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ABSTRACT

APPLICATIONS OF FIELD PROGRAMMABLE GATE ARRAYS FOR

ENGINE CONTROL

Automotive engine control is becoming increasingly complex due to the drivers

of emissions, fuel economy, and fault detection. Research in to new engine concepts

is often limited by the ability to control combustion. Traditional engine-targeted

micro controllers have proven difficult for the typical engine researchers to use and

inflexible for advanced concept engines. With the advent of Field Programmable

Gate Array (FPGA) based engine control system, many of these impediments to

research have been lowered.

This dissertation will talk about three stages of FPGA engine controller appli-

cation. The most basic and widely distributed is the FPGA as an I/O coprocessor,

tracking engine position and performing other timing critical low-level tasks. A later

application of FPGAs is the use of microsecond loop rates to introduce feedback con-

trol on the crank angle degree level. Lastly, the development of custom real-time

computing machines to tackle complex engine control problems is presented.

This document is a collection of papers and patents that pertain to the use of

FPGAs for the above tasks. Each task is prefixed with a prologue section to give

the history of the topic and context of the paper in the larger scope of FPGA based

engine control.

The author of this study founded, built up, and eventually sold Drivven Inc., a

company dedicated to the implementation of FPGAs in engine control. As a result,

this study spans a decade of time where we see the first few papers related to FPGA

ii



based engine control, and concludes with FPGA based engine controllers being the

de facto standard for advanced combustion research.
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Chapter 1

INTRODUCTION

Modern engines are increasingly dependent upon complex control systems to

achieve their performance and emissions goals. Following Moore’s law for ever in-

creasing performance, engine controllers have become ever more complex and capa-

ble. In the span of a few decades engine controller units (ECUs) moved from 8-bit

controllers with low on-chip integration to modern 32-bit floating point processors.

Presented herein is a logical next step in ECU evolution, using a field programmable

gate array (FPGA) as the core of the ECU allowing both more flexibility and new

capabilities in ECU design.

As a result of, and enabled by, this complexity engine controller design now

supports higher level of abstraction. This means that very high level symbolic

and dataflow languages are used to define the control, and that formal layering is

employed in the software to abstract the application programmer from the hardware.

1.1 The history of electronic engine control with a focus on FPGAs

1.1.1 Automotive Microcontrollers

Automotive microcontrollers differ from industrial microcontroller in a few ma-

jor respects. First is temperature, automotive grade parts are generally -40C to

125C, as opposed to industrial parts that are generally -40C to 85C. A more im-

portant difference is in the built-in peripherals. Automotive microcontroller have

specialty I/O for automotive specific tasks like dedicated protocol engines or the

TPU and PCP2 units described below.

Microcontroller-based electronic engine controllers first started appearing in the

late 1970s. By the early 1980s microcontrollers were the standard for engine control.



In 1981 the entire Domestic market GM fleet was microcontroller based. (Bereisa,

1983) These were 8-bit controllers of the class that the Motorola 6800 exempli-

fies. They implemented throttle body injection, spark advance, and EGR generally

through lookup tables.

In 1983 Motorola introduced the 68HC11 with numerous on-board peripherals.

This processor and its cousins throughout the industry enabled consolidation of

numerous discrete components into a single chip. These, however, remained slow

8-bit processors that were largely coded in assembly language.

By 1990 the Motorola 68332 was released for the automotive market. This

was an automotive variant of the popular 68000 series processor used in the Apple

Macintosh of the day. This processor was a full 32-bit processor enabling the use

of higher level programming languages like C. One major innovation was the Time

Processing Unit (TPU).

The TPU offloaded the processor from handling timing critical tasks like fuel

and spark commands. It allowed easier abstraction of the higher level software by

reducing the intensity of interrupts to the main processor. This in turn simplified the

task of implementing multi-port fuel injection. The TPU itself was a special purpose

processor with special purpose instructions allowing it to do complex counter-timer

operations in single instructions. It was not particularly fast, running at some frac-

tion of the processor clock, but the ability to do quick timer manipulations without

CPU intervention allowed complex control of multi-port injection systems. A simi-

lar system was offered by Infineon with its Peripheral Control Processor (PCP2) in

its Tri-Core processor line.

Both the TPU and PCP2 were programmed using proprietary assembly lan-

guages. Given the concurrent nature of the I/O coprocessing tasks, these proved

difficult to program and debug. This timing coprocessor approach remains the state

of the art in high volume production ECUs to this day.
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By 2000 Motorola released its PowerPC variant of automotive microcontroller

in the MPC5xx family. This was an evolution of the 68332, but with a PowerPC

core and a larger mix of peripherals. The big advance in this processor was the

hardware floating point allowing model-based control (called algorithmic control in

other industries ) to be developed without the need of complex integer math overflow

checking.

1.1.2 FPGA

Digital systems, consisting of boolean logic and latches, are the basic building

blocks of modern processors. These systems may be discrete gates and latches in

their own ICs soldered down to a circuit board or a collection of logic grouped in to

a single chip. Chip manufacturers can group these logic gates in to large systems

creating things like microprocessors. In fact the prefix “micro” denotes that the

majority of the processing functions are grouped in to a single IC. Still, nearly every

modern digital system consists of a collection of major components like processors

and some special purpose peripheral. These are usually connected using “glue logic”,

a set of logic gates the engineer uses to interface one component to another.

Starting in the late 1960s IC companies started making “generic” logic ICs

that could be custom configured at the factory. These allowed engineers to group

their “glue logic” or other complex function in to a single IC assuming that their

design could fit in the number of gates and other constraints of the parts. Because

these were programmed at the factory they were only applicable to high volume

applications.

In 1975 Harris Semiconductor, renamed Intersil in 2000, introduced the IM5200,

the first programmable logic array (PLA) programmable by the user instead of the

factory. These PLA still needed to be programmed in an external programming

fixture before being installed on a printed circuit board. Programmable devices
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in this era were on the order of 10 inputs and 10 outputs with any combination

of AND/OR logic between the inputs and outputs with a latch at each output

and feedback from outputs in back in to the logic array. Programming was done

in PALASM, a simple low level programming language. These were practical for

implementing complex state machines, but did not have enough internal memory to

implement large numbers of counters and timers.

In the mid-1980s the number of available gates was increased by the introduc-

tion of the Complex Programmable Logic Device (CPLD). These were effectively

multiple PLAs tied together in a single IC. The downside of this is that the sym-

metry was gone and gate level mapping of the device by the programmer became

much more complex. Programming languages like ABEL were introduced to help

program these devices. Similarly, designs could be created in “Schematic Capture”

just like PCBs and hierarchies of designs with mixed schematic and text logic were

possible.

Field Programmable Gate Arrays (FPGAs) accomplished similar objectives as

CPLDs with some noted differences in approach. FPGAs can be thought of as being

RAM-based and need to be programmed at bootup as opposed to ROM-based PALs

and CPLDs that have their programs active once power is applied. FPGAs operate

faster and have much higher densities. In the early 1990s FPGAs could be had

with tens of thousands of gates. By early 2000s devices with a million gates were

available. Today’s FPGAs have as many as 20 million gates.

New programming languages were developed in order to handle such large de-

signs. VHDL and Verilog are the major text-based languages used in FPGA design.

Both have their origins in Application Specific Integrated Circuit (ASIC) design

flow. Because ASICs can cost millions of dollars for a prototype run and have

multi-month design turns there is a huge emphasis on getting it right the first time.
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As such, both languages have built-in simulation constructs to allow the designer to

simulate part or all of the design.

VHDL and Verilog are complex and specialized languages with learning curves

that make them impractical for casual use. VHDL and Verilog are, if care is taken

with linked libraries, device and supplier independent languages. These languages,

along with their more primitive cousins, are known as Hardware Description Lan-

guage (HDL). Numerous projects have been implemented to provide a higher level

of abstraction. C to HDL has been done numerous times with limited acceptance

because the sequential nature of C is in direct conflict with the parallel nature of

the HDLs. Figure 1.1 shows a snippet of Verilog code.

Two proprietary high-level languages have been well adapted to FPGA code

generation. Simulink by The Mathworks and LabVIEW by National Instruments

are dataflow languages that can exploit inherent parallelism of the FPGA. These

languages are used widely outside of the FPGA scope by system level programmers

like those in engine research. An example of LabVIEW FPGA code is shown in

Figure 1.2

FPGA code described in the case studies presented in this document are either

Verilog or LabVIEW FPGA. Verilog is used when re-use and device independence

is required, or when the target FPGA is embedded in a subsystem or module.

LabVIEW FPGA is used for system level or application level design.

1.2 FPGAs in engine control

A survey of the literature shows that while FPGAs were mentioned in relation to

automotive applications as early as the mid-1990s these were mostly in the areas of

network communications. Karen Parnell from Xilinx (Parnell-Xilinx, 2002) outlined

the general course of FPGAs in production applications to date. Specifically their
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Figure 1.1: Example Verilog Code

Figure 1.2: Example LabVIEW FPGA Code
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large employment in infotainment (in cabin electronics like radio, navigation, cell

phone, etc.) and interface components.

The 2004 SAE paper by this author (Viele et al., 2004) titled, “A PC and FPGA

Hybrid Approach to Hardware-in-the-Loop Simulation,” is the first SAE paper to

feature an FPGA as the main I/O processor for an HIL system. It outlined using

an FPGA to generate all the engine synchronous signals that were consumed by

Woodward’s various production ECUs. It also captured critical features of all the

key engine control outputs.

A similar effort was published the year later by TVS Motor (Rohini et al.,

2005). This paper compared a generic Digital Signal Processor board, a dSpace

Hardware in the Loop (HIL) simulation machine, and National Instruments FPGA

based architecture similar to the one used in (Viele et al., 2004). Ultimately they

chose the FPGA based approach because of both the flexibility of programming and

because that flexibility led to reduced hardware, and therefore, cost savings.

Opal-RT, dSpace, A&D Technology, and ETAS all produced papers along the

same theme over the next few years. Now FPGAs are the de facto standard for I/O

boards in HIL applications, being offered by all major HIL vendors as the basis for

academic and industrial projects.

The included paper, “Rapid Prototyping an FPGA-based Engine Controller for

a 600cc Super-Sport Motorcycle,” is the earliest published SAE reference to using an

FPGA as a major reconfigurable part of the system architecture. The contribution

of this paper is described in detail in Section 2.

Outside of Drivven, a company this author founded to promote FPGA based

engine controller, there are a few major clusters of FPGA based engine control

research. Major engine control services companies dSpace (Schuette et al., 2005),

A&D (Jiang et al., 2007), Ricardo (Beaumont et al., 2006), and SwRI (Wang and

Sarlashkar, 2007) all have FPGA based engine control efforts to some degree. The
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SwRI platform is an outgrowth of the FPGA based prototyping platform this author

initiated when he was employed there in the late 1990s.

Delphi released an interesting paper on an FPGA based controller for cylinder

pressure feedback development. (Schten et al., 2007) This attempted to span the gap

between research hardware and production hardware. This was a fully embedded

box capable of real-time cylinder pressure analysis.

There are a few academic projects that built ground-up FPGA based engine

controllers. These have tended to be student projects with single publications. For

instance, a team of Brazilian students built a low cost FPGA based controller for

student competitions and described it in (D’Angelo et al., 2006). In this setup they

mirror the same three-level architecture that is outlined in the first included paper

with a host PC, a real-time controller, and an FPGA to do engine position tracking.

The majority of FPGA based engine research work uses the same National

Instruments hardware and software that Drivven uses, but with in-house developed

engine position tracking software and sensor/actuator interfaces. Examples of this

can be found at IIT Madras(Padala et al., 2008) and Texas Tech (He et al., 2005).

The three major centers of independent FPGA based engine controller research are

University of Bologna, Lund University, and the University of Windsor.

Enrico Corti’s group at the University of Bologna focuses on FPGA based

engine control to optimize combustion phasing, primarily in high-performance SI

engines. In (Corti and Solleri, 2005) they look at an engine control with integrated

combustion analysis based on the same NI FPGA platform Drivven uses. This first

paper describes the framework that they used in a number of subsequent papers on

combustion feedback and control. They normally use the higher power PXI-based

controllers that have the processing power to analyze combustion analysis signals

online. They were used in (Corti et al., 2007) and (Corti et al., 2008b). For these

systems the FPGA is primarily used to synchronize with the engine.
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In (Corti et al., 2008a) they transitioned to the Drivven FPGA software for

low-level engine synchronous I/O control and FPGA based drive electronics. This

paper describes a tractor pull engine. While not specifically mentioned in the paper,

the related videos (http://it.youtube.com/watch?v=g2fevZVI5uk) show the tractor

with advanced control not only won the contest, but did it with little black smoke.

In (Corti and Forte, 2011) and (Cavina et al., 2011) they use the FPGA based

architecture to implement cycle-to-cycle control of high-performance SI engines.

Lund University is another major center for the independent development of

FPGA based engine controllers led by Per Tunestl and Bengt Johansson. They used

NI based FPGA hardware initially to control a Variable Valve Actuation (VVA)

system (Trajkovic et al., 2006). The FPGA read engine position from an optical

encoder and generated commands to the VVA system. This work was extended in

(Persson et al., 2007), (Trajkovic et al., 2007), and (Trajkovic et al., 2008) continuing

to use the FPGA base controller.

This same controller concept was applied to a broader range of controlled (Pers-

son et al., 2008), (Wilhelmsson et al., 2009), and (Borgqvist et al., 2011).

Professor Zheng at the University of Windsor has taken the approach of using

many NI Compact RIO FPGA based devices through his lab to perform various

functions of control and data acquisition. While this may be sub-optimal from a

system perspective, it allowed him to have many students tackling many smaller

problems. In (Zheng et al., 2006) he examines an adaptive fueling strategy using

FPGA based controls to control fuel, boost, EGR, and other engine parameters.

His numerous publications in this area leverage the common theme of FPGA

based engine controls allowing flexibility and rapid control prototyping.
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(Kumar et al., 2007) (Zheng et al., 2007) (Kumar and Zheng, 2008)

(Asad and Zheng, 2008) (Zheng et al., 2009a) (Zheng et al., 2009c)

(Asad et al., 2009) (Tan et al., 2009) (Asad and Zheng, 2009)

(Zheng et al., 2009b)

Delphi has written a pair of important papers on the practical uses and limits

of FPGA in production vehicles, (Lumpkin and Gabrick, 2006) and (Gabrick et al.,

2006). These have been on the practical aspects of packaging and reliability of

FPGAs, not just their software applications.

To date FPGA adoption in volume production engines has been limited by two

major factors. The first is part cost. The cost of an automotive microcontroller

continues to be less than the cost of an FPGA that can perform the requisite tasks.

While the ease of programming FPGAs reduces the non-recurring engineering costs,

the part price difference for multi-million unit runs is still greater. The second is

temperature. Automotive microcontrollers operate up to a package temperature of

125C, where Xilinx and Altera FPGAs can only support a 125C junction temper-

ature. While the relation of junction to package temperature is dependent upon

how much heat the FPGA is generating, a rule of thumb is 10 to 20 degrees C.

Nonetheless, defining the specifications for their new engine platform, Lamborgini

called for FPGAs in their engine control. (Ceccarani et al., 2005)

1.3 Advantages of FPGA based engine controllers

We are starting to see FPGAs in low volume applications like controllers for

stationary engines and motorsports. There are a few factors in these applications

that overcome the cost and temperature limitations.

First is flexibility. An FPGA based engine controller has the ability to be

changed to suit different applications without hardware changes. This is exemplified
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in the paper presented in 4. This is even more important in a non-modular ECU

where changes to the I/O require a completely new controller.

The second advantage is portability and layering. When an FPGA goes obsolete

or code needs to be migrated to a different ECU, the FPGA code is fully portable to

a different FPGA. The device drivers can be identical for the real-time code. This

is in contrast to a traditional processor where the I/O is different in each processor

family and generation. This difference means major rewriting and testing of I/O

software, something that can take man-years.

Another advantage is system architecture. As ECUs transition to higher level

languages like Simulink and LabVIEW they are less able to handle interrupt events

because these disrupt the dataflow. Similarly modern processors with large caches,

branch prediction, etc., take a larger performance hit for each interrupt than their

less complex predecessors. The ability to drive many small engine synchronous or

periodic tasks to the FPGA reduces the number of interrupts to the real-time CPU

allowing the code to be simpler and fit better to dataflow languages.

The paper in Section 2 demonstrates a fully functioning FPGA based engine

controller, the first SAE paper published on this topic. However, it is not the first

FPGA based engine controller, since it is unknown which product that was because

internal ECU architecture is not often published. A system, similar in concept,

was developed by Viele and Dase during their tenure at SwRI some years before,

but the FPGA software was entirely different in concept and execution and did not

support interpolation or other critical components of a proper ECU time coprocessor.

Through opening up and inspecting a series of ECUs, we know that FPGAs have

seen production in low volume, off-road applications as well as race ECUs, but the

exact nature of their function is unknown to this author.
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1.4 Impact of Drivven FPGA based engine controllers

The company Drivven was formed in the mid-2000s by Matthew Viele and

Carroll Dase. The company’s goal was to take engine specific FPGA IP and I/O

hardware and combine it with commercial off the shelf (COTS) National Instruments

FPGA Hardware and Software, to create a complete engine rapid control prototyping

environment for IC engines. A secondary goal was to market FPGA IP to engine

control OEMs to use in volume production vehicles, but they were hampered by the

slow adoption of FPGAs by the likes of Bosch and Delphi due to the thermal and

cost limitations outlined above.

The advantage of FPGA based controllers over more conventional setups in-

volving processors and counter/timer boards was its symmetry and modularity of

I/O combined with the flexibility of the FPGA for configuration. Similar modular

controllers were available from dSpace and ETAS in this time frame, but both of

them had strong restrictions on configurations of cam/crank patterns and I/O mix

requiring the researcher to build some sort of custom interface for unconventional

engines.

As a result, Drivven’s work in simplifying FPGA based engine controllers, they

have been widely adopted. Since the first Drivven deployment in a research setting

in 2006, there have been around 100 publications based on the research made pos-

sible by these controllers. A sampling of the published research based upon these

controllers is below. All of these projects use an FPGA based engine position track-

ing software and at least one I/O module that uses an FPGA to precisely control

I/O.

Delphi has a number of modular control systems to do both Gasoline Direct

Injection (Sellnau et al., 2012b), (Sellnau et al., 2012a), (Sellnau et al., 2011) and

Diesel (Yun and Sellnau, 2008) work. In addition to the combustion work, they
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worked with this author to develop a new method of measuring trapped burned gas

residual fraction. This author jointly published (Sellnau et al., 2009) based upon the

earlier analytical work and experimental data from (Sinnamon and Sellnau, 2008).

PTT, the Thai national oil company, has a system to run dual fuel diesel/CNG

engines. They have documented their research (Chatlatanagulchai et al., 2010c),

(Chatlatanagulchai et al., 2010d), (Chatlatanagulchai et al., 2011b), (Chatlatanag-

ulchai et al., 2011a), (Chatlatanagulchai et al., 2010b), (Chatlatanagulchai et al.,

2010a), and (Yaovaja et al., 2011).

Steve Ciatti at Argonne National Lab has written, in addition to the joint

publication included here (Viele et al., 2010), a number of papers using gasoline-like

fuels in a diesel engine, (Subramanian and Ciatti, 2011), (Ciatti and Subramanian,

2011), (Ciatti et al., 2010) using the FPGA based controller.

The National Research Council Canada has a novel adaptation of a single cylin-

der CAT engine. They published PCCI work in (Dumitrescu et al., 2010).

Oak Ridge National Laboratory has nearly every test cell running a Drivven

controller. They have published experiments ranging from spark-assisted HCCI

(Weall and Szybist, 2011) to ethanol CI combustion (Szybist et al., 2011), (Szybist

et al., 2010a), to University of Wisconsin style RCCI (Cho et al., 2011), (Curran

et al., 2010), (Wagner et al., 2011), (Curran et al., 2011a), (Curran et al., 2011b),

(Briggs et al., 2011) to 6-stroke engines (Szybist et al., 2010b).

As mentioned above, the group from University of Bologna used a Drivven

controller to implement a tractor pull controller (Corti et al., 2008a).

The University of Wisconsin ERC has a number of projects running Drivven

controllers and has been prolific in publishing research based upon these controllers.

Without going into details, the following is a list of technical papers, presentations,

and theses based on the Drivven FPGA based controller work.
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(R.Kaddatz, 2011) (Kim, 2009) (Swor, 2009)

(Dunbeck, 2009) (Staples, 2008) (Kokjohn et al., 2011a)

(Kim et al., 2010) (Dunbeck and Reitz, 2010) (Swor et al., 2010)

(Kokjohn et al., 2011b) (Kokjohn et al., 2010) (Kim et al., 2009)

(Sung et al., 2009) (J et al., 2009) (Kokjohn et al., 2009)

(Hanson et al., 2010) (Splitter et al., 2010) (Splitter et al., 2010)

(Kokjohn and Reitz, 2010) (Hanson et al., 2011) (Splitter et al., 2011)

(Tess et al., 2011) (Staples et al., 2009)

Tim Jacob’s group at Texas A&M has a Deere diesel and a GM 1.9L diesel

with Drivven controllers. His focus in on biodiesel HCCI. He and his students have

published the following.

(Bittle et al., 2011b) (Bittle et al., 2010c) (Knight et al., 2010)

(Bittle and Jacobs, 2011) (McLean and Jacobs, 2011) (McLean and Jacobs, 2011)

(Song et al., 2011) (Tompkins et al., 2011) (Bittle et al., 2010b)

(Bittle et al., 2010a) (Jacobs, 2011) (Tompkins and Jacobs, 2011)

(Evans et al., 2010) (Schmidt et al., 2011a) (Schmidt et al., 2011b)

(Bittle et al., 2011a) (Knight et al., 2011)

Wayne State uses the FPGA to trigger a camera and laser system in conjunction

with the FPGA. This system can closely control the phase of the injection with that

of the camera and laser. They have published a number of studies based upon this

system.

(Florea et al., 2012) (Zha et al., 2012) (Yu et al., 2012)

(Zha et al., 2011) (Zha et al., 2010) (Zha and Jansons, 2011)

(Jansons et al., 2011) (Jansons et al., 2010a) (Jansons et al., 2010b)

(Jansons et al., 2009)
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Richard Stobart’s group at Loughborough University has published a bit of

work on advanced control of heavy duty diesel engine fuel systems using Drivven

systems (Deng et al., 2010) (Deng et al., 2011) (Winward et al., 2010).

University of Michigan recently commissioned a system and has published

(Manofsky et al., 2011).

Alexander Sappok published about his DPF sensor (Sappok et al., 2010) using

a Drivven controller at ORNL.

Curtis Stovall (Stovall, 2008) and Kevin Norman (Norman, 2007) both pub-

lished master’s thesis from Colorado State University using early Drivven controllers.

While this list is not exhaustive it is intended to show some of the flexibility of

these controllers and the impact they have had on the engine research community.
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Chapter 2

ENGINE CONTROL CO-PROCESSING

The basic FPGA engine controller architecture consists of three parts: a real-

time processor that performs engineering calculations; an FPGA to perform time

and angle critical I/O functions; and host display that can be used to view and tune

parameters.

The real-time processor is responsible for carrying out a number of state ma-

chines, equation solvers, PID control loops, and lookup tables. The fastest control

loops execution frequency is on the same order as crankshaft rotation frequency, with

optional slower loops for functions with longer time constants if processor speed is

insufficient. A 5ms loop is used in all the included papers for the real-time loop

execution.

The real-time loop first converts data from FPGA counts to engineering units.

It then performs the necessary calculations and determines the desired outputs.

Finally, it converts the data back to FPGA counts and writes the data to the FPGA

for execution.

The FPGA operates on a much faster timescale, in our case, 40MHz. With every

FPGA loop the FPGA performs all of its tasks in parallel. These tasks include:

• Read cam and crank signals.

• Track engine position by referencing the last known cam/crank pulse and

extrapolating based on engine speed.

• Feed current engine position to all the engine synchronous sampling and output

blocks.



• The engine synchronous output blocks like fuel or spark monitor the engine

position and commands from the real-time code to decided their current state.

• Pulse Width Modulated blocks update their state based on frequency and duty

cycle.

• Module I/O blocks communicate between the main FPGA and logic in the

I/O modules to send parameters or get status.

Complicated I/O blocks in the FPGA allow the processor to run with little in-

terruption. For instance, let’s consider a speed input block for reading shaft speed.

The input needs to not only measure the time between pulses with sufficient resolu-

tion, but also detect overflow in the event of a stopped pulse and pick up immediately

when the shaft starts moving again. It may also need to reject glitches caused by

ESD or spark noise. In a microprocessor application this may require interrupts

to the CPU to process all the different exceptions as well as glitch-free pre-scaler

changing if the dynamic range is too large. In the FPGA the bit resolution of the

timer can be adjusted as well as providing flags to handle the overflow and restart

cases. Also a shift filter or up-down counter can be placed before the speed input

to reject noise glitches and tuned in software.

Lastly, the host interface allows display of indicators from the controller as

well as updating of controls. Data types supported include floating point, integer,

arrays, lookup tables, boolean and enumerated types. The controller should be

able to connect and disconnect from the host PC. Calibrations should be able to

be saved, loaded, and version controlled with differencing. This is accomplished

through Drivven’s CalVIEW software which is similar in functionality to ETAS

INCA or dSpace ControlDesk.

FPGAs were also used in the modules themselves. The main system FPGA

sends configuration commands to the modules and they, in turn, run through the
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appropriate sequence of actions when a fuel or spark command is sent from the

LabVIEW FPGA.

The following paper was used to summarize Drivven’s first major project. This

was done when Drivven consisted of this author and Carroll Dase. The paper

outlines using an FPGA based controller first to map an engine then later using the

same FPGA to control the engine.

This paper covers the first implementation of Drivven’s Engine Position Track-

ing as well as the initial publication of Drivven’s FPGA based engine I/O modules.

This paper was presented at the 2005 SAE Congress and won an award for best

presentation of the session.

For this paper the specific contributions of this author are:

• The concept and initial implementation of engine position tracking in an

FPGA.

• The design and build of the FPGA based cRIO modules used to generate fuel

and spark signals.

• The high-level algorithms for engine control.

Reprinted with permission from SAE Paper No. 2005-01-0067 (c) 2005 SAE Inter-

national. Further use or distribution is not allowed without permission from SAE.
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Chapter 3

SAE2005-01-0067

Rapid Prototyping an FPGA-based Engine Controller for a 600cc Super-Sport

Motorcycle.

The paper was written by Matthew Viele and Carroll Dase of Drivven, presented

at SAE Congress 2005

3.1 Synopsis

Two main goals exist for prototype engine control systems. One goal is to re-

search specific areas of engine control or behavior such as fuel delivery or exhaust

emissions. Another goal is to prototype an engine controller for aftermarket ap-

plications or Original Equipment Manufacturer (OEM) production. In either case,

engineers often face the challenge of creating a prototype controller for an already

existing OEM engine with little or no knowledge of the control strategies embedded

within the OEM controller. This paper will discuss an FPGA-based system used

to map the behavior of an OEM controller as well as function as the prototype

controller. The FPGA was used to track the angular position of the crankshaft

and generate fuel and spark control signals synchronously to the rotation of the

crankshaft, as well as to acquire analog and digital sensor data.

3.2 Introduction

Modern engines rely on sophisticated electronics and software. Production en-

gine control units (ECUs) read sensors, drive actuators, and execute the algorithms

to control the engine. These ECUs are highly specialized devices that perform their



tasks with as little extra hardware as possible to minimize cost. However, this effi-

ciency makes them poor systems for research and development. Therefore, research

oriented ECUs are created, having much more computing power and I/O flexibility

than production ECUs, but with a much higher cost and larger size.

At Drivven, Inc., we used the CompactRIO (cRIO) platform from National

Instruments to develop such a research ECU for a Yamaha YZF-R6 super-sport

motorcycle, shown in Figure 3.1. We applied our FPGA IP to control fuel and

spark and designed cRIO-compatible hardware modules for interfacing to the various

sensors and actuators.

Before the cRIO could be used to control the motorcycle, a base control appli-

cation needed to be developed and calibrated for many different operating points. A

common method of calibration is to install the engine on a dynamometer and opti-

mize control parameters at hundreds of steady-state and transient operating points.

If the engine is a production engine, the OEM has already performed this calibration

with great accuracy and at great expense. When engineers are performing research

with an OEM engine (as in our case here), it is unlikely that the calibration data

will be available to them. Therefore, it may be advantageous to record sensor and

actuator behavior while running the engine under control of the OEM ECU. This

exercise is called controller mapping and can be much less time consuming than cal-

ibrating control parameters from scratch. It is worth noting that mapping exercises

can be much more reliably performed on a motorcycle ECU, in which most of the

control algorithms are open-loop, than on an ECU found in a modern automobile,

where many of the control algorithms are closed-loop.

Once the mapping exercise was completed, the data was reformatted to fit

the engine control application developed for the cRIO. The cRIO then was wired

to a replacement ECU connector and took over control of all tasks performed by

20



 

Figure 3.1: Finished Motorcycle

the OEM controller. The cRIO became a full-authority engine and vehicle control

system.

3.3 Overview

This project was broken up into three major phases. The first phase involved

researching the specifics of how the bike worked and how we would control it. It

also required the manufacture of custom hardware.

The second phase involved mapping of the motorcycle ECU. This mapping

involved tapping in to every signal we felt relevant and logging its behavior over the

full operating range. In this phase the OEM controller was still running the bike

while the cRIO was just monitoring the I/O signals.

The last phase involved actually taking over control using our software and

FPGA IP implemented on the cRIO. The factory ECU was removed and the cRIO

connected to the ECU mating connector.
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3.4 Technology Background

Before we discuss the project further, it is important to understand the tech-

nologies involved. With the exception of the top level engine management software,

FPGA IP, and I/O modules, the entire project was carried out using National In-

struments COTS hardware and software products. This platform has shown to be a

worthy alternative to custom-developed hardware, or products from companies such

as ETAS and dSPACE.(Tsai et al., 2003)

3.4.1 LabVIEW

LabVIEW is a graphical programming language that has been available since

the 1980s. It evolved from its roots in process automation to a number of other en-

gineering and scientific markets. Unlike Simulink LabVIEW is very focused on the

data acquisition and control of real world, real-time I/O, whereas Simulinks core is

a simulation environment. However, their market segments have overlapped signifi-

cantly in recent years, and both packages interface well with each other. (Aceituna,

2002)(Kulkarni and Hoekstra, 2002)(Viele et al., 2004)(Cummings, 2003)

3.4.2 Compact RIO

The Compact RIO or cRIO is a new product for National Instruments. It

combines a Pentium class processor with a large Xilinx FPGA in a rugged chassis

with locations for plug in I/O modules. The modules interface directly to the

FPGA, allowing a very generic module interface and rapid module development.

