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Preface

Formany decades, Calculus has been the epitome of College level mathematics and
the 800lb gorilla—make that a 800/ε lb gorilla—of challenging STEMclasses.�is
is due to its undoubted usefulness in modeling the physical world for applications
in Engineering and in the Physical Sciences.
But this apex role, and the associated standardization of the subject as seen in

themanifoldCalculus textbooks on themarket, have led to a number of drawbacks:

• �e underlying assumption of the course in topics and examples is that ev-
eryone ultimately wants to solve di�erential equations.

• Univariate calculus typically is spread over two semesters, delaying the point
for students to take Linear Algebra.

• Material and presentation are �rmly rooted in the 19th century, bypassing
much of the developments that underly modern mathematics and its appli-
cations in information technology.

• �e course (in particular as far as student learning is concerned) is heavily
reliant on being able to execute recipemethods for �nding (anti-)derivatives,
tasks that nowadays aremore than satisfactory solved by computer programs.

• With standard problems and scores providing an easy grade distribution, and
as a a class with a signi�cant failure rate, Calculus is o�en abused as a �lter,
standing in as a test for study skills and grit.

All of this makes the standard Calculus course an awkward choice for majors in
disciplines that focus on data analysis and information processing – disciplines
that barely existed when todays standard Calculus sequence was created.�e huge
amount of material that is at best peripherally relevant,

vii



viii PREFACE

�is book therefore takes a new approach to an introductory College math-
ematics course for students in Computational Science disciplines: It starts with
mathematical foundations, su�cient to enable students to take subsequently more
advanced courses such as LinearAlgebra, Combinatorics, ElementaryNumber�e-
ory, or Abstract Algebra, which are highly relevant to their major.
Overall, the focus is on functions as data, and what Calculus tools can do con-

ceptionally, rather than on modeling physical phenomena or practicing manipu-
lation of functions given through term expressions. Nor shall we delve into the
borderline cases of the de�nitions – such as functions that are once but not twice
di�erentiable, discontinuities for the sake of being discontinuous, or the behavior
of series on the circle of convergence.

�is does not mean that we will be super�cial. We cover most concepts from
univariate calculus, with applications to, and as relevant to, Computational Science,
but we do not focus on solving the “standard” problems one will �nd on a typical
Calculus exam.

Compared with a “classical” Calculus course, the concept of discontinuous or
non-di�erential functions is deemphasized – data is discrete and as such always
di�erentiable. Nor is the rote training of calculating (anti)derivatives touched upon
– appropriately for computational applications we present symbolic di�erentiation
as an algorithm. Limits occur mainly in the context of asymptotic growth classes as
needed for computational complexity. Taylor polynomials introduce the concept of
approximation and error estimations for desired accuracy.�ey also serve to justify
statements about the derivatives of elementary functions and to introduce relevant
manipulations of power series.

�e fundamental theorem of calculus, and basic integration techniques are in-
troduced, but the underlying assumption is that students will never have to calcu-
late an antiderivative by hand.

�is re�ects my experience as a professional mathematician in an area1 close
to �eoretical Computer Science: Since the third year of College I have, outside
teaching a Calculus class myself, not encountered the need to calculate a symbolic
(anti-)derivative, prove convergence of a series, or work around a one-sided limit.

Forcing students to master these techniques, that they will never need profes-
sionally, is a disservice.While progress in the 19th and 20th Century was ultimately
shaped through classical Engineering, the 21st Century has shown itself to be built
on understanding and manipulating data.�is book presents Calculus �t for this
time.
On the other hand, it needs to be clear that disciplines built on describing the

physical world. through di�erential equations might �nd the version of Calculus
presented here as too weak.

1Abstract Algebra, concretely Computational Group�eory
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Still, I can imagine, and indeed would welcome, if this version of Calculus
would be of use for other disciplines, and I hope that students and instructors will
�nd it a useful addition to the existing market of Calculus books.

�anks
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�eir work was supported by an Open Educational Materials grant from the
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Alexander Hulpke





Chapter

I

Sets and Logic

I.1 Sets and Elements

�e basic “data type” of mathematics is the set. A set is a collection (really just a
fancy word for a container that can hold things) of objects, which are called the
elements of the set. We typically use squiggly parentheses {} to denote a set. For
example, imagine we have three objects, the number 2, and two other objects we
call a and b.�en

{2, a, b}

is the set containing exactly these three objects. To refer to it we can give it a name,
S = {2, a, b}.We can nowmake statements aboutwhich objects are elements of this
set. For example 2 is an element of the set, while 3 is not. We write this in symbols
(with ∈ reading as “is element of ”) in the form

2 ∈ S , 3 /∈ S

Wemight also say “2 is in S” or “S contains 2”, meaning exactly the same.
Sets are characterized by their membership with two sets being equal if and

only if they have the same elements.

Note I.1: Mathematicians try to be very exact in the language used.�e expression
if and only ifmeans that the property (or what is de�ned) – here two sets are equal
– holds under the given condition – here they have the same elements – but not if
the condition is violated.
An analog would be to describe an animal as an elephant if (and only if) it is

large, has large �oppy ears and a trunk in place of the nose.

A single if instead shows that one condition implies another, but is not the only
reason:

1



2 CHAPTER I. SETS AND LOGIC

If it is snowing outside, I wear gloves.

(but I also might be wearing them when it is cold and rainy).

When we describe sets by enumerating elements it does not matter in which
order we write down the elements, nor if we write them down multiple times1.
�us

S = {b, 1, a} = {a, 1, a, 1, b, b, a}

as sets, but

S /= {1, 2, 3}, S /= {a, b}, S /= {2, a, a}, S /= {1, 2, a, b}.

Describing Sets

Inmany cases, describing a set by enumerating all its elements is hard or impossible.
�us two other techniques that are used.�e �rst of these is continuation with . . .
to indicate a pattern to be continued. For example, we might write

E = {. . . ,−4,−2, 0, 2, 4, 6, 8, 10, . . .}

to describe the set of even integers. Similarly R = {5, 6, . . . , 10} would describe the
integers from 5 to 10, that is R = {5, 6, 7, 8, 9, 10}.�e drawback of this method is
that it relies on the reader making the correct assumptions about the rule used to
extend the listed numbers. It thus – and this is the second method – is o�en easier
and better to spell out this rule explicitly as a property the objects must have. We
thus can write:

R = {x ∣ x is integer and 5 ≤ x ≤ 10},

read as “�e set of x such that x is an integer and 5 ≤ x ≤ 10”.
�is notation can be quite powerful.�e general pattern is to �rst give a variable

that stands for the elements of the set, possibly indicating an(other) set that these
elements are taken from. Next comes a separator, we use a vertical line ∣ (but other
punctuation marks such as ; or ∶ are used as well). One can read this separator as
“such as”. Finally follows the rule or condition that the elements need to satisfy to
be elements of the set.

�us, if we use Z to denote the set of all integers, we could have described the
above examples as E = {x ∈ Z ∣ x even} (read as “�e set of those integers x, such
that x is even”) and R = {x ∈ Z ∣ 5 ≤ x ≤ 10}.

�e reason for specifying a set from which elements are chosen is to avoid any
ambiguity what kinds of objects are in the set (do we allow rational numbers be-
tween 5 and 10 in the set R?), and to make the speci�cation clear.

1Of course, sometimes one might want to be able to describe objects with multiplicities. We will
see how to describe this below↝ I.6
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Formally, this speci�cation is called a predicate, using language from grammar,
in which a predicate is a part of a sentence that gives information about the subject.
For example, in the following sentence:

�e house
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

subject
is painted green.
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

predicate

Definition I.2: A predicate (for a given set Y) is a sentence, involving a variable x,
such that if we substitute x by a particular element a ∈ Y , the sentence becomes a
statement that is either (and unambiguously) true or false.

For example, x has brown fur, would be a possible predicate for the set Y of all
animals, this predicate would be true for a brown bear, but false for a frog.
Note that determining the truth value of a predicate for a particular element

might be hard, or even impossible at a given time. (Imagine for example the prop-
erty for a sequence of words to occur in at least one book in a huge library.) But
there cannot be ambiguity about whether the property is true for a particular x.
�us, for the set of pictures, x is art would not be a predicate, while x is letter size
would be one.
Finally, there is a variant that describes elements from transforming elements

of another set. (Sometimes it is easier to describe what to do with elements, than to
give a property.) We thus can write E = {2y ∣ y ∈ Z}, using the property that even
integers are exactly the multiples of 2.
For a set A, we de�ne the cardinality, denoted by ∣A∣ or #A as the number of

elements in A.2.

Some common sets

With much of mathematics working with numbers, it will be convenient to give
special names for some sets of numbers:

Z �e integers, Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, 4, . . .}

Q �e rational numbers, fractions of integers.Q = { a
b ∣ a, b ∈ Z, b /= 0}.

N �e natural numbers 1, 2, 3, . . .. O�en it is ambiguous between di�erent authors
whether 0 should be part of this, thus we will write N0 (or Z≥0) if we want
to guarantee that 0 is an element, respectively N>0 (or Z>0) if we explicitly
want to exclude 0.

R �e real numbers on the number line.�ese numbers can be described by pos-
sibly in�nite decimal expansions. �e proper, formal de�nition however is
more complicated and it will take us quite a while (at the end of Chapter IV)
to describe their formal de�nition.

2�is is a somewhat vague de�nition. We will give a more formal de�nition below in↝ III.6
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I.2 Subsets

With the basic operation for sets being a test for membership, an obvious property
for two sets A, B is that one set contains every element of the other.

Definition I.3: If A, B are sets, we call A a subset of B if every element of A is also
an element of B.�at is x ∈ A implies that x ∈ B (formally: x ∈ A ⇒ x ∈ B). We
write A ⊂ B. When talking about sets being subsets of others, this is also called
inclusion of subsets.

Note I.4: Some authors distinguish between subset, could be equal (symbol ⊆) and
proper subset, not equal (⊂).We do not do this and will state explicitly (⫋) if a subset
is proper (that is, not equal).

To provide for examples in this section, let

C = {x ∈ Z ∣ 0 ≤ x ≤ 9} = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
D = {0, 2, 4}
E = {x ∈ Z ∣ x is even}
F = {0, 1, 2}.

�en (for example) D ⊂ C, D ⊂ E, C /⊂ D, C /⊂ E.
Sincemembership test is the basic operation for sets, one o�en reduces equality

of sets to two subset test:

Lemma I.5: Let A, B two sets.�en A = B if and only if A ⊂ B and B ⊂ A.

Proof: First assume that A = B. We want to show that A ⊂ B. For this, let x ∈ A.
�en x ∈ B = A, so A ⊂ B. By swapping the role of A and B we get B ⊂ A as well.
Vice versa, assume that A ⊂ B and B ⊂ A.�en x ∈ A implies x ∈ B and x ∈ B

implies x ∈ A, that is both sets have the same elements and thus are equal. ◻

�e Empty Set

It is o�en useful (for example for constructing certain sets, or to handle borderline
cases) to refer to the empty set ∅ = {}, that is the set which contains no element. It
is a subset of every set.

Sets of Sets and Subtleties

Sets can contain anything and thus one set can be an element of another set. Indeed,
this will be used later to build more complicated structures from sets. For example,
if we have

A = {1, 5, {2, 3}}
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then 1 ∈ A and {2, 3} ∈ A. Or consider

B = {S ⊂ {1, 2, 3} ∣ ∣S∣ = 2} = {{1, 2}, {1, 3}, {2, 3}} .

In such situations, the wrapping level is important: Being in a subset contained in
another set is not the same as being an element, i.e. 2 /∈ A. Nor is element the same
as subset, we have {2, 3} ∈ A but {2, 3} /⊂ A, and indeed (note the extra parentheses
{{2, 3}} ⊂ A. And of course A /= {1, 2, 3, 5}.

�e Power Set, Hasse diagrams

�e power set of a set X is the set

P(X) = {S ∣ S ⊂ X}

whose elements are the subsets of X, including the empty set and X itself. For ex-
ample, if X = {1, 2, 3}, then

P(X) = {{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, X} .

For a �nite set X with ∣X∣ = n, we can describe the elements of the power set by
the bit3-lists of length n: Given a subset S ⊂ X, we form a bit-list by setting the i-th
bit to 1 if and only if the i-th element of X is contained in S. (Indeed, such bit-lists
are good way of representing the subsets of a set on a computer.)�us there are as
many subsets as there are bit-lists, namely 2n subsets of a set of size n.

A convenient way of depicting the subsets of a set is the Hasse diagram4: sets
are represented by dots (maybe labeled with the set name or the set itself). If a set A
is contained in another set B, we place the dot for B higher than the dot for A, and
connect the two dots by a line, indicating that the lower placed set is contained in
the higher placed one. Finally, we leave out (or delete) lines, that indicate a connec-
tion that is already implied by connections to an intermediate set.�at is, if A ⊂ B
and B ⊂ C (and thus also A ⊂ C), we draw lines A − B and B − C, but not A − C.
Figure I.1 shows the Hasse diagram for the 8 subsets of X = {1, 2, 3}.�e actual di-
agram is given by the solid lines.�e grey dashed lines indicate set inclusions that
will not be drawn, as they are implied already by connections with intermediate
sets.

�e same idea can be used, of course, for arbitrary sets and subsets. Figure I.2
depicts theHasse diagram for three di�erent collections of subsets of the 4-element
set {0, a, b, c}.

3A bit is a variable that can have only two values, o�en denoted by 0 and 1, or by “false” and “true”.
4Named a�er the German mathematician Helmut Hasse (1898-1979), who made e�ective use of

such diagrams, but did not invent them.
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{1,2,3}

{1,2} {1,3} {2,3}

{1} {2} {3}

{ }

Figure I.1:�e Hasse diagram for all subsets of {1, 2, 3}.

{0,a,b,c}

{0,a} {0,b} {0,c}

{0}

{0,a,b,c}

{a}
{b}

{b,c}

{}

{0,a,b,c}

{0,a} {0,b}

{0,a,b}

{0}

Figure I.2:�e Hasse diagram for certain subsets of {0, a, b, c}.

I.3 Intersection, Union, Di�erence, and Complement

Next, we de�ne a number of operations that construct new sets from old ones, for
example by taking common elements.

Definition I.6: Let A, B be two sets.�e

intersection of A and B is the set of those elements that are in A and in B:

A∩ B = {x ∈ A ∣ x ∈ B} = {x ∈ B ∣ x ∈ A}

union of A and B is the set of elements that are in A, together with the elements in
B:

A∪ B = {x ∣ x ∈ A or x ∈ B}

di�erence of A and B is the set of elements that are in A but not in B:

A∖ B = {x ∈ A ∣ x /∈ B}.

(Note that some authors simply write A− B.)
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A B A B A B

A∩B A∪B A\B

Figure I.3: Intersection, Union, and Di�erence

A B

C

(A∩B)\C

A∩B ∩C

(A∩C)\B (B∩C)\A

B\(A∪C)A\(B∪C)

C\(A∪B)

Figure I.4: A Venn diagram for three sets

In the case that B ⊂ A is understood from the context, this di�erence is some-
times called the complement of B in A and denoted by B{. Clearly

(B{){ = A∖ (A∖ B) = B

In the examples from Section I.2, we have thatC∩E = {0, 2, 4, 6, 8},C∩D = D,
D∩F = {0, 2},D∪F = {0, 1, 2, 4},C∪D = C,C∖D = {1, 3, 5, 6, 7, 8, 9},D∖F = {4}.
And if we assume that all sets are subsets ofC (such a set containing everything in a
given context is sometimes called an universe), we have that D{ = {1, 3, 5, 6, 7, 8, 9}
and C{ = ∅.
If they are included in a Hasse diagram (which does not hold for all diagrams

in Figure I.2!), the union of two sets A and B will be the (minimal) dot above A and
B, the intersection the maximal dot below A and B.

Another nice way of illustrating sets and the intersections and unions is by us-
ing a Venn diagram, in which sets are represented by areas in the plane. Figure I.3
illustrates intersection, union and di�erence in such a diagram, Figure I.4 labels
the 7 areas of a 3-set Venn diagram.
We observe the following basic relations for these operations:

Lemma I.7: Let A, B,C be sets.�en
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1. A∩ B = B ∩ A.

