• o. (I • 
I) • J. O, Cl . ,) . n • 
(). v. 0 . 0 , 0. f1 e 

II, 0 . (I. V • 0. n • 
n. o. O• 1) , o. n . 
o. u. ,,. ,). () . (i . 
n • o • o • n • o • r1 • 

l u . oJ , fl 
QO,qG,111~1) Q\~ 11RE f i., t: OTL • GA5 •Jlt-tf). WAH.4 PRO DllCTTO~I TER,1S 

[N CASE OF ,l cONSTANl .A.PR,\'( • THE FTQST VALUE ,~ A. l)l)r,l~Y,r;REATER (HAN , 
ANU THE SFCONI) OE51GNAJE5 THE VALUE OF THE CONSTANT ARMAY 
[N ,; A5 f JF A 1/AR/ARL. t Af~RI\Y • I~, f' TR<;T 11'4(.lJt ') •iflULIJ RE II 7-1:PQ ,HIQ TM~ 
Stc ONO BECnMES lMMAllRII\L, 

-------=-----; __________ :: ___ : ___ ;=-------=====--=-------=-=======-=-==----=~=====-=====-=-= µRESSUAf-V0L0ME•TEMPE~JITURE INT~RPOLAl10M 1A8LES= ======== 
80 = ') JL FoRMI\TtON VOLUME FllCT 1lR 
13G = 1,tiS FQRMATIOI\I VOLUME Fl\(:TL)H 
Rw : WATER ~ORMATIQN VOLUME FACTO~ 
VL<;o l)JL 1/1',cos TTY (CENTTPOISE) 
VlSG .: ,;11~ v,scnS!TY (Cl::NTJPOISEI 
Vl<;Yi; w~r~4 VTSCOSITY (t~NTIPOTS El 
11F.l\10 = on .. 11FNS 1 TY I Sf.E: t,RAV l 
'lENG .: L;~ 5 OFNSJTY (SEE: GRAVl 
DEN\4: w11,ER 1J F,•1STTY (SEE GRAY! 

pRES V!S0 BO DENO RS 

o.o 
IO. 

14 • 7 
20 , 
60. 
an. 

IJ. Q 

I i.l , O 
I '+ • 7 
20, 

&O,o 
80 , 

i) • 
l c: , 

l <+ • 7 
21) . 
l', (I . 
,rn. 

----
l. •1 1 • 0 

~··N')• 

1, :l 0/)l)066 
l. d 
, 99999258 
• 'l'l\19 36.5'1 
, 9999 ,.18Sd 

II TS G 13G 

J. .o 

1,25 
l. 0 8 

1. I) 
o, -.2 
/_l . 2 "> 
(t . I) I 

BW 

1 . ,.i 
1 • 0 l 
I • ,12 

1,oJS 
I. Q 5 
l. O" 

• 1) n2 J 7 

949'1 , 
OC:NW 

FL~ G ~i~ q . g q ~~. 

o.o 
.0230 
.0338 
.0460 
,lJB0 
• 1840 

o.o 

JE.I\JS!flES ARE fllHE.R R•I\U JN 115 A FUNCTION u • PRE.S , 0~ C'l"'Pt1Tfr) W1Tt1 F ,v, F . 
FROM 1)E 1~s111Es Al ATMOSPH;::R, : Co NfJJrinNS lOR ">TOCK f QMKl 

===:===-= ====·==--==-=-=- ·-=== -===- -=-~== =:-====:==--=~====~============-=--



I 

I 

CMI\JT 
C"1NT 
CMNT 
CMNT 
CMNT 
CMf'.IT 
SATO 
SAT O 
SATll 
SA TO 
SATO 
SATO 
SATO 
SATD 
SATO 
CM,,jT 
CMNT 
CMi\lT 
EN1)l 
CMi\jT 
CMf'.IT 
CMI\JT 
GRCO 
QO 
QO 
OELT 
DELT 
OEt. T 
PU~C'"' 
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=~===================SAT LJ ijftf{ON D6TA !NlE~POLATION TABLE ===-==========----
AK = RELATIVE PERMEABILITY 
PCOG = OJL•GAS CAPILLARY PRESSURE 
PCow; WATER-OIL CAPILLARY PMESSUkE SAr RK.OTL RK • GAS AK.WAI PCOG pcnw --- ------

