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ABSTRACT OF DISSERTATION

IMMISCIBLE MULTIPHASE FLOW IN GROUND WATER HYDROLOGY:
A COMPUTER ANALYSIS OF THE WELL FLOW PROBLEM

A mathematical analogue of immiscible multiphase flow in porous
media is derived considering three compressible fluids -- two liquids
and one gas. Isothermal conditions are assumed so that fluid properties
such as compressibility, density, viscosity, and solubility of gas in
the liquid are functions of fluid pressure only.

A well flow computer simulator is developed by discretizing the
mathematical analogue with fully implicit finite differences. A Newton
iteration scheme is utilized to solve the system of non-linear dif-
ference equations.

The problem solved in this study is that of free surface gravity
well flow, including the effect of partial penetration. A theoretically
accurate solution is obtained concluding that unconfined well flow is
a multiphase flow phenomenon affecting aquifer response. The importance
of capillarity, of air dissolved in water, of water compressibility, as
well as the effect of the multiphase flow approach upon the shape of
the free surface are discussed. Practically, it is concluded that
confined well flow analyses do not apply to free surface gravity well
flow problems.

Willem Brutsaert
Department of Civil Engineering
Colorado State University

Fort Collins, Colorado, 80521
May, 1970
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1. INTRODUCTION

1.1 Problem Statement

When liquids or gases filter into or through soils, other fluids
are displaced or adsorbed. When the fluids are separated by sharp
interfaces, the phenomenon is called immiscible multiphase flow. In
this study, only immiscible fluids are considered; this phenomenon
will simply be called multiphase flow.

The general multiphase flow system of this study consists of a
ground water reservoir with air overlaying fresh water, the fresh water
in its turn overlaying brine, or of a petroleum reservoir with gas
overlaying oil, the oil in its turn overlaying water or brime. The
gaseous phase on top will never be in contact with the lowest liquid
phase, such that the middle phase, o0il or fresh water, will be the
dependent phase. A pumped well will produce the dependent phase,
oil or fresh water. In the petroleum technology, this is a typical
coning problem where gas and water are coning into the oil phase
under the effect of pumping, usually a confined system. In ground
water hydrology, generally it can be a free surface gravity well flow
problem, where air and salt water are coning into the pumped fresh
water phase; more simply, when the air phase is missing, it can be a
fresh water-salt water confined coning problem; when the salt water
phase is missing, it can be an unconfined free surface gravity well flow
problem. It is this last problem which is of interest in this study.

To present, the problem of multiphase unconfined free surface
gravity well flow is unsolved. Mathematical complexity is the

obstacle. The multiphase flow process is represented by a system



of non-linear partial differential equations, one for each phase,
resulting from a combination of the continuity principle with Darcy's
law. Avoiding the mathematical complexity of multiphase flow, a
non-linear unconfined one phase flow equation can be obtained, assuming
that the flow is horizontal and that all storage comes from the
immediate drawdown at the free surface. To date, even this relatively
simple equation is not known to have an analytical solution, so that
solutions of a linear confined horizontal flow equation were extended
to the unconfined flow case.

The only hope for solving the multiphase flow system is by
numerical techniques. In the past, the numerical solution of the
multiphase flow equation in radial flow coordinates was a very dif-
ficult and uneconomical problem, with computer time often exceeding
real flow time. Therefore, very little numerical work, and only under
confined flow conditions, has been done in radial coordinates. The
main problem was compufational instability near the well which resulted
from high flow velocities in this region, and at the same time from the
explicit evaluation (at the old time level) of coefficients in an
implicit (at the new time level) difference scheme. In multiphase
flow, these coefficients consist of highly non-linear saturation
dependent functions. The completely implicit treatment of the finite
difference equations is a way to avoid this computational instability
but results in the simultaneous solution of a svstem of non-linear
equations -- a difficult problem in itself. It is the fully implicit
scheme which will be explored in the numerical approach of this study.

The study of multiphase free surface well flow is important in

the light of aquifer test analysis. It appears from the literature



that the practice of analyzing unconfined aquifer data with confined
flow analytical solutions to obtain aquifer characteristics is highly
questionable. It is the author's belief that fully saturated confined
and free surface well flow are two totally different flow phenomena.
Under some circumstances, especially in finer materials such as silt
and clay aquifers, capillarity becomes important. A considerable
portion of the unconfined flow phenomenon may take place in the cone
of depression. This may affect the aquifer response to drainage or
pumping. Also, when a well is pumped, the pressure declines around
the well bore. Air dissolved in the water may evolve from solution
and occupy space, decreasing the effective permeability to water. At
first, the liberated air exists as small isolated bubbles, but may
become continuous when a critical air saturation is attained. At this
point, air would start to flow. If the well is pumped at a constant
pressure, its discharge will decline.

It is concluded that the free surface well flow problem is
a multiphase flow phenomenon and should be treated accordingly. In
the light of an ever increasing fresh water demand, the proper evalua-
tion of unconfined aquifer characteristics is of utmost importance.
It is hoped that with this study a contribution is made toward better

management of the total water resource.

1.2 Objectives

This dissertation is concerned with the question whether unconfined
well flow is a multiphase flow phenomenon affecting aquifer response.

An answer is pursued by:



(1)

(2)

(3)

4

Development of a two-dimensional three-phase mathematical
simulator of the well flow problem, by approximating the
fundamental flow equations with finite differences.
Development of a completely implicit difference analogue

for solving the flow equations, attempting to make multiphase
radial well flow models economically feasible.

Evaluation of the multiphase flow approach by comparing
solutions obtained in this study with previous analytical

approaches.



2. HISTORY OF MULTIPHASE FLOW

2.1 Multiphase Flow and Ground Water Hydrology

Multiphase flow in porous media is not a new concept. Petroleum
engineers have been concerned with the simultaneous flow of liquids
and gases for several decades; to date, through laboratory studies and
mathematical simulation, three-dimensional three-phase flow problems
are fairly well understood.

Soil physicists and drainage and irrigation engineers, concerned
with the infiltration and the distribution of water in the upper soil
profile, realized as early as 1907 (Buckingham, 14) that in unsaturated
soils, water will flow from points of higher head to points of lower
head, causing differences in moisture content. To date, all analytical,
numerical, and laboratory work in this field is still centered around
the thesis of Richards, published in 1931 (47). He assumed that no
flow occurs in the air phase, in other words, no pressure gradients,
and that the movement of the water may be defined without reference to
the other fluids (air) contained in the pores.

As opposed to the abundant literature on multiphase flow in the
petroleum industry, and on the Richards approach in the field of
irrigation and drainage, literature on this subject in ground water
hydrology is completely lacking. To date, all problems in ground water
hydrology have been treated solely from a one phase flow point of view.
In other words, the porous medium is always fully saturated with water
and the flow or displacement of air is totally disregarded. It was
realized, however, that the free surface flow problem is not a phenom-

enon in which water is instantaneously released from storage. This



assumption was used in all analytical studies of confined flow and was
applied to unconfined flow problems.

Physical aspects of multiphase flow such as capillarity, the
extension of Darcy's law to unsaturated porous media, and the concept
of relative permeability are beyond the scope of this study. They were
previously discussed by i.a. Muskat (43), Scheidegger (49), Childs

(15), Morel-Seytoux (42), Corey (18), and Bear et al. (1).

2.2 Radial Multiphase Flow Simulation

For extensive treatments of multiphase reservoir simulation the
reader is referred to i.a. Breitenbach et al. (9, 10, 11), Dougherty
and Mitchell (21), Earlougher (24), Fagin and Stewart (25), and Odeh
(45). Because of numerical difficulties, very little simulation has
been done in radial coordinate systems such as well flow problems and
coning studies. The reasons for these numerical difficulties stem
from the very nature of the radial coordinate system. Since detailed
pressure and saturation distributions are required around the well
bore, grid blocks near the well bore should be small, resulting in
anisotropy in the geometry of the grid block configuration. Moreover,
steep pressure gradients leading to high flow velocities do occur in
the vicinity of the well bore. Also, due to the highly non-linear
saturation dependent functions of the multiphase flow system, severe
computational instability in the form of saturation oscillations in
the grid blocks near the well bore often occurs. To retain stability,
time steps are to be reduced considerably, often to the point where
computer time exceeds real flow time. Hence, these studies became

economically unfeasible. It is evidenced by the literature that



instability may result when the highly non-linear saturation dependent
coefficients of the finite difference equations are evaluated at the
beginning of a time step and held constant throughout that time step.
This technique is sometimes called "implicit-explicit" or also 'mixed".

Welge and Weber (71) studied single well coning behavior with
two-phase, two-dimensional, incompressible fluid flow equations, solved
by the alternating direction implicit procedure. Several examples of
water and gas coning calculations, including studies in both laboratory
models and producing wells, are presented. They experienced the
above described oscillation near the well bore, which they described
as a drastic fluctuation yielding meaningless results,

Blair and Weinaug (3) demonstrated the oscillatory behavior in a
coning problem by comparing a fully implicit scheme with an implicit-
explicit scheme. In the fully implicit scheme, all quantities in the
distance difference are evaluated at the new time level. For the same
size time step, the fully implicit scheme gave a stable solution,
whereas the mixed technique wildly fluctuated. By using the fully
implicit scheme, they experienced an increase in computer time of two-
to-threefold as compared to the mixed techniques, The following
advantages were mentioned: (1) The implicit difference equation is
stable in cases where the mixed equation is not. (2) The implicit
equation has lower time truncation than the mixed equation, permitting
longer time steps to be taken.

Spivak and Coats (55) state that in coning probiems the numerical
instability is due to the explicit handling of saturation dependent
transmissibilities (transmissibilitv in their study is defined by the

coefficients of the discretized flow equations) and production terms



in the finite difference solution of the flow equations. Their examples
show that the implicit handling of production terms alone can result in

a fivefold increase in permissible time step for a coning simulation with
virtually no increase in computing time per time step. Updating the
production terms without updating transmissibilities is questionable,
although their concern of eliminating the instability encountered in
coning simulation without introducing the complexity of the fully implicit
scheme is well founded.

From the above studies on modeling of coning problems it appears
that the fully implicit finite difference scheme offers a great chal-
lenge for solving non-linear muliphase well flow problems. Unfortu-
nately, the fully implicit scheme results in a set of non-linear
difference equations to be solved simultaneously.

Newton's method, also called the Newton iteration process or
Newton linearization, is mathematically the most preferable of the
several known methods for the solution of systems of non-linear
equations because of its quadratic convergence (64). Practically,
however, a very important limitation on Newton's method and, in fact,
on all of the so-called functional iteration methods, is that it does
not generally converge to a solution from an arbitrary starting point.
Thus Newton's method may fail to converge if the initial estimate is
not sufficiently close to the root. Its theory and extension to
n-dimensional vector spaces appears in a number of standard textbooks
on functional analysis or numerical analysis (27, 28, 35, Appendix A).

Blair and Weinaug (3) demonstrated the applicability of Newton's
method in coning problems. They concluded that the Newton method is

entirelyv practical for multiphase flow problems. 1In their approach the



flow equations were solved simultaneously. In this study, however, it is
thought that advantage can be taken of the quasi-linear nature of the
pressure dependent functions. This can be done by reducing the three
flow equations into a single equation in terms of pressure of one of the
phases, and three saturation equations. The newton linearization
process is first performed on the pressure equation which is then solved
for pressures. Subsequently, the saturation equations are Newton-
linearized and iterated upon, until saturations are compatible with the
first pressure iterate. This process is called a 'Newtonian iterate'
and is repeated until a convergence criterion is met., It is felt that
a more efficient Newtonian iteration scheme can be obtained by using
this separation technique. One Newtonian iterate on pressure should
often lead sufficiently close to the final answer. A similar separation
technique of the flow equations is very popular in reservoir simulation.
The pressure equation is obtained in a manner which eliminates all time
derivatives, or differences, of saturations. The resulting pressure
equation is then solved implicity, followed by an explicit updating of
saturation; this separation principle was proposed independently by
Stone et al. (61) and by Sheldon et al. (51) in 1960.

It is apparent from this short literature survey that the numerical
solution of the radial multiphase flow equations may have become
economically feasible and that existing methods can possibly be

improved upon.
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3. MATHEMATICAL ANALOGUE OF MULTIPHASE FLOW

Mathematically, multiphase flow can be very conveniently described
in terms of equations. The principle of continuity (mass balance) is
combined with Darcy's law and with thermodynamic relationships which
describe the pressure-volume-temperature behavior. For each of the
different phases, a set of non-linear partial differential equations of
the parabolic type will result, commonly called the fundamental flow
equations. Complete derivations of these equations can for example
be found in Muskat (43) and Breitenbach et al. (10).

The following derivation is valid for isothermal three-phase, two-
dimensional flow. The isothermal condition is assumed for simplicity.
The derivation is done in a general way such that either rectangular
(vertical cross sections) or radial coordinates apply, depending upon
the definition of cross-sectional area of flow in Darcy's law, and pore
volume. The two dimensions considered in this study are the horizontal
and the vertical. Radial symmetry is assumed. The three phases con-
sidered are two liquids and one gas. For convenience, the two liquids
are given specific names, oil and water, with the understanding
that they could have been any two other immiscible liquids. The gas
phase will be in contact only with one of the liquids, oil in this case.
Consequently, gas dissolves in the oil, but not in the water and also,
only the gas-oil and oil-water capillary pressure relationships are to
be considered. The two-phase air-water abstraction, as will be used
in this study, is easily deduced from this general three-phase flow

case, i.e., all characteristics and assumptions of the oil and gas
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phases can be simply translated upon the air-water system, disregarding
the third phase (water) in the general three-phase model.
Because of the isothermal assumption, the fluid properties such as

viscosity, density and gas-liquid solubility will only depend upon

pressure.

3.1 The Mass Balance Equations

The mass balance in its simplest form for the differential element

of Figure 1 states that for any of the phases the mass flow out of the

— — i —

(0q) (% ,;)
Py —s j @
(8] /,_. [

Figure 1. Differential element for developing the mass balance equations.
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element subtracted from the mass flow into the element is the rate

change of mass (change in storage), at aquifer conditions, i.e.:

(op I oue = Pp Wiy = - g‘f oy V, 98) (1)
in which: Pp = fluid density at aquifer conditions
q, = flow rate at aquifer conditions (FT3/day)
Vb = bulk volume of differential element
¢ = porosity
S = fluid saturation.

Proceeding now for one of the phases, say oil, it can be also said
that the net mass flow or the left hand side of equation 1 is the mass

rate of depletion (MROD) of the differential element:

(MROD)O (DOA qu)xo+s - (poA qu)xO-G x o qop (2)
in which: X, = center of mass of differential element
qOp = flow rate sink (+) or source (-), commonly called

the production term

]

subscript o = o0il phase

¢ = distance of left face of element to center of mass

€ = distance of right face of element to center of mass.
Considering the mass flow function as a continuously differentiable
function in time and space, it can be expanded about the center of
mass (xo) of the differential element by Tavlor series:

} 8 1 92 g
(poA qu)xO—é - (DOA qu)xO T oax (poA qu)xo (8) + 27 %2 (poA qu)(G)—..