2. A∪ B = B ∪ A.

3. A∩ B ⊂ A.

4. A ⊂ A∪ B.

5. A∖ B ⊂ A.

6. (A∖ B) ∪ (A∩ B) = A.

7. (A∖ B) ∩ (A∩ B) = ∅.

8. (A∩ B) ∩ C = A∩ (B ∩ C) (so we can write A∩ B ∩ C without ambiguity).

9. (A∪ B) ∪ C = A∪ (B ∪ C) (so we can write A∪ B ∪ C without ambiguity).

Proofs are le� as exercise for the reader.

Distributive Laws

�e following properties are not trivial, but can be easily seen in a Venn diagram:

Theorem I.8 (Distributive laws): Let A, B,C be sets.�en (Figure I.5):
a) A∩ (B ∪ C) = (A∩ B) ∪ (A∩ C).
b) A∪ (B ∩ C) = (A∪ B) ∩ (A∪ C)
Note that these rules mimic what happens if we multiply by a sum: a(b + c).

Proof: Since we have to show equality of sets, we need to show two-sided subset
inclusion.
a) We show �rst that A∩ (B∪C) ⊂ (A∩B)∪ (A∩C): For this, let x ∈ A∩ (B∪C).
�is means that x ∈ A and also x ∈ B or x ∈ C. In the �rst of these cases we have that
x ∈ A∩ B, in the second that x ∈ A∩ C.�us in either case x ∈ (A∩ B) ∪ (A∩ C).
For the reverse inclusion, let x ∈ (A ∩ B). �en x ∈ A and x ∈ B ⊂ B ∪ C, so
x ∈ A∩(B∪C). Similarly (swap B andC) we see that x ∈ A∩C implies x ∈ A∩(B∪C)
as well.�is show that A∩ (B ∪ C) ⊃ (A∩ B) ∪ (A∩ C).
b) Exercise ◻

DeMorgan’s Laws

Next we look at rules to simplify complement operations

Theorem I.9 (De Morgan’s laws): Let U be a set (a universe) with A, B ⊂ U .�en
(Figure I.6):
a) (A∪ B){ = A{ ∩ B{.
b) (A∩ B){ = A{ ∪ B{.
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A B

CA
B∪C

A B

CA∩B
A∩C

A B

CA
B∩C

A B

CA∪B
A∪C

Figure I.5: Distributive Laws for Union and Intersection

Proof: Again, to show equality of sets, we need to show inclusion in two directions:
a) Let x ∈ (A∪B){.�at means that x ∈ U but x /∈ A∪B. But that means that x can
be neither in A, nor in B, so x ∈ A{ and x ∈ B{ and thus x ∈ A{ ∩ B{. Conversely,
let x ∈ A{ ∩ B{.�at means that x ∈ U but x /∈ A and x /∈ B, and thus x /∈ A ∪ B.
�is implies that x ∈ (A∪ B){.
b) Exercise ◻

Disjunctive Normal Form

Using the laws introduced in the previous two sections, it is possible to simplify a
complicated expression involving sets into a simpler form. In particular, it is pos-
sible to transform any such expression into a

Union of

Intersections of

Sets or Complements of sets.

Such a form is called disjunctive normal form (DNF). For example,

(A∩ B{ ∩ C) ∪ (A{ ∩ D)

is in DNF, while
(A∪ B{ ∪ C) ∩ (A{ ∩ D){
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BA

BA

A
Ā
B
B

A
Ā
B
B

‾

‾

Figure I.6: De Morgan’s Laws for Sets

is not. However we can transform this expression stepwise into DNF:

(A∪ B{ ∪ C) ∩ (A{ ∩ D){

= (A∪ B{ ∪ C) ∩ ((A{){ ∪ D{)
= (A∪ B{ ∪ C) ∩ (A∪ D{)
= (A∩ (A∪ D{)) ∪ (B{ ∩ (A∪ D{)) ∪ (C ∩ (A∪ D{))
= (A∩ A) ∪ (A∩ D{) ∪ (B{ ∩ A) ∪ (B{ ∩ D{) ∪ (C ∩ A) ∪ (C ∩ D{)
= (A) ∪ (A∩ D{) ∪ (B{ ∩ A) ∪ (B{ ∩ D{) ∪ (C ∩ A) ∪ (C ∩ D{)

If we imagine aVenn diagramof the sets, the disjunctive normal formdescribes
how the set can be composed from minimal intersecting parts.

I.4 Connections to Logic

�e distributive laws and DeMorgan laws might to some readers look very similar
to statements about operations in logic. Here we have truth values that can be true
or false, andwe can combine themwith and (symbol∧), or (symbol∨ 5), and negate

5�is is actually the origin of these symbols.�e Latin word for “or” is “vel”.
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them (symbol ¬). If we take distributive laws or De Morgan laws and replace ∩ by
∧, ∪ by ∨ and { by ¬ (placed before instead of exponents), we get the following
valid logic laws (we call the variables P, Q, and R here):

1. P ∧ (Q ∨ R) = (P ∧ Q) ∨ (P ∧ R).

2. P ∨ (Q ∧ R) = (P ∨ Q) ∧ (P ∨ R).

3. ¬(P ∨ Q) = (¬P) ∧ (¬Q).

4. ¬(P ∧ Q) = (¬P) ∨ (¬Q).

�e reason for this is easy, if we consider P,Q , R as predicates (that is functions
that give truth values) for objects in a set U that are true for some elements and
false for others. We then de�ne:

A = {x ∈ U ∣ P(x) = true},
B = {x ∈ U ∣ Q(x) = true},
C = {x ∈ U ∣ R(x) = true},

and observe that A∩B is the set of objects for which P ∧Q is true, A∪B the set for
which P ∨ Q is true and A{ the set for which ¬P is true.

In the same way as with sets we have a disjunctive normal form.�at is every
logical expression can be written as an “or” combination of “and” combinations
of variables or their negations. Such a form can be useful in evaluating the truth
value of a more complicated logical expression, and there is a method (called the
Quine-McCluskey algorithm) to convert a logical expression into a unique,minimal
disjunctive normal form.
We illustrate De Morgan’s laws and the distributive laws (Section I.3) with an

example. LetU = {x ∈ Z ∣ 0 ≤ x ≤ 9} = {0, 1, . . . , 9}. For this example, we will take
complements of subsets of U . Let

A = {x ∈ U ∣ 0 ≤ x ≤ 4} = {0, 1, 2, 3, 4}

B = {x ∈ U ∣ x is even} = {0, 2, 4, 6, 8}.
For visualization, we can imagine the numbers in A are colored red and the num-
bers in B are written larger:

{0, 1,2, 3,4, 5,6, 7,8, 9}.

We can use the �rst of De Morgan’s laws to �nd

(A∪ B){ = A{ ∩ B{ = {5, 6, 7, 8, 9} ∩ {1, 3, 5, 7, 9} = {5, 7, 9}.

Viewing this in terms of operations in logic, we can interpret A{ ∩ B{ as the set
of numbers in U that are not red and not large.�is is in fact the complement of



12 CHAPTER I. SETS AND LOGIC

A ∪ B = {0, 1, 2, 3, 4, 6, 8}, which is the set of numbers in U that are red or large
(or both). De Morgan’s law is simply an observation that such statements are two
di�erent ways to identify the same set.
Similarly, by applying the second of De Morgan’s laws, we �nd

(A∩ B){ = A{ ∪ B{ = {5, 6, 7, 8, 9} ∪ {1, 3, 5, 7, 9} = {1, 3, 5, 6, 7, 8, 9},

and this is in fact the complement of A∩B = {0, 2, 4}.Wemay interpret this second
law as saying that the set of numbers inU that are not both red and large is the same
as the set of numbers that are not red or not large.
For an example of the distributive laws, let C = A{ = {5, 6, 7, 8, 9}; these are

the numbers in U that are not red.�en

A∩ (B ∪ C) = {0, 1, 2, 3, 4} ∩ {0, 2, 4, 5, 6, 7, 8, 9} = {0, 2, 4}

and
(A∩ B) ∪ (A∩ C) = {0, 2, 4} ∪ ∅ = {0, 2, 4},

so the distributive law A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) holds. Again, we may
reinterpret this law as a logical statement, and each piece of the equations above
can be described in these terms. For instance, A∩C is the set of numbers inU that
are both red and not red, and therefore this is the empty set.
Likewise, we can verify that the other distributive law holds as well, since

A∪ (B ∩ C) = {0, 1, 2, 3, 4} ∪ {6, 8} = {0, 1, 2, 3, 4, 6, 8}

and
(A∪ B) ∩ (A∪ C) = {0, 1, 2, 3, 4, 6, 8} ∩U = {0, 1, 2, 3, 4, 6, 8},

and thus A∪ (B ∩ C) = (A∪ B) ∩ (A∪ C).

I.5 Predicate Logic and Quanti�ers

Using predicates, we can start to construct mathematical statements. Such state-
ments typically assume that if some properties hold for an object (that is some
predicate P has true value P(x) on an element x), then some other property holds
(i.e. some other predicate Q will have value Q(x) as true. We can write this a
P(x)⇒ Q(x), and combine predicates with logical operations.
Towritemathematical theorems, we however need twomore operations, called

quanti�ers. �ey specify whether a predicate holds for all objects in a set (e.g. all
cats are grey), or if there is (at least) one object for which the property holds (e.g.
there is a highest mountain).�e former is called a universal statement, the latter an
existence statement. We write down a universal statement by writing down “for all”
(o�en using the symbol ∀), followed by naming an element from a set for which
the property is to be stated.�is element stands for any (or all) elements of the set.
In the case of an existence statement we write “there exists” (using the symbol ∃),
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again followed by selecting one element of a set, which is to be the one element
for which the following property is claimed. For example, using E ⊂ Z≥0 for the
set of nonnegative even numbers, and D = Z≥0 ∖ E for the set of nonnegative odd
numbers:

• �e sum of an even number and 1 is odd: ∀x ∈ E ∶ x + 1 ∈ D.

• �e sum of two odd numbers is even ∀x , y ∈ D ∶ x + y ∈ E

• �e number 1234567 is composite: ∃x , y ∈ Z; x , y > 1 ∶ 1234567 = x ⋅ y.

• Every even number is a multiple of 2: ∀x ∈ E∃y ∈ Z ∶ x = 2y. (�e ∶ here can
be read as “such that”).

• Every even number is (strictly) smaller than another even number: ∀x ∈
E∃y ∈ E ∶ y > x.

Note that the order, in which we write the quanti�ers of di�erent type is im-
portant, and that changing the ordering will change the meaning of the statement:
For example ∀x ∈ Z∃y ∈ Z ∶ y = x + 1 (for every integer there exists one that is larger
by one, clearly a true statement) versus ∃y ∈ Z∀x ∈ Z ∶ y = x + 1 (there is an in-
teger (y) that is one larger than every other integer, a nonsensical claim). (Adjacent
quanti�ers of the same type can be exchanged.)

Most mathematical statements (either as part of a de�nition, or in the claim
of a theorem) can be formulated as a combination of ∃, ∀, ∶, and⇒ (implication)
statements. A formal proof of such a statement then will follow this pattern:
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If the statement starts with: �en the proof:
An existence statement: ∃x ∈
S . . .

Construct (or describe a way how to �nd;
e�ectively it will be an algorithm) an ele-
ment x ∈ S that has the required property
(which will be given in the following part of
the statement).
A rarer, more complicated, construction is
to imply that such an element must ex-
ist, without giving an explicit way of �nd-
ing it. Such a proof would be called non-
constructive, and not allow translation to an
e�ective algorithm.

A universal statement: ∀x ∈
S . . ..

�e proof will start with a sentence: “Let x ∈
S” (and the implicit fact that x is to be an
arbitrary element, or that any element of S
could be selected here).�en the proof will
need to show that the remaining part of the
statement holds for x. For this we can use
only the fact that x ∈ S (and the properties
implied by it).

An implication between
predicates P(x)⇒ Q(x).

We assume that the element x satis�es the
predicate P, and need to shows that x also
satis�es the predicate Q.

I.6 Pairs, Tuples, Cartesian Product

In general, we do not store all items we use in big bags that get everything thrown
in together. Instead we o�en usemore structured storage, say boxes in drawers.�e
same is true in mathematics, where we will o�en �nd it convenient to have objects
stored in a form with more structure than a set.�is section describes some of the
ways how this can be done.
We start with the de�nition of pairs: A pair is an object (a, b), that holds two

objects (namely a and b) in two distinct positions, enclosed by parentheses (or
sometimes brackets: [a, b]).�e pair (1, 2) is di�erent from the pair (2, 1), while the
sets {1, 2} and {2, 1} are the same. (Note that sets and tuples formally are di�erent:
{1, 2} /= (1, 2).)
Formally, we can construct pairs as sets.We simply de�ne (a, b) as a shorthand

for the set {a, {a, b}}. Note that this form allows us to always extract the �rst (a)
and second (b) entry unambiguously. (�e reason for building pairs from sets is
that it allows to re-use existing language and theorems, rather than having to re-do
everything for the new kind of objects.)

If we have two sets A, B, we sometimes want to look at the set of all possible
pairs whose �rst entry is from A and whose second entry is from b. �is set is
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called the Cartesian product6 of Awith B and written as

A× B = {(a, b) ∣ a ∈ A, b ∈ B}

For example, if A = {1, 2, 3} and B = {5, 6}, then

A× B = {(1, 5), (1, 6), (2, 5), (2, 6), (3, 5), (3, 6)}

It is easy to see that if ∣A∣ = m and ∣B∣ = n, then ∣A× B∣ = m ⋅ n.

�e same process that leads to pairs can be extended or repeated (e.g by forming
pairs, whose entries are pairs again) and thus form ordered collections of more
than two objects, such as (a, b, c) or (3, 1, 4, 1, 5, 9). We call such objects tuples,
typically together with a number that indicates the number of entries.�us (7, 3, 5)
is a 3-tuple and (8, 2, 5, 1, 4, 1, 2) an 7-tuple; pairs could be called 2-tuples. And of
course the set of all k-tuples can be considered as an iterated Cartesian product
A× B × C ×⋯ × K.

Conceptually, pairs and tuples will allow us to group information consisting
of di�erent parts (that may not be mixed up) together. It is the �rst step towards
structured data.

Indexing and index sets

If we have a tuple, we might want to refer to a particular entry of it.�e easiest way
to do so is by referring to the place in the tuple, at which the entry lies. We o�en do
so by adding an index to the name of the tuple, that is a number put on the bottom
right of the object. For example, if t = (p, r, q), we have t1 = p, t2 = r and t3 = q.
(Sometimes people like to start at 0 instead. Which convention is used needs to be
stated or be clear from the context.) We thus could write

t = (t1 , t2 , . . . , tk)

for a particular k-tuple. Programmers might prefer to write t[i] instead.�e index
notation simply uses less ink and space.
We can put the possible positions (i.e. the possible indices) into an index set,

and use this to refer to the entries: Let I = {1, 2, . . . , k} and we will talk about t i for
i ∈ I. 7

�is concept (and notation) generalizes easily to other, even in�nite, index sets.
We might take an index set P of persons and then talk of the �rst name fp for a

6Named a�er the French mathematician René Descartes, who invented the standard x/y coordi-
nate set, the Cartesian coordinates, in which points are described by pairs.

7�e reader who already has some programming experience should think at this point of a for-
loop.�e i (for “index”) from mathematics is also the reason that the standard name of a loop variable
is i as well.
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person p ∈ P. Or we look at entries t i , i ∈ N for an in�nite tuple (which we will call
a sequence↝ IV.1) (t1 , t2 , t3 , . . .).
Mathematics here only cares about the fact that the indexed object t i is de-

termined clearly and unambiguously from the index i, while implementing such
objects on a computer, in particular for more complicated index sets, can bring up
questions of e�ciency – �nding the object associated to a particular index. But that
is a topic you will learn about in courses on algorithms and data structures.

�e entries of a tuple can be tuples again, and we can refer to the entries of en-
tries by multiple indices. Here one typically will write t i , j instead of a more clumsy
(t i) j . For example, suppose we have a 2-tuple t (depicted here written vertically),
whose entries are 3-tuples.We then can refer to the entries of this object (also called
amatrix) as follows

( (t1,1 , t1,2 , t1,3),
(t2,1 , t2,2 , t2,3) ) .

