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ABSTRACT OF THESIS 

 

 

POTENTIAL ENVIRONMENTAL FACTORS ASSOCIATED WITH THE NEWLY  

 

EMERGING BAT WHITE-NOSE SYNDROME IN THE NORTHEASTERN UNITED  

 

STATES: AN EXPLORATORY MODELING APPROACH AND CASE-CONTROL  

 

STUDY 

 

 

The emergence of mortality-causing bat White-Nose Syndrome (WNS) in the 

Northeastern United States during 2006 prompted an immediate need for research 

surrounding possible causation factors influencing its spread.  Due to the mysterious 

nature of fungal pathogens, it has been very difficult to determine how the WNS-related 

Geomyces destructans fungus is causing bat mortality.  Several different hypotheses have 

been formulated by bat and ecological experts in the field, but major influencing factors 

remain undetermined.  To initiate WNS environmental research, this study utilizes a new 

machine-learning modeling technique, Maxent modeling, along with a case-control study 

to assess the hypothesis that certain environmental variables may be associated with the 

occurrence and distribution of bat WNS.  Maxent data uses presence-only data and bases 

its algorithms on the principal of maximum entropy.  Maxent results using 58 

environmental predictor variables revealed Slope, Growing-Degree Days, Annual 

Temperature Range, and Land-Cover as the top four predicting variables for WNS-  
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infected bat hibernacula locations.  Similarly, the case-control study showed that two of 

these top four predictor variables (Growing-Degree Days and Annual Temperature 

Range) were statistically significantly associated with a hibernacula’s WNS infection 

status.  Cases had a slightly higher mean Average Temperature Range than controls 

(Cases=38.0, Controls=36.0) and lower mean Growing-Degree Days than controls 

(Cases=3419.1, Controls=3838.1).  Both of these variables, along with their correlated 

terms, are largely temperature-dependent, suggesting a need for further research on the 

role of temperature in predicting the occurrence and distribution of Geomyces 

destructans.  As a starting point for future research, this study has identified the most 

likely environmental variables related to the potential devastating ecological 

consequences of WNS-related bat mortality.   
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CHAPTER 1:  INTRODUCTION 

 

I. Background 

The emergence of bat white-nose syndrome (WNS) in the northeastern United 

States has been recently associated with an unprecedented increase in bat mortality 

(Figure 1); (Blehert et al. 2009).  Thirty-three surveyed hibernacula (a place for 

hibernating animals to shelter during winter) sites in Massachusetts, Connecticut, New 

York, and Vermont have confirmed cases of WNS with a 75% or greater decline in bat 

populations (Blehert et al. 2009).  Two of these sites are shown in Figure 2 (Blehert et 

al. 2009).  The first documented case of WNS was recorded by the New York State 

Department of Environmental Conservation and occurred on February 16
th

, 2006 in 

Howes Cave, 52 km west of Albany, New York (Figure 3); (Blehert et al. 2009; USGS 

White 2009).  Originating cases presented the now common visual characteristics of  

 

Figure 1: WNS Bat Mortality and Unusual Behavior 
 

a.                                                                     b. 

                         
 

(a) “Remains of bats on the floor of a hibernaculum affected by white-nose syndrome 

(WNS).  Wings of some bats have presumably been removed and left by scavengers.”   
 

(b)  “A little brown bat (M Lucifugus) outside of a hibernaculum during daytime in 

winter – and unusual behavior, observed immediately before death in some bats 

affected by WNS.  Note the snow in the background.”   
 

Source: Boyles and Willis 2009, Photos by: Alan Hicks 
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Figure 2: Bat Population Trends for Hailes Cave and Schoharie 

Caverns in New York, United States 
 

 

 
 

Source: Blehert et al. 2009 
 
 
 
 
 

 

 

Figure 3:  Positive Hibernacula Locations for WNS,  Years 2006-

2008 (Confirmed by Survey) 
 

 

 
 

Source: Blehert et al. 2009 
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WNS, which include white fungal growth (Geomyces destructans) on the muzzle, wing 

membranes, and ears of hibernating bats (Blehert et al. 2009).  Through culture 

analyses, Blehert et al. (2009) determined that bats affected by WNS have a 

psychrophilic (thriving at relatively low temperatures) fungus colonized on their skin 

that is phylogenetically (historically, in terms of evolution) related to Geomyces ssp., but 

morphologically distinct from other members of the genus.  Despite this discovery, the 

role of the WNS fungi has not yet been identified because little is known about the 

genetic and molecular basis of fungal pathogenicity (Hajek 1994; Blehert et al. 2009).   

II. Symptoms 

In a recent study, Blehert et al. (2009) showed that 105 out of 117 necropsied 

bats in the northeastern United States revealed fungal hyphae (threads making up the 

vegetative body of a fungus) that replaced the bat’s sweat glands and hair follicles; 

invading regional tissue, eroding ear and wing epidermis, and reducing fat reserves that 

are required for hibernation survival.  Courtin et al. (2009) conducted a study with 38 

infected bats and concluded that WNS-infected bats have very little (if any) fat stores 

but show no evidence of major organ failure or consistent element toxicity.  According 

to the National Wildlife Center, emaciation and poor body condition have been the most 

prominent characteristics among bats presenting WNS-related fungal hyphae on their 

bodies.   These characteristics seem to be the ultimate cause of their mortality (Boyles 

and Willis 2009; USGS White 2009).  

III. Hypotheses 

According to Boyles and Willis (2009), researchers are unsure if the WNS-

related Geomyces fungus is even a direct cause of the high bat mortality, or if it is 



4 

simply a symptom of some larger issue affecting the species.  Due to this uncertainty, 

various different causal hypotheses have been formulated by experts in the field (Boyles 

and Willis 2009).   

One such hypothesis emphasizes the importance of fat reserves, also known as 

white adipose tissue (WAT), prior to hibernation (i.e., if sufficient fat reserves are not 

present by the time of hibernation, bats will have inadequate fat stores to survive the 

winter) (Kunz et al. 2008, Boyles and Willis 2009).  Typically, bats will forage for 

insect biomass, accumulate WAT, and participate in courtship and mating activities in 

autumn before their hibernation onset (Kunz 1982, Kunz et al. 2008).  A lack of 

adequate WAT in WNS-affected bats prior to hibernation could result from several of 

the following factors: environmental stressors (such as a decrease in the amount of food 

available to bats), altered composition of the insect community (e.g., unbalanced 

proportions of the most needed insects), or some unknown effect on the feeding patterns 

of bats (Kunz 1982, Kunz et al. 2008, Boyles and Willis 2009).   

All current bat species affected by WNS follow a winter hibernation pattern of 

approximately 12-15 days in torpor (an inactive physiological state) followed by a short 

stint of arousal (usually a few hours); (Kunz 1982, Zimmerman 2009).  During torpor, 

bat body temperatures do not stray more than 2 degrees Celsius from the hibernacula’s 

ambient air temperature unless the ambient air temperature is at or below freezing (Kunz 

1982, Kunz et al. 2008).  This minimizes their energy expenditure (Kunz 1982, Kunz et 

al. 2008).  During arousal (a time of mating and often relocation, but generally not fully 

understood), bats must triple their body temperature, requiring a significant increase in 

energy use (Kunz 1982, Kunz et al. 2008, Boyles and Willis 2009).  Raising the number 
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of arousals during one winter hibernation season may be a second factor influencing the 

depleted WAT found in WNS-infected bats (Boyles and Willis 2009, WNS Science 

Strategy Group 2008).  This hypothesis suggests that bats may arrive at hibernacula with 

ample fat stores, but become affected by WNS post-arrival and end up using fat stores 

too quickly during their hibernation (Boyles and Willis 2009, WNS Science Strategy 

Group 2008).  Suspicions that WNS causes an increased disturbance during hibernation 

have been suggested by several researchers and scientists within the field (Kunz et al. 

2008, Blehert et al. 2009, Boyles and Willis 2009, USGS Investigating 2009, 

Zimmerman 2009).  According to Kunz et al. (2008), increased torpor disruption is most 

likely being caused by one of the following: an awareness within the bat of fungal 

growth on their bodies, creating a need for the bats to clean and rid themselves of the 

Geomyces fungus (using additional waking energy), or an increased immune response to 

WNS, using more of the bat’s energy stores to fight the invader.  Both disruptions 

increase energy use and result in hunger, causing a mid-hibernation awakening and 

search for very small or non-existent food supplies (Boyles and Willis 2009, Kunz et al. 

2008).   

A third hypothesis, but not mutually exclusive of those previously mentioned, 

suggests that WNS may be a secondary infection that attacks animals already 

compromised by another pathogen (Zimmerman 2009).  An examination of WNS-

infected bats by Meteyer et al. (2009) showed that fungal hyphae filled hair follicles and 

sebaceous glands of examined bats, but did not typically cause inflammation or immune 

response in the tissue of the bat (Gargas et al. 2009).  These results suggest that some 
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additional un-tested variable or underlying factor may be unknowingly contributing to 

the large masses of WNS mortalities. 

At this point, the exact role of WNS-related Geomyces fungi in bat mortality has 

yet to be determined.  Current research has focused on narrowing down the wide variety 

of possible factors influencing their mortality, but research has only recently begun and 

many results have not been ascertained (Boyles and Willis 2009).  One environmental 

factor under investigation is temperature because psychrophilic fungi grow best at 5-

10°C, which is the average body temperature of hibernating bats in WNS-affected 

locations (Boyles and Willis 2009).  Other possible factors include climate (specifically 

extremes of drought, heat, cold, and precipitation), water quality, agricultural 

intensification, pesticide use, deforestation, urbanization, land cover, elevation, and 

other various topographic variables (Jaberg and Guisan 2001; Lamb et al. 2008; Jones et 

al. 2009).  With large winter roosting areas containing hundreds to thousands of bats, 

and annual summer trips to maternity colonies for breeding, these bats may be a perfect 

host for contagious infectious disease (Fenton 1969; Thomas et al. 1979).  Although 

contagion has been speculated, it has not yet been definitively reported in any 

publications.  However, the U.S. Geological Survey states that WNS is most likely 

spread by: 1) contact among bats, 2) contact with their environment, 3) human 

movement between caves, 4) other animal movement between caves, or 5) some 

combination of these (USGS Investigating 2009).  Regardless of how WNS spreads, 

environmental predictors may have the potential to provide fundamental staging for the 

advancement of further research on WNS, which would be a necessary step for 

changing the current pattern of WNS spread. 



7 

IV. Strategic Approaches 

Strategies for WNS management cannot be developed until a thorough 

understanding of the epidemiology, ecology, and etiology of WNS has been established 

(Blehert et al. 2009).  According to Huq and Colwell (1996), environmental factors can 

directly or indirectly affect a pathogen’s ability to survive, persist, and produce disease.  

The emergence of disease can therefore be directly influenced by environmental factors 

and may partially or entirely depend on physical, biological, and chemical states within 

the potential disease’s surrounding environment (Huq and Colwell 1996).  Recognition 

of environmental links potentially affecting disease emergence has catalyzed the 

introduction of paired environmental variable and emerging disease research (Daszak 

2001, McMichael 2004, Wilcox and Gubler 2009).  Under such interest, this study 

hypothesizes that certain environmental factors may be linked with the occurrence and 

distribution of bat White-Nose Syndrome.  Detection of these factors can be aided by 

advances in GIS (geographic information system) technologies that have provided us 

with new approaches to predictive modeling and tools for integrating environmental 

monitoring data into the analysis of health outcomes (Nuckols 2004).   