This topology is shown in Figure 3.2.

The cRIO always runs two programs in parallel. One is a real-time control

application running on the processor, written with LabVIEW RT. The other is a

FPGA application written in LabVIEW FPGA. Good design practices for this ar-
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Figure 3.2: RIO Architecture

chitecture (and something you will hear us repeat often) dictate that the real-time

program be made as simple and slow as possible, with loop times in the several mil-

liseconds. The FPGA program should handle all the high speed, timing-critical I/O

tasks and have data ready to present to the real-time application when requested.

3.4.3 FPGA

An FPGA or Field Programmable Gate Array is a device to implement any

sort of digital logic. It can be considered as a large fabric of AND gates, OR

gates, and Flip Flops. A large enough collection of gates can be used to implement

any digital circuit including I/O, communication bus interfaces, and even entire

microprocessors.

Two traditional methods exist to create FPGA designs. They are the text-based

programming languages VHDL and Verilog. These languages are roughly analogous

to C for microprocessors. They, along with other similar languages, are collectively

called HDL or Hardware Description Languages. HDLs are quite powerful but also

require high levels of expertise to program.

23



Higher-level tools are available to simplify this practice. These include The

Xilinx System Generator Toolkit for Matlab, Celoxicas various C compilers, and

LabVIEW FPGA. For our project, LabVIEW FPGA was used because of the seam-

less integration with the cRIO toolchain. All of the low level FPGA code, or IP

cores, are written in Verilog and wrapped in a graphical LabVIEW FPGA “HDL

Node” block, allowing the code to be used in non-LabVIEW systems like production

engine controllers.

3.5 Research and I/O Module Creation

Because the cRIO was months from being released for sale when this project

was started, no modules were available for us to use – even for the mapping exercise.

Even if modules were available, unique automotive requirements are unlikely to be

met by commercial off the shelf hardware.

Existing I/O designs from previous projects were repackaged and upgraded to

provide robust automotive modules specifically for the cRIO platform. The motor-

cycle required a fuel injector driver module, a spark driver module, and an analog

and digital input module. Other modules, like our H-bridge module, knock module,

or UEGO module, will eventually be used on the bike as the project evolves further.

Figure 3.3 shows two of the modules used on the bike.

3.5.1 Fuel Injector Driver Module

Automotive-style fuel injectors generally can be categorized into two electrical

classifications: saturation and “peak/hold.” A saturation injector solenoid is able

to withstand full battery voltage across it for an extended period of time and al-

lows simple drive circuitry, but at the cost of reduced valve opening and closing

performance. A peak/hold injector solenoid requires a large amount of current to

open the valve and significantly less to hold it open. This current profile is shown in
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Figure 3.3: Prototype Modules
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Figure 3.4: PFI Current Profile 

 

Figure 3.5: Low Side Switch

Figure 3.4. This requires specialized drive circuitry but typically allows for moving

a larger needle in the injector valve. In either case special hardware is used to ensure

that the current stops quickly in the injector solenoid when it is turned off so that

the valve shuts quickly and repeatedly.

Most other high-current automotive actuators are driven by what are called low

side switch drivers. Typical low side switch driver applications are relays, wastgate

valves, EGR valves, fuel pumps and fuel regulators. Figure 3.5 shows the general

topology of a low side switch driver circuit.
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Our fuel injector driver module has four peak/hold fuel injector drivers and

four low side switch drivers.

3.5.2 Spark Module

A spark module is used to drive the coil that generates the spark across the

spark plug gap. It functions by allowing current to flow through the primary side of

the coil, then interrupting it suddenly. When the current is interrupted, the stored

energy is transformed into a high voltage across the secondary coil and dissipated

in the form of a spark.(Bos, 2000) Generating the spark creates a large kickback

voltage in the range of several hundred volts. Care must be taken not to disrupt

the other circuits when this happens or to dissipate this energy prematurely.

Our spark module had eight spark driver channels, even though only four were

needed on this project. Both fuel and spark modules have electrical isolation. Al-

though isolation is not required in production controllers, a research controller is far

more prone to mal-wiring related problems.

3.5.3 Input Module

The analog and digital input module, which will be referred to as the AD Combo

module, is used to monitor nearly all types of automotive sensors. It has 22 single

ended analog inputs, two VR sensor inputs, and two digital hall effect type inputs,

as well as regulated sensor power supplies.

All of the modules were designed with cost sensitive, automotive-quality com-

ponents, in order to achieve similar I/O circuit behavior between R&D and possible

future production FPGA-based controller implementations
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Table 3.1: Sensor and Actuator Characteristics
Sensor / Actuator Characteristics / Type
Crankshaft Position Variable Reluctance
Camshaft Position Digital Hall Effect
Throttle Position Linear Analog

Intake Air Pressure Linear Analog
Barometric Air Pressure Linear Analog
Intake Air Temperature Analog Thermistor
Coolant Temperature Analog Thermistor

Vehicle Speed Digital Hall Effect
Fuel Injector Solenoid 12 Ohm, Low-Side
Ignition Coil Primary 0.3 Ohm, CDI

3.6 Mapping

In any project involving replacing an OEM ECU, it is important to know where

to start. It is critical to create a baseline application which controls the engine in

the same way that the OEM ECU did for all of the conditions relevant to the testing

being preformed. Only after a solid baseline is achieved should features be added

or changed. Baselining was the extent of the next phases of the motorcycle project.

The next step is to map the OEM ECU. Rarely are researchers privy to the original

control application and calibration, so some work is required. Mapping is done by

tapping in to the existing ECU wiring and monitoring the data going in and out.

Table 3.1 lists the sensors and actuators that interfaced to the motorcycle and

the type of interface circuit that was needed. For the mapping effort, sensors were

monitored on the primary AD Combo module and actuators were monitored on

the secondary AD Combo module. This division allowed the primary AD Combo

module configuration to remain the same for the sensors throughout the project.

Table 3.2 lists the quantities that were sensed for each input. It is important to

generate a calibration of all sensors. It is common to use the same sensor calibration

for all sensors of a given type on a vehicle. That was the case for the pressure sensors

28



Table 3.2: Engineering Data
Engineering Data Range / Units

Fuel Pulse-Width 0 - 7 Milliseconds
Spark Advance 0 - 50 Deg BTDC #1

Throttle Position 0 - 100%
Intake Air Pressure 0 - 110 kPa Absolute

Barometric Air Pressure 0 - 110 kPa Absolute
Intake Air Temperature -20 - 120 Deg C
Coolant Temperature -20 - 120 Deg C

Vehicle Speed 0 - 160 MPH
Engine Speed 0 - 16000 RPM

Fuel Pulse Start Angle 0 - 720 Deg Absolute
Fuel Pulse End Angle 0 - 720 Deg Absolute

and temperature sensors. These were calibrated by removing a sensor and logging

the response to known temperatures and pressures. The throttle was assumed to be

linear and the end points were measured. The rest of the inputs had calibrations that

were derivable due to their nature and could be entered directly into the program.

Our FPGA IP was used to track the angular position of the crankshaft and capture

the angular positions and durations of various fuel and spark events.

3.6.1 Mapping Method

Before a mapping exercise could be started, it was critical to understand what

is planned to be mapped. Due to the lack of exhaust oxygen sensors in the I/O

list of Table 3.1, it was apparent that the OEM controller implemented an open-

loop fueling strategy. It is known that the OEM controller does not consider the

transmission gearing, so that full coverage of the map can be achieved by simply

covering the full range of engine speed and load, regardless of vehicle speed.
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Figure 3.6: Bike glove box with cRIO installed

3.6.2 Data Collection

One option was to pull the engine out of the bike and install it on a dynamome-

ter. This would have been time consuming and expensive. It was decided to attempt

to map the engine in the vehicle first, and examine the quality of the data. If this

provided sufficient coverage of most operating points while running the engine in

the motorcycle, then this costly procedure could be avoided.

A logging rate of 5 milliseconds for each channel was used because that would

fill the available 10 megabytes of internal flash storage of the cRIO in about 20

minutes. Therefore, the data on the bike would have to periodically be uploaded to

another computer. An 802.11 wireless link was installed on the motorcycle. This

would allow an engineer in a chase vehicle to upload the data files to a laptop

without the need to make a physical connection. The engineer could also monitor

the data in real-time as long as the chase vehicle was within a few hundred feet of

the motorcycle. The cRIO installation and 802.11 wireless interface are shown in

Figure 3.6.
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A LabVIEW application on the laptop automated the process of making a

wireless ftp connection to the motorcycle, uploading data, deleting the data from

the cRIO, and analyzing the data for coverage of operating points. This application

analyzed all of the data collected up to that point in the mapping exercise and

determined where there was sufficient coverage and where more engine operation

was needed.

Our operating coverage map consisted of about 700 points, where engine speed

ranged from 0 to 16000 RPM in 500 RPM bins and throttle position ranged from 0

to 100% in 5% bins. Each engineering parameter of interest, such as spark advance,

fuel pulse-width, etc., had its own operating map for its respective data to be stored

and processed. Ninety percent map coverage was achieved in two hours of testing.

It was concluded that this was sufficient coverage to allow use of the data by filling

in the sparse gaps via interpolation.

3.6.3 Post Processing

Post processing was handled by two different LabVIEW applications. The first

application, which was performed on the laptop in the chase vehicle, examined each

data point to determine whether it could be accepted as a steady-state operating

point. A point was considered acceptable if it and the 10 previous points all were

contained in the same speed versus load bin. Figure 3.7 shows how many points

were collected over the range of speed and load.

Acceptable data points, for each parameter of interest within each operating

bin, were stored in temporary arrays until all collected data was sorted. Then

the data in each bins array was averaged and a standard deviation was calculated.

The average and standard deviation was placed into an operating map for each

parameter of interest. The result was a collection of average data, for each parameter

of interest, sorted into speed versus throttle (load) tables. Figure 3.8 shows an
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Figure 3.7: Accepted Data Points
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Figure 3.8: Fuel Pulse Width Standard Deviation
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example of a standard deviation map for fuel pulse-width. The standard deviation

maps provided us an indication of consistency at each operating point for each

engineering parameter.

In order to visualize the data and application was built that shows each param-

eter in a three dimensional surface as well as two dimensional slices of the surface.

The application allowed the two dimensional slices to be modified graphically. Data

was manually fixed where inconsistencies were found or points were missing. The

resulting modified, two dimensional arrays of data then were ported to the control

application as calibration tables. The display for the control application also showed

the calibration tables as three dimensional surfaces, which could be modified graph-

ically while the engine was running. The fuel pulse-width map was then converted

to an air mass map, based on stoichiometric fueling. The air mass table was also

corrected to standard temperature and pressure. This air mass table was used as a

beginning calibration for our alpha-N fueling strategy.

3.7 Engine Controller

It is important to be able to go between the stock engine controller and the

development engine controller quickly. This is important when the engine is not

running as it should. Putting the stock ECU back in place will quickly determine

if the problem lies in the engine or the controller. The upper picture of Figure 3.9

shows the factory ECU installed under the motorcycle seat. The bottom picture

shows the factory ECU removed, with an adapter harness, built in house, connecting

the cRIO to the factory wiring harness. In order to achieve this convenient inter-

changeability, a spare OEM ECU was acquired for the purpose of utilizing the ECU

connector in our adapter harness.
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Figure 3.9: Factory and Custom ECU installation
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3.7.1 Basic Engine Control Algorithms

For gasoline engines, there are a number of basic engine control algorithms that

can be employed depending on the application. This section describes the control

algorithms available and why we chose the ones we did.

Mobile gasoline engines generally use a “fuel follows air” approach to fuel con-

trol. This means that the driver determines how much air is brought in (via the

throttles), and fuel is calculated to match. This provides for a constant air/fuel

ratio and better emissions.

There are three general air calculation methods: Speed-Density, Alpha-N, and

Mass Air Flow. They often are used in combination with one another, and control

will transition from one mode to another over the speed load range.

The motorcycle used a combination of Alpha-N and Speed-Density. Speed-

Density was used at idle and small, part throttle conditions while Alpah-N was used

at open throttle conditions.

3.7.2 Speed-Density

As the name implies, this air calculation method requires the computation of

engine speed and intake air density. The basic equation is below. (Heywood, 1988)

ṁ = ηv(N)ρa(Ti, pi)Vd =
ηvVdpi
RaTi

(3.1)

Where ṁ is the mass flow rate of air in kg/stroke. That is how much mass of

air goes in to the cylinder each time the intake valve is opened. An alternate form of

this equation could be used to derive the mass flow per second. This is common for

throttle-body injected systems like carburetor replacement applications or natural

gas engines. The terms pi , Ti , and N refer to Manifold Absolute Pressure (MAP),

Manifold Absolute Temperature (MAT), and Engine Speed in firings per second,
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respectively. For this equation, MAP is in Pa and MAT is in K. Ra is the universal

gas constant for air and is 286.9 J/KG*k.

The volumetric efficiency term ηv, often abbreviated as VE, is used to correct

for pumping losses and intake/exhaust tuning effects. It is not strictly an efficiency

because with proper intake and exhaust tuning, numbers greater than 1 are possi-

ble. Volumetric efficiency is a function of a number of engine parameters including

engine speed, engine temperature, humidity, intake pressure and exhaust pressure.

Normally most of these terms are ignored and corrected for in closed loop control.

In normally aspirated engines the volumetric efficiency table is a function of RPM.

In a boosted engine it is a function of both RPM and MAP. For many engines, a

value of 0.85 is usually close enough to get the engine running and begin tuning.

Speed-Density is used on many applications because it is inexpensive, and the

only calibration work for steady state operation is the VE table.

3.7.3 Alpha-N

Alpha-N engine control calculates air flow purely as a lookup table of throttle

position (Alpha) and engine speed (N). Alpha-N control algorithms are simple and

fast. However, they are very calibration intensive because each engine operating

point must be calibrated any time a modification is made that affects the volumetric

efficiency of the engine.

Alpha-N is often used as a backup strategy in case of a sensor failure in a

MAF or Speed-Density strategy. Alpha-N also is used in many after-market, high

performance and race engine applications. Aftermarket engine controllers can be

applied to a wider variety of engines by using an Alpha-N fueling strategy, which

requires fewer sensors. Also, high performance and racing engines typically will

employ camshafts that have significant overlap timing of intake and exhaust valve

actuation. This can significantly reduce the variability provided by a MAP sensor
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Figure 3.10: Mass air flow
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over the entire engine load range. The result can be that the MAP sensor will

read atmospheric pressure at throttle positions as low as 30%. Therefore, throttle

position must be used as the primary indication of engine load for higher throttle

angles.

Our high performance motorcycle engine utilized both an intake air pressure

sensor and a throttle position sensor. We had to deal with similar pressure sensing is-

sues described above due to high performance camshafts. Therefore we implemented

a Speed-Density algorithm at throttle positions below 20% and engine speeds below

3000 RPM. This provided us with consistent engine operation at idle and small part

throttle conditions, which would respond to fluctuations in air pressure and temper-

ature. Above these operating points we transitioned to an Alpha-N air mass table.

An air mass was extracted from the table, corrected for actual air temperature and

barometric pressure, and a resulting stoichiometric fuel quantity was calculated.

This meant that we had to rely heavily on the data acquired for fuel pulse-width,

as collected during the mapping phase. We only needed to calibrate our volumetric

efficiency table, used in Speed-Density mode, for engine speeds below 3000 RPM.

This calibration was a short trial and error process.

Figure 3.10 shows the Alpha-N air calculation table derived from the mapping

exercise.

3.7.4 MAF

Mass Air Flow (MAF) is a technique of directly measuring ṁ of air into the

engine. MAF sensors are relatively expensive and too large to be practical on

a motorcycle application. However, they do provide a relatively calibration-free

method of calculating air flow to an engine.

The other danger with MAF sensors is that they cannot determine the direction

of flow. If the manifold allows occasional backward air flows towards the throttle
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Figure 3.11: Transient Enrichment

(not uncommon at low speed), the resulting calculated air quantity will be higher

than it should.

3.7.5 Transient Compensation

Transient compensation is by far the trickiest aspect of intake air estimation

and fuel flow calculation. Many papers have been written on the subject and it

is beyond the scope of this paper to describe more advanced methods.(Hendricks

et al., 1996)

Fortunately, if you only need to make power and are not constrained by emis-

sions targets, there are some simple approaches that work well.

The method we used creates an enrichment value. This value is added on to

the calculated air mass. The enrichment value is added to by the first derivative

of throttle position. It is subtracted from at a constant rate. Figure 3.11 shows an

example air addition factor as a result of a throttle transient.
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3.7.6 Closed Loop

In order to meet emissions requirements, cars need to run at precise air-fuel

ratios in order to take advantage of exhaust catalysts. Carburetors and open loop

fuel injection systems are not sufficiently accurate to control fuel for this because

they do not have any feedback of the actual air-fuel ratio.

Because the motorcycle does not need to pass strict emissions tests required

of passenger cars, it implemented an open loop fueling system. If emissions were

more critical, it would have utilized an exhaust oxygen sensor in the form of either

a “switching O2 sensor” or a “wide band O2 sensor” to close the loop.

Switching sensors only tell the controller whether it is operating rich or lean of

stoichiometry. They do not tell how much. A ramp and jump back type strategy is

used to control fuel with this sort of sensor.

If it is desirable to precisely operate away from stoichiometry, then the only

option is to use a wide-band sensor like the Bosch LSU4.2. This requires a much more

complex sensor interface than the switching sensors but provides proper feedback

to use a simple PID controller to deliver optimized fuel.

With either sensor it is possible to determine errors in the Speed-Density VE

table over the life of the engine.The table then may be corrected on the fly to give

better results for open loop operation.

3.7.7 Fuel Calculation

Once the mass of air is calculated, a mass of fuel must be calculated for a

desired air-fuel ratio. This is a three-part calculation. First, we must determine

the desired air-fuel ratio for the given operating condition and fuel being burned.

Second, we must calculate the mass of fuel appropriate for the air-fuel ratio and air
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mass. Third, the characteristics of the fuel injector must be taken into account to

calculate an injection pulse-width command for the injector driver.

Stoichiometry is defined as the ratio of reactants to products in a chemical

reaction. If fuel is combined with air at exactly the stoichiometric ratio and ideal

combustion is achieved, then all reactants (fuel and air) will be consumed and only

products CO2, H2O and N2 will remain. For a hydrocarbon fuel given by CxHy the

stoichiometric reaction can be expressed as (Turns, 2000)

CxHy + a(O2 + 3.76N2)→ x(CO2 + (y/2)H2O + 3.76aN2 (3.2)

where

a = x+ y/4 (3.3)

From this, we can determine the stoichiometric air-fuel ratio as

(A/F )stoich =

(
mair

mfuel

)
stoich

=
4.76a

1

MWair

MWfuel

(3.4)

We then define the term equivalence ratios Φ and λ as

Φ =
1

λ
=

(A/F )stoich
(A/F )

=
(F/A)

(F/A)stoich
(3.5)

As a note, the symbol Φ is often used in academic textbooks, while λ is often

used in industry papers and documentation.

If you are not constrained by using a three-way exhaust catalyst, then it is

reasonable to try increasing power or fuel economy by adjusting the air-fuel ratio.

Once the desired phi is determined and the constants for fuel properties are

entered, then the mass of fuel can be calculated by
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mfuel = λ(A/F )stoichmair (3.6)

Finally, the fuel mass must be converted to an injector pulse-width. This is

the amount of time in which current is driven through the injector solenoid. This

can be calculated from the volumetric flow rate of the injector as a function of

fuel pressure to the injector valve. The fuel density must also be known. The fuel

pressure typically is tightly regulated by a small mechanical system attached to the

fuel injector rail, so the pressure can be assumed constant.

Another significant factor in the calculation of final pulse-width is the amount of

time required for the injector valve to fully open after the injection command starts.

This open-time is a function of battery voltage supplied to the injectors. Because

we did not have access to a fuel injector flow-bench, we carried out a low-budget

experiment on the motorcycle to collect injector open-time data for various battery

voltages. This involved using a current probe to monitor the current to the injector

on an oscilloscope. We also monitored the voltage drop across the injector solenoid

and the battery voltage. During an injection event, as the current to the solenoid

rises, an inflection in the current trace can be seen before the current reaches its

maximum level. This inflexion point represents the time in which the valve opens.

The time from the beginning of the solenoid voltage drop to the inflection point

is the injector open-time. We started the test with a fully charged battery. We

cranked the engine just long enough to capture the first few injection events on the

oscilloscope and then immediately stopped cranking the engine before the engine

was able to start. We took notes of the battery voltage and injection open-time from

the captured oscilloscope traces. After performing this procedure several times, the

battery voltage level gradually decreased to a point where the engine would not

crank or the ECU would not stay alive. We were able to take several consistent
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Figure 3.12: Injector voltage compensation

measurements from a battery voltage of 14 volts down to 7 volts. This data allowed

us to create the plot shown in Figure 3.12. During engine control, the injector open-

time was pulled from a table based on battery voltage. This time was multiplied by

a factor of 0.67 to account for a lower fuel flow rate during injector open-time.

PWfuel = kopen ∗OpenT ime+
mfuel

ṁinjector

(3.7)

Equation 3.7 shows the fuel pulse-width calculation. Once the pulse-width is

calculated, it is handed off to the FPGA for execution. The FPGA tracks engine

position and fires the injectors at the desired crankshaft angle and for the desired

pulse-width, without any further interaction with the CPU.

3.7.8 Transient Fuel Compensation

Transient fuel compensation is difficult and beyond the scope of this project. We

simply used the throttle transient air compensation as a fudge-factor to encompass

both manifold-filling of air and wall-wetting of fuel. Nonetheless it is worth touching

on the subject.
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One common model of transient fuel flow is called the τ−x model.(Leone et al.,

1997) It states that some portion (x) of each injection event goes into the cylinder,

and the rest goes to the puddle that sits on the valve. There is an evaporation rate

of the puddle (τ) as a function of coolant temperature. Because there is no simple

measure of either τ or x, this is difficult to calibrate.

3.7.9 Spark Control

Spark timing is a simple function of speed and load - throttle position in our

case. For an application such as ours, it is always desirable to operate at MBT

timing. MBT timing is the Minimum advance for Best Torque.(12. Guerrier and

Cawsey, 2004) Unfortunately, in many cases, MBT timing may be beyond the knock

limit of the engine. Control systems utilizing knock sensors attempt to advance to

MBT timing until knock is detected and then retard until knock is eliminated.

Our motorcycle did not come with knock sensors, so the factory calibration

was apparently conservative enough to allow it to run on premium pump gasoline

without knocking.

We mapped the spark timing of the OEM ECU simply by capturing the crank-

angle of each spark event and logging the latest value every 5 milliseconds. Our

LabVIEW data analysis application sorted the data into a speed versus load table

that was used directly in our control application. The resultant map is shown in

Figure 3.13.

Ignition coil dwell-time also was extracted from a table based on battery voltage,

since the amount of dwell to achieve repeatable spark-energy depended on battery

voltage. The spark timing and dwell-time are then handed off to the FPGA for

execution. The FPGA tracks crankshaft position and commands the ignition coils

for the desired dwell-time and terminates the command at the desired spark timing

angle, without any further interaction with the CPU.
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Figure 3.13: Spark advance table
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3.7.10 Rev Limiter

In performance application a rev limiter is required so that the operator cannot

damage the engine by allowing it to overspeed. It is important, however, that the

rev limiter not be too severe so that it will not upset the torque delivered by the

engine.

Our rev limiter has two parts: spark retard and fuel/spark kill. Spark retard

retards timing by a tunable amount when the engine speed reaches 15000 RPM. We

found that retarding spark timing by about 20 degrees BTDC smoothly reduced

torque and prevented over-revving.

If the engine speed exceeds 15500 RPM, (red-line indicated on the OEM tachome-

ter) despite the retarded timing, then we go ahead and kill both spark and fuel.

3.7.11 Startup and Idle Control

Getting an engine to start and idle for the first time is usually a trial and

error process. We did not formally perform any mapping of the startup and idle

conditions while under OEM ECU control. Startup and idle are primarily affected

by the operating temperature of the engine. In our case, that indicator was coolant

temperature. Due to this relationship, tuning for startup and idle must be performed

over several days time in order to arrive at a good calibration. This is because engines

can take several hours to cool to ambient temperatures. Therefore, we performed

tuning for these conditions whenever we began a new session of tuning with a cold

engine.

Idle control is not a difficult task on a motorcycle because there are no accessory

loads such as air conditioning and power steering. Also, the electrical load for a

motorcycle is typically very consistent. On passenger cars, an idle air control valve
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or a fly-by-wire throttle perform the function of idle control. Our motorcycle used

individual, mechanical, butterfly throttle bodies for each cylinder.

We implemented individual startup and idle fuel enrichment factors, which were

multiplied by the final fuel quantity calculation from the Speed-Density mode. These

factors were based on coolant temperature. They were very effective in starting and

idling the engine consistently. We were able to find their minimum and maximum

limits and then tune them for consistent starting and idling, at least in the limited

temperature ranges we encountered. We monitored a signal (provided to the OEM

ECU) that indicated when the start button was pressed. Startup fuel enrichment

was made active during that time.

As a note, idle engine speed control could also be more effective for this appli-

cation by adjusting spark advance. We did not implement this.

3.7.12 Other I/O

While fuel and spark are the two primary outputs of this controller, there are

additional engine and supervisory functions that must be performed. For example,

the motorcycle has an air induction valve, which is controlled as a function of throttle

position and coolant temperature, to bypass fresh air from the intake air box to the

exhaust, aiding the catalyst in the muffler. Also, the fuel pump, headlights, and

radiator fan are controlled by the factory ECU. Our system replicated the ECUs

control of these actuators. There are also a number of safety related signals to

monitor in order to prevent the engine from running while the side stand is down

or the bike is tilted past a certain angle.

3.7.13 User Interface

Besides being a graphical programming environment, LabVIEW provides an

excellent user interface. Figure 3.14 is a screen shot of the user interface we de-
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veloped. This interface has the ability to adjust all of the calibration values of the

engine control code on the fly. The data communicated between the laptop-based

interface application and the cRIO real-time control application were transported

via the TCP/IP protocol over a wireless link. A LabVIEW wizard was able to gen-

erate LabVIEW code for communicated parameters and tables via TCP/IP. The

wireless link proved to be very beneficial and could be maintained over short dis-

tances (about 300 feet) between a chase vehicle and the motorcycle while being

tested on the road. Breakdowns in the wireless link did not affect the operation of

the real-time control application.

Because the mapping exercise provided an excellent calibration for our control

application, we did not get many opportunities to use our interface for significant

calibration work. However, as we add features in the future, the ability to change

the calibration and its visualization will be critical.

3.8 FPGA Fuel and Spark Control

The previous sections alluded to the cRIO FPGA managing all of the I/O tasks,

primarily fuel and spark. This section will discuss the FPGA IP cores implemented

for this application.

FPGA technology has made great advances in the last few years in all of the

critical categories of density, speed, and cost. As a result, FGPAs recently have

been embraced by the consumer electronics industry, providing superior flexibility

and reduced development time over conventional microcontroller designs.

Automotive applications have tougher cost and temperature requirements for

electronics components, but FPGA manufacturers are beginning to meet these de-

mands. OEMs are already using FPGAs considerably in automotive telematics

devices.13
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Figure 3.14: Graphical user interface
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We have found that FPGA technology is far superior to traditional microcon-

trollers even specialty automotive microcontrollers for prototyping a powertrain

control system. This is due to the ability to add or remove any I/O peripheral

block, only limited by the size of the FPGA. Also, the software algorithms used

to drive the IP blocks are very portable between hardware platforms which utilize

an FPGA, relieving the concerns for microcontroller obsolescence and migration to

different CPU environments.

We developed a library of FPGA IP blocks, or cores, for a variety of automo-

tive powertrain tasks. The primary IP cores that are implemented in this engine

controller are an engine position tracking (EPT) block surrounded by four identical

port fuel injector cores and four identical spark cores. The EPT cores in our library

are designed for specific crank/cam trigger pattern types. For example, one of the

EPT cores tracks position from a crank trigger wheel having evenly spaced teeth

and one or two adjacent missing teeth. This pattern is commonly referred to as an

N-M pattern (Figure 3.15) because it has N evenly spaced teeth with M missing

adjacent teeth. A very popular production example of this pattern is a 60-2 pat-

tern. This pattern also can be accompanied by a single cam trigger tooth during

every other tooth-gap for engine phase information on four-stroke engines. Another

EPT core in our library tracks position from a pattern typical of optical encoders,

such that there are N evenly spaced teeth per engine cycle accompanied by another

single pulse per cycle. This EPT core is often applied to research engines having an

optical encoder mounted to the crankshaft or camshaft (Figure 3.16). This latter

pattern example is what we encountered on our project motorcycle, having four

evenly spaced teeth on the crankshaft and a single tooth on the camshaft. The core

was configured appropriately for the number of teeth.

The EPT core can be configured to calculate the angular position of the crankshaft

to any desirable resolution as long as the clock rate to the core is sufficient. We con-
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Figure 3.15: N-M pattern

 

 

Figure 3.16: N+1 Pattern
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figured the EPT core for this application to provide a position resolution of 0.3

degrees. This position, along with other supervisory signals, is routed to each fuel

and spark core. In addition, the EPT cores report the time period between the most

recent two trigger teeth, the time period over a requested multiple of teeth, and a

variety of signal fault conditions.

The Port Fuel core generates fuel command pulses to the fuel injector driver

in both angle and time domains. It delivers a separate configurable pulse at the

beginning of each main pulse for the purpose of commanding peak/hold type driver

circuits. However, this feature was not needed for this project because the injectors

are of the high impedance type. The core can be dynamically configured to generate

fuel commands having a specified start or end angle, along with a specified duration,

where duration has the priority over position during transients. The core will also

deliver additional fuel pulses within the same cycle, after the first pulse has ended,

if the CPU requests additional fuel to be injected. After studying the data collected

from the ECU mapping phase, we determined that the production controller was

commanding fuel pulses with a start angle and duration. This was due to the fact

that the fuel start-angle measurements, according to engine speed and load, showed

a more deliberate three dimensional surface. The factory ECU did not show to be

commanding multiple fuel injections per cycle. A separate Direct Fuel core in our

library provides multi-pulse injection features for common-rail diesel applications,

providing up to five individually tunable injection events per cycle.