Contrary to the x/y coordinates of geometry, here the �rst entry typically indexes
the row and the second entry the column. Again this can be generalized to objects
of higher dimension

Generating Tuples and Subsets

In understanding tuples and index sets, it can be helpful to think about how one
would generate such objects in algorithms. First, lets look how an algorithm would
generate all pairs in A× B: We select all possibilities for the �rst entry and for each
such choice select all possibilities for the second entry. If the sets A and B are given
as input, this is simply a set of iterated for loops:

for a in A do

for b in B do

print (a,b); # or other processing, as desired

od;

od;

If we replaced the second for loop by for b in A do, we would get the pairs in
A× A. To enumerate A× A× Awould be three iterated for loops and so on.

To describe all subsets of a set, we re-use the idea we already encountered in
Section I.2, of indicating by bits whether an element lies in the set or not. If we have
a set Awith n elements, the subsets thus can be described as n-tuples in B ×⋯ × B

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n factors

where B = {0, 1}. For example, if n = 3, the following algorithm would construct
these subsets

for a in {0,1} do

for b in {0,1} do
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for c in {0,1} do

print (a,b,c);

od;

od;

od;

(Writing such an algorithm for an arbitrary (user-selected) value of n is a bit more
di�cult, and recursion might be the easiest way to do so.)
In using bit lists to describe subsets we of course need to �x an ordering of

the elements of A. For example if we have A = {dog, bird, cat}, and consider the
elements in this order, we get the following correspondences:

(0, 0, 0)←→ ∅
(1, 0, 1)←→ {dog, cat}
(0, 1, 0)←→ {bird}
(1, 1, 1)←→ {dog, bird, cat}.

But if we used A = {dog, cat, bird} (this is the same set, we just change the con-
vention in how we order elements), the tuple (1, 0, 1) would describe the subset
A = {dog, bird}. (Formally, each arrangement give us a di�erent bijective function
between the binary tuples and the subsets.)

Multisets

We can use the construct of an index set to associate counts to objects of a set and
thus represent objects being in a set multiple times.�e resulting object is called a
multiset. Formally, a multiset can be de�ned as an ordinary set S, together with a
counting set C = {cs ∈ N ∣ s ∈ S} indexed by S.�is pair (S ,C) then represents a
collection in which object s ∈ S occurs cs times. For example, we could describe a
wallet’s content by the set S = {p, n, d , q} 8 and have e.g.

W = (S ,C), C = {cp = 3, cn = 1, cd = 0, cq = 3}.

8US-centric penny (1 cent) ,nickel (5 cent),dime (10 cent), quarter (25 cent).
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II

Relations

II.1 Connecting Elements

In the sameway that skis without slopes are of limited excitement, just talking about
individual sets will not get us very far. Instead, we want to connect elements of
one set with elements if other sets (could be di�erent or the same). �is can be
used to describe information that is more than just an accumulation of objects: we
can describe relations (such as Parent/Child, or Sibling), properties associated to
objects (such as age or color), or describe more complicated structures (a travel
network, composed from point-to-point connections).

�e tool for doing this is that of a relation, described in this section.

Definition II.1: Let A, B be sets. A relation between A and B is a subset R ⊂ A×B,
that is R is a set of pairs (a, b)with a ∈ A and b ∈ B. We say that a ∈ A is in relation
to b ∈ B (sometimes written a ∼R b (or even just aRb) if and only if (a, b) ∈ R.

Similarly, we write a /∼R b (or a /R b) to denote that (a, b) /∈ R.
We could for example take A the set of all students and B the set of all majors

with the relation describing the major(s) of every student.1

Another example of a relation would be A the set of natural numbers and B the
set of prime numbers with the relation R de�ned as a number a being in relation
to a prime b if and only b divides a.�en for example 4 ∼R 2 but 4 /∼R 3. Also note
that 2 /∼R 4.�en some of the elements of R are

(2, 2), (4, 2), (6, 2), (3, 3), (6, 3), . . . (20, 2), (20, 5), . . . ∈ R.

1Note that multiple students might have the same major and that some students might have mul-
tiple majors.

19
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Note that the relation is just what we de�ned. For example we have that (−10, 2) /∈ R
and (12, 6) /∈ R, since neither of these two pairs would be in A× B.2

What is important to remember is that a relation is a subset of A× B. It can be
as small as the empty set (no elements in relation, not particularly interesting), and
as large as all of A×B (every element of A in relation to every element of BN , again
not very interesting), but typically will be a proper nonempty subset.

�e examples above show two basic uses of relations. One is to associate objects
of a set with objects from another set. If each objects gets associated with a single
object (e.g. the competition number on a bib, assigned to each runner in a race),
this can be interpreted as an assignment and will later on get us to the concept of a
function.

�e other use is a relation among objects in the same set, which can be used to
establish clusters, families or hierarchies. Such a relation amongst objects of a set
is o�en called a binary relation on the set, in particular if using a notation similar
to a ∼ b. For example, consider the well known operations =, <, ≤ on the rational
numbers: For the relation ≤, say, we have that (3, 5) is in the relation, but (5, 3)
is not. As we will see, relations thus allow us to generalize concepts of equality or
order. For example, if we wanted to model rounding to integers, we could de�ne a
relation ∼ on the rational numbers by de�ning a ∼ b if −10−5 < a − b < 10−5.

Describing Relations

We have already seen two ways of de�ning a relation. �e �rst is to describe the
elements in relation as a list of pairs in the cartesian product. For example, if we
take the set A = {1, 2, . . . , 6} and the relation “strictly smaller“, we get

{(1, 2), (1, 3), . . . , (1, 6), (2, 3), (2, 4), . . . , (5, 6)}

A variant of this is to lists the pairs in relation in a table:

a b
1 2
1 3
⋮ ⋮

�is notation indicates that it is possible to add further columns, leading to the con-
cept of an n-ary relation. Such relations are the underlying concept of a relational
database, but we will not study them further here.
A further variant of this description is the digraph (short for “directed graph”).

We draw the sets A and B on two sides and connect element a ∈ A to b ∈ B by an
arrow, whenever (a, b) ∈ R. Figure II.1, le� depicts this for the example.

2One could of course extend the divisibility relation to larger sets, and then have these pairs in the
new, larger, relation.
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Figure II.1:�e “strictly smaller” relation described by digraphs
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Figure II.2:�e strictly smaller relation on integers and on real numbers

If, as in this example, we have that A = B, we could also draw arrows between
elements of A = B.

�e second way of description is to give a predicate that identi�es the pairs in
relation. In the example, this predicate would be: S(a, b) if a < b. It then is o�en
convenient to write the predicate as a connecting symbol, i.e. 3S5. You have used
symbols such as ≤, ⊂, or ∈ before, formally they all denote relations.

�e thirdway of describing relations is one youwill have seen before, butmaybe
not under this name. Assume that we can arrange the sets A and B along a line.
(�is is easy if A and B are subsets of the rational or the real numbers.) We then
can interpret the pairs (a, b) in relation as coordinates of points in the plane A×B.
We call this the graph of the relation. Figure II.2, le�, shows the graph of the “strictly
smaller” relation on A = {1, 2, . . . , 6}, the right image then shows the graph of the
same relation on the set B = {0 ≤ x ≤ 6} ⊂ R.
A number of further examples are shown in Figure II.3. In all of these examples
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a) x2 + y2 = 1 b) y = x2 c) x = y2

d) y2 = x3 − 3x + 1 e) ∣x − y∣ ≤ 1 f) 2 ≤ x , y ≤ 3

g)x , y ∈ Z h) (Too complicated for
formula)

i) x + y ∈ Z

Figure II.3: Some relations on R ×R

we have A = B = R and indicate the condition for a pair (x , y) to be in the relation.

Domain, Range, Source and Target

To talk about relations, it will be useful to de�ne a number of terms.

Definition II.2: Let R ⊂ A×B a relation.We call A the source of R and B the target
of R.

�e set
{a ∈ A ∣ (a, b) ∈ R for some b ∈ B} ⊂ A

is called the domain of R, while

{b ∈ B ∣ (a, b) ∈ R for some a ∈ A} ⊂ B
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is called the range of R.

In the above example of the strictly smaller relation on A = B = {1, . . . , 6}, we
have that source and target are both equal to A = B.�e domain is {1, 2, 3, 4, 5} (as
6 is not smaller than any number), while the range is {2, 3, 4, 5, 6}.

II.2 Complements, Converse and Composition

Sometimes it can be convenient to build new relations from existing ones – e.g. the
relation of “parent” implies also the relations of “child” and of “grandparent”. Here
are some ways to build new relations from old ones.

�e �rst observation is that a relation is a set and thus subject to set operations.
If R ⊂ A× B is a relation, the complement

R{ = {(a, b) ∣ (a, b) /∈ R} ⊂ A× B

is the logical negation with aR{b if and only if a /∼R b. For example, if we take for
R the relation “parent”, then R{ is the relation “is not parent”.

�e next operation is that we swap the pairs in R around (or reverse the direc-
tion of the arrows in the digraph representation).�is is called the converse of R.
Formally we de�ne the converse as

{(b, a) ∈ B × A ∣ (a, b) ∈ R}.

For example if R is the relation “is parent of ”, then its converse is the relation “is
child of ”.

�e third operation turns out themost useful, but alsomaybemost complicated
one. Here we take two relations R ⊂ A× B and S ⊂ B×C such that the target of the
�rst relation is the source of the �rst.�e composition of R with S is the relation

S ○ R = {(a, c) ∈ A× C ∣ ∃b ∈ B ∶ (a, b) ∈ R and (b, c) ∈ S}
= {(a, c) ∈ A× C ∣ (a, b) ∈ R and (b, c) ∈ S for an element b ∈ B}

Note that we write the composition in reverse order as S ○ R, with a circle ○ as
connection. (Why so? Because it �ts with how functions are used, as we will see
later↝ III.3)̇
For example, if R is the relation “is parent of ” and S is the relation “is spouse

of ”, then S ○ R is “parent of spouse” or “parent-in-law” – aRb and bSc means that
a is parent of b and b is spouse of c. On the other hand, R ○ S is “spouse of parent”
(that is parent or step-parent),
Composition is probably easiest visualized in the digraph model. We are con-

necting a ∈ A to all c ∈ C that can be reached by following arrows from a through
elements b ∈ B.
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Figure II.4: Composition of relations

For example, with A = {1, 2, 3, 4}, B = {p, q, r, s} and C = {w , x , y, z}, Fig-
ure II.4, le�, shows the two relations R = {(1, q), (3, p), (3, s), (4, q)} as well as
S = {(p, y), (p, z), (q, x), (r,w)}. On the right then is seen the composition S○R =
{(1, x), (3, y), (3, z), (4, x)}. Note that the fact that 3Rs or rSw do not contribute
to the composition.
Composition is useful in that it can form genuinely new connections between

objects.
(In the case of higher order relations (and relational databases), composition

generalizes to an operation join.)

II.3 Properties of Relations

We shall focus, for a while, on binary relations on a set A (that is relations amongst
elements of one set A = B). We �rst de�ne a number of properties that such a
relation might have:

Re!exive: Symmetric: Transitive:

Figure II.5: Possible Properties of a Relation

Definition II.3: Let ∼ be a binary relation on a set A.�en ∼ is called

re�exive, if a ∼ a for every a ∈ A.

symmetric, if (for a, b ∈ A) a ∼ b implies that b ∼ a.

antisymmetric, if (for a, b ∈ A) a ∼ b and b ∼ a together imply that a = b. (�is
means that, apart from a trivial case we might have either a ∼ b or b ∼ a, but
not both.�ink of the ≤ relation on numbers.)
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transitive , if (for a, b, c ∈ A) a ∼ b and b ∼ c imply that a ∼ c.

In the digraph model (with one set, identifying A and B, a relation is re�exive
if there is an arrow from every vertex to itself, it is symmetric, if for every arrow
there is an arrow in the opposite direction, and it is transitive, if for every pair of
arrows following each other, there is a “composite arrow”. Figure II.5 illustrates this
(the full lines are required, if the dashed lines exist).
We give some examples:

1. Let A be the set of rational numbers and R be ordinary equality. (�at is

R = {(a, b) ∈ Q ×Q ∣ a = b}.)

�is relation is re�exive, symmetric and transitive

2. Let A be the set of all people in a country with two people in relation if they
have the same last name.�is relation is re�exive, symmetric and transitive.

3. Let A be the set of all people living in the United States3 with two people in
relation if they live in the same state. Again this relation is re�exive, symmet-
ric and transitive.

4. Let A = R × R the set of points in the plane, with two points in relation if
they have the same x coordinate or the same y coordinate. (�at is, one could
draw a horizontal line or a vertical line through the two points.) We practice
the set notation for relations by writing this down formally, noting that we
have to describe pairs of pairs:

R = {((x , y), (a, b)) ∈ A× A ∣ x = a or y = b}.

�is relation is re�exive and symmetric, but not transitive (go �rst horizon-
tal, then vertical).

5. We slightly modify example 4 by requiring same x or same y coordinate, but
not both the same.�en the relation is only symmetric, but not re�exive any
more.

6. Let A be a set and R = A × A (i.e. all elements are in relation).�is relation
is re�exive, symmetric and transitive.

7. Let A be an arbitrary nonempty set and R = ∅ (that is no elements are in re-
lation).�en R is symmetric and transitive (both conditions are true4 since
they are “if-then” with a condition that never can be ful�lled.), but not re-
�exive.

3Constitutional scholars should take the continental US without Washington DC here
4�is situation of true statements is sometimes called vacuously true
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8. Let A = Qwith the usual “smaller or equal” relation ≤.�is relation is re�ex-
ive, antisymmetric and transitive, but not symmetric.

9. Let A = Qwith the “strictly smaller” relation to be smaller but not equal.�is
relation is antisymmetric (again vacuously as it is not possible that a < b and
b < a for inequal a, b) and transitive, but not re�exive.

10. �e relation x2 + y3 = 1 on R has none of these properties.

For the graph of a relation de�ned on (subsets) ofR, re�exivity (that is (x , x) ∈
R) means that the (increasing) diagonal through the origin must be part of the
graph. Symmetry means that the graph is symmetric when re�ecting along this
diagonal. (Transitivity is somewhat more complicated and probably less helpful to
visualize.)
We have in fact seen an example of a binary relation in the previous chapter: the

relation “is a subset of ” between two sets. Let X be a set, and recall that the power
setP(X) = {S ∣ S ⊂ X} is the set of all subsets of X. We can de�ne a binary relation
R = {(S , T) ∈ P(X) × P(X) ∣ S ⊂ T}, but we will normally simply write S ⊂ T
to indicate that (S , T) ∈ R.�is relation is re�exive, since A ⊂ A for all A ∈ P(X).
It is antisymmetric, since A = B if and only if A ⊂ B and B ⊂ A (see Lemma I.5).
Finally, we can show that it is transitive: if A ⊂ B and B ⊂ C, then for any a ∈ A,
we must have a ∈ B since A ⊂ B, and this implies a ∈ C since B ⊂ C.�erefore, we
conclude A ⊂ C, so the relation is transitive.
Compare this example to the “smaller than or equal to” relation ≤ onQ, which,

as we saw above, is also re�exive, antisymmetric, and transitive. In the case of Q
with the ≤ relation, any two elements can be compared.�at is, for any x , y ∈ Q, we
have either x ≤ y or y ≤ x (or both if x = y). Both of these relations provide some
sort of comparison of the relative size of two objects. However, in the case ofP(X)
with the ⊂ relation, only certain pairs of elements can be compared; we cannot
necessarily compare any two arbitrary elements. For instance, if X = {1, 2, 3}, then
the subsets A = {1, 2} and B = {2, 3} are not comparable, as A is not a subset of B
and B is not a subset of A.�is example can be visualized using the Hasse diagram
in Figure I.1.

II.4 Equivalence Relations, Equivalence Classes and Partitions

Restricting our focus even more, we now consider relations that could be used to
represent a concept of equality.�is is an idea you have used before easily. For ex-
ample you probably would claim that 3 =3, even though the digits are of di�erent
size5. But they represent the samemagnitude. Some of the examples in the last sec-
tion share this characteristic, and we will characterize it with the properties we just
de�ned:

5On the other hand, if your business is in selling house numbers, youmight consider themdi�erent,
as you will be charging more for the larger digit.
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Definition II.4: A binary relation ∼ on a set A is an equivalence relation if it is
re�exive, symmetric and transitive.