(3)

and also:
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2
d 1 32 o
(poA qu)x0+€ - (poA qu)xo 4 52'(90A qu)xo (e) + 2! ax2 (OoA qu)(E) e

(4)

In the limit, when Ax goes to zero, the second order terms and
higher of equations 3 and 4 can be neglected. This argument holds only
when deriving a differential equation. When deriving finite differences,
however, by Taylor series expansion, second and higher order terms
cancel because of the linearity principle between nodes in the discre-
tization process. After subtracting equation 3 from equation 4, and
substituting the result into equation 2, the following expression for

MROD is obtained (note: € + & = Ax)

9
1 =
(JRDD)O - (00! qog) . Ax * o qop (5)

The complete mass balance equation then in two dimensions for oil

flow under aquifer conditions becomes

9
q == a_t CDOA Vb ¢ SO) (6)

]
Bz & 9z o ‘op

+
(OoA qu)zO&z =P

2 (o, q,p)
dx “T0A oA X,
It is practical to translate equation 6 to surface conditions or
atmospheric conditions. For this purpose it will suffice to define a
factor B, commonly called formation volume factor (F.V.F.) in the
petroleum technology; it is a ratio which relates aquifer volumes to
surface volumes, hence, a fluid compressibility factor. If it is fur-
ther assumed that the bulk volume, Vb , is invariable, that the
porosity is constant in time, and that during a time step the surface

(atmospheric) pressure is invariant in space and time, the mass balance

equation finally becomes:
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qu

B
o

9
ST

X

3 [qu
B
(o]

d So
= —_— = 7
Az Vb ¢ ot |B 2 qop 2

The assumption of constant porosity in time can create serious problems
in subsiding unconfined aquifers. The problem of subsidence is not
considered in this study.

Analogously, the mass balance equation for water would be:

RN

B
W

9

90X

3
Ax + 3z

q 9 S

To obtain the gas balance equation, two separate mass flows are to
be considered, (1) mass flow of free gas, and (2) mass flow of gas in
solution in the oil. With the definition of Rs , the solution gas
ratio, to relate a standard volume of gas dissolved in a standard
volume of liquid (oil) at aquifer conditions, the gas balance equation

can be conveniently written as:

q q S Rs S
5 (%gA . Rs 3 gh . Rs B 3 o
9= | B_ T8 Y ¥tz |3 'E %a| 2=V eals YR T 9
g o g o o
(9)

in which qu is the total gas production term (free gas plus solution

gas) .

3.2 The Fundamental Flow Equations

To obtain the fundamental flow equations from the mass balance
equations 7, 8 and 9, it suffices to accept the validity of Darcy's law
under multiphase flow conditions, in which for each of the phases
permeability is now a function of saturation. Rigorous discussions of

the validity of this postulate were made previously in the literature
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(15, 43, 44, 49). The flow potential involves a pressure force, a
capillary pressure force and a gravitational force. Capillarv pressure

conveniently relates pressures of the different phases. This relation-

ship is:
B, ™ P B (10)
in which Py = capillary pressure
pnw = pressure in the nonwetting phase
p, = pressure in the wetting phase.

Discussions of the phenomenon of capillarity, its dependence on satura-
tion and its importance in multiphase flow are numerous (15, 18, 42, 43).
Unfortunatelv, capillary pressure is not a single valued function of
saturation but is affected by hysteresis (1, 15, 42). 1In this study of
gravity drainage of an aquifer bv a pumped well, a single valued
capillary pressure versus saturation relationship obtained under
draining conditions applies.

With Darcy's law, the capillary pressure relation, and using the

0il pressure as the reference pressure, the volumetric flux terms "g"

become:
k kro
A b __E__ (vpo +00Ath) (11)
(9]
q,=-ASE (Vp + T 4+ gVh) (12)
gA H o co A
g
Uk m o B g +
By ( p0 pcow LJwAth) (13)



in which: P

cog

cow

g

v

Subscript A

= 0il pressure

= capillary pressure between the oil and gas phases

16

= capillarv pressure between the water and oil phases

= fluid density

= elevation above a reference plane
= permeability (intrinsic)

= relative permeability (fraction of

= cross-sectional area of flow

= fluid viscosity

= acceleration of gravity

= gradient

aquifer conditions.

k)

Substituting equations 11, 12 and 13 into equations 7, 8, and 9,

the fundamental flow equations result
o fkkro, 4 L0 [kkeo, o, 2 S
ox (B_u_'x oax " G5z (B_u_"z of b ? 3t |B
oo
9|k krg_p 2, W ¥ 3 |k krw A BQw\ﬁ =V ¢ 9 | _w
ax |B_ u_ "x ox oz (B u "z oz 27 % ¥ 5t
wow w w
< a0 39 s 30
3 |k krg A £ 4 ps k kro K —3 x4 9 |k krg X
3x {B p X 9X B u X 98X 2z |\B u 3
g B o 0 g g
s g
& m .8
= - 4
Vb¢ et KB R - qu
e o

i (14)
(15)
wp
5 k kro BQ\
S
B u

(16)
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in which:
¢0 P & Pon B b (17)
Qg =R F Peog + Pop # h (18)
¢w - po - pcow * pwﬁ & b (15

Equations 14, 15, and 16 are non-linear parabolic partial differential
equations, each having the two dependent variables, pressure and satura-

tion. They are linked bv the following saturation relationship:

S +S +S =1.0 (20)
o o w

Together with equation 20, they constitute the mathematical analogue of
three-phase flow in porous media. To date, numerical methods are the
only means for solving them.

To summarize the above derivation the important assumptions and
conditions under which the equations hold are listed below. Their
significance is given in the previous text.

- Two dimensional flow (x,z or r,z directions with radial symmetry)

- Three-phase flow (oil, gas, water): phases immiscible

- Isothermal flow (fluid properties only function of pressure)

- Darcy's law applies under multiphase flow conditions

- The gas phase is in contact with the oil phase only, and therefore
only dissolves in oil

- Gas dissolved in the o0il retains its molecular identity (no
chemical bounding)

~ Surface conditions are invariant in space and time

- Pore volume is incompressible.
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4. COMPUTER SIMULATION OF MULTIPHASE FLOW

The construction of the computer simulator requires the flow region
(vertical cross section) to be superimposed by a discrete grid system.
Figure 2 shows an isolated grid block (central block) together with its

neighboring grid blocks, or cells, and (i,j) indexing.

i, -1

v

i-1,5 | 1,5 |i+l,3 o

i, §+1 J

Figure 2. Grid system used for discretization
of the continuous equations.

The network of reservoir elements, or the computation grid, conforms
to the geometry of the actual reservoir system. The fundamental flow
equations 14, 15 and 16 in discretized form apply to each of the in-
dividual elements; in other words, a mass balance is performed on each

of the blocks.

4.1 The Finite Difference Form of the Flow Equations

The finite differences used to discretize the differentials of

equations 14, 15 and 16 will be of a fully implicit nature, which means
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that the flow equations are discretized at the new time level. Using
centered finite differences, the r-component of the oil equation in the

grid configuration of Figure 1 becomes

® -®
2k kro 3‘1’0\ — o M X
2 L1178 .
or\B_mu_ r BI} B u, r|i 123 T
° -0
k kro i+1’j i)j 21
+ (50 b Ar) 141/2, 3 AT (21)

k kro
Bo“o
be representative for both cells (i,j) and (itl,j), which is explained

The subscript i+1/2,j means that the function

Ar| is to

in section 4.2.

To conveniently write the rather lengthy finite difference forms
of the flow equations, the following notations will be defined and

adhered throughout this dissertation.

k kro bo
—_— A = CO
uo
k krg b
—~——1I A = CG (22)
g
k krw bw
A = CW
u
W
. . 1
in which b = 3

The subscripts i-1/2, i+1/2, j-1/2, and j+1/2 will be respectively
replaced by the letters ¥, E, N, and S, the idea being the West,

East, North and South side of a cell. A difference operator is defined
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as follows

ACO Ao = Eﬁw ® - + CO.[® -0 + Co_ (o -0

Note that CO, CG, and CW stem from the contraction of CO, CG,
and CW with the spatial increment Ar or Az in the denominator of
the spatial differences of equation 21.

With the above definitions in mind the fundamental flow equations

in discretized form become

—n+1 n+l

aC0™ a0 = (b s )™ - (b5 )™ + g (24)
acett A¢2+1 + ARs EB“+la¢2+1
=.%€ [(bg sg)“+l - (bg sg)“ + (Rs b so)“+1— (Rs b So)n] * g
(25)
G aemt = o, s )™ - (b, s )"+ q (26)

The superscripts n and n+l respectively refer to the present
and new time level. The coefficients CO, CG, and CW are seen to be

written at the new time level and since thev are pressure and saturation
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dependent, equations 24, 25 and 26 constitute a syster of non-linear

equations to be solved simultaneously.

4.2 The Flow Coefficients of the Discretized Flow Equations

The flow coefficients Ea, EE, and CY of the flow equations
determine the ability of flow between any two cells, and hence they
should involve the medium and fluid properties of both cells.

In Figure 3, two cells (cell 1 and 2) in the r-direction of a

radial coordinate svstem are considered.

[ 2 ~
P N
; ko A
) ~ N\
- ~
, L 1 |» 2> [T
.c. \.} o \ Az
i,j i,3+1
) ¢

e Ar, —*_— ﬁrz__b’

Figure 3. Segment of annulus, showing blocks in radial
coordinate system.
Let m represent the face (vertical) between cell 1 and 2. At
any point in the r-direction, the rate of flow of any of the phases is

defined by Darcy's law:

= (kkrby . 30
q=( = ) 2nr Az (27)
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Since fluid and medium properties are constant in space within anv

one cell, it is possible to integrate the differential equation 27 from

the center of cell 1 to its face m to come up with an expression of

flow between these two points:

27 Az
k kr b 1
Qg ® ( = )1 Ml (¢m - @1) (28)
e Lol \
n
Yy o
Likewise,
k kr b
9.5 = & ” ) (¢, - ¢ ) (29)
and by continuity
Yo = Ip-2 = ¢ (30)

From equation 28 and 29 one obtains:

Ar

1
0 e |
1 1
& - & = (31)
m 34 27 kl krl ézl
|
T \
2 g
q; & ﬁrz J(b)‘,1
el (32)

o, - & =
2 m 27 k2 kr2 f\.ZZ
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Adding equation 31 and 32 and rearranging, an expression of the

flow between two blocks is obtained

2n(k kr E\z)1 (k kr ﬂz)2
i b @, - o)

tﬂ (k kr Az} En{r +r 2 1 +l l%)Z(k kr Az)l jin]—L ‘
! \ L

(33)

If discontinuities in permeabilities are allowed to occur at the
nodes of the cells, so that permeabilities would change ffom node to
node, if the relative permeability is assigned at the cell from which
the flow emanates (upstream block), and if the pressure dependent

functions b and p are averaged over the two blocks, then equation

33 simplifies to give

b 2n(k  Az),
q = key (o)) — Uy =y (34)
&n 5
1

The subscript U stands for upstream and the constant c¢ is a
conversion factor depending upon the units of p, k and wu. Finally,

the flow coefficients of the oil phase in an (i,j) configuration in

the r-direction can be defined as:

- b 2n(k&z)i :
qu = c krou U -_&]:*T“lj (35)
o!w in ;]J.l._

1=1,7



24

! 1
. [b: 2n (kAz). .
€O, = ¢ kro, -2 2l (36)
E b:uo ri+l 2
\ “/IE  gn —-—-—’-lr
i,j

Following an analogous procedure the flow coefficients in the z-

direction become

e e P gy "(r?[ﬂ/z,j _ri—1/2,jl 37)
N~ € % N hz. . + Az, .
i,] : 5 il
2
2 2
b k. T r - r, &

= _ 0 i, i+1/2,j 1—1/2,3)
COg = c kroy Js [az. % bz (38)

L] 1:J+1

2

4.3 The Solution Process with Newton Linearization

The Newton linearization is an iterative technique, a general
discussion of which in n-dimensonal vector spaces is given in Appendix
A. In this section onlyv the pertinent aspects of the Newton method, as
they fit into the following solution scheme, will be explained.

The "residual" approach is taken to solve the system of equations;
a description of the residual approach is given in Appendix B. The
main reason for fellowing the residual approach is that the final
algebra of the equations comes out to be very simple due to cancellation

of a number of terms which is characteristic of the Newton technique when
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applied to the residual system. Moreover, when this process is done with
a combination of single and double precision, extreme accuracy can be
obtained when desired. In this study, single precision was utilized
throughout because of the large mantissa length (60 bits) of the CDC

6400 computer used in this study.

The innovation in the proposed technique of this study is the fact
that the Newton process is applied separately to one pressure equation
and three saturation equations, whereas in earlier work (2) the Newton
process was applied simultaneously to pressure and saturations of the
system of equations 24, 25 and 26. By separating the pressure equation
from the saturation equations advantage is taken of the quasi-linear
behavior of the pressure dependent functions in the flow coefficients.
With respect to saturations, however, the problem is highly non-linear.
Very often, one Newtonian iterate on pressures will lead sufficiently
close to the new time step values of pressures and hence a more ef-
ficient Newtonian process is attained.

4.3.1 The pressure equation — The first step in the solution pro-

cess is to combine equations 24, 25 and 26 into one equation with oil
pressure as the only dependent variable. Saturations are evaluated at
the present iteration level in obtaining an improved pressure solution
from this pressure equation.

Suppose that along the iteration process the k-th estimate of

equations 24, 25 and 26 is obtained:

k n k
= ae by 8) - (b SIT] -q =1 (39)

&CORQQE L
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+1
a&kmg + ARs CO™TL pe?
\' k n k n, _ " k
= T [(l:.g sg) - (bg sg) + (Rs b so) (Rs bo so) ] % e
(40)
=k k _V_ k _ n, _ _ k (41)
ACNTAe - 4 [(b S ) (b s)) -q, =1,

The terms rt $ r: , and rz are defined as the residual errors.
Subtracting equation 39 from 24, 40 from 25, and 41 from 26, assuming
that gravity and capillary pressure terms at the k-th and (n+l)-th
level are approximately the same, and that the pressure dependent
functions of the coefficients CO, CG, and CW can be evaluated at
time level n, the following equations in terms of oil pressure are

obtained

n+1l k k

Y (42)

T v
- T/
ﬁCOBPO At [(bo So) (o]

- (bO SO)

sy — \' n+l k n+l
ACG Ap* + AR 0 Ap* = — -
38 s ‘C Py [(bg Sg) (bg Sg) + (Rs b0 So)
=, k
(Rs b0 SO) 1 = - rg (43)
—— v n+1 k k
R et = = -
ACW Ap* - = [(b_ S ) (b s )] L (44)
in which p* = pn+1 - pk >

The pressure dependent functions of the coefficients EH,'EE and
CW are evaluated at time level n, because of their nearly constant
behavior with respect to pressure throughout a time step. Also, Newton
linearizing these coefficients is not fruitful because of the nearly

linear pressure dependent functions involved; moreover, it adds to the
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complexity of the problem without noticeable improvement. It can be
shown that if the coefficients were linearized with respect to pressure
neglecting second order terms, (p*)z, the term ACO apg of equation 42
would become A(%Eg k)A pg ; the derivative term between parentheses is
constant for all practical purposes throughout a time step for nearly
linear functions. Variations in time of pressure and hence of pressure
dependent functions can be considerable, and, therefore, the non-

linear pressure dependent terms of the right hand side of equations 42,

43 and 44 are linearized by the Newton linearization process. For the

0il equation as an example, the right hand side is approximated as

follows
n+l .ot |k %P ) k %
- o ey *1 =
[(bo So) (bo So) ] So bo . 390 po} (bo So) (45)
; ’ , ntl k i g
and if it is temporarily assumed that S0 - S0 = S: is negligibly

small, the expression for the right hand side becomes

k abo

0 3p0

n+1l k

[, s )™ - b 551 = s =2 px (46)

To distinguish all linearized terms from other difference terms,
they will be left in partial differential notation, with the understand-
ing that in a finite difference scheme they should be written as
Ab/Ap evaluated at k.