The Spark core generates commands for an ignition coil driver in both angle

and time domains, according to a requested dwell-time and spark angle. The end-

angle of the command has priority over dwell-time as long as a minimum dwell-time

has been satisfied. This core also supports multiple re-strike pulses following the

main spark pulse.
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Figure 3.17: Module architecture

A Pulse Period core was used to measure the time period between pulses from

the vehicle speed sensor. The CPU could always read the latest period value stored

in the FPGA.

Finally, a Serial Peripheral Interface (SPI) core was implemented to retrieve the

Analog-to-Digital (A/D) results from the AD-Combo modules ADC chips. All of the

motorcycles analog sensor voltages were sampled via this SPI interface, including

some signals that were digital in nature. Each channel was sampled at a rate of 2

kHz and filtered using a 5th order low-pass FIR filter having a cutoff frequency of

200 Hz. Each channels filtered result was stored in FPGA-based registers for the

CPU to read at any time. This is shown if Figure 3.17.

The use of the FPGA to handle all of the I/O related tasks allowed the CPU

to execute a single 10 millisecond loop without any I/O related interrupts. Asyn-

chronous I/O related interrupts cause modern, high performance, pipelined proces-

sors to operate much less efficiently than they are capable. Our goal was to optimize

the separation of tasks between the CPU and FPGA so that each device was being
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utilized most efficiently. We are confident that this goal was achieved in this control

system.

3.9 Conclusion

This project showed the viability of an FPGA based research engine controller.

It demonstrated that the cRIO, executing LabVIEW RT, is an excellent choice of

platform for both engine data acquisition and control. It showed that our team was

able to do a complete controller replacement project in just three man-months.

We also showed the ability to map the behavior of an OEM ECU while operating

the engine in the vehicle on the road. Using the mapped data as a calibration for

the cRIO engine controller provided engine performance that was very acceptable,

without any dynamometer time. Experienced riders could not note any significant

differences between OEM ECU control and cRIO control.

This project motorcycle will be a future platform for use in developing addi-

tional hardware I/O and software modules.

Eventually, the LabVIEW code for this and other Drivven projects will be

available under a semi-public license as part of a Drivven OpenECU project.
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Chapter 4

ICEF2011-60225

A Novel Approach to Free-Piston Engine Control Using an FPGA Based Con-

trol System

This paper was presented at the ASME Internal Combustion Engine Division

Fall Technical Conference in Morgantown West Virginia, Oct 2-5, 2011. The paper

was written by Matthew Viele and Carroll Dase of Drivven, and Eric Shorey and

Karl Hoose of Applied Thermal Sciences.

4.1 Synopsis

The variable stroke length of the free-piston engine poses an interesting problem

for the controls engineer. At a low level, the control system must be able to track

piston position and address changes in top and bottom dead center positions. To

accomplish this, a new FPGA (field programmable gate array) based engine position

tracking software was developed, along with a simple method of mapping from a

conventional engine control system to a free-piston control system.

The tracking software was integrated into a complete rapid prototyping control

system that was responsible for all control actions of the engine. The control system

was laboratory tested on the HiPerTEC, an opposed, free-piston engine with a

circular piston arrangement (as opposed to linear free-piston engines) developed by

Applied Thermal Sciences, Inc (ATS). The control system has been demonstrated

to run 8 cylinders up to an effective speed of 2,200rpm in spark ignition mode.

4.2 Introduction



4.2.1 Why a Free-Piston

From a thermodynamic viewpoint, higher combustion pressures offer the capa-

bility of generating more work which translates into higher thermal efficiencies. Some

novel engines, particularly free-piston engines, have shown higher thermal efficiencies

than that of conventional diesel engines because of the extremely high combustion

pressures found in these engines (Blarigan, 2002). With a variable compression ratio

(CR), FPE can use low CR mode for starting and switch to high CR mode for im-

proved efficiency. Numerous investigators have shown that a CR in the 35:1 range is

attainable (Flynn, 1957)(Mikalsen and Roskilly, 2008b). In addition to thermody-

namic efficiency gains, there is the potential to increase the mechanical efficiency by

removing the wasteful slider-crank mechanism (Chinitz, 1969) and eliminating the

friction caused by the piston side thrust (Amann, 1987)(Ciulli, 1992)(Ciulli, 1993).

4.2.2 Breif Free-Piston History

Free-piston engines were tested at length by a few major European and Ameri-

can manufactures, such as General Motors, Ford, and International Harvester, back

in the 1950s and 1960s. Most of the testing configurations took the form of inward-

compressing 2-stroke diesel-cycle gasifiers where the free-piston engine gasifier ex-

haust was used to drive a turbine to extract work. Flynn observed thermal efficien-

cies in the 43% range (Flynn, 1957), which is high even for todays engines. This was

attributed to the high compression ratio of the engines which reduces the entropy

gain during the combustion process. Flynn also demonstrated insensitivity to fuel

types (Flynn, 1957). Unfortunately, free-piston engines never progressed from the

testing phase into major production, largely due to the complexities of extracting

mechanical power from the free-piston designs and controlling piston motion. Mod-
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Figure 4.1: Linear Opposed Free-Piston Generator Unit

ern microprocessor based controls have permitted certain of the complexities of the

FPEs to be overcome.

By eliminating the slider-crank mechanism of the conventional I.C. engine, the

piston becomes “free”. Its motion is no longer governed by the rotation of the crank,

but instead by the forces acting on the pistons from the cylinder gases and external

loads. This introduces a complexity in engine control that was not easily addressed

in early free-piston engines. However, modern microprocessor based controls have

opened the door for engineers to revisit the advantages of the free-piston engine

(Mikalsen and Roskilly, 2008a). Recent interest in free-pistons has developed due to

the need for significant improvements in fuel efficiency and the attention of hybrid

vehicle applications. The growing interest has lead to new configurations such as

the linear free-piston generator shown below (Figure 4.1), where a linear dual free-

piston engine drives a reciprocating generator to produce electricity (Van Blarigan,

2002)(Carter and Wechner, 2003)(Mikalsen and Roskilly, 2008a). This interest has

also led to the development of the HiPerTEC, an alternative arragement to the

linear FPE.
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Table 4.1: HiPerTEC Specifications
HiPerTEC Specification

Seam Diameter 10in
Displacement 1.8L

Bore 2.5in
Stroke 2.75in

Chambers 8
Max Geometric Compression Ratio 40:1

Calves per Chamber 1 intake/1 exhaust

4.3 ATS HiPerTEC Engine

The HiPerTEC design was conceived to incorporate the simplicity and compact-

ness of the toroidal and Wankel engines, and the excellent balancing of the Bradshaw

Omega engine (Chinitz, 1969)(Ciulli, 1993). Further, the HiPerTEC includes unique

characteristics to take advantage of operating methods found to exhibit superior per-

formance, such as variable compression ratio. ATS has successfully demonstrated

the operation of the HiPerTEC with a ported, 2-stroke prototype and a valved, 4-

stroke prototype. The focus of this paper will be the control of the valved, 4-stroke

prototype throughout its start-up and warm-up phases of operation.

The HiPerTEC employs a toroidal geometry with eight chambers (correspond-

ing to cylinders in conventional I.C. engines) separated by eight double-faced pistons.

The engines torus shape is made up of two parts, one outer ring and one inner ring.

The torus is cut (not like a bagel) resulting in two rings as shown in Figure 4.2.

These rings reciprocate back and forth and make up the actual chamber walls of

the engine. Four pistons, having the internal cross-sectional area of the torus, are

connected to the concave (inside) wall of each ring (eight pistons total) at 90 degree

intervals. Thus, eight chambers are made when the two rings are fitted together to

form the torus shape; see Figure 4.2 and Figure 4.4.
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  Figure 4.2: HiPerTEC Configuration

   

 

 
 
  Figure 4.3: HiPerTEC 4-Stroke Cycle Positions
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Figure 4.4: 8-Chamber HiPerTEC Tested with Control System
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Each chamber is bounded by two pistons; one piston connected to the inner ring

and one connected to the outer ring. During operation, pressure changes occurring in

a chamber will act against one piston connected to the inner ring and one connected

to the outer ring. When combustion occurs in a chamber, the two pistons bounding

the chamber will be forced apart, causing the rings to move in opposite directions

(counter rotating). Four chambers will decrease in volume, while the remaining

four will increase in volume. This is illustrated in Figure 4.3 with four positions

representing the 4-stroke cycle operation. (Note that the pistons in Figure 4.3 are

depicted as single lines.)

Since this engine design has eight chambers, two chambers will be going through

the same stroke in the cycle simultaneously. In position 1, chambers 1 & 5 are

beginning the power (combustion) stroke where the two pistons bounding chamber

1 are close together, or at TDC. Combustion is initiated forcing the two pistons to

move in opposite directions. All inner ring pistons move together and all outer ring

pistons move together. Chambers 2 & 6 are in the compression stroke, 3 & 7 are in

the intake stroke, and 4 & 8 are in the exhaust stroke. Note that the outer and inner

rings rotate a maximum of 45 degrees (assuming pistons with zero thickness and

an infinite compression ratio) with this eight chamber arrangement. The maximum

rotation angle of the rings is dependent upon the number of engine chambers and

physical sweep of the pistons.

Position 2 represents full expansion, BDC, of chambers 1 & 5. At this point,

chambers 1 & 5 are starting the exhaust stroke, 2 & 6 the power stroke, and so

on around the engine. The chambers undergoing a power stroke are providing

the energy to carry out the strokes in the other chambers. There are always two

chambers undergoing a power stroke for each engine stroke. This process continues

until all the chambers go through a complete 4-stroke cycle; the cycle then repeats

continuously.
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Power extraction can be achieved by driving a turbine with the exhaust gases,

or generating electrical power with a generator, or mechanically through a motion

conversion unit. ATS has extracted mechanical power via a motion conversion unit

(MCU) of its own design. This unit uses two mechanical diodes to convert the

reciprocating motion from the engine drive shaft to continuously rotary motion at

the output of the MCU.

4.4 Control System Overview

4.4.1 Hardware

The HiPerTEC ECU (hardware and software) was operated as a prototyping

ECU in a laboratory environment. It is comprised of a PXI embedded controller

with a forty channel, high-speed, multifunction DAQ module, a user-programmable

FPGA module, powertrain control modules for driving things like ignition coils

and fuel injectors, and various sensors and actuators as detailed in Table 4.2. The

embedded controller serves as the main processor of all control actions of the engine

and collection of necessary sensor information. To assist the embedded controller, an

FPGA module is used to handle synchronous timing of fuel injection, spark ignition,

throttle position, and valve operation. This module is primarily responsible for

tracking engine position and ensuring critical events happen at the desired engine

position. Unloading this task from the main controller reduces the performance

requirements of the hardware and software to a level necessary for deterministic

control. It is from this module that all powertrain control modules receive their

inputs for driving system devices.

Specifically, the ECU is responsible for control of the following subsystems (sim-

plified layout shown in Figure 4.5): the engine position tracking system, the spark

ignition system, the fuel delivery system, the air intake system, and the starter sys-
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Table 4.2: Control System Components

Hardware Description Function

PXI-8770 Quad-core 2.2GHz Pentium con-
troller

Real-time control and data anal-
ysis

PXI-1042 8-slot PXI chassis Physical Chassis
PXI-7813R FPGA Module Engine position tracking and syn-

chronous actuation
PXI-6255 40ch DAQ Module High-speed DAQ
NI 9411 High-speed DI Engine and valve position
D000017 Throttle Driver Control intake throttle
D000017-ESHB Engine Synchronous H-bridge Controls valves
D000006 PFI Driver Actuates fuel injections
D000012 Spark Driver Fires spark plugs

tem. The engine position tracking system is made up an optical, incremental, rotary

encoder and high-speed digital input module for the FPGA module. The encoder

is geared to the main gear attached to the outer ring of the engine. As the engine

rotates, the encoder generates A, B, and Z (index) pulses that are decoded at the

FPGA level for position tracking. Quadrature decoding is used to maximize posi-

tional resolution for the timing of events. The spark ignition system is made up of

two spark driver modules, eight inductive ignition coils, and eight spark plugs. The

fuel (gasoline) delivery system is made up of two PFI driver modules, eight high-

impedance PFIs, a fuel pump, a fuel filter, and a pressure regulator. The air intake

system is made up of one output of a throttle driver module, one electronic throttle

body, an electrically driven supercharger (to enable future 2-stroke operation), four

ESHB driver modules (for controlling pilot stage of poppet valves), sixteen 4-way

solenoid valves, eight exhaust valves, eight intake valves, and two pilot valve supply

shut-off valves. The starter system is made up of the other output of the throttle

driver module, one 4-way solenoid valve, and a pneumatic rotary actuator. Fig-
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ure 4.6 shows the HiPerTEC installed in the test cell with all of its sensors and

actuators.

Along with controlling all the actuators, the ECU also functions as the DAQ

system. Forty differential analog channels are sampled at 5 kHz apiece for acquiring

data such as chamber pressure (for each chamber), manifold pressure, mass air

flow, mass fuel flow, air intake temperature, exhaust gas temperature, and piston

temperature. This data, along with engine position, throttle position, and all the

timing signals for valve control, fuel injection, and spark ignition, is collected for

use in the control actions as well as engine operation analysis.

4.4.2 Software

The control code was written in NI LabVIEW and executed as three distinct

programs; see Figure 4.7. The user interface program controls requests from the

user, such as setting the base timing values, changing the maps for fuel injection

pulse width and spark advance, enabling and disabling subsystem functionality,

recording data, and initiating the starting routine. This program is implemented as

a sequential state machine, running in a single loop on a non-deterministic operating

system.

The main control program handles the requests from the user interface pro-

gram, retrieves and processes the sensor information, determines the control actions

that need to occur, and sends the appropriate information to the FPGA. This pro-

gram interfaces with the code running on the FPGA, but does not execute the

control actions directly. This program is implemented as parallel loops with each

loop running a sequential state machine tailored to a specific engine subsystem; see

Figure 4.8. By taking advantage of the quad-core processor and real-time operating

system, all loops can deterministically run in parallel on the embedded controller,

also illustrated in Figure 4.8.
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  Figure 4.5: Simplified System Layout Diagram
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Figure 4.6: HiPerTEC Installed in Test Cell systems to the left and right
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Figure 4.7: Diagram of Engine Code
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Figure 4.8: Main Control Program Loops and Core Assignment

The timing control loop tracks the engine position and ensures proper timing,

interfaces to the control hardware, processes requests from the main control program,

and sends hardware status and sensor data to the main control program. This

program is implemented as a Single Cycle Loop (SCL) at a clock rate of 40 MHz.

4.5 Engine Position Tracking

In a conventional 4-stroke slider-crank engine the engine position is tracked

by measuring a camshaft and crankshaft position sensor. Because the crankshaft

revolves at twice the rate of the camshaft, the camshaft sensor is usually only used

to determine engine phase (compression vs. exhaust stroke). All precise timing

calculations are done based on the camshaft sensor(s).

A variety of camshaft encoder patterns are available on engines, but the vast

majority can be broken in to three classes. The most common is N-M where N

represents the tooth spacing (N=36 for 10 degree spacing) and M the number of

missing teeth. So a 36-2 tooth pattern would have 34 teeth set on 10 degree centers

with two adjacent missing teeth as shown in Figure 4.9.
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  Figure 4.9: 36-2 (N-M) Camshaft Encoder Pattern

An N+1 pattern is shown in Figure 4.10 and typically has fewer teeth. It is

not uncommon to find this pattern on the cam of a heavy duty engine acting as a

backup to the N-M on the crank.

A pattern commonly found on research engines and in heavy duty stationary

engines is the “encoder” pattern. This pattern consists of N evenly spaced teeth

with a single reset pulse on the crank. Because a camshaft often experiences minor

changes in phase compared to the crankshaft, especially on timing belt engines, a

crank sensor to mark TDC is still common.

Optical shaft encoders used in research often provide A, B, and Z outputs. The

Z output is a once per rev pulse. The A and B outputs contain N evenly spaced

pulses that are offset by 90 degrees. This configuration is called quadrature and

allows shaft direction to be determined by looking at the level of the B line on a

level transition of the A line and vice-versa.

Generally the position pickup is at lower resolution ( 10CAD) than what the

ECU wants (0.1CAD). Actual engine position is extrapolated in real-time from

previous real tooth edges and an extrapolated crank angle position is derived. This

is used to feed synchronous output blocks.

Because the speed of engine position tracking and output generation is in the

sub-microsecond range, it is usually done with a dedicated co-processor like the

Freescale TPU. TPUs and similar counter-timer architectures have limited flexibility

and are difficult to program and debug. An alternative is to use an FPGA. In
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this case a Drivven EPT (Engine Position Tracking) core was run on a National

Instruments FPGA module.

The Drivven EPT software extrapolates the number of teeth on an actual engine

by a power of two (2,4,8,16, etc). For instance, the above 36-2 encoder could be

extrapolated by 25̂=32 to get 1152 crank angle ticks (CAT) per crank rev or 2034

CAT per 4-stroke cycle. All calculations are done every 25ns. All crank angle

synchronous events (fuel injection, spark, etc.) are defined to happen exactly on

CAT edges. LabVIEW RT level functions are provided to map from Crank Angle

Degrees (CAD) to CAT and back.

The extrapolation mechanism is subject to errors due to engine acceleration and

deceleration, both gross and in-cycle. In the case of deceleration the extrapolated

pulses will run out and the CAT state machine will suspend operation until the

next physical tooth is recognized. In the case of acceleration a new physical tooth

is recognized before the extrapolated CAT have run out. In this case the CAT is

advanced at the maximum allowable speed. This ensures that every CAT is seen by

all the device I/O drivers (Spark, fuel, etc.) exactly one time and at as close to the

theoretically perfect time as possible with what can be known with the given tooth

pattern.

4.5.1 Types of Outputs

Three primary types of pulse generation are available based on their start and

end conditions: Angle-time, Angle-Angle, and Time-Angle. Different physical actu-

ators map better to different types of command sequences.

Angle-Angle sequences are the simplest and as the name implies they are defined

by their start and end angle CAT. These functions map well to valve timing events

or to knock window generation.
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Spark events are time-angle events where an RT-level dwell time is specified in

ms. The current engine speed is used to approximate a start angle where Dwell will

begin. When the end angle is reached the spark will be initiated regardless of the

actual dwell time achieved.

Fuel injection may either be angle-time or time-angle based on the desire of the

system designer. Time-Angle events are often used to try to get the injection to end

just before intake valve opening. In this case time is the dominant variable and will

take precedence over end angle when determining when to turn off the injector.

4.5.2 Free-Piston EPT

The HiPerTEC engine uses a variation of the “encoder” pattern as shown in

Figure 4.11. This configuration uses a quadrature encoder scheme to determine

engine position. Because the valvetrain is cam-less there is no cam shaft sensor. The

control system simply assigns phase during the cranking process and commands the

valves accordingly.

When the piston makes a change of direction, some of the encoder pulses beyond

the direction-change point will not be observed. When the direction change is

detected, the EPT will rapidly advance through cranks angle ticks in the un-observed

section until it catches up to the real engine location, allowing the specification of

angles within the unobserved region.

4.6 Control System Operation

As previously mentioned, the focus of this paper is on the start-up and warm-

up phases of engine operation. Figure 4.12 shows a plot of the engine position

throughout these phases. Figure 4.13, Figure 4.14, and Figure 4.16 show zoomed

sections of this figure.
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Figure 4.11: Free-Piston Encoder Pattern.

At this stage in development, the after-start and warm-up phases are not being

controlled directly by the ECU. These phases are merely recognized during post-test

analysis and control parameters are manually adjusted based on what is observed.

The engine runs in open-loop mode throughout these phases, with control values

selected prior to a test and manually adjusted during the test. As development

progresses with the engine and ECU, these phases will be studied in more detail

so as to gain control of their behavior. On the contrary, the cranking phase is

completely controlled by the ECU and is discussed in more detail below.

The reciprocation of the engine drive shafts precludes the use a standard au-

tomotive starter. Instead, a single vane pneumatic rotary actuator (FPE starter)

has been employed to reciprocate the engine and bring the desired air/fuel mixture

into the chambers; see Figure 4.15. Before the starting sequence is initiated, the

engine is rotated into position to allow synchronization (SYNC) of the EPT sys-
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tem. After the engine is in position, the starting sequence is initiated through the

User Interface program. The air supply valves for the pilot valves are opened, the

throttle position and boost are set to the desired level, the supercharger is turned

on, and the air solenoid for the FPE starter is energized. This causes the engine to

rotate and SYNC the engine position (Figure 4.13) and marks the beginning of the

cranking phase. Once SYNC is active, the valves begin to open and close at the set

engine position.

Engine synchronous events have been defined in terms of included angle degrees

(IAD). IAD is the angular displacement between two opposed pistons that bound one

chamber. Since the relative motion of the pistons is only 32 degrees, the following

conversion is employed to map IAD to CAD for the purposes of comparison to

conventional engines as well as to satisfy the device driver software.

Max.HiPerTECStrokeAngle = 32deg(IAD)

Rotationfor1StrokeofConventionalEngine = 180deg(CAD)

180CAD

32IAD
= 5.625

CAD

IAD

During the cranking phase (Figure 4.14), the Main Control program monitors

the engine position and switches the state of the FPE starter to stop the engine

and rotate it in the other direction. This turnaround position was specified empiri-

cally to optimize the initial combustion event, which is typically a tradeoff between

maximizing stroke length and maximizing engine speed. Also during cranking, the

supercharger maintains boost in the intake, and air is brought into the chambers,

compressed, and then exhausted, but without ignition.
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Figure 4.12: Engine Position with Cranking, After-Start, and Warm-up Phases
Labeled
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Figure 4.13: Engine Position SYNC
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Figure 4.14: HiPerTEC Cranking Phase
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Due to the way this FPE starter works, the ignition system cannot be enabled

until flow into the engine has been established and the desired starting chamber has

been charged with fuel and air. Unlike the conventional automotive starter, the FPE

starter does not “kick-out” when a combustion event overdrives it. Maintaining the

positional relationship between the engine and the starter is critical to avoid cranking

the engine past TDC or BDC; allowing the starter to “kick-out” would require it

to automatically reconnect on a no-start, which would require automatic alignment

in relation to the engine position. While this would be the preferred method for

reliability and robustness, manually resetting the starter after each no-start was

found to be sufficient for laboratory work.

To eliminate the additional load from the starter on the first combustion event

and thereafter, the starter is decoupled from the engine with a release mechanism

as shown in Figure 4.15. This means that on the stroke before the first combustion

event, the FPE starter drives the engine to a certain position and decouples from

the engine, while the engine continues towards the ignition point and TDC. This

process is illustrated in Figure 4.16. On a no-start the starter is manually coupled

back to the engine.

The engine position for the first ignition event is set by knowing the chamber

pressure and the final engine position after it has been decoupled from the starter.

Both of these values were determined by cycling the engine through the starting

sequence without fuel and examining the pressure and position traces and observing

the peak chamber pressure and stopping position of the engine after being released

from the starter. The optimal ignition position is set to correspond with peak

chamber pressure prior to reaching TDC. The startup event can be optimized further

by modifying the release angle of the starter which in turn changes the pressure/time

profile of the engine through the first stroke.
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Figure 4.15: HiPerTEC Starter - Pneumatic rotary actuator and release mechanism
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Figure 4.16: Final Stroke of Cranking
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TDC and BDC for the HiPerTEC refer to the position of direction change of

piston motion. This represents the minimum or maximum chamber volume, respec-

tively, before piston turnaround. For the HiPerTEC, the TDC and BDC positions

can vary for each stroke. To eliminate complications in setting timing values based

on variable TDC positions, the extreme TDC location has been utilized. The ex-

treme TDC position would represent the minimum IAD and minimum chamber vol-

ume bounded by two opposed pistons. Likewise, the extreme BDC position would

represent the maximum IAD and the maximum chamber volume. TDC can also

be referred to as face-to-face as this is the position where the two opposed pistons

meet.

During cranking the throttle position, boost pressure and valve timing are kept

constant to minimize the variation in air flow rate. Stroke length is allowed to vary

naturally as this has little effect on mass flow during cranking. Gasoline is injected

on the final cycle of cranking and is also based on a target equivalence ratio and

estimated intake air mass. This is done on the final cycle to avoid flooding during

cranking.

Following the first combustion event, the combustion pressure drives the pistons

in opposite directions and triggers after-start phase control by the ECU. In after-

start control the gasoline pulse width is ramped down towards the equivalence ratio

set for warm-up ( 1.0) and a separate spark timing table is utilized until the stroke

length stabilizes. Spark advance is open-loop based on engine position until the

stroke length stabilizes, at which point it is switched to speed dependence. For

control operations the cycle-averaged engine speed is used and is the independent

variable for use in lookup tables.

When referring to the speed of the HiPerTEC, frequency is preferred because

RPM refers to the time involved for a revolution of the crankshaft which is not

present in this FPE. Instead, what should be reported is the time for the HiPerTEC
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to complete two strokes or one complete cycle of piston motion. This is equivalent

to one revolution of the crankshaft and allows direct comparison with conventional

engine speeds. For example, if the HiPerTEC were running at 40 Hz this would be

equivalent to 2400 RPM of a conventional engine as illustrated below:

40
cycle

s
∗ 2stroke

cycle
∗ 1rec

2stroke
∗ 60s

1min
= 2400

rev

min

For easy comparison, engine speed in this paper has been given in terms of

equivalent crankshaft RPM instead of FPE frequency.

Once the engine passes through the after-start phase, which is around three

to five seconds long, the warm-up phase begins. As illustrated by Figure 4.17, this

phase is characterized by a stabilized stroke length and engine speed. The ECU

maintains the same throttle position and level of boost as the after-start phase

throughout this phase. Spark timing is controlled in open-loop mode and advanced

or retarded based on engine speed. The gasoline pulse width is also controlled in

open-loop mode and is determined by the air mass brought into the chamber and

the equivalence ratio. A MAF sensor measures the flow rate of air brought into

the intake manifold during the intake stroke and this flow rate is integrated over

the time of one stroke to determine the mass of air that entered the chamber. The

gasoline pulse width is then calculated using the air mass, equivalence ratio, and

stoichiometric fuel/air ratio for gasoline. Closed-loop control of the air/fuel ratio

has not been employed, as engine warm-up (steady state temperature) has not yet

been achieved.

4.6.1 Valve Operation and Timing Control

Because the HiPerTEC is cam-less, an alternative valve actuation method was

needed. Previous work with pneumatic valve actuation provided the necessary
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Figure 4.18: HiPerTEC Intake Valve

ground work to develop a pneumatic valve actuation system. Conventional poppet

valves from a motorcycle engine were modified to fit the HiPerTEC. A double-sided

piston (DSP) is used for both opening and closing the valve, as shown in Figure 4.18.

Compressed air controlled by a 5-port 4-way proportional solenoid valve is used to

actuate the valve in both directions resulting in spring-less operation.

To open the valve, a signal is sent from the ESHB module, via the FPGA, to

move the solenoid to one extreme position. In order to drive the DSP an engine-

synchronous bi-polar driver was required. While Drivven did not have such a prod-

uct in their portfolio they were able to exploit the flexibility of the FPGA and quickly
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generate code to turn normal throttle driver modules in to engine synchronous bi-

polar actuator drivers.

Air from a regulated supply (140 psi) pressurizes the opening chamber of the

DSP and lifts the poppet valve off its seat. The opening chamber remains pressurized

and the valve open, until the valve needs to be closed. At that time a signal is

sent to the solenoid to move it to the other extreme position. This causes the

opening chamber to begin exhausting and the closing chamber to begin charging.

No movement of the poppet valve occurs until the force on the valve from the closing

chamber is greater than that from the opening chamber. Once the force from the

closing chamber prevails, the valve closes against its seat. Open and close valve

positions are set by physical stops and valve bounce due to high velocity at landing

has not be addressed. It is recognized that much work has been done on cam-less

valve actuation (Moran, 2003) and there is certainly room for improvement in this

implementation.

Because these valves are actuated differently than cam driven ones, valve timing

is also done differently. There is a finite delay between the time the signal to switch

the valve state is sent and when the action actually occurs; see Figure 4.16. This

delay is insignificant at low engine speeds (¡400 RPM), but compensation is needed

as the engine speed increases. The total delay is a result of many factors, with a few

of the major ones being: engine chamber pressure, inertia, DSP chamber charging

and exhausting time (flow rate into and out of DSP) and friction. The total delay

is on the order of 5ms from when the signal is sent to when the valve starts to open

or close. This value is a composite of valve bench testing and results from computer

simulations that included inertia, engine chamber pressure, and valve stem friction

at various simulated engine frequencies (5Hz to 83Hz).

Valve “open” timing values are entered as the desired engine position for start

of open. Valve “close” timing values are entered as the desired engine position
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where the valves are fully closed. To properly set the delay for the closing events,

2ms is added to account for the time to close the valve, making a total delay of 7ms.

This delay and the opening delay are factored into the timing in order to ensure

the valve events happen at the desired position as the engine speed changes. To

do this a linear relationship is used to determine the advance that is needed. It is

acknowledged that the engine speed is not constant throughout the entire stroke

and therefore a higher order relationship or LUT may be needed in different regions

of the stroke and under load. However, the current approach has proven to be

adequate for the speed range encountered during no-load warm-up.

The above mentioned linear relationship, relates valve actuation delay, engine

speed, and valve timing advance. A delay value for the opening and closing of each

valve is specified based on how they are performing. This allows fine tuning of the

gas exchange process on a chamber-by-chamber basis, much like the tuning of fuel

pulse width. At the middle of each stroke, the FPGA (Timing Control program)

calculates the instantaneous speed. This speed is then paired with corresponding

valve events for that stroke and an advance value is calculated. The desired engine

position minus the advance sets the engine position at which the open/close signals

need to be sent from the ESHB module. It is the primary function of the FPGA

to track the engine position and send this signal at the proper time. Valve timing

values are updated once per cycle.

4.7 Conclusion

A prototype version of the HiPerTEC engine was successfully run on a Drivven

control system. The low-level control of a myriad of novel actuators as well as the

tracking of a dynamically varying piston position was accomplished. The engine was

operated in an open-loop fashion and datasets were built to allow the development

of a model-based control strategy.
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Valved, 4-stroke, free-piston engine operation was shown. This is believed to be

among the first for free-piston engines (Mikalsen and Roskilly, 2008b) and demon-

strates control and combustion techniques that were never before available to free-

piston engines.