Equivalence relations can be though of as a “less picky” version of equality that
allow us to forget about di�erences between objects (say the color or size of (phys-
ical) numbers). O�en one deliberately wants to consider formally di�erent things
as the same.

�is concept of di�erent levels of “being the same” occurs naturally in everyday
life. For example, if we say that all persons are equal, we do not mean that they are
identical (and that there is but one person in the world), but that they have the same
natural rights and privileges.
For a more mathematical example, consider the expressions 1 + 1 and 2, they

are formally di�erent objects (and a typesetter certainly will consider them as not
the same. But if we consider them as expressing magnitudes, we say that 1 + 1 = 2.
�is can be described as an equivalence relation on algebraic expressions.

An important characterization of equivalence relations is that they chop a set
into parts, allowing for example for clustering large sets of data into a smaller num-
ber of cases. We shall investigate this next.

Definition II.5: Let A be a set. A partition of A is a set P consisting of nonempty
subsets S ⊂ A (o�en called cells), such that:

1. No two di�erent subsets share an element6:

∀S , T ∈ P ∶ (S ∩ T /= ∅⇒ S = T).

2. Every element of A is in a subset:

∀a ∈ A∃S ∈ P ∶ a ∈ S .

For example, we could take A = {1, 2, 3, 4, 5} and

P = {{1, 3}, {2, 4, 5}}.

Note that P is not a subset of A, but if S ∈ P then S ⊂ A.

Lemma II.6: Let P be a partition of A. �en every element of A is in exactly one
S ∈ P.

Proof: By the second property it needs to be in at least one set, by the �rst property
it cannot be in more than one. ◻

6�is is a somewhat slick de�nition. You probably would have written (S = T or S∩T = ∅). Doings
so would describe the same (logic), but the way we write it down here makes verifying the property less
work to write.
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If S ∈ P and a ∈ S, we call a a representative of S. It o�en is convenient to de-
scribe cells by giving such a representative. Typically representatives are not unique.
Indeed, by the prior lemma, any element of a cell can serve as its representative.

We now want to show that partitions and equivalence relations are closely re-
lated.
Given a partition P of A, we de�ne a relation on A by de�ning a ∼ b if and only

if a and b are in the same set of the partition. In the example above, this would yield
the relation

RP = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5),
(1, 3), (3, 1), (2, 4), (4, 2), (2, 5), (5, 2), (4, 5), (5, 4)}

Such a relation is clearly an equivalence relation: an element is in the same set as
itself. If a and b are in the same set, so are b and a, and if a and b, as well as b and
c are in the same set, this set contains a and c.

�e same holds in reverse. For this, assumewe are given an equivalence relation
∼ on a set A. For every a ∈ Awe de�ne its equivalence class as the set of all elements
in relation to a:

[a] = {b ∈ A ∣ b ∼ a}.
Clearly a ∈ [a] is in its own equivalence class, and equivalence classes thus are
not empty, and every element of A lies in an equivalence class. We also note that
if a ∼ b, then [a] = [b], since any c ∈ [a] satis�es c ∼ a and thus c ∼ b by
transitivity (and vice versa for c ∈ [b]).�us, if two equivalence classes have non-
empty intersection, they are equal: let c ∈ [a] ∩ [b], then c ∼ a, c ∼ b (and thus
b ∼ c because of symmetry) and by transitivity b ∼ a and thus [a] = [b].

�is means that the set of equivalence classes forms a partition of the set A. If
a is the representative of a class S, then S = {b ∈ A ∣ b ∼ a}.
In the above example, the relation RP creates the equivalence classes

{1, 3} and {1, 4, 5},

and thus the partition P.
For another, prototypical, example, suppose we de�ne a relation ∼ on the set Z

of integers by de�ning a ∼ b if 2 divides a − b.�en we get two (in�nitely large)
equivalence classes, namely the even and the odd numbers. If we change the equiv-
alence to a − b being divisible by 3, we get three (in�nite) equivalence classes:

{0, 3,−3, 6,−6, . . .}, {1, 4,−2, 7,−5, . . .}, {2, 5,−1, 8,−4, . . .}.

Equivalence classes will be important tools for us to construct new classes of ob-
jects, in particular arithmetic objects.

For a more elaborate example of equivalence classes, and why we care about
them, consider graphs. A graph consists of vertices (basically points), together with
edges that each connect two vertices.
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Figure II.6:�e possible graphs on 3 vertices

To represent a graph, we need to represent the vertices – say for a graph on
n vertices with the numbers 1, 2, . . . , n. An edge then is a set of two vertices. For
example (Figure II.6) consider graphs on n = 3 vertices.�ere are 3 potential edges
and each edge can be selected or not, so we get 23 = 8 possibilities for labelled
graphs, that is graphs where the labeling of the vertices matters.

But o�en we do not care about this labeling but only about the possible con-
nection patterns. We thus can de�ne an equivalence relation (called graph isomor-
phism, this is an important, hard, algorithmic problem) as two graphs being equiv-
alent if they become the same a�er a relabeling of the vertices. For example, the
graph with the edge set {{1, 2}} can be transformed into the graph with edge set

{{2, 3}} by relabeling7 the vertices
1→ 2
2→ 3
3→ 1

.

We thus get (for the example of three vertices) 4 equivalence classes (as indicat-
ed by shaded areas in the �gure).�ese equivalence classes are what one considers
typically as (unlabeled) graphs and the objects one would like to classify. On the
other hand, when storing a graph on the computer, one needs to identify vertices
in some way, which (implicitly) gives them labels. What is stored is thus a labeled
graph as representative of its conjugacy class.

7�is is not unique. Another option would be
1→ 3
2→ 2
3→ 1

.
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II.5 �e Integers and the Rationals

In the remainder of this chapter we study a number of examples in which equiva-
lence relations or equivalence classes are used to construct interesting objects.

�e �rst example is to construct (all, including the negative) integers from the
positive numbers (that correspond to counting objects). �is requires more than
adding a possible minus-sign, since we need that −0 = 0. Instead we form equiva-
lence classes on pairs:
Let N0 = {0, 1, 2, 3, . . .} be the set of nonnegative integers. We form the set of

pairs
S = N0 ×N0 = {(a, b) ∣ a, b ∈ N0}.

Our goal is to have the integer z to be represented by the set {(a, b) ∈ S ∣ b−a = z}.
To de�ne this set as an equivalence class, we want to de�ne a relation on S that
(a, b) is related to (c, d), if b−a = d−c. Since this might involve negative numbers
(which we are just constructing), we use instead: b + c = a + d:

(a, b) ∼ (c, d)⇔ b + c = a + d .

�is relation is clearly re�exive (as b + a = a + b) and symmetric (if b + c = a + d
then d+a = c+b). For transitivity, observe that if (a, b) ∼ (c, d) then b+ c = a+d,
and if (c, d) ∼ (e , f ) then d + e = c + f . We add f to the �rst equation and b to the
second and obtain

b + c + f = a + d + f and b + d + e = b + c + f ,

and thus a + d + f = b + d + e. But that implies that a + f = b + e, and thus
(a, b) ∼ (e , f ).
We then de�ne arithmetic on the equivalence classes using representatives:

[(a, b)] + [(c, d)] = [(a + c, b + d)]
Formally, we need also to show that this de�nition is independent of the choice of
representative, that is if (a, b) ∼ (e , f ) then [(a, b)]+[(c, d)] = [(e , b)]+[(c, d)],
but we skip this somewhat technical step here.

Constructing the rational numbers

�e rational numbers, Q, similarly can be constructed as pairs of integers, repre-
senting fractions. We start with the set

S = Z × (Z ∖ {0}) = {(n, d) ∣ n, d ∈ Z, d /= 0}.
Now observe that n/d = m/e if and only if ne = md. We thus de�ne a relation

(a, b) ∼ (c, d)⇔ ad = bc.

As above, one shows easily that this is an equivalence relation. �e details of this
are le� as an exercise for the reader. One then de�nes arithmetic operations on the
equivalence classes that mimic the arithmetic rules for fractions.
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II.6 Remainders and Modulo

For the last example, we choose a positive integerm > 1 and (similar to an example
above) de�ne a relation on Z by

a ∼ b ⇔ m ∣ (b − a)

using the vertical line ∣ as a shorthand for “divides”. Dividingmeans that there exists
a q (depending on b−a) such thatmq = b−a. For example, if we had chosenm = 7
we would have 3 ∼ 10, but 3 /∼ 5.
Again, we show �rst that this de�nes an equivalence relation: Re�exivity holds

as m ⋅ 0 = 0 = a − a. Symmetry follows from the fact that if mq = b − a then
m(−q) = a − b. And transitivity from the fact that if a ∼ b there exists q such that
mq = b − a and if b ∼ c there exists r such that mr = c − b. But then

c − a = c − b + b − a = mr + mq = m(r + q)

and thus m ∣ (c − a), i.e. a ∼ c.

We thus can form equivalence classes. To understand what these classes are, we
make a number of observations:

If a ∈ Z, we have that the class containing a is

[a] = {a, a + m, a − m, a + 2m, a − 2m, a + 3m, . . .} = {a + k ⋅ m ∣ k ∈ Z},

since the elements equivalent to a are exactly those that di�er from a by a
multiple of m.

In every class C there is a non-negative integer For if x ∈ C we also have that x+
m ∈ C.

In every class C there is an element r ∈ C with 0 ≤ r ≨ m Take r ≥ 0 to be the small-
est nonnegative element of C.�en r < m, as otherwise r − m ∈ C.

�is element r is unique, that is in the class C there cannot be two di�erent ele-
ments r1 , r2 ∈ C with 0 ≤ r1 , r2 ≨ m. Since if this was, we would have (without
loss of generality8 r1 < r2, but then 0 < r2 − r1 and m ∣ r2 − r1 ≨ m, which is
impossible.

�ere are m equivalence classes, namely [r] for 0 ≤ r ≨ m. �is is since eachnum-
ber 0 ≤ r ≨ m must be in an equivalence class, but no two of them are in the
same class. And each class must contain such an r.

8�is is an example of a useful tool in proofs. We could have r1 < r2 or r2 > r1 and would need
to consider both cases. But there is freedom in labeling the two numbers and we use this freedom to
dictate that r1 shall be the smaller of the two numbers. Such a choice does not con�ict with any other
requirement, and thus is permissible.�is means that such a choice does not restrict the argument to a
special case, but still is applicable to all situations.
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Part of these observations are summarized in the following theorem:

Theorem II.7 (Division with remainder): For any integer m > 1 and any integer a,
there exist unique q, r ∈ Z such that a = qm + r with 0 ≤ r ≨ m.
For example, if we choose m = 3 there will be 3 equivalence classes, namely

[0] = [3], [1], and [2].
If the number m is chosen and �xed, sometimes the convention is used to de-

note this remainder r by a.

Modular Arithmetic

We now de�ne arithmetic on the equivalence classes by the following rules:

[a] + [b] ∶= [a + b]
[a] ⋅ [b] ∶= [a ⋅ b]

To ensure there is no ambiguity in which representative we chose, we show that
the result is the same, even if we chose di�erent representatives. Recall, that the
elements of [a] are of the form a + k ⋅ m for k ∈ Z. We thus need to show that the
results of addition and of multiplication yield the same results, even if we replace
a by a + k ⋅ m and b by b + l ⋅ m:

[a + km] + [b + lm] = [(a + km + b + lm)] = [a + b + m(l + k)] = [a + b]
[a + km][b + lm] = [(a + km)(b + lm)] = [ab + m(al + bk + klm)] = [ab]

�ese results imply that the standard arithmetic rules we know for integers also
hold for these operations on equivalence classes.
We have thus de�ned a new kind of arithmetic, involving addition, subtraction

(from addition of the negative) and multiplication, on the m equivalence classes
[0], [1], . . . , [m]. It is calledmodular arithmetic (ormodulo arithmetic). One o�en
writes i mod m instead of [i].
Using the ⋅notation for remainders, the same result can be interpreted as a + b =

a + b and a ⋅ b = a ⋅ b.
Modular arithmetic is particularly well suited for computers, because the set of

objects is �nite. Binary arithmetic on bits is just arithmetic modulo 2. And stan-
dard arithmetic on a 64-bit processor is simply arithmetic modulo 264. Modular
arithmetic also has important applications in data transmission and information
security. You will encounter it again in more advanced classes.

Examples of Modular Arithmetic

Oneway of describingmodular arithmetic is by giving tables for addition andmul-
tiplication. We do this here, for example, for m = 7:
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+ 0 1 2 3 4 5 6
0 0 1 2 3 4 5 6
1 1 2 3 4 5 6 0
2 2 3 4 5 6 0 1
3 3 4 5 6 0 1 2
4 4 5 6 0 1 2 3
5 5 6 0 1 2 3 4
6 6 0 1 2 3 4 5

⋅ 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6
2 0 2 4 6 1 3 5
3 0 3 6 2 5 1 4
4 0 4 1 5 2 6 3
5 0 5 3 1 6 4 2
6 0 6 5 4 3 2 1

�ese tables contain many interesting patterns. In the addition table, every row
and every column contain every entry exactly once.�emultiplication table (this is
becausem is prime, but we shall not prove this here) restricted to 1 to 6 has the same
property. Having 1 in every row and every column means that we can invert every
nonzero number, for example 1/3 = 5.�is means that one can solve equations in
modular arithmetic as one would do normally. We illustrate this in the following
examples: Consider the equation

4x + 3 = 6 (mod 7).

We subtract 3, getting 4x = 3 (mod 7). We then note from the multiplication table
that 4 ⋅ 2 = 1. Multiplying by 2 thus gives x = 6 (mod 7) as solution.
We can handle systems of equations similarly:

3x + 5y = 2
x + 2y = 3 ⇒ (5 − 3 ⋅ 2)y = 6y = 2 − 3 ⋅ 3 = 0

x + 2y = 3

⇒ y = (1/6) ⋅ 0 = 0
x + 2y = 3 ⇒ y = 0

x = 3

Application: Divisibility Criteria

Modular arithmetic can be used to justify the following well-known test for divis-
ibility by 3: a positive integer is divisible by 3 if and only if the sum of its digits is
divisible by 3. For instance, to determine if the number 12345 is divisible by 3, we
may add the digits: 1+2+3+4+5 = 15, and since 15 is divisible by 3, we know 12345 is
divisible by 3.�e same test also works with 3 replaced by 9 (so for instance, 12345
is not divisible by 9 because 15 is not divisible by 9).
We may prove this fact using arithmetic modulo 3. First, we notice that 10 =

1 (mod 3). �is means that 10a = 1 for any integer a ≥ 0, since we have 102 =
10 ⋅ 10 = 1 ⋅ 1 = 1 (mod 3) and 103 = 10 ⋅ 10 ⋅ 10 = 1 ⋅ 1 ⋅ 1 = 1 (mod 3) and so on. Now
suppose we have an n-digit positive integer x written as dn−1 . . . d1d0, where each
d i is a digit from 0 to 9.�en

x = dn−110n−1 + ⋅ ⋅ ⋅ + d1101 + d0100 ,
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and since modular arithmetic is compatible with the usual operations of addition
and multiplication,

x = dn−110n−1 + ⋅ ⋅ ⋅ + d1101 + d0100 = dn−1 + ⋅ ⋅ ⋅ + d1 + d0 (mod 3).

A number is divisible by 3 exactly when it is equal to 0 modulo 3, so the equation
above tells us that x is divisible by 3 if and only if the sum of its digits is divisible
by 3.�e same reasoning works with 9 in place of 3, since 10 = 1 (mod 9) as well.
A similar idea can be used to construct divisibility tests for other numbers as

well, although these will o�en bemore complicated than for 3 or 9. For instance, the
reader may use arithmetic modulo 11 to verify the following test for divisibility by
11: a positive integer is divisible by 11 if and only if the alternating sum of its digits
is divisible by 11. Here, an alternating sum means we alternate between addition
and subtraction, so the alternating sum of the digits of the number dn−1 . . . d1d0 is
given by d0 − d1 + d2 − ⋅ ⋅ ⋅ + (−1)n−1dn−1.
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III

Functions

III.1 Functions

Functions are arguably at the heart of mathematics and are the most important
de�nition of the whole course.

