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ABSTRACT

QUANTUM SERRE DUALITY FOR QUASIMAPS

Let X be a smooth variety or orbifold and let Z ⊆ X be a complete intersection defined by a

section of a vector bundle E → X . Originally proposed by Givental, quantum Serre duality refers

to a precise relationship between the Gromov–Witten invariants of Z and those of the dual vector

bundle E∨. In this paper we prove a quantum Serre duality statement for quasimap invariants. In

shifting focus to quasimaps, we obtain a comparison which is simpler and which also holds for non-

convex complete intersections. By combining our results with the wall-crossing formula developed

by Zhou, we recover a quantum Serre duality statement in Gromov-Witten theory without assuming

convexity.
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Chapter 1

Introduction

The primary result of this paper is a relationship between quasimap invariants of a local com-

plete intersection cut out by a section of vector bundle over a variety or orbifold to the quasimap

invariants of the dual vector bundle. The origins of quasimap invariants are rooted in Gromov-

Witten theory and their definitions are completely analogous to those of Gromov-Witten invari-

ants. Before introducing quasimap invariants or the main result, we briefly describe the history of

Gromov-Witten theory and this correspondence. Along with this history we motivate the study of

such invariants by providing an intuitive example.

1.1 History

Gromov–Witten theory was initially motivated by a conjecture of Witten, a physicist, in [1],

which states that a specific generating function of intersection numbers of the moduli space of

stable curves satisfies a certain series of partial differential equations. Kontsevich’s definition of

the moduli space of stable maps and his work in [2] proved Witten’s conjecture. Since then,

Gromov–Witten theory has become an area of mathematics in its own right. It is filled with rich

geometry as well as themes from algebra, topology, combinatorics, and differential equations.

1.1.1 Motivating Example

Given a variety or orbifold X , an aim of algebraic geometry is to explain how subspaces of X

intersect. For instance if X is the complex projective plane P2, we may ask the following.

How many conics (degree two curves) pass through five points in general position in the plane?

By general position, we mean distinct and that any three points are non-collinear. A modern

strategy to answering this question involves the moduli space of degree 2 maps from the complex

1



projective line P1 to P2 with 5 marked points, denoted by M0,5(P
2, 2). A point of M0,5(P

2, 2)

consists of the following data:

• the projective line P1,

• five distinct points x1, . . . , x5 in P1, and

• a degree two map f : P1 → P2.

This moduli space comes equipped with evaluation maps evi : M0,5(P
2, 2) → P2 defined by

(P1, x1, . . . , x5, f) 7→ f(xi)

for each i = 1, . . . , 5. Note that the preimage of a point y in P2 via an evaluation map evi is all of

the points (P1, x1, . . . , x5, f) such that f(xi) = y. Hence for five points y1, . . . , y5 of P2 in general

position, the intersection

ev−1
1 (y1) ∩ · · · ∩ ev−1

5 (y5) (1.1)

contains the points (P1, x1, . . . , x5, f) ∈ M0,5(P
2, 2) such that the image f(P1) passes through

each yi. So we can answer the initial question by counting the number of points in this intersection.

Computing the intersection (1.1) is nontrivial. One approach to consider is using the intersec-

tion product in cohomology and then pushing forward the class of the intersection to a point. Then

the coefficient in the cohomology of a point would equal the number of points in the intersec-

tion. However, the pushforward via π : M0,5(P
2, 2) → pt is undefined because the moduli space

M0,5(P
2, 2) is not compact, so π is not proper.

There are multiple ways to compactify M0,5(P
2, 2). In this paper we will focus on the com-

pactification by quasimaps [3–6]. However for this example we will use the more classical com-

pactification via stable maps, which Kontsevich developed in [2]. We denote Kontsevich’s com-

pactification, called the moduli space of stable maps, by M0,5(P
2, 2). A point in this moduli space

consists of the following data:

• an at worst nodal projective genus-0 curve C,
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• five distinct points x1, . . . , x5 in C, and

• a degree two map f : C → P2

satisfying the condition that the rational components of C where f is degree zero must contain a

combination of at least three nodes or marked points. The map π : M0,5(P
2, 2) → pt is proper.

Therefore, the pushforward

π∗
(

ev∗1(H
2) ∪ · · · ∪ ev∗5(H

2) ∩
[

M0,5(P
2, 2)

])

is well defined. Here H2 ∈ H∗(P2) represents the class of a point, ∪ denotes the intersection/cup

product, ∩ is the cap product, and
[

M0,5(P
2, 2)

]

is the fundamental class. It takes a little bit of

work, but nonetheless we compute

π∗
(

ev∗1(H
2) ∪ · · · ∪ ev∗5(H

2) ∩
[

M0,5(P
2, 2)

])

= 1 · [pt].

Thus there is exactly one conic which passes through five points in general position.

We often use integral notation to denote pushing forward to a point and taking the coefficient–

i.e.,

∫

[M0,5(P2,2)]
ev∗1(H

2) ∪ · · · ∪ ev∗5(H
2) := π∗

(

ev∗1(H
2) ∪ · · · ∪ ev∗5(H

2) ∩
[

M0,5(P
2, 2)

])

.

The above integral is our first example of a Gromov-Witten invariant.

This method for counting conics through five points generalizes. Fix integers d, n, r ≥ 0 with

rd+r+d+n ≥ 3 (this ensures the moduli space is nonempty) and general subvarieties V1, . . . , Vn

in Pr such that the codimensions of the subvarieties V1, . . . , Vn sum to rd+ r + d+ n− 3 (so that

(1.2) is finite and nonzero). Denote by [Vi] the class in homology associated to the subvariety Vi

and let γi = [Vi] ∩ [Pr] (the cohomology class Poincaré dual to [Vi]) for i = 1, . . . , n. Then the

3



integral
∫

[M0,n(Pr,d)]
ev∗1(γ1) ∪ · · · ∪ ev∗n(γn) (1.2)

equals the number of degree d rational curves incident to the subvarieties V1, . . . , Vn.

For small values of n, r, and d, we can compute (1.2) using classical methods. In our example

of counting conics, given precise coordinates of the five points we may determine the number of

conics passing through those points using elementary linear algebra. However, in many of the

other small cases the methods of calculation are quite technical.

1.1.2 Quantum Serre duality

Computing Gromov-Witten invariants of varieties or orbifolds different from projective space

often requires more finesse. For this reason, there is value in finding relationships between the

Gromov-Witten invariants of different varieties/orbifolds. The phenomena we study, called Quan-

tum Serre duality, is an example of one such relationship.

Let X be a smooth projective variety or Deligne–Mumford stack and let Z ⊂ X be a smooth

complete intersection, defined by the vanishing of a section of a vector bundle E → X . Quantum

Serre duality refers to a relationship between the genus-zero Gromov-Witten invariants of Z and

those of the dual vector bundle E∨.

Quantum Serre duality was first described in mathematics by Givental in [7], for the case

of X = Pn. The correspondence is given as a relation between generating functions of genus-

zero Gromov–Witten invariants of Z and E∨ via a complicated change of variables and a non-

equivariant limit. Since then, quantum Serre duality has been generalized and reformulated in a

number of ways. In [8], Coates–Givental employ Givental’s symplectic formalism [9] to show that

twisted overruled Lagrangian cones for E and E∨ may be identified by a symplectic isomorphism.

When E is convex, this implies that generating functions of Gromov–Witten invariants of Z may

be recovered from those of E∨. In [10], Iritani–Mann–Mignon observe that quantum Serre duality

may be cast as an isomorphism of quantum D-modules, and is compatible with a Fourier–Mukai

transform in K-theory. This result was refined and extended to orbifolds by Shoemaker in [11].

4



The utility of the correspondence is based on the fact that in many cases the geometry of E∨ is

simpler than that of Z. For instance, if X is a toric variety then E∨ is as well. It was noted in [8]

that by using quantum Serre duality, the mirror theorem for Z follows from the mirror theorem for

E∨. In recent years, quantum Serre duality has been employed to prove other correspondences in

Gromov–Witten theory. Applications have included the crepant transformation conjecture [12, §6],

the LG/CY correspondence [13, 14], and the Gromov–Witten theory of extremal transitions [15].

A theme which persists through all of the formulations of quantum Serre duality described

above is that in order to observe a correspondence, the Gromov–Witten invariants of Z and E∨

must be packaged in a clever way (Lagrangian cones, D-modules, etc...). There is no simple

relation between the individual Gromov–Witten invariants of Z and those of E∨.

1.2 Quasimaps

Let W be an affine variety, acted on by a reductive algebraic group G, and let θ be a character

of G such that W ss(θ) = W s(θ). Denote by X the GIT stack quotient [W ss(θ)/G]. The moduli

stacks Q0+
g,k(X, β) of stable quasimaps to X (which depends implicitly on the GIT presentation)

provide an alternative to Kontsevich’s space of stable maps. Generalizing the stable quotient spaces

of [4], quasimaps were first introduced for toric varieties in [3] and generalized to GIT quotients

in [5, 6].

In contrast to stable maps, a quasimap f : C 99K X generally defines only a rational map.

For X = [W ss(θ)/G], a quasimap to X is a morphism from a (orbi-)curve C to the stack [W/G]

such that the preimage of the unstable locus is a finite set of points, disjoint from the nodes and

markings of C. Under certain mild conditions on W , G, and θ, the moduli space of (0+-stable)

quasimaps Q0+
g,k(X, β) is (relatively) proper, and carries a canonical virtual fundamental class (see

§2.3 for details). As in Gromov–Witten theory, quasimap invariants may be defined by integrating

over the virtual fundamental class.
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The relationship between quasimap invariants and Gromov–Witten invariants is now well un-

derstood in many cases; these results are called ε-wall-crossing [16–19]. In principal, one can

determine Gromov–Witten invariants from quasimap invariants and vice versa.

1.3 Results

Let X = [W ss(θ)/G] be as in the previous section. Denote by X the stack quotient [W/G]. A

choice of representation τ in Hom(G,GL(r,C)) determines vector bundles

E := [W ss(θ)× Cr/G] → X

E := [W × Cr/G] → X.

Assume E is weakly convex (Definition 3.2.4). Let s ∈ Γ(X,E) be a section of E defined as in

§2.2.1, and let Z = Z(s) ⊂ X be the complete intersection defined by s.

In this paper we compare the two-pointed genus-zero quasimap invariants of Z with those of

E∨. In contrast to the case of Gromov–Witten theory, here we obtain a direct relation between

invariants, as well as a statement at the level of virtual classes.

The first step is to identify the relevant state spaces. Consider the diagram

IE∨

IZ IX

p

j

i

of inertia stacks. Define the ambient cohomology of Z by

H∗
CR,amb(Z) := im(j∗)

and the cohomology of compact type of E∨ by

H∗
CR,ct(E

∨) := im(i∗).
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Under mild assumptions, there exists (Lemma 6.2.3) an isomorphism

∆̃ : H∗
CR,ct(E

∨) → H∗
CR,amb(Z),

characterized by the fact that ∆̃(i∗(α)) = eπi ageg(E)j∗(α) for α ∈ H∗(Xg). Our first result is that

∆̃ identifies two-pointed genus-zero quasimap invariants of Z and E∨ up to a sign.

Theorem 6.2.6. Given elements γ1, γ2 ∈ H∗
CR,ct(E

∨), we have the equality

〈

∆̃ (γ1)ψ
a1
1 , ∆̃ (γ2)ψ

a2
2

〉Z,0+

0,β
= eπi(β(det E)+rank(E)) ⟨γ1ψ

a1
1 , γ2ψ

a2
2 ⟩E

∨,0+
0,β .

Our focus on two-pointed invariants arises from their role in solutions to the quantum differ-

ential equation. We use the superscripts ∞ and 0+ to distinguish between Gromov–Witten theory

and quasimap theory respectively. Recall the Dubrovin connection in Gromov–Witten theory

∇X,∞
i f :=

∂

∂ti
f +

1

z
T i •X,∞

t
f,

where {T i}i∈I is a basis of H∗
CR(X) and •X,∞

t
denotes the quantum product. The fundamental

solution is given by

LX,∞(t, z)(α) := α +
∑

i∈I

〈〈

α

−z − ψ
, Ti

〉〉X,∞

0

(t)T i,

where the double bracket is defined in Definition 2.4.1.

In quasimap theory, one can define an analogous product •X,0+
t

and connection ∇X,0+, replac-

ing Gromov–Witten invariants with quasimap invariants in the definition. As in Gromov-Witten

theory, ∇X,0+ is flat and its solution is given by LX,0+(t, z). Restricting to t = 0, we obtain the

generating function

LX,0+(z)(α) := LX,0+(0, z)(α) = α +
∑

i∈I

∑

β∈Eff

qβ
〈

α

−z − ψ
, Ti

〉X,0+

0,β

T i, (2.10)

7



of two-pointed genus-zero quasimap invariants. Our main theorem is an identification of LZ,0+(z)

and LE∨,0+(z).