Analogous expressions are obtained for the water and gas phase
functions. The solution gas terms, however, in the right hand side of
equation 43 are second order non-linear. The approximation is performed

as follows
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dRs ab
n+l k k k ) n+1 k
3 i - + — p* + — p*|S -(Rs b_ S)
[(Rs b0 SO) (Rs bo SO) ] (Rs apo po} b0 apo P ( = B
(47)
+1
Neglecting second order terms and again temporarily assuming Sg
approximately equal to SE (or S: * 0), equation 47 becomes
n+l k k kP g v 2R
- = 2 $8 b =—pk 48
[(Rs b_ S ) (Rs b_ 5 )71 =S  Rs o, S, Py o0, P} (48)

Incorporating the ideas of equations 46 and 48 into equations 42,

43 and 44, the following "linear" equations with respect to p* are

obtained
ab
— \Y k o) k
- e D ey 49
0 &po At So Bpo Po Yo (49)
ob ab oRs
— iy V |k k o k k
T Ap* . ¥ RE—= P — o o 50
ACC Ap% + BRs CO Ap¥ M[sg i so_'{§ a 4 apo] p ry (50)
ob
s v k W k
- . e . oW S - 51
ACH &po At Sw Bpw P% Yy (31

To obtain these equations the same assumption regarding capillary
pressure as made for obtaining equations 42, 43 and 44 was made.

At this point, it is rather clear that the Newton linearization
process as applied in this study leads to a much better approximation
of the time derivative. As a matter of fact, truncation due to large

time step size is practically annihilated. -To make this point clear,
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consider a continuous function of pressure, represented in Figure 4 by

linear splines from the data tables.

f(p)

n k pn+l :’

Figure 4, Example of truncation error due to
time step size.
The abscissa shows the position of pressures at the present time
level n, at the new time level n+l, and also at an intermediate level

somewhere along the iteration process. To represent the time derivative,

ntl _ n
l.e., E__K?_Jl_ , no longer cords from position n to ntl are

taken, as shown by the dashed line, but an improved value of pk is
obtained by adding the derivative of the function to its present value.
It is the above consideration which makes the Newton method such

a powerful tool for highly non-linear equatioms.

For convenience, equation 49 is multiplied by Rs and subtracted

from equation 50. After having multiplied equation 49 by -%— ,
X o 11,3
equation 50 by == and equation 51 by -{%* , these three
by | 153 b |1,]
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equations are added to each other to obtain one linear equation in pg 5

the correction term for oil pressure.

1

1 — — e 1 = &
K ACO Ap% + X ARs. CC Ap* + " ACG Ap* + & ACW ApX
o, . g. . g. W
i,] i,]j i,] 2]
Ll 1 S "
\) So bo Sg bg So o) ' W oW %
- 5 + b + b R's + b pO
At o g g w 1, 1,]
k k
b b w i,]
o g
in which the prime denotes a derivative.
This equation can also be written in a simple way as
k
£ - % = % = % i % = -
f0 PI,5 ~ A Pi-1,; ~ A PL,i-1 TAe Pia,g " As PEg41 T T Ry (32)
where
k :
g ) gkl (L (*-ps ) - [ r* (54)
kKf. "0 k i g o k. . w
b 1,] b 1,] b 1,]
o g w
[ b! v k bl
= ¥ ] 8 .,
Ao =Byt Ay + Mg+ At 15,5 1% a9 -
L o g W

S b Rs ]k .’
+ (o) o (55)
g J

hu ” {if)i,j Ot

1 n k —
_k) - (Rsy - Rsi,j) co, +
bg i,]j

"—1 CW (56)
k|. . W

b Ji,]
%
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with analogous expressions for AE > Ay and AS . The residual error
terms r_, r, and r_ are defined by equations 39, 40 and 41.
In matrix notation, equation 53 becomes
Ap* = - R . (57)

In a two dimensional problem the A matrix is a sparce five
diagonal matrix (11). After having solved this system for p* , the
correction vector, then the new pressures are simply computed from the
following algorithm

pn+1 _ pk + p*

The above linear system can be solved by any classical matrix
solver or by iterative processes applicable to parabolic equations.
Anisotropy, mainly resulting from the grid configuration of this radial
flow problem makes the alternating direction implicit iterative method
very unsuitable.

The method used in the model of this study is a Corrected Line
Successive Over Relaxation (LSORC)., This LSORC was recently developed
by Watts (69) and was presented at the Annual Meeting of Reservoir
simulation of the Society of Petroleum Engineers, February 1970, Denver.
The algorithm of the method as used in this model was developed by Dr.
R. A, Wattenbarger of Scientific Software Corporation, Denver. The
LSORC method converges sufficiently fast that the proper choice of a
relaxation parameter is not too critical. It was shown by Watts to be
particularly suitable for highly anisotropic cases. The power of the
method lies in the fact that a correction is made to a whole column at

a time so as to annihilate the total residual of the columm which is
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most efficient when the columns are oriented in the direction of the
isotropy of the problem.

Thus, in matrix terminology, the elements of an estimated solution
vector, on the whole, are brought closer to their correct values. This
"column correction" must be coupled in some way with an iterative matrix
inversion method, for which the successive overrelaxation (LSOR) with
the lines oriented along the correction columns, seems to be the most
suitable one.

4.3.2 The saturation equations - After having obtained an improved

pressure estimate from equation 53, the next step in the solution pro-
cess is to substitute these improved pressures into equations 24, 25
and 26, and Newton iterate on saturations until compatible with the new
pressure solution. This is the very non-linear part of the problem and
usually several iterations are required for the saturation solution to
converge to the latest pressure level. The Newton linearizations are
performed on the kr(S) functions in the same manner as described in
the previous section. Hence, relative permeabilities and also capillary
pressures follow up the saturations by one iterate. The pc(S) rela-
tionships are thus not Newton linearized because relative permeability
and capillary pressure are physically interrelated (18).

Extracting the kr(S) functions out of the coefficients €O, CG

and Eﬁ, equations 24, 25 and 26 can be rewritten as follows

n+1
o

—— ntl _ V n+l _ n
Akro(S~ ) CO A® 5 [(s.0 bo) (so bo) ] + d, (58)
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o + S nt+l v n+l
A krg(sgﬂ) CcG' M‘:l + A kro(SE Ly rs CO" b = apl(s, b))
n n+l n
- - b + 59
(sg bg) + (s0 Rs bo) (so Rs b ) ] fs (59)
n¥ly —= ntl _V n+l _ n
A krw(S©) CW' Mg = 4 [(S_ b)) (s, b)) +aq, (60)

where CO' , CG', and CW' are CO , CG and CW as defined before,
except for the relative permeability terms.

Suppose that the k-th saturation iterate of equations 58, 59 and

60 is obtained.

SRR, . s k  n+l i . k
A kro(So) co &@O - = [SO b0 = S0 bé[ =i A (61)
RSt k k — ntl _V k .k _.n.n
A krg(Sg) CG &Qg ¥ AkrD(So) Rs CO A¢0 EF-[Sg bg Sg ]:i.g
k n+l n n _ .k
+ S (Rs bo) - S0 (Rs bo) ] q =10 (62)
ki .0t ¥ k . ntl .n . n| _ _ .k
A krw(SW)Cw M:'w N Sw bw Sw bw) q, =4 (63)

Again, the terms ug o, up , and u, are the residual errors. Note
that the gas potential &g is superscripted with a k because its
capillary pressure term is saturation dependent and hence, also the gas

+ k
pressure. Assuming again that pz A is approximately equal to P, »

then subtracting the k-th iterate from the ' (n+l)-th solution, one
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obtains

ntl, Kyvi moragttl _ ¥ ool .k
A [kro(S0 ) kro(So)] co A s b0 S0 == (64)
+ — o +
Alkrg(S5Mh) - krg(s)1 G6' a0™ + 4 [kro(s™1) - kro(s¥)] Rrs Go' ae™'l
g e g o o o
\Y ntl n+l k
ar by 8%+ (Rs )™ s3] ug (65)
ntl, ki ===y mHl V. .okl ., k
&[lcrw(sw ) krw(Sw)] CW Ao g3 b 8T == (66)
where S%* = Sn+l - Sk 5

+ . .
The kr(s" 1) functions are approximated by the Newton lineariza-

tion as follows

kr(s™y x kres®) + % 5%

hence,

n+1) _ kr(Sk) % okr gk

kr(s 53

Incorporating this idea into equations 64, 65 and 66, one obtains

9 kro|lk — n+1 v n+1l k
ML * ' s Ay X = -
A ( 3 So) S0 Cco A® 5 bo SD ug (67)
p (2R (K gu T pe™H 4 g2 krok oy oo o ae™tE
asg g g aS0 o o
n+1 n+1l k

A’ .
- T sx 4 (s b )™ s = -y (68)

&
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5 kv k =y st Vgl o K (69)
A aszj S: oW M’w At bw Sw Yy

The residual errors u_ o, ug and u, are defined bv equations 61,
62 and 63.

Equations 67, 68 and 69 are linear equations in S* , which is the
correction to be added to Sk to obtain improved values of saturations.
The solution process proceeds then in reevaluating relative permeabili-
ties and capillary pressures to obtain improved coefficients of the
flow equations from which a still better estimate of saturations results,
until convergence.

As mentioned in the section on flow coefficients to determine the
flow between two blocks, the relative permeability is evaluated at the
block from which the fluid emanates (upstream block). In a fully
implicit scheme this is justifiable since the flow direction does no
longer rely on data from the beginning of a time step, as is the case
in an implicit—explicit scheme, with possibility of a reversed flow
picture at the end of a time step. Moreover, in a fully implicit
scheme, the upstream approach for flow towards a well makes it possible
to solve for saturations simultaneously, a column at a time, since
saturations in a particular column will only depend upon the saturations
upstream. Hence, if the columns are oriented parallel to the well bore
and starting the solution process with the exterior columm, a tridia-
gonal matrix per column and per phase will result. These tridiagonal
matrices are easily solved by Gauss elimination using the Thomas

Algorithm,
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From equations 67, 68 and 69, the following algorithms are

obtained.

DO - DO * - DO * = -6_ . (?0)
DOO S ) DO So DOS S0 R 1,3

i3 U U
— LT ok - R ok e T (71)
DGD S* ) DGN S DGS S PGi,J

s 8% U
TR =t T * i nW * = R (?2)
DWO Sgi DW SWU DWS SwU R”i,

The structure of the coefficients DO , DG and DW will depend
upon the flow picture. Figure 5 demonstrates the two extreme flow
pictures possible for a block. The East (E) and West (W) flows will

always be as shown in Figure 5 for flows towards a well located west-

ward.

W o E W E

D
:—I-

5a 5b

Figure 5. Possible flow pictures at any block for
defining the coefficients of equations
70, 71, and 72.

However, the North (N) and South (S) flows will be either all into the
block (Figure 5a) or all out of the block (Figure 5b) or any combination

of into or out of. The decision on the direction of flow is based on
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the magnitude of the potentials. For example, if the flow is toward
the block (Figure 5a), then the North and South blocks are both upstream

ones and the North and South coefficients are defined as follows

k
ol S | (a kr (73)
N N O Oy 3s
1331 1,] o -
DO = CO" ¢n+1 ” ¢n+l (Bakror (74)
3 Bi,p B3 | %%
i,

with analogous expressions for gas and water, if the directions are the
same.

If the flow is all out of the blocks (Figure 5b), then the block
(i,j) itself becomes an upstream block with respect to both North and

South flows, and the magnitudes of the North and South coefficients are

added into the central (main diagonal) coefficients DO DG, » and

0 »
Bﬁb « Naturally, for this case the off diagonal elements of the tri-
diagonal matrix are zero. Practically, a combination of the above

extreme cases almost always occurs.

Except for the possible addition of North and South coefficients, the

main diagonal coefficients are defined as

k
Do, = \') (bn+l). - co! QIH']. _ ®n+1 9 kro (75)
0 At o 2 | W 0. i oz as . .
i-1,3 1,] 0 /1,]
BE, = o GTh, - Tqy [0 - zb:ﬂ L )( (76)
e Bi-1,3 1,3 gl g
b - s e
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Finally, the right hand sides of equations 70, 71 and 72 are
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i,
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(80)

Saturations are solved this way for all three phases separately as

opposed to what is often done, solve for saturations of two phases and

obtain the saturation of the third phase from the saturation relation-

ship, equation 20.

The reason for doing it this way is that otherwise

slightly incorrect fluid volumes, resulting from solving the system for

fairly large time steps (overshoot), could never be corrected for by

adjusting pressures on a volumetric error basis.

having obtained saturations compatible with the latest pressure

In other words, after
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estimate, one Newton iteration cycle is completed, and the next step
now is to readjust pressures. The best way is to do it on a volumetric

basis with the following condition

1.0-S -8S -8 =20.0 (81)
(o} fod W

If this condition does not hold, there is either too much or too little
fluid in a block and the phases will have to be compressed or expanded
accordingly.

A time step is finally solved for when the residuals of both the
pressure equation and the saturation equations are annihilated. In
practice, the convergence criterion is not so strongly stated; con-
vergence is satisfied when pressures and saturations vary less than a

given value.

4.4 1Initial and Boundary Conditions

4.4.1 The grid system - From comparisons with analytical solutions
(one phase fully saturated flow, confined flow, fully penetrating well),
the grid configuration of Figure 6 was shown to approximate the well

bore pressures very well (see also Figure 8).
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my ] 4] o s [
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Figure 6. Grid system used in this study.
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The first and the last column of pressures are respectively right
at the edge of the well bore and right at the exterior boundary. Since
pressures away from the well vary logarithmically with distance
(approximately for unsteady multiphase flow), the radii from the well
bore center to the center of the cells are logarithmically distributed
so that log(ir) is a constant. For numerical convenience only half
Ar is taken at the well bore and at the outside boundary.

The system is set up as a closed one (no flow across boundaries)
and from there the different type boundary conditions will be constructed.
From a programming point of view, the no flow boundary condition is very
conveniently satisfied by assigning zero values to the flow coefficients
across the boundary.

4.4.2 Possible boundary conditions = Since the reservoir is

overlaying an impermeable base, the lower boundary is taken care of
throughout by a no flow condition. Mathematically, the potential
gradient normal to the boundary is zero; in terms of the numerical model,
the south coefficients of the lower row are all zero.

At the exterior radius boundary, the well bore boundary and along
the top of the aquifer, the following possible conditions may exist:

1. Ho flow boundary conditions.

2. Pressure boundary conditions.

3. Flow rate boundary conditions.

4.4.2.1 Well bore boundary conditions - At the well bore, a

combination of conditions one and two or conditions one and three are

possible depending upon which portion of the well is perforated

(screened).
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As the computer program is presently written, the no flow
condition is automatically taken care of.

The flow rate boundary condition is easy to incorporate, i.e., a
value is assigned to the production terms "q" of equations 24, 25 and 26.
In practice, an oil production is assigned. The gas and water produc-
tions are computed from the following relationships.

krg b /u

- (82)
qg 9 |kro boluo = Ba

krw bw/uw

= I (). 83
% = 9% | kro bolu (83)

These relationships show that production will depend upon the
ratios of the mobilities of the phases, which is true if the magnitude
of the potential drops in the different phases are the same. By
mobility in the petroleum technology is meant the term kr/p . In
practice, this condition of equal potential drops in the different
phases very closely holds. The gas production of course, is composed
of two terms: free gas and solution gas.