Definition III.1: A function f ∶A→ B (for two sets A and B) is a relation R ⊂ A×B
with the properties that

1. For every a ∈ A there is a pair (a, b) ∈ R:�e domain of R equals the source
A.

2. �ere are no two pairs (a, b), (a, c) ∈ R that share the same �rst entry. (For-
mally: For all a ∈ A and b, c ∈ B, if (a, b) ∈ R and (a, c) ∈ R, then b = c.)

If this is the case, we can interpret the relation entry (a, b) ∈ R (which will be the
only one for a given a) as assigning the value f (a) = b to the argument a. As with
relations, we call

I = {b ∈ B ∣ ∃a ∈ A ∶ (a, b) ∈ R}
the range or image of f . See Figure III.1 for illustration.
In short, a function is a rule that assigns for every element of its domain a

unique element of its range.
Sometimes the termmap ormapping is used synonymously with function.
For relations onQ or R (or subsets thereof), the condition of being a function

can be visualized in the graph if the relation by the property that no two points of
the relation lie on a vertical line. In the examples in Figure II.3, only the relation b)
is a function, the others are not.
What is important is to distinguish function f (though sometimes wewill write

f (x) to denote the function), argument a, and value f (a) of an argument as three

35
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Domain
=Source

Target

Image
=Range

a

value (or image) of  a

Figure III.1: A function

di�erent (but related) entities. �e argument is an input, the function a machine
(or an algorithm), and the value the output.

Two functions are equal if they have the samedomain, the same target, and (and
this is the most important property) if they assign to every element of the domain
the same value. To show that two functions f , g are equal, we need to compare
their domains, their targets1, and �nally show that for every x in the domain we
have that f (x) = g(x). But if f (a) = g(a) for just one argument a, this does not
imply equality of the functions.

�us the function f ∶Z → Z, that maps every x ∈ Z to (−1)x is equal to the
function g∶Z → Z that maps x ∈ Z to 1, if x is even, and to −1 otherwise. �e
functions are equal, since they give the same values, even though the mechanism
how they do so is di�erent.

Describing Functions

Since functions are relations, they can be speci�ed by text, formula, table, distinc-
tion, picture, to name just a few ways.
Inmost cases, the easiest way of describing a function is by using the interpreta-

tion of assigning values to elements of their domain.�at is, we specify its domain,
its target, and a rule (this can be a formula, or an algorithm) that speci�es the value
of the function for every element of the domain.�is value must be an element of
the target.
Concretely, we write the name of the function, a colon ∶, the domain, an arrow,

and the target. If the value is given by a formula, o�en the notation a ↦ f (a) =
formula(a) is used. Inmany cases, it is convenient to describe a function informally
by text and makes for easier understanding. On the other hand, a formal descrip-
tion avoids ambiguity and o�en makes it easier to formally prove statements. And
of course formal de�nitions are o�en easier to implement on a computer.

�e following thus are all perfectly good de�nitions of functions:

1. Let A = {frog, horse, sheep} and B the set of colors. We de�ne f1∶A→ B by

1In the context of functions, the target is sometimes called codomain.
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frog
horse

sheep red

green
blue

brown
black

Figure III.2: A function assigning colors to animals

assigning to each animal its outer color:

f1∶
⎧⎪⎪⎪⎨⎪⎪⎪⎩

frog → green
horse → brown
sheep → black

.

2. Another function f2 with same domain and target might assign to each ani-
mal its favorite color, say

f2∶
⎧⎪⎪⎪⎨⎪⎪⎪⎩

frog → green
horse → red
sheep → blue

.

�is same function f2 could be speci�ed as

f2∶ a →
⎧⎪⎪⎪⎨⎪⎪⎪⎩

green if a =frog,
red if a =horse,
blue if a =sheep.

Or someone might draw the function pictorially, as in Figure III.2.

3. Let A be the set of students at this university and B the set of symbol strings.
�e function f3∶A→ B assigns to every student their (preferred) �rst name.

4. Let A, B as in example 3. �e function f4∶A → B assigns to each student
their email password. (It is a function, even though we cannot determine the
password used by a particular student.)

5. Let D be the set of days of the current year and T the set of minutes in a day.
We de�ne the “sunrise time in Denver” function f5∶D → T as assigning to
each date the time of sunrise (in Denver, CO).

6. Let S the set of students in this class and G the set of grades. De�ne the
function f6∶ S → G that assigns to each student the grade they will obtain in
the class. (To be a function, it is only required that the value is unique and
unambiguous, not that it is easily computable or known at the moment.)
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7. For A = N the set of nonnegative integers, let f7∶A → A, x ↦ x + 1. Other
examples would be f8∶A → A, x ↦ x, or f9∶A → A, assigning to x the
number of digits x requires in decimal representation.2

8. Let f10∶R→ R, x ↦ x3+x+1
x2+1 .

9. Le� f11∶R→ R, x ↦

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 x < 0
−2 x = 0
x + 17 0 < x < 1
cos(x) x ≥ 1

.

10. Let g∶N→ Q to give for each n the �rst n decimal places of π.�us g(0) = 3,
g(1) = 3.1, g(2) = 3.14 and so on. If we go back to the notation of relations,
we get

g = {(n, π to n decimal digits}
= {(0, 3), (1, 3.1), (2, 3.14), (3, 3.141), (4, 3.1415), . . .}.

On the other hand, the following attempts do not de�ne functions (for reasons
indicated).

1. �e relation R = {(a2 , a) ∣ a ∈ Q} ⊂ Q × Q} is not a function, since there
are multiple elements in R – e.g. (4, 2) and (4,−2) with the same �rst entry,
so images are not uniquely de�ned.

2. Let f ∶Q → Z assigning to every rational number the closest integer. Not
a function, as the closest integer is ambiguous, say for 1/2. We can �x it, by
de�ning an explicit tie-break rule for ambiguous cases. (What is o�en used
in practice is to take the largest integer ≤ x + 1

2 .)

3. Let f ∶Q → Q, x ↦ x2−1
x−1 .�is is not a function, as the denominator at x = 1

becomes zero. One could �x it by changing the domain to Q ∖ {1}, or by
replacing it with the function x ↦ x + 1 (which for all x /= 1 returns the same
value).

4. Let f ∶Q → Q, x ↦
√

x. Not a function, as values, such as
√
2 are not ratio-

nal, and for negative x are not de�ned in Q.We can �x this by changing the
domain toQ≥0 = {a ∈ Q ∣ a ≥ 0} and the target to R.

5. Assigning to every subset of the rational numbers its smallest element.Not a
function, since e.g. the set {a ∈ Q ∣ a > 0} has no smallest element. (We could
�x this using the concept of limits↝ IV.4.)

2Youmight note that we could alternatively write f9(x) = ⌊log10(x)⌋+ 1, using the ⌊⋅⌋ notation for
truncation.
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Algorithms as functions

Many computer algorithms can be considered as functions, that take an input and
based on this produce a de�nite output. For example, consider the algorithmwhich
takes as input a natural number n, and outputs the �rst letter of n2 written in En-
glish words. In pseudocode:

define: func(n)

input: a number n

output: a letter of the English alphabet

procedure:

n = n*n \\ square the input

n = toWords(n) \\ write n in English words

n = firstLetter(n) \\ choose the first letter of n

return n

For f unc(n) to truly describe a function,wemust assume someunique naming
convention for numbers in this program to guarantee that the function has a well-
de�ned value for each n. �at is, we need the subroutine toWords(n) to have a
determined output for all n. When this is the case, our algorithm de�nes a proper
mathematical function func ∶ N → A where A is the set of English letters. For
example, to calculate func(9) we square 9 to 81, write 81 as eighty-one, and �nally
return the �rst letter e as our output: func(9) = e.
Investigating the properties of a function that is given as an algorithm is o�en

harder than if we have a conceptual description or a formula.
However not every algorithm is a function. If the algorithm uses side-e�ects

(accessing information that is not part of the input), or uses random numbers, it is
not a function, even if input and output are otherwise well de�ned:

define: notafunc(n)

input: a positive integer n

output: a random number between 1 and n

procedure:

1. r = randomInteger(1,n) \\ random integer r between 1 and n

2. return r

A key di�erence between func(n) and notafunc(n) is the introduction of
randomness in the former, which even in the case of pseudo-random numbers
depends on information that is not part of the function’s argument. �is causes
notafunc(n) to not have awell-de�nedoutput. For example, a call ofnotafunc(3)
might give the output 2, while a second call of notafunc(3) could ght give 1, de-
pending on the result of calling randomInteger(1, 3). In general, as long as an
algorithm does not refer to global variables that are not part of the arguments, we
can think of it as a mathematical function and ask whether it is onto or one-to-one.
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III.2 Some Basic Functions

It will be helpful to have a number of examples of functions at hand:

First, take a set A and let B = A.�e identity function on A is id∶A→ A, a ↦ a
the function that maps every element to the same image.

Let A, B be sets and b ∈ B some element. A constant function (with value b) is
the function A → B, a ↦ b. If A = B = R, the graph of a constant function is a
horizontal line.

Let A be a set and S ⊂ A. We let B = {0, 1} ⊂ Q.�e characteristic function for
S is

χS ∶A→ B, a ↦ { 1 if x ∈ S
0 if x /∈ S

A use of such a function is to “crop” another function, by multiplying with χS , for
the product to be zero outside S.

Polynomials and Rational Functions

Many interesting function on numbers (i.e. A ⊂ R) are given by prescribing the
image of x ∈ A by a formula. �e easiest version are formulas that only involve
addition and multiplication (including powers of x). Such a function is called a
polynomial function.
For example f ∶Q → Q, x ↦ x5 − 3x2 + 17x + 3 is such a function.�e highest

power of x that arises (in the example: 5) is called the degree of the polynomial, and
the factors in front of powers of x are called coe�cients of the polynomial. We can
describe the general case of a polynomial as

cd ⋅ xd + cd−1 ⋅ xd−1 +⋯ + c2 ⋅ x2 + c1 ⋅ x + c0 =
d
∑
i=0

c i x i

where the c i ∈ Q are the coe�cients.

If f and g are both polynomials, and A ⊂ R such that g(a) /= 0 for all a ∈ A,
we can also take the quotient f (x)/g(x) as a new function. It is called a rational
function.

III.3 Function Arithmetic and Shi�s

We want to investigate what happens to a function (and the graph of a function)
under arithmetic operations.�is also can be useful to modify a given function in
a desired way.
We illustrate this, using an example (Figure III.3, we transform the function

given under a)): If we add a constant to f , i.e. replace f (x) by f (x)+ k we add k to
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a) f (x) = x3 − 3x2 + 2 b) f (x) + 1 c) f (x) − 3

d) − f (x) e) 2 − f (x) f) 2 f (x)

g)−1/3 ⋅ f (x) h) Sum of f (x) and x2 i) f (x + 2)

j) f (x − 1) k) f ( 23 x) l) f (− 32 x)

Figure III.3: Transformations of a function
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all function values.�is means the graph of f shi�s up by k units b), respectively
down c) if k is negative.
If instead we subtract f from a constant d) and e)) we get the graph of f , �ipped

upside down and shi�ed vertically.
Multiplying by a constant will stretch f) the graph vertically by this factor, re-

spectively compress if the factor is (of absolute value) < 1 and �ip if negative g).

More generally, we can take the sum of two functions, which is the function
f + g that assigns to each x the value f (x) + g(x). See �gure h) for g(x) = x2 in
blue and f (x) + x2 in green.

So far, all transformations were vertical. To transform horizontally, we need to
modify the argument x instead of the value f (x): First consider if we replace x by
x + k. �en f (x + k) assigns to a point a the value f (a + k) that f has at a + k,
that is k units to the right of a.�e e�ect is to shi� the graph to the le� by k units
(i) for positive k, respectively to the right for negative k (j). Similarly, multiplying
x by a factor k will assign to a the value f (k ⋅ a) that f has at k times a. �us
for 0 < ∣k∣ < 1 the graph will be stretched horizontally (k), for ∣k∣ > 1 it will be
compressed horizontally. And a negative k �ips le� and right (l).

In summary, adding to f (x) or multiplying by a number will transform the
graph vertically as one would expect. Changing the argument transforms the graph
horizontally, but in reverse of what the same transformation would do vertically.

Composition

When, in the last section, we modi�ed the argument x of a function f we actually
used a special case of the composition of functions, composing f with a function
x ↦ x + k or x ↦ kx.
Since functions are relations, the composition of functions is just a special case

of the composition of relations. Suppose f ∶A → B and g∶B → C are functions.
�en, as relations, we have that

f = {(x , f (x) ∣ x ∈ A} and g = {(y, g(y) ∣ y ∈ B}.

By the de�nition of composition of relations, we thus get the composition g ○ f ⊂
A× C as

g ○ f = {(a, c) ∣ ∃b ∈ B ∶ (a, b) ∈ f and (b, c) ∈ g}
= {(a, c) ∣ (b, c) ∈ g for (a, b) ∈ f }
= {(a, c) ∣ c = g(b) for b = f (a)}
= {(a, g( f (a))) ∣ a ∈ A}.

�is means that g○ f is again a function (exercise: verify this) from A toC, mapping
x ↦ g( f (x)).�is is also the justi�cation for the notation g ○ f , as we have that
(g ○ f )(x) = g( f (x)).
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Note that usually (even if A = B = C) g ○ f /= f ○ g. For example, if f ∶Q → Q,
x ↦ x + 1 and g∶Q → Q, x ↦ 2x, then g ○ f ∶ x ↦ 2(x + 1) = 2x + 2, while
f ○ g∶ x ↦ (2x) + 1.
Unless one of the functions is relatively basic, that is only adding constants or

multiplying with a scaling factor as we did in the previous section 3, the e�ect of
composition on the graph of a function is more complicated than can be described
by easy rules.

In cases where functions are given by formulas, wemay compose two functions
by substituting the formula for one into the other. For instance, if f ∶R→ R, f (x) =
x+1
x2+1 and g∶R→ R, g(x) = x − 2, then

f ○ g(x) = f (g(x)) = f (x − 2) = (x − 2) + 1
(x − 2)2 + 1 =

x − 1
x2 − 4x + 5

and

g ○ f (x) = g( f (x)) = g ( x + 1
x2 + 1) =

x + 1
x2 + 1 − 2 =

x + 1 − 2(x2 + 1)
x2 + 1 = −2x2 + x − 1

x2 + 1 .

We should note that f ○ g and g○ f here are di�erent functions (they take di�er-
ent values at x = 1, for instance). In general, composing two functions in opposite
orders will o�en result in di�erent functions; this should match our intuition from
everyday life, in which doing the same actions in di�erent orders can produce dif-
ferent results.

�is technique of �nding composite functions by substituting formulas also ap-
plies to functions de�nedusingmodular arithmetic. For instance, let X = {0, 1, . . . , 9}
be the set of equivalence classes of integers modulo 10. Using arithmetic modulo
10, let f ∶X → X, f (x) = 3 ⋅ x + 1 and let g∶X → X, g(x) = 5 ⋅ x + 8.�en

f ○ g(x) = f (g(x)) = f (5 ⋅ x + 8) = 3 ⋅ (5 ⋅ x + 8) + 1 = 15 ⋅ x + 25 = 5 ⋅ x + 5

and

g ○ f (x) = g( f (x)) = g(3 ⋅ x + 1) = 5 ⋅ (3 ⋅ x + 1) + 8 = 15 ⋅ x + 13 = 5 ⋅ x + 3.

Once again, the functions f ○ g and g ○ f are di�erent.

III.4 Properties of Functions

When we looked at relations, we also had two other operations. Since functions are
a special case of relations, they also apply here, but are not always of interest: Taking
the complement of a function will almost never be a function. We will study the

3these are called linear functions



44 CHAPTER III. FUNCTIONS

A B A B A B A B

onto not onto not one-to-oneone-to-one

Figure III.4: Onto and One-To-One

question of whether the converse of a function is a function (and not just a relation)
in this section.

�e de�nition of a function had two requirements. We will de�ne two proper-
ties that a function f ∶A → B might have.�ese properties correspond to the two
requirements holding for the converse relation.
Fundamentally, the relation form of f is {(a, f (a)) ∣ a ∈ A} and the con-

verse thus is {( f (a), a) ∣ a ∈ A}. We want to write this instead in the form
{(b, something) ∣ b ∈ B}. �is means that testing for the properties is related to
solving b = f (a) for a.