4.8 Future Work

While the low-level control of actuators was proved out in this work, much

attention to the high-level control is required and will be enabled by a more thermally

robust prototype, currently in the design phase. A full transient control application

will be developed for use with this engine as it approaches final deployment.
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Chapter 5

DIGITAL SIGNAL PROCESSING AND CONTROL

Engine controllers have traditionally used some off-chip peripherals to imple-

ment specialized signal processing. The most common of these is Knock detection.

Knock ICs from TI/National Semiconductor (LM9011, 2009), Bosch (Bosch CC195,

1996), and Freescale (Freescale, 2001) are all readily available, but have limitations

in filter type and the decision tree for knock detection.

More recently, systems have used dedicated digital signal processing chips, chips

optimized for MAC instructions, critical for FFTs and other signal processing math.

These programmable solutions offered better configurability of specialty applications

and were applied to off-highway applications.

These same algorithms can be implemented in an FPGA. With a large FPGA

this can be simply a subcomponent of the larger design. Since these knock algorithms

require input from the engine position tracking software, a discrete solution requires

many additional lines between the processor and IC. These lines and their associated

complexity are eliminated in the pure FPGA solution.

While knock is a well understood and handled problem from the controls side,

there are new areas where similar approaches can be used. The foremost of these is

cylinder pressure analysis. Cylinder pressure analysis is available in most research

engines and is now standard on a number of passenger cars today like the GM 2.0L

I-4 Turbo-Diesel and the VW 2.0L TDI (Dorenkamp and Gruber, 2008). Cylinder

pressure feedback for real-time control has been examined in research for years,

but as it becomes a reality in production vehicles it has become a central part of

numerous control strategies.



The following paper examines two versions of real-time cylinder pressure feed-

back. It is a follow-on work to (Viele and Quillen, 2009) that examined the compu-

tational feasibility of ”next-cycle control” in the Drivven DCAT architecture. The

first is the common case of “next-cycle” or possibly multi-cycle control. In this sce-

nario, cylinder pressure is analysed over the course of a cycle and the results are used

in the calculation for the next cycle. While this takes dedicated ECU hardware, it

is well within the realm of standard automotive digital signal processors.

The second variant examined exploits some of the capabilities only offered in

FPGAs and custom ICs. In this version cylinder pressure is sampled every 10µs,

heat release calculations are performed, and results are acted on by the injection

system. In the case examined we controlled the inter-pulse delay of a multi-pulse

diesel injection system. This paper simply explored the mechanism by which same-

cycle control can be implemented and demonstrated the ability to do it in a standard

FPGA-based research controller. Similar work is ongoing at several universities to

take this to the next step and show emissions and operating regime improvements

based on same-cycle control.

For this paper the specific contributions of this author are:

• Design of the combustion analysis system architecture.

• Same-cycle design, concept, and algorithms.

Kristopher Quillen was responsible for coding the DCAT software.

Steve Ciatti was responsible for running the engine and collecting the data.

Reprinted with permission for ASME.
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Chapter 6

ICEF2010-35119

Next-Cycle and Same-Cycle Cylinder Pressure Based Control of Internal Com-

bustion Engines

This paper was presented at the ASME Internal Combustion Engine Division

Fall Technical Conference in San Antonio, TX Sept 12-15, 2010. The paper was

written by Matthew Viele and Kristopher Quillen of Drivven and Steve Ciatti of

Argonne National Laboritory.

6.1 Synopsis

This paper reviews next-cycle and same-cycle control techniques developed by

Drivven and implemented at Argonne National Laboratory on a General Motors 1.9L

common rail diesel engine. Next-cycle control involves measuring cylinder pressure

engine-synchronously, performing calculations, and using the complete result in the

control algorithm for the fueling event in the next engine cycle. For this control

method, injection timing was manipulated to maintain a specified 50% burn location

and was investigated in both single-cylinder and multi-cylinder modes. The engine

was tested in steady state with step changes in input parameters such as EGR rate.

Similar to next-cycle control, same-cycle control involves measuring cylinder

pressure engine-synchronously, performing calculations, and making fueling deci-

sions based on partial results within the same engine cycle. For this control method,

injection pulse spacing was manipulated to optimize the heat-release calculated

angle-by-angle. Next-cycle and same-cycle control both have the capability of en-

hancing production engine control while next-cycle control also has great benefits

as a calibration aid.



6.2 Introduction

For many years combustion analysis systems have been a fundamental part of

engine research and development (Zhao and Ladommatos, 2001). These systems

use a number of cylinder pressure sensors and a crank shaft coupled timing device

(typically an optical encoder) to extract data from the engine. The analysis system

records and displays this data. It then performs calculations on the data to provide

derived calculations of interest. Much of engine development is based on optimizing

one of these parameters while keeping others within suitable ranges.

In the past few decades electronic control has been a requirement to make

an engine function so as to meet regulations and design criteria. A broad range

of sensors and actuators are available to the engine designer. Factors in choosing

sensors and actuators include the type of engine, the emissions and performance

targets, and the engine cost per unit.

Drivven produces one of the few hybrid systems available that allows both

combustion analysis and engine control in the same hardware and software package.

This system was originally developed to allow control parameters of the ECU to be

logged with the corresponding engine state as measured by the combustion analysis

system. This has the advantage over the normal two-system approach because it

uses a common interface and common set of acquired files to make post processing

easier.

Earlier work shows that values computed in the combustion analysis system,

called Drivven Combustion Analysis Toolkit (DCAT), can be used as input param-

eters to the controller side of the system and ensure that data is always available in

time to be used for control (Viele and Quillen, 2009). Beyond calculating the values

to be used in the next combustion cycle, DCAT algorithms were adapted to run on

the FPGA in real-time to modify the control of the same-cycle.
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This paper is mainly involved with demonstrating the next-cycle control and the

same-cycle control. This is accomplished by comparison of the standard open loop

control strategy to the next-cycle and same-cycle control strategies while varying

engine conditions.

It is worth differentiating next-cycle-control systems from auto-balancing sys-

tems common on large industrial engines. Auto-balancing systems have been around

for years, but due to lack of integration in to the control system as well as older pro-

cessors, will average a large number of cycles before making a correction to engine

operation. These systems can balance engine performance cylinders in the long run,

but cannot perform cycle-to-cycle optimization to reduce combustion instability.

While the use of cylinder pressure based engine control algorithms is not new

(Mller and Isermann, 2001)(Mueller et al., 2000)(Sellnau and Matekunas, 2000)(Fritz

et al., 1996), earlier techniques were primarily focused on reduced complexity algo-

rithms rather than conventional analysis (Guzzella and Onder, rlin).

6.3 System Overview

The experiments were preformed on a General Motors 1.9L, 4-cylinder, common

rail diesel engine. The cylinders are instrumented with piezoelectric pressure sensors.

The engine is equipped with all the standard stock engine sensors.

The ECU is a Drivven full authority engine controller. The system is composed

of the following hardware components:

• NI PXI-1042 8-slot chassis

• NI PXI-8106 2.16GHz duel core real-time controller

• NI PXI-7813R 3M gate FPGA

• NI PXI-6123 8 channel, simultaneous sampling analog input
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• NI 9215 4 channel, simultaneous sampling analog input

• Drivven AD Combo Module

• Drivven Low-Side Module

• Drivven DI Module

• Drivven PFI Module

The Intel Core 2 Duo based controller provides a sufficient processing power to

accomplish advanced calculations without interrupting the control algorithms. The

PXI-6123 simultaneous sampling A/D card is used to sample the cylinder pressure

sensors for DCATs next-cycle control functionality. The NI-9215 simultaneous sam-

pling A/D module is used to sample the cylinder pressure sensors for the same-cycle

control. The FPGA is used to control all the Engine IO and EPT.

Conventional processors like the Intel processor used have high clock rates

and data processing throughput as well as excellent programming language sup-

port making them great for next-cycle control type applications where data may

be collected over a cycle then averaged. Unfortunately they have high latency and

low turnaround time making them unsuitable for same-cycle control where decisions

must be made on a crank angle by crank angle basis.

An FPGA is a programmable device used to implement generic digital logic. In

this case it is used as an I/O co-processor. This particular FPGA implementation

has a latency of 25ns allowing very fast control decisions. Adding more code to an

FPGA will not increase the latency, but will increase the size of FPGA required to

run the program. This program stretched the limits of the 3M Gate FPGA used

in this experiment, though significant code improvements are possible. Another

shortfall of the FPGA is that floating point calculations take much more space, so

all calculations for same-cycle-control were done in fixed point.
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Figure 6.1: Engine Control Overview

The hardware is controlled using National Instruments LabVIEW software with

the CalVIEW and DCAT add-ons. CalVIEW is used for calibration management

and user interface while DCAT is used for combustion analysis. The system is set

up to allow engine control and analysis in the same hardware package. (Figure 6.1)

Therefore, it provides the ability to do advanced closed loop feedback control algo-

rithms base on the combustion analysis.
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Figure 6.2: DCAT Data Flow Structure

6.4 Next-Cycle Control Description

Next-cycle control algorithm provides a short, high priority, calculation path

and the framework to allow control algorithm to adapt based on the combustion

results of the previous cycle, as shown in Figure 6.2 (DCA, 2009). The framework is

set up to estimate the angle where the calculations finish ensuring that the calculated

values are ready for next-cycle thus both ensuring on-time calculations and giving

data as to how much margin is available for more calculations.

Next-cycle control may be based on any parameter calculated in DCAT depend-

ing on the goals of the testing and control strategy. E.g. Maintain a desired peak

pressure by adjusting injection or spark timing. Maintain a desired power setting

(IMEP) by adjusting the fuel quantity. Maintain a desired 50% MFB by adjusting

the spark timing.
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Table 6.1: 50% burn duration location (CAD ATDC)
Open Loop Next-cycle

0% EGR 11.2 13.0
10% EGR 11.3 13.0
23% EGR 11.6 13.0
27% EGR 11.9 13.0

6.5 Next-Cycle Results

For this paper, the next-cycle control was set up to maintain a 50% mass fraction

burned location of 13.0 CAD ATDC. The calculated 50% MFB is controlled using

a simple PID controller to adjust the open loop start of main injection timing. At

the open loop conditions, the 50% MFB resides at 11.2 CAD ATDC and changes

by 0.7 CAD as the EGR changes, as seen in Table 6.1. Next-cycle-control is able

to maintain the desired 13.0 CAD ATDC setting across the range of possible EGR

settings for this engine.

Figure 6.3 shows a plot of the MFB without next-cycle control shows the dif-

ference in the 50% MFB at the different EGR rates.

Enabling the next-cycle control quickly modifies the start of injection to the

desired 50% MFB setting and maintains it as conditions change, as shown in Fig-

ure 6.4.

Further experimentation was done with next cycle control to analyze stability.

Table 6.2 shows the effects of next cycle control for various operating conditions.

Both the COVs of the 50% burn location and peak pressure are shown. Since

cylinder 4 on this engine was instrumented for optical access and not pressure it is

not shown in this data.

As expected as with high EGR the COV increases. Since these are different

speed/load points a direct correlation is not expected. Note that in all cases the

next cycle control implementation produced a significant decrease in COV of 50%
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Figure 6.3: Mass Fraction Burned Open Loop Control
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Figure 6.4: Mass Fraction Burned Next-Cycle Control
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Table 6.2: COV of 50% burn location and Peak Pressure
10 bar BMEP, 2500 rpm, 10% EGR

Cylinder 1 Cylinder 2 Cylinder 3

COV of 50% MFB
Open Loop 1.42 1.43 1.12
Closed Loop 1.03 1.01 1.04

2.25 bar BMEP, 3000 rpm, 18% EGR
Cylinder 1 Cylinder 2 Cylinder 3

COV of 50% MFB
Open Loop 2.65 2.57 5.10
Closed Loop 1.73 2.19 2.49

3 bar BMEP, 1800 rpm, 33% EGR
Cylinder 1 Cylinder 2 Cylinder 3

COV of 50% MFB
Open Loop 2.03 2.40 4.57
Closed Loop 1.53 1.90 2.64

burn location. The tuning parameters of the next cycle control PID were optimized

for a point not shown on this table, so further room for improvement is available

through speed/load specific optimization or through the use of more advanced con-

trol techniques.

Plots of the mass fraction burned for the various operating points can be found

in Figure 6.5. Note that with increased EGR and stock timing the 50% burn location

is delayed for all cylinders, but quite a bit more for cylinder 3. EGR mal-distribution

to cylinder 3 is a known issue on this engine because of compromises in the EGR

system due to packaging. With next cycle control not only is 50% burn location

kept on target, it is kept to the same target on all cylinders. It can also be seen,

especially on cylinder 3 that much of the variation is reduced. No emissions data

was taken in these tests, but emissions are generally reduced with lower COV.

6.6 Same-Cycle Requirement

Same-cycle control requires that combustion analysis calculations happen in on

a sub-crank angle basis. Two issues can prevent this happening. First, the calcu-

lations require time to complete. Second, any delay in accessing shared resources
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Figure 6.5: 3 bar BMEP, 1800 RPM, 33% EGR
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will cause a delay. For these reasons, the FPGA is ideal for same-cycle control. The

FPGA provides parallel execution and deterministic response time. However, the

FPGA has limited resources, no floating point calculations, and large compile times.

Our target for this project was to have the same-cycle control algorithm use

no more than 1M of our 3M gate FPGA. This would leave the rest of the FPGA

to do its normal functions of firing injectors and reading I/O. The control code

without same-cycle control uses 1.5M gates. In the end the same cycle control used

nearly 2M gates and some of the normal control functions needed to be eliminated

or simplified in order to fit everything in to the existing FPGA board. Further

optimization of the FPGA code will be done in a later phase of the project.

The practical limit of executions speed for same-cycle-control is dominated by

the analog sample rates available in off-the-shelf hardware. In our case we were

limited to 100kS/sec/chan. Using the default 40MHz FPGA clock rate this gave us

400 clock ticks to complete any iterative calculations which was more than enough.

6.7 Heat Release Calculations

The cylinder perssure sampling may be triggered in one of two ways. The

first way, engine-synchronous sampline, is to trigger the sampling at specified crank

angles. The second way, time-based sampling, is to trigger the sampling based on a

fixed frequency clock. Each method has advantages and disadvantages.

Engine-synchronous sampling simplifies requirements on the FPGA because it

allows cylinder volumes to be pre-calculated and stored in memory on the FPGA.

A simple lookup is required to have a precise volume corresponding to each pressure

measurement. The minimum sample time is a function of the maximum hardware

sample rate and the maximum engine speed. Therefore, at slow engine speeds, the

time between calculations may increase beyond acceptable limits.
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Due to the inharent noise in combustion and the pressure sampling process

some amount of filtering is required. If noise of a specific time-base frequency is

to be filtered out then the filter coefficients of filters applied to engine synchronous

data need to be updated as a function of engine speed.

Time-based sampling avoids the issues with changing engine speeds. The data

is always calculated at the same rate regardless of the engine speed. The main

disadvantage to this sampling method is calculating the volume for each sample.

The volume calculations contain trigometric calculations that are both slow and

resource intensive in the FPGA. Therefore, it is not desirable to calculate volume

at every sample. However, a lookup table may be used. The table should be able

to accept any value of crank angle up the the maximum resolution of the engine

position tracking software, typically, 8k-65k (1CAD to 0.1CAD) depending on the

encoder pattern and EPT version used. However, it is impractical to make a lookup

table of that size in the FPGA memory. The other options avaliable are to use

a smaller look up table and interpolate or use the closest value. These introduce

errors but should provide acceptable results if implemented correctly.

After analysis of both sampling methods it was determined that for this engine

and FPGA setup engine-synchronouse sampling fit better in the FPGA, but that

this should be re-evaluated for different engiens and FPGA configurations as they

are implemented.

Because math operations in the FPGA take up FPGA gates. Operations may be

optomized for speed or size, but since only a few hundred clock cycles are available an

optomization for speed was chosen. This makes math operations very “expensive” in

terms of FPGA space. Divide operations take quite a bit more room than multiplies

and non-linear calculations that are solved by taylor series expansions are out of the

question. As are result the equations implemented should be optomized for FPGA
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use by pre-calculating values to minimize computation space and eliminate non-

supported opperations.

In our case volume and is derivative as well as the polytropic coefficients are

known before the same-cycle control algorithm is started and the associated math

can be pre-computed to a series of constants.

The Rassweiler and Withrow (Grimm and Johnson, 1990)heat release method

was considered. (Equation 6.1) This method is not desirable due to the exponent

calculation at every sample.

dQ

dθ
=

(
1

n− 1

)
∗ V ∗ dPc

dθ
(6.1a)

dPc

dθ
= Pi = P − i− 1 ∗

(
Vi−1

Vi

)n

(6.1b)

The pressure ratio (Sellnau and Matekunas, 2000)calculations are similar to

the Rassweiler and Withrow calculations as they contain an exponential calcula-

tion. (Equation 6.2) However, the exponent may be avoided by pre-calculating the

motoring pressure in the real-time system and using a lookup table. This case then

becomes the simplist calculation of heat release. However, it is not commonly used

and may be difficult to compare with standard heat release methods.

PR =
P

Pm

(6.2a)

Pm,i = Pm,i−1 ∗
(
Vi−1

Vi

)n

(6.2b)

The single zone heat release (Heywood, 1988) calculations without heat trans-

fer are fairly simple. (Equation 6.3) When using the engine-synchronous sampling
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method with a constant polytropic coefficient, much of the equations can be replaced

with pre-calculated constants.

dQ

dθ
=

(
1

n− 1

)
∗ V ∗ dP

dθ
+

(
1

n− 1

)
∗ P ∗ dV

dθ
(6.3)

The single zone heat release with heat transfer requires many added complica-

tions (Heywood, 1988). (Equation 6.5) Some of the additional calculations include

calculating the estimated in cylinder gas temperature, typically using the ideal gas

law (Cengel and Boles, 2002). (Equation 6.4) The polytropic coefficients should be

replaced with a temperature based correlation of the ratio of specific heats (Gatowski

et al., 1984) (Gatowski et al., 1984). The cylinder area must also be known or cal-

culated for each sample. Last, the heat transfer coefficient needs to be determined.

Several methods of estimating the heat transfer correlations are commonly used but

are computationally expensive (Hohenberg, 1979)(Annand, 1963)(Woschni, 1967).

T =

(
TIV C

PIV C ∗ VIV C

)
∗ P ∗ V (6.4)

dQ

dθ
=

(
1

γ − 1

)
∗ V ∗ dP

dθ
+

(
γ

γ − 1

)
∗ P ∗ dV

dθ
+
dQht

dθ
(6.5a)

Engine-synchronous sampling with the single zone heat release calculations but

without heat transfer were chosen for this paper due to the relatively simple calcu-

lations used that are also of a robust and standard nature. All of the following heat

release results were calculated using the single zone without heat transfer method.

The heat release results calculated in the FPGA were found to match those

calculated in the Pentium controller using DCAT with floating point calculations.

(Figure 6.5) The main difference between the two data sets is that DCAT applies
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Figure 6.6: Heat Release Comparison: DCAT with filer, FPGA without Filter

a mild, zero-phase-shift filter to the pressure waveform before calculating the heat

release. The calculated values in DCAT contain a similar amount of noise to the raw

FPGA calculations with the filter turned off. Some of the other differences include

the analog sampling hardware and the FPGA use of fixed point calculations.

The noise on the heat release results needs to be removed in order for the end

of combustion to be determined in a reliable and robust manner. Therefore, a filter

was applied to the pressure data and the calculated heat release. (Figure 6.6) A

simple first order IIR filter was used on each sample as it came in. This was found to

produce adequate results. The IIR filter causes a phase shift and delays the ability

of the system to detect the end of combustion by the amount of the phase shift.

The heat release results are used to determine the end of combustion so that the

next injection event may be scheduled. For this, an adaptive trigger arming method
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Figure 6.7: Heat Release Comparison with Filter
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Figure 6.8: Combustion Sensing

was implemented, as shown in Figure 6.7. For each firing event we require the filtered

heat release to go above the arming threshold then when it comes back down below

the trigger threshold a timer is triggered to start the subsequent injection event.

The same-cycle control calculations can be broken down into several steps. The

calculation flow can be seen in Figure 6.8.

The desired execution speed was met. With some reduction non-essential func-

tions the complete FPGA code was made to fit in the systems 3M gate FPGA. A

performance of 180 ticks for a 4 cylinder engine was achieved for the calculations

themselves. The results of the calculations are available to the control 580 ticks
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Figure 6.9: Same-Cycle Calculation Flow

(400ticks for DAQ and 180 for calculations) or 14s after the sample trigger. In future

versions this will be pipelined to operate in parallel and only take 400 ticks.

The injection effects of the injection delay were tested at a partial load condition

and 1500 RPM using two injections. The after delay was set to 0.3 and 0.6 ms which

should correspond to a 2.7 and 5.4 CAD delay, respectively. The results of the test

show that the expected delay was achieved in Figure 6.9 and Figure 6.10. This

showed that the arming and triggering and heat release calculations were behaving

properly.

To further experiment on this same cycle control a series of EGR sweeps were

performed. The same-cycle-controller was configured to not fire a subsequent injec-

tion event until sometime after the first injection event has mostly burned out. No

claims of performance or emissions improvements are made with this strategy; sim-

ply it is used to demonstrate the proper operations of same-cycle-control in a safe

and well known operating region. By increasing EGR, combustion speed decreased

(Stone, 1999) and thereby a longer inter-pulse delay was expected. This was verified

by both measuring 50% burn locations and by looking at the raw injection current.
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Figure 6.10: Heat Release - After Delay
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Figure 6.11: Injector Current - After Delay
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Table 6.3: 50% burn duration location (CAD ATDC)
Open Loop Same-cycle

0% EGR 11.2 12.1
10% EGR 11.3 12.4
23% EGR 11.6 15.0
27% EGR 11.9 17.8

In Table 6.3 we can see that increasing EGR using open loop control (no change

to injection timing) results in little change to 50% burn location. However, with same

cycle control, the combustion events become stretched out, resulting in significant

movement in 50% burn location.

Figure 6.11 and 6.12 show the heat release for the open loop and same-cycle

control EGR sweeps. With the open-loop plots, a step change in combustion charac-

teristics was observed from 10% to 23% EGR rate, then a leveling off after that. In

the same-cycle plots there is a similar effect, except that the same-cycle controller

reacts to the change in combustion characteristics by retarding timing. Plots of

the injector current can be found in Figure 6.13 where a steady pilot pulse with

dynamically varying main and post injection pulse timings occurred.

6.8 Conclusion

Next-cycle-control was shown to be able to control 50% burn locations over a

broad range of engine operating conditions. It was shown to reduce cyclic insta-

bility in the conditions tested. Next cycle control shows promise for production

applications to reduce emissions by keeping the engine operating at the targeted

combustion conditions. It also shows promise as a calibration aid to help calibrators

account for cylinder-to-cylinder differences in air, fuel, and EGR delivery. Lastly

it is a potential calibration aid for doing large datasets be allowing the operating
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Figure 6.12: EGR Sweep Open Loop Control
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Figure 6.13: EGR Sweep - Same-cycle Heat Release
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Figure 6.14: EGR Sweep - Same-cycle Injection
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to directly control engine operating parameters like 50% burn location instead of

having to manually set injection timing to achieve the desired results.

The same-cycle control algorithm was shown to correctly calculate the heat

release and react to it on a sub-crank angle basis. The same-cycle control was able

to robustly detect the end of combustion and modify the injection delay based on

the calculated values over a variety of engine operating points.

6.9 Future Work

This project was intended to define and implement robust next-cycle and same-

cycle control code. The experiments done were intended to test the algorithms them-

selves but not to demonstrate and particular improvement in engine performance or

emissions.

Future work will be to evaluate potential applications of these technologies,

specifically in the area of same-cycle-control. We hope to investigate improved

HCCI stability as well as misfire-restrike on SI engines.

Work to simplify, optimize, and fully document the same-cycle-control software

will be performed so that it can be included as a standard part of the DCAT soft-

ware and available to DCAT users to perform their own experiments based on this

approach.

6.10 Acknowlegments

We would like to thank the staff at Argonne National Laboratory, especially

Swaminathan Subramanian, for collecting the experimental data.

We would also like to thank Carroll Dase from Drivven for supporting device

driver changes required for running the experiments.

117



Chapter 7

CUSTOM COMPUTING MACHINES

The previous papers examined necessary tasks performed by more conventional

means and showed improvements in their implementation by use of FPGA technol-

ogy. It is the intention of this section to examine something new and different in

engine research: custom, highly-parallel, computing machines dedicated to real-time

simulation. This real-time simulation is to be used in control to generate virtual

sensors where physical sensors would be impractical because of cost, packaging, or

some other concern. These simulations would be implemented in the FPGA fabric

of upcoming FPGA based engine controllers.

This topic overlaps a number of areas, but there are no directly competing

research projects. The related areas are:

• Commercial 1D CFD solvers used to design engines.

• Real-time CFD implementations for visualization (computer games).

• FPGA and GPU-based CFD accelerators.

• Non-CFD based engine models.

Commercial 1D-CFD solvers are generally used in off-line mode to design en-

gines. GT-Power approaches real-time simulation by using the off-line simulation

to train a neural-net then running the neural-net in real-time.

Much of the real-time CFD referred to in the literature is for computer game

simulation. For instance, waves on a lake or movements of fog or mist. These are

different from the approach described here in several respects. First the timescale is

much slower, 25ms or more for games compared to about 5µs for fuel systems. Sec-

ond, they are not hard-real time applications and are allowed to degrade gracefully.



Thirdly, they can have high latency because they are not part of a control system

allowing fast, but high overhead, PC and GPU hardware to be applied. Because of

these differences gaming and similar CFD models can implement large 2D and 3D

models in real-time.

There are a number of projects using FPGAs and General Purpose Graphics

Processor Units (GPGPUs) to accelerate large CFD models. In these systems each

computational element in the FPGA or GPGPU processes hundreds or thousands

of nodes. Because these systems have many more execution units than conventional

processors and because these computations units are well tailored to the types of

applications the overall speedup from conventional processors is quite large.

For both gaming CFD and non-real time CFD accelerators, the GPU is a more

popular technology than FPGAs. The reason for this is that FPGAs are general

purpose and consume more silicon area than GPUs for a hardware multiply instruc-

tion. This makes FPGAs more expensive per Giga Floating Operation Per Second

(GFLOP) than FPGAs.

The downside of GPUs is they are an outgrowth of Single Instruction Multiple

Data (SIMD) machines. As a result, they want to work on large sets of identically

defined nodes with variation only in the node parameters. In the 1D-CFD models

examined the mix of nodes is large and the space between different types of nodes

is small. This means that whole sections of the GPU would need to be consumed

to implement a single node type. Further, the loading and initializing of the GPU

has a high overhead (hundreds of clocks) that precludes the super low latencies of

the custom-built FPGA hardware examined in these papers.

Two papers and a patent on this topic are included in this chapter. Both papers

have been accepted for publication, one to IEEE, the other to ASME.

For these two papers this author was responsible for:

• The concept of 1D CFD as well as the detailed framing of the problem.
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• Heterogeneous core concept and model assignment.

• The math describing the 1D CFD as well as the C-code and optimization.

• the GT-Power comparisons.

• The multi-core and FPGA system framework.

• Benchmarking and optimizing all C-code.

Isaac Liu was responsible for the adaption of the PRET architecture to support

multi-processor and conducting the benchmarking of FPGA area.

Gerald Wang was responsible for the automatic optimization algorithms and

the spring-mass-damper model formulation.
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Chapter 8

FCCM2012

This paper starts with examining the basic computational framework required

for real-time CFD and outlines the necessary equations. It then provides a simple

example benchmarked against a textbook example to prove the correctness of the

equations and correct implementation of the small example. It proceeds to discuss

in detail the software and hardware architecture required to implement this system.

The paper concludes with benchmarks of the implementation of two models based

on GT-SUITE examples.

A Heterogeneous Architecture for Evaluating Real-Time One-Dimensional Com-

putational Fluid Dynamics on FPGAs

This draft paper has been accepted for publication in the proceedings of the

The 20th Annual IEEE International Symposium on Field-Programmable Custom

Computing Machines. It will be presented in Toronto, Canada in April, 2012. This

paper was written by Matthew Viele of Drivven, Isaac Liu and Edward Lee from

UC Berkeley, and Guoqiang Wang and Hugo Andrade from National Instruments.

8.1 Synopsis

Many fuel systems for diesel engines are developed with the help of commer-

cial one-dimensional computational fluid dynamics (1D CFD) solvers that model

and simulate the behavior of fluid flow through the interconnected pipes off-line.

This paper presents a novel framework to evaluate 1D CFD models in real time on

an FPGA to improve fuel pressure estimation and close the loop on fuel delivery,

allowing for a cleaner and more efficient engine. The real-time requirements are

defined by the physics and geometry of the problem being solved, which determines



how long a time step should be. In this framework, the interconnected pipes are

partitioned into individual sub-volumes that compute their pressure and flow rate

every time step based upon neighboring values. We use timing-based synchroniza-

tion and multiple Precision Timed (PRET) processor cores to ensure the real-time

constraints are met. Leveraging the programmability of FPGAs, we use a config-

urable heterogeneous architecture to save hardware resources. Several examples are

presented along with the synthesis results on a Xilinx Virtex 6 FPGA. The results

demonstrate the resource savings and scalability of our framework, confirming the

feasibility of our approach – solving 1D CFD models in real time on FPGAs.

8.2 Introduction

In order to meet ever tightening worldwide emissions standards diesel engines

are becoming more complex. In particular the diesel engine’s fuel system which must

now support as many as 5 injections per cylinder event Drivven (2009). The fuel

system consists of a high pressure pump, fuel injectors, and a network of connecting

pipes known commonly as the ”fuel-rail”. Each time an injection event happens,

pulsations are sent through the fuel supply rail. The high pressure, around 2000 bar,

in the fuel system is often generated by a piston pump that also induces pulsations.

These pulses need to be damped and/or modeled before the subsequent injection

event in order to ensure a correct amount of fuel injection Bauer (2004).