Theorem 6.2.7. The transformation ∆̃ identifies the operators LZ,0+(z) and LE∨,0+(z) up to a

change of variables in the Novikov parameter:

LZ,0+(z) ◦ ∆̃ = ∆̃ ◦ LE∨,0+(z)|qβ 7→eπiβ(det E)qβ .

This theorem provides a quasimap analogue of [11, Proposition 6.13], proven by Shoemaker

in the context of Gromov–Witten theory. Note that here the comparison statement is simpler and

holds for more general vector bundles E∨ → X .

Our strategy of proof is different than the arguments used to prove similar results in Gromov–

Witten theory. By working with quasimaps as opposed to stable maps, we are able to recover

a direct relationship between virtual classes. As in Gromov–Witten theory, we first relate the

virtual fundamental classes [Q0+
0,2(Z, β)]

vir and [Q0+
0,2(E

∨, β)]vir to certain twisted virtual classes on

Q0+
0,2(X, β). We then show, using (non-quantum) Serre duality, that these twisted virtual classes

agree up to a sign (Theorem 6.1.2). The cycle-valued statement is interesting in its own right, as

its failure in Gromov–Witten theory is exactly what accounts for the change of variables appearing

in previous results.

In the last section, we combine our main theorem with the recent ε-wall-crossing results of

Zhou [19, Theorem 1.12.2] to recover a quantum Serre duality statement in Gromov–Witten theory

when E∨ is a GIT quotient.

Corollary 6.3.3. The operator ∆̃ identifies the fundamental solutions LZ,∞ and LE∨,∞ up to a

change of variables:

LZ,∞(µZ,≥0+(q,−ψ), z) ◦ ∆̃

=∆̃ ◦ LE∨,∞(µE∨,≥0+(q,−ψ), z)|qβ 7→eπiβ(det E)qβ ,

8



where µZ,≥0+(q,−ψ), z) and µE∨,≥0+(q,−ψ), z) are changes of variables defined in terms of the

I-functions for Z and E∨ respectively [19, §1.11].

We may interpret Theorem 6.2.7 and Corollary 6.3.3 together as evidence that quantum Serre

duality arises naturally in the setting of quasimaps, at least when the base X can be expressed as

a GIT quotient. The complicated change of variables appearing in previous results in Gromov–

Witten theory is not inherent to the correspondence itself, but rather a remnant of the ε-wall-

crossing formula arising in the passage from 0+-stable quasimaps to ∞-stable maps. A further

benefit to this approach is that we no longer require E be convex, as we describe below.

1.4 Removing the convexity hypothesis

In previous results on quantum Serre duality in Gromov–Witten theory, the vector bundle

E → X was required to be convex. In the case that X is a variety this holds whenever E is

semi-positive (Definition 3.2.1). However, it was observed in [20] that when X is an orbifold,

semi-positivity of E does not imply convexity. This has been a serious obstacle in the computa-

tion of Gromov–Witten invariants of orbifold complete intersections. By working with quasimap

invariants, we avoid the convexity requirement. Our results require only weak convexity (Defini-

tion 3.2.4), which once again holds whenever E is semi-positive (and in fact holds slightly more

generally, see Definition 3.2.3).

Recent works by Guéré [21] and Wang [22] also address computing genus-zero Gromov–

Witten theory of complete intersections when E is not convex. Wang’s work also features quasi-

maps, and is based on a similar philosophy to that used in this paper.
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Chapter 2

Preliminaries

In this section we define quasimap invariants and introduce the generating functions which we

will use in the rest of the paper. This section also serves to set notation.

2.1 Orbifold cohomology

We refer the reader to [23] for an introduction to Chen-Ruan orbifold cohomology. Denote by

X an oriented orbifold which admits a finite good cover.

Definition 2.1.1. Define the inertia stack of X , written IX , by the fiber square

IX X

X X ×X.

∆

∆

For a stack quotientX = [U/G] the inertia stack is composed of a disjoint union of suborbifolds

Xg = [Ug/C(g)] where Ug are the elements of U fixed by g ∈ G. Let S be a set of representatives

of each conjugacy class of G, then we may write the inertia stack as

IX =
⊔

g∈S

Xg.

We refer to each Xg as a twisted sector and call the twisted sector corresponding to the identity

the untwisted sector.

Let (x, g) be a point in a twisted sector Xg. The tangent space TxX splits as the direct sum of

eigenspaces

TxX =
⊕

0≤f<1

(TxX)f ,

where g acts on the fiber (TxX)f by multiplication by e2πif . The age shift for Xg is defined to be

ιXg =
∑

0≤f<1

f dimC(TxX)f .

10



Definition 2.1.2. [23, 24] The dth Chen-Ruan cohomology group of X is

Hd
CR(X) :=

⊕

g∈S

Hd−2ιXg (Xg;C)

and

H∗
CR(X) :=

⊕

d∈Q≥0

Hd
CR(X).

Unless specified otherwise we assume cohomology groups have complex coefficients. Let ι be

the involution of IX that maps Xg to Xg−1 . Denote the compactly supported Chen-Ruan coho-

mology of X by H∗
CR,cs(X).

Definition 2.1.3. [23, §4] The Chen-Ruan Poincaré pairing of the classes α ∈ H∗
CR(X) and

β ∈ H∗
CR,cs(X) is given by the integral

⟨α, β⟩X :=

∫

IX

α ∪ ι∗β.

2.2 GIT stack quotients

We follow the notations and definitions developed in [6]. LetW be an irreducible affine variety

with a right action by a reductive algebraic group G. Let θ be a character of G and Cθ be the

corresponding one-dimensional G-representation. We also denote the linearization W ×Cθ as Cθ.

Denote the semistable locus by W ss(θ) and the stable locus by W s(θ). Observe the following

diagram of quotients:

X := [W ss(θ)/G] X := [W/G]

X := W//θG X0 := Spec(C[W ]G).

We refer to X as the GIT stack quotient, X as the stack quotient, X as the underlying coarse

space or GIT quotient with respect to θ and X0 as the affine quotient.

Assumption 2.2.1. We assume W ss(θ) = W s(θ) so that X is a quasi-compact Deligne-Mumford

stack.

11



Definition 2.2.2. Fix a representation τ : G → GL(r,C) for some integer r. Define the vector

bundle E = Eτ → X as

E := [W × Cr/G],

where g ∈ G acts on the Cr factor by multiplication by τ(g). For simplicity we will omit τ from

the notation for the representation Cr and the vector bundle E throughout the paper.

The vector bundle E restricts to a vector bundle on X , which we denote by E. It may be

realized as the quotient E := [W ss(θ)× Cr/G].

Definition 2.2.3. Let (x, g) be a point in a twisted sector Xg. The fiber Ex splits as the direct sum

of eigenspaces

Ex =
⊕

0≤f<1

(Ex)f ,

where g acts on (Ex)f by multiplication by e2πif . Define the age of E at g as

ageg(E) :=
∑

0≤f<1

f dimC(Ex)f .

2.2.1 A local complete intersection in X

Let E and E be as defined in Definition 2.2.2. We do not assume E is pulled back from the

coarse space X , hence the isotropy groups Gx for x in X may act nontrivially on the fibers of E.

Let s be a global section of Γ(W,W×Cr)G such that the zero locus Z(s) is an irreducible com-

plete intersection intersecting the semistable locus W ss(θ) non-trivially. Assume Z(s) ∩W ss(θ)

is non singular.

Definition 2.2.4. Define Z := [Z(s)/G] to be the a closed substack of X given by the section s.

Define Z as the GIT stack quotient

Z := [(Z(s) ∩W ss(θ))/G].

12



The semistable locus of Z(s) is exactly the intersection of Z(s) and W ss(θ). The section s

restricts to a section of W ss(θ) × Cr whose zero locus is exactly Z(s) ∩W ss(θ). Equivalently, Z

and Z are defined as the zero loci of the sections of E and E induced by s. We will also sometimes

denote these sections by s.

Remark 2.2.5. If we assume the representation Cr splits as the direct sum of one-dimensional

representations ⊕r
i=1Cτi for characters τi : G → C∗, then E and E split and Z defines a complete

intersection of X .

Definition 2.2.6. For a fixed g in S, denote

Eg := [(W ss(θ)× Cr)g/C(g)].

The inertia stack IE may be written as IE =
⊔

g∈S Eg. Note that Eg is not usually equal to

E|Xg . When g acts nontrivially on the representation Cr, the twisted sector Eg equals Xg. If g acts

trivially, then Eg is a vector bundle over Xg.

The section s induces a section sg ∈ Γ(Xg, Eg) for each g ∈ S. The twisted sector Zg ⊂ IZ

may be realized as the vanishing locus of sg. Denote by j : IZ → IX and 0E : IX → IE the

inclusion and zero section respectively. Then we have a fiber square

IZ IX

IX IE.

j

j s

0E

By abuse of notation, we will also denote by j, s, and 0E the corresponding maps between the

rigidified inertia stacks.

Definition 2.2.7. Define the ambient cohomology of Zg, denoted H∗
amb(Zg), as the image of the

cohomology of Xg under the pullback via the inclusion jg : Zg → Xg. The ambient Chen-Ruan

cohomology of Z is

H∗
CR,amb(Z) :=

⊕

g∈S

H
∗−2ιZg

amb (Zg).
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Restricting the computation of quasimap invariants ofZ to the ambient cohomology is common

and, as Proposition 4.1.5 will suggests, natural.

Assumption 2.2.8. Following [10] and [11], we assume the Poincaré pairing on H∗
CR,amb(Z) is

non-degenerate. This is equivalent to assuming the cohomology of Z splits as the direct sum:

H∗
CR(Z) = im(j∗)⊕ ker(j∗).

2.2.2 The total space E∨

With the setting as in §2.2.1, consider the vector bundles

E∨ := [W × Cr/G] E∨ := [(W ss(θ)× Cr)/G].

Note that IE∨ =
⊔

g∈S E
∨
g . In this section we describe the Chen–Ruan cohomology of compact

type of E∨. A more detailed introduction to cohomology of compact type appears in §2 of [11].

Note that in [11], the cohomology of compact type is referred to as the narrow cohomology.

Definition 2.2.9. [11, Definition 2.1] The cohomology of compact type of E∨
g is the image of the

natural homomorphism

ϕ : H∗
cs(E

∨
g ) → H∗(E∨

g )

from compactly supported cohomology to cohomology. The Chen-Ruan cohomology of compact

type is

H∗
CR,ct(E

∨) :=
⊕

g∈S

H
∗−2ιE∨

g

ct (E∨
g ).

Given a class γ ∈ H∗
CR,ct(E

∨), we call γ ∈ H∗
CR,cs(E

∨) a lift of γ if ϕ(γ) = γ. It is proven

in [11, Lemma 2.6] that for γ ∈ H∗
CR,ct(E

∨) and κ ∈ ker(ϕ) ⊂ H∗
CR,cs(E

∨), κ ∪ γ is zero. From

this fact one can check that the following pairing is well-defined and nondegenerate.
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Definition 2.2.10. Define the compact type pairing on E∨ as follows. For α, β ∈ H∗
CR,ct(E

∨),

⟨α, β⟩E
∨,ct := ⟨α, β⟩E

∨

=

∫

IE∨

α ∪ ι∗(β),

where β ∈ H∗
CR,cs(E

∨) is a lift of β.

Let pg : E
∨
g → Xg denote the vector bundle projection for each g ∈ S. Define the linear map

e(p∗gE
∨
g ) ∪ − : H∗(E∨

g ) → H∗(E∨
g )

by cupping with the Euler class e(p∗gE
∨
g ). Denote by i : IX →֒ IE∨ the inclusion induced by the

zero section of E∨ and ig : Xg →֒ E∨
g the inclusion induced by the zero section of E∨

g .

Lemma 2.2.11. [11, Proposition 2.15] If X is compact, then the following vector spaces are

equal:

H∗
CR,ct(E

∨) = im (i∗ : H
∗
CR(X) → H∗

CR(E
∨)) =

⊕

g∈S

im
(

e(p∗E∨
g ) ∪ −

)

. (2.1)

Proof. We will prove the result for a given twisted sector E∨
g . If g fixes only the origin of W ×Cr,

then the equality holds trivially since X is compact. Let icsg∗ denote the pushforward on compactly

supported cohomology induced by ig. Note that ig∗ factors as

ig∗ = ig∗ ◦ ϕ = ϕ ◦ icsg∗.

Thus, by [25, Equation (6.11)], icsg∗ is an isomorphism. We obtain the first equality of (2.1):

im
(

ig∗ : H
∗(Xg) → H∗(E∨

g )
)

= im
(

ϕ ◦ icsg∗
)

= H∗
ct(E

∨
g ).
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Now, let α be an element of H∗(E∨
g ). Then

e(p∗gE
∨
g ) ∪ α = ig∗(1) ∪ α

= ig∗(1 ∪ i
∗
g(α))

= ig∗(i
∗
g(α)).