Onto

A function is onto if it takes every possible value, that is if its image equals its target.
For example, we could take a function that maps the visitors of a hotel to the hotel’s
guest rooms.�is function is onto whenever the hotel is booked out.
Formally:

Definition III.2: A function f ∶A → B is called onto (some books instead use the
posher term surjective), if every element of B is obtained as an image, that is for
every b ∈ B there is an a ∈ A such that f (a) = b.

�e le� two images in Figure III.4 illustrate the concept.
If a function is given by a graph, it is onto if the projection of the graph on

the y-axis is all of B, equivalently that every horizontal line intersects the graph.
For example (see Figure III.5), the function f1∶R → R, x ↦ x3 is onto, while the
function f2∶ x ↦ x2 is not onto (it takes only positive values).
Similarly, f3∶ x ↦ x3 − 3x2 + 2 is onto, but f4 = 1

10 exp(x) is not.
Note that the target de�ned for the function is crucial for a decision onwhether

it is onto. If we change f2 to a function g2∶R → R≥0, x ↦ x2 (i.e. same rule, just
changed the target), then g2 is onto.
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f1: onto and one-to-one
f2: neither onto, nor one-to-one
f3: onto, but not one-to-one
f4: not onto, but one-to-one

Figure III.5: Onto and One-To-One for functions R→ R

To show algebraically that a function is onto, we need to show that every ele-
ment b ∈ B in the target is obtained as an image.�e easiest way of doing so is to
�nd an explicit a ∈ A such that f (a) = b. We might be able to do so (but are not
guaranteed) by solving for a.
For example, for function f1 we have that a = 3

√
b is mapped to b. On the other

hand f3 is also onto, but it is hard to solve for a, and for −2 ≤ b ≤ 2 there are
multiple possible a.
A function being onto guarantees that the source of the converse relation equals

its domain, i.e. it has pairs (b, ∗) for every b ∈ B.

One-to-One

In many situations of real-world functions f ∶A → B, i.e. when assigning objects
in B to objects in A, the intention is to use the assigned object in B in place of the
original object in A.�at is, there is an assumption that for a given b ∈ B we can
look-up the unique a ∈ A for which f (a) = b. Examples of this are Social Security
numbers, student ID numbers, car number plates4, or bar codes on supermarket
items.

4�at is the reason for a number plate such as COOLGUY14 – the number 14 is not special, but 1–13
were used already.
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But this is not always guaranteed. If we map people to names, or dates of birth
there will be typically multiple matches, even in a limited population5. It is thus
an interesting property, and in fact the one that ensures the second property for
functions for a converse.

Definition III.3: A function f ∶A → B is called one-to-one (some books instead
use the posher term injective), if there are no two di�erent elements a1 , a2 ∈ A,
a1 /= a2 such that f (a1) = f (a2). In other words, if f (a1) = f (a2) then a1 = a2.

�e right two images in Figure III.4 illustrate the concept. In the above example
of mapping hotel visitors to bedrooms, the function is one-to-one whenever every
bedroom is single-occupancy (or empty).

If a function is given by a graph, being one-to-one means that every horizontal
line intersects the graph in at most one point.�us, in the functions in Figure III.5,
we have that f1 and f4 are one-to-one, but the other two are not.
Again, being one-to-one does not only depend on the rule of the function, but

its declaration. It might be possible to restrict the domain A to a subset A1 ⊂ A
and get a new function that is one-to-one. In the examples, both f2 and f3 would
become one-to-one, if we restricted their domain to {x ∈ R ∣ x > 2}.

To test algebraically for a function being one-to-one requires that one can solve
uniquely for a with f (a) = b.�is is for example the case for f1 (as 3

√
b is unique

in the real numbers), but it is not true for f2 (since f2(−1) = f2(1)).
Doing so can be hard, we will see that calculus will provide better tools for

testing one-to-one↝ VI.1.
An important application of the concept of one-to-one in computer science

is that of hash functions. In short, a hash function takes a digital object (stored
information, or a binary �le) and maps it to a large integer. �e hope is that the
function is one-to-one6, that is the hash value allows to identify the data/�le and
for example to use the hash to verify that it has not been tampered with but is the
original �le.
While a one-to-one function allows in principle to identify the original argu-

ment a from a function value f (a) this may be hard (or impossible in practice) to
do for hash functions. Indeed part of the mechanism underlying bitcoin and other
digital currencies is that such a look-up seems to be hard in practice and can only
be done by trying out di�erent values of a and checking when the desired value
f (a) is reached.

We close with a connection between the concepts of onto and one-to-one in
the case of �nite sets:

5�is is of course the reason why ID numbers were invented in the �rst place.
6on the set of plausible inputs. �at is not all possible binary �les, but – say – binary �les that

would be valid programs. O�en it is impossible to prove that such a hash function is one-to-one, but
the property is only observed through examples or in approximation.
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Lemma III.4: If A and B are �nite sets with ∣A∣ = ∣B∣, then a function f ∶A → B is
one-to-one, if and only if it is onto.

Proof: We set n = ∣A∣ = ∣B∣. �ere are two directions to show. First assume that
f ∶A → B is onto. If f was not one-to-one, there would be two di�erent elements,
a1 , a2 ∈ A, such that f (a1) = f (a2). But then f would have to have strictly fewer
than n values in B and thus could not be onto.
Vice versa, assume that f ∶A→ B is one-to-one. If it was not onto, it would have to
have strictly fewer than n values, which means that not all n elements of A could
have di�erent images. ◻

Note that this lemma is false if the sets are in�nite.�e functions f3 and f4 in Fig-
ure III.5 are counterexamples.

III.5 Bijections and Inverse Functions

A function f ∶A→ B that is both one-to-one and onto is called bijective or a bijec-
tion. Being bijective means that for every b ∈ B there is a unique a ∈ A such that
f (a) = b.

�e converse property, i.e. that for every a ∈ A there is a unique b ∈ B, is the
de�nition of a function.�is means that the converse relation to f , namely

{( f (a), a) ∣ a ∈ A}

is a function. We call it the inverse function to f , and call it f −1. It is a function
B → A that maps b to the unique a such that f (a) = b. Note that this ⋅−1 in the
name is a pure formalism due to a limited set of symbols available. It should not be
confused with 1/ f , which is another function entirely7. In the example of assigning
people to hotel rooms, if the function is bijective, its the inverse function assigns to
a room its occupant.
By the de�nition, the relation form of the inverse function,

{(b, f −1(b)) ∣ b ∈ B},

is the converse relation to f . We also note that f −1 ○ f ∶A→ A, a ↦ f −1( f (a)) = a
is the identity on A, and that f ○ f −1∶B → B, b = f (a) ↦ f ( f −1(b)) = f (a) = b is
the identity on B.

If f is given by a formula for f (a), one might be able to get a formula from
solving f (a) for a. For example, we have seen that the function f1∶R→ R, x → x3
is onto and one-to-one, and its inverse will be the function f −11 ∶R → R, x ↦ 3

√
x.

But the function f5∶R→ R, x ↦ x3 + x is also one-to-one and onto, but we will be
hard pressed to solve a3 + a = b for a.

7Formally, 1/ f is the inverse under pointwise multiplication ( f ⋅ g)(x) = f (x) ⋅ g(x), while f −1
is the inverse under composition of functions.
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Two examples

Lines in the plane Consider the function f ∶R → R given by f (x) = 2x + 3.
We could plot this in the x y-plane as y = 2x + 3, a line with a slope of 2 and a
y-intercept of 3. Visually, this function appears to be both one-to-one and onto, so
we can attempt to verify this by �nding an inverse. We thus solve for x:

2x + 3 = f (x)

2x = f (x) − 3

x = 1
2

f (x) − 3
2
.

�erefore, the inverse function f −1∶R → R is given by f −1(x) = 1
2 x − 3

2 . It can
be checked that f ○ f −1 and f −1 ○ f are both the identity function on R. �at is,
f ( f −1(x)) = x and f −1( f (x)) = x.
More generally, we can consider any function g∶R → R given by g(x) = ax +

b, where a, b ∈ R are constants. Functions of this form are simple examples of
polynomials, and they o�en appear in practice when data is scaled and shi�ed. For
instance, the function that converts a temperature from degrees Celsius to degrees
Fahrenheit is x ↦ 9

5 x + 32. We should expect that this function is a bijection since
we should be able to express any temperature uniquely in either degrees Celsius or
degrees Fahrenheit. Many other unit conversions are in this form as well.
We may attempt to �nd an inverse for the function g(x) = ax + b in the same

way as above:
ax + b = g(x)
ax = g(x) − b

x = 1
a

g(x) − b
a

where the last step is valid as long as a ≠ 0.�is shows that if a ≠ 0, then the inverse
function g−1∶R→ R is given by g−1(x) = 1

a x − b
a . If a = 0, then g does not have an

inverse because it is not one-to-one: it is the constant function g(x) = b.
For the example x ↦ 9

5 x + 32 above, which converts from degrees Celsius to
degrees Fahrenheit, we �nd that the inverse function is x ↦ 5

9 x − 32 ⋅ 59 , which
converts back from degrees Fahrenheit to degrees Celsius.

A function on integersmod 7 Let X = {0, 1, 2, 3, 4, 5, 6} be the set of equivalence
classes of integers modulo 7. We de�ne a function f ∶X → X by f (x) = 2 ⋅ x, where
multiplication is modulo 7. We can calculate this function for each value in X:

f (0) = 0, f (1) = 2, f (2) = 4, f (3) = 6, f (4) = 1, f (5) = 3, f (6) = 5

We can verify from the above that f is onto, since each element of X is the image
of some element, and f is one-to-one, since no two elements of X yield the same



III.6. COUNTING AND CARDINALITY 49

value of f .�erefore f is a bijection. Note by Lemma III.4, it would be enough to
check that f is either onto or one-to-one, as the other is then implied.
Since f is a bijection, it must have an inverse function. We could write down

the values of the inverse using the values of f above, but in this case the inverse has
a particularly nice description. Recall from Section II.6 that in arithmetic modulo
7, each nonzero number can be inverted. In particular, the class 2 has an inverse of
4, which means 2 ⋅ 4 = 1. So if we de�ne g∶X → X by g(x) = 4 ⋅ x, we �nd

f (g(x)) = f (4 ⋅ x) = 2 ⋅ 4 ⋅ x = 1 ⋅ x = x

and
g( f (x)) = g(2 ⋅ x) = 4 ⋅ 2 ⋅ x = 1 ⋅ x = x .

�erefore g = f −1.

III.6 Counting and Cardinality

One use of bijective functions is how the cardinality of a set is actually de�ned.
Formally, we de�ne the cardinality of a set A as the unique n, such that there is a
bijective function from A to the set {1, 2, . . . , n}. (Formally, one has to show that
this n will be always the same, regardless of the function chosen, but we will skip
this step here.)�is function can be interpreted as numbering the elements when
counting.
We give formulas for the cardinality of some of the set constructions. In the

following, let A be a set with ∣A∣ = n and B a set with ∣B∣ = m:

Cartesian Product Once we numbered the elements of A and B, we can consid-
er the pairs in the Cartesian product as coordinates in an n × m rectangle. �us
∣A× B∣ = n ⋅ m.

Power Set Every subset of A can be described by bit-string (a string of 0’s and 1’s)
of length n that indicates for each element ofAwhether it is contained in the subset.
�ese bit strings lie in the n-fold Cartesian product {0, 1}×{0, 1}×⋯×{0, 1}, and
thus there are 2n such strings.�us ∣P(A)∣ = 2n .
We note, without proof, that the number of subsets of �xed size k is given by

the binomial coe�cient

(n
k
) = n!

k!(n − k)!
(where n! = 1 ⋅ 2 ⋅ 3 ⋅ ⋯ ⋅ n is called n factorial)

Relations Every relation is a subset of A × B. �us the number of relations be-
tween A and B is ∣P(A× B)∣ = 2n⋅m .
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Functions We can consider a function from A to B as an n-tuple that gives in
position i the value of the i-th element ofA.�e formula for the order of aCartesian
product thus gives ∣B ×⋯ × B∣ = mn di�erent functions.

One-to-One Functions To ensure a function A → B is one-to-one, the image
of the second element cannot be chosen freely, but needs to be di�erent than the
image of the �rst element. �us we do not have m choices for the image of the
second element, but only m − 1 choices. And for the third element there are m − 2
possible images and so on until the n-th element has m − n + 1 possible images.
�us there are

m ⋅ (m − 1) ⋅ (m − 2) ⋅ ⋯ ⋅ (m − n + 1) = m!/(m − n)!

one-to-one functions. Note that this product has a factor 0 (and thus becomes zero
itself) if n > m.

Bijective Functions Note that such functions can only exist if n = m, but then,
by Lemma III.4, it is su�cient for the function to be one-to-one. �us there are8
n!/(n − n)! = n!/1 = n! bijective function if m = n (and zero otherwise).

Onto Functions �e formula for the number of onto functions is more compli-
cated than could plausibly be explained here. It is:

m
∑
i=1

(−1)m−i(m
i
)in .

8We have that 0! = 1 as product over an empty set, in the same way a sum over an empty set is 0.
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IV

Sequences and Series

We now start our study of functions, and how functions change and behave “in the
big picture”. For this, we �rst consider functions on integers.

IV.1 Sequences

Definition IV.1: A sequence is a function a∶N0 → R, de�ned on the set N0 = {z ∈
Z ∣ z ≥ 0}. If i ∈ N0 and a(i) is a value, we also call i the index or the position in
the sequence. Sometimes we ignore index 0 and only consider sequences indexed
by strictly positive integers.

�e word “index” (plural: indices) is the reason for denoting the argument by
i (and thus ultimately the reason why “i” is the standard name for a loop variable
when programming).
It o�en is convenient to write indices as subscripts and to write a i in place of

a(i). We will write (a i) to designate a sequence (that is the set of all values) in
contrast to a single value a i .
Since sequences are a special case of functions, we can describe sequences in

the same way as functions. O�en this is done by prescribing a rule, for example:
a i = i + 1 for the sequence

a0 = 1, a1 = 2, a2 = 3, . . .

Other examples would be the sequences b i = i2 + 5, c i =
i
∑
j=0

j =the sum of the

numbers from 1 to i, or d i =the i-th prime number.
With indices arranged easily as 1, 2, 3, . . ., it also can be tempting to write a

sequence by giving its �rst few values, and expecting the reader to identify and

51
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continue the pattern. For example

a i ∶ 1, 3, 5, 7, 9, 11, . . .
b i ∶ 10, 9, 8, 7, . . .
c i ∶ 3, 3.1, 3.14, 3.141, 3.1415, . . .

While this seems convenient, guessing the right pattern can be di�cult, and is am-
biguous. Indeed, despite its use in popular intelligence tests that ask the reader to
identify the rule for a given set of values, it is impossible to decidewhat the “correct”
rule should be. For example, consider the sequence

2, 4, 6, 8, 10, . . .

which one might guess is given (assume we start indexing at 1) by the rule a i = 2i
and has the next value 12. But one can also argue that the next value is −17, based
on the rule

a i = −
29
120

i5 + 29
8

i4 − 493
24

i3 + 435
8

i2 − 3853
60

i + 29.

Such problems therefore only make sense if we ask for the simplest possible answer
(however we might want to measure it), which immediately makes it a far more
di�cult problem than we would want to consider here.

As for functions, we also could consider plotting the values of a sequence, but
since they are only de�ned for integral arguments the result will be disconnected
dots.
Finally, a sequence might be a sequence of data values (e.g. over time), which

we know in part and would like to predict in the future.

IV.2 Recursion

Sequences are important in computer science, in that they can arise when indicat-
ing the cost (that is number of calculation steps required) of an algorithm, for an
input of a given size i. In this context, sequences o�en are given through a recur-
sion.�at is, we give one (or several) initial values of the sequence, and then give a
formula that determines further values from the previous ones. For example:

a1 = 3, a i = a i−1 + 2 for i > 1

gives us the sequence a i = 1 + 2i, while

s1 = 1, s i = s i−1 + i for i > 1

gives the sequence, whose i-th entry is the sum of integers from 1 to i. It is also
possible to instead give values for new indices bigger than i, as in the example

s i+1 = s i + (i + 1).
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Recursions might refer to multiple prior values (and then one might need to
de�nemultiple start values).�e prototypical example of this is the Fibonacci num-
bers, de�ned as:

f0 = 0, f1 = 1, fn+2 = fn+1 + fn .