Since gas and water productions are saturation dependent they are
taken up in the Newton linearization scheme and readjusted after each

saturation iterate as follows

el i | BB, 1 A krg ¥ (84)
q =q + S* + Rs
g o kro boluo kro A Sg g
k
| on [ pe -
9, kro bo/uO kro A Sw w

This way, convergence is considerably accelerated.
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The pressure boundary condition does not create any problems with
regard to solving the pressure equation. Except for the main diagonal
of equation 53, which is set equal to 1.0, all coefficients and the right
hand side of this equation are set equal to zero for all the perforated
blocks where a pressure is assigned. The pressure solution thus shows
a flow towards or away from the well bore, but due to the fact that
mathematically a no flow condition exists at the well bore, the satura-
tion solution shows an accumulation or a depletion of fluids in those
blocks. This accumulation (or depletion) then is the basis for
estimating the magnitude of fluid production terms compatible with the
pressure solution; it is considered as a volumetric correction rate,

Aq , to be added to the latest estimate of q. The total volumetric

correction rate can be expressed as follows

A q A q A q, v

o g . i R 86
=t e B = 3 (1.0= 8, =B, = 8) (86)
o g W

Again the different phases will produce according to the mobility
ratios. Therefore, substituting equations 82 and 83 into equation 86,

and after rearranging, the following expression is obtained for &qo

\'
-— (1.0 -S -8 =8)
A q . At o g w (87)

0 [ 1 Wy krg b _/u e krw bw/uw)}
bo bg kro bo/u0 kro bO/u0

4 Lo
w

After having computed &qo first, the correction is added to the
latest estimate of q, with which qg and q, are computed from

equations 82 and 83.
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Obviously, equation 87 becomes invalid as soon as kro 1is zero.
The oil phase is no longer producing at this moment. As long as krg
and krw are not zero, however, gas and water can still be produced
and if the well is not yet shut down, qg and q, can be computed with

an equation obtained similarly to equation 87, i.e.

Vv

—E-E-(IO—SO—Sg—Sw)

tlg T krw b_/ (86)
¢ [1—-1-1-_- WDW)]
b b kreg b
Le w . g/pg
krw b /p
4 w' tw
A T qg krg bg/]lg 2

The third possibility is that both krg and kro are zero, but

krw not; the expression for Aq, becomes

- N N = 2 0
A g, b, [~gz (1.0-5, -85, ~5)] (90)

This process of computing production terms implicitly requires a
double sweep of the last column (well column) in each saturation
iterate, the first sweep to detect an accumulation (or depletion) of
fluids, the second sweep to annihilate the accumulation (or depletion)
of fluids by considering it as a volumetric correction rate.

4.4.2.2 Boundary conditions along top of aquifer - In case

of a confined aquifer, the no flow condition holds and is automatically
taken care of.

In case of an unconfined aquifer the north side is physically open
to the atmosphere, but mathematically closed. The boundary condition

is one of constant atmospheric air pressure. This case is very



44

analogous to the well pressure condition and hence it can be expected

to be treated in a similar way. A depletion, however, rather than an

accumulation of fluids in the upper row blocks is now taking place, so
that the q values assume negative signs and are to be considered as

recharge.

The "free surface", if it can be defined in this multiphase flow
model, would be defined by the line of atmospheric pressure in the
liquid phase. For modeling the "free surface" the method just described
was behaving perfectly. The computational work, however, because of the
double saturation sweep, as explained in section 4.4.2.1, is a little
longer but the cumulative material balance error remained very small

3

throughout (10-5 BT )e

4.4.2,3 The exterior radius boundary conditions - At the

exterior radius boundary, a no flow condition was assigned throughout
this study. Boundary effects are minimized by taking the outside

radius large enough (10,000 ft). Boundary conditions two (pressure) and
three (flow rate) at the exterior boundary are incorporated in the
model, but were not used.

4.4.3 1Initial conditions - As mentioned earlier, all runs of this

study were made using the oil-gas phases to represent an air-water
system. A hydrostatic pressure distribution was assumed as the initial
condition. Above a region completely saturated with water, a region
partly saturated with water existed in equilibrium with the assigned
Pc (S) relationship.

Since compressibility factors are included in this study it is
rather difficult to compute a perfectly equilibrated initial condition.

Therefore, to allow the fluids to settle, the first few time steps were
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run without pumping. Very slow convergence was noticed, though, in the
pressure equation, since this is a near steady state condition leading
up to a nearly elliptic pressure equation. The diagonal dominancy of

the coefficient matrix is diminished.

4.5 The Computer Program

The computer program was coded in FORTRAN IV EXTENDED for a CDC
6400 computer with a core memory consisting of 64,000 storage locations.
A careful arrangement of storage for this two-dimensional, three phase
model was imperative. For this purpose, the program was segmented into
computational entities. In each segment the exact amount of core was
specified by reallocating only the needed variables for that segment.
With this tremendous storage saving technique grid systems as large as
30 by 30 are being handled. Tape and disk are extensively used for
temporary storage.

All two-dimensional variables were stored in one-dimensional
arrays which is, from a computing point of view, an enormous time
saving: it takes some computing time to locate variables in a two-
dimensional array, whereas a simple algorithm in the program easily
identifies two-dimensional variables from the one-dimensional array.

The treatment of input data is considered an important part of
the program in terms of saving man hours. All input data are read in
at once in the beginning on a separate tape or disk unit. The first
four columns of each data card carrv a mnemonic name (see Appendix C)
making it possible to go back on tape and search for any single bit of
information and bringing it in central memory. If the data do not

satisfy a check on correctness or if they are found to be out of order,
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an error message is printed. Depending upon the seriousness of the
incorrectness it can be decided to discontinue the run. The input data
are separated into single point data, array data, pressure and saturation
dependent data, and time step data such as new boundary conditions and
time step size. Appendix C shows how pressure and saturation dependent
data are organized in the form of interpolation tables. Linear inter-
polation is used throughout, which is accurate if enough data points
are used. Experience showed (11) that higher order interpolation did
not give significantly better results besides being very time consuming.
That this is an important factor in multiphase flow is easily understood
since for each block of the grid system all pressure and saturation
dependent functions have to be evaluated for each phase and at each
iteration. To speed up the process of interpolation a latest entry
point index is kept in central memory since it is very likely that
the next entry will be close, if not the same, to the previous entry;
it minimizes searching time tremendously.

The overall structure of the program is diagrammatically shown in

Figure 7. Each segment shown operates independently.

4.6 Validity of the Simulator

An analytical solution of the multiphase flow equations does not
exist; also, a rigorous proof of convergence of the finite difference
solution does not exist. Hence, no direct way of showing the correct-
ness of the simulator is available. Its verification will thus mainly
depend upon argumentation based on correctness of equations, and on
model performance.

The first step in this syllogistic proof is to accept the flow

equations as the true mathematical analogue of multiphase flow. They



47

SEGMENT 1

/
/READ INPUT DATA ON
TAPE

/
INITIALIZE DATA FROM
TAPE

/

COMPUTE TRANSMISSIBILITIES
(EAST AND SOUTH) FROM MEDIA
PROPERTIES AND STORE

V

SEGMENT 2

v

READ AT

NEW BOUNDARY CONDITIONS

LAST CARD 15> j>(:EE§>

NO

MULTIPLY TRANSMISSIBILITIES
BY b/u

COMPUTE COEFFICIENTS OF FLOW
EQUATIONS (EQS. 35,36,37,38)
COMPUTE RESIDUALS (EQS. 39,40,41)

SET UP COEFFICIENTS OF PRESSURE
EQUATION (EQ. 53)

SOLVE FOR
PRESSURES

Figure 7. Diagram of tke computer simulator.
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Figure 7. (Continued) Diagram of the computer simulator.
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are derived from a true statement of continuity. Their validity will
depend upon the validity of Darcy's law as the force law. As stated
earlier, evidence of the validity of Darcy's law is rather plentiful
under the assumptions stated. This leads to the acceptance of the
correctness of the equations. The flow equations have further been
checked with experimental results both from laboratory tests and from
field tests (Welge and Weber, Soengkowo, Blair and Peaceman, and many
others).

Next, the question arises as to how good is the solution that is
obtained by the proposed computational algorithm. Obviously, a con-
siderable amount of ingenuity is involved in the construction of a
finite difference scheme. As long as the discretization used does
not violate the continuity principle, i.e., as long as mass is conserved,
a good finite difference scheme to represent the continuous partial
differential equations is obtained. It was further proved analytically
by different numerical analysts (Douglas, Smith, Lees, Rose) that, as
the grid spacing approaches zero, convergence to the actual solution
is obtained, by using finite differences for solving linear parabolic
partial differential equations in rectangular regions. Similar proofs
are not available for discretized non-linear partial differential
equations when applied to systems which are not rectangular or which
have variable grid spacing. Nevertheless, based on experience of many
researchers (10, 21, 22) it can be concluded that finite difference
methods for solving non-linear equations do give good results. The
correctness of these results mainly depends upon truncation errors which
stem from the discretization process. Space truncation errors are

usually not significant if a sufficiently small mesh spacing is used.
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Time truncation errors, however, are usually rather severe, because of
the tendency to take as large a time step as possible for economical
reasons. This, indeed, is a problem in the classical mixed techniques
(implicit-explicit) in which the flow coefficients are time truncation
dependent apart from the time derivative itself. This time truncation
error is practically annihilated with the fully implicit scheme as
applied in this study (cf. section 4.3.1). Finally, the numerical
solution obtained is a good solution of the finite difference equations,
since in the solution process residuals are indeed vanishing.

The last step in this heuristic proof of validity is based on
qualitative and quantitative performance of the model. Test runs can
be set up for which intuitively the answers are known; or also, limiting
cases can be checked for agreement with theory. For example, a test
run was made modeling a confined homogeneous and isotropic aquifer with
a fully penetrating pumped well. Gravity was neglected and the aquifer
was fully saturated with one of the wetting phases. Exact analytical
solutions for this strictly horizontal radial case with flow rate
boundary conditions (62) do exist. The numerical solution behaved as
was predicted by the analytical solution. Results of the flow rate
boundary condition case are shown in Figure 8. The storativity factor,
S, needed to obtain the analytical solution was computed from the com-
pressibility factor, B , which in its turn was obtained from the
formation volume factor (F.V.F.) data as used in the numerical model.
All physical characteristics appear on Figure 8. The relationship
between storativity and compressibility derived by several authors (1)
is

S = pg(a + nB)b
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in which n is the porosity, o is the aquifer compressibility factor
which is zero in this case, and b is the aquifer thickness. Verv close
agreement is obtained, realizing that only six grid blocks were utilized
to model an aquifer with well radius of one foot and exterior radius of
10,000 feet. The results of the numerical simulator only differ by 0.3
percent from the Theis solution if both solutions were applied to an
artesian aquifer with piezometric head of 200 feet of water. These
results also indicate the validity of the Theis solution very close to
the line sink. Conversely, the results also indicate that pressure at
the well bore is well represented with the grid block configuration as
used in this study (cf. section 4.4.1).

Several multiphase flow cases for which there are no analytical
solutions were run and analysed with respect to their behavior. In one
case, a gravity-less confined medium was modeled without any pumping.
Pressure and saturation distributions, initially uniform throughout,
did not vary after a time step as would be expected.

Good test runs, particularly useful for debugging purposes, are
the ones that exploit the conditions of symmetry. Several of these
were run. Other test runs involved the effects of capillarity and
gravity. The following test case was of particular interest in the
petroleum technology; gas, oil, and water were overlaying each other
in a confined reservoir. The well was screened only in the middle of
the oil phase. Gas and water were coning into the oil phase., The
usefulness of this case lies in the fact that optimum schedules may be
derived at to obtain maximum withdrawal of oil.

It is concluded that, based on the above heuristic argumentation,
the simulator is considered to be a valid multiphase flow solver under

the conditions and assumptions stated.
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5. RESULTS AND DISCUSSION

The discussion of the results of this study is centered around the
"free surface" gravity well flow problem. As long as the flow is con-
fined in a fully saturated medium, analytical solutions assuming
horizontal flow predict the behavior well; these solutions are very
adequate for confined aquifer test analysis. Because of the lack of
analvtical solutions of unconfined free surface flow, unconfined aquifer
data are always analysed from a confined flow point of view. With
respect to this approach, Stallman (59) concludes one of his papers on
aquifer test analysis as follows:

"Analysis of pumping tests made in unconfined aquifers

should be a fertile field for anyone slightly inclined

toward pessimism".

The results of this study, obtained from the most complete 'free
surface' well flow analogue to date will show why indeed the analysis of
data of unconfined aquifers, when fitted with confined flow analytical
solutions, is so controversial and leads to so many contradictory con-
clusions.

The solution obtained from the two-phase "free surface" gravity
flow model differs in many aspects from confined (artesian) flow
analytical solutions. Therefore, the results of this study will be
compared as much as possible with these solutions and evaluated with
respect to aquifer test analysis. To better appreciate this comparative
discussion a brief account of analytical solutions used with underlying

assumptions follows.
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5.1 Brief Account of Analytical Solutions

Present theories of aquifer tests are all more or less based on
solutions of the one-dimensional radial confined flow equation (1, 32,
62, 63). Some of these solutions account for the effect of partial
penetration (30), others account for delayed yield from storage 7}
Notwithstanding its restrictions, the Theis solution is most generally
used. The basic assumptions, underlying the Theis solution are:

(1) Confined flow of infinite areal extent.

(2) Instantaneous release from storage.

(3) All flow is horizontal (no vertical flow components).

(4) Fully penetrating well.

(5) The well is considered to be a sink (infinitesimally narrow
well).

(6) Constant aquifer thickness, b.

(7) No gravity effect.

(8) Homogeneous, isotropic medium.,

When applied to a water table aquifer, the Theis solution becomes
subject to the Dupuit-Forchheimer assumptions, which also implies that
the free-water surface is the streamline bounding the flow region and
that a linear relationship exists between flow rate and aquifer thick-
ness.

Important aspects arising in unconfined aquifers, not or only
partially considered in analytical analyses, but often realized by
ground water hydrologists (59), are:

(1) Effect of vertical flow components on drawdown.

(2) Storage release by expansion of water.

(3) Variable specific yield (delayed yield from storage) and role

of the capillary zone with this respect, i.e., flow in the
"cone of depression'. '
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(4) Partial penetration of wells under free surface flow
conditions

The numerical model is not restricted by any of the above four
aspects. Hence, a fair chance exists to evaluate their magnitude of

importance.

5.2 Case Study

Two unconfined well flow cases were run:

Case 1: Low permeability aquifer (13.7 FT/DAY) with medium
characteristics of a Columbia sandy loam (see Appendix
C for detailed aquifer and fluid properties).

Case 2: High permeability aquifer (219.2 FT/DAY) with medium
characteristics of an unconsolidated sand (see Appendix
c).

It was felt that within the objectives of this study these two

cases would suffice to demonstrate the original solution obtained. The

availability of funds for this one man project was a major factor in

determining the number of cases to be studied,

Specification of property Case 1 Case 2

Medium Columbia sandy loam unconsolidated sand

Permeability 13.7 FT/DAY = 5000 219.2 FT/DAY = 80,000
Milli-Darcies Milli-Darcies

Porosity 0.5 0.5

Residual water saturation 20 percent 10 percent

Initial saturated thickness 136 feet 139 feet

Well screen (percent of Lower 45 percent of Lower 43 percent of

initial saturated thickness) aquifer thickness aquifer thickness

Pumping rate 43,200 FTBIDAY 86,400 FT3/DAY

Grid system 6 columns, 8 rows 6 columns, 8 rows

Total time of analysis 7.780 DAYS 6.675 DAYS

Computer time (central 560 seconds 840 seconds

processor)

Table 1, Summary of important characteristics of Case 1 and Case 2.
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Table 1 summarizes the most important characteristics of Case 1
and Case 2. Each case is run at a constant pumping rate until a definite

flow pattern has developed.