The first equality holds because Xg can be viewed as the zero locus of the tautological section of

p∗gE
∨
g and the second is the projection formula.

Since the pullback via ig is an isomorphism, the second equality of (2.1) holds.

Later we will use Lemma 2.2.11 to express classes in the Chen-Ruan cohomology of compact

type ofE∨ in terms of classes in the Chen-Ruan cohomology ofX . By the lemma, for γ an element

of H∗
ct(E

∨
g ), there exist a class α in H∗(Xg) such that

γ = ig∗(α) = p∗g(e(E
∨
g ) ∪ α). (2.2)

2.3 Quasimaps to a GIT stack quotient

In this section we recall the definition of ε-stable quasimap invariants and define the generating

functions that will appear in our later theorems. Let X be a GIT stack quotient as in §2.2.

Definition 2.3.1. [26, §4] Over an algebraically closed field, a twisted curve is a connected, one-

dimensional Deligne-Mumford stack which is étale locally a nodal curve, and a scheme outside

the marked points and the singular locus.

Definition 2.3.2. [6, Definition 2.1] Let (C, x1, . . . , xk) be a k-pointed, genus-g twisted curve and

let φ : (C, x1, . . . , xk) → (C, x1, . . . , xk) be its rigidification.

• A k-pointed, genus-g quasimap to X is a twisted curve (C, x1, . . . , xk) together with a rep-

resentable morphism [u] : C → X such that [u]−1(X \ X), referred to as the base lo-

16



cus, is purely zero-dimensional. We denote this quasimap as (C, x1, . . . , xk, [u]) and call

(C, x1, . . . , xk) or C its source curve.

• The class β of the quasimap is an element of Hom(PicX,Q) defined by

β : PicX → Q, L 7→ deg ([u]∗(L)) .

The degree of the quasimap [u] is given by the rational number β(Cθ). We say β is θ-effective

if it is represented by a quasimap to X . The set of θ-effective classes forms a sub-semigroup

of Hom(PicX,Q) denoted Eff(W,G, θ). For brevity, we often denote this sub-semigroup as

Eff.

• If the base locus of a quasimap (C, x1, . . . , xk, [u]) does not contain marked or nodal gerbes,

then we call the quasimap prestable.

• Let e be the least common multiple of |Aut(p)| for all geometric points p→ X with isotropy

groups Aut(p). Fix a rational number ε. A prestable quasimap is called ε-stable if

1. the Q-line bundle

ωC

(

k
∑

i=1

xi

)

⊗
(

φ∗([u]
∗C⊗e

θ )
)ε

(2.3)

on the coarse curve C is ample and

2. for all x ∈ C,

εl(x) ≤ 1,

where l(x) is the length at x defined in [5, §7.1].

We say a prestable quasimap is 0+-stable, if (2.3) is ample for all rational ε > 0.

Definition 2.3.3. The moduli space of k-pointed, genus-g, ε-stable quasimaps to X of degree

β, denoted by Qε
g,k(X, β), is the space of isomorphism classes of k-pointed, genus-g, ε-stable

quasimaps to X of degree β.
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By Theorem 2.7 of [6], Qε
g,k(X, β) is a proper Deligne-Mumford stack over the affine quotient

X0. Furthermore, when the singularities ofW are at worst local complete intersections andW ss(θ)

is nonsingular, Qε
g,k(X, β) carries a canonical perfect obstruction theory.

When ε is sufficiently large, the moduli space of ε-stable quasimaps Qε
g,k(X, β) coincides with

the moduli space of stable maps Mg,n(X, β) from Gromov-Witten theory. We adopt the notation

of [5, 6] and define

Q∞
g,k(X, β) := Mg,n(X, β).

2.4 The Dubrovin connection

Since the base locus of an ε-stable quasimap is disjoint from the marked gerbes for i = 1, . . . , k,

there exists evaluation maps to the rigidified inertia stack ĪX:

evi : Q
ε
g,k(X, β) → ĪX.

We refer the reader to [26, §4.4] for an introduction to such maps. There is a canonical map ω̄ :

IX → ĪX inducing an isomorphism of cohomology ω̄∗ : H
∗(IX) → H∗(ĪX). By composing ev∗i

with ω̄−1
∗ , we may define quasimap invariants using cohomology class insertions from H∗

CR(X).

Let ψi represent the first Chern class of the universal cotangent line overQε
g,k(X, β) whose fiber

over a point (C, x1, . . . , xk, [u]) is given by the cotangent space of the underlying coarse curve C

at the ith marked point. Denote by [Qε
g,k(X, β)]

vir the virtual fundamental class from [5, §4.5]

and [6, §2.4.5]. By [6, Theorem 2.7], Qε
g,k(X, β) is proper over X0. By [27, Corollary 4.8], this

implies each evaluation map evi is proper.

Definition 2.4.1. Assume X is proper. For non-negative integers ai and classes αi ∈ H∗
CR(X),

ε-quasimap invariants or simply quasimap invariants are given by integrals

⟨α1ψ
a1
1 , . . . , αkψ

ak
k ⟩X,ε

g,β :=

∫

[Qε
g,k(X,β)]

vir

k
∏

i=1

ev∗i (αi)ψ
ai
i . (2.4)
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Fix a basis {T i}i∈I of H∗
CR(X) and let t =

∑

i∈I tiT
i. Define the double-bracket

⟨⟨α1ψ
a1
1 , . . . , αkψ

ak
k ⟩⟩X,ε

0 (t) :=
∑

β∈Eff

∑

m≥0

qβ

m!
⟨α1ψ

a1
1 , . . . , αkψ

ak
k , t, . . . , t⟩

X,ε
0,β , (2.5)

where there are m insertions of t in each summand.

If X is not proper (i.e. if X0 is not a point), then slightly more care must be taken to define

quasimap invariants. Assume that the evaluation maps evi : Q
0+
0,2(X, β) → ĪX are proper. If at

least one class αj lies in compactly supported cohomology H∗
CR,cs(X) for 1 ≤ j ≤ k then we

define

⟨α1ψ
a1
1 , . . . , αkψ

ak
k ⟩X,ε

g,β (2.6)

exactly as in (2.4).

Definition 2.4.2. We also define ε-quasimap invariants whenever at least two insertion classes are

compact type. Assume αj and αl are in H∗
CR,ct(X) for 1 ≤ j, l ≤ k distinct. Define

⟨α1ψ
a1
1 , . . . , αkψ

ak
k ⟩X,ε

g,β :=

〈

ẽvl∗



ψal
l ∪

∏

i∈{1,...,k}\{l}

ev∗i (αi)ψ
ai
i ∩

[

Qε
0,k(X, β)

]vir



 , αl

〉
X,ct

,

(2.7)

where ⟨−,−⟩X,ct is the compact type pairing of Definition 2.2.9 and ẽvk = ι ◦ evk.

By Proposition 2.5 of [11], pullback and pushforward via a proper map each preserve the

compact type subspace of H∗
CR(X). Because αj lies in H∗

CR,ct(X), the pushforward in the right

hand side of (2.7) lies in H∗
CR,ct(X) as desired.

Define the double bracket exactly as in (2.5), but replacing (2.4) with (2.7).

If αj is a lift of αj as defined in §2.2.2, then (2.7) is equal to (2.6) after replacing αj with αj .

Let {Ti}i∈I ⊆ H∗
CR,ct(X) denote the dual basis to {T i}i∈I in the cohomology of compact type.

Definition 2.4.3. [28, §2] The ε-quantum product of α1 and α2 in H∗
CR,ct(X), written α1 •

X,ε
t

α2,

is the sum

α1 •
X,ε
t

α2 :=
∑

i∈I

⟨⟨α1, α2, Ti⟩⟩
X,ε
0 (t)T i.
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Definition 2.4.4. Let z be a formal variable. The ε-Dubrovin connection on

H∗
CR,ct(X)⊗ C[[ti, q]]i∈I [z, z

−1]

is defined by

∇X,ε
i =

∂

∂ti
+

1

z
Ti •

X,ε
t

. (2.8)

Define the operator LX,ε(t, z) by

LX,ε(t, z)(α) := α +
∑

i∈I

〈〈

α

−z − ψ
, Ti

〉〉X,ε

0

(t)T i, (2.9)

for all α ∈ H∗
CR,ct(X).

Proposition 2.4.5. The Dubrovin connection ∇X,ε is flat, with fundamental solution given by the

operator LX,ε(t, z). For i ∈ I and α ∈ H∗
CR,ct(X) we have the equality

∇X,ε
i

(

LX,ε(t, z)(α)
)

= 0.

Proof. The proof is identical to the Gromov-Witten theory case [29, 30]. The key ingredient is the

topological recursion relation for quasimaps [28, Corollary 2.3.4].

When X is proper we have

H∗
CR(X) = H∗

CR,ct(X).

In this case, (2.8) and (2.9) are (ϵ-stable versions of) the usual Dubrovin connection and funda-

mental solution.

Denote by LX,ε(z) the restriction of LX,ε(t, z) to t = 0:

LX,ε(z)(α) := LX,ε(0, z)(α) = α +
∑

i∈I

∑

β∈Eff

qβ
〈

α

−z − ψ
, Ti

〉X,ε

0,β

T i (2.10)

= α +
∑

β∈Eff

qβ ẽv2∗

(

ev∗1(α)

−z − ψ1

∩
[

Qε
0,2(X, β)

]vir
)

,
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for all α ∈ H∗
CR,ct(X). The operator LX,ε(z) records all two-pointed genus-zero ε-stable quasimap

invariants with one compact type primary insertion and one compact type descendants insertion.

In this paper we restrict our attention to LX,0+(z).
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Chapter 3

Two-pointed genus-zero quasimaps

In this section we define weak forms of convexity and concavity and show that both are equiva-

lent. We also prove that weakly semi-positive vector bundles E → X (Definition 3.2.3) are weakly

convex.

3.1 Source curves

Here we describe the source curves of two-pointed genus-zero 0+-stable quasimaps.

Lemma 3.1.1. For a point (C, x1, x2, [u]) in Q0+
0,2(X, β), the underlying coarse curve (C, x1, x2)

is an at worst nodal curve such that each irreducible component has exactly two special points.

Furthermore, the degree of [u] is positive on every rational component.

Proof. For a point (C, x1, x2, [u]) in Q0+
0,2(X, β), the dual graph of its source curve (C, x1, x2) is a

tree because the curve is genus zero. The stability condition (2.3) states that the line bundle

ωC (x1 + x2)⊗
(

ϕ∗([u]
∗C⊗e

θ )
)ε

has positive degree on each rational component of the underlying coarse curve (C, x1, x2) for all

ε > 0. Hence, every rational component of (C, x1, x2) with a single node must contain a marked

point. Since there are only two marked points, there are at most two rational components with a

single node. That is, (C, x1, x2) must be a chain of rational components with marked points on the

terminal components.

Therefore each rational component of C has exactly two special points. The stability condition

then implies that the degree of [u] must be positive on every component of (C, x1, x2).
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· · ·

Figure 3.1: The underlying coarse curves (C, x1, x2).

For integers c, d, denote by P[c,d] a smooth twisted curve whose coarse space is P1 with two

marked points such that the isotropy groups at the marked points are µc and µd. By Lemma 3.1.1,

each component of a source curve in Q0+
0,2(X, β) is given by some P[c,d].

Denote by l, a, and b the integers l = gcd(c, d), a = c/l, and b = d/l. We can rewrite l as the

product of integers l1 and l2 such that gcd(l1, l2) = 1, gcd(l1, b) = 1, and gcd(l2, a) = 1. In the

next lemma we give a uniform way of expressing P[c,d] as a quotient stack.

Lemma 3.1.2. Let χ : µl1 × µl2 × C∗ → C∗ be the character given by

χ
(

e
2πi

m1
l1 , e

2πi
m2
l2 , λ

)

= λ.

The twisted curve P[c,d] may be represented as a GIT stack quotient

[

C2 //χ (µl1 × µl2 × C∗)
]

(3.1)

with action
(

e
2πi

m1
l1 , e

2πi
m2
l2 , λ

)

· (x, y) =
(

λaxe
2πi

m1
l1 , λbye

2πi
m2
l2

)

,

for 0 ≤ m1 < l1, 0 ≤ m2 < l2, λ ∈ C∗, and (x, y) ∈ C2.