11 • 0 () o.oo 0. 0 ll o.oo 
0°05 o.no 0. 0 11 o .oo .75 
0 • L 0 c,. on :l • 0 ':> 0, 0 (J 0. 6 7 (). ,o o.nq ,) • 2 3 Cl• Oli 0 • 40 
0°50 0 .24 O. 4 l 0 • 24 0.30 
0.10 (I O 46 o . 60 0 . 4,t, 1),23 
o.9o n • S•J .A ',6 66 o.so 0. IO 
]oOO I • o O I • ' l 0 1.00 o.oo 

FLA G 9g99. 
THE LAST VALUE OF EACH ARA~Y lS AN INDICATOR FOR WHFTHER OR NOT A PARTICU• 
LAR FUNCTION rs CoNSTANT • (JNOICAtOR VALUE= 9999. oTHEN THE FIRST VALUE 
OF THE ARRAY tS THE CON STANT) 

~:================:=====~:===~=====:_:::::;z:;===========================•-=========================NEW TIME ST[P DATA===============================-
DEL T IS ALWAYS THE LAST CARO IN A SET OF NEW TIME STEP CARDS 

0 
1 ' 432Q0• 
l 8 43200• 

C"1NT -·-------------------------ENO OF LNDUT DATA:------------------------------
ENO 



I 
I 

I 

I 

I 
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APPENDIX D 

SAMPLE TD1E STEP OUTPUT 

A sample time step output is given for Case 1 and Case 2 toward the 

end of the analysis. The left column of each map represents the values 

of the grid blocks adjacent· to the well bore, The right column re-

presents the exterior boundary grid blocks, 



I 
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---- --= -%------------=-------------------------==--------=-==-=---=-=-- ---

I CASE 1 T[M[ STE p 138 
CUMU!.ATJv l;: TIME 7.363 oAVS 
DEL TA•l .120 oAVS 

==:= === - =====~-•======- ======~~===2s===-=-~==•====-===~ ~==;-=a= =~ -=--=~=== 
PRESS URE MAP 

I l 2 J ,. 5 6 
1 . IOJ65C•o2 . JO J6c;f• U? .1 031,sE• oz .10J6SE• 02 • IOJ65E•o2 • I 036'>~•n? 
2 , J09 06E•02 .1091 0(• 02 .JJOSJE•Oz .13119E•02 -13216~•02 .13216f•OZ 
3 • !5954E•o2 • J595RF.•02 • 1&141,E• oz -!8517E•OZ .t8634E•Q2 .18634£•0? 
4 .22Z86E•o? .22292t• 02 ,Z2569~• 02 •25009f•02 .2S1J1E•o2 .7!'137E'•02 

.29429E•o2 .29443[• 02 .3 U0 181: • U2 ,3258SE•ll2 .32723E•o2 • 327?3E +OZ 
6 . :1 6739E•o2 . 3666Z[ • C2 .J84bSE• 1J 2 • it 1 Z'ISE'•l12 •'tl 393E •02 .41393(•02 
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APPENDIX E 

LIST OF SYMBOLS 

2 = Cross sectional area of flow (FT) 

Formation volume factor 

1 
B 

Conversion factor: . for units of psi, cen ti poise, 
milli-darcy, and feet, c = 0.00633 

Acceleration due to gravity 

= elevation above refetence plane (FEET) 

= Saturated permeability (intrins~c): md. 

= Relative permeability 

= Mass rate of depletion 

= Pressure (psi) 

n+l k p - p 

= Capillary pressure 

Pressure in the non-wetting phase 

Pressure in the wetting phase 

Capillary pressure b_etween oil and gas phase 

Capillary pressure between oil and water phase 

Flow rate (FT3/DAY) 

Flow rate, sink(+), or source(-) 

= Oil, gas and water residual terms 

= S6lution gas-oil ratio 

Fluid saturation 

Bulk volume of differential -element 

= Center of mass of differential element in x-
direction 



Subscript A = 
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APPENDIX E (con~inued) 