5.3 Analysis of Case 1

5.3.1 Equipotential lines, isopiestic lines, and flow pattern -

After nearly eight days of pumping a definite flow pattern had developed
with little change taking place in the potential and free surface
profiles. This eight dav period seemed long enough to analyse all aspects
of the results. The potentiometric map of an r-z cross-section is
plotted in Figure 9, on semi-log paper, the r-direction (abscissa) being
the log scale. In order not to misinterpret Figure 9, the potentiometric
map is also plotted on normal scale paper in Figure 10, diagrammatically
showing a few flow lines as well.

It is readily seen from this flow pattern that tremendous volumes
of water emanate from a distance away from the well and that very little
flow is contributed from near the well bore, above the screen. Two
factors seem to interact in determining this flow configuration: gravity
and the radial nature of flow. That the flow pattern is very much
affected by gravity is readily observed from the flow diagram. It is
admitted that the vertical flow component becomes small at, say, 250 feet
away from the well; however, at the same time it should be realized that
the cross-sectional area of flow in the horizontal plane increases by
a factor of radius squared as one moves away from the well.

The dashed line on Figures 9 and 10 is the line of atmospheric
pressure which corresponds to the definition of the free surface. A
point of inflection is noticed along this curve. In time, this point of

inflection moves away from the well bore and the rate of drawdown near
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the well bore becomes smaller and smaller (under constant pumping
conditions). This curve in no way corresponds to what is often seen as
the free surface profile around well bores, suggested by the Theis
solution, corrected or not for the effect of partial penetration.

All lines of equal pressure (see pressure map, Appendix D) ending
above the well screen have the same physical appearance as the dash
lines of Figures 9 and 10; however, equal pressure lines ending below
the top of the screen cone down. Therefore it seems clear that fully
screened wells, if they occur, should behave very much like partially
penetrating wells; the flux across the well screen is not a constant
and is largest near the pump (usually bottom of aquifer) where suction
head is greatest. Moreover, the moment a fﬁlly penetrating well is
pumped, the effective portion of the screen (effective area of flow)
is very rapidly much less than its original fully penetrating length.
Equipotentials will still look as before. A possible flow field for
a fully penetrating well is suggested in Figure 11 applicable to
a two-phase flow system.

In summary, the last paragraph, by induction, says that so called
fully penetrating wells operate as if they were partially penetrating.
The difference between fully and partially penetrating wells would then
be the dip of the line of atmospheric pressure very close to the well
bore until it becomes a seepage face, affecting very little the over-
all free surface, radial gravity flow phenomenon.

This solution in no way agrees with the horizontal flow concept of

analytical analyses of confined flow, in which the flux through the

screen is a constant and in which the full length of the screen is always

exposed to the entire aquifer thickness.
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Figure 11. Possible flow field of a fully penetrating well.

It is important to point out again that the analytical analysis is
good as long as the flow is confined and fully saturated, but as soon
as it is applied to free surface flow it becomes subject to the
absurdities introduced by the Dupuit-Forchheimer assumptions.. The
Theis solution, whether or not corrected for the effect of partial
penetration, cannot be visualized as the solution for the position of
the free surface. In the Dupuit-Forchheimer context, the free surface
is a streamline, all flow below it being horizontal. Researchers who
realized the importance of gravity in free surface flow problems
attempted to visualize the flow picture as shown in Figure 12 by

combining the Theis solution "free surface'", a streamline, with a set

of streamlines emanating from it,
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Figure 12. Unconfined gravity flow as visualized in the
literature.

5.3.2 Potential distribution along bottom of aquifer - A very

significant result is obtained when the potential behavior of the

model of this study along the bottom of the aquifer (horizontal flow)

is compared with the piezometric head obtained from the Theis solution
corrected for partial penetration (Hantush, 1962). In the analytical
analysis the effect of partial penetration is negligible at a distance
away from the well bore approximately equal to 1.5 the aquifer thickness.
Figures 13, 14 and 15 demonstrate the analogous behavior of the analyti-
cal solution and the potential distribution along the bottom of the

model aquifer. At 0,49 days (Figure 13) the line representing the

analytical solution lies slightly above the line of the numerical

solution. At 3.49 days (Figure 14) the line of the analytical solution
lies below the line of the numerical solution. As time goes on these
two solutions remain parallel but seem to move further apart (compare
Figure 13 with 14). In Figure 14, this behavior was also compared along

a horizontal line 13.5 feet below the original position of the free
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surface. The similarity in behavior is no longer true. For comparative
purposes the definition of free surface as used in Figures 13, 14 and 15
deviates a little from the line of atmospheric pressure and is simply
obtained from converting the saturation in a block to a water level in
the block; for example, a 10 feet high block with a saturation of 607%
and a residual of 20% means a water level at 5 feet in the block.

The significance of this result is that analytical solutions for
confined aquifers represent the piezometric head in the confined
aquifer but cannot be used to fit free surface data obtained from
unconfined aquifers. Moreover, the analytical solution of partial
penetrating wells in confined aquifers does not apply near the free

surface in unconfined aquifers.

5.3.3 Potential distribution in time - Potential drops at

different values of radii are plotted versus the logarithm of time in
Figures 16, 17 and 18. At any time, these figures better explain the
relative position of the curves then explained in Figures 13, 14 and 15,
where they get closely together.

The potential distribution curves as well as the free surface
drawdown curves, although to a smaller extent, have a relatively steep
portion, a flatter portion with a point of inflection and again a
steeper portion., This inflection curve is also observed when drawdown
is plotted versus the logarithm of rz/t as demonstrated in Figure 19.
Regarding the above behavior of the numerical results, a quotation of
Stallman (59) follows:

"Commonly plots of the logarithm of observed drawdown versus
the logarithm of t/r2 show a steep slope after pumping begins,

then a relatively flat segment, then a steep slope. The last
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segment of data generally yields sensible values of specific

yield if equations of artesian flow are used for analysis. The

shape of the first parts of the data plots depends upon the items

that follow, which generally are not accounted for in analysis of
test data from unconfined aquifers: (1) variable effective
specific yield; (2) artesian release from storage below the water
table; (3) vertical flow components; (4) thinning of the
saturated zone as drawdown increases; (5) observation well
characteristics; (6) heterogeneity."

The writer of this study feels that, in the light of this two
phase, compressible fluid, gravity flow model, the above inflecting
behavior is almost entirely accounted for by storage release by expansion
of water for the following reasoning. Figures 16, 17 and 18, and also
Figure 13, show that the initial drop in potential along the bottom of
the aquifer, right after pumping starts, is greater in the numerical
model than predicted by the analytical solution. The curve representing
the numerical solution gradually becomes less steep until it inflects
at about 0.7 days. Beyond the point of inflection this curve tends to
become parallel, but not quite, with the curve representing the
analytical solution. Physically, this means that after the initial
pressure drop due to a sudden pumping effect, water pumped comes mainly
from storage release by expansion of water in the aquifer. In a radial
flow system this phenomenon is considerable since tremendous volumes
of water are involved a short distance away from the well bore.

Beyond the inflection point this phenomenon of "artesian" storage
release is diminishing but not disappearing, because a pressure decline,

albeit small after the initial pressure drop, is continuously going on.
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It is important to notice that the effect of water release by expansion
is being felt at approximately the same time in the aquifer: compare
Figure 16 (at r = 6.31 feet) with Figure 18 (at r = 251 feet) with re-
spect to the occurrence of the point of inflection.

In a real field situation, aquifer compressibility may be consider-
able. It is quite understandable that aquifer compressibility then will
play a role in a sense that it may accentuate the above described
behavior.

5.3.4 Results obtained strictly related to multiphase flow

5.3.4.1 Effect of capillarity - It has been observed quite

frequently that calculations of specific yield made with data obtained
in the beginning of an aquifer test differed considerably from cal-
culations made with data of the end of the test (59, 72). Wenzel (72),
as an example, computed a specific yield of 0.01 just after pumping
started, 0.1 after 50 minutes of pumping, and about 0.22 after 48 hours
of pumping. In the light of past fully saturated flow analyses this
variable effective specific yield was explained as "delayed yield from
storage'. When confined flow analysis is applied to unconfined flow,
it is assumed that all contributions from storage come from the
immediate lowering of the water table, but field observations indicate
that porous materials do not drain instantaneously as water levels are
lowered. Capillarity is the phenomenon responsible for this field
observation.

Since capillary forces are accounted for in this multiphase
numerical model, the effect of the so called "delayed yield from
storage' should be observable when comparing results to analytical

solutions which do not account for delayed yield from storage. Not much
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though, is revealed by the curves of Figures 16, 17 or 18. They show
that at any given distance from the well bore the pumping effect is

felt much earlier in the numerical model (curve of potential distribution)
than predicted by the analytical model (curve of piezometric head), but
that the analytical model soon catches up and bypasses the numerical
model with respect to drawdown. However, interaction with the phenomenon
of storage release by expansion of water makes it difficult to exactly
evaluate "delayed yield from storage". As time goes on and as the
pumping effect is felt farther and farther with drawdowns becoming very
small, the effect of capillarity should gradually become smaller and
smaller too. Indeed, computations of specific yield at different times
show that a limiting value is approached when times grow large. Note
that the analytical solution is not a valid criterion for evaluating
delayed yield from storage by comparing its solution with the numerical
results of this study, mainly because confined flow behaves differently
than unconfined flow.

Capillarity is not the object of detailed analysis in this study.
Although its effect is incorporated on a macro-scale, it is realized that
a detailed distribution of saturation above the water table cannot be
obtained, the vertical dimension of the blocks being the same order of
magnitude of the capillary effect under hydrostatic conditions.

5.3.4.2 Effect of air dissolved in water - Data for the

amount of air dissolved in water under aquifer conditions were taken
from Dodson and Standing (2). These data behave corresponding to
Henry's law, i.e., a linear law for gases dissolved in liquid solvents
as a function of pressure. The data (see Appendix C) show that at

atmospheric pressure 0.0338 cubic feet of air are dissolved in water.
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It is realized that under certain circumstances the above amount
of dissolved air might be either overestimated or underestimated. How-
ever, practically all ground water originates as surface water; the
following situation is quite possible. Consider an aquifer continuously
pumped and recharged. During the process of recharging considerable
amounts of air may be trapped and eventually partly dissolve with
increasing pressure in the water body, which would lead to a larger
amount of air dissolved in the water than the amount assumed in this
study. The assumed amounts are certainly not exaggerated but rather
reflect average aquifer conditions.

Before showing the results regarding air dissolved in water, it
may be useful to describe the following mechanism. When an aquifer is
suddenly being pumped, the pressure in the aquifer will sharply drop
in the vicinity of the well bore. This causes air to evolve from
solution first as small isolated bubbles, and to occupy space which was
previously occupied by the water. As the pressure keeps dropping, more
air will evolve from solution and at the same time expand, until the
bubbles coalesce and continuous filaments of air are being formed. This
is the so called residual air saturation (critical gas saturation in the
petroleum technology) at which air starts to flow. It is easily seen
that during this process the permeability to water significantly
decreases.

Figure 20 shows what occurred in time in this two-phase, free
surface gravity flow simulator. The water desaturation curve in the
bottom block adjacent to the well screen goes with the left ordinate;

the pressure curve of the same block goes with the right ordinate.

Pressure is seen to sharply drop the moment pumping begins (time zero)
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and then more gradually. The air saturation is seen to gradually
increase (water saturation decreases) until it reaches residual
saturation (Sa = 0.10, Sw = 0.90). At this moment (0.7 days) the air
in this block becomes a continuous phase and starts flowing. All air
coming out of solution or expanding after 0.7 days, which is very little
because of the slow pressure drop, readily flows out; physically, this
is easily understood because of the very low resistance to flow of air.
Hence, air saturation remains constant after 0.7 days. The saturation
results show that beyond 0.7 days the air phase saturation is building
up in the block next to the one adjacent to the well bore, but very
slowly (Sa = 0.047 after 7.78 days of analysis).

The significance of the above result may be summarized as follows:
first, the effective permeability near the well bore is significantly
affected by air evolving from solution; relative permeability has drop-
ped from 1.0 to 0.875 (see Appendix C, input data of Case 1). Secondly,
this drop in effective permeability in turn affects the potential dis-
tribution around the well bore, in a way that the pumping effect will
extend further away from the well bore than it would if no gas evolved
from solution, simply to overcome the lower permeability near the well

bore.

5.3.4.3 The free surface boundary condition - Two phase flow

is not uniquely responsible for the shape of the free surface. The
effect of partial penetration of the well and gravity seem to be the
governing factors in determining the shape of the free surface around

the well bore (see Dagan, page 1060, Figure 1). Two-phase flow, however,
will allow one to locate the line of atmospheric pressure (free surface)
and also to study the effect of capillarity as related to the problem

of delayed yield from storage.
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The nature of the behavior of the drawdown curve in time and space,
however, reveals that flow in the so called cone of depression
(unsaturated zone, capillary zone) is insignificant with respect to the
total flow phenomenon and hence that delayed yield from storage as
explained by capillarity, has very little bearing upon the solution. It
should be clear by now that confined flow analysis does not apply to
unconfined free surface gravity flow. There is a variety of undetermined
factors involved when confined flow analysis is applied to unconfined
flow, and adjusting the confined flow solutions to fit unconfined flow
data is highly questionable,

Noteworthy of mentioning is the computation of air flow into the
upper row of blocks, intimately related to the treatment of the free
surface boundary condition (cf. section 4.4.2.2). With a pumping rate
at the well bore of 43,200 CF/DAY, the rate of air flow into the upper
row of blocks is expected to be nearly the same. This result is indeed
obtained (see Appendix D, sample computer output: gas production map).
Difference in volume of water at aquifer conditions and water at surface
(atmospheric) conditions accounts for the slight discrepancy. Differences
in air and water rates are sometimes larger, however, than explainable
by compressibility of water; these differences can easily be understood
when it is realized that the convergence criterion on saturations is
0.0001 (i.e. maximum allowable value of S* , cf. Chapter 4). Grid
blocks a distance away from the well are quite large with tremendous
pore volumes., The grid block with radius of 251 feet, for example, has

a pore volume of 4 x 10? FT3, so that a value of S; , say 0.00005,

satisfying the convergence criterion is equivalent to 2.0 x lO3 FT3 of

water.
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Varying rates of air flow into the blocks with radii of 39.8 feet,
251 feet and 1,585 feet, are shown as a function of time in Figure 21.
The shape of these areographs (i.e., rate vs. time curve, cf. hydrograph)
is exactly related to the behavior of the free surface, regarding the
point of inflection moving away from the well bore as pumping goes on.
The point of inflection of the free surface curve is 39.8 feet away
from the well at about 0.35 days, which is when the peak of the aero-
graph occurs. At 251 feet, the air rate is increasing but would soon
reach a maximum when the point of inflection of the free surface curve
reaches that distance, and then decrease. At 1,585 feet, the effect of
pumping is gradually being felt.

The above result is rather pleasing from a numerical solution point
of view, since it is more or less a balance of materials on a macro-
scale, and an argument in favor of the correct mathematical treatment

of the free surface boundary condition.