Currently most fuel systems use an ad-hoc model of fuel pressure for subsequent

injection events Winward et al. (2010). Since many fuel rails are developed in

commercial one-dimensional computational fluid dynamics (1D CFD) solvers like

GT-SUITE GT-Suite (2007), it seems a natural approach to use the same modeling

technique to model their behavior in real time. To meet the stringent real-time

requirement, the solution obtained on-line usually ignores second order effects such

as cavitation and thermal gradients that are taken into account in the GT-SUITE
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calculations. The second order effects are small but important for designing a well-

behaved system. There is the salient distinction between an off-line research oriented

approach like GT-SUITE and a real-time approach like the one presented here. So

long as the real-time code is sufficiently accurate as to allow improved fuel pressure

estimation, it can close the loop of fuel delivery, allowing for a more precise air/fuel

ratio control as well as a cleaner and more efficient engine.

1D CFD is used when the system to be evaluated can be described as a net-

work of pipes. The advantage of 1D CFD over its 2D and 3D cousins is a greatly

reduced number of nodes to be solved and simplified equations in each node. This

makes it common for use in simulating transient operation of internal combustion

engines Sellnau et al. (2009). It also makes it possible to solve these problems in real

time using a highly parallel approach. We specifically examine the area of fluid flow,

but heat transfer, mechanical dynamics, and electrical circuit simulation all repre-

sent similar problems. In each of these problems, it may be possible to represent

the set of equations to be solved as a graph where each node of the graph represents

a physical quantity to be modeled, such as a sub-volume of fluid in a pipe. The

information path communicated by nodes is represented as the interconnect of the

graph.

1D CFD fits into the class of problems that are heterogeneous and micro-

parallel. The micro-parallel modifier emphasizes small, dedicated portions of the

problem being solved in each computational element while the heterogeneous mod-

ifier means that there are a number of distinct node types. This distinguishes them

from homogeneous, micro-parallel problems often found in image processing, which

lend themselves to graphics processor unit (GPU) and SIMD solutions with large

common memories Ylvisaker et al. (2006). At each time step, each node reads the

neighboring data from the previous time step and computes the new data to be sent
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to its neighbors. In this periodic and parallel execution of all nodes, the performance

of the system is limited by the node with the longest execution time.

It is important to understand that when modeling physical quantities, such as

fluid flow, the time step is determined by the granularity of the application. For an

explicit solver with a fixed time step, it is required that the solver run faster than

the speed of information flow. This is expressed as

∆t

∆x
a = C, (8.1)

where a is the wave speed, C is the Courant number, ∆t is the time step, and ∆x

is the spatial discretization step. For stability the Courant number needs to be less

than 1 and a number below 0.8 is recommended GT-Suite (2007). For instance, if

a fluid has a wave speed a of 1 cm/µs and a discretization length ∆x of 1 cm, then

we require a time step ∆t of less than 1 µs. The discretization length of a pipe

network is dominated by its smallest sub-volume. For a diesel fuel system, a 1 cm

discretization length is common. For our purposes in this paper, we treat the speed

of sound (wave speed) as 1500 m/s Tat and Gerpen (2003). We require adequate

performance so that the slowest node can complete in ∆t.

The advent of caches, out-of-order executions, branch prediction, and other per-

formance improvements in modern processors has improved their average execution

speed at the cost of determinism. As a result, worst-case execution time analysis

often gives imprecise and overestimated results. For hard real-time systems, this

causes overprovisioning of hardware resources in order to guarantee that no timing

violations occur. The Precision Timed (PRET) architecture Lickly et al. (2008) is a

processor architecture designed to provide timing determinism and good worst-case

performance. It contains multiple hardware threads with predictable timing and
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utilizes timing instructions to gate execution time of code blocks on the hardware

threads.

This paper presents a novel framework for real-time execution of a 1D CFD

solver on a Field Programmable Gate Array (FPGA) using PRET cores. We map

the heterogeneous computational nodes onto the hardware threads of multiple PRET

cores. The deterministic execution time ensures that each node completes within the

specified time step and the timing instructions ensure the synchronization of data

communication between threads and cores. We show that a timing deterministic

design allows us to minimize the synchronization overhead and processor core foot-

print, while our heterogeneous evaluation architecture further optimizes the FPGA

area and leads to a practical and scalable solution.

8.3 Related Work

The computing power of FPGAs has enabled accelerated simulation in many

application domains. In this paper, we focus on real-time CFD problems. FPGAs

have been used to accelerate off-line 2D and 3D CFD computations with millions of

nodes Smith and Schnore (2004). In these examples, there is no real-time constraint

and the number of computational nodes is huge, which makes a common practice

to reuse FPGA elements by many fluid nodes. Soft real-time CFD has been used

for video games for quite a while Yu et al. (2009). These cases differ from our

application in several important respects. First, they operate on the order of milli-

seconds (e.g. 25ms) as opposed to micro-seconds (e.g. 5µs) in our case. Second, the

soft real-time simulation results just need to look good to game players, so accuracy

is not all that important. Lastly, being soft real-time, they can be allowed to miss

a deadline and degrade gracefully if they cannot complete the calculations in time.

From a hardware architecture perspective, we need to consider evaluating our

problem via the alternatives of traditional processor or GPU. Traditional desk-
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top processors like Intel’s Pentium have a great deal of non-deterministic behav-

ior brought about by caches, out-of-order instruction executions, etc. GPUs are

gaining ground in scientific computing because of the large total throughput they

offer. While in aggregate a GPU can outperform an FPGA-based implementation,

it has some disabling limitations Kothapalli (2011). GPUs do well with relatively

homogeneous tasks. E.g., NVIDIA’s GTX 280 has 30 streaming multiprocessors.

Each streaming multiprocessor is effectively a 32-channel SIMD processor. Commu-

nication to the global memory takes hundreds of cycles. Our application has many

different types of nodes interconnected and it requires an ultra-low latency. This is

why we chose not to pursue a GPU-based approach.

Besides their powerful computing capability, FPGAs have additional advan-

tages. They can contain other structures unrelated to the CFD code like actuator

control logic or sensor interfaces that can be connected to the correct part of the

CFD model with a single-cycle latency.

There may exist different implementation options for our application on FP-

GAs. Without leveraging the benefits from PRET cores, we could attempt the

problem in discrete FPGA blocks. In order to make the application fit in a practical

FPGA like the one we tested, we would need to re-use the hardware multipliers,

adders, and other functional units. This would require a state machine to run it

and begins to look a great deal like a processor. Along this line, a natural inclina-

tion would be to explore a Microblaze-based architecture. The Microblaze is not

threaded, so in order to optimize our application for space, we would need to im-

plement some sort of sharing mechanism to execute multiple computational nodes

on each Microblaze, which may bring challenges in implementation complexity.

After exploring possible implementation options, we concluded that existing

tangential efforts bound the space of our problem, but none of them is appropriate

to real-time modeling of fuel systems. Instead, a deterministic threaded soft-core
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processor is the right architecture for the job and the PRET cores, with good com-

piler support, offer a flexible solution. To the best of our knowledge, we believe this

is the first attempt to attack real-time CFD on this timescale and complexity of

problem.

8.4 Background

8.4.1 One-Dimensional Computational Fluid Dynamics

Solving 1D CFD problems begins with the Navier Stokes equations for com-

pressible flow. We construct a library of computational elements for the type of pipe

segments we use in the form of first order finite difference equations Desantes et al.

(1999). We start with momentum equation (8.2) and continuity equation (8.3):

Px

ρ
+ V̇ +

fV

2D
|V | = 0, (8.2)

a2Vx + V

(
Px

ρ
+ g sinα

)
+
Pt

ρ
= 0, (8.3)

where P is pressure, ρ is fluid density, V fluid velocity, f is the Darcy-Weisbach

friction factor, D is pipe diameter, a is the wave speed, and g sinα is the directional

force of gravity. A dot ( ˙ ) over a variable indicates the total derivative with respect

to time. Subscripts x and t indicate partial differentiation along the pipe length and

with respect to time, respectively.

These equations can be expanded and simplified by leaving out the body force

and convective terms because these are negligible given the pressure and flow regime.

A method of characteristic solution is used to explicitly evaluate the pressure and

flow at the next time step through a first order finite difference method. The left

graph in Fig. 8.1 shows the evaluation of pressure and flow at point I, where I is

i at t0 + ∆t, based on the pressure and flow of the adjacent points at time t0. The
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equations to be evaluated at each point are

VI =
1

2

[
Vi−1 + Vi+1 +

1

aρ
(Pi−1 − Pi+1)−

f∆t

2D
β

]
(8.4)

PI =
1

2

[
Pi−1 + Pi+1 + ρa (Vi−1 − Vi+1)−

ρaf∆t

2D
β

]
(8.5)

where β = (Vi−1|Vi−1|+ Vi+1|Vi+1|).

One critical part in evaluating the value at point I is that there is a fixed

relationship among ∆x, ∆t, and the wave speed a such that a ≤ ∆x/∆t. ∆x

is fixed by the geometry of the problem and a is fixed by the properties of the

working fluid such as a =
√
K/ρ, where K is the bulk modulus. Therefore, ∆t is

defined. All computations must complete within ∆t and the results must be posted

in exactly ∆t. Because the wave speed varies and the geometry of the problem may

not work out evenly for all pipe segments, a modified method is implemented with

an interpolation step. This is shown by the right graph in Fig. 8.1 and described by

equations

ζR = ζi − θa(ζi − ζi+1) and ζL = ζi − θa(ζi − ζi−1),

where θ represents the amount of interpolation desired and subscript R (resp. L)

denotes the right (resp. left) point of i. These equations are evaluated for both

pressure ζ = P and velocity ζ = V . While we use this method to give calculation

leeway, it is important to realize that this adds complexity to every block in the

system as well as decreases ∆t.

Let B = aρ/A and E = ρf∆x/2DA2, where A is the pipe cross sectional area.

Plugging them into (8.4) and (8.5) and further rearrangement give the following

characteristic equations:

Cp = Pi−1 +Qi−1 (B − E|Qi−1|) ,

128



1i  1i 1i  1i i i

I
I

0t

0t t 

 
0 2t t 

 '

0t t 

 '

0 2t t 

pC
pCmC

mC

W/O Interpolation  With Interpolationx

L R

Figure 8.1: First Order Difference

Cm = Pi+1 −Qi+1 (B − E|Qi+1|) ,

where Q is the flow rate along the pipe and subscript p (resp. m) denotes the plus

(resp. minus) branches of the characteristic equation.

Table 8.1 shows the equations for each of the supported flow elements. From

these flow elements we can generate a network of flow elements that represents

our fuel system. The Bnd subscript denotes a boundary condition. Cv is the flow

coefficient which is a function of: Q0 the nominal open flow, P0 the downstream

pressure, and τ the fraction the valve is open. Table 8.1 shows the equations for

each of the supported flow elements. Based on them, we can generate a network of

flow elements that represents our fuel system.

8.4.2 Precision Timed Architecture

For real-time applications that need timing determinism, Edwards and Lee Ed-

wards and Lee (2007) propose Precision Timed (PRET) architectures. These archi-

tectures are designed for timing predictability and determinism, rather than average-

case performance. Lickly et al. Lickly et al. (2008) present a multi-threaded imple-
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Table 8.1: Equations for Supported Types
Type PI = QI =

Pipe segment (Cp+Cm)

2
(PI+Cm)

B

Imposed pressure PBnd
(PBnd−Cm)

B

Imposed flow Cm+B·QBnd QBnd

Valve Cp−B·QI

−B·CV +
√

(B·CV )2+2·CV ·Cp

CV =
Q0τ)

2

2·P0

Cap Cp−B·QI 0

Pipe “T”
Cp1
B1

+
Cm2
B2

+
Cm3
B3∑

j=1,3
1
Bj

− PI
B1

+
Cp1
B1

;− PI
B2

+
Cm2

B2
;

− PI
B3

+
Cm3

B3

mentation of the PRET architecture using a thread-interleaved pipeline and scratch-

pad memories. The thread-interleaved pipeline removes data and control hazards

within the pipeline by interleaving multiple hardware threads in a predictable round

robin fashion. Scratchpad memories are single-cycle access on-chip memories which

are managed in software. They are typically used in place of a cache to improve on

predictability because the contents on the scratchpads are transparent in software.

Along with the predictable architecture, Lickly et al. Lickly et al. (2008) also

introduce an instruction to control the temporal behavior of programs. The deadline

instruction in Lickly et al. (2008) gives programmers a way to specify a lower bound

on execution time for a specific code block, guaranteeing that a code block will

not complete until at least the specified execution time. Lickly et al. (2008) also

outlines a producer consumer example that synchronizes communication through

the use of deadline instructions to ensure an ordering between shared data accesses.

Our implementation of the 1D CFD solver leverages this instruction to synchronize

communication across computational nodes and align the computation with real-

world events.

8.5 Design Flow and Architecture
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8.5.1 System Description and Design Flow

The process of generating a system is outlined in Figure 8.2. Starting from a

description of the flow system and our library of elements we can create a graph to

describe the system. The flow system will also dictate the maximum time step of

the system. With this information we can instantiate processors and interconnects

tailored to our needs and apply the library code to them. From there we can build

and deploy our system.

Library of computational 

elements

Graph of nodes

Flow system description
Worst case time step 

determines allowed threading

Instantiate heterogeneous cores 

and map flow elements to 

compatible threads  

Compile 

& 

deploy

Figure 8.2: Design Flow

Fig. 8.3 shows an overview of a representative system for modeling fuel rails.

The 1D CFD model is bounded inside the dashed rectangle. External to that is

the real-world sensor and actuator interfaces that provide boundary conditions or

consume model output variables. The small blue squares inside the dashed rect-

angle represent the network of flow elements. In a practical simulation of a diesel

fuel system, the total number of flow elements can range from around 50 to a few

hundred.

Each pipe element is a computational node, and their graphical representation

is shown in Table 8.2. The top 3 rows of the table represent the flow elements

described in Table 8.1. Mechanical calculation elements compute the inputs to valve,

defined flow, and defined pressure blocks. They serve as an interface between the
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Figure 8.3: High Level System Diagram
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Table 8.2: Library of Computational Node Elements

Pipe segment
Out

L R

TG

Cap
Out

L R

TG

Imposed pressure
Out

L R

TG

P Imposed flow
Out

L R

TG

Q

Pipe “T”
Out

L R

TG

Valve
Out

L R

TG

Mechanical calculation
Out

I1

I2

G

Mech 

CalcI3 Global calculation
Out

I1

I2

G

Global 

CalcI3

Global distribution
I O

Output
I1

I2

G

I2

flow model and the real world. Global calculation elements are used to compute the

temperature dependent variables of density and wave speed. They post their data

to a global distribution node, broadcasting it to all other nodes. Blocks with white

backgrounds in the last row of Table 8.2, i.e., Global distribution and Output denote

that they are implemented directly in FPGA fabric, not mapped to a processor

thread. Global distribution elements are purely used to indicate a distribution of

input value to each of the computational elements in our model. Output elements

are used when data needs to be communicated out of the model to other parts of

the FPGA.

For illustrative purposes, we show a simplified sample pipe network with an

imposed flow input (P1) in Fig. 8.4. Fluid travels through a few pipe segment nodes

(P2 and P3) to a “T” intersection (P4), where it splits off to a second branch of the

network. The “T” node is also measured by the outside world (D1) through a output

port. Flow going up the new leg ends in a cap (P8), while flow continuing down the

original path exits the system through a valve (P6). The system is assumed to be at

uniform temperature and values based on the temperature dependent variables of

density and wave speed are computed by global calculations (G1, G2, and G3) and

delivered by global distributions (GD1, GD2, and GD3) to each of the computational

elements every time step for use in the subsequent time step.
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Figure 8.4: Detailed System Diagram

8.5.2 System Hardware Architecture

The hardware architecture of real-time 1D CFD evaluation consists of multiple

PRET cores connected through point-to-point connections and a global distribution

circuit. Fig. 8.5 shows a block-level view of the hardware architecture. As men-

tioned in Section 8.4.2, each core consists of hardware threads interleaved through

the pipeline in a predictable round robin fashion. Computational nodes are mapped

onto hardware threads, instead of each being implemented as its own core. This

provides two major advantages. First, multi-threaded architectures maximize the

throughput over latency. Multi-threaded architectures hide the latencies of multi-

cycle operations, such as floating point operations or memory operations. When

a hardware thread is waiting on these operations to complete, other threads can

continue to execute in the pipeline. E.g., in our implementation, floating-point ad-

dition and subtraction appear as single cycle instructions in timing analysis because

the floating-point latency is hidden through the execution of other thread contexts

within the pipeline.
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Second, the thread interleaved pipeline design allows for a simpler pipeline

design. Since data and control hazards are no longer present in the pipeline, the

logic used for handling them can be stripped out, greatly reducing the cost of the

core. Furthermore, multiple threads share the same datapath, so the cost of adding

threads is far less than adding a core, further reducing the cost of the system. We

discuss in more details the trade-offs involving adding threads later in Section 8.6.

The memory footprint required for each node is small enough, roughly a hundred

assembly instructions, so that the scratchpad is sufficient for memory use and no

main memory is needed.

Only basic single-precision floating point operations (add/sub/multiply) are

needed for most nodes. But some require more complicated operations: the valve

element uses floating point square root and the “T” element uses floating point

divide, as shown in Table 8.1. However, these elements typically represent only

a few percent of the overall system. In our complex example presented later, the

common rail fuel system, there are 234 nodes: only 5 nodes are “T”s (requiring

division) and 4 node are valves (requiring square root), which is approximately 4%.

To save on hardware resources, we could use software emulation for the complex

operations. However, our system is bounded by the slowest computational element,

so the performance hit from using software emulation for these small percent of

nodes would limit the overall real-time performance. But if we add hardware units

on all the cores, it would be wasted on most cores with a homogeneous multi-

core approach. Instead, we adopt a heterogeneous multi-core approach and provide

several configurations of the core that includes different floating point hardware

units. We only synthesize hardware accelerators to the cores that require them.

Since the number of cores which need hardware accelerators is small, we still get the

throughput improvement from adding hardware support without the huge resource

overhead. This justifies substantial resource savings, which we show in Section 8.6.
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Figure 8.5: System of PRET Cores and Interconnects
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Each node in our system requires one to four input ports along with one to four

output ports depending on the number of neighboring connections connected to its

neighboring nodes. One input port is dedicated as the global port, which always

receives broadcasts from the global distribution circuits. Since only local commu-

nications occur across nodes, only point-to-point communication channels need to

be established. Nodes mapped to the same core (intra-core communication) can

communicate through the shared local memory within the core as shown in Fig. 8.5.

Nodes mapped to different cores (inter-core communication) communicate through

the point-to-point interconnect as illustrated in Fig. 8.5. We use shared dual-port

Block RAMs (BRAMs) for our inter-core communication. This serves two purposes.

First, it provides single-cycle deterministic communication, as BRAM access is sin-

gle cycle. This allows the timing analysis to be simplified, as there is no hardware

protocol that needs to be accounted for when accessing data through the inter-core

communication channels. More importantly, the timing analysis for each node is

now independent of the node mapping; both intra- and inter-core communication

mechanisms are single-cycle, as they both access BRAMs. If this were not the case,

then the timing analysis needs to assume all communications are inter-core commu-

nications, i.e., the longer of the two. Second, by using the dedicated BRAM blocks

on the FPGA for interconnects, we save the logic slices to be used for computation

nodes. This is useful because the limiting resource in our implementation is logic

slices, not BRAMs, as justified later in Section 8.6. Each core only requires a small

number of BRAMs to be used for registers and scratchpads, so the BRAM utiliza-

tion ratio is far less than the logic slice utilization ratio. At each time step only

two words, pressure and flow rate values, are transferred from a node to each of

its neighbors. Our time periodic execution of computation nodes(described next in

Section 8.5.3) ensures that we only need a buffer size of one for each of the words.

Because the communication bandwidth is small, we only need one BRAM block to
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establish an interconnect that allows all threads from one core to communicate with

all threads on the other.

All of our flow elements have a dependency on density and wave speed that are

functions of temperature. Temperature is assumed to be the same throughout the

system, so these parameters are computed in a single computational element and

broadcast to all pipe elements through the global distribution circuit as illustrated in

Fig. 8.4. Leveraging this, the global distribution circuit is implemented by a single

broadcaster that writes to dedicated memories local to each core. This broadcast

receiving memory is synthesized to a small dual-port BRAM, with a read-only side

connected to the core, and a write-only side connected to the broadcaster. This

memory is shared amongst all threads in a core so all threads can access the global

values. This architecture allows us to save on the resources needed to implement

a full fledged interconnect routing system or any network protocol to be used for

broadcasting.

8.5.3 Software Design

We implement the equations in Table 8.1 in the language C and compile it with

the GNU ARM cross compiler gnu (2012) to run on our cores. Columns 2-6 in Table

8.3 show the number of Multiply, Add/Subtract, Absolute Value, Square Root, and

Divide operations required by each computational element after optimization. Each

computational node is executed on a hardware thread and data is exchanged only

at the boundaries of the time steps to avoid data races. Fig. 8.6 shows an example

timeline view of the operations for each node. The execution for computational

nodes (top in Fig. 8.6) during each time step consists of three phases: (1) Read

in the pressure and flow rate values from neighbors as well as global values; (2)

Compute the output values; (3) Send output values to neighbors to be used for next

time step. The global and mechanical calculation nodes do not need to read data
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Figure 8.6: Execution of Nodes at Each Time Step

from other nodes, but might gather data from physical sensors and broadcast or

send data to other nodes.

The computation done by each node consists of only a single path of execution,

voiding the need for complex software analysis. We leverage the PRET precise ar-

chitectural timing analysis, which provides exact execution time for the computation

in the nodes. Data synchronization is handled by the synchronized periodic com-

munication points, which enforces an ordering between the writing and reading of

shared data. This voids the need of any explicit synchronization methods, removing

any overhead and unpredictability for communication. These properties allow us

to statically obtain an exact execution time for each computation node, which we

show in the last two columns of Table 8.3. A Thread cycle is defined as a thread’s

perceived clock cycle. To get the physical execution time, multiply the thread cycles

by the number of hardware threads in the pipeline to get processor clock cycles, then

convert the clock cycles to physical time according to the processor clock speed.

In addition to statically assuring that the worst-case execution time meets the

timing constraints specified, we also need to enforce that node executions remain

synchronized. Our approach uses specialized timing instructions provided by the

PRET architecture to enforce the synchronized communication points for all nodes.
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Fig. 8.6 shows the program synchronization points that our timing instruction en-

forces. The hatched area in the figure denotes slack time that is generated by the

timing instructions. When a timing instruction is decoded, it first enforces the pre-

viously specified timing constraint, then it specifies a new timing constraint for the

next code block. In the code, one timing instruction is used during initialization

to specify the first timing constraint. Then, timing instructions are inserted at the

end of each code block. When the code block completes and the timing instruction

is reached, the processor enforces the previously specified time bound by stalling if

needed. Once the specified execution time is reached, the code will continue execu-

tion and the next timing specification is set. Each timing instruction takes 2 cycles

because it manipulates a 64-bit value representing time. For our computational

elements, 3 timing instructions are used each computation iteration, thus 6 cycles

of overhead are introduced per time step. The overhead is already included in our

execution time analysis presented in Table 8.3. The same effect can possibly be

achieved with no overhead using instruction counting and NOP insertions. This can

certainly be done on any deterministic architecture such as PRET. However, NOP

insertion is both brittle and tedious. Any change in the code would change the tim-

ing of the software and insertions need to be adjusted to ensure the correct number

of NOPs is added. Designs now are mostly written in programming languages like

the language C and compiled into assembly, making it extremely difficult to gauge

the number of NOPs needed at design time. The timing instructions allow for a

much more scalable and flexible approach. In a system with heterogeneous nodes

and different execution times, the timing instructions allow us to set the same timing

constraints in all nodes regardless of its contents.

8.6 Experimental Results and Discussion
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Table 8.3: Computational Intensity of Supported Types

Without Interpolation / With Interpolation
Type Mul Add/Sub Abs Sqrt Div Thread cycles

Pipe segment 10 / 18 5 / 13 2 / 2 0 / 0 0 / 0 81 / 51
Imposed pressure 6 / 10 3 / 7 1 / 1 0 / 0 0 / 0 50 / 38

Imposed flow 5 / 9 3 / 7 1 / 1 0 / 0 0 / 0 51 / 40
Valve 13 / 17 5 / 9 1 / 1 1 / 1 0 / 0 64 / 55
Cap 4 / 8 2 / 6 1 / 1 0 / 0 0 / 0 48 / 39

Pipe “T” 16 / 28 13 / 25 3 / 0 0 / 0 4 / 4 111 / 72

8.6.1 Setup

We use three examples to evaluate our framework. Our first example is a simple

waterhammer example taken from Wylie and Streeter Wylie and Streeter (1978). It

is similar to the one shown in Fig. 8.4, but without the “T” element and the nodes

that branch up. This example contains an imposed pressure, 5 pipe segments, a

valve, and two mechanical input blocks which provide both the reference pressure

and the valve angle as a function of time. We use this simply as a sanity check for

the correctness of functionality of our framework.

The second and third example cover two common diesel injector configurations:

the unit pump and common rail. The data for configuring these cases was taken

from reference examples provided by Gamma Technologies’ GT-SUITE software

package GT-Suite (2007). The unit pump is much like the simple waterhammer case

in that there are no branches in the system. The input is a defined flow specified by

an electronically controlled cam driven pump. The output is a single valve. There

are a total of 73 fluid sub-volumes in this system. The common rail example is

more complex where the topology is roughly that described by the computational

elements in Fig. 8.4. It has a total of 234 sub-volumes, including 5 “T” intersections

and 4 valves. Both the GT-SUITE-based models use a 1 cm discretization length,
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which, using a 1500 m/s wave speed, and a stability factor of 0.8 yields a 5.33µs time

step to complete our worst-case instructions for the slowest computational element.

We synthesize all our cores and interconnects on the Xilinx Virtex 6 xc6vlx195t

with speed grade 3. Each Virtex-6 FPGA logic slice contains 4 LUTs and 8 flip-

flops, and this FPGA contains 31,200 logic slices and 512 18-KB BRAMs. Each

PRET core is clocked at 150 MHz and has 6 threads. All floating point units are

generated from the Xilinx Coregen tool xil (2012) and are configured to use the

least amount of logic slices possible to meet the timing constraint. Our current

PRET implementation uses an ARM-based ISA, thus our C code is compiled using

the GNU ARM cross compiler gnu (2012) with the optimization compiler flag set

to level 3. For these examples, we used a mapping heuristic that grouped nodes

requiring same computations onto the same core. In the sections below we will

show that this heuristic allows us to save hardware resources by synthesizing less

floating point units.

8.6.2 Timing Requirement Validation

We need to ensure that the worst-case computational element can meet the

timing requirements for our examples. A hardware context switch occurs every

processor cycle, and threads are scheduled in a round robin order. Given a 150 MHz

clock rate, each thread essentially executes at 25 Mhz. Thus, each thread cycle

converted to physical time is 40 ns long. The unit pump and common rail have a

requirement of 5.33 µs, which gives us 133 thread cycles to complete the computation

each time step. Table 8.3 shows that the “T” element, which takes 111 thread cycles

with interpolation, is the worst-case node. For the simple waterhammer example,

a bigger discretization ∆x is used, which leads to a bigger time step than that

of the two complex examples. This validates that we can safely meet the timing

requirements, ensuring the correctness of functionality.
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8.6.3 Resource Utilization

Table 8.4: Number of Occupied Slices per Core on the Virtex 6 (xc6vlx195t) FPGA.

Threads per core 6 8 9 16

Fixed point only 572 588 764 779
Basic float 820 823 1000 1022
Float with sqrt 987 992 1146 1172
Float with div 1039 1051 1231 1237
Float with div & sqrt 1237 1249 1403 1413

Table 8.4 shows the resource usage for different configurations of a core. The

synthesized area results consist of the cores, interconnects, and the global distribu-

tion circuit. This shows the direct impact of our framework. We include the fixed

point configuration only for reference purposes, as it doesn’t contain any floating

point units. The baseline configuration used in our implementation is the “basic

float”, which contains a floating point add/subtracter, a floating point multiplier,

and float to fix conversion units. The “sqrt”, “div” and “sqrt & div” configurations

add the corresponding hardware units onto the “basic float” configuration. Besides

the effect of hardware units, we also show the area impact of adjusting the thread

count on a single core.

An interesting observation is that the area increase is approximately propor-

tional only to the number of bits required to represent the thread count. E.g., 6 and

8 threads, which require three bits to represent, have a similar area usage. But once

a 9th thread is introduced, the used area noticeably increases, but remains similar

for up to 16 threads. This can be explained by understanding the architecture of

multi-threaded processors. Multi-threaded processors maintain independent register

sets and processor states for each thread, while sharing the datapath and ALU units

amongst all threads. The register sets are synthesized onto BRAMs, so the number

of bits used to encode thread IDs will determine how big of a BRAM is used for the
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register set. The size of the muxes used to select thread states and registers is also

determined by the number of bits encoding the thread IDs, not the actual number

of threads running. As a result, increasing the core thread capacity can potentially

reduce the number of cores required to fit a fixed number of nodes because it is

possible to increase the thread count with only a small increase of area. However,

since hardware threads share the processor pipeline, adding threads slows down the

running speed of the individual threads. Nonetheless, for applications that have

sufficient slack time or require faster performance, adjusting the number of threads

could lead to a valuable improvement. Our implementation uses 6 threads, which is

the maximum number of threads allowing us to meet our timing constraint for flow

elements.

Comparison of the resource usage for 6 threads on a core to the “basic float”

configuration gives that square root uses roughly 20.3% more slices and division

uses roughly 26.7% more. A core with both square root and division would use

roughly 50.8% more slices. These are estimates because the slices occupied might

vary slightly based on how the synthesis tool maps LUTs and flip flops to logic slices.

But they give an intuition to the resource difference used for each configuration.

Each core uses 7 BRAMs: 3 for the integer unit register set (3 read and 1 write

port), 2 for floating point register set (2 read and 1 write port), 1 for the scratchpad,

and 1 for the global broadcast receiving memory.

The actual resource impact can be seen from Table 8.5, which shows the total

slices occupied when the three examples we implemented are synthesized. In the

homogeneous (hom. suffix) configuration, all the cores contain the square root and

divide hardware. In the heterogeneous (het. suffix) configuration, only necessary

cores contain square root and divide, the rest use the basic float configuration.