V. Current Status 

As of March 2009, WNS was documented in the following nine states: New 

York, Vermont, Massachusetts, Connecticut, Pennsylvania, New Jersey, Virginia, West 

Virginia, and New Hampshire (USGS Investigating 2009).  Six out of nine known bat 

species occupying the northeastern U.S. have been found with the WNS-related 

Geomyces fungus on their bodies.  These include the little brown bat (Myotis lucifugus), 

the tricolored bat (Pipistrellus subflavus), the northern long-eared bat (Myotis  
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Figure 4: Six Known Bat Species Currently Affected by the WNS-Related 

Geomyces Fungus 
 

 

The little brown bat (Myotis lucifugus) 

 
 

Image Source:  

http://mariewin.server304.com/marieblog/ 

uploaded_images/BROWN%20BAT-768944.jpg 
 

 

The tricolored bat (Pipistrellus 

subflavus) 

 
 

Image Source:  

http://www.biokids.umich.edu/files/29588/ 

P_subflavus1_large.jpg 
 

 

The northern long-eared bat (Myotis 

septentrionalis) 

 
 

Photo by: Michael Patrikeev 

Image Source: 

http://wildnatureimages.org/sitebuildercontent/  

sitebuilderpictures/n_long-eared_bat_12926.jpg 
 

 

The endangered Indiana bat (Myotis 

sodalis) 

 
 

Photo by: Adam Mann 

Image Source: 

http://www.columbiamissourian.com/media/ 

multimedia/2009/07/07/media/Bats03_t_w600_h600.j

pg 
 

 

The big brown bat (Eptesicus fuscus) 

 
 

Photo by: Michael Patrikeev 

Image Source: 

http://wildnatureimages.org/sitebuildercontent/ 

sitebuilderpictures/big_brown_bat_8543.jpg 

 

 

The eastern small-footed bat (Myotis 

Leibii) 

 
 

Photo by: Dr. J. Scott Altenbach 

Image Source: 

http://www.dnr.state.md.us/wildlife/bats/ 

eastsmallfoot.jpg 
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septentrionalis), the endangered Indiana bat (Myotis sodalis), the big brown bat 

(Eptesicus fuscus), and the eastern small-footed bat (Myotis Leibii); (Figure 4); 

(Meteyer et al. 2009).  The three unaffected species have most likely avoided WNS 

infection due to their winter migratory patterns of flying south and roosting in trees 

(Findley 1993).  The change in temperature (warmer southern air), roosting area (tree 

versus enclosed hibernacula), and proximity to other bats are three factors that could be 

affecting the WNS variation between hibernating and migratory bats (Findley 1993).  Of 

the six species found with WNS-related fungus on their bodies, the little brown bat is 

the most prevalent and the most affected by WNS (Meteyer et al. 2009).  Recovery of 

this species, along with the five other species, will be difficult due to a bat’s average 

lifespan of 6-7 years and average off-spring count of one bat pup per year (Cockrum 

1956; Fenton 1970; Humphrey and Cope 1976).   

Bat populations worldwide participate in various key ecologic processes that are 

essential for plant pollination, insect control, and seed dispersion (L. F. Skerratt et al. 

2007, Blehert et al. 2009).  Decreases in North American bat populations will present 

various percolating consequences to several vital ecologic systems within our 

environment (Blehert et al. 2009).   

VI. Objectives 

Objectives include the application of a GIS-related spatial modeling technique 

and a case-control study to identify environmental factors potentially associated with the 

occurrence and distribution of bat White-Nose Syndrome. 
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Specific Aims: 

 

1.  Download the publicly free Maxent Software. 

2.  Obtain geographic coordinates for WNS-infected hibernacula from the U.S. Fish 

and Wildlife Service (verified positive by state agencies via field surveys and/or 

laboratory testing). 

3.  Remove spatially correlated hibernacula sites. 

4.  Select a set of relevant bioclimatic and environmental variables from originating 58 

available GIS layers by reducing correlated terms, removing variables that 

contribute 0% to the model, and testing the importance of phenologic variables’ 

contribution. 

5.  Transform all bioclimatic and environmental variables into the same geographic 

projection, geographic coordinate system, resolution size, data format type, and 

coverage area for data consistency purposes. 

6.  Run Maxent with all non-correlated hibernacula sites and remaining (i.e., relevant) 

bioclimatic/environmental variables to determine the ranking order of each 

variable’s contribution to WNS prediction.  

7.  Evaluate whether Maxent’s top four contributing variables are actually predictive of 

WNS-infected caves specifically (not just bat hibernacula in general) by conducting 

a case-control study that examines the association between hibernacula infection 

status and each top predictor variable.  

8.  Retrieve geographic coordinate locations for non-infected hibernacula (controls) 

within the study area by contacting individual state agencies for data (sites declared 

negative via laboratory testing, field inspection, or failure to prove positive 

infection status). 
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9.  Transform, when needed, all control data to match that of existing data layers for 

consistency purposes.  

10. Evaluate statistical assumptions and perform variable-appropriate case-control 

statistical analyses for each predictor variable ranked as the top four Maxent results.  

11. Perform a logistic regression evaluation using case-control data. 
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CHAPTER 2:  METHODS  

 

I. Maxent Software 

 

The Maxent modeling software used in this study predicts probability distribution 

of a given occurrence based on presence-only data points and certain given 

environmental risk factors (Phillips et al. 2006; Maxent Software version 3.1, www.cs. 

princeton.edu/~schapire/maxent/).  This modeling method is considered a machine-

learning technique based on the probability distribution of maximum entropy (Phillips et 

al. 2006; Kumar et al. 2009; www.cs.princeton.edu/~schapire/maxent/).  Entropy, or 

randomness, approaches a maximum value when an isolated system (i.e., one free of 

external influences) reaches equilibrium (Phillips et al. 2004, Phillips et al. 2006, 

Pearson 2007).  An isolated system that is not in equilibrium will approach equilibrium 

over time, and will therefore approach maximum entropy over time (i.e., without 

external influences, a species will spread to fill all areas with suitable conditions and 

will approach a uniform distribution); (Pearson 2007, Phillips et al. 2004, Phillips et al. 

2006).  According to Sukumar, the maximum entropy principle “provides a means to 

obtain least-biased statistical inference when insufficient information is available” 

(2008).  The concept of modeling maximum entropy distributions for presence-only data 

has been successfully applied to a number of fields, including statistics, ecology, 

computer system modeling, and general probabilistic problem solving (Shore 1980).   
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Maxent’s ability to model ecologic niches
1
 has been considered one of the best 

among several different modeling methods (Elith et al. 2006; Ortega-Huerta and 

Peterson 2008, Kumar and Stohlgren 2009), and has been proven effective despite small 

sample sizes (Hernandez et al. 2006; Pearson et al. 2007; Papes and Gaubert 2007; Wisz 

et al. 2008; Benito et al. 2009, Kumar and Stohlgren 2009).  A recent comparison of 16 

different modeling methods encompassing data on birds, terrestrial plants, bats, and 

reptiles resulted in the ranking of Maxent as the best-performing model algorithm (Elith 

et al. 2006, Kumar et al. 2009).  Jaberg and Guisan (2001) also conducted a study that 

modeled the relationship between landscape structure and community composition in 

bats.  Through their analyses, Jaberg and Guisan (2001) were able to determine species-

specific relationships to resources and found that predictive GIS modeling techniques 

can provide researchers with an essential conservation tool, especially when a thorough 

species census is near impossible to obtain. 

The Maxent software program was written by Steven Phillips, Miroslav Dudik, 

and Rob Schapire, with support from AT&T Labs-Research, Princeton University, and 

the Center for Biodiversity and Conservation, American Museum of Natural History 

(Phillips et al. 2006).  The free, publicly available Maxent software, version 3.3.2, can 

be found at http://www.cs.princeton.edu/~schapire/maxent/ along with step-by-step 

tutorials and instructions for input data requirements.  Maxent analysis uses species 

presence-only data and a variety of environmental variable layers to produce a 

predicted continuous probability distribution ranging 0 to 1.  Maxent’s output 

probability distribution uses nonparametric linear, quadratic, product, binary 

                                                           
1
 In ecology, niche is a term used to describe an organism’s place in the ecosystem (home.mira.net/~gnb/ 

caving/glossary/N.htm).  A niche model is one that aims to accurately predict an organism’s place in the 

ecosystem via input data information. 



14 

(categorical), threshold, and hinge functions on the environmental variables for optimal 

WNS prediction.  These provide constraints for the output distribution, including mean, 

variance, covariance, proportion in each category, proportion above threshold, and 

mean above threshold, respectively (Phillips et al. 2006). 

II. Target Species of Analysis 

 

A. Description: 

 

Target species included all bats in the northeastern U.S. affected by bat White-

Nose Syndrome:  The little brown bat (Myotis lucifugus), the tricolored bat 

(Pipistrellus subflavus), the northern long-eared bat (Myotis septentrionalis), the 

endangered Indiana bat (Myotis sodalis), the big brown bat (Eptesicus fuscus), and the 

eastern small-footed bat (Myotis Leibii); (Meteyer et al. 2009). 

B. Data Preparation and Parameters:  

 

For modeling purposes, WNS point data were formatted to coincide with 

Maxent’s input requirements.  Briefly, three columns (species name, longitude, and 

latitude, both in decimal degrees) were generated in Microsoft Office Excel 2007 

(Microsoft Corporation, Redmond, WA).  WNS-infected bat hibernacula locations 

were provided by Jeremy Coleman of the United States Fish and Wildlife Service and 

entered into Microsoft Office Excel 2007 under the appropriate column headings 

(USFWS 2010).  Spreadsheet information was then saved in two separate file 

formats: .xls and .csv.  Comma delimited, .csv, is the format required by Maxent 

software parameters for data input.  For data privacy purposes, exact WNS-infected 

bat hibernacula locations can not be listed in this document.  Infected bat hibernacula 

are generally confined to the northeastern United States (Figure 5). 
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Figure 5: 

WNS-Positive and WNS-Negative Data Points 

for the Study Area of Interest (AOI) 
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Original 84 WNS-positive points provided by the U.S. Fish and Wildlife 

Service were reduced to 74 points due to duplication and clustering (four data points 

were duplicates and six data points were highly spatially autocorrelated).  Duplicates 

were found by sorting the numerical decimal degree values of all WNS-infected bat 

hibernacula data and visually checking for identical latitude/longitude points.  Visual 

duplicate checking was possible because of the small sample size.  Spatial 

autocorrelation was accounted for by manually selecting and removing all data points 

in neighboring cells of a given WNS point.  Each grid cell measured 1km x 1km, 

making a total neighboring grid cell area of 9,000-meters
2
.  Any points within this 

area were removed (see Figure 6).   

Case data for 2009 were confirmed positive by either, 1) laboratory testing, 2) 

field surveying (masses of dead bats presenting white fungal growth found within, 

beside, or at the entrance of hibernacula sites), 3) continuing infection from a previous 

year, or 4) some combination of these.   

III. Environmental Variables 

 

Fifty-eight environmental variables were placed in the Maxent software 

program for analysis (Appendix 1).  These included 39 spatially explicit features 

(phenology, topography, hydrology, climate, and land-cover) and 19 bioclimatic 

variables, all of which spanned across the northeastern United States study region.  

Although described separately below, all datasets were entered into the model at the 

same time.  A description of these layers along with their data preparation procedures 

follow. 
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Figure 6:  Process of Removing Spatially Correlated Points 
 

 

       

       

       

   P    

       

       

       

 

P = WNS-Positive Point 
 

       = Neighboring Cells 
 

 

Each cell measures 1km x 1km (total neighboring cell area = 9km², 

or 9,000m²).  Any points within the neighboring cells were removed. 
 

 

A. Phenology Variables 

i. Description 

In a recent study, Morisette et al. determined that phenological responses are 

becoming increasingly relevant for applied environmental issues (2009).  

Phenology (the study of recurring life-cycle events) examines the timing of 

biological events (such as animal migration or plant maturation) (Morisette et al. 

2009).  Previous measurements for estimating or describing such biological events 

have been unsatisfactory, but current advances in MODIS’ phenologic satellite data 

collection have allowed researchers to more accurately measure and predict 

phenologic events (Tan et al. 2008, Morisette et al. 2009).   

Due to the recent availability of this improved data, both MODIS satellite 

products (each measuring different variation in vegetation indices capturing 
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biomass) were utilized for this study (Kumar et al. 2009).  These temporally 

smoothed and spatially gap-filled vegetation metrics included NDVI (Normalized 

Difference Vegetation Index) and EVI (Enhanced Vegetation Index), with 15 

metrics each (30 total); (Tan et al. 2008).   

NDVI metrics are a result of near-infrared radiation minus visible radiation 

divided by near-infrared radiation plus visible radiation (Weier and Herring 2010).  