Remark 3.1.3. The presentation (3.1) is not unique. For example, P[c,d] may also be represented

by the GIT stack quotient

[

C3 //σ (µl1 × µl2 × (C∗)2)
]

where the character σ : µl1 × µl2 × (C∗)2 → C∗ is defined by

σ
(

e
2πi

m1
l1 , e

2πi
m2
l2 , λ1, λ2

)

= λ1λ2
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and the action is

(

e
2πi

m1
l1 , e

2πi
m2
l2 , λ1, λ2

)

· (x, y, z) =
(

λa1xe
2πi

m1
l1 , λb1ye

2πi
m2
l2 , λ2z

)

,

for 0 ≤ m1 < l1, 0 ≤ m2 < l2, (λ1, λ2) ∈ (C∗)2, and (x, y, z) ∈ C3.

Proof. It suffices to show that the orbifold curve (3.1) contains exactly two orbifold points with

isotropy groups of orders c and d.

We first calculate the generic isotropy. Fix x, y ̸= 0 and let
(

e
2πi

m1
l1 , e

2πi
m2
l2 , λ

)

be an element

of µl1 × µl2 × C∗ which fixes (x, y). Then we have

λae
2πi

m1
l1 = 1 (3.2)

and

λbe
2πi

m2
l2 = 1. (3.3)

Equality (3.2) implies λ = e
2πi

l1n−m1
al1 for some integer n. So, the product λbe

2πi
m2
l2 equals

e
2πi

(

m2
l2

+
bl1n−bm1

al1

)

and (3.3) implies

m2

l2
+
bl1n− bm1

al1
=
al1m2 + bl1l2n− bl2m1

al1l2

is an integer.

If al1l2 divides al1m2 + bl1l2n− bl2m1, then l2 divides al1m2. However, the greatest common

divisor of al1 and l2 is one, and m2 is a non-negative integer strictly less than l2. Thus, m2 must

equal 0. Similar reasoning shows m1 also equals 0.

In this case, (3.2) and (3.3) reduce to the equation λa = λb = 1. By assumption, the greatest

common divisor of a and b is one. Therefore (3.2) holds if and only if
(

e
2πi

m1
l1 , e

2πi
m2
l2 , λ

)

is the

identity.
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An element
(

e
2πi

m1
l1 , e

2πi
m2
l2 , λ

)

in µl1 × µl2 × C∗ fixes (1, 0) if and only if λae
2πi

m1
l1 = 1.

Hence, µl2 fixes (1, 0) and the subgroup of µl1 × C∗ which fixes (1, 0) is

〈(

e
−2πi 1

l1 , e
2πi 1

al1

)〉

∼= µal1 . (3.4)

This gives us the following isotropy group:

G(1,0)
∼= µal1 × µl2

∼= µal1l2 = µc.

The second isomorphism follows from the fact that gcd(al1, l2) = 1. The final equality results

from the equalities l = l1l2 and a = c/l.

An identical argument shows that the order of the isotropy group at (0, 1) is d. One easily

checks that the χ-stable locus is C2 \ {(0, 0)} as desired.

The GIT stack quotient
[

C2 //χ (µl1 × µl2 × C∗)
]

may be written as a global quotient of a

weighted projective space by a finite cyclic group. Recall that l = l1l2 and gcd(l1, l2) = 1. We will

sometimes write
[

C2 //χ (µl1 × µl2 × C∗)
]

simply as P(a, b)/µl, where the action of µl = µl1 ×µl2

is understood to be as described.

Corollary 3.1.4. Let (C, x1, x2) be a source curve of a two-pointed genus-zero 0+-stable quasimap

to a GIT stack quotient. Then the rational components of (C, x1, x2) are isomorphic to a quotient

of a weighted projective P(a, b)/µl as above.

Proof. The result follows immediately from Lemmas 3.1.1 and 3.1.2.

We conclude our discussion of two-pointed genus-zero (0+)-stable quasimap source curves

with a remark about line bundles over such curves.

Remark 3.1.5. Let (C, x1, x2, [u]) be a quasimap in the moduli spaceQ0+
0,2(X, β). By Lemma 3.1.1,

Lemma 3.1.2, and [31, Proposition 2.2], line bundles over C restricted to an irreducible component
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are isomorphic to a GIT stack quotient

[

(

C2 \ {0} × C
)

//χ (µl1 × µl2 × C∗)
]

with the action given by

(

e
2πi

m1
l1 , e

2πi
m2
l2 , λ

)

· (x, y, z) =
(

λaxe
2πi

m1
l1 , λbye

2πi
m2
l2 , λdze

2πi
k1l2m1+k2l1m2

l1l2

)

,

for some integers k1, k2, and d. Denote this GIT quotient by Ok1,k2
P(a,b)/µl

(d). We omit the superscripts

k1 and k2 when l equals 1.

3.2 Weak convexity

We now define (weak) semi-positivity for a vector bundle over X and prove that it implies a

weak form for convexity.

Definition 3.2.1. For a character τ : G → C∗ with one-dimensional representation Cτ , denote by

L = [W × Cτ/G] the corresponding line bundle over X. We say L is positive if β(L) > 0 for all

β ∈ Eff(W,G, θ) and semi-positive if β(L) ≥ 0 for all β ∈ Eff(W,G, θ).

A vector bundle E over X is positive (semi-positive) if it splits as the direct sum of positive

(semi-positive) line bundles.

Remark 3.2.2. Our definition of a positive (semi-positive) line bundle L agrees with the definition

in [5, §6.2] of a positive (semi-positive) character τ .

The authors of [31] generalize the Birkhoff-Grothendieck theorem to orbifolds whose coarse

space is P1 with only two points with nontrivial isotropy and chains of projective lines meeting at

nodal singularities. These are exactly the source curves of Q0+
0,2(X, β) that we are considering.

Fix a quasimap (C, x1, x2, [u]) ∈ Q0+
0,2(X, β). By Lemma 3.1.1 and [31], vector bundles over

C split as line bundles. Hence, for any vector bundle E → X as in Definition 2.2.2, the pullback
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[u]∗E splits as the direct sum of line bundles ⊕r
i=1Li regardless of whether E splits. This allows us

to make the following definition:

Definition 3.2.3. The vector bundle E is weakly semi-positive if, for any β ∈ Eff(W,G, θ) and

(C, x1, x2, [u]) ∈ Q0+
0,2(X, β), the pullback [u]∗E splits as the direct sum of line bundles ⊕r

i=1Li

such that deg(Li) ≥ 0 for all 1 ≤ i ≤ r.

If X is a smooth variety, convexity follows from semi-positivity of E. This is no longer the

case when X is an orbifold (See Remark 4.0.1 for more details). In this section we consider a

weaker notion, which we term weak convexity.

Definition 3.2.4. A vector bundle E over X is weakly convex if H1(C, [u]∗E(−x2)) vanishes for

all (C, x1, x2, [u]) ∈ Q0+
0,2(X, β) and β ∈ Eff(W,G, θ).

Assume the vector bundle E is weakly semi-positive. For a given quasimap (C, x1, x2, [u]) in

Q0+
0,2(X, β), the group H1(C, [u]∗E) splits as

H1(C, [u]∗E) =
r
⊕

i=1

H1(C,Li).

The line bundles Li have non-negative degree by assumption. Furthermore, each Li has non-

negative degree on every irreducible component of C. Let l, a, and b be as in §3.1. As noted

in Remark 3.1.5, the restriction of Li to an irreducible component of C is then isomorphic to

Ok1,k2
P(a,b)/µl

(d) for some integers k1, k2, and d with d ≥ 0.

We will show that H1(C,L) vanishes whenever C is a two-pointed genus-zero 0+-stable

quasimap source curve and L → C has non-negative degree on each irreducible component. We

begin with the case that C is smooth.

For Lemmas 3.2.5 and 3.2.6, let (x, y) be the homogeneous coordinates of P(a, b)/µl and label

x1 = (1, 0) and x2 = (0, 1). Also fix a non-negative integer d.

Lemma 3.2.5. The cohomology group H1
(

P(a, b)/µl,O
k1,k2
P(a,b)/µl

(d)
)

vanishes.
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Proof. First consider the case µl is trivial. Then P(a, b)/µl is a weighted projective space P(a, b)

and Ok1,k2
P(a,b)/µl

(d) is simply OP(a,b)(d). Let φ denote the rigidification map from P(a, b) to P1.

The points x1 and x2 are the only points of P(a, b) with nontrivial isotropy. The generator of

the isotropy group at L|xj
acts by multiplication by e2πi

wj
ab for some weight 0 ≤ wj < ab. Orbifold

Reimann-Roch gives the following:

deg(φ∗OP(a,b)(d)) =
d

ab
−
(w1

ab
+
w2

ab

)

>
d

ab
− 2

> −2.

Since the degree of φ∗OP(a,b)(d) is an integer no less than −1, we conclude that

H1(P(a, b),OP(a,b)(d)) = H1(P1, φ∗OP(a,b)(d)) = 0. (3.5)

Now let µl be an arbitrary finite cyclic group. We have the fiber diagram:

OP(a,b)(d) Ok1,k2
P(a,b)/µl

(d)

P(a, b) P(a, b)/µl.

So, H1
(

P(a, b)/µl,O
k1,k2
P(a,b)/µl

(d)
)

is the µl-invariant part of H1
(

P(a, b),OP(a,b)(d)
)

. Equa-

tion (3.5) implies H1
(

P(a, b),OP(a,b)(d)
)

vanishes when d ≥ 0. Therefore the cohomology group

H1
(

P(a, b)/µl,O
k1,k2
P(a,b)/µl

(d)
)

vanishes.

Lemma 3.2.6. If the isotropy at xj acts nontrivially on the fibers of the line bundle Ok1,k2
P(a,b)/µl

(d),

then H0
(

xj,O
k1,k2
P(a,b)/µl

(d)|xj

)

vanishes. Otherwise, there exists a section of Ok1,k2
P(a,b)/µl

(d) that is

nonzero at xj and zero at the other point.

Proof. The first claim is immediate. For the second, assume the isotropy at x1 acts trivially.

28



By (3.4), the isotropy group at x1 is

Gx1 =
〈(

e
2πi 1

l1 , e
2πi 1

l2 , e
−2πi 1

al1

)〉

.

The action of
(

e
2πi 1

l1 , e
2πi 1

l2 , e
−2πi 1

al1

)

on Ok1,k2
P(a,b)/µl

(d)|x1 is given by

(

e
2πi 1

l1 , e
2πi 1

l2 , e
−2πi 1

al1

)

· (1, 0, z) =
(

1, 0, ze
2πi

al2k1+al1k2−l2d
al1l2

)

.

This action is trivial, therefore al1l2 divides al2k1 + al1k2 − l2d. Thus a divides l2d. Since l2 and a

are coprime by the assumption preceding Lemma 3.1.2, this implies a divides d. Rewrite d as the

product ac for some integer c. Similar arguments show that l2 divides k2 and l1 divides (k1 − c).

The latter ensures k1 is congruent to c modulo l1.

Consider the map f : C2 → C defined by f(x, y) = xc. We claim f descends to a section of

Ok1,k2
P(a,b)/µl

(d). Note that

f
(

λaxe
2πi

m1
l1 , λbye

2πi
m2
l2

)

= λacxce
2πi

cm1
l1

= λde
2πi

k1l2m1+k2l1m2
l1l2 f(x, y).

The second equality holds because k1 is congruent to c modulo l1, d equals ac, and l2 divides k2 so

k2l1m2

l1l2
is an integer for all integers 0 ≤ m2 < l2.

This verifies the map (x, y) 7→ (x, y, f(x, y)) is G-equivariant, and therefore f descends to a

section s of Ok1,k2
P(a,b)/µl

(d). One sees immediately that s(x1) ̸= 0 and s(x2) = 0.

An identical argument shows that if the action of the isotropy group at x2 is trivial, then there

exists a section s̃ of Ok1,k2
P(a,b)/µl

(d) such that s̃(x1) = 0 and s̃(x2) ̸= 0.

Proposition 3.2.7. Let (C, x1, x2) be the source curve of a genus-zero 0+-stable quasimap to a GIT

stack quotient and L → C a line bundle with non-negative degree on each irreducible component

of C. Then H1(C,L(−x2)) vanishes.
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Proof. By Lemma 3.1.1, the underlying coarse curve C is a chain of rational components such that

the marked points x1 and x2 lie on the end components. Suppose C has k irreducible components

{Cj}
k
j=1, labeled so that x1 lies on C1, x2 lies on Ck, and the curves Cj and Cj+1 intersect at the

node nj .

We first show H1(C,L) vanishes. Consider the normalization sequence:

0 OC

k
⊕

j=1

OCj

k−1
⊕

j=1

OC |nj
0. (3.6)

Tensoring by L and taking cohomology, we obtain

0 H0(C,L)
k
⊕

j=1

H0(Cj,L|Cj
)

k−1
⊕

j=1

H0(nj,L|nj
)

H1(C,L) 0.

F

Here
⊕k

j=1H
1(Cj,L|Cj

) is zero by Corollary 3.1.4 and Lemma 3.2.5.