For the simple waterhammer example, since only 2 cores are used, the savings

is less noticeable. But as the application size scales up, the resource savings become
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Table 8.5: Total Resource Utilization of Examples Synthesized on the Virtex 6
(xc6vlx195t) FPGA

Example Nodes Cores / Conn.
Slices / BRAM

Absolute Relative (%)

Water het.
12 2 / 1

1805 / 15 5.7 / 2.1
Hammer hom. 2379 / 15 7.6 / 2.1

Unit het.
73 13 / 12

10566 / 103 33.0 / 15.0
Pump hom. 16635 / 103 44.0 / 15.0

Common het.
234 39 / 38

29134 / 311 93.4 / 45.0
Rail hom. N/A

more apparent. The homogeneous approach uses roughly 1.5 times the number

of slices our heterogeneous approach uses, which is consistent with the findings of

Table 8.4. This proved to be critical for the 234-node common rail example, as only

our heterogeneous architecture could implement the design on the xc6vlx195t FPGA

while the homogeneous design simply could not fit. These results also reflect our

decision to use a heuristic that groups nodes with the similar computation together.

By doing so, we can synthesize less hardware computation units overall, saving

hardware resources.

Table 8.5 also shows the BRAM usage for the implemented examples. Each

interconnect uses 1 BRAM and each core uses 7 BRAMs. We see that the BRAM

utilization ratio is far below the logic cell utilization, validating our design choice of

using BRAMs for interconnects and broadcasts.

8.7 Conclusions and Future Work

In this paper we presented a novel framework for solving a class of heteroge-

neous micro-parallel problems. Specifically we showed that our approach is sufficient

to model a diesel fuel system in real time using the 1D CFD approach on FPGAs.

We used the PRET architecture to ensure timing determinism and implement a
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timing based synchronization of a multi-core system. We set up a configurable het-

erogeneous architecture that leverages the programmability of FPGAs to efficiently

synthesize designs for efficient area usage. Our results show ample resource savings,

proving that our approach is practical and scalable to larger and more complex

systems.

We plan to continue to extend this work along several lines. From the appli-

cation perspective, we continue to add more flow element types to our library and

compare our results to more complex flow systems. We also plan to examine more

closely the integration of mechanical and electrical nodes in our library. For the

hardware architecture, we can to explore multi-rate timing of nodes to allow for

differences in electrical, fluid, and mechanical timesteps.

146



Chapter 9

ICES2012-81138

Remote sensing of fuel systems using real-time 1D CFD

This draft paper has been accepted for publication in the proceedings of the

ASME Internal Combustion Engine Division Spring Technical Conference in Torino,

Italy. This paper was scored with honors and recommended for journal publication

by the reviewers. This author will present the paper in Italy in May. This paper

was written by Matthew Viele of Drivven, Isaac Liu from UC Berkeley, and Guo-

qiang Wang and Hugo Andrade from National Instruments, and Bryan Willson from

Colorado State University

This paper is similar to the above IEEE paper, but with more focus on the

models and less on the processor and FPGA implementation. It adds a section on

mechanical and electrical co-simulation.

9.1 Synopsis

Many modern engine systems are designed using one-dimensional computa-

tional fluid dynamics (1D CFD). This same technique can be used to model these

systems in real time. This real-time model can be used to create virtual sensors

in places where due to environmental or cost reasons physical sensors would not

be practical. Achieving real-time performance of the CFD model requires more

throughput than is available on single processor systems, so an Field Programmable

Gate Array (FPGA) is employed. By employing an FPGA, we can synthesize and

reconfigure our system to ensure determinism and lower resource usage. We in-

stantiate several dedicated processing cores for parallel processing of sub-volumes.

The number of cores can be configured to support up to 500 fluid volumes, more



than enough for common 1D CFD models used in engines. This paper evaluates the

feasibility of such a system and evaluates the complexity of such models against the

GT-SUITE simulation software.

9.2 Introduction

For years engine designers have been using computer simulation to model diesel

fuel systems (Kolade et al., 2003). Over the past decade commercial 1D CFD

design software like GT-SUITE has become the tool of choice instead of custom

code. Independently the engine control team builds models of the engine subsystems

to implement in the controller. This is required because both the fuel injectors

and piston style pumps for common rail fuel injectors cause pulsations in the fuel

rail that need to be modeled or damped before the next injection event (Bauer,

2004; Winward et al., 2010). In modern common-rail diesel injection systems, it

is expected that there are as many as 5 pulses per cylinder event (Drivven, 2009).

With the advent of large Field Programmable Gate Arrays (FPGAs), we attempt to

merge the two and allow the same basic model used to design the engine to be used

in real-time as part of the engine controller. This allows us to use the 1D CFD model

in real-time to measure properties like pressure and flow in places where installing

a physical sensor would be difficult or cost prohibitive.

To achieve this we instantiate in the FPGA a large number of “soft-core pro-

cessors” where each processor is responsible for a single node of the model. For

instance, if a pipe is modeled with 100 subvolumes then we would assign each sub-

volume to one of 100 processors. The practical result of this is that something like

a diesel common-rail fuel system can be modeled with around 200 soft-core proces-

sors on a single chip. Note that we use the term processors here, but later we will

discuss multi-threaded processors and more precisely say that the systems will be

implemented on 200 soft-core processor threads.
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Figure 9.1: GT-SUITE 4-Cylinder Unit Pump Example

We have focused our initial efforts on fuel systems instead of air systems for

a number of reasons. First, the basic equations are simpler as pressure and flow

are the only communicated variables and no state or reaction equations are needed.

Second, fuel systems tend to have smaller discretization lengths and higher wave

speed making them more interesting to examine in the context of our low-latency

processor architecture. Lastly, the number of non-flow elements required to model a

fuel system is much smaller than an air system which requires a combustion model

and possibly turbo models. This same architecture can be applied to air systems by

using a different, and larger library of components.

We focus our efforts on matching our problem to two examples provided by

Gamma Technologies GT-SUITE application: Figure 9.1 shows a simple unit pump
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example for a single cylinder while Figure 9.2 shows a common-rail fuel system for

a hypothetical 4-cylinder diesel engine.

Figure 9.2: GT-SUITE 4-Cylinder Common-Rail Example

9.3 Computational Model

The bulk of any fuel system model will consist of one-dimensional fluid dynam-

ics nodes. However in most practical system there are dampers or valves whose

actions are influenced by the fluid flow. In this section we build up the library of

computational elements used in our system.
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9.3.1 One-Dimensional Computational Fluid Dynamics

Solution of 1D CFD problems begins with the Navier-Stokes equations for com-

pressible flow (Wylie and Streeter, 1978). We then build a library of solution ele-

ments for the type of pipe segments we use in the form of first order finite difference

equations (Desantes et al., 1999). We start with momentum equation

Px

ρ
+ V̇ +

fV

2D
|V | = 0 (9.1)

and continuity equation

a2Vx + V

(
Px

ρ
+ g sinα

)
+
Pt

ρ
= 0 (9.2)

where P is pressure, ρ is fluid density, V fluid velocity, f is the Darcy-Weisbach

friction factor, D is pipe diameter, a is the wave speed, and g sinα is the directional

force of gravity. A dot ( ˙ ) over a variable indicates the total derivative with respect

to time and the “x” and “t” subscripts respectively indicate partial differentiation

along the pipe length and with respect to time.

These equations can be expanded and simplified by leaving out the body force

and convective terms because these are negligible given the pressure and flow regime.

This leads us to the following equations in the form L = L1 + λL2:

L1 =
Px

ρ
+ Vt +

f

2D
V |V | = 0 (9.3)

and

L2 =
Pt

ρ
+ a2Vx = 0. (9.4)

A method of characteristic solution is used to explicitly evaluate the pressure

and flow at the next step through a first order finite difference method. Figure 9.3
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shows the evaluation of pressure and flow at point I, t0 + ∆t based on the pressure

and flow of the adjacent points at time t0. The equations to be evaluated at each

point are

VI =0.5

[
Vi−1 + Vi+1 +

1

aρ
(Pi−1 − Pi+1)

−f∆t

2D
(Vi−1|Vi−1|+ Vi+1|Vi+1)

]
(9.5)

and

PI =0.5ρ

[
1

ρ
Pi−1 + Pi+1 + a (Vi−1 − Vi+1)

−af∆t

2D
(Vi−1|Vi−1|+ Vi+1|Vi+1)

]
. (9.6)

One critical part in evaluating the value at point I is that there is a fixed

relationship between ∆x, ∆t, and the wave speed a such that a = ∆x/∆t. ∆x is

fixed by the geometry of the problem and a is fixed by the properties of the working

fluid such as a =
√
K/ρ, where K is the bulk modulus. Therefore, ∆t is defined

as above. All of our computations must be complete within ∆t and the results

must be posted at exactly ∆t. Because the wave speed varies and the geometry of

the problem may not work out evenly for all pipe segments a modified method is

implemented with an interpolation step. This is shown in Figure 9.3 and described

by equations

ζR = ζi − θa(ζi − ζi+1) and (9.7)

ζL = ζi − θa(ζi − ζi−1), (9.8)

where θ represents the amount of interpolation desired. These equations are evalu-

ated for both pressure ζ = P and velocity ζ = V . While we use this method to give
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our calculations leeway it is important to realize that this adds complexity to every

block in the system as well as decreases the ∆t we have to work with.

In order to evaluate the system of pipes we define a few types of computing

nodes that correspond to different pipe elements. Specifically, the types are: 1) Pipe

Segment; 2) Imposed pressure upstream, representing the pressure sensor on the

fuel system; 3) Imposed mass flow into the pipe, representing a pump; 4) Valve at

downstream end of pipe, representing an injector; 5) Cap at downstream end of

pipe; and 6) “T” intersection. Different types of computing nodes execute different

algorithms on the same hardware.

Rearranging the equations again and making the substitutions B = aρ/A and

R = ρf∆x/2DA2, where A is the cross sectional area of the pipe, and Q is the flow

rate along the pipe, we get the simplified characteristic equations

Cp = Pi−1 +Qi−1 (B − E|Qi−1|) and (9.9)

Cm = Pi+1 −Qi+1 (B − E|Qi+1|) . (9.10)
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Table 9.1: Equations for Supported Types
Type PI = QI =

Pipe Seg. (Cp+Cm)

2
(PI+Cm)

B

Imp. P PBnd
(PBnd−Cm)

B

Imp. Q Cm+B·QBnd QBnd

Valve Cp−B·QIn

−BCV +
√

(BCV )2+2CV CP

CV =
(Q0τ)

2

2·P0

Cap Cp−B·QIn 0

Pipe “T” Generic
Cp1
B1

+
Cm2
B2

+
Cm3
B3∑

j=1,3
1
Bj

− PI
B1

+
Cp1
B1

− PI
B2

+
Cm2

B2

− PI
B3

+
Cm3

B3

Pipe “T” Standard
Cp1
B1

+
Cm2
B2

+
Cm3
B1∑

j=1,3
1
Bj

− PI
B1

+
Cp1
B1

− PI
B2

+
Cm2

B2

− PI
B1

+
Cm3

B1

Pipe “T” Simple Cp1+Cm2+Cm3

3

−PI
B

+
Cp1
B

−PI
B

+
Cm2

B

−PI
B

+
Cm3

B

Table 9.1 shows the equations for each of the supported pipe elements. From

these pipe elements we can generate a network of pipes that represents our fuel

system. The Bnd subscript denotes a boundary condition. Cv is the flow coefficient

of Q0, the nominal open flow, P0 the downstream pressure and τ the fraction the

valve is open.

9.3.2 Mechanical Subsystem

We examined two mechanical subsystems for this model: the diesel fuel injector

and the flow damper.

9.3.2.1 Mechanical Equilibrium Governing Equation

Common rail system injector modeling has been studied intensively in literature

(Bianchi et al., 2002b)(Bianchi et al., 2002a)(Sprich, 2011)(Dongiovanni and Coppo,
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2010). In the following, we briefly summarize the mathematical model that captures

the mechanical dynamics of devices in an injector.

There are three moving injector components: control valve, needle, and control

piston. They can be modeled as mass-spring-damper assemblies. Their mechanical

dynamics can be described via the conventional governing equation of a mass-spring-

damper assembly:

mi
d2xi
dt2

+ βi
dxi
dt

+ kixi + F0,i = Fi, (9.11)

where mi is the mass of the moving device (i can be control valve, needle, or control

piston), xi the device position, βi the damping coefficient, ki the spring stiffness,

F0,i the total spring pre-load, and Fi is the external force.

Depending on their position, the moving device damping coefficient (βi), spring

stiffness (ki), and spring pre-load (F0,i) can be computed using relevant damping

coefficients and spring stiffnesses. The external force can be due to interaction force

between two adjacent masses, pressure, or electromagnetic action. The interaction

forces can expressed as a function of corresponding device position displacement as

well as effective spring stiffness and viscous damping coefficient.

9.3.2.2 Numerical Integration

There exist different approaches to numerically solve the set of mechanical

equilibrium differential equations, e.g., the Euler method, the trapezoidal method,

the Runge-Kutta method, etc. In our study, we take the classical Runge-Kutta

Method (a.k.a. RK4) to solve the set of ordinary differential equations since this

method gives good numerical accuracy (Desantes et al., 1999)(Sprich, 2011).

Given the following first oder ordinary differential equation,

dy

dt
= f(t, y), y(t0) = y0 (9.12)

155



the RK4 method used for integration can be described as follows:

yn+1 = yn +
1

6
(k1 + 2k2 + 2k3 + k4)

tn+1 = tn + h,

k1 = hf(tn, yn),

k2 = hf(tn +
h

2
, yn +

k1
2

),

k3 = hf(tn +
h

2
, yn +

k2
2

),

k4 = hf(tn + h, yn + k3),

where h is the time step for integration.

However, notice that the mechanical equilibrium governing equation (9.11) is

much more complex than (9.12) in that (9.11) is a second order differential equation

and it has more than two variables in the expression of first order of derivative. The

second order derivative can be solved via introducing the following intermediate

variable,

dxi
dt

= zi. (9.13)

With this, (9.11) is transformed into

mi
dzi
dt

+ βizi + kixi + F0,i = Fi. (9.14)

Taking the expression of the other terms into account, (9.14) is essentially

dzi
dt

= fi(t, zi, xi, xj1 , .., xjNi ), (9.15)

where j1, .., jNi are neighboring interacting masses of mass i. Ordinary differential

equation (9.15) can be solved using the RK4 method.
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Figure 9.4: Schematic of Hydraulic Damper

9.3.2.3 Modeling a Hydraulic Damper

Figure 9.4 shows the schematic of a hydraulic damper. To model its dynamics,

the general governing equation (9.11) simplifies to

m
d2x

dt2
+ β

dx

dt
+ kx+ F0 = F. (9.16)

The model consists of one mass with its value to be the sum of the mass of the

diaphragm and a fraction of the spring. F0 is the pre-load of the spring. The
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external force can be computed as follows:

F =



(poc − pcc)A− kusx− βus dxdt , x < 0

(poc − pcc)A− βus dxdt , 0 ≤ x ≤ δ

(poc − pcc)A, δ < x < ∆− δ

(poc − pcc)A− βls dxdt , ∆− δ ≤ x ≤ ∆

(poc − pcc)A− kls(x−∆)− βls dxdt , ∆ < x,

(9.17)

where A is the cross sectional area of the damper and δ stands for the maximum

gap to model damping for both upper and lower stops. Substituting F in (9.11)

with the above expression gives

m
d2x

dt2
+ β̄

dx

dt
+ k̄x+ F0 − (pcc − poc)A = 0, (9.18)

where

β̄ =


β + βus, x ≤ δ

β, δ < x < ∆− δ

β + βls, ∆− δ ≤ x

(9.19)

and

k̄ =


k + kus, x < 0

k, 0 ≤ x ≤ ∆

k + kls, ∆ < x.

(9.20)

The three cases for β̄ are used to specify the difference in damping near the end

stops. Similarly we treat the end stops as stiff springs so we have three regions for
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k̄ as well. With (9.13), (9.18) becomes:

dz

dt
=
−1

m

(
β̄z + k̄x+ F0 − (pcc − poc)A

)
. (9.21)

With appropriate initial conditions (e.g., x = 0, z = 0), RK4 gives

zn+1 =zn +
1

6
(kz1 + 2kz2 + 2kz3 + kz4) ,

kz1 =
−h
m

(
β̄zn + k̄xn + F0 − (pcc − poc)A

)
,

kz2 =
−h
m

(
β̄

(
zn +

kz1
2

)
+ k̄

(
xn +

kx1
2

)
+ F0 − (pcc − poc)A

)
,

kz3 =
−h
m

(
β̄

(
zn +

kz2
2

)
+ k̄

(
xn +

kx2
2

)
+ F0 − (pcc − poc)A

)
,

kz4 =
−h
m

(
β̄ (zn + kz3) + k̄ (xn + kx3 ) + F0 − (pcc − poc)A

)
,

kx1 =kx2 = kx3 = hzn,

and

xn+1 = xn + hzn+1. (9.22)

For the purposes of our real-time code we can greatly simplify the above equa-

tions by expanding the equations and then grouping all the constants. For given

ranges of x the values β̄ and k̄ are constant. This yields

zn+1 = C1zn + C2xn + C3(F0 − (pcc − poc)A)), (9.23)

where Cn are constants for a specific operating region of the problem as defined in

(9.17) and are selected from a table at the beginning of each time step.
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In order to examine the fuel injector we modify the force equation slightly.

zn+1 = C1zn + C2xn + C3(F0 − (pccA1 − pocA2)− ε)) (9.24)

Equation (9.24) is similar to Equation (9.23) except that we have split the area

terms to handle separate areas and have added an electrical force ε. We make the

simplifying assumption for our computation calculations in Table 9.3 that ε is a

constant that is either on or off, but that A2 is an arbitrary function of x.

9.4 Real-Time Implementation

The process of implementing a model on real-time hardware is summarized by

1. Design a fuel system using the components described in the library;

2. Determine the timing constraints on the system;

3. Feed in graph of system and timing constraints to the optimizer;

4. Take the optimized graph, calibration constants, and initial values into the

code generator;

5. Integrated model into I/O system;

6. Build target and deploy.

9.4.1 Field Programmable Gate Arrays

FPGAs are generic digital logic that can be configured as application specific

digital hardware. In automotive research applications they have been traditionally

used as timing coprocessors to execute timing critical operations such as controlling

fuel and spark timing (Viele et al., 2011). They have also been employed as digital
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signal processors to process knock or cylinder pressure (Quillen et al., 2010) and

respond with lower latency than would be available with a CPU.

More generically, FPGAs can be thought of as doing many simple tasks in par-

allel as opposed to one complex task at a time. As a processor’s program gets more

complex its loop time slows down, but as an FPGA’s program get more complex

it requires more FPGA “gates”. FPGAs are sized in terms of logic gates or some

similar metric to define how complex a program they can execute.

For our purposes, one of the most interesting things about FPGAs is their ability

to instantiate processors inside them. While these do not rival desktop processors

like Intel’s Pentium they can be tailored to perform specific tasks well and we can

create many of them along with specialty I/O hardware to bring I/O latency and

cycle times well below what we expect on desktop processors.

FPGAs grow in performance like DRAM and follow Moore’s law for perfor-

mance by doubling in size every 18 months(Trushard, 2010). Figure 9.5 shows the

performance of FPGAs over time and give a sense of how the application we describe

can scale.

9.4.1.1 Deterministic Processors

The advent of caches, out-of-order executions, branch prediction, and other

performance improvements in modern processors have improved their average exe-

cution speed at the cost of determinism. In order to bring the worst-case executing

time of our system closer to the average execution time we base our soft-core pro-

cessors on the The Precision Timed (PRET) Architecture (Lickly et al., 2008). It

contains multiple deterministic hardware threads, and timing instructions to gate

execution time of code blocks on the hardware threads. Thus we can ensure that

our worst-case timing constraints are met, making them suitable for hard real-time

applications.
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Figure 9.5: FPGA Size over Time

With this processor core as a foundation we make several additions to meet the

needs of 1D CFD. First we use a heterogeneous approach to hardware optimization

(Liu et al., 2011). For instance processors that are used to compute valve position

have hardware square root instructions, but processors that are used for simple pipe

segments do not.

9.4.2 System Description

Figure 9.6 shows an overview of a representative system for modeling fuel rails.

The 1D CFD model is bounded inside the dashed rectangle. External to that is

the real-world sensor and actuator interfaces that provide boundary conditions or

consume model output variables. The small blue squares inside the dashed rectangle

represent the network of pipes. In a practical simulation of a diesel fuel system the

total number of pipe elements can range from around 50 to a few hundred.

Each pipe element is a computational node, and their graphical representation

is shown in Table 9.2. The top 3 rows of the table represent the pipe elements
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described in Table 9.1. Mechanical calculation elements compute the inputs to

valve, defined flow and defined pressure blocks. They serve as an interface between

the flow model and the real world. Global calculation elements are used to compute

the temperature dependent variables of density and wave speed. They post their

data to a global distribution block, broadcasting it to all nodes. Blocks with white

backgrounds are implemented directly in FPGA fabric, not mapped to a processor

thread. The Global Distribution node is purely used to indicate a distribution of

input value to each of the computational elements in our model. The Display node

is used when data needs to be communicated out of the model through a register or

FIFO to other parts of the FPGA.

For illustrative purposes, we show a simplified sample pipe network with an

imposed flow input in Figure 9.7. Fluid travels through a few pipe segment nodes

to a “T” intersection, where it splits off to a second branch of the network. The

“T” node is also measured by the outside world through a display port. Flow going

up the new leg ends in a cap, while flow continuing down the original path exits

the system through a valve. The system is assumed to be at uniform temperature

and values based on the temperature dependent variables of density and wave speed

are delivered to each of the computational elements every time step for use in the

subsequent time step. For the purposes of system analysis we assume that flow

always enters through the left and exits to the right and possibly top of the network

element. This lets us describe the system as a directed graph.

9.4.3 System Implementation

Each of the pipe elements described in Table 9.2 is hand coded in C. Each pipe

element is mapped to a hardware thread on the underlying PRET architecture. The

number of thread cycles each takes to complete is shown in Table 9.3. Dedicated

floating point square root and division hardware is added to processors where threads
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Table 9.2: Library of Computational Node Elements

Pipe
Out

L R

TG
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Out
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Out
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Out
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TG

Mechanical Calc.
Out
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Figure 9.7: Detailed System Diagram

Table 9.3: Computational Intensity of Supported Types
Without Interpolation / With Interpolation

Type Mul Add/Sub Abs Sqrt Div Thread cycles

Pipe Seg. 10 / 18 5 / 13 2 / 2 0 / 0 0 / 0 81 / 51
Imp. P 6 / 10 3 / 7 1 / 1 0 / 0 0 / 0 50 / 38
Imp. Q 5 / 9 3 / 7 1 / 1 0 / 0 0 / 0 51 / 40
Valve 13 / 17 5 / 9 1 / 1 1 / 1 0 / 0 64 / 55
Cap 4 / 8 2 / 6 1 / 1 0 / 0 0 / 0 48 / 39

“T” Gen. 16 / 28 13 / 25 3 / 0 0 / 0 4 / 4 111 / 72
“T” Std. 15 / 27 13 / 25 3 / 3 0 / 0 3 / 3 106 / 67
“T” Smp. 14 / 26 11 / 23 3 / 3 0 / 0 1 / 1 109 / 58

Mech-Dmpr. 5 11 0 0 0 45
Mech-Inj. 9 14 0 0 0 66
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require these operations. Also shown are our mechanical elements the mechanical

damper and fuel injector. Both of these represent single spring-mass-damper systems

with fixed area and variable area respectively for the pressure force to act on. It is

important to note that more complex system masses can be created by attaching

the mechanical elements together in a similar fashion to the flow elements.

The timing constraints of the system is determined by the wave speed and dis-

cretization length of our model. The execution time of each time step is determined

by our slowest element, which needs to meet the timing constraint defined above.

In our simulation model we are running the mechanical system at the same rate

as the fluid system. GT-SUITE varies the time step, by default by up to a ratio of

5 mechanical time steps to one fluid time step. We experimented with this ratio in

GT-SUITE and found trivial variation in the output. It is worth noting, however,

that the mechanical system implementation is small enough that a ratio of 2:1 may

be easily achieved on our model, though we have not yet implemented this feature.

9.5 Optimization

While the cost of FPGA gates is rapidly decreasing, large designs like a full

common-rail model still push the bounds of FPGA parts that are readily available.

In order to reduce the size of the FPGA we employ several optimization steps.

1. Minimize the amount of code used by the worst-case computational element;

2. Make use of heterogeneity of processor cores, i.e. only instantiate operators

that are required by the allocated threads;

3. Balance threading and clock speed of each core to minimize FPGA circuit

area;

4. Ensure the number of interconnects is not excessive.
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9.5.1 Worst-Case Computation Time

It is important to understand that when modeling physical quantities, such as

fluid flow, the time step is determined by the granularity of the application. For an

explicit solver that uses a fixed time step, it is required that the solver run faster

than the speed of information flow. This is expressed in (9.25), where a is the wave

speed and C is the Courant number. For stability the Courant number needs to be

less than 1 and a number below 0.8 is recommended (GT-Suite, 2007).

∆t

δx
a = C (9.25)

Our discretization length of 1cm and wave speed of 1500m/sec with a margin of 0.8

give us a 5.33µs time step. As discussed below we run a 20MHz thread clock giving

us 106 clock cycles per time step, just enough to execute the Standard Pipe “T”

configuration shown in Table 9.3, which is the slowest element in the two examples

we studied.

9.5.2 Maximize Threads Per Core

The PRET architecture is a multi-threaded architecture that contains several

hardware threads which are interleaved through the pipeline in a round robin fashion

each cycle. The hardware threads are non-interfering and cannot effect the execution

of each other. The more threads we design into the processors, the more concurrency

we can support on the FPGA. But all threads on each processor share the processor

resource, so the latency of each thread reduces as we increase the number of threads.

Due to the FPGA implementation, noticeable area increase is only observed when

we increase across the powers of two (Liu et al., 2011). We can see this in Table

9.4 where we benchmarked different processor configurations. For example, when

we increase from 8 threads to 9 threads.
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Table 9.4: Number of Occupied Slices per Core on the Virtex 6 FPGA
(XC6VLX195T).

Threads per Core 6 8 9 16
Fixed Point Only 572 588 764 779

Basic Float 820 823 1000 1022
Float w/sqrt 987 992 1146 1172
Float w/div 1039 1051 1231 1237

Float w/div & sqrt 1237 1249 1403 1413

Table 9.5: Total Resource Utilization of Examples Synthesized on the Virtex 6
FPGA (XC6VlX195T).

Example Nodes Cores Slices / BRAM (%)
Unit Pump 73 13 10566 / 103 (33% / 15%)
CR System 234 39 29134 / 311 (93.4% / 45%)

The additions of a floating square root and floating point division unit increases

the area of a single processor on an FPGA by 50%. The heterogeneity of the

processors in our system design allows us to greatly reduce resource usage.

In (Liu et al., 2011) we examined the area consumed by our models on a

Xilinx Virtex 6 (part number XC6VLX195T), as this was the smallest FPGA we

could make this particular example run on. Table 9.5 shows resources used by our

two systems.

We bechmarked the number of 8 thread cores we could practically implement

on a Xilinx Virtex 6 FPGA (part number XC6VSX315T), which is the middle of the

size range in the Virtex 6 family. We found that we could implement 45 processor

cores with single precition floating point, sqrt, and divide hardware on the FPGA

using 96% of its area. That corresponds to 360 threads total, because we have 8

threads on each core. We also examined the case where we filled the FPGA with

processor cores that had the same floating point math except for the hardware sqrt

and divide. In that case we could fit 63 cores onto the FPGA using 94% of the

168



slices, slices being a representation of the generic logic portion of the FPGA. That

is 504 total runnable threads. Our heterogeneous approach uses a mix of several

cores types, but with the preponderance being the basic cores. This means that we

expect on this size FPGA to be able to run fuel injection configurations of over 400

computational nodes.

9.6 Conclusion and Further Work

We have presented a practical system to implement 1D CFD problems in real-

time. We did this by building a library of coupled flow and mechanical elements that

we could evaluate on soft-core processors. We benchmarked these against examples

provided in GT-SUITE and determined how many processor threads we would need

and how fast they would need to run. We then showed that using a heterogeneous

collection of PRET processors we could implement these on a Xilinx XC6V1X195T.

We examined the maximum size of model that we can fit in a middle of the

road Xilinx Virtex 6 part and found that we can fit in the neighborhood of 400

nodes depending on the mix of the actual problem. This should be adequate for

many practical fuel injection applications.

In order to make this a practical solution the design process needs to be au-

tomated. We need to be able to generate not only the layout but the calibration

constants and initial conditions for each computational element. This must be done

by compiling from another simulation environment because it is far too tedious and

error prone to do by hand. This is the next major task ahead of us.

We have verified a building blocks of a system (Liu et al., 2011). Next we need

to fully automate the model generation process so we can easily validate our system

against more complex models and finally start testing on real physical systems.

We have shown mechanical models that can run at a 2:1 step ratio from our fluid

system, but we need to incorporate a mechanism to allow multi-rate communication.
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Chapter 10

PATENT 7,991,488

The following patent was filed early in this research with this author as the sole

inventor and was issued August 2011. It patents the idea of FPGA-based, real-time

1D-CFD. The crucial part of the patent is the 1:1 or near 1:1 relationship between

solver nodes (physical part of the problem) and computational elements (processors

running equation solvers).

This patent describes a system running in real-time with one or more inputs

and outputs. Inside the system is an array of computational elements. Each element

is solving a small number of fluid nodes connected in a 1D-CFD arrangement.

This patent covers the ideas explained in the previous two papers.



Apparatus and method for use in computational fluid dynamics

10.1 Synopsis

An apparatus includes a parallel computation unit including an input port

and an output port and a one-dimensional computational fluid dynamics model.

The input port is configured to sample at a time t1 a boundary condition signal

for the one-dimensional computational fluid dynamics model and the output port

is configured to provide an output signal before the boundary condition signal is

sampled at a time t2.

10.2 Claims

What is claimed is:

1. An apparatus comprising: a plurality of parallel computation units con-

figured to implement a one-dimensional computational fluid dynamics model for

controlling a physical system, wherein each parallel computation unit comprises a

respective plurality of computation units, and wherein each parallel computation

unit is associated with a respective node of the one-dimensional computational fluid

dynamics model; wherein the plurality of parallel computation units are configured

to implement the one-dimensional computational fluid dynamics model to receive a

first sample of a boundary condition signal for the one-dimensional computational

fluid dynamics model at a time t1, wherein the boundary condition signal repre-

sents a first physical variable sampled at a first location in the physical system; and

wherein the plurality of parallel computation units are configured to implement the

one-dimensional computational fluid dynamics model to generate an output signal

representing the first physical variable at a second location in the physical system,

wherein the second location is not sampled in the physical system, and wherein the
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output signal is usable for controlling the physical system; wherein the plurality of

parallel computation units are configured to implement the one-dimensional compu-

tational fluid dynamics model to generate the output signal before a second sample

of the boundary condition signal is received at a time t2.