5.4 Analysis of Case 2

5.4,1 Results of Case 2, compared with Case 1 - The results of

Case 2, the high permeability case, do not reveal any new striking
features of two-phase, free surface, compressible fluid, gravity flow.
The results of course, are different from Case 1, in that the same
phenomena are interacting but at different times than in Case 1. For
this reason, the discussion of Case 2 will consist of a brief enumeration
pointing out similarities and important differences with Case 1

(1) The flow pattern as shown on the potentiometric map of
Figure 22 is analogous to the flow pattern of Case 1.

(2) The potential decline toward the well bore along the bottom
of the aquifer at any time is much less steep than in Case 1;
an example after two days of pumping is shown in Figure 23.
The effect of pumping, however, extends much farther for the
same period of analysis,
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(3) Again, there is no agreement between the free surface curve
and the curve of potential drop along the bottom of the
aquifer. Both show a drawdown of the same order of magnitude
though (Figure 23), close to where the curves intersect.

(4) When the potential decline toward the well bore along the
bottom of the aquifer is compared with the piezometric head
of analytic solutions along the bottom of the aquifer at any
time then again these solutions are analogous in behavior;
the two solutions compared are parallel in space and close
together for a short while after pumping starts. As time
grows large, the two solutions remain parallel in space but
get further and further apart in time; as in Case 1 the
analytical solution lies below the numerical solution. An
example after two days of pumping is shown in Figure 23.
There is no reason, however, for these two solutions to
remain close together, since two different flow phenomena are
solved for. Permeability seems to influence the rate of
divergence of the two solutions (compare Case 2 with Case 1).

(5) The potential distribution in time at the bottom of the
aquifer again shows a minor inflection of the curves at about
0.02 - 0.03 days (Figures 24, 25 and 26) instead of at 0.7
days for Case 1. Hence, the higher the permeability, the
sooner the effect of storage release by expansion of water
diminishes.

(6) The behavior of the potential distribution in time at the
bottom of the aquifer, when compared with the analytical
solution for piezometric head, is analogous to Case 1. The
potential drop of the numerical solution is larger at first,
but then the curve proceeds with a less steeper slope than
the slope of the curve of the analytical solution. Both
solutions cross each other at about 0.03 days (0.7 days for
Case 1). Again, there is no reason to obtain agreement be-
tween numerical and analytical results.

(7) Aerographs are shown in Figure 27. The point of inflection
of the free surface curve is at a radial distance from the
well bore of 251 feet after 5.5 days of pumping. The total
air inflow rate along the upper row of blocks nearly adds
up again to the pumping rate (86,400 CF/DAY).

(8) Air coming out of solution near the well bore is not nearly
as spectacular as in Case 1. This is understandable because
the larger permeability results in a much smaller pressure drop
toward the well bore. Air saturation reached its residual
(critical) value of 0.05 at 1.715 days of pumping in the
upper block of the two blocks facing the well screen. In the
lower block, the air saturation reached its residual value at
6.68 days of pumping. The relative permeability of water at
residual air saturation is 0.92,
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5.5 Aquifer Test Analysis and Unconfined Free Surface Flow

In this study, two-phase, free surface compressible fluid gravity
flow was modeled. The results were shown to be quite different from
confined flow analysis. In fact, it is shown that the confined flow
analysis does not apply to unconfined flow.

From the literature it appears that obtaining reasonable aquifer
constants is a matter of luck. Accounts of contradictory results,
meaningless results, and inconsistencies are more numerous than accounts
of successful aquifer tests. The chance of obtaining reasonable un-
confined aquifer constants with confined flow analyses seems to depend
upon the nature of the observation well, or on the depth of pemetration
of the piezometer tube, or on the time during which the data were taken.
Some researchers will recommend that drawdown measurements be made only
after several days of pumping and at large distances away from the well
bore. Others will advocate the measurements to be made during the first
day of pumping or even the first hours. Observation wells are either
screened throughout or only partially. In other instances, piezometer
tubes are recommended either open in the upper portion of the saturated
thickness or open in the lower portion.

This variety of opinions and guidelines is understandable in the
light of the results of this study. Depending upon what, where, and
when measurements are made it is possible to obtain reasonable results.
Consider for example Case 1, the low permeability case. If drawdown
measurements were obtained from a piezometer open at the bottom of the
aquifer and located near the well bore, there is a fair chance for the
analyst to obtain acceptable aquifer constants, if he made his measure-

ments beyond one day of pumping (Figure 17). If for the same case, the
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piezometer tube were only open at the top, he would not get any reasonable
results at all. Although the data may be perfect, they are not apt to fit
exactly a confined flow analytical solution. His conclusion will be
wrongly that his data are not reliable.

Figures 28 and 29 are examples of what can happen in actual aquifer
test analyses. The drawdown data in this simulated aquifer test come
from the numerical solution of Case 2 at a distance of 251 feet away
from the well bore. In Figure 28 the data would correspond to piezometer
measurements at the bottom of the aquifer, whereas in Figure 29, the
data would correspond to piezometer measurements at the top of the
aquifer. A "type" curve of W(u) versus u (1,26,32) is superimposed
upon the curve of drawdown versus rzlt. The inflection of the latter
curve in Figure 28 was explained earlier in terms of storage release by
expansion of water. A portion of the type curve covers the data curve
only beyond the effect of storage release by expansion. The permeability
computed from the Theis solution was four times too large. The com-
putation of specific yield was meaningless. In Figure 29, curves could
not be matched over a certain length of the type curve and no computa-
tions were made.

To conclude this section, the following example, drawn from the
literature, is discussed. Weeks (70) and Dagan (19) analyzed data
obtained from the same unconfined aquifers. Weeks used the Hantush (30)
analysis for partially penetrating wells., Dagan, on the other hand,
analyzed the data with an analytical solution which includes the vertical
flow component. In short, Dagan described the free surface boundary
condition with a non-linear time dependent partial differential equation

to account for the flux across the free surface; this flux in its turn
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at bottom of numerical model with the Theis solution, r = 251 feet, Case 2.
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Figure 29. Aquifer test analysis: fitting the free surface drawdown data obtained
from the numerical model with the Theis solution, r = 251 feet, Case 2.
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depends upon the potentia? distribution inside the solution region,
given by Laplace's equation. Dagan succeeded in solving this system of
two equations analytically after first linearizing the condition at the
free surface. His solution shows analogous shapes of the free surface
as obtained by the author of this study (Dagan, Fig. 1, p. 1060)..
However, his solution adopts the usual assumptions of constant effective
porosity, small drawdowns and fully saturated flow. The field data
were obtained from piezometers, open at approximately 12 feet below the
watertable. To fit his analytical solution with the field data, Weeks
concluded that the aquifer had a horizontal to vertical permeability
ratio of 20 to 1. Dagan contradicts this result completely by obtaining
a horizontal to vertical permeability ratio of 2 to 1.

The author of this study would tend to believe Dagan's result and
would like to point out the value of Dagan's solution, which has not
drawn much attention in the literature. His solution is obtained under
unconfined aquifer conditions, including the vertical velocity components;
tabular results, however, could be easily obtained by computer for a

broad range of parameters.

5.6 Computational Aspects of the Model

Time step sizes in Case 1 as well as in Case 2 ranged from 0.01 days
in the beginning of the analysis to 0,15 days toward the end of the
analysis, with a throughput of 10 in the blocks adjacent to the well
screen, By a throughput of 10 is meant that during a time step 10 times
the amount of the pore volume flows through a block.

A criterion for time step size was not developed. A solution

obtained by Newton iteration depends upon the goodness of an initial
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guess to start the iteration process (see Appendix A). This initial
guess should be sufficiently close to the new solution. !Much depends
upon the interpretation of "sufficiently close'. Hence, time step size
with the Newton iteration technique is most likely a process of trial.
In this study, time step sizes were gradually increased until the
solution "blew". Punched output, however, of pressure and saturation
results of the last running timestep were obtained. This punched out-
put could then be used to restart the run from the last punched output
on, using smaller time steps. Loading and compiling of the punched card
deck each time was eliminated by keeping the program on tape in binary
form. Normally, loading and compiling time for this nearly 3,000 punched
card model consisted of 58 seconds central processor time and 108
seconds peripheral processor time (CDC 6400 computer, SCOPE system with
FORTRAN EXTENDED, VERSION 3.2).

The Newton iteration process is said to be particularly suitable
for "physically oriented" problems. It seems, however, that the
inflection in the solution does not quite correspond to this idea of
"physically oriented problems", and that this is most likely the reason
why these rather small time step sizes had to be used. Indeed, diver-
gence problems always originated in the region of inflection of the
solution.

With convergence criteria on S* of 0.0001 and on p* of 0.001
the computer time required to solve for 1 time step was 4.0 seconds on
an average for this 6 x 8 grid system. Convergence criteria were
normally satisfied after the second or third pressure iterate. The
first pressure iterate was usually followed by three saturation iterates,
the second pressure iterate by two saturation iterates, and the third,

if any, by one.
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An evaluation of this fully implicit Newton iteration solution
procedure with respect to implicit-explicit methods cannot be made for
this unconfined flow case. It is believed though, that the implicit-
explicit methods would be restricted in time step size for the same
reason as is the Newton iteration method, i.e., the inflection of the
flow field. Therefore, a comparision of performance of both methods
should be very similar to comparisons published by Blair and Weinaug
(3) for confined flow coning models. Limited funds did not permit

further experimentation.
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6. CONCLUSIONS

A continuous mathematical analogue of multiphase flow was derived;

a well flow computer simulator was developed by discretizing the

mathematical analogue with fully implicit finite differences. A positive

answer to the question of concern in this study whether unconfined well

flow is a multiphase flow phenomenon affecting aquifer response is

obtained.

(1)

(2)

(3)

(4)

(5)

(6)

The following conclusions were drawn:

Solving the multiphase radial flow equations with fully
implicit finite differences and Newton iteration to solve the
system of non-linear difference equations is practical in
ground water hydrology.

An original solution is obtained for free surface gravity well
flow which is shown to be a multiphase flow phenomenon
affecting aquifer response.

Gravity combined with the radial nature of flow seem to be
the governing factors in determining the flow configuration,
which deviates entirely from confined horizontal flow concepts.

The free surface profile shows a point of inflection which
moves away from the well bore as pumping continues. The free
surface profile is nearly horizontal near the well bore in
case of partially penetrating wells, open to a lower portion
of the saturated thickness. It is concluded by deduction
that so-called fully penetrating wells nearly operate as
partially penetrating wells; a second inflection in the free
surface (atmospheric pressure) curve would exist near the
well bore, very little affecting the overall radial gravity
flow phenomenon.

An analogous behavior of the Theis solution, corrected for
the effect of partial penetration, and the multiphase flow
model is observed only along the bottom of the aquifer,
where flow is horizontal.

Storage release by expansion of water is considerable during
the first few hours of pumping and explains the inflection

in the curves of drawdown vs. log r2/t, commonly observed in
field data. Permeability affects the extent of this storage
release. In a real field situation aquifer compressibility
may be considerable. It is quite understandable that aquifer
compressibility then will play a role in a sense that it may
accentuate the inflecting behavior of these curves.
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(7) The nature of the behavior of the drawdown curve in time and
space reveals that flow in the so called cone of depression
is insignificant with respect to the total flow phenomenon
and hence, that delayed yield from storage, as explained by
capillarity in this model, has very little bearing upon the
solution. The overall drawdown in radial flow is too slow
for capillarity to be a critical factor.

(8) Air dissolved in the water is an important part of the flow
phenomenon affecting the effective permeability near the well
bore. The lower permeability the faster the air phase reaches
its residual saturation near the well bore.

(9) The confined flow analysis does not apply to unconfined gravity
flow; in other words, confined flow and unconfined gravity
flow are two different flow phenomena. There is a variety of
undetermined factors involved when confined flow analysis is
applied to unconfined flow, and adjusting the confined flow
solutions to fit unconfined flow data is highly questionable.
A good example is trying to explain discrepancies between
unconfined flow data and confined analysis by '"delayed yield
from storage".

(10) The Newton iteration method for solving multiphase free sur-
face gravity well flow problems seems to be affected by the
inflecting behavior of the solution which does not seem to
correspond to the concept of "physically oriented problems'";
this probably explains the rather small time step sizes.

Finally, it is concluded that, regarding recommendations, the
multiphase flow approach for solving unconfined gravity flow problems
is a fertile field for future work. The well flow problem of this
study is a good initiative and could now be studied under a variety of
factors to determine the magnitude and extent of their effect upon the

solution. This could lead to some practical guidelines for unconfined

aquifer test analysis.
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APPENDIX A

THE NEWTON ITERATION PROCESS FOR SOLVING SYSTEMS OF
NON-LINEAR EQUATIONS

Because of its quadratic convergence, the Newton iteration process
was selected to solve the system of non-linear equations as represented
by equation 24, 25 and 26. The proof of quadratic convergence is
presented in many standard textbooks on numerical analysis (27) or on
functional analysis (35).

For n-dimensional systems, as is the one in this study, the process
can be described as follows. Consider the following system of non-

linear equations in the dependent variable p

By 3P5 07 T #Pact 4 ™ Bied 4P 5 ™ T gy g1 T TP g

+H, ,=20 (A-1)

The coefficients T and H are fuentions of p, therefore, the
system is non-linear in p. In vector form equation A-1 can also be

written as
£(p) = 0 (a-2)

Suppose ﬁk is a present solution estimate of the system f(3).
Then, an improved estimate can be obtained by linearizing the system
A-2, involving derivatives of f(Ek) evaluated at pk. This linearized
problem now is a system of 1;near algebraic equations, which is solved
for Ap , an increment. This "correction" increment is added to ﬁk

~k+1

to give an improved solution p . This process is iterated until

convergence is obtained.
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In mathematical terms the process can be summarized as follows.

To linearize the system f(;k), it is represented by the first two

; : -k
terms of its Taylor series at p

M Ky R
ey gy 4 . 2EERD gL gh (a-3)
j

The right hand side of this equation is the linear vector function
of ;k which best approximates the non-linear function f(;k). It is
the tangent hyper plane to the surface f(;k) at Bk . From equation
A-3 the following linear system is obtained

ok £GD)

P =P W et (A-4)
1,3 ¢ k)
yo £

2,:1 -~
Py

which is the general step in the iteration process.

In this Newton iteration process the convergence very much depends
upon a good first guess EO . This often leads to time step restrictions
when initial conditions are used as a first guess. Fortunately, for
physically oriented problems, as is the one in this study, initial con-
ditions are usually good enough for an initial guess without a too
severe limitation on time step size. What happens if 30 is far away
from the solution is a question impossible to answer; some solution may
eventually be approached or it may jump around the space for quite a
distance and quite a number of steps. Bounds set to this kind of

oscillation often leads to convergence.
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APPENDIX B
THE RESIDUAL APPROACH FOR SOLVING SYSTEMS OF
EQUATIONS
The residual approach for solving systems of equations simultaneously

proceeds as follows in matrix notation (11). Suppose the matrix equation
(A] [P] = [B] (B-1)

is to be solved for the new vector P . If the new P vector is
; W k
defined as an initial guess, P , at new values of P , plus an error
*
vector, P , being the difference between initial guess and final

answer, i.e.,

[P] = [PX] + [P*] (B-2)

then matrix equation B-1 can be rewritten as

[A] [P*] + [A] [P*] = [B] (8-3)
8

[A] [P*] = [B] - [A] [P"] (B-4)
or also

[A] [P*] = [r] (B-5)

where the r vector is the residual error and is defined by the right
hand side of equation B-4. Depending upon the computer hardware, it is
sometimes advisable to compute the r vector by double precision using
the latest P wvalues. Any matrix solution technique can then be used
to solve for the correction vector, P#%* , by single precision. This
vector is then substituted in equation B-2, using double precision, to
come up with an improved new value. This process can be repeated until
the desired accuracy is obtained. The residual approach is very power-

ful, because extreme accuracy can be obtained when desired.
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APPENDIX C

INPUT DATA

1. Inpute data: Case 1

The aquifer properties selected for Case 1 correspond to a
Columbia sandy loam with an average permeability of 5000 milli-darcies
(13.7 FEET/DAY). The saturation dependent data were obtained from
Laliberte, Corey and Brooks (39). The fluid properties were obtained
from Dodson and Standing (20). The well bore is screened over the
lower 45 percent of the initial saturated thickness (136 feet), with a
constant pumping rate of 43,200 FTB/DAY.