For sections sj in H0(Cj,L|Cj
), the map F is defined as

F (s1, . . . , sk) = (s1(n1)− s2(n1), s2(n2)− s3(n2), . . . , sk−1(nk−1)− sk(nk−1)) .

If the isotropy group Gnj
acts nontrivially on the fiber L|nj

, then H0(nj,L|nj
) is zero. Otherwise,

Lemma 3.2.6 implies there exists a section s̃j in H0(Cj,L|Cj
) such that s̃j(nj) ̸= 0 and, if j > 1,

s̃j(nj−1) = 0. Thus

F

(

0, . . . ,
1

s̃j(nj)
s̃j, . . . , 0

)

= (0, . . . , 1, . . . , 0),

where the vectors above have a zero in every entry except the ith one. This shows F is surjective.

As a result, H1(C,L) vanishes.

30



Tensoring the divisor exact sequence of C for the marked point x2 by L and pushing forward

gives the long exact sequence:

0 H0(C,L(−x2)) H0(C,L) H0(x2,L|x2)

H1(C,L(−x2)) 0.

If Gx2 acts nontrivially on the fiber of L at x2, then H0(x2,L|x2) vanishes. So, the cohomology

group H1(C,L(−x2)) also vanishes.

IfGx2 acts trivially on the fiber of L at x2, we must show that the mapH0(C,L)→H0(x2,L|x2)

is surjective. By Lemma 3.2.6, there exists a section s of L|Ck
→ Ck such that s(nk−1) is zero and

s(x2) is nonzero. The section s can be extended by the zero section on the other components to get

a section in H0(C,L) that does not vanish at x2. Therefore the map H0(C,L) → H0(x2,L|x2) is

surjective, so H1(C,L(−x2)) is zero.

Theorem 3.2.8. If a vector bundle E → X is weakly semi-positive, then it is weakly convex.

Proof. Consider a 0+-stable quasimap (C, x1, x2, [u]) in Q0+
0,2(X, β). Since [u]∗E is a direct sum

of line bundles, we may write

H1(C, [u]∗E(−x2)) =
r
⊕

i=1

H1(C,Li(−x2)).

Each Li satisfies the hypothesis of Proposition 3.2.7. Thus H1(C, [u]∗E(−x2)) vanishes.

3.3 Weak concavity

In this section we define weak concavity. We then prove the relative log canonical bundle over

the universal curve π : C → Q0+
0,2(X, β) is trivial and use this result to prove a vector bundle E → X

is weakly convex if and only if its dual E∨ → X is weakly concave.

Definition 3.3.1. A vector bundle E∨ over X is weakly concave if H0(C, [u]∗E∨(−x1)) vanishes

for all 0+-stable quasimaps (C, x1, x2, [u]) ∈ Q0+
0,2(X, β) and β ∈ Eff(W,G, θ).
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Lemma 3.3.2. The log canonical bundle over a source curve (C, x1, x2) of a 0+-stable quasimap

(C, x1, x2, [u]) in Q0+
0,2(X, β) is trivial.

Proof. If C is smooth, the canonical bundle of P(a, b)/µl is isomorphic to O(−[0] − [∞]). The

result is then immediate. When the source curve is nodal, we again use Corollary 3.1.4. In this

case we will show that ωC(x1 + x2) has a nowhere vanishing section, which gives an isomorphism

ωC(x1 + x2) ∼= OC .

Let C have k rational components and k − 1 nodes, labeled as {Ci}
k
i=1 and {ni}

k−1
i=1 as in

the proof of Proposition 3.2.7. For convenience, relabel x1 by n0 and x2 by nk. Tensoring the

normalization sequence (3.6) by the log canonical bundle gives rise to the following long exact

sequence:

0 → H0(C, ωC(x1 + x2))
G
−→

k
⊕

i=1

H0(Ci, ωCi
(ni−1 + ni))

F
−→

k−1
⊕

i=1

H0(ni, ωC(x1 + x2)|ni
) → · · · .

Note that the map F is a sum of residue maps. There exists nowhere vanishing sections si of

each ωCi
(ni−1 + ni) that have residue 1 near ni−1 and −1 near ni. The tuple

(s1, . . . , sk) ∈
k
⊕

i=1

H0(Ci, ωCi
(ni−1 + ni))

lies in kernel of F , which is isomorphic to H0(C, ωC(x1 + x2)). Hence, the sections s1, . . . , sk

glue together to give a nowhere vanishing global section of ωC(x1 + x2). Thus the log canonical

bundle is trivial.

Proposition 3.3.3. The relative log canonical bundle over the universal curve π : C → Q0+
0,2(X, β)

is trivial.
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Proof. Tensoring the divisor exact sequence of C for the divisor corresponding to the first marked

point by ωπ(x2) and pushing forward, we obtain the long exact sequence

0 ❘
0π∗ωπ(x2) ❘

0π∗ωπ(x1 + x2) ❘
0π∗ (ωπ(x1 + x2)|x1)

❘
1π∗ωπ(x2) ❘

1π∗ωπ(x1 + x2) 0.

Lemma 3.3.2 and Serre duality imply that for every 0+-stable quasimap (C, x1, x2, [u]) in

Q0+
0,2(X, β), the cohomology groups H0(C, ωC(x2)) and H1(C, ωC(x2)) vanish. Therefore the

sheaves R0π∗ωπ(x2) and R1π∗ωπ(x2) are both zero. Hence, the map

❘
0π∗ωπ(x1 + x2) −→ ❘

0π∗ (ωπ(x1 + x2)|x1)

is an isomorphism.

The sheaf ❘0π∗(ωπ(x1 + x2)|x1) is canonically trivialized by the residue map. Therefore

❘
0π∗ωπ(x1 + x2) is a trivial line bundle.

The constant function 1 in Γ(Q0+
0,2(X, β),❘

0π∗(ωπ(x1 + x2)|x1)) is the image of a section s in

Γ(Q0+
0,2(X, β),❘

0π∗ωπ(x1+x2)). The section s corresponds to a nonzero section s̃ of ωπ(x1+x2).

The restriction of ωπ(x1+x2) to a fiber (C, x1, x2) of the universal curve C is canonically trivial by

Lemma 3.3.2. The section s̃|C is nonzero and hence nowhere vanishing on each fiber (C, x1, x2)

in C. Thus s̃ is nowhere vanishing.

Hence, ωπ(x1 + x2) has a nowhere vanishing section and so it is trivial.

Theorem 3.3.4. The vector bundle E is weakly convex if and only if E∨ is weakly concave.

Proof. By Lemma 3.3.2, the log canonical bundle ωC(x1 + x2) is canonically trivial for all points

(C, x1, x2, [u]) in Q0+
0,2(X, β). Hence, the canonical bundle ωC is isomorphic to OC(−x1−x2). We
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now have the following:

H0(C, [u]∗E∨(−x1)) = H1(C, [u]∗E(x1)⊗ ωC)
∨

= H1(C, [u]∗E(−x2))
∨.

The first equality is Serre duality and the second is due to the isomorphism ωC
∼= OC(−x1 − x2).

If the left hand side vanishes for all 0+-stable two-pointed quasimaps then so does the right, and

vice versa. This completes the proof.
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Chapter 4

Quantum Lefschetz

The quantum Lefschetz hyperplane theorem compares the genus-zero Gromov-Witten theory

of a space X with that of a complete intersection Z ⊂ X defined by a section of a vector bundle

E → X [8, 32–36]. The same proof applies to quasimaps under certain conditions on E [5].

In this section we use a modification of the quantum Lefschetz theorem for two-pointed genus-

zero quasimaps to relate the generating function LZ,0+(z) to a twisted version of LX,0+(z).

Remark 4.0.1 (Quantum Lefschetz for orbifolds). Let Z be a closed subset of X cut out by a

section of a vector bundle E → X . In the case when X is a smooth variety, the quantum Lefschetz

theorem holds as long as E is the direct sum of semi-positive line bundles. However this can fail

when X is an orbifold. For example, the line bundle OP(1,1,2,2)(1) → P(1, 1, 2, 2) is positive, but

quantum Lefschetz fails for the hypersurface P(1, 2, 2) defined by a section of OP(1,1,2,2)(1) [20].

As observed in [20], the general setting in which one should expect a quantum Lefschetz state-

ment is not when E is semi-positive, but rather when E is convex, that is, when for every stable

map f : C → X from a genus-zero curve C, the cohomology group H1(C, f ∗(E)) is zero. If X

is a variety, then if E → X is semi-positive it is also convex. This no longer holds when X is an

orbifold.

For two-pointed genus-zero quasimaps, we will see that in fact weak convexity is sufficient for

a quantum Lefschetz statement.

4.1 Weak convexity and twisted invariants

Let X , X, and E be as in §2.2.1. For the remainder of the paper we assume that X is proper

and that E is weakly convex.

Lemma 4.1.1. The cohomology group H1(C, [u]∗E) vanishes for all points (C, x1, x2, [u]) in

Q0+
0,2(X, β) and classes β ∈ Eff(W,G, θ).
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Proof. Fix a point (C, x1, x2, [u]) in Q0+
0,2(X, β). Consider the divisor exact sequence

0 OC(−x2) OC OC |x2 0.

Tensoring this by [u]∗E and pushing forward gives rise to a long exact sequence in cohomology

0 H0(C, [u]∗E(−x2)) H0(C, [u]∗E) H0(x2, [u]
∗E|x2)

H1(C, [u]∗E(−x2)) H1(C, [u]∗E) 0.

By Theorem 3.2.8, H1(C, [u]∗E(−x2)) vanishes. Therefore H1(C, [u]∗E) also vanishes.

Denote by π the projection from the universal curve C to Q0+
0,2(X, β). Let [u] be the universal

map from C to X. By Lemma 4.1.1, ❘0π∗[u]
∗E is a vector bundle on Q0+

0,2(X, β). Let 0X denote

the zero section of ❘0π∗[u]
∗E and s̃ ∈ Γ(Q0+

0,2(X, β),❘
0π∗[u]

∗E) denote the section induced by s.

Theorem 4.1.2. There is a fiber square

Q0+
0,2(Z, β) Q0+

0,2(X, β)

Q0+
0,2(X, β) ❘

0π∗[u]
∗E .

j̃

j̃ s̃

0X

The virtual classes are related by

0!X
[

Q0+
0,2(X, β)

]vir
=
[

Q0+
0,2(Z, β)

]vir
.

Proof. The proof of the theorem in [37] for Gromov-Witten theory extends to quasimaps.

Theorem 4.1.2 implies the more familiar quantum Lefschetz statement from [5].

Proposition 4.1.3. [5] The following classes are equal in the Chow group of Q0+
0,2(X, β):

j̃∗
[

Q0+
0,2(Z, β)

]vir
= e(❘0π∗[u]

∗E) ∩
[

Q0+
0,2(X, β)

]vir
.
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The definitions and arguments that follow are similar to those appearing in [38, §2.1] to define

a twisted quantum product.

Definition 4.1.4. In the Chow group of Q0+
0,2(X, β), define the twisted virtual class

[

Q0+
0,2(X, β)

]vir

X/Z,2
:= e(❘0π∗[u]

∗E(−x2)) ∩
[

Q0+
0,2(X, β)

]vir
. (4.1)

Define the operator LX/Z,0+(z) by

LX/Z,0+(z)(α) := α +
∑

β∈Eff

qβ ẽv2∗

(

ev∗1(α)

−z − ψ1

∩
[

Q0+
0,2(X, β)

]vir

X/Z,2

)

for α ∈ H∗
CR(X).

The subscript 2 following X/Z in (4.1) indicates the twist down by the second marked point.

Now, we compare LX/Z,0+(z) and LZ,0+(z).

Proposition 4.1.5. The operators LX/Z,0+(z) and LZ,0+(z) are related as follows

j∗ ◦ LX/Z,0+(z) = LZ,0+(z) ◦ j∗.

The analogous statement in Gromov-Witten theory appears in [30, Proposition 2.4]. The proof

in this case is very similar.

Proof. To avoid confusion, we use superscripts to distinguish between the evaluation maps

evXi : Q0+
0,2(X, β) → ĪX and evZi : Q0+

0,2(Z, β) → ĪZ. For α in H∗(ĪX), we can express

j∗ ◦ LX/Z,0+(z)(α) as

j∗α +
∑

β∈Eff

qβj∗ẽvX2∗

(

evX∗
1 (α)

−z − ψ1

∪ e(❘0π∗[u]
∗E(−x2)) ∩

[

Q0+
0,2(X, β)

]vir
)

(4.2)
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and LZ,0+(z) ◦ j∗(α) as

j∗(α) +
∑

β∈Eff

qβ ẽvZ2∗

(

evZ∗
1 j∗(α)

−z − ψ1

∩
[

Q0+
0,2(Z, β)

]vir
)

. (4.3)

To prove the claim we compare (4.2) and (4.3) term by term.