LIST OF SYMBQLS 

Aquifer conditions 

i = ·Number of columns in grid system 

j = Number of rows irr grid system 

g = Gas phase 

0 Oil phase 

w = Water phase 

u = Upstream 

E,W,N,S = East, West, North, South 

Superscript n Present time level 

n+l = New time level 

k = k-th level of iteration 

l:,x ,t:,y ,t:,z ,t:,r = Finite spatial increments 

l:,t = Finite time increment 

V = Gradient 

t:, Difference operator (equation 23) 

µ = Fluid viscosity (centipoise) 

p Fluid density 

</> = Porosity 

= Potential 

t n = Napierian logarithm 


	ETDF_Brutsaert_Willem_1970_May_001
	ETDF_Brutsaert_Willem_1970_May_003
	ETDF_Brutsaert_Willem_1970_May_004
	ETDF_Brutsaert_Willem_1970_May_005
	ETDF_Brutsaert_Willem_1970_May_006
	ETDF_Brutsaert_Willem_1970_May_007
	ETDF_Brutsaert_Willem_1970_May_008
	ETDF_Brutsaert_Willem_1970_May_009
	ETDF_Brutsaert_Willem_1970_May_010
	ETDF_Brutsaert_Willem_1970_May_011
	ETDF_Brutsaert_Willem_1970_May_012
	ETDF_Brutsaert_Willem_1970_May_013
	ETDF_Brutsaert_Willem_1970_May_014
	ETDF_Brutsaert_Willem_1970_May_015
	ETDF_Brutsaert_Willem_1970_May_016
	ETDF_Brutsaert_Willem_1970_May_017
	ETDF_Brutsaert_Willem_1970_May_018
	ETDF_Brutsaert_Willem_1970_May_019
	ETDF_Brutsaert_Willem_1970_May_020
	ETDF_Brutsaert_Willem_1970_May_021
	ETDF_Brutsaert_Willem_1970_May_022
	ETDF_Brutsaert_Willem_1970_May_023
	ETDF_Brutsaert_Willem_1970_May_024
	ETDF_Brutsaert_Willem_1970_May_025
	ETDF_Brutsaert_Willem_1970_May_026
	ETDF_Brutsaert_Willem_1970_May_027
	ETDF_Brutsaert_Willem_1970_May_028
	ETDF_Brutsaert_Willem_1970_May_029
	ETDF_Brutsaert_Willem_1970_May_030
	ETDF_Brutsaert_Willem_1970_May_031
	ETDF_Brutsaert_Willem_1970_May_032
	ETDF_Brutsaert_Willem_1970_May_033
	ETDF_Brutsaert_Willem_1970_May_034
	ETDF_Brutsaert_Willem_1970_May_035
	ETDF_Brutsaert_Willem_1970_May_036
	ETDF_Brutsaert_Willem_1970_May_037
	ETDF_Brutsaert_Willem_1970_May_038
	ETDF_Brutsaert_Willem_1970_May_039
	ETDF_Brutsaert_Willem_1970_May_040
	ETDF_Brutsaert_Willem_1970_May_041
	ETDF_Brutsaert_Willem_1970_May_042
	ETDF_Brutsaert_Willem_1970_May_043
	ETDF_Brutsaert_Willem_1970_May_044
	ETDF_Brutsaert_Willem_1970_May_045
	ETDF_Brutsaert_Willem_1970_May_046
	ETDF_Brutsaert_Willem_1970_May_047
	ETDF_Brutsaert_Willem_1970_May_048
	ETDF_Brutsaert_Willem_1970_May_049
	ETDF_Brutsaert_Willem_1970_May_050
	ETDF_Brutsaert_Willem_1970_May_051
	ETDF_Brutsaert_Willem_1970_May_052
	ETDF_Brutsaert_Willem_1970_May_053
	ETDF_Brutsaert_Willem_1970_May_054
	ETDF_Brutsaert_Willem_1970_May_055
	ETDF_Brutsaert_Willem_1970_May_056
	ETDF_Brutsaert_Willem_1970_May_057
	ETDF_Brutsaert_Willem_1970_May_058