Figure 7a. contains a visual depiction of the NDVI pixel value collection process, 

and Figure 7b. displays the formula used for this process (Weier and Herring 

2010).   

EVI metrics are calculated similarly to NDVI, but correct for some 

distortions in the reflected light caused by particles in the air and ground cover 

below vegetation (Weier and Herring).  Due to this, EVI metrics are considered an 

improvement over the quality of NDVI metrics because they can capture a better 

measure of vegetation variation in densely vegetated areas.   

Despite the accuracy benefits of EVI metrics over NDVI metrics, both 

phenologic measures are often used in conjunction to optimize study results (Weier 

and Herring 2010, Li and Weng 2005, Nagler et al. 2007, Tan et al. 2008).  For 

example, Tan et al. showed in their study that NDVI metrics were more sensitive to 

small vegetation variations and performed better in sparse vegetation regions than 

EVI metrics (2008).  Due to the separate phenologic detection advantages of each 

metric type, both NDVI and EVI vegetation indices were used in this study as 

Maxent inputs.   
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Figure 7 (a. & b.): MODIS’ NDVI Data Collection Process 

 
 

a.  NDVI  Data Collection Process 

 

    
 
 

b.  NDVI Formula 
 

NDVI = (NIR – VIS) / (NIR + VIS) 
 

where: 

NIR = Near-Infrared light 

VIS = Visible light 
 

Source: Weier and Herring 2010 
 

 

ii. Data Preparation 

MODIS’ NDVI and EVI data layers were downloaded (with help from Jeff 

Morisette, a U.S. Geological Survey Invasive Species Science specialist) from the 

National Aeronautics and Space Administration’s (NASA’s) FTP (file transfer 

protocol) site for the years 2006-2007 (FTP website was provided via email after 

“NDVI is calculated from 

the visible and near-infrared 

light reflected by vegetation. 

Healthy vegetation (left) 

absorbs most of the visible 

light that hits it, and reflects 

a large portion of the near-

infrared light. Unhealthy or 

sparse vegetation (right) 

reflects more visible light 

and less near-infrared light. 

The numbers on the figure 

above are representative of 

actual values, but real 

vegetation is much more 

varied” (Weier and Herring, 

n.d.).  Illustration by Robert 

Simmon. 
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data was ordered from the following NASA website: http://accweb.nascom.nasa. 

gov/; data only available for five days).  These were the latest years available to 

download.  NDVI and EVI metrics were formed by NASA using the TIMESAT 

(program for analyzing time-series of satellite sensor data) phenology algorithm 

that produces a spatial coverage more complete than any other remotely sensed 

data-based phenology product (Jonsson and Eklundh 2004, Tan et al. 2008).  The 

attributes of TIMESAT data can be found in Figure 8.   

Each NDVI and EVI layer was then gap-filled using Environmental Systems 

Research Institute’s (ESRI’s
2
) ‘Nibble’ function (ESRI, Redlands, California, 

USA).  The ‘Nibble’ function generalizes scores for missing values within the 

phenology layers based on a nearest neighbor analysis (ESRI 2008).  Metrics were 

then averaged over their two year period using ERSI’s ‘Raster Calculator’ function, 

such that each of the NDVI and EVI continuous metrics represented a two-year 

averaged value.  All NDVI and EVI metrics were clipped to the study area using 

ESRI’s ‘Analysis Mask’ function (ESRI, Redlands, California, USA).  The finest 

imagery produced by MODIS has an approximate resolution of 250-meters (Weier 

and Herring 2010).  NASA MODIS data downloaded for this study was received in 

this resolution.  Since MODIS data is not available at a resolution finer than ~250m, 

all other Maxent input data layers were resampled to ~250m (most data layers were 

of a finer resolution, mainly 30-meter or 90-meter  resolution) using ESRI’s ‘Cell 

Size’ function (ESRI, Redlands, California, USA).  The cell size used for ~250- 

meter resolution resampling was 0.0020833333 decimal degrees, matching that of 

                                                           
2
 Unless otherwise stated, the term ‘ESRI’ refers to ESRI’s ArcGIS software version 9.2. 
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Figure 8: Attributes of TIMESAT Data 
 

 
 

 
 

 

TIMESAT derives 11 phenology parameters, or metrics, for up to two separate 

seasons each year.  The phenology parameters are 1) time for the start of the season, 

which is when the left edge of the fitted function has increased to a user-defined level, 

often 20% of the seasonal amplitude, 2) time for the end of the season, or when the 

right edge has decreased to a user-defined level, 3) length of the season, 4) base level, 

or the average of left and right minimum values, 5) time for the middle of the season, 

6) peak value of the fitted function, 7) seasonal amplitude, or the difference between 

the peak value and base level, 8) left slope, or rate of increase at the beginning of the 

season, 9) right slope, or the rate of decrease at the end of the season, 10) large 

seasonal integral, from season start to season end, and 11) small seasonal integral, 

relative to the base level.  Numbers 12-14 are maximum, minimum, and mean values 

for all of the data collected. 
 

Source: Jonsson and Eklundh 2004 
 

 

the MODIS data.  All MODIS data layers were converted to ASCII format (a 

Maxent input requirement) using ESRI’s ‘Raster to ASCII’ function (ESRI, 

Redlands, California, USA). 
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B. Topography Variables 

i. Description 

National elevation data (the National Elevation Dataset, NED) with 30-

meter spatial resolution was obtained from The National Map Seamless Server and 

used for Maxent input (USGS 2010; http://seamless.usgs.gov/website/seamless/ 

viewer.htm).  Two additional rasters, aspect and slope (both in degrees), were 

generated from the NED.  Elevation and slope, along with various other 

topographic variables, have been listed in recent publications as significant 

contributors to potential environmental factors affecting bat mortality (Jaberg and 

Guisan 2001; Lamb et al. 2008; Jones et al. 2009).  See Figures 9-11 for maps of 

elevation, aspect, and slope.  

The Compound Topographic Index (CTI), a continuous topographic variable 

measuring wetness, was also added to the Maxent analysis.  CTI is a function of 

both upstream contribution area and slope of the landscape and is calculated with 

the following equation: CTI = ln [Flow Accumulation / tan(slope)]  (Moore et al. 

1991).  The CTI dataset was obtained from the U.S. Geological Survey’s Earth 

Resources Observation and Science data center (USGS HYDRO 2009, http://eros. 

usgs.gov/).   

ii. Data Preparation 

NED data preparation began with downloading all elevation blocks covering 

the study area of interest from The National Map Seamless Server at http:// 

seamless.usgs.gov/website/seamless/viewer.htm.  Elevation blocks were then 

mosaicked into one raster GRID using ESRI’s ‘Mosaic to New Raster’ function  
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(ESRI, Redlands, California, USA).  Once mosaicked, the raster GRID was 

reprojected (for projection consistency) from geographic coordinate system “North 

American Datum_1983” to geographic coordinate system “World Geodetic 

System_1984” using ESRI’s ‘Project’ function (ESRI, Redlands, California, USA).  

For cell size consistency, the raster’s cell sizes were resampled (using the 

previously described technique) to match that of MODIS’ metric resolution (ESRI, 

Redlands, California, USA).  This procedure converted the original decimal-degree 

cell size of 0.00027777778 (30-meter) to a decimal-degree cell size of 

0.0020833333 (~250-meter).  Slope and aspect raster GRIDs were created from the 

resulting elevation raster GRID using ESRI’s ‘Slope’ and ‘Aspect’ functions, 

respectively (ESRI, Redlands, California, USA).  All three raster GRIDs were then 

clipped to the study area and converted to ASCII format (per Maxent requirement) 

using the previously described technique. 

Geographic bounds, geographic projection, and cell size for the Complex 

Topographic Index layer were also converted (as needed) using the previously 

described techniques in order to match those of all other input data layers.  The 

Complex Topographic Index layer was then saved in ASCII format for Maxent 

analysis. 

C. Hydrology Variables 

i. Description 

United States hydrologic and boundary data were obtained from The 

National Map Seamless Server at http://seamless.usgs.gov/website/seamless/ 

viewer.htm (USGS 2010).  Hydrographic data for Canada were retrieved from 
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GeoGratis at http://geogratis.cgdi.gc.ca/geogratis/en/download/northamerica.html, a 

website produced and maintained by the Canadian Government Division Natural 

Resources, Earth Sciences Sector (GeoGratis 2009).  Canadian boundary data were 

obtained from http://finder.geocommons.com/overlays/2264, a website also 

containing data produced and maintained by the Government of Canada, Natural 

Resources Canada, Centre for Remote Sensing (USGS North American 2008).  See 

Figure 12 for a map of the vector hydrologic network dataset. 

ii. Data Preparation 

Hydrology data originally came divided by country (U.S. and Canada) and 

separated into two layers per country: streams and waterbodies.  All layers were 

downloaded in sub-units of blocks (the only format available), and then merged into 

one appropriate data layer (either streams or waterbodies) using ESRI’s ‘Merge’ 

function (ESRI, Redlands, California, USA).  Both layers were then reprojected 

from GCS_NAD_1983 to GCS_WGS_1984 using the same projection technique as 

described for NED data.  Once in the correct projection, both vector layers were 

converted to raster GRID format using ESRI’s ‘Feature to Raster’ function, and 

then combined into one raster GRID using ESRI’s ‘Raster Calculator’ function 

(ESRI, Redlands, California, USA).  The resulting raster’s cell size was resampled 

(as previously described) to match that of MODIS’ metric resolution and then 

clipped to the study area.  This raster was further used to derive a ‘distance to 

water’ continuous data layer (Figure 13) using ESRI’s ‘Distance to...(straight line)’ 

Euclidean distance
3
 function (ESRI, Redlands, California, USA).  The continuous  

                                                           
3
 Euclidean distance uses a triangle’s hypotenuse calculation to measure the distance from the center of a 

source cell to the center of each of its surrounding cells (ESRI How n.d.).  This produces a continuous 
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raster of shortest distance to a given source (ESRI How n.d.).  View Figure 14 to see an illustration on 

how Euclidean distance works (ESRI How n.d.).   

 

Figure 12: 

North American Hydrologic Networks 

(Vector Datasets) Within the WNS Study Area 
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Figure 14:  Euclidean Distance Illustration 
 

 
 

 
 

Source: (ESRI How n.d.) 
 

 

raster output was converted to ASCII and used as a measure of proximity to water 

within the Maxent model. 

D. Climatic Variables 

i. Description 

Growing-Degree Days, Frostdays, Frequency of Precipitation, Humidity, 

and Annual Precipitation Event Size were all climatic variables added to the 

Maxent analysis.  Data layers were obtained from the Daymet climate dataset (1-km 

spatial resolution; 1980-1997; Kumar et al. 2009; www.daymet.org/). 

ii. Data Preparation   

The geographic bounds, geographic projection, cell size, and data format 

(i.e., ASCII) for all climatic variables were uniformly defined (as previously 

described) to match those of all other Maxent input data layers.   
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E. Land-Cover  

i. Description 

The National Land-Cover Database (NLCD) was used to incorporate the 

effects of different habitat types on WNS occurrence.  According to Jaberg and 

Guisan (2001), landscape structure and land-cover characteristics are both related to 

the distribution of bat hibernacula, and therefore possibly related to other bat-

associated phenomena  (Fry et al. 2009, Sattler et al. 2007).  NLCD data was 

obtained from the Multi-Resolution Land Characteristics Consortium (MRLC), a 

project of the U.S. Geological Survey (USGS Multi 2010, http://www.mrlc.gov/).   

ii. Data Preparation 

Geographic bounds, geographic projection, cell size, and format for the 

NLCD dataset were all uniformly defined to match those of the phenologic, 

topographic, climatic, and hydrographic datasets using previously described 

methods. 

F. Bioclimatic Variables 

i. Description 

Nineteen bioclimatic variables from the WorldClim dataset (Nix 1986; 

Hijmans et al. 2006; www.worldclim.org/bioclim) representing a better measure for 

the ecological and physiological tolerance of a species (i.e., more biologically 

meaningful); (Graham and Hijmans 2006; Kumar et al. 2009; Kumar and Stohlgren 

2009, www.worldclim.org/bioclim) were added to the analysis.  These variables 

were derived using ARC AML script (MkBCvars.AML; www.worldclim.org/ 

mkBCvars.aml; Hijmans 2006; Kumar et al. 2009) and the Daymet climate dataset 
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(www.daymet.org/; 1-km spatial resolution; 1980-1997; Kumar et al. 2009).  