Define Q to be the zero locus of the section evX∗
2 s ∈ Γ(Q0+

0,2(X, β), ev
X∗
2 E) and denote the

evaluation maps of Q by evQ1 : Q → ĪX and evQ2 : Q → ĪZ. Label the following projections

πX
1 , π

X
2 : ĪX × ĪX → ĪX , π1 : ĪX × ĪZ → ĪX , and π2 : ĪX × ĪZ → ĪZ. Consider the

following diagram, where the rectangles are fiber squares

Q0+
0,2(Z, β) Q Q0+

0,2(X, β)

ĪX × ĪZ ĪX × ĪX

ĪZ ĪX,

j′′

evZ

j′

evQ evX

id×j

π2 πX
2

j

(4.4)

where evX = (evX1 , ev
X
2 ), evQ = (evQ1 , ev

Q
2 ), and evZ = (j ◦ evZ1 , ev

Z
2 ).

Using the diagram above, we rewrite each term in the sum of (4.2):

j∗ẽvX2∗

(

evX∗
1 (α)

−z − ψ1

∪ e(❘0π∗[u]
∗E(−x2)) ∩

[

Q0+
0,2(X, β)

]vir
)

=ẽvQ2∗j
!

(

evX∗
1 (α)

−z − ψ1

∪ e(❘0π∗[u]
∗E(−x2)) ∩

[

Q0+
0,2(X, β)

]vir
)

=ι∗π2∗ev
Q
∗ (id× j)!

(

evX∗πX∗
1 (α)

−z − ψ1

∪ e(❘0π∗[u]
∗E(−x2)) ∩

[

Q0+
0,2(X, β)

]vir
)

=ι∗π2∗(id× j)∗evX∗

(

evX∗πX∗
1 (α)

−z − ψ1

∪ e(❘0π∗[u]
∗E(−x2)) ∩

[

Q0+
0,2(X, β)

]vir
)

=ι∗π2∗

(

(id× j)∗πX∗
1 (α) ∪ (id× j)∗evX∗

(

e(❘0π∗[u]
∗E(−x2)) ∩

[

Q0+
0,2(X, β)

]vir

−z − ψ1

))

=ι∗π2∗

(

π∗
1(α) ∪ ev

Q
∗ j

!

(

e(❘0π∗[u]
∗E(−x2)) ∩

[

Q0+
0,2(X, β)

]vir

−z − ψ1

))

. (4.5)
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Equalities one, three, and five follow from [39, Theorem 6.2(a)] and (4.4). Equality two is by [39,

Theorem 6.2(c)] and (4.4). Equality four is the projection formula.

Let 0X denote the zero section of ❘0π∗[u]
∗E over Q0+

0,2(X, β). We rewrite each term in (4.3):

ẽvZ2∗

(

evZ∗
1 j∗(α)

−z − ψ1

∩
[

Q0+
0,2(Z, β)

]vir
)

=ι∗π2∗ev
Z
∗

(

evZ∗π∗
1(α)

−z − ψ1

∩
[

Q0+
0,2(Z, β)

]vir
)

=ι∗π2∗

(

π∗
1(α) ∪ ev

Z
∗

(

[

Q0+
0,2(Z, β)

]vir

−z − ψ1

))

=ι∗π2∗

(

π∗
1(α) ∪ ev

Q
∗ j

′′
∗0

!
X

(

[

Q0+
0,2(X, β)

]vir

−z − ψ1

))

. (4.6)

The third equality follows by factoring evZ as evQ ◦ j′′, Theorem 4.1.2, and [39, Proposition 6.3].

Compare (4.5) and (4.6). We may factor ψ-classes out of Gysin maps by [39, Proposition 6.3].

Hence, to complete the proof it suffices to show the following equality in the Chow group of Q:

j′′∗0
!
X

(

[

Q0+
0,2(X, β)

]vir
)

= j!
(

e(❘0π∗[u]
∗E(−x2)) ∩

[

Q0+
0,2(X, β)

]vir
)

. (4.7)

Consider the fiber diagram (also constructed in [30, §2]):

Q0+
0,2(Z, β) Q Q0+

0,2(X, β)

Q ❘
0π∗[u]

∗E(−x2)|Q

Q0+
0,2(X, β) ❘

0π∗[u]
∗E(−x2) ❘

0π∗[u]
∗E .

j′′

j′′ s̃Q

s̃
0Q

f

0′X h

(4.8)

The morphisms 0Q and 0′X are the zero sections, f and h are the natural inclusions, and s̃Q is the

section induced by s. We then have the following:
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j′′∗0
!
X

(

[

Q0+
0,2(X, β)

]vir
)

= j′′∗0
′!
Xh

!
(

[

Q0+
0,2(X, β)

]vir
)

= 0∗Qs̃Q∗h
!
(

[

Q0+
0,2(X, β)

]vir
)

= h!
(

e(❘0π∗[u]
∗E(−x2)) ∩

[

Q0+
0,2(X, β)

]vir
)

.

The first equality is [39, Theorem 6.5]. The second is [39, Theorem 6.2(a)].

To verify (4.7) it now suffices to show that h! equals j!. This can be seen from the following

commutative diagram, where the front, back, top, and bottom faces are fiber squares:

Q Q0+
0,2(X, β)

❘
0π∗[u]

∗E(−x2) ❘
0π∗[u]

∗E

ĪZ ĪX

ĪX ĪE.

j′

f◦s̃Q

evX2

s̃

h

s̃|x2
j

j s

0E

The morphism s̃|x2 is defined by the composition

❘
0π∗[u]

∗E −→ evX∗
2 E −→ ĪE.

Applying [39, Theorem 6.2(c)] twice completes the proof,

h!
(

e(❘0π∗[u]
∗E(−x2)) ∩

[

Q0+
0,2(X, β)

]vir
)

=0!E

(

e(❘0π∗[u]
∗E(−x2)) ∩

[

Q0+
0,2(X, β)

]vir
)

=j!
(

e(❘0π∗[u]
∗E(−x2)) ∩

[

Q0+
0,2(X, β)

]vir
)

.
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Chapter 5

The total space

In this section we consider quasimaps to E∨. Similar to the previous section, we will compute

the quasimap invariants of E∨ in terms of integrals over the moduli space of 0+-stable quasimaps

to X .

Definition 5.0.1. Let E∨ → X be a vector bundle. Define the moduli space of k-pointed, genus-g,

0+-stable quasimaps to E∨ of degree β as

Q0+
g,k(E

∨, β) := tot(π∗[u]
∗E∨) := Spec Sym❘1π∗ ([u]

∗E ⊗ ωπ) .

There is a natural perfect obstruction theory on Q0+
g,k(E

∨, β) obtained by pulling back the obstruc-

tion theory on Q0+
g,k(X, β) and taking the direct sum with (❘•π∗[u]

∗E∨)∨. This yields a virtual

fundamental class [Q0+
g,k(E

∨, β)]vir. When the evaluation maps

evi : Q
0+
g,k(E

∨, β) → ĪE∨

are proper, we can define quasimap invariants as in Definition 2.4.2.

As in the previous section we will assume that E is weakly convex. Then recall by Theo-

rem 3.3.4 that E∨ → X is weakly concave.

On the universal curve over Q0+
0,2(X, β), consider the divisor given by the first marked point.

Tensor the divisor exact sequence by [u]∗E∨ and apply ❘π∗(−) to get the long exact sequence

0 ❘
0π∗[u]

∗E∨
❘

0π∗[u]
∗E∨|x1

❘
1π∗[u]

∗E∨(−x1) ❘
1π∗[u]

∗E∨ 0.

(5.1)
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Fix an open and closed subspace ev−1
1 (X∨

g ) ⊂ Q0+
0,2(X, β). Let Gx1 denote the isotropy group

at x1 for a point (C, x1, x2, [u]) in this subspace. Recall that [u]∗E splits as a direct sum of line

bundles ⊕r
i=1Li. The line bundle❘0π∗L

∨
i |x1 is nonzero if and only if Gx1 acts trivially on the fiber

of L∨
i at x1. We conclude that on a given open and closed subset ev−1

1 (X∨
g ) ⊂ Q0+

0,2(X, β),

❘
0π∗[u]

∗E∨|x1 = ev∗1E
∨
g . (5.2)

Combining (5.1) and (5.2), we obtain the following equality in K-theory:

ev∗1E
∨
g ⊖❘π∗[u]

∗E∨ = ❘1π∗[u]
∗E∨(−x1). (5.3)

Proposition 5.0.2. If E∨ is weakly concave, then the evaluation maps

evi : Q
0+
0,2(E

∨, β) → ĪE∨

are proper.

Proof. For notational simplicity we consider ev1. By (5.1) and (5.2), there is a closed immersion

Q0+
g,k(E

∨, β) = tot(π∗[u]
∗E∨) →֒ tot(π∗([u]

∗E∨|x1)) = (evX1 )∗ĪE∨,

where (evX1 )∗ĪE∨ denotes the fiber product of evX1 : Q0+
g,k(X, β) → ĪX and ĪE∨ → ĪX . The

evaluation map evE
∨

1 factors as

Q0+
g,k(E

∨, β) →֒ (evX1 )∗ĪE∨ → ĪE∨.

This composition is proper because evX1 is.

By weak concavity, the sheaf ❘1π∗[u]
∗E∨(−x1) is a vector bundle on Q0+

0,2(X, β). This allows

the following definition.
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Definition 5.0.3. Define the E∨-twisted virtual class to be

[

Q0+
0,2(X, β)

]vir

X/E∨,1
:= e(❘1π∗[u]

∗E∨(−x1)) ∩
[

Q0+
0,2(X, β)

]vir
. (5.4)

Define the operator LX/E∨,0+(z) by

LX/E∨,0+(z)(α) := α +
∑

β∈Eff

qβ ẽv2∗

(

ev∗1(α)

−z − ψ
∩
[

Q0+
0,2(X, β)

]vir

X/E∨,1

)

,

for α ∈ H∗
CR(X).

In (5.4), the subscript 1 following X/E∨ indicates the twist down by the first marked point.

We will make use of the commutative diagram

Q0+
0,2(X, β) Q0+

0,2(E
∨, β)

ĪX ĪE∨,

ĩ

evXi evE
∨

i

i

(5.5)

where the ith evaluation maps on Q0+
0,2(X, β) and Q0+

0,2(E
∨, β) are denoted by evXi and evE

∨

i re-

spectively.

Proposition 5.0.4. Given γ1, γ2 ∈ H∗
CR,ct(E

∨), choose α1, α2 ∈ H∗
CR(X) such that γi = i∗(αi).

We have the following equality:

⟨γ1ψ
a1
1 , γ2ψ

a2
2 ⟩E

∨,0+
0,β =

∫

[Q0+
0,2(X,β)]

vir

X/E∨,1

evX∗
1 (α1)ψ

a1
1 ∪ evX∗

2 (α2 ∪ e(E
∨
g2
))ψa2

2 . (5.6)

Proof. The claim is most easily seen via virtual localization. Consider the C∗-action on E∨ given

by scaling fibers. This induces actions on ĪE∨ andQ0+
0,2(E

∨, β), with fixed loci ĪX andQ0+
0,2(X, β)

respectively. All the maps in Diagram (5.5) are C∗-equivariant. By (1) of [40], we have the equality

[

Q0+
0,2(E

∨, β)
]C∗,vir

= ĩ∗

(

[

Q0+
0,2(X, β)

]C∗,vir

eC∗(❘π∗[u]∗E∨)

)

, (5.7)
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where [−]C
∗,vir denotes the C∗-equivariant virtual fundamental class.

Choose equivariant lifts of γ1, γ2, α1, and α2 (by abuse of notation we will not change their

labels). Using the fact that γ2 is the pushforward of a class α2 supported on IX , a localization

argument shows that the left hand side of (5.6) is equal to the non-equivariant limit of

∫

[Q0+
0,2(E

∨,β)]
C∗,vir

evE
∨∗

1 (γ1)ψ
a1
1 ∪ evE

∨∗
2 (γ2)ψ

a2
2 .

This can be rewritten as

∫

[Q0+
0,2(X,β)]

C∗,vir

evX∗
1 (α1 ∪ eC∗(E∨

g ))ψ
a1
1 ∪ evX∗

2 (α2 ∪ eC∗(E∨
g ))ψ

a2
2

eC∗(❘π∗[u]∗E∨)

=

∫

[Q0+
0,2(X,β)]

C∗,vir
evX∗

1 (α1)ψ
a1
1 ∪ evX∗

2 (α2 ∪ eC∗(E∨
g ))ψ

a2
2 ∪

eC∗(evX∗
1 E∨

g )

eC∗(❘π∗[u]∗E∨)

=

∫

[Q0+
0,2(X,β)]

C∗,vir
evX∗

1 (α1)ψ
a1
1 ∪ evX∗

2 (α2 ∪ eC∗(E∨
g ))ψ

a2
2 ∪ eC∗(❘1π∗[u]

∗E∨(−x1)).