	ETDF_Brutsaert_Willem_1970_May_059
	ETDF_Brutsaert_Willem_1970_May_060
	ETDF_Brutsaert_Willem_1970_May_061
	ETDF_Brutsaert_Willem_1970_May_062
	ETDF_Brutsaert_Willem_1970_May_063
	ETDF_Brutsaert_Willem_1970_May_064
	ETDF_Brutsaert_Willem_1970_May_065
	ETDF_Brutsaert_Willem_1970_May_066
	ETDF_Brutsaert_Willem_1970_May_067
	ETDF_Brutsaert_Willem_1970_May_068
	ETDF_Brutsaert_Willem_1970_May_069
	ETDF_Brutsaert_Willem_1970_May_070
	ETDF_Brutsaert_Willem_1970_May_071
	ETDF_Brutsaert_Willem_1970_May_072
	ETDF_Brutsaert_Willem_1970_May_073
	ETDF_Brutsaert_Willem_1970_May_074
	ETDF_Brutsaert_Willem_1970_May_075
	ETDF_Brutsaert_Willem_1970_May_076
	ETDF_Brutsaert_Willem_1970_May_077
	ETDF_Brutsaert_Willem_1970_May_078
	ETDF_Brutsaert_Willem_1970_May_079
	ETDF_Brutsaert_Willem_1970_May_080
	ETDF_Brutsaert_Willem_1970_May_081
	ETDF_Brutsaert_Willem_1970_May_082
	ETDF_Brutsaert_Willem_1970_May_083
	ETDF_Brutsaert_Willem_1970_May_084
	ETDF_Brutsaert_Willem_1970_May_085
	ETDF_Brutsaert_Willem_1970_May_086
	ETDF_Brutsaert_Willem_1970_May_087
	ETDF_Brutsaert_Willem_1970_May_088
	ETDF_Brutsaert_Willem_1970_May_089
	ETDF_Brutsaert_Willem_1970_May_090
	ETDF_Brutsaert_Willem_1970_May_091
	ETDF_Brutsaert_Willem_1970_May_092
	ETDF_Brutsaert_Willem_1970_May_093
	ETDF_Brutsaert_Willem_1970_May_094
	ETDF_Brutsaert_Willem_1970_May_095
	ETDF_Brutsaert_Willem_1970_May_096
	ETDF_Brutsaert_Willem_1970_May_097
	ETDF_Brutsaert_Willem_1970_May_098
	ETDF_Brutsaert_Willem_1970_May_099
	ETDF_Brutsaert_Willem_1970_May_100
	ETDF_Brutsaert_Willem_1970_May_101
	ETDF_Brutsaert_Willem_1970_May_102
	ETDF_Brutsaert_Willem_1970_May_103
	ETDF_Brutsaert_Willem_1970_May_104
	ETDF_Brutsaert_Willem_1970_May_105
	ETDF_Brutsaert_Willem_1970_May_106
	ETDF_Brutsaert_Willem_1970_May_107
	ETDF_Brutsaert_Willem_1970_May_108
	ETDF_Brutsaert_Willem_1970_May_109
	ETDF_Brutsaert_Willem_1970_May_110
	ETDF_Brutsaert_Willem_1970_May_111
	ETDF_Brutsaert_Willem_1970_May_112
	ETDF_Brutsaert_Willem_1970_May_113
	ETDF_Brutsaert_Willem_1970_May_114
	ETDF_Brutsaert_Willem_1970_May_115
	ETDF_Brutsaert_Willem_1970_May_116
	ETDF_Brutsaert_Willem_1970_May_117
	ETDF_Brutsaert_Willem_1970_May_118
	ETDF_Brutsaert_Willem_1970_May_119
	ETDF_Brutsaert_Willem_1970_May_120
	ETDF_Brutsaert_Willem_1970_May_121
	ETDF_Brutsaert_Willem_1970_May_122
	ETDF_Brutsaert_Willem_1970_May_123
	ETDF_Brutsaert_Willem_1970_May_124
	ETDF_Brutsaert_Willem_1970_May_125
	ETDF_Brutsaert_Willem_1970_May_126
	ETDF_Brutsaert_Willem_1970_May_127
	ETDF_Brutsaert_Willem_1970_May_128
	ETDF_Brutsaert_Willem_1970_May_129
	ETDF_Brutsaert_Willem_1970_May_130