According to Worldclim, bioclimatic variables are very useful when applied to 

ecological niche modeling (n.d.).  They encompass annual trends, seasonality, and 

extreme or limiting environmental factors (WorldClim n.d.); (Appendix 1). 

ii. Data Preparation   

Geographic bounds, geographic projection, and cell size for each of the 

bioclimatic layers were all uniformly defined to match those of the phenologic, 

topographic, climatic, hydrographic, and land-cover datasets (as previously 

described) and then converted to ASCII format.   

IV. Maxent Modeling Procedures 

A. Assessing Multicollinearity 

Prior to running Maxent, multicollinearity among all variables was tested by 

examining cross-correlations.  Correlation coefficient values were calculated with 

individual hibernacula site data.  Each hibernacula site had a total of 58 values, one 

for each input environmental predictor.  Data values were extracted using Hawth’s 

‘Intersect Point’ analysis tool (Beyer 2004).  Hawth’s Tools is an extension for 

ESRI’s ArcMap designed to perform spatial analysis functions that cannot be 

conveniently accomplished with out-of-the-box ArcGIS (Beyer 2004).  These tools 

are publicly free for download at http://www.spatialecology.com/htools/download. 

php (Beyer 2004).   

i. Correlation  Terms 

Pearson’s correlation coefficient, and in cases of suspected lack of 

normality, the non-parametric Spearman correlation coefficient, were used to assess 
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correlations within the environmental predictor data (Plonsky Nonparametric 2009, 

StatSoft n.d.).  Statistical tests for correlation were calculated with the statistical 

software package Stata/SE 10.1 for Windows (Stata/SE 10.1 2007).   

ii. Correlated Variable Reduction 

Based on potential biological relevance to the distribution of bat WNS and 

ease of interpretation, only one variable from a set of highly cross-correlated 

variables was included in the final Maxent model (Kumar et al. 2009; Kumar and 

Stohlgren 2009).  In order to select the most appropriate/WNS-relevant variable for 

each group of highly correlated variables, a Maxent training model (termed 

Preliminary Maxent Model, or PMM) was run with all data variables.  The most 

important output from this training model was a ranking of each variable’s percent 

contribution to the overall model (table not shown).  The highest ranking variable 

out of a group of highly correlated variables was used to represent those variables 

in the final Maxent model (Table 1).  For example, BIO-12 (Mean Annual 

Precipitation), BIO-14 (Precipitation of Driest Month), BIO-16 (Precipitation of 

Wettest Quarter), BIO-17 (Precipitation of Driest Quarter), BIO-18 (Precipitation of 

Warmest Quarter), and BIO-19 (Precipitation of Coldest Quarter) were all highly 

correlated.  Since Precipitation of Driest Month (BIO-14) had the largest percent 

contribution (7.5%) within this group of correlated variables, it was kept for the 

final model.  The accompanying correlated variables were dropped from the model, 

but not excluded from later results and discussion.  
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Table 1: Highly Correlated Environmental Variables  

(Pearson’s correlation coefficient, r≥±0.90) and  

Corresponding Maxent Contributions from Training Model [%] 
 

 

 

Group 

 

 

Environmental Variables within  

Each Correlated Group 

 

Variable Kept  

in Model 
 

1 
 

Annual Mean Temperature [0.0] 

Maximum Temp. of Warmest Month [0.0] 

Minimum Temp. of Coldest Month [3.9] 

Mean Temp. of Warmest Quarter [0.2] 

Mean Temp. of Coldest Quarter [0.1] 

FrostDays [0.1] 

GrowDays [19.5] 

Humidity [0.0] 
 

 

GrowDays [19.5] 

 

 

2 
 

Temperature Seasonality [0.5] 

Annual Temperature Range [6.5] 
 

 

BIO-7 [6.5] 

 

 

3 
 

Mean Annual Precipitation [0.3] 

Precipitation of Driest Month [7.5] 

Precipitation of Wettest Quarter [0.0] 

Precipitation of Driest Quarter [0.0] 

Precipitation of Warmest Quarter [0.0] 

Precipitation of Coldest Quarter [0.2] 
 

 

BIO-14 [7.5] 

 

 

4 
 

Precipitation of Wettest Month [2.0] 

Precipitation of Wettest Quarter [0.0] 
 

 

BIO-13 [2.0] 

 

 

5 
 

EVI-2 [0.1] 

EVI-3 [0.0] 
 

 

EVI-2 [0.1] 

 

 

6 
 

EVI-4 [0.1] 

EVI_Min [0.1] 
 

 

EVI-4 [0.1] 

 

 

7 
 

EVI-6 [0.2] 

EVI_Max [0.0] 
 

 

EVI-6 [0.2] 

 

 

8 
 

NDVI-2 [0.2] 

NDVI-3 [0.0] 
 

 

NDVI-2 [0.2] 

 

 

9 
 

NDVI-4 [0.0] 

NDVI_Min [2.5] 
 

 

NDVI_Min [2.5] 

 

 

10 
 

NDVI-6 [0.1] 

NDVI_Max [0.0] 
 

 

NDVI-6 [0.1] 
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B. Other Variable Reductions 

 

In addition to correlated variable reduction, fourteen predictor layers were 

excluded due to a 0.0% contribution to the training model (table not shown).  This 

left 26 environmental variables for the first Maxent model (Maxent Model #1, or 

MM1).   

C. Running Maxent 

 

i. Training and Testing Percentages 

Before running the first Maxent model, a percentage value (totaling 100%) 

had to be assigned to training and testing datasets within the sample data (termed a 

split-sample approach) (Guisan et al. 1999, Guisan & Hofer 2003).  According to 

Veloz, the best method for obtaining a valid, accurate niche model is to train a 

model with one dataset and then test model predictions against an independent 

dataset (2009).  A truly independent dataset is often unavailable, so random subsets 

of the available data are used for training and testing purposes (Veloz 2009).  

Typically, presence-only Maxent models will use 60-80% of the input sample data 

for training purposes, and 40-20% for testing purposes (Phillips 2008).  It is best to 

use the highest training percentage possible within the 60-80% range so that the 

model has a best estimate of niche prediction.  This can be difficult with a small 

sample size because there may not be enough data leftover to adequately test the 

trained model.  To account for this, 75% of the hibernacula sites (56 points) were 

used to train Maxent on how to predict a WNS niche model, and 25% (18 points) 

were used to test this trained model.   
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ii. First Model Run 

Upon running the first model, a 0.0% contribution from BIO-15 

(precipitation seasonality) was immediately noted in the results table.  This variable 

was removed due to its lack of contribution, leaving 25 environmental variables, 

and then the model was run again (Maxent Model #2, or MM2).   

iii. Second Model Run 

To improve upon Maxent’s predictive ability, MM2 was repeated 25 times
4
 

and averaged over the repetitions to produce overall results.  Each of the 25 

repeated models chose a different, randomly selected 75% and 25% dataset for 

training and testing purposes.  

iv. Examination of Phenology Metrics 

As an additional hypothesis of interest, the following question was 

addressed:  Does including the 250-meter resolution MODIS phenology layers 

improve Maxent’s prediction of bat WNS?  To test this hypothesis Maxent was run 

first with MODIS phenology layers only (Comparison Model #1, or CM1), second 

with the reduced MODIS, climatic, topographic, bioclimatic, hydrographic, and 

land-type datasets (Comparison Model #2, or CM2), and third with all reduced 

variables except for the MODIS phenology layers (Comparison Model #3, or 

CM3).  

v. Final Maxent Model 

Maxent Model #3 (MM3), the final Maxent model, was run with a total of 

13 environmental predictor variables and 74 hibernacula locations.  MM3 also used 

                                                           
4
 Twenty-five repetitions is a typical quantity chosen by researchers using Maxent modeling (Kumar et al. 

2006, Kumar et al. 2009, Kumar and Stohlgren 2009). 
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the same training/testing data percentages and the same number of repeated model 

runs as MM2; 75%, 25%, and 25, respectively.   

V. Case-Control Study 

 

The case-control study was conducted to distinguish predictors of cave 

locations from predictors of infected cave locations. 

A. Case and Control Data 

 

The previously mentioned WNS-positive hibernacula locations were used as 

case data (n=74).  Control points for WNS-negative bat hibernacula were obtained 

from individual state wildlife agencies within the states that had documented WNS-

positive hibernacula before January 1, 2010 (n=31).  Not every state agency 

responded to the data request (WNS-negative response rate=69%, WNS-positive 

response rate=90%), and some state agencies did not have any known WNS-negative 

hibernacula sites.  Two WNS-negative sites for the state of Maine were kept in the 

dataset even though WNS-positive points were not provided for Maine.  This is 

because very few WNS-negative points were available, and WNS-positive sites have 

been reported in Maine since 2009, but exact coordinate locations of these sites have 

not yet been obtained by Maine’s state wildlife division (Strickland 2008, Haneisen 

2009).   

i. Geographic Coordinate System and Projection Consistency Among Control Data 

Control hibernacula locations were collected using different parameters by 

differing state agencies.  For example, some were collected in a UTM coordinate 

system, some in decimal degrees, and some in degrees, minutes, seconds.  To 

generate data consistency, the appropriate data transformation was performed on all 
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control hibernacula points not already in decimal degrees through the use of ERSI’s 

ArcGIS software (ESRI, Redlands, California, USA) and an online conversion 

website (http://www.cellspark.com/UTM.html).  Also, some states collected data 

using the North American Datum 1927 (NAD27); some collected data using the 

North American Datum 1983 (NAD83); and some collected data using the World 

Geographic System 1984 (WGS84).  Again, the appropriate data transformation 

was performed on all control data points not already in WGS84. 

ii. Duplication and Clustering Among Control Data 

Duplication and clustering were assessed for control data points in the same 

manner as previously described for case data.  No duplicates were identified, and no 

data points were spatially autocorrelated.  This left the original control dataset at a 

total of 31 points. 

iii. Control Data Parameters 

Control data were considered negative in 2009 if, 1) the site was confirmed 

negative in 2008 via laboratory testing or field inspection, and 2) there was no 

overwhelming evidence that the site had become infected (via field inspection) by 

the time the agency was contacted in 2009.   

B. Exposure Assessment 

 

Exposure assessment for the top four predictor variables among case and 

control points was determined by extracted data from Hawth’s Tools using the 

previously described ‘Intersect Point’ analysis tool.  This tool provided four data 

points (a value for each top predictor variable) corresponding with each case and 
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control hibernacula site.  All values were extracted from 250-meter resolution data.  

Descriptive statistics for all four predictor variables can be viewed in Table 2 below. 

C. Statistical Analyses  

 

Two-sample t-tests were applied to all datasets that met the required 

assumptions (Two-Sample Minitab 2010).  As a measure of association, this test was 

used to compare mean values among cases and controls (Two-Sample Minitab 

2010).  One predictor variable did not meet the required assumptions and therefore 

had nonparametric statistical tests performed in addition to the two-sample t-test for 

comparative purposes.  The categorical Land-Cover variable used a Chi-Square 

analysis test to measure association.  All analyses were completed using Minitab 

software, Student Version, Release 14 (Minitab 2003) except for the nonparametric 

Kolmogorov-Smirnov test, which was computed with an online calculation site 

(http://www.physics.csbsju.edu/stats/KS-test.n.plot_form.html).  In addition, a 

logistic regression analysis was performed on the top four predictors’ case-control 

data.  
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CHAPTER 3:  RESULTS 

 

I.  Maxent Results 

 

A. Variable Correlations 

 

As previously mentioned, all groups of correlated variables were replaced 

with one surrogate variable from that group, and surrogate variables were chosen 

based on percent contribution to the Maxent model.  Table 3 shows that most 

temperature variables were correlated with each other, and most precipitation 

variables were correlated with each other.  Certain additional phenology metrics were 

also correlated, but these were usually paired variables instead of large groups. 