The first line is a result of (5.7), the projection formula, and (5.5). The second is immediate. The

third line follows from (5.3). Taking the non-equivariant limit yields the desired equality.

A similar argument yields the following.

Proposition 5.0.5. The operators LX/E∨,0+(z) and LE∨,0+(z) are related by pushforward along i,

i∗ ◦ L
X/E∨,0+(z) = LE∨,0+(z) ◦ i∗. (5.8)

Proof. For α ∈ H∗
CR(X), we can rewrite the left-hand-side of (5.8) applied to α as

i∗ ◦ L
X/E∨,0+(z)(α) = i∗(α) +

∑

β∈Eff

qβi∗ẽv
X
2∗

(

ev∗1(α)

−z − ψ
∩
[

Q0+
0,2(X, β)

]vir

X/E∨,1

)

(5.9)

and the right-hand-side as

LE∨,0+(z) ◦ i∗(α) = i∗(α) +
∑

β∈Eff

qβ ẽvE
∨

2∗

(

ev∗1i∗(α)

−z − ψ
∩
[

Q0+
0,2(E

∨, β)
]vir
)

. (5.10)
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We equate (5.9) and (5.10) term by term. Again we apply virtual localization. Fix a degree β

and choose a class α in H∗
CR,C∗(X).

Consider the following equalities in the localized equivariant cohomology ring of ĪE∨:

ẽvE
∨

2∗

(

evE
∨∗

1 i∗(α)

−z − ψ
∩
[

Q0+
0,2(E

∨, β)
]C∗,vir

)

=ẽvE
∨

2∗

(

evE
∨∗

1 i∗(α)

−z − ψ
∩ ĩ∗

(

[

Q0+
0,2(X, β)

]C∗,vir

eC∗(❘π∗[u]∗E∨)

))

=i∗ẽv
X
2∗

(

evX∗
1 (α ∪ eC∗(E∨

g ))

−z − ψ
∩

[

Q0+
0,2(X, β)

]C∗,vir

eC∗(❘π∗[u]∗E∨)

)

=i∗ẽv
X
2∗

(

evX∗
1 (α)

−z − ψ
∪

eC∗(evX∗
1 E∨

g )

eC∗(❘π∗[u]∗E∨)
∩
[

Q0+
0,2(X, β)

]C∗,vir

)

=i∗ẽv
X
2∗

(

evX∗
1 (α)

−z − ψ
∪ eC∗(❘1π∗[u]

∗E∨(−x1)) ∩
[

Q0+
0,2(X, β)

]C∗,vir
)

.

The first equality is (5.7). The second line is obtained by two applications of the projection formula.

The third line is immediate. The forth follows from (5.3).

Taking the non-equivariant limit of the first and last terms in the chain of equalities and recalling

Definition 5.0.3 completes the proof.
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Chapter 6

Quasimap quantum Serre duality

In this section we prove a quantum Serre duality statement in three contexts. Specifically, we

compare the twisted virtual classes

[

Q0+
0,2(X, β)

]vir

X/Z,2
and

[

Q0+
0,2(X, β)

]vir

X/E∨,1

defined in Sections 4 and 5 to get a cycle-valued statement. From this we compute a direct rela-

tionship between the two-pointed genus-zero quasimap invariants of Z and E∨. We then rephrase

this as a comparison between the operators LZ,0+(z) and LE∨,0+(z).

6.1 Cycle-valued statement

Let E → X be a weakly convex vector bundle. For elements g1 and g2 in S, denote by

Q0+
0,g1,g2

(X, β) the open and closed subset of Q0+
0,2(X, β) defined by the conditions im(ev1) ⊂ Xg1

and im(ev2) ⊂ Xg2 .

Lemma 6.1.1. On Q0+
0,g1,g2

(X, β) the vector bundle ❘1π∗[u]
∗E∨(−x1) has rank

β(det E)− ageg1(E) + ageg2(E
∨),

where det E = ∧r
i=1E is the determinant line bundle.

Proof. Fix a quasimap (C, x1, x2, [u]) ∈ Q0+
0,g1,g2

(X, β) and let rj be the order of the isotropy

group at xj for j = 1, 2. Recall from §3.2 that there exists line bundles {Li → C}ri=1 such that

[u]∗E = ⊕r
i=1Li. Write ❘1π∗[u]

∗E∨(−x1) as the direct sum ⊕r
i=1❘

1π∗L
∨
i (−x1). Using orbifold
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Riemann-Roch we compute:

rank
(

❘
1π∗L

∨
i (−x1)

)

= h1 (C,L∨
i (−x1))

= h0 (C,Li(−x2))

= deg(Li(−x2)) + 1− agex1
(Li)− agex2

(Li(−x2))

= deg(Li)−
1

r2
+ 1− agex1

(Li)− agex2
(Li(−x2)), (6.1)

where agexj
(−) denotes the age with respect to cyclic generator which acts on a local chart by

multiplication by e
2πi 1

rj . The second equality is Serre duality and Lemma 3.3.2. The third equality

follows from assuming E is weakly convex.

We claim that

−
1

r2
+ 1− agex2

(Li(−x2)) = agex2
(L∨

i ). (6.2)

To see this, consider three cases.

First, assume Gx2 acts nontrivially on the fiber Li(−x2)|x2 . Then we observe that

−
1

r2
+ 1− agex2

(Li(−x2)) = −
1

r2
+ agex2

(L∨
i (x2))

= agex2
(L∨

i ),

where the second equality follows because the age of OC(x2) at x2 is 1/r2.

For the second case, assume Gx2 is nontrivial but acts trivially on the fiber Li(−x2)|x2 . Then

the age of Li and L∨
i at x2 is 1/r2 and (r2 − 1)/r2 respectively. We have the following:

−
1

r2
+ 1− agex2

(L
i
(−x2)) =

r2 − 1

r2

= agex2
(L∨

i ).
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Finally, consider the case g2 equals the identity. Then Gx2 is trivial, hence r2 equals 1. We

obtain

−
1

r2
+ 1− agex2

(Li(−x2)) = 0 = agex2
(L∨

i ).

This proves the claim.

Note that
r
∑

i=1

deg(Li) = deg([u]∗(det E)) = β(det E)

and
r
∑

i=1

agexj
(Li) = agexj

([u]∗E) = agegj(E).

Summing (6.1) and (6.2) over i then completes the proof.

We conclude this section with the following equality of twisted virtual classes. This may be

interpreted as a cycle-valued formulation of quantum Serre duality.

Theorem 6.1.2. [Cycle-valued quantum Serre duality.] Let E be weakly convex. On the connected

component Q0+
0,g1,g2

(X, β), the virtual classes
[

Q0+
0,g1,g2

(X, β)
]vir

X/Z,2
and

[

Q0+
0,g1,g2

(X, β)
]vir

X/E∨,1
are

equal up to sign,

[

Q0+
0,g1,g2

(X, β)
]vir

X/Z,2
= (−1)β(det E)−ageg1 (E)+ageg2 (E

∨)
[

Q0+
0,g1,g2

(X, β)
]vir

X/E∨,1
.

Proof. We defined the twisted virtual classes in 4.1.4 and 5.0.3 as

[

Q0+
0,g1,g2

(X, β)
]vir

X/Z,2
:= e(❘0π∗[u]

∗E(−x2)) ∩
[

Q0+
0,g1,g2

(X, β)
]vir

[

Q0+
0,g1,g2

(X, β)
]vir

X/E∨,1
:= e(❘1π∗[u]

∗E∨(−x1)) ∩
[

Q0+
0,g1,g2

(X, β)
]vir

.

Via Proposition 3.3.3,

OC = ωπ(x1 + x2). (6.3)
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Tensoring (6.3) by [u]∗E(−x2), pushing forward via π∗, and applying Serre duality yields:

❘
0π∗[u]

∗E(−x2) =
(

❘
1π∗[u]

∗E∨(−x1)
)∨
.

This implies the Euler class identity

e
(

❘
0π∗[u]

∗E(−x2)
)

= e
(

(

❘
1π∗[u]

∗E∨(−x1)
)∨
)

= (−1)β(det E)−ageg1 (E)+ageg2 (E
∨)e
(

❘
1π∗[u]

∗E∨(−x1)
)

,

where the second equality follows from Lemma 6.1.1.

6.2 Quantum Serre duality for quasimap invariants

In this section we use the comparison of twisted virtual cycles of Theorem 6.1.2 to compare

quasimap invariants for Z and E∨ when E is weakly convex. We obtain a simple relationship

between the generating functions LZ,0+(z) and LE∨,0+(z).

For the remainder of the paper we assume:

• Assumption 2.2.8;

• the GIT stack quotient X is proper;

• the vector bundle E is weakly convex.

In particular, the third case holds whenever E is weakly semi-positive.

Definition 6.2.1. [11, Definition 6.9] Given a class γ ∈ H∗
CR,ct(E

∨), denote by γ a lift of γ to the

compactly supported cohomology. Define the linear map ∆ : H∗
CR,ct(E

∨) → H∗
CR,amb(Z) by

∆(γ) := j∗ ◦ pcs∗ (γ),

where pcs∗ : H∗
CR,cs(E

∨) → H∗
CR(X) is the pushforward of compactly supported cohomology.
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Lemma 6.2.2. [11, Lemma 6.10] Assuming 2.2.8, the transformation

∆ : H∗
CR,ct(E

∨) → H∗
CR,amb(Z)

is well defined.

Proof. We work over a given twisted sector Xg for g ∈ S. Let γ be an element of H∗
ct(E

∨
g ). A lift

γ ⊂ H∗(E∨
g ) is defined up to an element of the kernel of ϕg : H

∗
cs(E

∨
g ) → H∗(E∨

g ). To show that

∆ is well defined, we must show pcsg∗(ker(ϕg)) ⊆ ker(j∗g ).

Let κ be an element of ker(ϕg). The pushforward icsg∗ : H
∗(Xg) → H∗

cs(E
∨
g ) is an isomorphism.

By the compactness of X , there exists α ∈ H∗(Xg) such that icsg∗(α) = κ. Note that pcsg∗(κ) =

pcsg∗ ◦ i
cs
g∗(α) = α. We see that

0 = ϕg(κ) = ϕg ◦ i
cs
g∗(α) = ig∗(α) = p∗(e(E∨

g ) ∪ α),

where the last equality is (2.2). Assumption 2.2.8 implies j∗g (α) = 0 if and only if jg∗ ◦ j
∗
g (α) = 0.

The projection formula implies jg∗ ◦ j
∗
g (α) = e(Eg) ∪ α. Up to a sign this is equal to

e(E∨
g ) ∪ α = i∗g(p

∗
g(e(E

∨
g ) ∪ α)) = 0.

Therefore pcsg∗(κ) = α lies in ker(j∗g ).

Recall Lemma 2.2.11, which states that we may write any element γ in H∗
ct(E

∨
g ) as p∗g(e(E

∨
g )∪

α) for some α in H∗(Xg).

Lemma 6.2.3. [11, Lemma 6.11] Given a class γ ∈ H∗
ct(E

∨
g ), choose an α ∈ H∗(Xg) such that

γ = p∗g(e(E
∨
g ) ∪ α), then

∆(γ) = j∗g (α).

Furthermore, the transformation ∆ : H∗
CR,ct(E

∨) → H∗
CR,amb(Z) is an isomorphism.
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Proof. If g fixes only the origin of W ×Cr, then E∨
g equals Xg and the result is immediate. When

that is not the case, the proof is similar to that in Lemma 6.11 of [11].

By Equation (2.2), we have

γ = p∗g
(

e(E∨
g ) ∪ α

)

= ig∗(α).

Noting that ig∗ factors as ϕ ◦ icsg∗ gives the following:

∆(γ) = ∆ ◦ ϕg ◦ i
cs
g∗(α)

= j∗g ◦ p
cs
g∗ ◦ i

cs
g∗(α)

= j∗g (α).

To prove the second claim, we observe

H∗
ct(E

∨
g ) = p∗g

(

im(e(E∨
g ) ∪ −)

)

= im(e(E∨
g ) ∪ −)

= im(e(Eg) ∪ −)

∼= jg∗
(

im(j∗g )
)

∼= im(j∗g )

= H∗
amb(Zg).

The first equality follows from Lemma 2.2.11, the isomorphism in line four is from the projection

formula, and the fifth isomorphism is from Assumption 2.2.8.

It will be useful to consider a modification of ∆.

Definition 6.2.4. Define the linear transformation ∆̃ by

∆̃|H∗
ct(E

∨
g ) := eπi ageg(E)∆|H∗

ct(E
∨
g ).