The following four pages are a computer listing of the input data

and are self explanatory.



NOTL
NGAS
NWAT
CMNT
CMNT
DEHU
CMNT
FHDS
LMNT
CHNT
CHMNT
CMNT
CMNT
CHNT
CMNT
PORO
CHUNT

-106

CA3E 1

- -

aS=zzc=TE3SssSzssSsSsssss=zazrgPUT AT pss===S===S=z=s=z===z=zs=====3z==3I==z====3==°%

ALl CMNT cARNDE ARE CUMMEs 1 TARDY ANO ARE MOT 2UT O TAPE
~

Bl
531
ety
Lnnnyg.
MAX = ospaxiMgM 1 TNDER (NOMBFR OF COLUMNS)
Max = MpAKIMpgM ) TNDEX (NUMRER OF ROWS)
NCOM = NOMBER OF COMPUTATIANS(NIMBER NF TIMF STEPS)
RUEL 2 wELL RADIUS (FT)
RE¥r = EXxTERTOR BOUNDARY RaADIUS (FT)
]
3
2

NEASeNWES «AND MNOR DETERMINE THE [YPE OF BOUMPARY CONDITION AT THE
EASTeWEST.AND NORTH SINDE OF THE MODCL(WEST = WELL ROUNDARY )

1 ASSIGNS A ND FLOW BOUNDARY cONDTTLON

¢  ASSTGNS A 2HESSURE wIUnpARY combITION

3 ASST6Ns 4 FLOw RATEL

Vs 30
OAES = OvER RELAXATION UMFGA
e0J0)
S5C0N = CokvErseENCE CRITERIAM ON SATURATIONS
«NY1
HUO 32 CANVERGENCE CRITERIQN ON PRESSURES

GRAV = GRAVTITY
GrRAV = n.n NO GRaVITY EFFECT
GRAVY = 32,174 DENSTTY OF FLUIVDS IS ySED
SLuUG/cuBLC FoorT
GRAY = 1.0 SPECIFTC WEIGHT QF FLulps IS
USED (LBS/CUBIC FOOT)
PERF STANDS FOR PERFURATION OF t1re GRIDS ALONG THE WELL RORE
THE FIRSE WUMRER [ THe SupsiRIpT oF THE PEQFoRATED WELL RBLOCK/
THE SECUND NUMBER 1S THE PERTIRATTOM INDEX,
] = puUieK 15 PEREOHATFI (nTHERWISE = @)
Lb WO PERE CARDS ARE USF0sAL L PERY [IWICES ARE SET EQual TO ZgR0
n
NOLLYMGAS aiW/ T ABE THE TURM UM (R OFF SWITCHES FOR THE OfL
GaSe™ amD WAleR PHAREY( feGa N, T=0 MEANS NO WATER PHASE)
r}
DEBU IS THE DEBUGGING swiTCh

WHEN THFE aARKAY IS CONSTANT«THEG TuE VaLuE OF THE CUNSTANT APPEARS ON
THE AWDAY NAME CaRD LN COLUMNS 11=20
WHEN THE ARRAY IS VARTASLEyTHEN A 7EKY I3 PUNAGHED ON THE ARRAY MAME
CARD In CoLu¥n3 11«20y aND THE ARRAY 1S PUNCHED PER ROW wrHITH THE
FORMAT  B(lA+F3.0) o FOR EACH NEW ROWsA NEW CaRD TS STARTED.

+5

PIRN = PARDSYTY
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PRES Heh
CMNT PHES 3 PRpES3RE
10365300 10365300 1U,365300 1n,365300 19,365300 17,365300
13.215269 13,215269 13,215269 13,215269 13,215269 134,215269
18.632538 18,632538 1H,632538 )1R8,632538 1R,632538 18,632538
254134246 25.134246 25,136246 25,134265 25,134246 25,134246A
32.719941 32719941 32,719941 32,719941 32,719941 32,7]1994)
41,389802 41.,389R02 41,3B9R02 41,3H98G2 41,389802 41 ,389402
52.227792 52.227792 52,227192 5p,221792 52,227792 52,227792
65,2341358 65,23435R n5,234358 A5,2343%5 45,234358 65,214358

SATG Den
CMNT SATH = 6GAL SaTuwATiUN
«80 B0 « B0 LY RU «B0
4 0) o 40 oh L v 4N
« 0 )0 N ol s U0 10N
1) «UD ] L0 « 00 «N0
.10} U0 NN A0 «00 <00
o N0 LT o0 .00 «00 «00
Uy N « N .U"' «UJu 00
Nt el a1 .00 a0 NN
SATO U
CHMNT SATND = OTL SATURATION
« 20 20 o210 .20 20 20
bl 60 o B .60 60 «h0
100 1+UD 100 l.l}l] 100 1.00
len ) 1«00 len0 1,00 100 1.00
l.00 19D len0 L.00 le00 1.00
l.00 170 le00 1,00 1+00 1.00
le00 1«00 1.00 1.00 1«00 1.00
lani) 1«00 lanii 1,00 1«00 1.00
SATwW Den
CMNT SATW = WATER SATURATION
0 ] ] G (1] n
0 0 {: f) i) n
0 0 0 0 0 n
t] Il i 0 U n
(] 1] 0 J ] n
f] 0 i il 1] n
0 1} 0 u u n
f ] ﬂ Y 0 0
RADIL 12,
CMNT RAD = RADLI (MORMALLY+IF pWFL AND REXT ARE READ IM
CMNT THE RADIT ARE LNGARITHMICALLY DISTRIBUTED.
CMNT THE OTHER OPTION IS TO ASSIGN RADII BY
CMNT MaAKInNG 1SE OF THE ARRAY CARD
DELZ Det
CMNT DELZ = DELTA Z ARRAY
51 10 15 15 20 e2n 30 L]
KR 500U
CMNT KR = PERMEARTILTITY aARRAY 18 4anllbCTINAN (u n,)
K 500U
CMNT KL SORE S ANILTTY ARRAY th Z7anTRECTTIAN (4,0,)
ENDA
(CMNT ===zss=-S=S=S=cScSsSc-c==SSz-SS=Szc3SS-s sz SCS=SSSs=2s=c=z=c-s3=8=s=S=s=========

G0 1o, 0.0
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NG Oen (]
Ne U, Ne e Os 0.
Ne 0% Ne U 0s Ne
(129 0, Na e (139 Ne
Ne Us Ne e Oe Na
De 0. De (ie 0 Ne
Na 0, Ne e Ue Ne
Ne U, Na Ue [ Ne
N U, Ne e e Da
Qw 10, 0,0
CMNT WO GeAND Gw pARE TuE OTL +GAS»anD WATER PRODURTINN TEUMS
CMNT IN CASE OF 4 nONSTANT ARKAY +THF FIQST VALUE IS A DUMMYsGREATFR THAM 1
CMNT  AND THE SEcONh DESIGNATFS THE VALUF 0OF THE CONSTANT ARRAY
CMNT IN CASE OF A vARIASLE ARHAY s THE FTRST VALUE SHOLD 8F A ZEan AnNn THF
CMNT SECUND BECnMbs IMMATERTAL,
ENDQ
CMNT s2=2=s=3cS=zsS-ssScsrs==2szssSszssScsszsdS3sSSSssscssssssssS=SssSsss===sS=s5
CMNT m=s===s32z8s=z3=33 PIRESSYRE=yOLUME=TEMPERATURE INTEQPOLATION TARLESz=s==s=s=z=3
CMNT HuU 2 Of. FRRMATIUN VOLUME FACTOR
CMNT 90 = 6a> FORMATIUN VOLUME FACTOR
CMNT Bw 3 WATER FORMAIION VoL MF FACTOR
CMNT VISn = OrL VISCOSIIY (CENTTPNISF)
CMNT VISG = GAS VISCOSTIY (CENTTPNISF)
CMNT VISw = wATER VISCOSITY (CENTIRPATSE)
CMNT NDEND = OTL DENSITY (SEE GRaV)
CMNT DENG = GAS NDENSITY (SEE GRaV)
CMNT NENW = wATER DENSTIY (SEF rRAV)
CMNT PRES viso Bu DENO RS
CMNT - - - —-—— Fapy
PVTO Dan 450 1.0 194 0.0
PVTO 10, 1.0000060 .N230
PVTO 147 | Y] ,0338
PVTO 20, 99999754 LN&RD
PVTO 60, 29979 3458 .1380
PVTO 80, 09390858 L1840
PVTO FLAG 9999, 9999, DN
CMNT PRES VISG 30 NENG
CMNT -y - - -- -
PVTG Qen 018 1,7 L0Ne3r
PVTG 100 1,98
PVTG 147 1.0
MVTG 20, 0,92
PVTG AOsN 0,22
PVTG a0, 0,ul
PVTG FLAG 999q. 9999,
CMNT PRES vVisa aW DENW
CMNT - ———— - ———
PVTW 0, A0 1.0 1.9
PVTwW In 1,01
PVTW 1447 1,62
PVTW 20, lenio
PVTw ol. U2
FVTw Bo, 1,96
PVTwWw FLAD 9999, 9999,
CMNT DENSITIES AWKE EIMHIR RFAU Toy AS A FUNCTION OF PRFS,N3 roMeyTER WITH F, v ke
CMNT  FROM DENSITIES AT ATMOSPRERIC CAWTTTUNS (OR STNC« Tanx)
CMNT =======SfsE=Sg=Szs=Sz=S===3=Z==3F8SzS3z-=====S==S====s====s==s=s=Zs==z=
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CMNT =z==s==sSsE===Scs3==s=SATURATIIN NATA TNTERPOLATINN TA4F ==2Fz=s=szzzss333=

CMNT an = RELATIVE PEHMEABILLTY

CMNT PLOG 2 NTL=GAS CAPILLARY PRFSSURE

CMNT PCAwW 3 waTEROTL CAPILLARY PRESSURF

CMNT SAT AKL,0TL “KeRALS RK.wAT PCOG or0w
CMNT - T —— m—p - - - - -
SATD Oen 0,0 ne0 us Nan fel
SATD o 0.9 0,90 040 54N

SATD 0e? 0.0 0,11 Vsl 4,.3347

SATD Ik | Nel?25 Deped Ne125 F60

SATD nasig Nel190 D.260 0190 2+95

SATD ne45 04315 0437 Ne3l5 240

$ATD ne90 NeR75 04895 0.875 048

Sﬂ'fl] len 1.0 10 140 NaN

SATD FLAG 0.0 Ay Vil 0en 99499,

EMNT  THE LAST VALUF OF ZACH AHRAY IS AN pupICATOH FOR wHETHER OR NNT A PARTICI=
CMNT  LAQ FUNCTION 1S COVSTANT«(TNJICATUR VALUFE £ 9999, +THEN THE FTRST VALUE
EMNT OF THE ARRAY 1S THE CONSIANT)

ENDT

CMNT =2===2:s5=CfsESpz3=2S3I-s8:s2rSSzzsS=3xSiz=sxearaidficsstogueadctiaSg=sdsssagsinncs
(MNT =s=zc==Szsszsz¥sczsss=s==znNFw [[MF STFEP DATAzdsszsszzssssssepsEssRsgses-NEsS

CMNT VELT 1s ajways THE LAST CaARn In A SET OF NEW tIMF STEe CanDs
GRCO n

Qe 1 T 2lenue

Q0 1 A 21600

DELT +05n

DELT 050

DELT 1050

PUNCH

CMNT z=s2zzzcz3ssexsScssszsgssa=zery) OF INpUT DAIARZZszsssssscsdsaissigaatscssass
END
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APPENDIX C (continued)

INPUT DATA

2. Input data: Case 2

The aquifer properties selected for Case 2 correspond to an
unconsolidated sand with an average permeability of 80,000 milli-darcies
(219 FEET/DAY). The saturation dependent data were obtained from
Laliberte, Corey, and Brooks (39). The fluid properties were obtained
from Dodson and Standing (20). The well bore is screened over the
lower 43 percent of the initial saturated thickness (139 feet), with a
constant pumping rate of 86,400 FT3/DAY.

The following four pages are a computer listing of the input data

and are self explanatory.
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CASE 2

-

CMNT =-===l='=lsq=====I=======llINFUf DATA4#4c===2S=Ss=Szzss=Sc=SS2s=S==z3===3===

CMNT
CMNT
IMAX
JMAX
NCOM
RWEL
REXT
CMNT
CMNT
CMNT
CMNT
CMNT
CMNT
NEAS
NWES
NNOR
CMNT
CMNT
CMNT
CMNT
CMNT
OMEG
CMNT
SCON
CMNT
PCON
PCON
CMNT
GRAV
CMNT
CMNT
CMNT
CMNT
CMNT
CMNT
CMNT
CMNT
CMNT
CMNT
CMNT
NOIL
NGAS
NWAT
CMNT
CMNT
DEBU
CMNT
ENDS
CMNT
CMNT
CMNT
CMNT
CMNT
CMNT
CMNT

ALL CMNT cARDS ARE COMMENT CARDS AND ARE NOT pUT ON TAPE

6
8
500
len
10000,
IMAX = MAXIMUM 1 INDEX (NUMBER OF COLUMNS)
JMax = MAXIMUM J TNDEX (NUMBER OF ROWS)
NCOM = NUMBER OF COMPUTATIOQNS (NUMBER OF TIME STEPS)
RWEL = WELL RADIUS (FT)
REXT = ExTERIOR BCUNDARY RADIUS (FT)
REXT = EXTERIOR BOUNDARY RaDIUS
1
3

2
NEASsNWES<AND NNOR DETERMINE THE TYPE OF BOUNDARY CONDITION AT THE
EASTowWESTAND NORTH SIDE OF THE MODEL (WEST = WELL BOUNDARY )
1 ASSIGNS A NO FLOW BOUNDARY cONDITION
2 ASSIGNS A PRESSURE BOUNpARY CONDITION
3 ASSIGNS A FLOW RATE

1430
OMEG = OVER RELARATION OMEgA
«+N00)
SCON = CONVERGENCE CRITERIQN ON SATURATIONS
01
«001
3 117 PCON 2 CONVERGENCE CRITERIgpN ON PRESSURES
24174

GRAV 3 GRAVITY
GRAV = (.0 NO GRAVITY EFFECT
GoAV = 32,174 DENSITY OoF FLUIDS IS ySED
SLUG/CUBIC FOOT
GRAV = 1.0 SPECIFIC WEIBHT oF FLUIDS IS
USED (LBS/CURBIC FOOT)
PERF STANDS FOR PERFORATION OF THE GRIDS ALONG THE WELL BORE
THE FIRST NUMBER 1s THE SUBSCRIPT OF THE PERFQRATED WELL BLOCK/
THE SECOND NUMBER 1S THE PERFORATION LNDEX.
1 = ALOcK IS PERFORATED (nTHERWISE = 0)
IF NO PERF CARDS ARE USEDsALL PERF TNDICES ARE SET EQUAL TO ZgRO
1
1

n
NOILINGAS+NWAT ARE THE TURN ON nR OFF SWITCHFS FQR THE OTL »
GASs AND WATER PHASES( EsGes NwaTzp MEANS NN WATER PHASE)

n
DEBU Is THE DEBUGGTNG sSWITCH

=II2=EI8’II=:8:3!8.SC===3===3l:!:::gg:::l:‘S:I'l!'SzS:BSS!'II::S!I:!=S=I83!
ESSSE==Es8=x=FosssSsssssz ARRAY DATA s2==z=Scssc=sczzccosszsssgSsSssssssssss==ss

WHEN THE ARRAY IS CONSTANT4THEN THE VALUE OF THE CONSTANT APPEARS ON
THE ARRAY NAME CARD IN COLUMNS 11-20 .