B. Maxent Model Runs 

The Preliminary Maxent Model (PMM) and Maxent Model #1 (MM1) 

provided information for running subsequent models.  They, individually, did not 

contribute relevant results to the study and will therefore not be discussed in further 

detail.  A summary of each model run can be found in Table 4. 

i. Maxent Model #2 

Percent contribution results from MM2 (25 averaged models using 74 

hibernacula site points and 25 environmental variables) are shown in Table 5.  

Slope [35.1% contribution], Growing-Degree Days [15.2% contribution], Annual 

Temperature Range [9.6% contribution], and Land-Cover [7.7% contribution] were 

the top four contributing predictor variables.  A continuous prediction map based on 
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Table 3: Highly Correlated Environmental Variable  

[Corresponding Maxent Contribution %] Descriptions 
 

 

 

Group 

 

 

Correlated Variables 
 

Variable Description 

 

1 
 

BIO-1 [0.0] 

BIO-5 [0.0] 

BIO-6 [3.9] 

BIO-10 [0.2] 

BIO-11 [0.1] 

FrostDays [0.1] 

GrowDays [19.5] 

Humidity [0.0] 
 

 

Annual Mean Temp. 

Max. Temp. of Warmest Month 

Min. Temp. of Coldest Month 

Mean Temp. of Warmest Quarter 

Mean Temp. of Coldest Quarter 

# of Frost Days 

# of Growing-Degree Days 

Humidity 
 

2 
 

BIO-4 [0.5] 

BIO-7 [6.5] 
 

 

Temperature Seasonality 

Annual Temp. Range 
 

3 
 

BIO-12 [0.3] 

BIO-14 [7.5] 

BIO-16 [0.0] 

BIO-17 [0.0] 

BIO-18 [0.0] 

BIO-19 [0.2] 
 

 

Mean Annual Precipitation 

Precipitation of Driest Month 

Precipitation of Wettest Quarter 

Precipitation of Driest Quarter 

Precipitation of Warmest Quarter 

Precipitation of Coldest Quarter 
 

4 
 

BIO-13 [2.0] 

BIO-16 [0.0] 
 

 

Precipitation of Wettest Month 

Precipitation if Wettest Quarter 
 

5 
 

EVI-2 [0.1] 

EVI-3 [0.0] 
 

 

EVI phenology metric for end of season 

EVI phenology metric for length of season 
 

6 
 

EVI-4 [0.1] 

EVI_Min [0.1] 
 

 

EVI phenology metric for base value 

EVI phenology metric for minimum value 
 

7 
 

EVI-6 [0.2] 

EVI_Max [0.0] 
 

 

EVI phenology metric for peak value 

EVI phenology metric for maximum value 
 

8 
 

NDVI-2 [0.2] 

NDVI-3 [0.0] 
 

 

NDVI phenology metric for end of season 

NDVI phenology metric for length of season 
 

9 
 

NDVI-4 [0.0] 

NDVI_Min [2.5] 
 

 

NDVI phenology metric for base value 

NDVI phenology metric for minimum value 
 

10 
 

NDVI-6 [0.1] 

NDVI_Max [0.0] 
 

 

NDVI phenology metric for peak value 

NDVI phenology metric for maximum value 
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  Table 4: Model Descriptions & Result Summaries 
 

 

MODEL 
 

 

DESCRIPTION & RESULTS 
 

 

PMM 
 

 

Beginning # of Variables: 58 

Result:  Drop 32 variables due to high correlation (r ≥ ±0.90) and 0.0% 

contribution; repeat with 26 variables. 
 

 

MM1 
 

 

Beginning # of Variables: 26 

Result:  Immediately found 0.0% contribution from BIO-15; remove 

non-contributing variable and repeat. 
 

 

MM2 
 

 

Beginning # of Variables: 25 

Result:  Variable rankings and model outputs.  Comparison Model 

(CM) assessments showed phenology layers were not increasing the 

model’s prediction; drop phenology layers and repeat. 
 

 

MM3 
 

 

Beginning # of Variables: 13 

Result:  Final model; variable rankings and final model outputs. 
 

 

 

      Table 5: Percent contribution results from MM2 
 

Variable Percent 

contribution 

 Variable Percent 

contribution 

Slope 35.1 CTI 0.9 

Growdays 15.2 NDVI_6 0.7 

Annual Temp. Range 9.6 EVI-6 0.6 

Land-Cover 7.7 NDVI_Mean 0.3 

Precip. Of Wettest Mo. 5.6 EVI_11 0.3 

Precip. Frequency 5.3 EVI_2 0.2 

Precip. Of Driest Mo. 4.8 EVI_9 0.2 

Mean Temp. of Wettest Q. 3.6 EVI_Min 0.1 

Mean Temp. of Driest Q. 3.5 NDVI_11 0.1 

NDVI_Min 2.1 EVI_Mean 0.1 

Precipitation Size 1.5 NEVI-2 0.1 

Distance to Water 1.4 EVI-1 0.1 

Aspect 1.0 

 

  

      Note: Precip. = Precipitation, Mo. = Month, Temp. = Temperature, Q. = Quarter 
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the averaged 25 MM2 model runs can be found in Figure 15, and Figure 16 shows 

the receiver operating characteristic (ROC) curve.  The ROC curve plots true 

positive rate against false positive rate for each threshold point (x,y) (Phillips et al. 

2004).  The area under the ROC curve (the AUC) provides a single measure of 

model performance, independent of any particular choice of threshold (Phillips et 

al. 2006).  Ideally, the AUC should be as close to one as possible (perfect AUC = 

1), while an AUC value of 0.5 indicates that performance is no better than random 

(Phillips et al. 2004).  This measure helps distinguish WNS-presence from random, 

rather than distinguish WNS-presence from absence (a more common technique, 

but also requiring presence and absence data) (Phillips et al. 2004).  For MM2, the 

AUC was 0.92 and the standard deviation (SD) was approximately ±0.03. 

ii. Phenology Metrics 

Examination of the phenology metrics showed that CM1 (consisting of 

MODIS layers alone) had an average mean AUC value of 0.83 (SD = ±0.04), CM2 

(analogous to MM2 – all reduced variables included) had an average mean AUC 

value of 0.92 (SD = ±0.03), and CM3 (13 reduced, non-phenologic environmental 

variables) had an average mean AUC value of 0.93 (SD = ±0.02). 

Thus, the model’s predicted AUC increased (indicating better predictability), 

and the associated SD decreased (indicating less variability; preferred) with each 

comparison model.  The 25 variable model (MM2) was not better than the 13 

variable model (MM3) and therefore the more parsimonious model was chosen.  

Other studies may choose to run a final model with the inclusion of phenology 

variables.  A summary of comparison models can be found below in Table 6. 
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Figure 15: Maxent Model #2 Map Output -  

Continuous Predicted Probability of WNS Occurrence  

Using 25 Environmental Predictor Variables 
 

 

 
 

Description: Probability of suitable conditions for bat White-Nose Syndrome 

(Red=high, to Blue=low).   

 

Source: Phillips, n.d. 
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Figure 16 – ROC graph for MM2 
 

 

 
 

 

 

 

 

 

 

Table 6: Comparison Models (25 replicates for each; 75% training & 25% test data) 
 

Comparison 

Model 

(CM) 

Environmental Variables 

Included in Model 

Average Mean 

AUC 

(±SD) 

 

Rank 

 

CM1 
 

MODIS Layers (Only):  

28 total variables 
 

 

0.83 (±0.04) 
 

3
rd

 
(Worst Model) 

 

CM2 
 

All Reduced Variables in 

Model:  

25 total variables 
 

 

0.92 (±0.03) 

  

2
nd

 
(Decent Model) 

 

CM3 
 

All Reduced Variables in 

Model minus MODIS Layers:  

13 total variables 
 

 

0.93 (±0.02) 

 

1
st
 

(Best Model) 

 

 

Proportional False Positives Correctly 

Identified 

Positives 
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i. Final Maxent Model 

MM3 variable contribution results from 25 averaged runs can be viewed in 

Table 7.  The top four contributing variables were Slope [36.9% contribution], 

Growing-Degree Days [15.6% contribution], Annual Temperature Range [10.4% 

contribution], and Land-Cover [8.7% contribution].  In comparison to MM2, 

MM3’s top four variables, including their rank order were the same.   

 

Table 7: Variable Contributions from MM3 

(All reduced variables without phenology layers) 
 

Variable Percent Contribution 

Slope 36.9 

Growing-Degree Days 15.6 

Annual Temp. Range 10.4 

Land-Cover 8.7 

Precipitation Of Wettest Month 6.1 

Frequency of Precipitation 5.5 

Precipitation Of Driest Month 4.7 

Mean Temp. of Driest Quarter 4.6 

Mean Temp. of Wettest Quarter 3.8 

Distance to Water 1.3 

Precipitation Event Size 0.9 

CTI 0.9 

Aspect 0.7 

 

Individual response curves for MM3’s top variables can be found in Figure 

17 (a.-d.).  The response curve for Slope (Fig. 17a.) shows increasing probability of 

WNS presence with increasing slope degrees (dramatic increase found from 0-6°, 

slower incline after 6° degrees).  The highest WNS probability is found at 

approximately 28°, and the lowest is found on flat terrain.  The response curve for 
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Growing-Degree Days can be found in Figure 17b.  Probability of WNS presence 

based on Growing-Degree Days peaks at about 3,700 degree-days and then sharply 

drops.  The curve suggests WNS occurrence is most probable between 

approximately 1,400 and 3,700 degree-days, and most unlikely at 6,400+ degree-

days.  Figure 17c. displays Annual Temperature Range.  This response curve looks 

somewhat bell-shaped, beginning its climb at approximately 28.5ºC, peaking 

around 38ºC, and ending its bell-shaped decent at about 46.5ºC.  An individual 

response curve for Land-Cover is presented in Figure 17d.  Based on the figure, 

category 31 (Barren Land) has the largest mean response.  Based on frequencies, 

category 41 (Deciduous Forest) occurs the most. 

A continuous prediction map of WNS occurrence based on MM3’s results 

can be found in Figure 18.  This map shows that WNS occurrence is predicted in 

several areas of southern Maine (avoiding it's eastern-most coasts), scattered areas 

of Pennsylvania and Ohio, mildly around eastern Kentucky and eastern Tennessee, 

along the Ohio and Michigan border, within parts of east-central Indiana, and 

possibly even stretching up to the northern tip of Michigan’s ‘glove’.  

The ROC curve is shown in Figure 19.  This graph demonstrates the mean 

AUC value averaged over replicated runs and represents the likihood that a 

presence will have a higher predicted value than an absence (Hosmer and 

Lemeshow 2000, Phillips et al. 2004, Phillips et al. 2006).  The blue band 

surrounding the mean (red line) is the standard deviation (± one SD) and shows that 

most variability occurs around the curved portion of the line.  A mean AUC value 

of 0.93 shows this model’s predictive ability, but examination of the top Maxent  
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Figure 17 (a.-d.): Individual Response Curves for the Top Four 

Contributing Variables from Maxent Model #4 
 
 
 

These curves represent the effect of each variable on Maxent prediction when all 

other variables are at their average sample value.  The mean response of 25 replicate 

Maxent runs is shown in red, and the mean +/- one standard deviation is shown blue. 

 

a. Slope 

 

 
 

b. Growing-Degree Days 

 

 
 

 
 
 

The Maxent Response of Slope 

 
 
 

The Maxent Response of Growing-Degree Days 
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c. Annual Temperature Range 

 

 
 

 

d. Land-Cover 

 

 
 

 

 

 

 

 
 
 
 

 
 

 
 
 

The Maxent Response of Annual Temp. Range 

 
 
 

The Maxent Response of Land-Cover 
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Figure 18: Maxent Model #3 Map Output -  

Continuous Predicted Probability of WNS Occurrence  

Using 13 Environmental Predictor Variables 
 

 

 
 

Description: Probability of suitable conditions for bat White-Nose Syndrome 

(Red=high, to Blue=low).   