51



Lemma 6.2.5. The transformation ∆̃ identifies the Chen-Ruan Poincaré pairings up to a sign:

⟨∆̃(γ1), ∆̃(γ2)⟩
Z = (−1)rank(E)⟨γ1, γ2⟩

E∨,ct,

for any γ1 and γ2 in H∗
CR,ct(E

∨).

Proof. Assume γ1 is supported on E∨
g1

and γ2 is supported on E∨
g2

. The pairings ⟨∆̃(γ1), ∆̃(γ2)⟩
Z

and ⟨γ1, γ2⟩
E∨,ct equal zero unless ι(E∨

g1
) = E∨

g2
.

It therefore suffices to consider the case where γ1 ∈ H∗
ct(E

∨
g ) and γ2 ∈ H∗

ct(E
∨
g−1). Choose

α1, α2 ∈ H∗
CR(X) such that γ1 = ig∗(α1) and γ2 = ig−1∗(α2). Then, applying the projection

formula and Lemma 6.2.3, we obtain

⟨∆̃(γ1), ∆̃(γ2)⟩
Z = (−1)ageg(E)+ageg−1 (E)

∫

IZ

j∗g (α1) ∪ ι
∗(j∗g−1(α2))

= (−1)rank(E)−rank(Eg)

∫

IX

α1 ∪ ι
∗(α2 ∪ e(Eg))

= (−1)rank(E)

∫

IX

α1 ∪ ι
∗(i∗g−1ig−1∗(α2))

= (−1)rank(E)

∫

IE∨

icsg∗(α1) ∪ ι
∗(ig−1∗(α2))

= (−1)rank(E)⟨γ1, γ2⟩
E∨,ct,

where the second equality uses the fact [23, Lemma 4.6] that for all g in S

ageg(E) + ageg(E
∨) = rank(E)− rank(Eg). (6.4)

Theorem 6.2.6. Given elements γ1, γ2 ∈ H∗
CR,ct(E

∨), we have the equality

〈

∆̃ (γ1)ψ
a1
1 , ∆̃ (γ2)ψ

a2
2

〉Z,0+

0,β
= eπi(β(det E)+rank(E)) ⟨γ1ψ

a1
1 , γ2ψ

a2
2 ⟩E

∨,0+
0,β .
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Proof. Let g1 and g2 be elements in S. Without loss of generality, choose γ1 ∈ H∗
ct(E

∨
g1
) and

γ2 ∈ H∗
ct(E

∨
g2
). Then choose α1 ∈ H∗(Xg1), and α2 ∈ H∗(Xg2) such that

γ1 = p∗g1(α1 ∪ e(E
∨
g1
)) = ig1∗(α1)

γ2 = p∗g2(α2 ∪ e(E
∨
g2
)) = ig2∗(α2).

By Proposition 3.2.7, our assumption that E is weakly convex, and (5.2) there is a short exact

sequence

0 ❘
0π∗[u]

∗E(−x2) ❘
0π∗[u]

∗E evX∗
2 (Eg2) 0. (6.5)

Also note that the following diagram commutes:

Q0+
0,2(Z, β) Q0+

0,2(X, β)

ĪZ ĪX.

j̃

evZi evXi

j

(6.6)

Expanding the integral in the left-hand-side of the statement gives us

〈

∆̃ (γ1)ψ
a1
1 , ∆̃ (γ2)ψ

a2
2

〉Z,0+

0,β

=eπi(ageg1 (E)+ageg2 (E))

∫

[Q0+
0,2(Z,β)]

vir
evZ∗

1 j∗g1(α1)ψ
a1
1 ∪ evZ∗

2 j∗g2(α2)ψ
a2
2

=eπi(ageg1 (E)+ageg2 (E))

∫

[Q0+
0,2(X,β)]

vir
evX∗

1 (α1)ψ
a1
1 ∪ evX∗

2 (α2)ψ
a2
2 ∪ e(❘0π∗[u]

∗E)

=eπi(ageg1 (E)+ageg2 (E))

∫

[Q0+
0,2(X,β)]

vir

X/Z,2

evX∗
1 (α1)ψ

a1
1 ∪ evX∗

2 (α2 ∪ e(Eg2))ψ
a2
2

=eπi(ageg1 (E)+ageg2 (E)+rank(Eg2 ))

∫

[Q0+
0,2(X,β)]

vir

X/Z,2

evX∗
1 (α1)ψ

a1
1 ∪ evX∗

2 (α2 ∪ e(E
∨
g2
))ψa2

2

=eπi(β(det E)+rank(E))

∫

[Q0+
0,2(X,β)]

vir

X/E∨,1

evX∗
1 (α1)ψ

a1
1 ∪ evX∗

2 (α2 ∪ e(E
∨
g2
))ψa2

2

=eπi(β(det E)+rank(E)) ⟨γ1ψ
a1
1 , γ2ψ

a2
2 ⟩E

∨,0+
0,β .
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The second equality follows from (6.6), the projection formula, and Proposition 4.1.3. The third

equality is by (6.5). The fifth equality is by (6.4) and Theorem 6.1.2. The final equality is by

Proposition 5.0.4.

Theorem 6.2.7. The transformation ∆̃ identifies the operators LZ,0+(z) and LE∨,0+(z) up to a

change of variables in the Novikov parameter:

LZ,0+(z) ◦ ∆̃ = ∆̃ ◦ LE∨,0+(z)|qβ 7→eπiβ(det E)qβ .

Proof. By Assumption 2.2.8, the Chen-Ruan Poincaré pairing on the ambient cohomology of Z is

non-degenerate and by Lemma 6.2.3, ∆ is an isomorphism. It therefore suffices to show that

〈

∆̃(γ2), L
Z,0+(z) ◦ ∆̃(γ1)

〉Z

=
〈

∆̃(γ2), ∆̃ ◦ LE∨,0+(z)(γ1)|qβ 7→eπiβ(det E)qβ

〉Z

, (6.7)

for any γ1 and γ2 in H∗
CR,ct(E

∨).

Assume γ1 is in H∗
ct(E

∨
g1
) and γ2 is in H∗

ct(E
∨
g2
). Expand the left-hand-side of (6.7) to obtain

⟨∆̃(γ2), ∆̃(γ1)⟩
Z+

∑

β∈Eff

qβ

〈

∆̃(γ2), ẽv2∗





ev∗1

(

∆̃(γ1)
)

−z − ψ1

∩
[

Q0+
0,2(Z, β)

]vir





〉

Z

. (6.8)

The right-hand-side of (6.7) expands as

⟨∆̃(γ2), ∆̃(γ1)⟩
Z+

∑

β∈Eff

eπiβ(det E)qβ
〈

∆̃(γ2), ∆̃ ◦ ẽv2∗

(

ev∗1(γ1)

−z − ψ1

∩
[

Q0+
0,2(E

∨, β)
]vir
)〉Z

. (6.9)
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For β ∈ Eff(W,G, θ), we have

〈

∆̃(γ2), ẽv2∗





ev∗1

(

∆̃(γ1)
)

−z − ψ1

∩
[

Q0+
0,2(Z, β)

]vir





〉

Z

=

〈

∆̃(γ1)

−z − ψ1

, ∆̃(γ2)

〉Z,0+

0,β

=eπi(β(det E)+rank(E))

〈

γ1
−z − ψ1

, γ2

〉E∨,0+

0,β

=eπi(β(det E)+rank(E))

〈

γ2, ẽv2∗

(

ev∗1(γ1)

−z − ψ1

∩
[

Q0+
0,2(E

∨, β)
]vir
)〉E∨,ct

=eπiβ(det E)
〈

∆̃(γ2), ∆̃ ◦ ẽv2∗

(

ev∗1(γ1)

−z − ψ1

∩
[

Q0+
0,2(E

∨, β)
]vir
)〉Z

.

The first equality is the projection formula. The second is Theorem 6.2.6. The third is another

application of the projection formula. The fourth is Lemma 6.2.5.

Each coefficient of qβ in (6.8) and (6.9) is equal, completing the proof.

6.3 Quantum Serre duality for Gromov-Witten invariants

In this section we combine the above results with the wall-crossing formulas proven by Zhou

in [19] to prove a quantum Serre duality statement for Gromov-Witten invariants without assuming

convexity.

Theorem 1.12.2 of [19] states

JX,∞(t+ µX,≥0+(q,−z), q, z) = JX,0+(t, q, z), (6.10)

where JX,ε(t, q, z) is defined in [19, §1.12] and µX,≥0+(q,−z) is defined in [19, §1.11]. Similar to

the JX,ε-function defined in [19], we may generalize the operator LX,ε(t, z) of (2.9) by including

ψ-classes in the t insertions of (2.5) and (2.9). Let f be a cohomology-valued polynomial. We
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redefine the double-bracket as

⟨⟨α1ψ
a1
1 , . . . , αkψ

ak
k ⟩⟩X,ε

0 (f(ψ))

:=
∑

β∈Eff

∑

m≥0

qβ

m!
⟨α1ψ

a1
1 , . . . , αkψ

ak
k , f(ψk+1), . . . , f(ψk+m)⟩

X,ε
0,β

for classes α1, . . . , αk ∈ H∗
CR(X) and non-negative integers a1, . . . , ak. Define LX,ε(f(ψ), z) as in

(2.9) by replacing t with f(ψ). We now use (6.10) to relate LX,0+(z) and LX,∞(µX,≥0+(q,−ψ), z).

Lemma 6.3.1. The operators LX,0+(z) and LX,∞(µX,≥0+(q,−ψ), z) are equal.

Proof. Let {Ti}i∈I be a basis of H∗
CR(X) with dual basis {T i}i∈I . For p ∈ I , observe that

z
∂

∂tp
JX,0+(t, q, z)|t=0 = Tp +

∑

β∈Eff

∑

i∈I

qβ
〈

Tp,
T i

z − ψ

〉X,0+

0,β

Ti. (6.11)

Pairing (6.11) with α ∈ H∗
CR(X), we obtain

〈

z
∂

∂tp
JX,0+(t, q, z)|t=0, α

〉X

= ⟨Tp, α⟩+
∑

β∈Eff

qβ
〈

Tp,
α

z − ψ

〉X,0+

0,β

(6.12)

=
〈

Tp, L
X,0+(−z)(α)

〉X
.

Similarly, note that

z
∂

∂tp
JX,∞(t+ µX,≥0+(q,−z), q, z)|t=0 (6.13)

=Tp +
∑

i∈I

∑

β∈Eff

∑

m≥0

qβ

m!

〈

Tp,
T i

z − ψ
, µX,≥0+(q,−ψ), . . . , µX,≥0+(q,−ψ)

〉X,∞

0,m+2,β

Ti
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and

〈

z
∂

∂tp
JX,∞(t+ µX,≥0+(q,−z), q, z)|t=0, α

〉X

(6.14)

=⟨Tp, α⟩+
∑

β∈Eff

∑

m≥0

qβ

m!

〈

Tp,
α

z − ψ
, µX,≥0+(q,−ψ), . . . , µX,≥0+(q,−ψ)

〉X,∞

0,m+2,β

=
〈

Tp, L
X,∞(µX,≥0+(q,−ψ),−z)(α)

〉X
.

By (6.10), equations (6.12) and (6.14) are equal for all p ∈ I . By the nondegeneracy of the

Poincaré pairing on X , it follows that

LX,0+(z)(α) = LX,∞(µX,≥0+(q,−ψ), z)(α).

Proposition 4.1.5 and Lemma 6.3.1 imply the following relationship between two-pointed

quasimap invariants of X and Gromov-Witten invariants of Z.

Corollary 6.3.2. The operators LX/Z,0+(z) and LZ,∞(t, z) are related by

j∗ ◦ LX/Z,0+(z) = LZ,∞(µZ,≥0+(q,−ψ), z) ◦ j∗.

Assume that the total space of the vector bundle E∨ → X is realized as the GIT stack quotient

[W × Cr //θ G].

In other words, we require that

(W × Cr)ss = W ss(θ)× Cr.
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This guarantees that the moduli space Q0+
g,k(E

∨, β) of Definition 5.0.1 coincides with the space

Q0+
g,k([W ×Cr //θG], β) of Definition 2.3.3 (as do their respective virtual classes). In particular, this

allows us to combine the wall-crossing results of [19] with Theorem 6.2.7 to deduce the following

corollary.

Corollary 6.3.3. The operator ∆̃ identifies the fundamental solutions LZ,∞ and LE∨,∞ up to a

change of variables:

LZ,∞(µZ,≥0+(q,−ψ), z) ◦ ∆̃

=∆̃ ◦ LE∨,∞(µE∨,≥0+(q,−ψ), z)|qβ 7→eπiβ(det E)qβ ,

where µZ,≥0+(q,−ψ) and µE∨,≥0+(q,−ψ) are the changes of variables from [19, §1.11] for Z and

E∨ respectively.
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