WHEN THE ARRAY IS vARIABLEsTHEN A ZERO IS PynNCHED ON THE ARRAv NAME
CARD IN CALUMNS 11-204 AND THE ARRAY [S PUNCHED PER ROW wHITH THE
FORMAT B(1XeF340) « FOR EacH NEW ROWsA NEW CARD TS STARTED.



PORO
CMNT
PRES
CMNT
144030000
14.615906
20.034368
26.,536728
34,123014
42,793350
53,631713
66,638396

SATG

CMNT
.

+099989

oo oo L+ ]

SATO
CMNT
.l
«900011

e e et ot

SATW
CMNT

cCoOCoDOo oco

RADI
CMNT
CMNT
CMNT
CMNT
DELZ
CMNT

KR
CMNT
KZ

CMNT
ENDA

50

*5
0.0

14.03000¢
14.61590¢
204034388
26.536728
34,123014
42,79335¢
534631713
66.638396

Den

(4]
+099989

(=N la=T =~ . [ =

03

il
«900011

o
-~
= e

" 3D DOD

P
o

Osn

lo
80000.

80000,
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PORO = PoROSTITY

PRES = PRESSURE

14,030000
14.615906
20; 034388
264536728
34,123014
42,793350
53;631713
66,638396

14,030q00
14,615906
20.0341388
2645367828
34,123014
424793350
53;631713
664638196

14.030000
14.615906
20.034388
26,536728
34,123014
42.793350
53,631713
66,638396

SATG = GAS SATURATION

.9
+099989

SO oo0

0

099989

S O oo

(=

.099989

cococoo

SATO = OTL SATURATION

o1
900011

e ey

»
—
=

n

ocao o 200W

2A

DE
15

KR

KZ

90001

e e

cCC OO

cCcc

D = RADIT

Lz = oe%;n Z ARRAY

3= PERMEABILITY ARRAY IN ReDIRECTION (M.Ds)
= PERMEABILITY ARRAY tN Z«DIRECTION (M4Ds)

.900011

e b et

0

coCcoCc oo

(NORMALLYsIF RWEL AND REXT ARE RFaD
THE RADII ARE LOGARITHMICALLY DISTRIBUTED.
THE OTHER OPTION IS TO ASSIGN RADII BY
MAKING USE OF THME ARRAY CARD

20

14,030000
14,615906
20.03438B8
26,536728
34,123014
42,793350
53,631713
66,638396

.9
«099989

oo o992

o1
+900011

[ e

WATER SATURATION

DO DO

20

30

30

CMNT EE e L e e e e e E L e Y P T T T I I I
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Qn lu, NaY

o6 Uen 4N
HI) 0. MNe e Ve Mg
0e UM fie U (1 My
e Ve Ne e ) a Mg
e D, s Jwe e {1 g
Ne 0, Qe e 0e N,
Na Vs N iJe e Ny
0a U, Y e (o Na
e 0. Oe D [V 0

Qw Lo, J 0

CMNT QOyAGLAND QW ARFE THE OTL «GAS*AND WATER PRODUCTIOM TERMS

CMNT [N CASE OF A CONSTANT ARRAY +THE FrusST VALUE IS A DUMMYGREATER THAN
CMNT  AND THE SFCOND DESIGNATES THE VALUE OF THE CONSTANT ARKAY

CMNT [N CASE UF & VAR[JABLF ARRAY  THr FIRST VaLlb SHOuLD RE A 7ZERPD awp THE
CMNT  SECOND BECAMES [MMATERTIAL,

ENDQ

CMNT =z===22=3=SSs:s3zs=5SC=zicCsSs==2z=2=3=53z-==s=3sSSSSs=ssssssx=zszIsssS=Ss==sSsI===
CMNT ====zz=z=zSz====3=3z PRESSURF =y )LUME=TEuRERATURE INTFRPOLATINN TABLES=========
CMNT BU = N1l FORMATION VOLUME FACTOR
CMNT 90 = HAS FORMATION vOLUME FARTOR
CMINT aw = waATER FORMATION VOLUYME FACTOR
CMyT VISp = 0w viIScoSTTY (CENTIPOISE)
CMNT VISG = 6aS% Y1ScoSITY (CENTIPOLSE)
CMNT ViSw = WaTcu vISCOSITY (CENTIPOTSE)
CMNT NENO = 0T NENSITY (SEE ARAV)

CMNT DENG 2 6A5 DFENSITY (SEE GRAV)

CMNT NENW = wATER DENSTTY (SEE GRAV)
CMNT PRES visn BO DENQ RS
CMNT - ———— .- ———— -
PVTO 0.0 L, 1.0 1.94 .0
PVTO 10, 1.1000066 .n230
PVTO 1447 Lo .0338
PVTO 20, «9%9799258 0460
PVTO 60, « 29393559 L1380
PVTO an, «09990854 L1849
PVTO Fi.aG 999 9999, Ned
CMNT BRES V186 BG NENG

CMNT - ———— - -——

PVTG e AR 1.25 LN237

PVTG JUan 1,08

PVTG 1447 1.0

PVTG 20, 0,32

PVTG K0 N,25

PVIG ju, 0,01

PVTG  FuLaG 9999, 99949,

CMNT PRES visw Bw OEhwW

CMNT -—— - - -

PVTw ., L0 1.0 1e9

PVTW lea 1.01

PVTwW 1947 1,02

PVTW 24, 1,035

PVTW 60, 1.05

PVTw 30, 1,0k

PVTW FrLAG 1995 . 99949,

CMNT  DENSLITIES ARE EITHER RFAD [N AS A FUNCTION UF PRES,OR COMPUTED WITH FLoveF.
CMNT  FROM DENSITLIES AT ATMOSPHRER|Z CoMUITIONS (OR STACK Tank)

CMNT SE=SS==33F==z=3z5283833S-FS=cc-3IESzSSzss=SETSISSSss=scsssszI=sisS==sS=sz=zz===:S
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CMNT =z=z==z==z==z==zz=3zz=z==3SATURAT 0N paTa INTERPOLATION TABLE ===Sz=s====z=z=sz==:3
CMNT Rk = RELATIVE PERMEABILITY

CMNT PCos = OTL=GAS CAPILLARY PRESSURE

CMNT PCoW = WATER.OIL CAPILLARY PRESSURE

CMNT sar RK.OTL RK.GAS RK.WaT PCOG PChA
CMNT - - - - - - -
SATD Ned0 0.00 0,01 te00

SATD 0085 O0.n0 o un a0 .75

SATD NDelD Gan N,0% GalU DahT

SATH Ne30 .08 3,23 DelH 040

SATD NaSn GCa2b G.“l Neld De30

SATD Nel0 fleab n,60 Catlth Nel3

SATD .90 heRY) RApbL De80 0.10

SATD 100 1400 1.99 1«00 DeNO

SATD FLAG 9969.

CMNT  THE LAST VALUE OF EACH ARRAY LS AN INDICATOR FOR WHFTHER OR NOT A PaARTICU=
CMNT  LAR FUNCTION 1S CONSTANT+(INDICATOR VALUE = 9999. «THEN THE FIRST VALUE
CMNT  OF THE ARRAY IS THE CONSTANT)

ENDT

CMAT 22=z3==3=3S=x3=z3333:S=3zs3=== s3z53g===rS=SZTSSx=Ss==sSacE=SIzsS=SIa=S==E===
CMNT ===3zs=sz=s==z3sz===z2==z=3Nfw TIME STEP pATAS==S====s==2:=s=TZS==3===S=s==323
CMNT DELT [S ALWAYS THE LAST Carp In o SET OF NEW TTME STEP CARDS

GRCO 0

Qo 1 ’ 43200+

Qo 1 o] 43200

DELT « 045

DELT 045

DELT o Na5

PUNCH

CMNT =zs===ss===S=z=3zs=S=z:ss=2==2=fNU OF InNpUT DATA=S===z===zzsz=z===s===z=S=========:%
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APPENDIX D

SAMPLE TIME STEP OUTPUT

A sample time step output is given for Case 1 and Case 2 toward the
end of the analysis. The left column of each map represents the values
of the grid blocks adjacent to the well bore, The right column re-

presents the exterior boundary grid blocks.
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P e e e L e T e P et L PP EE L L PP T P F T 2 o
CASE 1 TIME STEP 138
CUMULATIVE TIME 74360 DAYS
DELTA=T «120 pAYs

Sz ==3I=SEIrEESEE=S-=ZIS=Se=rESSIESsSss=szsssEssFEas s s SxgreegSESEE ==

PRESSURE Map

1 2 3 4 5 6
1 .10365E402 .103656+02 ,106365E%02 .10365E+02 410365E+02 ,10365t.02
2 .10996E+02 .10910g+02 L1)053E%02 ,13119E+62 .13216L%02 ,13216E+02
3 .15954Eep2 ,1595RF+02 .16144E*02 .1BS17€+02 .1Be34E+02 ,1B634E+n?
4 .22286E+02 .22292E+02 ,22569%5%02 .25009E+02 425137E+02 ,?5137Esn2
5 .29429E+02 .29443p.02 L30018E+u2 ,3258SEe02 ,32723E+02 ,32723F.02
6 L36739E+02 L36B6PE+02  ,3B465E402  .41245E+02 .4]1393E402 ,41393F+02
7 L366RTE+02 L4364BLeN2  4B9T4E02 ,52074E+02 .52231E+02 ,52232€.02
A L4B4I19E+p2  .55481E+02 ,RlITSKE+ND 553756402 LH6523BE+n2  L6523BE.N?
POTENTIAL MAP
1 2 3 4 5 6
1 .7539GEen2  ,75390€+02 ,7539)E¢02 ,75391E+02 ,75391E+02 _75391E.02
2 .62927E+02 .6293LE02 .43075E*02 JAS141E+02 .6523BE*)2 ,.6523IAF.02
3 .62650E+02 ,62560p+(2 ,62747E%02 ,65121E+02 ,6523BE+02 ,65238£.02
4 .623B5E+n2 .6P392E+402 L62670E*02 .65111E%02 +6523HE+p2 ,65238Esp2
5 6l942E+02 6195TE+J2 ,62532E+02 .#5)00E+02 .65238E+02 _65238F+02
h L 60582E+02 ,60706E«02 ,62309E402 ,650905+02 ,65238E402 _65238E.02
T .69693E+02 56654£+402 .619B1E*02 .p5081E%02 .6523BE402 ,65238E+02
A L4B4)19E+02 J5548lp+02 ,p)756E%02 LeSNT7SE*02 L,6523BE*02 ,L65238F402
0JL SAT. MAP
1 2 3 ] S 6
1 .20000E400 +20000E+CU  .200UNE*00 .20000E+00 +20000E+00 ,20000E+00
2 .2562BE+N)  L256L9E+L0  ,27202F400 .57096E+00 .60001E400 ,60N03E+00
3 .99887E+n0  +998B0E+00 .99769E*0) .99998E+0n .10000E*Nl ,1p000Es+N)
4 L10000E+0l 4 10000€+C) .99932F+00 .99998F+un L10000E*nl ,1p0NNE+01
5 .10000E+01 .10000E«0] ,99945E+00 ,99994E¢Un ,10000E+nl _ 10GNOELN]
6 .9998BE+00 L10000E0l L10000E*01 .99995E+0n 410000E*0l ,10000E«n]
T .89978BFE+nu  .95644Fe00 _99B65E+00 ,99993E+00 .10000E*0l _10000E.0]
8  ,A9081E+00 .95409+00  ,99934E+00 L,999%99E+0N  L10000E+NL _1pN00E«0)
GAS SAT. MAP
1 2 3 4 5 )
1 .800006E+nD .B0000E«NS ,Au0NCF+*00 ,BN000E+00 ,B0p00E+Q0 ,BOONOE«ND
2 .74336Eenn  LT4331E+00  .T2797E%00 .42902E+00 .39999E+pD ,39997E.00
3 L11315E-02 L 11996E-02 ,23119E-02 .2033BE-04 .26064E=05 ,25566E=05
s 0. N «68283E-03  ,)17209E-04 ,38958E=)5 ,365H9E-0S
S 0. 0. «55173E=03 .g6TasE~04 ,35453E=05 3501505
6 .12362E-n3 o, c. «54002E=04 ,33139E=05 ,32637E-05
7 .10005E+00  L43560E-Gl 1350802 ,746B84E=04 o2B8791E=n5 .2H3N4E=0N5
B L10004E+00  L4531BE-01  ,ABNAIE=N3  L11R12E=04 .34455E=06 ,33713F=Nf
OIL PROD. MAP
1 2 3 4 5 ]
1 n, L N Na n. 9.
2y L Ja 0e e n.,
3, L N 0. 0. LR
& 0, Ne [T L M ;.
5 0, e U, N, N, 0.
A0, Ne i, Aa N, 9.
T .2len0E+p5 n, = Ne 1, 9.
A L21600E+05 9, n, Oa L Ne
GAS PROD. MaR
) 2 k| . 5 &
1 = 11732E401 =251711Ea02 =,19754E404 =.3B8425E+05 =,20517E404 -, 21469401
2 0. N, 0, Da LD 0.
AN Ge 0. O 0. 0.
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APPENDIX E

LIST OF SYMBOLS

Cross sectional area of flow (FTZ)

Formation volume factor

1

B

Conversion factor: for units of psi, centipoise,
milli-darcy, and feet, ¢ = 0.00633

Acceleration due to gravity

elevation above reference plane (FEET)
Saturated permeability (intrinsic): md.
Relative permeability

Mass réte of depletion

Pressure (psi)

Capillary pressure

Pressure in the non-wetting phase

Pressure in the wetting phase

Capillary pressure between oil and gas phase
Capillary pressure between oil and water phase
Flow rate (FTBIDAY)

Flow rate, sink (+j, or source (-)

Oii, gas and water residual terms

Solution éas;oil ratio

Fluid saturation

Bulk volume of differential element

Center of mass of differential element in x-
direction



Subscript A

i

U

E,W,N,S

Superscript n

Ax,Ay,Az,Ar

At

v

in

n+l"

k

]
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APPENDIX E (continued)

LIST OF SYMBOLS

Aquifer conditions

Number of columns in grid system
Number of rows in grid system
Gas phase

0il phase

Water phase

Upstream

East, West, North, South

Present time level
New time level

k-th level of iteration

Finite spatial increments

Finite time increment

Gradient

Difference operator (equation 23)
Fluid viscosity (centipoise)
Fluid density

Porosity

Potential

Napierian logarithm
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