 

Source: Phillips, n.d. 
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predictor variables (via case-control study) will determine if there is an actual 

significant difference between WNS-positive and WNS-negative variable 

associations, or if this model is simply good at predicting general hibernacula 

locations.   
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II. Case-Control Results 

 

A. Statistical Assumptions 

 

All continuous variables (Slope, Annual Temperature Range, and Growing-

Degree Days) met the required independence and normality assumptions for using a 

two-sample t-test.  See Table 8 for normality evaluations.  The third t-test 

assumption, equal sample variances, was only met by Annual Temperature Range and 

Growing-Degree Days (see Table 9).  Transformations to mediate the non-equivalent 

variances within Slope data included: reciprocal, square root, logarithmic, and 

exponential.  None of these provided improvement, so Slope statistical testing was 

performed with both parametric and nonparametric statistical terms
5
. 

The Chi-Square test statistic was used to evaluate associations between WNS 

status and Land-Cover.  All Chi-Square test assumptions
6
 were met by the categorical 

Land-Cover variable (table not shown) (Agresti 1990, Yates 1999).  Assumptions 

were evaluated using Minitab statistical software, Student Version, Release 14 

(Minitab Inc. 2003).  Minitab software was also utilized for the logistic regression 

analysis. 

B. Statistical Test Results 

Statistical tests for Slope, Growing-Degree Days, Annual Temperature Range, 

and Land-Cover (including test type, hypotheses, significance level, test statistic 

values, 95% confidence intervals, and results) can be viewed in Table 10 below. 

 

                                                           
5
 Studies of the t-test have shown that the sample variance assumption can be violated to an amazing degree 

without substantial effects on the results (http://www.fammed.ouhsc.edu/tutor/tstds.htm). 
6
 Chi-Square test assumptions include: 1) Each data point must contribute data to only one cell, 2) Each 

observation is independent of all the others, 3) No more than 20% of the expected values are less than 

five, and 4) All expected frequencies should be 10 or greater. 
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Table 8: Testing the Normality Assumption 
 

 

 
 

 

 
 

 

 
 

Note:  C.L. = Confidence Level 

 

 

 

 

 

 

The Ryan-Joiner normality test 

(C.L. = 95%) for Slope has a p-

value of <0.010.  Under the 

hypotheses ‘H0: Normal’ and 

‘H1: Non-normal’, this p-value 

is significant, indicating that the 

data follow a non-normal 

distribution.   

 

The Ryan-Joiner normality test 

(C.L. = 95%) for Growdays has 

a p-value of >0.100.  Under the 

hypotheses ‘H0: Normal’ and 

‘H1: Non-normal’, this p-value 

is not significant, indicating that 

the data follow a normal 

distribution. 

 

The Ryan-Joiner normality test 

(C.L. = 95%) for Annual 

Temperature Range has a p-

value of >0.100.  Under the 

hypotheses ‘H0: Normal’ and 

‘H1: Non-normal’, this p-value 

is not significant, indicating that 

the data follow a normal 

distribution. 
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i. Slope 

The Mann-Whitney U test, the Kolmogorov-Smirnov two-sample test, and 

the two-sample t-test were computed with Minitab, Student Version, Release 14 

(Minitab n.d.) and the following online calculation website: http://www.physics. 

csbsju.edu/stats/KS-test.n.plot_form.html.  They hypothesized that two population 

medians were equivalent, two population distributions were equivalent, and two 

population means were equivalent, respectively.  Test results for the Mann-Whitney 

U test included a mean difference value of -0.70, a 95% confidence interval for this 

difference of (-2.63, 1.08), a test statistic of U = 1275.0, and a P-value of 0.37.  

Results from the Kolmogorov-Smirnov two-sample test included a case mean value 

of 7.19, a control mean value of 8.65, a case 95% confidence interval of (6.05, 

8.33), a control 95% confidence interval of (6.32, 10.98), a test statistic of D = 0.15, 

and a P-value of 0.68.  Test results regarding the two-sample t-test for unequal 

variances included a mean difference value of -1.47, a 95% confidence interval for 

this difference of (-4.04, 1.11), a test statistic of T = 1.15, and a P-value of 0.26.  

Using α=0.05 for all tests, cases and controls did not have significantly different 

medians, population distributions, or means. 

ii. Growing-Degree Days 

At the 95% confidence level, Growing-Degree Days resulted in a statistically 

significant difference between mean values among cases and controls.  T-test 

results included a T-value of -3.99, a P-value of <0.001, a mean difference of -

418.94, and a 95% confidence interval for this difference of (-629.56, -208.31).  
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iii. Annual Temperature Range 

Using the 95% confidence level, Annual Temperature Range also found 

statistically significant results between mean values among cases and controls.  T-

test results included a T-value of 4.63, a P-value of <0.001, a mean difference of 

1.96, and a 95% confidence interval for this difference of (1.11, 2.81).   

iv. Land-Cover 

All NLCD land-cover datasets have the potential to contain a total of 29 

categorical classification options (categories and descriptions can be found in 

Appendix 2) (USGS Multi 2010).  Classifications are coded with numerical values 

that represent each category.  Within the case-control dataset, 11 different 

categorical codes were reported (11, 21, 23, 24, 31, 41, 42, 43, 81, 90 and 95).  

Among these, category 41 was most frequent, and category 31 had the highest mean 

response with WNS (as found in the individual response curve for land-cover).   

In order to validate Chi-Square results, categories had to be combined such 

that cell frequencies were not too low.  Two different combined-category Chi-

Square tests were of interest:  1) Land-Cover category 41 vs. all others, and 2) 

Land-Cover category 31 vs. all others.  Chi-Square results for Land-cover category 

41 vs. all others proved no association between the variables at α=0.05 (Pearson’s 

Chi-Square = 0.64, P-Value = 0.43).  Chi-Square analysis for Land-cover category 

31 vs. all others resulted in low cell frequencies, so Land-cover category 23 (second 

highest mean response variable) was removed from ‘all others’ and grouped with 

31.  Cell frequencies were now high enough, but test results showed no association 
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between cases and controls at α=0.05 (Pearson’s Chi-Square = 0.2.199, Fisher’s 

Exact test
7
 P-Value = 0.318). 

v. Logistic Regression 

Logistic regression results for the four-variable model supported the case-

control study results by showing that both Slope and Land-Cover variables were not 

statistically significant, and both Growing-Degree Days and Annual Temperature 

Range were statistically significant.   

A second regression model with three variables (the two statistically 

significant variables plus their interaction term) did not show evidence of effect 

modification between Growing-Degree Days and Annual Temperature Range.   

 

 

 

                                                           
7
 Fisher’s exact test provides a more accurate p-value for low cell counts and is provided in this study when 

  Minitab software output results show it is appropriate (Agresti 1990, Yates 1999). 
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CHAPTER 4:  DISCUSSION 

 

I.  Findings 

 

As described in the section on multicollinearity, there were several instances in 

which one variable took the place of a group of highly correlated variables.  Due to this, 

the interpretation of one variable may include various ecological explanations.   

A. Slope and Land-Cover Variables 

Based on the case-control analyses, Slope and Land-Cover variables were not 

statistically significantly associated with bat WNS status. Neither variable was highly 

correlated with any other variables, so the lack of a significant association found via 

case-control analysis is only applicable to these variables alone.  Due to Maxent’s 

high ranking of these variables as predictors, Slope and Land-Cover are most likely 

associated with the general location of bat hibernacula, but not WNS-positive bat 

hibernacula specifically.  To visually examine this, three figures are presented in 

Figure 20 (a.-c.) below.  This figure is given mainly because literature that addresses 

the possible influences of landscape structure on spatial patterns in bat communities is 

critically lacking (Jaberg and Guisan 2001).  One study performed by Jaberg and 

Guisan showed that cave locations generally coincide with areas of hilly or 

mountainous terrain (2001), but additional information is sparse.  In lieu of adequate 

literature, Figure 20 presents (a.) a dot-density map of U.S. caves per county, (b.) a 

U.S. terrain map, and (c.) a U.S. land-cover map.  These three figures can be used to 

visually compare locations of U.S. caves with slope and land-cover patterns.  Based
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Figure 20 (a.-c.): Visual Comparisons Between Number of Caves, Terrain, and 

Land-Cover in the Contiguous United States 
 

a. Dot density map of the number of caves per county in the contiguous United 

States. 
 

 
(Source: Culver et al. 1999) 

b. United States terrain map. 
 

 
 

(Source: http://egsc.usgs.gov/isb/pubs/factsheets/fs10602.graphics/usa.jpg) 
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c. United States Land-Cover Map 
 

 
 

(Source: http://www.anglonautes.com/hist_map_flag/us_maps_land_cover_1.jpg) 

 

on these figures, it seems that caves may overlap with certain slope values 

(specifically, mountainous terrain) and certain vegetation classifications (specifically, 

more vegetative areas).  Maxent’s ranking of Slope and Land-Cover as top predictor 

variables shows that they have some relationship with the geographic location of bat 

hibernacula, but since the case-control statistical results were not significant it is 

unlikely that they have a specific relationship with the WNS positive/negative status 

of the hibernacula.  Logistic regression results supported this conclusion. 

B. Growing-Degree Days and Annual Temperature Range 

According to two-sample t-test case-control study results, both Growing-

Degree Days and Annual Temperature Range variables resulted in significantly 

different mean values among cases and controls (two-sided test; statistical 

association’s direction is unknown).  Basic descriptive statistics of the case-control 
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dataset showed that Growing-Degree Days cases had a lower mean value than 

controls, and Annual Temperature Range cases had a higher mean value than controls 

(refer to page 40).  Maxent’s ranking of these two variables as top predictors suggests 

that there is some form of association between them and the WNS site locales.  

Additionally, the case-control study analyses indicate that the relationship may 

actually be linked to the infection status of a site and not just bat hibernacula locales.      

Logistic regression results supported these t-test findings for Growing-Degree 

Days and Annual Temperature Range variables when all four predictors were 

included in the model.   

i. Variable Correlations 

Growing-Degree Days was highly correlated with Humidity, Number of 

Frostdays, Annual Mean Temperature (BIO-1), Maximum Temperature of Warmest 

Month (BIO-5), Minimum Temperature of Coldest Month (BIO-6), Mean 

Temperature of Warmest Quarter (BIO-10), and Mean Temperature of Coldest 

Quarter (BIO-11).  Annual Temperature Range was only correlated with one 

variable, Temperature Seasonality (BIO-4).  Individual response curves for each 

correlated variable would be needed in order to analyze the specific relationship 

each variable might have with bat WNS, but these cannot be viewed since the terms 

were never actually added to the Maxent model.  Regardless, it is important to 

consider these correlated variables when interpreting results. 

In general, temperature-related correlation factors seem to dominate both 

variables.  Even the predictor variables themselves (Growing-Degree Days and 

Annual Temperature Range) are highly temperature related, suggesting that 
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temperature may play a large role in the spread of WNS-related Geomyces 

destructans.  As previously mentioned, psychrophilic fungi (such as Geomyces 

destructans) are known to thrive best in cool temperatures (around 5-10ºC) (Boyles 

and Willis 2009), but the causal pathways are unknown (Hajek 1994; Blehert et al. 

2009).  Discovery of these seasonally-specific temperature-related variables 

provides insight to potential annual climatic variations that may foster WNS bat 

hibernacula infection and may lay the foundation for causal pathway discoveries.  

Two benefits of identifying these variables within this study include:  1) narrowing 

down the range of possible factors influencing WNS occurrence, and 2) providing a 

starting-point for future work on WNS environmental determinants. 

II.  Study Strengths and Limitations 

A. Limitations 

This study’s sample size was probably one of its largest limitations.  Due to 

the recent appearance of WNS, current data and information on site locations is 

difficult to find.  Many northeastern U.S. states have known infected sites, but many 

of these sites are not even recorded as geographic coordinate locations, making large 

sample sizes and power within a study more difficult ascertain.  Regardless, the 

ecological problems surrounding WNS occurrence must be tackled immediately.   

Another limitation included several state agencies’ hesitation with officially 

declaring certain hibernacula sites negative due to their close proximity to infected 

sites, but these were still defined as ‘negative’ within the study.  The effect of this 

limitation would most likely bias results towards the null.  Other state agencies 

expressed a similar hesitancy regarding long spans of time without site inspection, 
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which would also most likely bias results towards the null.  The number and 

percentage of WNS-positive and WNS-negative hibernacula points retrieved from 

each state can be viewed in Table 11.   