We can determine arbitrary values f i by following through the recursion and eval-
uate terms one by one. (�is also shows that the values of the sequence are uniquely
determined.) Here for example:

f2 = f0+ f1 = 0+1 = 1, f3 = f1+ f2 = 1+1 = 2, f4 = 1+2 = 3, f5 = 2+3 = 5, . . . .

It still can be desirable, for a sequence given by a recursion, to determine a
closed (i.e. a direct value that requires no loop when evaluating) formula for its
values. Doing so, however o�en requires tools that are signi�cantly beyond this
course (but see ↝ VII.3). Instead we shall illustrate how one can verify a closed
formula for a recursively de�ned sequence. We do so with the above example of
the “sum of the �rst i integers” and the recursion s1 = 1, and s i = s i−1 + i. We claim
that the formula s i = i(i+1)

2 satis�es the recursion. To show that this indeed is the
case, we �rst check the base cases:

s i =
1(1 + 1)
2

= 1.

We then assume that the index is large enough for the recursive formula to hold
(in this example: i > 1) and verify that the formula satis�es the recursion.�at is
we evaluate the right hand side of the recursion when plugging in the formula:

s i−1 + i = (i − 1)((i − 1) + 1)
2

+ i = (i − 1)i
2

+ i

= i2 − i + 2i
2

= i2 + i
2

= i(i + 1)
2

and compare with the formula for the le� hand side s i = i(i+1)
2 . (One could anal-

ogously use the alternative recursion formula s i+1 = s i + (i + 1) instead, and then
would have to simplify the le� hand side when evaluating s i+1 = (i+1)(i+1+1)

2 .)

Application: estimating the cost of a program

An important application of sequences and recursion is in estimating the number
of steps a recursive algorithm will take to completion. Here the sequence value at
position i is de�ned to be the number (or a bound thereof) of steps taken by the
algorithm for an input of size n.
Consider, for example, the following (very naive) insertion-sort algorithm. To

sort a list L consisting of n numbers, we �rst sort (by a recursive call) the �rst n − 1
numbers and then insert the n-th element in the right position in the list.
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define: sort(L,n)

input: L, a list of integers, to be sorted

n, up to which position to sort

procedure:

if (n > 1) then # Otherwise no need to sort

sort(L,n-1); # recursively sort the first n-1 elements

a:=L[n];

p:=1; # find position of first entry larger than a

while p<n and L[p]<=a do

p:=p+1;

od;

for j from n-1 downto p do # shift entries up

L[j+1]:=L[j]; # to make space at p

od;

L[p]:=a;

fi;

For example, if L = [5, 13, 12], how does sort(L,3) get processed? We call
sort(L,2), which in turn calls sort(L,1), which does nothing. Exiting back to
n = 2 we set a = L[2] = 13 and (since L[1] = 5 < 13) get p = 2, keeping 13 in the
second position. Exiting the recursion and getting back to n = 3, we �nd (again)
that p = 2, and shi� the 13 into position 3, inserting 12 into position 2.

We want to know how many comparisons of elements our algorithm might
have to do. (Such comparisons only happen in the while loop condition.) For this,
we de�ne a sequence costn , that is an upper bound on the number of comparisons
required by this algorithm to sort a list of length n.
Recall that a recursive formula for a sequence is given by a collection of initial

values and a formula which determines the value of the sequence at n based on
previous terms of the sequence. Our initial value will be cost1.�is is the number
of comparisons needed to sort a list of length one, which is 0, since we have nothing
to check.�us cost1 = 0.
For n > 1, the algorithm calls itself recursively for length n − 1 (at cost costn−1,

and then compares the last element a to potentially all1 n − 1 elements in the list.
�e cost thus satis�es the recursion

costn = costn−1 + (n − 1).

For example, cost2 = cost1 + 1 = 0 + 1 = 1 and cost3 = cost2 + 2 = 1 + 2 = 3.
By ‘peeling’ back the layers of the recursion, we could get a formula (this is a

1�e clever reader might already think on how to improve the algorithm by using binary search to
�nd the correct position in fewer steps.
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little bit beyond the expectations for this course) for costn as:

costn = costn−1 + (n − 1)
= costn−2 + (n − 2) + (n − 1)
= costn−3 + (n − 3) + (n − 2) + (n − 1)
= . . .
= 1 + 2 + . . . + (n − 3) + (n − 2) + (n − 1)

=
n−1
∑
k=1

k

= n(n − 1)
2

.

In any case, (even without the arithmetic done in the previous paragraph), the
reader should be able to use the same tools as above to verify that the recursion

cost1 = 0; costn = costn−1 + (n − 1).

is satis�ed by the formula

costn =
n(n − 1)
2

.

We have thus proven that the (not very good) algorithm given has a worst case
requirement of n(n−1)

2 comparisons to sort a list of length n.

IV.3 Monotonous and Bounded Sequences

We are interested in investigating the long-term (that is, values for large indices)
behavior of sequences. For this we de�ne the following properties:

Definition IV.2: Let (a i) be a sequence.�en this sequence is

monotonically increasing , if a i+1 ≥ a i for all i.

strictly monotonically increasing , if a i+1 > a i ( a i+1 /= a i) for all i.

bounded from above , if there exists a number B ∈ R, such that a i ≤ B for all i.

We de�nemonotonically decreasing, strictly monotonically decreasing, and bounded
from below in the obvious way by reversing the inequalities.
For example, consider the sequences

a i = 5 − 1
i
,

b i = 5 + i ,
c i = 5 + (−1)i .
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�en the sequences (a i) and (b i) are (strictly) monotonically increasing, since

a i+1 = 5 −
1

i + 1 > 5 −
1
i
= a i and b i+1 = 5 + (i + 1) > 5 + i = b i .

�e sequence (c i) is not monotonically increasing, as

c2 = 5 + (−1)2 = 6 /≤ 4 = 5 + (−1)3 = c3 .

Similarly, we have that (a i) and (c i) are both bounded from above, since we have
that a i ≤ 10, c i ≤ 10 for all i (i.e. we can set B = 10). Note that we do not need to pick
the bound as tight as possible. (It is a separate question of what a tighter possible
bound is, but we shall not investigate that.)

�e sequence (b i) is not bounded from above. Suppose that B ∈ Rwas a bound
and let i = ⌈B⌉ the smallest integer not smaller than B (i.e. we round up).�en i ≥ B
and thus

b i = 5 + i ≥ 5 + B > B,

in contradiction to the assumption that B is an upper bound.
All three sequences (a i), (b i), (c i) are bounded from below (e.g. by 1). How-

ever it is possible that a sequence is neither monotonic, nor bounded; for example
d i = 5 + (−1)i ⋅ i.

IV.4 Convergence

�e best case for describing the long-term behavior of a sequence is if its values
“settle down” as the index increases. As with a ball rolling in a bowl, this might not
mean to stand still, but simply getting closer and closer to some value L (which we
shall call the limit of the sequence). Such a number must be unique, if it exists. In
this case we call the sequence convergent (otherwise: divergent) and L the limit of
the sequence and write L = lim

i→∞
a i . (We will give a more formal de�nition below.)

In the examples of the last section, this should be the case for the sequence {a i}
which gets closer and closer to 5. On the other hand the sequences {b i}and {d i}
“run away” and the sequence {c i} jumps around but never settles down.
Note that one can also talk about the limit of a sequence being in�nity (say

for the sequence a i = i), but we will not consider it in this section, as the formal
statement of it needs to be di�erent.

Finding limits

Since sequences get close to the limit, one way one can attempt to determine a limit
(and whether a sequence converges) is by evaluating the sequence for large values
of the index and to see whether the values seem to converge.�is of course is not
a proof (since we do not know whether we have chosen large enough indices), but
it o�en gives a good idea in practice.
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For sequences given by quotients of polynomials – say

a i =
6i5 + i2 − i − 1
5i5 − 8i2 + i + 1

there actually is a rule (we will see it later in↝ VI.5):

• If the degree of the denominator is larger than the degree of the numerator,
the sequence converges to zero.

• If the degree of the denominator is smaller than the degree of the numerator,
the sequence values will get arbitrary large in absolute value, so the sequence
does not converge (or converges to ±∞).

• If the degree of the numerator and the denominator are equal, the sequence
converges to the quotient of the leading coe�cients – in the example 6/5.

We also note (without proof) that limits behave reasonably with respect to
arithmetic, that is if we de�ne a new sequence whose entries are given by sim-
ple arithmetic operations on existing sequences (e.g. if (a i) and (b i) are sequences
given by a i = (1/i) and (b i) = i+ 1, then (a i +b i) is the sequence whose i-th entry
is 1/i + 1 + i).

Lemma IV.3: Let {a i}, {b i} be sequences such that lim
i→∞

a i = A, lim
i→∞

b i = B.�en

• lim
i→∞

(a i + b i) = A+ B.

• lim
i→∞

(a i − b i) = A− B.

• lim
i→∞

(a i ⋅ b i) = A ⋅ B.

• If B /= 0 then lim
i→∞

(a i/b i) = A/B.

�ese laws explicitly require �nite limits and do not necessarily generalize to
limits of in�nity.

We illustrate these limit rues with a few examples. For instance, we may com-
pute:

lim
i→∞

( i + 1
i

+ i2 − 2
2i2 + i

) = lim
i→∞

i + 1
i

+ lim
i→∞

i2 − 2
2i2 + i

= 1 + 1
2
= 3
2

where we have used the rule for a limit of a sum, followed by two applications of
the rule for quotients of polynomials. Alternately, we obtain the same answer if we
�rst simplify the sum:

lim
i→∞

( i + 1
i

+ i2 − 2
2i2 + i

) = lim
i→∞

(i + 1)(2i + 1) + i2 − 2
2i2 + i

= lim
i→∞

3i2 + 3i − 1
2i2 + i

= 3
2
.
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We can also use these rules to help us determine limits of other types of se-
quences. For instance, since i! ≥ i for all positive integers i, we have 1i ! ≤

1
i for each

i. Furthermore, ( 1i !) is a sequence consisting of all positive numbers, so it cannot
converge to a negative number. So we �nd

0 ≤ lim
i→∞

1
i!
≤ lim

i→∞

1
i
= 0,

and therefore limi→∞
1
i ! = 0. Similarly, since 2

i ≥ i for all positive integers i, we
have ( 12)

i ≤ 1
i for each i.�us,

0 ≤ lim
i→∞

( 1
2
)

i
≤ lim

i→∞

1
i
= 0,

so we conclude limi→∞ ( 12)
i = 0. More generally, limi→∞ r i = 0 if ∣r∣ < 1.

Proving Limits

Our next task is to give a formal criterion for convergence. A�er all, it is not good
enough to simply say “I know it if I see it”. �is criterion, as we will use it, might
seem somewhat complicated, but ultimately evolved (over decades of failed at-
tempts in the 19th century) as being unambiguous and formally testable.

�is de�nition also will serve as a model for the formalization of concepts in
calculus.

�e basic idea is that we want to be able to corral in the terms of the sequence
at a given time, and then (again at a later point in time) make that corral smaller
(without moving it around), and smaller again. As time goes on, it will become
arbitrary small (and not become larger again). In other words: If someone tells us
how small the corral should be, we must be able to point to a time (that is: to an
index!) from when on the corral will be that small.
Formally, what we just called a corral, will be the set of numbers around (at

a given distance) a �xed, unmovable point L, which we will call the limit of the
sequence – the number that the sequence converges towards.
Traditionally, mathematicians use the Greek letter “epsilon” (ε) to denote the

distance, and our corral thus is the set

{a ∈ R ∣ ∣a − L∣ ≤ ε}

We thus have established criterion for convergence:

• �ere is a number L so that

• Given an (arbitrary small) corral size ε

• We can �nd an index (we shall call N .�is N will depend on ε)
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ε=1,
for i ≥ N=10 ε=0.4,

for i ≥ N=25

ε=0.2,
for i ≥ N=50

Limit L=5

ε=0.125,
for i ≥ N=80

Figure IV.1: A convergent sequence a i = 5 − (−1)i 10
i

• From when on (i.e. for i ≥ N) all entries a i of the sequence will be at most ε
away from L.

Or, more formally:

Definition IV.4: A sequence {a i} converges, if there exists a number L, such that
for an arbitrary ε > 0we can �nd anN such that ∣a i − L∣ ≤ ε once i ≥ N . In symbols:

∀ε > 0∃N ∶ ∀i ≥ N ∶ ∣a i − L∣ ≤ ε.

We write L = lim
i→∞

a i and call it the limit of the sequence.

Note IV.5: Some books write the inequalities strictly (i > N etc.). �is will not
change the property, since the statement is for all ε.
For example, consider the sequence given by a i = 5 − (−1)i 10

i , depicted in Fig-
ure IV.1. We set L = 5 and choose ε = 1.�en for N = 10 we have that ∣a i − L∣ ≤ ε
when i ≥ N . Similarly, we determine the corresponding N-values for ε = 0.4,
ε = 0.2, and ε = 0.125.

�e condition however requires this statement to hold for any arbitrary ε > 0,
not just for the four values we illustrated. We thus need to give a general proof for
an arbitrary ε. For that, we start with a scratch calculation to �nd when ∣a i − L∣ < ε
and solve for i:

ε ≥ ∣a i − L∣ = ∣5 − (−1)i 10
i
− g∣ = ∣−(−1)i 10

i
∣ = 10

i

Since i and ε are both positive, we can multiply by i and divide by ε and get

i ≥ 10
ε
.
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�e right hand side is the value we chose for N in the actual proof that uses the
work of this scratch calculation:

Let ε > 0 and set N = 10
ε .�en, for i ≥ N we have that

∣a i − L∣ = ∣5 − (−1)i 10
i
− 5∣ = ∣−(−1)i 10

i
∣ = 10

i

≤ 10
N

= 10
10/ε

= ε.

and thus {a i} converges to L.

With the scratch calculation beforehand, and the choice of L, it is of course pre-
determined that we will get ∣a i − L∣ ≤ ε. �e argument just presents the result of
the scratch calculation in a format corresponding to the de�nition of convergence.
Note that some of the text in the proof was underlined.�is text will essentially

be always the same in any proof for convergence of a sequence, while the remainder
is basically built from the scratch calculation.

Note IV.6: Youmight �nd this criterion for convergence somewhat unsatisfactory,
in that it requires the limit L to be given. Is is clear that we can always calculate, or
represent this limit exactly? Consider for example the recursive sequence, de�ned
by

a1 = 1, a i+1 = 1 +
1

a i
.

If we write a program to calculate values a i for increasingly large indices, we �nd
that the sequence seems to converge to a number 1.618033988749894848 . . .. But
what is this limit2, and how can we express it and use it in a limit proof? To work
around such problems, mathematicians o�en use a somewhat di�erent criterion,
called the Cauchy criterion (see Wikipedia), that uses not the distance from se-
quence values to the limit, but of sequence values never straying too far apart from
each other. It however is a bit more complicated to work with, which is the reason
for the choice of a more basic criterion here.

�e reason for looking at formal proofs is that this is a prototype for the way
formal proofs work in Calculus3. One argues about di�erences, typically denoted
by ε, in function values becoming arbitrary small, but still being nonzero, as se-
quence indices go to in�nity, or x-arguments becoming arbitrarily close (the latter
then being denoted by another Greek letter, δ denoting a small entity).

IV.5 Limits, Bounds and the Real numbers

If a sequence converges, its values cannot become arbitrary large, since at some
point they need to start getting close to the limit. �is implies that a convergent

2In this case, one can actually calculate it as a solution to the quadratic equation x = 1 + 1/x
3When doing proofs, the topic is o�en called “Analysis”
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sequence must be bounded. On the other hand, being bounded does not make a
sequence convergent, as the example (−1)i shows.

�ings however become interesting if a sequence is monotonic and bounded
(that is, increasing and bounded from above, or decreasing and bounded from be-
low). We have the following theorem:

Theorem IV.7: Every monotonically increasing sequence that is bounded from
abovemust converge to a limit L ∈ R. (Asmust every decreasing sequence bounded
from below.)

Conceptually this seems clear – if we can never go back, nor cross a line, we
eventuallymust become stationary. A formal proof however is far beyond the scope
of this course.
Note that the limit in such a case is not necessarily the bound used, but it is the

“best possible” bound (formally called the supremum).