2. The apparatus of claim 1, wherein the difference between the time t2 and

the time t1 is between ten microseconds and ten milliseconds.

3. The apparatus of claim 1, wherein the apparatus is implemented as a field

programmable gate array that implements the plurality of parallel computation

units.

4. The apparatus of claim 1, wherein the physical system is an engine, wherein

the apparatus is implemented as an engine control unit that controls the engine.

10.3 Description

10.3.1 Field

The subject matter of the disclosure relates to computational fluid dynamics

and, more particularly, to real time computational fluid dynamics.

10.3.2 Background

Computational fluid dynamics uses mathematical methods to solve problems

that include fluid flow. An exemplary problem in the field of computational fluid

dynamics is the problem of predicting the pressure at any point along a fuel rail of an

operating diesel engine as a function of time. A real time solution to this problem

would enable the design and manufacture of improved engines. These improved

engines would provide higher performance and lower pollution levels than engines

available today. At this time, predictions of the real time operation of engines are

obtained by running simulations using computational fluid dynamics models on a
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supercomputer or workstation. Unfortunately, the predictions that result from such

simulations require hours of supercomputer time to predict a few seconds of engine

operation. They are not performed in real time. Finally, when these predictions

are incorporated in a real time engine control system they do not yield the desired

results.

10.3.3 Breif Description of the Drawings

The disclosed embodiments may be understood with reference to the following

drawings, in which like elements are indicated by like numbers. These drawings are

provided to illustrate selected embodiments of the disclosure and are not intended

to limit the scope of the claims.

FIG. 1A shows a block diagram of an apparatus including a boundary condition

signal for a one-dimensional computational fluid dynamics model and a parallel

computation unit to receive the boundary condition signal and provide an output

signal in accordance with some embodiments.

FIG. 1B shows a timing diagram illustrating the relationship between the sam-

pling time t1 and the sampling time t2 of the boundary condition signal shown in

FIG. 1A and the output signal shown in FIG. 1A in accordance with some embod-

iments.

FIG. 1C shows a block diagram of an apparatus including the apparatus of

FIG. 1A included in a field programmable gate array in accordance with some em-

bodiments.

FIG. 1D shows a block diagram of an apparatus including the apparatus of

FIG. 1A included in an engine control unit in accordance with some embodiments.

FIG. 1E shows a block diagram of an apparatus including the apparatus of

FIG. 1A and including a reciprocating engine model included in the one-dimensional

computational fluid dynamics model in accordance with some embodiments.
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FIG. 2 shows a flow diagram of a method including receiving a sensor signal and

processing the sensor signal using real time computational fluid dynamics methods

to generate a virtual sensor signal in real time in accordance with some embodiments.

FIG. 3A shows a block diagram of an apparatus including a real time compu-

tational fluid dynamics model coupled to a sensor in accordance with some embod-

iments.

FIG. 3B shows a block diagram of an apparatus including the apparatus shown

in FIG. 3A and including a fuel pressure sensor in accordance with some embodi-

ments.

FIG. 3C shows a block diagram of an apparatus including the apparatus shown

in FIG. 3A and including a one-dimensional model in accordance with some embod-

iments.

FIG. 3D shows a block diagram of an apparatus including the apparatus shown

in FIG. 3C and including a diesel fuel rail model in accordance with some embodi-

ments.

FIG. 4A shows a block diagram of an apparatus including a diesel engine cou-

pled to the engine control unit in accordance with some embodiments.

FIG. 4B shows a block diagram of an apparatus including the apparatus shown

in FIG. 4A, an injector, and an integrator to process the virtual sensor signal to form

the real time control signal for the injector in accordance with some embodiments.

FIG. 4C shows a block diagram of an apparatus including the apparatus shown

in FIG. 4A and a field programmable gate array included in the virtual sensor model

in accordance with some embodiments.

FIG. 4D shows a block diagram of an apparatus including the apparatus shown

in FIG. 4A and a vehicle that includes the diesel engine and the engine control unit

in accordance with some embodiments.
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FIG. 5 shows a flow diagram of a method including receiving one fuel pressure

signal at a virtual sensor model and processing the one fuel pressure signal to gener-

ate a fuel pressure signal for each of a plurality of injectors in real time in accordance

with some embodiments.

FIG. 6A shows a block diagram of an apparatus including a real time computa-

tional fluid dynamics model, and a combustion model to communicate with the real

time computational fluid dynamics model in accordance with some embodiments.

FIG. 6B shows a block diagram of the apparatus shown in FIG. 6A further

including a one-dimensional computational fluid dynamics model, a reciprocating

internal combustion engine model, a look-up table, and a field programmable gate

array in accordance with some embodiments.

FIG. 7A shows a block diagram of an apparatus including an engine model, an

inertial model, and a real time computational fluid dynamics air system model to

communicate with the engine model in accordance with some embodiments.

FIG. 7B shows a block diagram of an apparatus including the apparatus show

in FIG. 7A and further including a reciprocating internal combustion engine model,

an intake model, and a plurality of nodes included in the intake model in accordance

with some embodiments.

FIG. 7C shows a block diagram of an apparatus including the apparatus show

in FIG. 7A coupled to an engine control unit in accordance with some embodiments.

FIG. 7D shows a block diagram of an apparatus including an engine model, a

combustion model, and a real time computational fluid dynamics air system model

to communicate with the engine model in accordance with some embodiments.

FIG. 7E shows a block diagram of an apparatus including the apparatus show in

FIG. 7D and further including a reciprocating internal combustion engine model, an

exhaust model, and a plurality of nodes included in the exhaust model in accordance

with some embodiments.
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FIG. 7F shows a block diagram of an apparatus including the apparatus shown

in FIG. 7D coupled to an engine control unit in accordance with some embodiments.

FIG. 8 shows a flow diagram of a method including running a real time one-

dimensional computational fluid dynamics engine model in a field programmable

gate array in accordance with some embodiments.

FIG. 9 shows a flow diagram of a method including generating field programmable

gate array code automatically for a one-dimensional computational fluid dynam-

ics engine model from code that is not real time code, and running the field pro-

grammable gate array code for the one-dimensional computational fluid dynamics

engine model in the field programmable gate array in accordance with some embod-

iments.

10.3.4 Description

The following discussion sets forth numerous specific details to provide a thor-

ough understanding of the disclosure. However, those of ordinary skill in the art,

having the benefit of this disclosure, will appreciate that the subject matter of

the disclosure may be practiced without these specific details. In addition, various

well-known methods, procedures, components, software, and circuits have not been

described in detail in order to focus attention on the features disclosed.

FIG. 1A shows a block diagram of an apparatus 100 including a boundary

condition signal 102 for a one-dimensional computational fluid dynamics model 104

and a parallel computation unit 106 to receive the boundary condition signal 102 and

provide an output signal 108 in accordance with some embodiments. The parallel

computation unit 106 includes an input port 110 and an output port 112. The input

port 110 receives the boundary condition signal 102. The output port 112 provides

the output signal 108.
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The boundary condition signal 102 is not limited to a signal representing a

particular physical variable. One-dimensional computational fluid dynamics models

can be formed to process boundary condition signals for any variable of interest

in the system being modeled or any variable that can be derived from the vari-

ables included in the system being modeled. One-dimensional computational fluid

dynamics models can describe a network of pipes. A network includes any piping

intersection configuration. One-dimensional computational fluid dynamics models

include linked models, for example, a mechanical check-valve model. Exemplary

boundary condition signals processed in computational fluid dynamics engine mod-

els include pressure signals, temperature signals, air quality or composition signals,

and air/fuel ratio signals. In some embodiments, models convert real world bound-

ary events to boundary conditions. Air quality includes the chemical species and

thermodynamic properties included in the air or similar gas. For example, a pressure

pulse is generated when an injector is opened.

The one-dimensional computational fluid dynamics model 104 is formed to in-

clude in the model the physical variable represented by the boundary condition

signal 102 and allow prediction of the value of the variable at a location in the

model that is not sampled in the physical system. For example, for a diesel engine

fuel rail that includes one pressure sensor to generate a boundary condition pressure

signal, the one-dimensional computational fluid dynamics model 104 can process the

boundary condition signal 102 for pressure and predict the pressure at any point

along the rail in real time.

The computational fluid dynamics model 104 is not limited to using a particular

solution method. Exemplary solution methods include finite element, finite volume,

finite difference, and spectral methods. In the finite element method, each node is

weighted before integration to guarantee continuity. In the finite volume method, the

conservation equations are included in integral form and are discretized to a set of
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algebraic equations that are then solved. In the finite difference method, at each grid

point the differential conservation equation is approximated by replacing the partial

derivatives by approximations in terms of the nodal values of the functions. In the

spectral method, the differential equations are solved using Fourier methods. In

some embodiments, a solution method is selected in which the speed of the solution

is determined by the Courant number. The Courant number is a parameter used in

the stability analysis of finite difference equations such as algebraic equations used

to approximate partial differential equations in the computational fluid dynamics

model 104.

The parallel computation unit 106 receives the boundary condition signal 102

at the input port 110 and provides the output signal 108 at the output port 112.

The output signal 108 is a virtual signal generated through the processing of the

boundary condition signal 102 by the parallel processing unit. The output signal

108 is a virtual signal because it is obtained through computation performed in the

parallel computation unit 106 rather than through a measurement obtained from

the physical system. For example, if the boundary condition signal 102 represents

the actual pressure at a first point along a diesel fuel rail, then the output signal 108

is a virtual signal that represents the pressure at an second point along the diesel

engine fuel rail that is not measured or sampled.

In operation, the boundary condition signal 102 is sampled or received by the

parallel computation unit 106. At a time t1, the parallel computation unit 106

samples or receives at the input port 110 the boundary condition signal 102. The

parallel computation unit 106 provides the output signal 108 at the output port

112 before the boundary condition signal 102 is sampled at a time t2. The time t2

occurs after the time t1.

In some embodiments, the difference between the time t2 and the time t1 is

between about ten microseconds and about ten milliseconds. A difference between
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the time t2 and the time t1 of more than about ten milliseconds is too long for

real time control of physical systems such as reciprocating engines. A difference

between time t2 and t1 of less than about ten microseconds is too short to provide

sufficient processing time for the parallel processing unit 106 to generate the output

signal 108 in real time for physical systems such as reciprocating engines. In some

embodiments, the difference between time t2 and time t1 is slightly less than the

Courant number. The Courant number is substantially equal to the speed of sound

divided by a volume element in a computational fluid dynamics model.

The apparatus 100 is not limited to use in connection with a particular system

or industry. The apparatus 100 can be applied to systems that include intake air

flow dynamics, exhaust flow dynamics, exhaust recirculation flow, hydraulic model-

ing in anti-lock braking systems and steer-by-wire systems, pump/motor control in

hydraulic hybrid vehicle systems, biomedical flow systems, petrochemical systems,

and heat transfer systems.

FIG. 1B shows a timing diagram 114 illustrating the relationship between the

sampling times t1 and t2 of the boundary condition signal 102 shown in FIG. 1A and

the output signal 108 also shown in FIG. 1A in accordance with some embodiments.

As shown in FIG. 1B, the boundary condition signal 102 when sampled or received

at the time t1 has a value of y1 and when sampled or received at the time t2 has a

value of y2. The output signal 108 is provided by the parallel processing unit 106,

shown in FIG. 1A, at the output port 112, shown in FIG. 1A, at a time t3 and has

a value y3. The time t3 occurs after the time t1 and before the time t2.

FIG. 1C shows a block diagram of an apparatus 116 including the apparatus

100 shown in FIG. 1A included in a field programmable gate array 118 in accor-

dance with some embodiments. A field programmable gate array (FPGA) is an

electronic device that includes programmable logic units and programmable in-

terconnects. The programmable logic units can be programmed to provide logic
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functions, complex combinational functions, and memory functions. Exemplary

logic functions provided by FPGAs include AND, OR, XOR, and NOT. Exemplary

complex combinational functions provided by FPGAs include decoders and mathe-

matical functions including mathematical functions suitable for use in forming the

one-dimensional computational fluid dynamics model 104. Exemplary memory func-

tions include primary and complementary storage as provided by flip flips flip-flops

and dynamic random access memory circuits. The programmable interconnects can

be programmed in a manufacturing environment or in the field after delivery of the

product to a customer. Methods of programming interconnects in FPGAs include

electrical methods and optical methods. Field programmable gate arrays can be

converted to application specific integrated circuits in which the programmability

provided by the field programmable gate array has been reduced. Thus, application

specific integrated circuits can be substituted for field programmable gate arrays.

FIG. 1D shows a block diagram of an apparatus 120 including the apparatus

100 shown in FIG. 1A included in an engine control unit 122 in accordance with

some embodiments. The engine control unit 122 is configured to send and receive

signals to an engine. The engine control unit 122 is not limited to a control unit for

controlling a particular type of engine. Exemplary engines suitable for control by the

control unit 122 include diesel engines, gasoline engines, alternative fuel engines, and

hybrid engines powered by fossil fuels and renewable fuels. Exemplary alternative

fuels include natural gas and biofuels, such as methanol, ethanol, and hydrogen.

The engine control unit 122 is not limited to being formed from a particular

type of electronic component. Discrete circuits and integrated circuits, including

processors, such as complex instruction set processors and reduced instruction set

processors, application specific integrated circuits, and software are components and

technologies suitable for use in forming the engine control unit 122.
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The engine control unit 122 is not limited to being formed using a particular

packaging technology. Exemplary packaging technologies suitable for use in con-

nection with the fabrication of the engine control unit 122 include multi-carrier

modules, card or board packages, and encapsulated or hermetically sealed packages.

Combinations of packaging technologies can also be used in forming the engine con-

trol unit 122. The engine control unit 122 is not limited to a single unitary package.

In some embodiments, the engine control unit 122 is a distributed engine control

system distributed among a plurality of packages.

FIG. 1E shows a block diagram of an apparatus 124 including the apparatus

100 shown in FIG. 1A and including a reciprocating engine model 126 included in

the one-dimensional computational fluid dynamics model 104 in accordance with

some embodiments. The reciprocating engine model 126 is a model of an engine

whose crankshaft is turned by pistons moving up and down in a cylinder.

FIG. 2 shows a flow diagram of a method 200 including receiving a sensor

signal (block 202) and processing the sensor signal using real time computational

fluid dynamics methods to generate a virtual sensor signal in real time (block 204).

The sensor signal is provided by a sensor, such as a temperature or pressure sensor,

in real time. In some embodiments, the method 200 further includes processing the

virtual sensor signal to generate an injector control signal. An injector control signal

can control an injector, such as an injector included in a diesel engine. An injector

delivers a controlled amount of material, such as diesel fuel, to a process chamber. In

some embodiments, processing the sensor signal using computational fluid dynamics

methods to generate the virtual sensor signal in real time includes interpolation.

Interpolation is the estimation of a numerical value between two given numerical

values. The interpolation is not limited to a particular method. Exemplary methods

of interpolation include linear interpolation, polynomial interpolation, and spline

interpolation.

182



FIG. 3A shows a block diagram of an apparatus 300 including a real time

computational fluid dynamics model 302 coupled to a sensor 304 in accordance with

some embodiments. The real time computational fluid dynamics model 302 includes

an input port 306 to receive the sensor signal 308 and an output port 310 to provide

a virtual sensor signal 312 in real time. The real time computational fluid dynamics

model 302 includes a plurality of parallel computation units 314 to generate and

provide the virtual sensor signal 312. In some embodiments, each of the plurality of

parallel computation units 314 includes a logic unit, a memory unit, a math unit,

and interconnects. The plurality of parallel computation units 314 are coupled in

series at the interconnects. The virtual sensor signal 312 is generated in real time

by the computational fluid dynamics model 302.

The sensor 304 provides a real time sensor signal to the real time computational

fluid dynamics model 302. The sensor 304 is not limited to a sensor for sensing a

particular physical variable. Exemplary sensors suitable for use in connection with

the apparatus 300 include pressure, temperature, and chemical sensors. In some

embodiments, the sensor 304 is sampled at a rate of between about 100 Hz and

about 100 kHz. Sampling at a rate of less than about 100 Hz is too slow to control

high performance systems in real time. Sampling at a rate of more than about

100 kHz does not permit processing a virtual sensor model in real time. Sampling

includes sampling performed at the real time computational fluid dynamics model

or sampling and conversion of an analog sensor signal to a digital signal outside the

computational fluid dynamics model.

In some embodiments, the ratio of the plurality of parallel computation units

314 to nodes is low. A node is a computation point in the real time computational

fluid dynamics model 302. A low ratio is a ratio close to about one. A low ratio of

the plurality of parallel computation units 314 to nodes enables real time calculation

of the virtual sensor signal 312. Each of the plurality of parallel computation units
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314 computes a new value for the variable of interest for one node in the real time

computational fluid dynamics model 302. This method of computation permits

generation of the virtual sensor signal 312 in real time.

FIG. 3B shows a block diagram of an apparatus 316 including the apparatus

300 of FIG. 3A and a fuel pressure sensor 318 in accordance with some embodiments.

The fuel pressure sensor 318 generates a fuel pressure signal that can be virtualized

to provide a fuel pressure signal for any point in the combustion chamber. Virtu-

alization includes providing a fuel pressure value for a location not monitored by a

fuel pressure sensor.

FIG. 3C shows a block diagram of an apparatus 320 including the apparatus

316 shown in FIG. 3B and including a one-dimensional model 322 in accordance

with some embodiments. The one-dimensional model 322 can be modeled as a pipe.

The properties of a fluid within the pipe vary only along the direction of the pipe.

Real time computational fluid dynamic calculations can be can be performed on the

one-dimensional model in real time. For the model, the space in the pipe is divided

into many small volumes. The volumes have a known geometry. The fluid, such as

a fuel, contained in these volumes has specific properties, such as compressibility,

density, and viscosity, for example. Entry and exit conditions, for a fuel rail pipe

model, are defined by the engine speed, injection events, and a pressure-regulating

valve. Each of these events can be modeled.

FIG. 3D shows a block diagram of an apparatus 324 including the apparatus 320

shown in FIG. 3C and including a diesel fuel rail model 326 in accordance with some

embodiments. In operation, the diesel fuel rail is maintained at high pressure during

operation of the engine. Modeling the pressure at each of the injectors along the

diesel fuel rail permits precise delivery of fuel which results in improved performance

and reduced hydrocarbon emissions.
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FIG. 4A shows a block diagram of an apparatus 400 including a diesel engine

402 coupled to an engine control unit 404. The diesel engine 402 is an internal-

combustion engine that receives a spray of fuel after the start of the compression

stroke and ignites the spray of fuel through the use of the heat of compressed air.

The diesel engine 402 includes a sensor 406 to provide a sensor signal to the engine

control unit 404. In some embodiments, the sensor 406 includes a pressure sensor.

The engine control unit 404 is coupled to the diesel engine 402 and includes a virtual

sensor model 408 to receive the sensor signal from the sensor 406. The engine control

unit 404 performs a real time computational fluid dynamics calculation to generate

a virtual sensor signal 410 for use in forming a real time engine control signal 412

to control the diesel engine 402.

FIG. 4B shows a block diagram of an apparatus 420 including the apparatus

400 shown in FIG. 4A, an injector 422, and an integrator 424 to process the real

time control signal 412 or the virtual sensor signal 410 for the injector 422. The

injector 422 is a device for metering fuel to a combustion chamber in an engine.

The integrator 424 is a device or algorithm that applies the mathematical operation

of integration to a signal. For example, in some embodiments, the integrator 424

integrates the virtual sensor signal 410 or the real time control signal 412.

In some embodiments, the pulse width of a control signal delivered to the

injector 422 by the integrator 424 is controlled by integrating the instantaneous fuel

delivered until it reaches the desired quantity. An exemplary real time engine control

signal 412 includes a signal that represents the instantaneous fuel delivered to the

injector 422. The instantaneous fuel delivered is a function of the instantaneous

pressure at the injector. Delivered fuel is added each time step until a quantity of

fuel is reached. Extrapolation techniques are used to predict the exact shutoff time

at a temporal resolution greater than the rate at which the real-time computational

fluid dynamics model runs.
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FIG. 4C shows a block diagram of an apparatus 430 including the apparatus

400 shown in FIG. 4A and a field programmable gate array 432 included in the

virtual sensor model 408. The field programmable gate array 432 is a electronic

device that includes programmable logic units and programmable interconnects.

FIG. 4D shows a block diagram of an apparatus 440 including the apparatus

400 shown in FIG. 4A and a vehicle 442 that includes the diesel engine 402 and the

engine control unit 404. The apparatus 440 is not limited to a particular type of

vehicle. Exemplary vehicles suitable for use in connection with the apparatus 440

include trucks, cars, trains, planes, and ships.

FIG. 5 shows a flow diagram of a method 500 including receiving one fuel pres-

sure signal at a virtual sensor model (block 502) and processing the one fuel pressure

signal to generate a fuel pressure signal for each of a plurality of injectors in real

time (block 504). In some embodiments, receiving the one fuel pressure signal at

the virtual sensor model includes sampling the fuel pressure signal substantially

periodically with respect to engine angle. In some embodiments, the method 500

further includes integrating each of the fuel pressure signals. In some embodiments,

the method 500 further includes processing the fuel pressure signal for each of the

plurality of injectors to generate an injector pulse width for controlling each of the

plurality of injectors. In some embodiments, processing the fuel pressure signal for

each of the plurality of injectors to generate an injector pulse width for controlling

each of the plurality of injectors, as shown in FIG. 5, includes applying computa-

tional fluid dynamics methods in processing the fuel pressure signal.

FIG. 6A shows a block diagram of an apparatus 600 including a real time com-

putational fluid dynamics model 602 and a combustion model 604 to communicate

with the real time computational fluid dynamics model 602 in accordance with some

embodiments. The real time computational fluid dynamics model 602 includes an

input port 606 to receive a sensor signal 608 and an output port 610 to provide
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a virtual sensor signal 612. The combustion model 604 communicates combustion

information to the real time computational fluid dynamics model 602.

A communication channel 614 provides for communication between the real

time computational fluid dynamics model 602 and the combustion model 604. The

communication channel 614 includes any method, device, or system for exchanging

information. In some embodiments, the information communicated between the

real time computational fluid dynamics model 602 and the combustion model 604 is

digital information. In some embodiments, the information communicated between

the real time computational fluid dynamics model 602 and the combustion model

604 is analog information. The information may be coded or uncoded. Coded infor-

mation can include fewer bits than the starting information of more bits than the

starting information. In a software system, the communication channel 614 includes

a variable or a location in a memory shared between the real time computational

fluid dynamics model 602 and the combustion model 604.

The real time computational fluid dynamics model 602 predicts the fluid flow

and physical properties of the system being modeled. An operating diesel fuel rail

in a diesel engine is an exemplary system for modeling in the apparatus 600. In

some embodiments, the real time computational fluid dynamics model 602 operates

at a frequency of between about 200 hertz and about 1000 kilohertz. Frequencies of

between about 200 hertz and about 1000 kilohertz are suitable for modeling a diesel

engine fuel rail. In some embodiments, the real time computational fluid dynamics

model 602 operates at a frequency slightly greater than required by the Courant

number. The Courant number is substantially equal to the speed of sound divided

by a volume element in the computational fluid dynamics model.

The real time computational fluid dynamics model 602, in some embodiments,

receives information related to the state of the system being modeled. Exemplary

information received, for example by a computational fluid dynamics model for a
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an engine powered by combustion, includes engine speed, engine load, turbo speed,

air/fuel ratio, manifold pressure, and manifold temperature, and exhaust state.

The combustion model 604 simulates chemical reactions in which substances

combine with oxygen and release heat energy. In some embodiments, the combustion

model 604 includes a model of burning a fuel, such as diesel fuel, in the presence of

oxygen to produce heat. The chemical reactions in a combustion process are rapid.

Thus, a system to simulate a combustion reaction in real time, includes computing

elements and software capable of calculating the necessary physical variables in real

time.

In operation, the real time computational fluid dynamics model 602 receives the

sensor signal 608 at the input port 606. The combustion model 604 communicates

information relating to the combustion process to the real time computational fluid

dynamics model 602. The real time computational fluid dynamics model processes

the sensor signal 606, such as a pressure signal generated from a pressure sensor in

a fuel rail of a diesel engine, and information provided by the combustion model 604

to generate the virtual sensor signal 612 at the output port 610. The virtual sensor

signal 612 includes, for example, the pressure value in a diesel fuel rail at a location

not monitored by a sensor. The apparatus 600 provides a virtual sensor signal 612,

such as a pressure signal, that can be provided to the system being modeled in real

time to improve the performance. Performance is improved by reducing undesired

gas emissions or using less fuel to produce the same power.

FIG. 6B shows a block diagram of an apparatus 615 including the apparatus

600 shown in FIG. 6A and further including a one-dimensional computational fluid

dynamics model programmable gate array 622 in accordance with some embodi-

ments. The apparatus 600 included in the apparatus 615 includes the sensor signal

608, the real time computational fluid dynamics model 602 including the input port

188



606 and the output port 610, the virtual sensor signal 612, and the combustion

model 604.

The one-dimensional computational fluid dynamics model 616, in some em-

bodiments, is included in the real time computational fluid dynamics model 602.

The one-dimensional computational fluid dynamics model 616 enables calculation

of physical variables in real time. One example of the one-dimensional fluid dynam-

ics model 616 is a pipe. A pipe including a series of computational nodes located

along the length of the pipe is one model suitable for modeling a fluid, including

liquid and gas fluids, in some engine configurations.

The reciprocating internal combustion engine model 618, in some embodiments,

is included in the real time computational fluid dynamics model. The reciprocating

internal combustion engine model 618 includes a reciprocating engine model and

an internal combustion engine model. A reciprocating engine converts pressure to

rotating motion using one or more pistons. A piston is a sliding element that fits

within the bore of a cylinder. In an internal combustion engine gases expand to

create pressure that causes movement of the piston in the bore of the cylinder. The

exothermic reaction of a fuel with an oxidizer causes expansion of the gases in a

combustion chamber.

The look-up table 620, in some embodiments, is included in the combustion

model 604. The look-up table 620 includes information related the combustion

process. For example, in some embodiments, the look-up table 620 includes tem-

perature and pressure at a location in a combustion chamber at discrete points in

time during the combustion process. Look-up tables can provide information at a

rate that enables real time operation.

The field programmable gate array 622, in some embodiments, is included in

the real time computational fluid dynamics model 602. The field programmable

gate array 622 includes computation units or nodes including software to calculate
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the value of physical variables at nodes in the one-dimensional computational fluid

dynamics model 616.

In operation, the real time computational fluid dynamics model 602 receives

the sensor signal 608 at the input port 606. The combustion model 604 includ-

ing the look-up table 620 communicates combustion information to the real time

computational fluid dynamics model 602 over the communication channel 614. The

real time computational fluid dynamics model 602 including the one-dimensional

computational fluid dynamics model 616 and the reciprocating internal combustion

engine model 618 running in the field programmable gate array 622 provide the

virtual sensor signal 612, such as pressure signal, at the output port 610.

FIG. 7A shows a block diagram of an apparatus 700 including an engine model

702, an inertial model 704, and a real time computational fluid dynamics air system

model 706 to communicate with the engine model 702 in accordance with some

embodiments. The engine model 702 includes an input port 708 to receive an input

signal 710 and an output port 712 to provide an output signal 714.

The real time computational fluid dynamics model 706 communicates with the

engine model 702 over a communication channel 716. The communication channel

716 is not limited to a particular type of communication channel. Any system,

medium, or method capable of transmitting information between the engine model

702 and the real time computational fluid dynamics air system model 706 is suitable

for use in connection with the apparatus 700. In some embodiments, a variable in a

software program or a memory location in a computer system is the communication

channel 716.

The input signal 710 received at the input port 708 of the engine model 702

includes one or more engine control signals. Exemplary engine control signals include

actuator control signals, such as throttle control signals, injector control signals, and

spark control signals.
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The engine model 702 is not limited to a model of a particular type of engine.

Exemplary engines suitable for modeling and use in the apparatus 700 include diesel

engines and non-diesel engines. A gasoline engine is an exemplary non-diesel engine

suitable for modeling in the apparatus 700. The engine model 702 is suitable for use

in connection with a hardware-in-the-loop system. A hardware-in-the-loop system

provides a system and method for testing an engine control unit without an actual

engine.

The inertial model 704 included in the engine model 702 provides information

related to the dynamic operation of the engine being modeled. For example, in some

embodiments, the inertial model includes a torque model that provides-information

related to the amount of force required to rotate the crankshaft of an engine. In

some embodiments, the inertial model 704 includes an engine speed model that

provides information related to the rotation rate of the engine.

The real time computational fluid dynamics air system model 706 includes a

computational fluid dynamics model of the air system included in the engine model

702. In some embodiments, the real time computational fluid dynamics air system

model 706 is a one-dimensional model. Exemplary elements that may be included in

the real time computational fluid dynamics air system model 706 include an intake

model and an exhaust model for the engine being modeled. In some embodiments,

the real time computational fluid dynamics air system model 706 includes a catalytic

converter model and a turbocharger model. In some embodiments, a virtual sensor

signal is generated for information that cannot be obtained using a sensor. For

example, the ratio of exhaust gas recirculation/mass of fresh air in a diesel engine

can be provided through the real time computational fluid dynamics air system

model 706. Other virtual quantities that can be provided include the pressure

difference across a turbo and charge air quality.

191



In operation, the engine model 702 receives the input signal 710 at the input

port 708. The input signal 710 includes one or more engine control signals, such

as engine actuator signals. The real time computational fluid dynamics air system

model 706 performs a real time computation for variables included in the engine air

system and communicates the results to the engine model 702. After processing the

information received from the real time computational fluid dynamics air system

model 706 and the engine control signals, provided at the input port 708, the engine

model 702 provides the output signal 714, including one or more engine signals such

as engine speed, at the output port 712.

FIG. 7B shows a block diagram of an apparatus 720 including the apparatus

700, show in FIG. 7A, and further including a reciprocating internal combustion

engine model 618 included in the engine model 702, an intake model 724 included

in the real time computational fluid dynamics model 706, and a plurality of nodes

726 included in the intake model 724 in accordance with some embodiments. The

reciprocating internal combustion engine model 618 includes the reciprocating en-

gine model and the internal combustion engine model described above. The intake

model 724 includes the plurality of nodes 726 to model the intake system of the

engine being modeled. Each node in the plurality of nodes 726 includes a compu-

tation unit that includes software and hardware to compute a computational fluid

dynamics variable at a node location in the intake model 724.