Several other types of limitations have been introduced to this study due to 

biasing effects.  Cases and controls were chosen based on what was available, not 

what was ideal, so selection bias may have been introduced.  For example, the 

association between ‘Growdays’ and ‘WNS status’ may differ between those that 

were selected and those that theoretically could have been selected.  There is no way 

of knowing whether “theoretically” selected data would have had a similar association 

as “actually” selected data, so the biasing effect direction remains undetermined.   

Sources contributing to this selection bias might include: number of field 

inspectors per state, number of field inspections per year, accessibility of site 

locations, and proximity of sites to state wildlife agency offices.  Each of these factors 

may potentially bias the geographic location at which sites were collected, and 

therefore represent, or fail to represent, the environmental characteristics found at all 

sites.  For example, if New York only had 2 field inspectors for the entire state (i.e. 

not enough to adequately assess hibernacula for the entire state), they might only get 

to examine sites within a certain radius of their employment office.  Therefore, certain 

sites outside of this radius may be missed.  Spatially speaking, the geographic 

characteristics found at sites within this radius may or may not be similar to the 

geographic characteristics of those that were missed.  
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Table 11: Percentage of Positive and Negative Data Points in Each State 
 

 

State 

 

% WNS-Positive 

Sites 

(# in state/total) 
 

 

% WNS-Negative 

Sites 

(# in state/total) 
 

Raw Difference 

Between Positive 

& Negative 

Percentages 
 

 

Connecticut  

 

 

4.05% (3/74) 

 

6.45% (2/31) 
 

2.40 

 

Maine 

 

 

N/A  

 

6.45% (2/31) 
 

6.45 

 

Massachusetts 

 

 

9.46% (7/74) 

 

3.23% (1/31) 
 

6.23 

 

New Hampshire 

 

 

6.76% (5/74) 

 

0/31 (0.0%) 
 

6.76 

 

New Jersey 

 

 

4.05% (3/74) 

 

N/A  

 

4.05 

 

New York 

 

 

37.84% (28/74) 

 

9.68% (3/31) 
 

28.16 

 

Pennsylvania 

 

 

10.81% (8/74) 

 

N/A 

 

10.81 

 

Vermont 

 

 

14.86% (11/74) 

 

6.45% (2/31) 
 

8.41 

 

Virginia 

 

 

6.76% (5/74) 

 

25.81% (8/31) 
 

19.05 

 

West Virginia 

 

 

5.41% (4/74) 

 

41.94% (13/31) 
 

36.53 

 

TOTAL 

 

 

100% (74/74) 

 

100% (31/31) 

 

0 

     N/A = Not Available 
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Other types of biasing effects within the study include: 1) GPS instrument 

error or measurement inaccuracies, 2) variation in accuracy among point data (some 

dead-on, some estimated, some deliberately inaccurate for privacy purposes), 3) miss-

reporting or failure to report infected and non-infected sites, and 4) data 

transformations and resolution resampling error. 

Additionally, MODIS data used for Maxent modeling purposes was only 

available for the years 2006-2007, but WNS data points were collected over a period 

of four years (2006, 2007, 2008, and 2009).  Ideally, averaged MODIS data from the 

entire WNS collection year range would be obtained to produce the most accurate 

results, but values have most likely not changed considerably throughout that time 

period.  Similarly, the Daymet climate dataset represented data averaged over the 

years 1980-1997.  Again, current data would have been preferred, but averaged values 

over a period of 17 years are unlikely to be considerably different to averaged values 

for 2006-2009.  

Lastly, it is important to remember that these results are not abstractable to 

other bat species or geographic regions.   

B. Strengths 

Strengths of this study include the use of all available 2009 WNS data, 

inclusion of MODIS’ most recent and best resolution satellite imagery capturing 

biomass/vegetation indices, incorporation of a new modeling technique (Maxent 

modeling; proven very effective for various types of ecological niche modeling and 

only requires presence locale data), utilization of a large number of environmental 

predictor variables for Maxent’s modeling procedures (totaling 58), and it’s 
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representativeness of the study’s sample population (i.e., representativeness is most 

likely good because both case and control groups contained hibernacula locations that 

housed all six bat species and both groups were selected from the same geographic 

area).  In addition to these, a case-control analysis of the top four predictor variables 

was performed (allowing for a more in-depth look at possible associations between 

the top predictor variables and WNS status), an output map of continuous WNS 

prediction spanning the study area was created, and identical transformation 

procedures (by state) were used on all WNS points (preventing over exaggeration of 

the effect estimate). 

Manual detection of spatially correlated hibernacula points replaced the more-

often used spatial auto-correlation technique in order to reduce the model’s inaccuracy 

(Phillips 2008).  Most field survey efforts tend to be strongly spatially biased 

(typically due to proximity and accessibility) and are therefore also strongly spatially 

auto-correlated (Phillips et al. 2009).   High spatial correlation introduces model error 

because environmental data gets collected at random, but hibernacula site data does 

not.  With a small sample size, automatic detection and deletion of spatially correlated 

data is likely to remove too many points.  Veloz comments that automated spatial 

correlation for presence-only niche modeling can wrongly inflate measures of 

accuracy and significantly reduce your sample size (2009).  Manually selecting 

spatially autocorrelated points helped reduce the presence of spatial bias, while 

leaving enough data for extractable study results.   

Prediction of bat hibernacula distribution based on environmental input factors 

has never been attempted before in published material.  This makes focusing the 
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prediction of bat hibernacula on a specific pathogen a major mile-stone in field of bat 

ecology, and a major strength of this study.  
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CHAPTER 5:  CONCLUSIONS AND RECOMMENDATIONS 

 

Using exploratory approaches, this study aimed to identify possible environmental 

factors linked to the occurrence of mortality-causing bat white-nose syndrome in the 

northeastern United States.  Study results indicated that Humidity, Frostdays, Growdays, 

and various measures of temperature were significantly associated with the occurrence of 

white-nose syndrome in bats.    

It is highly likely that the pathogenic fungus Geomyces destructans is a factor in 

causing bat mortality (Blehert et al. 2009, Boyles and Willis 2009; USGS White 2009), 

so measures of association between Geomyces destructans and the significant variables 

found in this study may be an ideal direction for future WNS research.  Additionally, 

future studies could aim for the following: 1) improve the resolution at which Maxent 

modeling was performed (requires more precise data), 2) include recent infected 

hibernacula data in the Maxent model (data that was not available at the start of this 

study), 3) consider adding other variables to the model (such as ownership, i.e. private, 

government, or public land, as a measure of human visitation and the role of humans in 

pathogenic spread), 4) obtain interior cave measurements for more accurate exposure 

assessments, 5) include a Karst topography layer (cave-like landscape formed by 

drainage eroding away limestone), 6) increase the number of control points used in the 

case-control analysis, 7) expand the study area to broaden prediction range, and 8) try
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changing the testing and training data percentages within Maxent once more data is 

available.     

Implications of variable correlation associations with the WNS-related fungal 

pathogen could be extremely relevant for future WNS prediction and prevention, but at 

this point it is difficult to determine the exact role that the co-factors may have with 

Geomyces destructans’ ability to cause bat mortality.   Individual response curves for 

each correlated variable were not given in the Maxent results.  Future research could aim 

to investigate these individual response curves in order to determine the range of exact 

values in which WNS occurrence is most likely to occur.   

As previously stated, WNS occurrence is predicted in several areas of southern 

Maine (avoiding it's eastern-most coasts), scattered areas of Pennsylvania and Ohio, 

mildly around eastern Kentucky and eastern Tennessee, along the Ohio and Michigan 

border, within parts of east-central Indiana, and possibly even stretching up to the 

northern tip of Michigan’s ‘glove’.  These are the recommended target areas for future 

WNS-prevention efforts.   

Out of the originating 58 variables, study results suggest that cave locations may 

be best predicted by Slope and Land-Cover geographic characteristics (Maxent results), 

and that infected cave locations are most impacted by Growing-Degree Days and Annual 

Temperature Range (including correlated variables) (case-control results).   

The cold-loving Geomyces destructans fungus has very recently been found in the 

following previously unaffected areas:  Canada, Tennessee, Missouri (officially released 

May 14
th

, 2010), and Oklahoma (officially released May 19, 2010) (Cryan 2010, Griffin 

2010, National Park Service 2010).  Geomyces destructans has also been found in certain 
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European countries, including France, but does not seem to present the same mortality 

rate that has been dominating infected bats in the United States (Puechmaille 2010).   

Surveillance soil testing for Geomyces destructans outside of the northeastern 

U.S. has not yet begun; only visual signs of the disease have been noted (Cryan 2010).  

As the potential for this fungal pathogen to spread increases over time, appropriate and 

timely steps must be taken to narrow down causative and influencing factors.  The ability 

of environmental variables to impact disease emergence and dispersion patterns must be 

considered when approaching causal research regarding new pathogens.  Future goals for 

combating bat WNS include understanding the life cycle of this fungus and, ultimately, 

preventing the decimation of susceptible bat species worldwide.  Use of this study’s 

results are intended as a starting point for the determination of environmental factors 

associated with bat WNS.  Ideally, ecological field specialists and researchers will 

continue this environmental investigation via future research for more detailed 

information regarding environmental associations with bat white-nose syndrome. 
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APPENDICIES 

 
 

 

Appendix 1: Input Environmental Variables for WNS Maxent Modeling 
 

 

 

Variable 

ID # 

 

Environmental 

Variable 
 

 

 

Description 
 

 

1 
 

1,2
BIO-1 

 

Annual mean temperature (°C) 
 

 

2 
 

1,2
BIO-2 

 

Mean diurnal range in temperature 

(Mean of monthly (max temp – min temp)) (°C) 
 

 

3 
 

1,2
BIO-3 

 

Isothermality 

(BIO-2 / BIO-7) (*100) 
 

 

4 
 

1,2
BIO-4 

 

Temperature seasonality  

(Standard Deviation*100) 
 

 

5 
 

1,2
BIO-5 

 

Maximum temperature of warmest month  (°C) 
 

 

6 
 

1,2
BIO-6 

 

Minimum temperature of coldest month (°C) 
 

 

7 
 

1,2
BIO-7 

 

Temperature annual range (°C) 

(BIO-5 – BIO-6) 
 

 

8 
 

1,2
BIO-8 

 

Mean temperature of wettest quarter (°C) 
 

 

9 
 

1,2
BIO-9 

 

Mean temperature of driest quarter (°C) 
 

 

10 
 

1,2
BIO-10 

 

Mean temperature of warmest quarter (°C) 
 

 

11 
 

1,2
BIO-11 

 

Mean temperature of coldest quarter (°C) 
 

 

12 
 

1,2
BIO-12 

 

Mean annual precipitation (cm) 
 

 

13 
 

1,2
BIO-13 

 

Precipitation of wettest month (cm) 
 

 

14 
 

1,2
BIO-14 

 

Precipitation of driest month (cm) 
 

 

15 
 

1,2
BIO-15 

 

Precipitation seasonality (Coefficient of Variation) 
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16 
 

1,2
BIO-16 

 

Precipitation of wettest quarter (cm) 
 

 

17 
 

1,2
BIO-17 

 

Precipitation of driest quarter (cm) 
 

 

18 
 

1,2
BIO-18 

 

Precipitation of warmest quarter (cm) 
 

 

19 

 

1,2
BIO-19 

 

Precipitation of coldest quarter (cm) 
 

 

20 
 

3
NDVI-1 

 

NDVI phenology metric for beginning of season 
 

 

21 
 

3
NDVI-2 

 

NDVI phenology metric for end of season 
 

 

22 
 

3
NDVI-3 

 

NDVI phenology metric  for length of season 
 

 

23 
 

3
NDVI-4 

 

NDVI phenology metric for base value (average of 

NDVI-1 and NDVI-2 minimum values) 
 

 

24 
 

3
NDVI-5 

 

NDVI phenology metric for peak time (middle of 

season) 
 

 

25 
 

3
NDVI-6 

 

NDVI phenology metric for peak value (of the fitted 

function) 
 

 

26 
 

3
NDVI-7 

 

NDVI phenology metric for amplitude (difference 

between peak and base values) 
 

 

27 

 

 

3
NDVI-8 

 

NDVI phenology metric for the left derivative (rate of 

increase at the beginning of the season) 
 

 

28 
 

3
NDVI-9 

 

NDVI phenology metric for the right derivative (rate of 

increase at the beginning of the season) 
 

 

29 
 

3
NDVI-10 

 

NDVI phenology metric for integral over season – absolute 

(large seasonal integral, from season start to end) 
 

 

30 
 

3
NDVI-11 

 

NDVI phenology metric for integral over season – scaled 

(small seasonal integral, relative to the base value) 
 

 

31 
 

3
NDVI-12 

 

NDVI phenology metric for maximum value 
 

 

32 
 

3
NDVI-13 

 

NDVI phenology metric minimum value 
 

 

33 
 

3
NDVI-14 

 

NDVI phenology metric mean value 
 

 

34 
 

3
EVI-1 

 

EVI phenology metric for beginning of season 
 

 

35 
 

3
EVI-2 

 

EVI phenology metric for end of season 
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36 
 

3
EVI-3 

 

EVI phenology metric  for length of season 
 

 

37 
 

3
EVI-4 

 

EVI phenology metric for base value (average of NDVI-

1 and NDVI-2 minimum values) 
 

 

38 
 

3
EVI-5 

 

EVI phenology metric for peak time (middle of season) 
 

 

39 
 

3
EVI-6 

 

EVI phenology metric for peak value (of the fitted 

function) 
 

 

40 
 

3
EVI-7 

 

EVI phenology metric for amplitude (difference between 

peak and base values) 
 

 

41 
 

3
EVI-8 

 

EVI phenology metric for the left derivative (rate of 

increase at the beginning of the season) 
 

 

42 
 

3
EVI-9 

 

EVI phenology metric for the right derivative (rate of 

increase at the beginning of the season) 
 

 

43 
 

3
EVI-10 

 

EVI phenology metric for integral over season – absolute 

(large seasonal integral, from season start to end) 
 

 

44 
 

3
EVI-11 

 

EVI phenology metric for integral over season – scaled 

(small seasonal integral, relative to the base value) 
 

 

45 
 

3
EVI-12 

 

EVI phenology metric for maximum value 
 

 

46 
 

3
EVI-13 

 

EVI phenology metric minimum value 
 

 

47 
 

3
EVI-14 

 

EVI phenology metric mean value 
 

 

48 
 

5
NED 

 

National elevation dataset 
 

 

49 
 

5
Slope 

 

Slope of NED (in degrees) 
 

 

50 
 

5
Aspect 

 

Aspect of NED (in degrees) 
 

 

51 
 

5,6
Dist_Water 

 

Distance to water raster grid (water = streams and 

waterbodies) 
 

 

52 
 

7
ComTopInd 

 

Compound topographic index (wetness index) 
 

 

53 
 

5
Veg_Types 

 

National land-cover dataset (NLCD) (land-cover types) 
 

 

54 
 

1
Grow_days 

 

Growing degree days (degree-days) 
 

 

55 
 

1
Frost_days 

 

Frost days (days) 
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56 
 

1
FreqPrecip 

 

Frequency of precipitation (number of wet days/total 

days) 
 

 

57 
 

1
Humidity 

 

Humidity (Pa) 
 

 

58 
 

1
PrecipSize 

 

Annual precipitation event size (cm per day) 
 

  

Notes: 

BIO = the “bioclim” variable (Nix 1986; www.worldclim.org/bioclim) that 

was calculated via ARC AML script (Hijmans 2006) and the Daymet 

climate dataset. 

NDVI = Normalized Difference Vegetation Index from MODIS 

EVI = Enhanced Vegetation Index from MODIS 

MODIS = Moderate-Resolution Imaging Spectroradiometer  

CTI = function of slope and upstream contributing area per unit width 

orthogonal to the flow direction (Irwin 2004) 
 

Data Sources: 
1 

Daymet: www.daymet.org/ 
2 

Worldclim: www.worldclim.org/bioclim 
3
 MODIS Vegetation Indices: http://accweb.nascom.nasa.gov/ 

4
 National Land Cover Dataset (2001): http://www.mrlc.gov/index.php 

5
 The National Map Seamless Server; www.seamless.usgs.gov 

6
 GeoGratis; http://geogratis.cgdi.gc.ca/geogratis/en/download/   

   northamerica.html 
7
 USGS Hydro 1k Elevation Derivative Database;  

   http://eros.usgs.gov/#/Find_Data/Products_and_Data_Available/  

   gtopo30/hydro 
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Appendix 2: NLCD 2001 Land-Cover Class Definitions 

 

11. Open Water - All areas of open water, generally with less than 25% cover of 

vegetation or soil. 

 

12. Perennial Ice/Snow - All areas characterized by a perennial cover of ice and/or 

snow, generally greater than 25% of total cover. 

 

21. Developed, Open Space - Includes areas with a mixture of some constructed 

materials, but mostly vegetation in the form of lawn grasses. Impervious surfaces account 

for less than 20 percent of total cover. These areas most commonly include large-lot 

single-family housing units, parks, golf courses, and vegetation planted in developed 

settings for recreation, erosion control, or aesthetic purposes 

 

22. Developed, Low Intensity - Includes areas with a mixture of constructed materials 

and vegetation. Impervious surfaces account for 20-49 percent of total cover. These areas 

most commonly include single-family housing units. 

 

23. Developed, Medium Intensity - Includes areas with a mixture of constructed 

materials and vegetation. Impervious surfaces account for 50-79 percent of the total 

cover. These areas most commonly include single-family housing units. 

 

24. Developed, High Intensity - Includes highly developed areas where people reside or 

work in high numbers. Examples include apartment complexes, row houses and 

commercial/industrial. Impervious surfaces account for 80 to100 percent of the total 

cover. 

 

31. Barren Land (Rock/Sand/Clay) - Barren areas of bedrock, desert pavement, scarps, 

talus, slides, volcanic material, glacial debris, sand dunes, strip mines, gravel pits and 

other accumulations of earthen material. Generally, vegetation accounts for less than 15% 

of total cover. 

 

32. Unconsolidated Shore* - Unconsolidated material such as silt, sand, or gravel that is 

subject to inundation and redistribution due to the action of water. Characterized by 

substrates lacking vegetation except for pioneering plants that become established during 

brief periods when growing conditions are favorable. Erosion and deposition by waves 

and currents produce a number of landforms representing this class. 

 

41. Deciduous Forest - Areas dominated by trees generally greater than 5 meters tall, 

and greater than 20% of total vegetation cover. More than 75 percent of the tree species 

shed foliage simultaneously in response to seasonal change. 

 

42. Evergreen Forest - Areas dominated by trees generally greater than 5 meters tall, 

and greater than 20% of total vegetation cover. More than 75 percent of the tree species 

maintain their leaves all year. Canopy is never without green foliage. 
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43. Mixed Forest - Areas dominated by trees generally greater than 5 meters tall, and 

greater than 20% of total vegetation cover. Neither deciduous nor evergreen species are 

greater than 75 percent of total tree cover. 

 

51. Dwarf Scrub - Alaska only areas dominated by shrubs less than 20 centimeters tall 

with shrub canopy typically greater than 20% of total vegetation. This type is often co-

associated with grasses, sedges, herbs, and non-vascular vegetation. 

 

52. Shrub/Scrub - Areas dominated by shrubs; less than 5 meters tall with shrub canopy 

typically greater than 20% of total vegetation. This class includes true shrubs, young trees 

in an early successional stage or trees stunted from environmental conditions. 

 

71. Grassland/Herbaceous - Areas dominated by grammanoid or herbaceous vegetation, 

generally greater than 80% of total vegetation. These areas are not subject to intensive 

management such as tilling, but can be utilized for grazing. 

 

72. Sedge/Herbaceous - Alaska only areas dominated by sedges and forbs, generally 

greater than 80% of total vegetation. This type can occur with significant other grasses or 

other grass like plants, and includes sedge tundra, and sedge tussock tundra. 

 

73. Lichens - Alaska only areas dominated by fruticose or foliose lichens generally 

greater than 80% of total vegetation. 

 

74. Moss - Alaska only areas dominated by mosses, generally greater than 80% of total 

vegetation. 

 

81. Pasture/Hay - Areas of grasses, legumes, or grass-legume mixtures planted for 

livestock grazing or the production of seed or hay crops, typically on a perennial cycle. 

Pasture/hay vegetation accounts for greater than 20 percent of total vegetation. 

 

82. Cultivated Crops - Areas used for the production of annual crops, such as corn, 

soybeans, vegetables, tobacco, and cotton, and also perennial woody crops such as 

orchards and vineyards. Crop vegetation accounts for greater than 20 percent of total 

vegetation. This class also includes all land being actively tilled. 

 

90. Woody Wetlands - Areas where forest or shrubland vegetation accounts for greater 

than 20 percent of vegetative cover and the soil or substrate is periodically saturated with 

or covered with water. 

 

91. Palustrine Forested Wetland* -Includes all tidal and non-tidal wetlands dominated 

by woody vegetation greater than or equal to 5 meters in height and all such wetlands that 

occur in tidal areas in which salinity due to ocean-derived salts is below 0.5 percent. 

Total vegetation coverage is greater than 20 percent. 

 

92. Palustrine Scrub/Shrub Wetland* - Includes all tidal and non-tidal wetlands 

dominated by woody vegetation less than 5 meters in height, and all such wetlands that 
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occur in tidal areas in which salinity due to ocean-derived salts is below 0.5 percent. 

Total vegetation coverage is greater than 20 percent. The species present could be true 

shrubs, young trees and shrubs or trees that are small or stunted due to environmental 

conditions. 

 

93. Estuarine Forested Wetland* - Includes all tidal wetlands dominated by woody 

vegetation greater than or equal to 5 meters in height, and all such wetlands that occur in 

tidal areas in which salinity due to ocean-derived salts is equal to or greater than 0.5 

percent. Total vegetation coverage is greater than 20 percent. 

 

94. Estuarine Scrub/Shrub Wetland* - Includes all tidal wetlands dominated by woody 

vegetation less than 5 meters in height, and all such wetlands that occur in tidal areas in 

which salinity due to ocean-derived salts is equal to or greater than 0.5 percent. Total 

vegetation coverage is greater than 20 percent. 

 

95. Emergent Herbaceous Wetlands - Areas where perennial herbaceous vegetation 

accounts for greater than 80 percent of vegetative cover and the soil or substrate is 

periodically saturated with or covered with water. 

 

96. Palustrine Emergent Wetland (Persistent)* - Includes all tidal and non-tidal 

wetlands dominated by persistent emergent vascular plants, emergent mosses or lichens, 

and all such wetlands that occur in tidal areas in which salinity due to ocean-derived salts 

is below 0.5 percent. Plants generally remain standing until the next growing season. 

 

97. Estuarine Emergent Wetland* - Includes all tidal wetlands dominated by erect, 

rooted, herbaceous hydrophytes (excluding mosses and lichens) and all such wetlands 

that occur in tidal areas in which salinity due to ocean-derived salts is equal to or greater 

than 0.5 percent and that are present for most of the growing season in most years. 

Perennial plants usually dominate these wetlands. 

 

98. Palustrine Aquatic Bed* - The Palustrine Aquatic Bed class includes tidal and 

nontidal wetlands and deepwater habitats in which salinity due to ocean-derived salts is 

below 0.5 percent and which are dominated by plants that grow and form a continuous 

cover principally on or at the surface of the water. These include algal mats, detached 

floating mats, and rooted vascular plant assemblages. 

 

99. Estuarine Aquatic Bed* - Includes tidal wetlands and deepwater habitats in which 

salinity due to ocean-derived salts is equal to or greater than 0.5 percent and which are 

dominated by plants that grow and form a continuous cover principally on or at the 

surface of the water. These include algal mats, kelp beds, and rooted vascular plant 

assemblages. 

 

* Coastal NLCD class only 