In operation, the engine model 702 receives the input signal 710 at the input

port 708 and a communication from the real time computational fluid dynamics air

system model 706 via the communication channel 716. The communication includes

information, such as virtual sensor signals, relating to the output of the intake model

724 generated by the plurality of nodes 726. The engine model 702 processes infor-

mation from the inertial model 704, the reciprocating internal combustion engine
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model 618, and the received information to generate the output signal 714 at the

output port 712.

FIG. 7C shows a block diagram of an apparatus 730 including the apparatus

700, shown in FIG. 7A, coupled to an engine control unit 732 in accordance with

some embodiments. The engine control unit 732 includes an output port to provide

the input signal 710 to the engine model 702. The engine control unit 732 includes

an input port 736 to receive the output signal 714 from the engine model 702. The

apparatus 730 is sometimes referred to as a hardware-in-the-loop system and enables

testing of the engine control unit 732. In operation, the engine model 702 receives,

at the input port 708, the input signal 710, such as an actuator signal, from the

engine control unit 732, receives via the communication channel 716 information,

such a pressure or temperature information related to the air system, from the real

time computational fluid dynamics air system model 706, and provides the output

signal 714, such as a virtual pressure signal, to the engine control unit 732, at the

output port 712.

FIG. 7D shows a block diagram of an apparatus 740 including an engine model

702, a combustion model 604 included in the engine model 702, and a real time

computational fluid dynamics air system model 706 to communicate with the engine

model 702 in accordance with some embodiments. The apparatus 740 includes all

the elements of the apparatus 700, shown in FIG. 7A and described above, except

the inertial model 740. Further, the apparatus 740 includes the combustion model

604 not explicitly included in the apparatus 700 shown in FIG. 7A.

The combustion model 604 simulates chemical reactions in which substances

combine with oxygen and release heat energy. In some embodiments, the combustion

model 604 includes a model of burning a fuel, such as diesel fuel, in the presence of

oxygen to produce heat. The chemical reactions in a combustion process are rapid.
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Thus, a system to simulate a combustion reaction in real time, includes computing

elements and software capable of calculating the physical variables in real time.

In operation, the engine model 702 receives the input signal 710 at the input

port 708. The input signal 710 includes one or more engine control signals, such

as engine actuator signals. The real time computational fluid dynamics air system

model 706 performs a real time computation for variables included in the engine

air system and communicates the results to the engine model 702 via the commu-

nication channel 716. After processing the information received from the real time

computational fluid dynamics air system model 706 and the input signal 710, the en-

gine model 702 provides the output signal 714, including one or more engine signals

such as engine speed, at the output port 712.

FIG. 7E shows a block diagram of an apparatus 750 including the apparatus

740 show in FIG. 7D and further including a reciprocating internal combustion

engine model 618 included in the engine model 702, an exhaust model 754 included

in the real time computational fluid dynamics model 706, and a plurality of nodes

726 included in the exhaust model 754 in accordance with some embodiments. The

reciprocating internal combustion engine model 618 is described above and includes

the reciprocating engine model and the internal combustion engine model described

above. The exhaust model 754 includes the plurality of nodes 726 to model the

intake system of the engine being modeled. Each node in the plurality of nodes

726 includes a computation unit that includes software and hardware to compute a

computational fluid dynamics variable at a node location in the exhaust model 754.

In operation, the engine model 702 receives the input signal 710 at the input

port 708, and information generated by the exhaust model 754 via the plurality of

nodes 726 from the real time computational fluid dynamics air system model 706

via the communication channel 716. The engine model 702 process the combustion

model 604 information, the reciprocating internal combustion engine model 618
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information, and the received information to generate the output signal 714 at the

output port 712.

FIG. 7F shows a block diagram of an apparatus 760 including the apparatus

740 show in FIG. 7D, coupled to an engine control unit 762 in accordance with

some embodiments. The engine control unit 762 includes an output port 764 and

an input port 766. The output port 764 of the engine control unit is coupled to the

input port 708 of the engine model 702. The output port 712 of the engine model

702 is coupled to the input port 766 of the engine control unit. The apparatus 760

is sometimes referred to as a hardware-in-the-loop system and enables testing of the

engine control unit 732 without an actual engine.

In operation, the engine control unit 762 provides the input signal 710, such as

an actuator signal, to the engine model 702. The engine control unit 762 provides

the input signal 710 at the output port 764. The engine model 702 receives the

input signal 710 at the input port 708. The engine control unit 762 receives the

output signal 714 from the engine model 702. The engine model 702 provides the

output signal 714 at the output port 712. The engine control unit 762 receives the

output signal 714 at the input port 766.

The engine model 702 receives the input signal 710 at the input port 708.

The input signal 710 includes one or more engine control signals, such as engine

actuator signals. The real time computational fluid dynamics air system model 706

performs a real time computation for variables included in the engine air system and

communicates the results to the engine model 702 via the communication channel

716. After processing the information received from the real time computational

fluid dynamics air system model 706, the combustion model 604, and the input

signal 710, the engine model 702 provides the output signal 714, including one or

more engine signals such as engine speed, at the output port 712.
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FIG. 8 shows a flow diagram of a method 800 including running a real time

one-dimensional computational fluid dynamics engine model in a field programmable

gate array (block 802). In some embodiments, the field programmable gate array is

replaced by an application specific integrated circuit. Generally, an application spe-

cific integrated circuit replaces the field programmable gate array when production

quantities of the model are required, such as when the model is included in a produc-

tion vehicle, such as a passenger car or industrial truck. A field programmable gate

array is converted to an application specific integrated circuit by removing some of

the programmable features of the field programmable gate array. The method 800

is useful in systems that simulate the engine being modeled. A simulation system

that includes the method 800 can be configured to provide simulated actual sensor

signals and virtual sensor signals. Such a simulation system is useful for applications

such as testing an engine control unit when the engine is unavailable.

In some embodiments, the method 800, further includes configuring a hardware-

in-the-loop test system including an engine control unit coupled to the real time one-

dimensional computational fluid dynamics engine model in the field programmable

gate array. In operation, an engine control unit provides engine control signals to an

engine, such as a diesel engine. A hardware-in-the-loop test system enables testing

an engine control unit when an actual engine is unavailable for testing, such as in the

early design phases of a new engine or when the cost of providing an actual engine is

high. The engine is replaced by the real time one-dimensional computational fluid

dynamics engine model in the field programmable gate array and perhaps other

models, such as combustion and inertia/torque models.

In some embodiments, the method 800 further includes testing the engine con-

trol unit by sending signals to the real time one-dimensional computational fluid

dynamics engine model running in the field programmable gate array and receiv-
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ing signals from the real time one-dimensional computational fluid dynamics engine

model running in the field programmable gate array.

FIG. 9 shows a flow diagram of a method 900 including generating field pro-

grammable gate array code automatically for a one-dimensional computational fluid

dynamics engine model from code that is not real time code (block 902), and run-

ning the field programmable gate array code for the one-dimensional computational

fluid dynamics engine model in the field programmable gate array (block 904). Code

can be generated automatically by converting a non-real time simulation model into

real time simulation model that can run on a field programmable gate array.

In some embodiments, the method 900 further includes testing an engine con-

trol unit by sending signals to the real time one-dimensional computational fluid

dynamics engine model running in the field programmable gate array and receiv-

ing signals from the real time one-dimensional computational fluid dynamics engine

model running in the field programmable gate array. Exemplary signals provided

by the engine control unit include throttle command, turbo boost command, spark

commands, and injector commands. These are processed by the model running on

the field programmable gate array to produce sensor values, such as throttle position,

manifold pressure, manifold temperature, engine speed, and coolant temperature,

that are provided to the engine control unit.

The disclosed embodiments have been provided to illustrate various features of

the disclosure. Persons skilled in the art of computational fluid dynamics, having the

benefit of this disclosure, will recognize variations and modifications of the disclosed

embodiments, which none the less fall within the spirit and scope of the appended

claims.
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Figure 10.2: Patent Fig. 1B
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Figure 10.3: Patent Fig. 1C
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Figure 10.4: Patent Fig. 1D
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Figure 10.5: Patent Fig. 1E
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Figure 10.7: Patent Fig. 3A
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Figure 10.8: Patent Fig. 3B
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Figure 10.11: Patent Fig. 4
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Figure 10.15: Patent Fig. 5
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Chapter 11

DISCUSSION

So far this paper has looked back at the development of FPGA based engine

control through a collection of discrete publications. In this section we will step

back and look at the broader picture.

FPGA based ECUs are now ubiquitous for advanced engine research and are

starting to gain traction for low volume production. There are two major factors

driving the use of FPGAs in research application.

The first is convenience. Well designed FPGA-based controllers are easier to

use. They offer symmetry between channels and among devices not found in more

traditional setups. They also can be setup to very logically partition code between

low-level and high level code. Small tweaks are able to be made to the I/O plat-

form by novice users without needing to dive in to the arcane depths of processor

peripheral architecture.

The second driver is expanded capabilities. This manifests itself both in truly

novel capabilities like custom computing machines and in more mundane ways like

the ability to instantiate an oscilloscope inside the FPGA to help debug internal

signals.

The downside of FPGAs in engine control is higher cost and lower tempera-

ture operation than conventional processors. In research applications there is no

weighting for these negatives, but as volumes go up it becomes more of an issue.

The temperature problem can be approached in several ways. First, there are

specialty FPGA manufacturers that make automotive temperature parts. These

parts tend to cost more and not be supported in many 3rd party tool-chains.



Another approach to to look at the systems view and determine if automotive

(125C) temperature is required or if industrial (85C) parts will suffice. Setting the

ECU away from the engine either on the skid or in the cowl may allow for the use of

industrial temperature parts, though with increased packaging difficulties and costs.

In addition, parts can be screened for performance and/or operated at lower

clock frequencies. Part information about performance de-rating for temperature is

available for some parts. Should the demand for high-temperature parts be sufficient

manufacturers will find a way to build high-temperature parts.

The cost issue should sort itself out in time. As Moores law predicts the cost of

both processors and FPGAs will continue to decrease. At some point the incremental

costs to switch to an FPGA is less than the benefits. The same thing happened

with the switch from 8 to 32-bit processors to support programming in C, or the

introduction of floating point in order to support model based control. When this

will happen is uncertain, Drivven was founded on the assumption that this break

over point was imminent, but we still have a way to go. Still, the path is clear, if

not the rate of travel.

11.1 Ever Increasing System Complexity

Lets look at some additional drivers of complexity that will lead towards adop-

tion of FPGAs in first large engines and then more mainstream applications.

Complexity of engine hardware and algorithms will increase to meet the de-

mands of new emissions standards. Some of the major drivers of this will be:

• The availability of low-cost in-cylinder pressure sensors in production vehicles.

• Adoption of advanced combustion techniques that require cylinder pressure

feedback for stability.

• The advances in fuel injector technology.
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• Electrification of sub-systems like cam-phasers and superchargers.

Taking the technology drivers one at a time; some of the potential for low-

cost pressure sensors was shown in Chapter 6. This was done with high-cost re-

search grade sensors. Lower quality production sensors add additional complica-

tion/opportunity because the signals are less linear and prone to problems like ther-

mal shock. We can expect huge growth in this area because direct cylinder pressure

measurement and real-time analysis reduces the calibration effort in releasing an

engine to production. Further, advanced combustion techniques centered around

various forms of Low Temperature Combustion (LTC) are inherently unstable and

require in-cylinder feedback for them to operate.

Advanced fuel injection systems and techniques offer great promise for advanced

combustion systems. Chapter 7 discusses one of the shortcomings of such systems

and a potential way to address it. From a higher level we see that advanced injection

systems require not only the most complex actuation electronics they also require

the most advanced feedback system to optimize.

Electrification of subsystems provides not only the first order goals of mild-

hybridizations of conventional power-trains, it also increases system flexibility. Elec-

trical systems have much faster response times then their hydro-mechanical cousins.

In order to exploit this control loops with response times on the order of a few crank

angle degrees need to be implemented. This sort of loop rate is too fast for a single

CPU burdened with numerous other control activities.

Because emissions regulations are applied to high-volume engines first then to

more specialized engines we can see further in to the future for low-volume engines.

We know that the same basic technology that was used to clean up diesel trucks is

starting to be applied to locomotive and will eventually be applied to ship engines.

Several key differences apply to the larger engines.
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• We know what worked on the high volume engines.

• Large, low volume engines have higher per-unit cost than mass production

engines, making the relative cost of high-power computing less of a design

tradeoff.

• These engines tend to have small generalized engineering teams.

Engine control will be, if it is not already, too complex to be effectively cali-

brated using arrays of multi-dimensional maps. Advanced modeling of air and fuel

systems will be required. This modeling is too complex for most small companies

to take on, so they will need to go to outside sources for tools and components of

their engine system. While it is not always the case, the lasting trend is for a single

powerful central ECU and dumb actuators as opposed to numerous smart actua-

tors. The ability to plug a supplier’s software models and electrical driver/sensor

interfacs in to an ECU without major retooling will be a major advantage in terms

of required engineering effort and reduced system complexity.

Projects like OSEK and AUTOSAR are attempts in this direction on the soft-

ware side, more on this later. On the hardware side the greater control flexibility of

an FPGA based ECU allows the ECU to adapt to varying requirements with less

(and sometimes no) changes.

In figure 11.1 (courtesy of National Instruments) a typical embedded deploy-

ment curve is shown with progress from large PC based controllers through modular

embedded controller to single board controllers and finally to system-on-chip inte-

gration. One additional advantage of the large engine area is that we do not have to

go all the way to the tail of the development curve because of the low volumes and

high costs of large engines it may be practical to go to “production” with modular

embedded controllers to trade away engineering design costs with per unit hardware

costs.
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11.2 Hardware/Software Architecture for Reusable IP Blocks

In this section we use a series of case studies to illustrate some advantages of

FPGA based design.

Because of the high development cost of a low-volume ECU, pin re-use becomes

important in order to support the maximum variety of engines. In figure 11.2 a

matrix of primary function and alternate function is listed. This table looks at

the common circuits used for various I/O types and what subset of functionality is

available in hardware. For instance, a low-side switch designed to drive a wastegate

or fuel pump solenoid can be re-used as a switch input by wiring it in such a way

that the short-circuit detection circuitry is used to identify if the switch is open or

closed.

Realizing this full re-use matrix is difficult with a microcontroller because while

the hardware is similar, the software may not be and the processor peripheral may
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Figure 11.2: ECU Pin Reuse Matrix

not easily support this function. Moving to an FPGA-based approach makes real-

izing the full re-use matrix easy.

FPGAs have several limitations mentioned earlier, but the biggest is cost. In

high-volume production of similar scale a dedicated chip will always cost less than

a general purpose chip. There are, however, some mitigating circumstances. With

a dedicated automotive microcontroller, for example the Freescale MPC565, there

are features on the chip that you must pay for even if you never use. For instance

the J1850 byte datalink controller that had fallen out of favor by the time that chip

was released. Worse yet, if you need more of a peripheral than it supports, say an

additional timer or counter, you are out of luck. While the offered count of 48 TPU

channels seems like quite a few, the Drivven implementation of a bipolar injector

driver consumes 10 TPU-like channels per injector making external logic required

to drive a six cylinder engine.
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11.2.1 MPC565 H-Bridge implementation case study

An H-bridge circuit like the one shown in figure 11.3 is a common automotive

circuit used to driver electronic throttles and other bidirectional valves.

A project I once worked on was a large low-volume ECU. I crafter the I/O to

cover a number of engines and applications, then had to map the I/O to an MPC565

processor. Outputs like fuel injectors and sparks naturally fell to TPU channels. Low

side PWM switches fell to the PWM channels, etc. By the time I got to the three

H-bridges I did not have enough of any one type of processor resource to handle

all three H-bridges. As a result one H-bridge was driven from the TPU, another

from the MPWMSM (MIOS14 Pulse Width Modulation Sub Module) controller,

and a third from the MDASM (MIOS14 Dual Action Submodule). Figure 11.4

diagrams the complexity of this system versys an FPGA based approach. Green

blocks show identical code/hardware, yellow show similar and red show entirely

different hardware.

Since all the H-bridge needed in its simplest form was one-pin to set direction

and a PWM pin to set current this setup worked. The problem was making them

symmetric. All three control PWM sources had different timebases, this meant that

though some had 16-bit PWM values, the unified device driver that controlled all

three devices could only support 8-bit precision.

Another problem was the limited subset of advanced features available to all

channels. Ideally the H-bridge direction pin would be synchronized with the PWM

command so direction changes occur seamlessly. Since this was not available on

anything but the TPU driven H-bridge an alternate external IC was selected that

could handle this condition, but cost more and had poorer performance.
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11.2.2 Flexible Injector Design

One trend we see is a ratcheting up of processing and injector technology. Take

diesel fuel injectors for example. For decades simple mechanical injectors were all

that was available. Starting with the first electronically controlled injectors the

ability to multiply inject became available. Two injection were common at first, but

the incremental cost for more injection with a digital control system were trivial

so 5 became the minimum expected of a control system. The increased number

of injections made turn on and turn off times of injectors more critical, this lead

to piezo based injectors with faster response times. Both of these systems still

used a basically analog control of the individual pulses with some minor adjustment

capability for the basic injection profile. As the costs of digital components came

down the profile control converted to digital. This has lead to an explosion in

the last few years of complex pulse sequences where each pulse in a multi-pulse

event has a different voltage and current profile. Similarly this advanced control

capability has led injector designers to develop designs that could not work without

advanced software control. Take the Delphi DFI3 that needs to select a correct

voltage profile on a pulse-by-pulse basis to keep the injector from tearing itself

apart. (http://delphi.com/manufacturers/auto/powertrain/diesel/crfs/directact/)

11.2.3 No Peripheral Interrupts

One of the key benefits of an FPGA based architecture is the ability to tailor

the I/O peripheral exactly to is application without requiring processor intervention.

Taking the H-Bridge example again, lets say we want to do current control. In the

common configuration where we keep the high side on and PWM the low side

current is only flowing through the sense resistor when the low-side is on. This

means the sense resistor value should only be sampled when the low-side is on.
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In an MPC565 this requires sending the PWM command to the trigger pin of the

Quad A/D Converter module (QADC) A/D converter or triggering an interrupt

every PWM event. The former is limiting because the QADC has a small number

of trigger lines, the latter is fine if that is all the processor is doing. Unfortunately,

the number of tasks desiring interrupts on a modern engine control processor is

closer to 100, so interrupting continuously is taxing on the software and creates

numerous inter-module dependencies.

With an FPGA-based design the I/O component is precisely tailored to the

application, so interrupting the processor is not needed. This is good because inter-

rupt latency has grown with processor speed and programming language abstraction.

This means that while the throughput of in-line code has gone up by a factor of

100 since the first automotive processors in the 1980s the time it takes to service an

interrupt is roughly the same.

Compounding the interrupt problem are large development teams and high level

languages. With the popularization of model-based control in ECUs, the hight level

applications are increasingly written in high-level dataflow languages like Simulink

and LabVIEW. Suppliers are expected to deliver both simulations and control mod-

els of their components in these languages, along with normal technical data. These

models and languages lend themselves to strait-line execution with no interrupts.

Further, the days of a single programmer writing most of the code for an ECU

are over. Now large development teams build and validate larger parts of the code

independently. Components like operating systems and network stacks come from

3rd party vendors. The current design process requires significant effort mapping all

these components to a specific hardware platform.

An alternate path, one with an FPGA at its core, has vertical slices of archi-

tecture from the application all the way to the sensor or actuator. Instead of teams

building horizontal wafers of the system, teams can build vertical slices. They
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can design, model, and optimize the application, device driver, hardware, and sen-

sor/actuator package. This package, once done, can be moved from one design to

the next. Because most of the complex logic is in the FPGA fabric the I/O circuits

are able to implemented with more generic parts. This leads to fewer problems with

obsolescence.

The FPGA itself, if correctly written, is proof against obsolescence. While

the life of any specific FPGA is on the order of a few years, similar to that of a

processor, upgrading to a newer FPGA is seamless. A fully static FPGA design

that does not use manufacturer specific blocks is just a compile away from a new

device. A similar upgrade from one processor family to another requires several

man-years of development.

11.3 Blurring of the Hardware/Software divide

Xilinx introduced the VirtexPro line of FPGAs, with hard PowerPC cores, in

the early 2000s and more recently the Zynq line with a hard ARM core. These

combined the best of both worlds with the speed of a direct silicon implementation

of a processor and the peripheral flexibility of an FPGA.

The PowerPC 405 and 440 cores had a fairly ridged structure, somewhat lim-

iting the flexibility of implementation. Xilinx’s soft core Microblaze architecture

on the other hand allowed a great deal of flexibility. It used an open source GNU

toolchain so that both the core and compiler could be tailored to meet a specific

need. The Microblaze fell short in that being a soft core processor it was an order

of magnitude slower than its directly implemented brethren.

The Xilinx Zynq solves many of these shortcomings. It’s arm architecture

supports a co-processor instruction allowing extensibility for specific functions, but

also the speed of a hard processor. Because ARM is a popular core choice across
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the embedded industry and supported by all the top FPGA manufacturers we can

expect this combination to have more staying power than the Virtex Pro line.

The ability to extend the processor for specific applications is not new to au-

tomotive. The Motorola 6833x processor line supported a dedicated lookup table

instruction not found on the parent 68000 series processor. We exploit a similar

concept with the heterogeneous core architecture of the custom computing machine

papers.

Taking this process a little further we can envision a system on chip where entire

subsections of the design are carried out by their own discrete execution units. An

extreme example of this is the real-time CFD model presented earlier. In this case

a section of the FPGA is used to model the whole fuel system. Another section of

the FPGA may be used to model the air system.

Similarly we can envision an entire closed loop model for valve controller where

the desired timing per cylinder event is set by the high level controller and imple-

mented by a high-speed control model acting independently in a separate part of

the chip. Today similar concepts are are used with discrete controller units, but

these are limited by network speed Cheever et al. (2012).

Another example of subsystems that can be given their own FPGA blocks

are network communications. This is done today to a certain extent with Can

and Flexray modules and of-course Ethernet hardware. In all these cases though

interrupts are required to move data to and from the processor and do the higher

level processing. While some of this can be alleviated with advanced linked-list DMA

controllers they still face challenges of only being able to handle the simplest network

traffic without CPU intervention and are extermely chip dependent. An FPGA

based version of this architecture allows complete network packets to be processed,

data scaled, and place in the correct mailboxes without CPU intervention.
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Because FPGAs come in various size/cost options in the same physical pack-

age it is possible to have a more complex unit for debugging and smaller chip for

deployment. For example a development ECU may have a larger FPGA that imple-

ments knock detection with an FFT and allows real-time plotting and data capture.

For the deployment version a much more compact integer FIR time-domain filter

implementation may be used. With a processor based design external hardware like

the Motorola MKICKS or Drivven DCAT is required to do the FFT based knock

tuning.

11.4 Model based control and model co-processors

Modern engine control is model-based control. By this I mean that while the

feedback still tends to be of the PID variety, there is a great deal of linearization and

feed-forward based on low-order models of the physical system. Since models want

to run at different rates, some on conventional timebases, others stepping based on

cycles or crank angle degrees, it may be advantageous to look at multi-processor

solutions.

In this paradigm data is taken and processed using the mailbox mechanisms

from something like AUTOSAR, but instead of being processed as a thread in a

multi-threaded OS on a single processor it is processed on its own dedicated proces-

sor.

This simplifies the modeling a great deal. Their determinism is enhanced by

not having engine synchronous and time-based events occur on the same processor.

This means that worst case performance of algorithms is easy to determine.

Once worst case instruction execution is known, along with the worst-case hard

real-time requirement, the execution speed of the processor can be determined. From

this the area of the processor can be minimized by either changing how the various
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Figure 11.5: Overview of model optimization process

elements are structured or by threading it in to other processors like the PRET

processors described in the custom computing machine papers cores.

11.5 System Building Tools

To round out the work in chapter 7 on custom computing machines and turn

it in to a useful tool we need to create a set of systems building tools. These tools

allow the generation of real-time FPGA based models without the need for huge

amounts of human intervention in the process.

To make this process a reality we will need to convert from an industry standard,

but closed source modeling environment like GT-SUITE to an open-source one like

Modellica. From there we need to generate a new set of model blocks to support

real-time. Each of these blocks will have different versions supporting different trade-

offs between fidelity and speed, with the full fidelity blocks possibly not supporting

explicit real-time solutions. This is outlined in figure 11.5 where the yellow blocks

are iterative user interaction and the blue block represents the automated processes

described below.
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The user can build a high-fidelity model with as accurate as possible a simu-

lation of the real system. Next a reduced fidelity model is built from the reduced

fidelity blocks and possibly reduced system constraints. The results are then com-

pared against the high-fidelity model to determine if the reduced fidelity model is

sufficiently accurate. If it is then the model is passed through the system generation

tools to determine if it is possible to execute it in real time and how large and FPGA

would be required.

Figure 11.6 details the process of generating the first intermediate step based

on the model and library blocks chosen (block a). For each element used in the

library we know how many thread cycles it would take to execute on a PRET or
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similar architecture as described in the custom computing machine papers above,

we also know the list of resources used (block b). From the model we know the

time constraints (block c) and can decide the amount of multiplexing of threads

per core we are allowed (block e). Examining the model we can construct of graph

of interactions between model blocks. This graph is then optimized to ensure that

most of the model communication is between cores instead of across them to keep

communication using the “free” BRAM (block f). In the case of multi-chip com-

munication the graph must be optimized to segregate the model across chips where

the allowed communication channels are limited to only one or two graph edges.

Once this is done the timing and initial area report are generated (block g)

allowing the user to know if the model can execute in real-time and an approximate

FPGA area required.

Lastly the process of code generation is outlined in figure 11.7. This takes the

optimized graph from the previous step (block c) as well as the model (block a) and

library (block b) from the first steps. The model and library are used to fill in the

constants and tunable parameters of the model so they can be optimized by the

C compiler (block d). The interconnects are defined by the graph layout, the code

generation tool then fills in the appropriate code for each interconnect to direct the

block where to get values from and where to publish them (block e).

Once this is done the final C code and associated make file are generated for

each processor thread (block f). They are then all compiled in to a collection of

object files (block g).

The compiled C code, compiled FPGA code (block h) and external FPGA code

are all linked together, placed and routed, so that they can be deployed on to a

target and the model can be executed in real time.
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11.6 Re-inventing the wheel: the case for open source research software

One final note. The automotive software industry is very secretive. On top

of this there are few text books with any detail on engine control algorithms. As

a result we see many researchers, especially in an academic setting, developing the

same algorithms.

Following the same path of the operating system industry years ago, two paths

are recommended. The first is the publication of practical text books on engine

control software. The current publications tend to be either shallow like Bosch

(2006) and Ribbens (2012) or fairly abstract Gueezlla and Onder (2009) . A concrete

text with worked examples would greatly cut down on the learning curve that most

researchers have to go through.

The second prong of this effort is, again following what happened decades ago

with the OS industry, open source application software and standard software inter-

faces. While we see standardization efforts with OSEK/VDX (http://www.osekvdx.org/)

and later AUTOSAR (http://www.autosar.com) these standards are both complex

and voluntary. AUTOSAR outlines a nice mailbox framework for intermodel com-

munication and tools to generate it, but it has some drawbacks. The AUTOSAR

framework to describe a PWM is over 20 pages and still leaves most of the im-

plementation details up to the user. More complex tasks like multi-pulse injector

control are left, so far, TBD with the standard.

Across the research community we see a huge duplication of effort, and it is

safe to assume this continues throughout industry. Many man-years are spent im-

plementing the same basic I/O functions by different institutions. The same goes

for basic engine control routines like a simple speed-density fuel control algorithm.

Even simple models like wall-wetting and manifold filling are built and rebuilt.
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We have seen a number of projects in this area over the years. The DIY-EFI

project based on a Motorola 68332 and the RTEMS project was one of the first, but

floundered for lack of hardware.

The Megasquirt project contains much of the core ingrediants, but is targeted

to the hobbyist market and has traditionally used such low-end processors and tools

that they have been quite limited in what they can achieve.

Some level of work is being done in this area at the academic level, Stobart

et al. (2011) but so far it is just a start without a broader base of active users like

most successful open-source projects. Promoting this approach on both a hardware

and software level is a long-term goal of this author.
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Chapter 12

CONCLUSIONS

This dissertation covered major advances in FPGA based engine controllers

over the past decade. Three major areas of FPGA applications were discussed:

• FPGAs as engine control coprocessor.

• FPGAs for advanced engine control.

• FPGAs as custom computing machines.

The topic of FPGAs as engine control coprocessors is now fairly mature from

an advanced research perspective. The basic architecture for the Drivven EPT

has been stable for 7 years. Tweaks to the internal code like those to support free

piston engines or start-stop applications where the engine rolls back are incorporated

occasionally.

The focus in this area has shifted and is now focused on two areas. The first is

complex I/O. As diesel and gasoline direct injection systems get more complex the

need for more complex pulse sequencing increases. Conversely, with the ability to

shift more complexity in to the control electronics, actuators are being designed that

require much more complex controls. The second branch of research is combining

the FPGA and processor on the same chip. This is exemplified by the Xilinx Zynq

series of FPGAs with dual core ARM processors embedded in them and “soft”

coprocessor peripherals.

The use of FPGAs for advanced engine control as outlined in the included paper

is primarily focused in rapid feedback from in-cylinder combustion sensors. This

field had been largely gated by the lack of production cost/quality cylinder pressure



feedback sensors. Now that these sensors are becoming commonplace, research in to

algorithms and tools to exploit their availability has increased dramatically. This is

expected to be a major research focus for years to come and the FPGA is expected

to be a core enabling technology.

FPGA based custom computing machines in engine control is still a very ad-

vanced research topic. Years of work still lie ahead to transition the 1D-CFD ap-

plication and similar custom computing machines from complex research devices

requiring expert setup to appliance-like devices that ”just work” like the engine con-

trol coprocessor FPGA software. Still, the path is clear that due to lowering costs

and increasing capability of FPGAs, these types of custom specialty processors will

eventually become standard subsystems in the larger engine control picture.

This author is proud to have been at the forefront of research in each of these

areas and expects to continue to contribute in this area for years to come.
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