�is statementmight seemmore of a curiosity and have little relevance for com-
putational sciences.�e reason we mention this fact is in that it ultimately gives a
justi�cation for and explanation of what the real numbers are. So far, we de�ned
them, somewhat sloppily, as the x-coordinates of all points on the number line, or
as numbers with in�nite decimal expansions. But that is only half the truth. For-
mally:

�e real numbers are the limits of bounded, monotonic sequences.

�is construction is also the reason for why we use the real numbers (and not
just rational numbers of arbitrarily large denominator and arbitrarily good expan-
sions): real numbers are required to get limits of sequences that should converge.
Such limits do not necessarily exist in the rational numbers – take for example the
sequence recursively de�ned in Note IV.6, whose limit is the irrational number
1+
√
5

2 . (�ere is a formal construction of the real numbers that de�nes an equiva-
lence relation on sequences – multiple sequences might have the same limit – and
de�nes the real numbers as equivalence classes of sequences under this relation.)
But the real numbers are not only what one can obtain by arithmetic involving

roots. Actually there are in�nitely (in an overwhelming sense) more real numbers,
than numbers that can be expressed as roots of polynomials. (Such numbers are
called transcendental.) You will have seen some examples in school: π, e. But these
numbers are like dark matter. While they are overly abundant and around every-
where, it is hard to get hold of them (as one can only give a numerical approxima-
tion or a sequence that has them as limit).

Of course anything we can measure in the real world, anything we can repre-
sent as number on the computer, is a rational number.�e reason we use the real
numbers is so that limits exist!
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IV.6 Series

A series is a special sequence, in which we sum up the terms of another sequence,
that is it is the sequence of partial sums. If the sequence we are summing over is
(a j), we have the i-th partial sum as

p i = a0 + a1 + a2 +⋯ + a i−1 + a i =
i
∑
j=0

a j ,

where the∑ notation is basically amathematician’s version of a for-loop. (Note that
we need to use a di�erent variable for the loop than for the loop end.)
If this sequence of partial sums converges we write the limit as an in�nite sum.

∞

∑
j=0

a j = lim
i→∞

p i = lim
i→∞

i
∑
j=0

a j .

For example, we could sum over the sequence a j = 1/2 j and get the sequence of
partial sums:

p0 = 1, p1 = 1 +
1
2
= 3
2
, p2 = 1 +

1
2
+ 1
4
= 7
4
, . . .

Here, it is not hard to see that the partial sums are

p i =
2i+1 − 1
2i

and this sequence thus has the limit
∞

∑
j=0

1
2 j = 2,

that is, the in�nite summation yields a �nite number.
Clearly, the sequence over which we are summingmust go to zero for the series

to converge. But that is not su�cient. For example, one can show that the series
∞

∑
i=1

1
i

(called the harmonic series) will not converge but go to in�nity.
As an interesting aside, the program

s=0

old=-1

i=1

while s>old :

old=s

s=s+1/i

print(i, ": ",s)

i=i+1
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(which calculates the partial sums∑n
i=1

1
i for increasing values of n and terminates

when they stop increasing) will actually terminate (due to rounding errors) a�er a
long time4 and thus make it look as if the the series converges. But it does not!

�ere are a number of criteria and tests to see whether a particular series con-
verges, and you will �nd examples and applications in any Engineering Calculus
book. In this course however we are not investigating this question, but will look at
two particular kinds of series (where it is relatively easy to indicate convergence).

Note IV.8:�ere is some subtlety with in�nite summations: Usually we have that
a + b = b + a, but it is possible that a series changes its value (i.e. the limit of the
partial sums), or even whether it converges, if we change the order of summation.
�is cannot happen if the sequence converges and all terms are positive – the issue
is basically that we can unbalance positive and negative terms by moving some
more and more towards in�nity.

IV.7 Geometric Series

A sequence is called geometric if its terms grow by a constant factor r, that is, if the
starting term is a, the sequence is

a, ar, ar2 , ar3 , ar4 , . . .

We will assume that r /= 1, as the sequence is otherwise boring.
A geometric series now is a series whose terms show geometric growth, i.e.

a i = r ⋅ a i−1 for a constant r, independent of i.�is type of series has applications
in several �elds including physics, biology, economics and �nance.

Definition IV.9: Let r be a ratio and a any nonzero constant. A geometric series is
a series of the form

a + ar + ar2 + . . . + arn−1 + . . . =
∞

∑
n=1

arn−1 = a
∞

∑
n=1

rn−1 = a
∞

∑
n=0

rn

�e k th partial sum pk of a Geometric series
∞

∑
n=0

arn is the (�nite) sum of the �rst

k + 1 terms:

pk = a + ar + ar2 + . . . + ark =
k
∑
i=0

ar i

A simple example of geometric growth is something that grows by a factor each
time unit. Suppose that a museum starts with a = 100 visitors per year and each
year increases its visitor numbers by 3%.�at is the visitor number a�er i years is

4You can replace the line incrementing s by s=round(s+1/i,6) to reduce accuracy and make it
happen sooner.
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100 ⋅ 1.03i = a ⋅ r i for r = 1.03. If we ask for the total number of visitors a�er n years
we get:

n
∑
i=0

a ⋅ r i .

Now consider
pk = a + ar + ar2 + . . . + ark

and
r pk = ar + ar2 + ar3 + . . . + ark+1 .

Notice that these two expressions share several terms in common, in fact

pk − r pk = (a + ar + ar2 + . . . + ark) − (ar + ar2 + ar3 + . . . + ark+1) = a − ark+1

Now if we factor both sides of this equation, we get

pk(1 − r) = a(1 − rk+1).

As long as r ≠ 1 we can divide both sides by (1 − r) to get

pk =
k
∑
n=0

arn = a 1 − rk+1

1 − r
.

(What happens in the casewhere r=1?We get pk = a+a(1)+a(1)2+. . .+a(1)k =
(k + 1)a.)

Before we go on to get a formula for the in�nite sum, we see how the formula
for pk might be used on its own: Suppose we are given a chess board and place one
grain of rice on the �rst square, two grains of rice on the second square, four grains
of rice on the third square continuing on so that there are 2n−1 grains of rice on the
nth square. How many grains of rice are on the chess board? (�ere are 8 ⋅ 8 = 64
squares on a chess board.)
Since there are 64 squares on the chess board (from 0 to 63), we want to com-

pute p63. Our ratio is 2 and a is one, hence we are asked to �nd

p63 = 1 + 2 + 4 + . . . + 263 =
1(1 − 264)
1 − 2 ≈ 1.84467 × 1019

A similar calculation underlies the repayment of loans or mortgages:
Supposewe take out a loan of L dollarswhich is paid back periodically (typically

monthly).�e periodic payment is a dollars, the �xed interest rate per period is i.
If bk is the loan sum outstanding a�er k time periods, we have that

bk+1 = bk ⋅ (1 + i) − a.

Using b0 = L and setting r = 1 + i, in the �rst step we have

b1 = Lr − a
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we then continue on to the next step where we get

b2 = b1(r) − a = (Lr − a)(r) − a
= Lr2 − (a + ar)

We might be starting to notice a pattern, however it becomes obvious in the next
step

b3 = b2(r) − a = (Lr2 − (a + ar))(r) − a
= Lr3 − (a + ar + ar2)

At this point we can solve this recursion to

bk = L⋅rk−(a + ar + ar2 +⋯ + ark−1) = L⋅rk−
k−1
∑
n=0

arn Sum formula= L⋅rk−a 1 − rk

1 − r
.

A bank now would set bm = 0 (where m is the time a�er which the loan should be
paid o�, e.g.m = 12 ⋅ 30 = 360 for a 30 year mortgage) and solve for a to determine
the necessary monthly repayment, given the loan sum and interest rate.
For example, if we have a mortgage of L = $200, 000, an annual interest rate of

6% (leading to a monthly rate of i = .06/12 = 0.005, i.e. r = 1.005) and a monthly
repayment sum5 of a = $1, 200, we �nd that the outstanding sum a�er k months is

bk = 200, 000 ⋅ 1.005k − 1, 2001.005
k − 1

0.005
= 200, 000 ⋅ 1.005k −240, 000 (1.005k − 1) .

A�er 10 years (120 months) this leaves an outstanding amount of $167, 224.13, a�er
20 years $107, 591.82, roughly half6, a�er 30 years $−903.00 (i.e. the loan is paid o�
a�er 30 years less one month7).
If the interest rate instead was 7% annually (i = .07/12 = 0.005833 monthly),

we get with same repayment sum a remaining loan amount of $159, 256.18 a�er
30 years, which is not even halfway paid o�. A monthly repayment sum of $1330
would be needed8 to have the loan paid o� a�er 30 years.

Since the sequence p0 , p1 , p2 , . . . , pk , . . . of partial sums converges to
∞

∑
n=1

arn−1,

we can use the formula just derived to compute a value for the limit of a geometric
series:
If ∣r∣ < 1, we have that limk→∞ rk+1 = 0 and thus
5Slightly moralistic remark: Incidentally, initial interest amounts to $1000 per month at the start of

the loan. An interest only loan thus does not save much and is a very bad deal!
6In general, this means that a loan is paid o� half a�er roughly 23 of its planned life time7�e total cost of the loan then will have been $430, 800, more than double the loan amount.

(�ough in�ation means that the actual value will be less.)
8I.e. a change of one percentage point in the interest rate increased the monthly payment (and thus

the total loan cost) by 10%! No wonder people go bonkers about interest rates.
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∞

∑
i=0

ar i = lim
k→∞

pk = lim
k→∞

a(1 − rk+1)
1 − r

= a(1 − 0)
1 − r

= a
1 − r

.

�is incidentally veri�es the above example

∞

∑
i=0

1
2i = 2

On the other hand, if ∣r∣ ≥ 1, the absolute value of the numerator 1 − rk+1 will
go towards in�nity, and the series diverges.
As an example application of this formula, we look at how one can express the

repeating decimal 0.08 as a fraction of two integers.
We �rst notice that 08 is the repeated value, so we want to break up 0.08 into a

sum of the repeated values.�erefore we have 0.08 = 0.08+0.0008+0.000008+ . . ..
Once we have this written as a sum we can now write each term in the sum as a
fraction, hence we have 0.08 = 8

100 , 0.0008 =
8

10,000 =
8
1002 , and 0.000008 =

8
1003 .

Using this information we should recognize a pattern

0.08 = 8
100

+ 8
1002

+ 8
1003

+ . . . =
∞

∑
i=1

8
100i

However at this point we notice that we have a geometric series which is not writ-
ten in the correct form for us to apply our formula. If we factor out ( 8

100 ) we get
∞

∑
i=0

( 8
100

)( 1
100

)i which is now in the correct form. �is gives r = 1
100 < 1 so our

geometric series converges and since a = 8
100 the series converges to

8
100
1 − 1

100
=

8
100
99
100

= 8
99

= 0.08.

For another example, consider the following paradox of Zeno9:
Achilles, the fastest runner in ancient Greece, runs 100 times as fast as the Tor-

toise. But — so the paradox claims — if the Tortoise is given an advance, Achilles
will never be able to pass the Tortoise:
Suppose thatAchilles runs 10m/s and theTortoise only 0.1m/s, furthermore the

Tortoise is given a head start of 100m. A�er 10 seconds, Achilles has reached the
place where the Tortoise started. But in this time, the Tortoise has run 1m ahead.
Achilles will reach this distance in 0.1 seconds. But then the Tortoise has moved
another 0.01m. Achilles will take 0.001 seconds to reach this, and so on. He will
never reach the Tortoise. Where is the error in this argument?

9Zeno of Elea, Greek philosopher, about 490 BC - 430 BC
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�e paradox is resolved, if we realize what time period is considered: All events
take place within

10 + 0.1 + 0.001 +⋯ = 10
∞

∑
n=0

1
100n = 10

1 − 1
100

= 1000
99

= 10.10

seconds.�is is exactly the timewhen Achilles reaches (and overtakes!) the Tortoise.
�e paradox arises from the implicit (and wrong, as we have calculated!) sugges-
tion, that it describes the events for all time.

An example of geometric series arising in di�erent areas of mathematics is the
following simple application of an in�nite geometric series in probability.
Suppose Player A and Player B play a game where they take turns �ipping a

coin. Player A �ips �rst, and the �rst person to �ip a heads is declared the winner.
What is the probability Player A wins?
We consider the possible scenarios in which Player A wins. First, it is possible

Player A �ips a heads on the �rst �ip: the probability this happens is 12 . Next, in
order for Player A to win on their second �ip, both Player A and Player B would
need to have �ipped a tails on their �rst �ip. In this case, the sequence of �ips must
have been TTH, and the probability that this happens is 12 ⋅

1
2 ⋅

1
2 = 1

8 . Similarly,
the next possible sequence of �ips resulting in a win for Player A is TTTTH, and
the probability that this happens is ( 12)

5 = 1
32 . We can recognize the pattern and

generalize: the probability that Player A wins by �ipping a heads a�er 2i tails have
been �ipped is ( 12)

2i+1, so the total probability that Player A wins is given by the
in�nite geometric series

1
2
+ 1
8
+ 1
32

+ 1
128

+ . . . =
∞

∑
i=0

( 1
2
)
2i+1

=
∞

∑
i=0

1
2
( 1
4
)

i
=

1
2
1 − 1

4
= 2
3
.

IV.8 Arithmetic Series

While not directly related to the Geometric Series, this seems to be an appropriate
place to also look at summations over other sequences.

�e summation over a constant sequence with �xed value a,

a + a +⋯ + a
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n terms
= n ⋅ a

is basically just the de�nition of multiplication. But what happens if the terms
change by a constant sum, that is we have that a i+1 − a i = c constant?
Let us �rst observe this for the basic case of

Sn =
n
∑
i=1

i = 1 + 2 +⋯ + n.
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We get a formula by writing this sum down a second time in reversed order and
add both up (thus getting twice the value Sn):

1 +2 +3 +⋯ +(n − 1) +n
+ n +(n − 1) +(n − 2) +⋯ +2 +1

We can get the value in another way by �rst adding down in each column. Note
that each column adds up to n + 1, and we have n columns, and this sum thus is
n(n + 1).�is gives us the formula:

n
∑
i=1

i = 1 + 2 +⋯ + n = n(n + 1)
2

.

For example, we get that

1 + 2 +⋯ + 100 = 100 ⋅ 101
2

= 10100
2

= 5050.

If subsequent terms di�er by a di�erent constant, we can handle this with a factor
(and possibly a starting term). Suppose we start at 5 and di�er by 3 in each step:

5 + 8 + 11 + 14 +⋯ + 32

we subtract 2 from each summand, so that they all are a multiple of 3, and then
separate the two operations:

= (2 + 3) + (2 + 6) + (2 + 9) +⋯(2 + 30) = 2 +⋯ + 2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
10 terms

+3 (1 + 2 +⋯ + 10)

We know that there are 10 terms, as we have (32−5)/3 = 9 steps from the �rst. Now
we use the two kinds of formulas and get

5 + 8 + 11 + 14 +⋯ + 32 = 10 ⋅ 2 + 3 ⋅ ( 10 ⋅ 11
2

) = 20 + 3 ⋅ 55 = 185.

We note, without proof, the similar formulas:

n
∑
i=1

i2 = n(n + 1)(2n + 1)
6

n
∑
i=1

i3 = n2(n + 1)2
4



Chapter

V

Di�erentiation

We are now almost ready to start looking at the concepts of Calculus.�e under-
lying idea is that we should be able to describe the values of a function, or its long
term behavior, based on how it changes locally.

V.1 Function limits and Continuity

Before de�ning the derivative of a function on the real numbers, there are some,
somewhat technical concepts, we need to touch upon:
First, we want to extend the concept of the limit of a sequence (at ∞) to the

limit of a function at a point.

DefinitionV.1: Let f ∶R→ R be a function and a ∈ R. If, for every sequence {an}
with limn→∞ an = a, the sequence of function values { f (an)} also converges to
L = limn→∞ f (an), and the limit L does not depend on the choice of the sequence,
we call this the limit of f at a, written

lim
x→a

f (x) = L

(Calculating such a limit can potentially be hard, as one has to consider an
in�nitude of possible sequences.)
For many functions occurring in the real world, this limit is equal to the func-

tion value f (a), since nature does not jump, but this is not guaranteed for every
function.
Our de�nition of functions however allows for arbitrary functions, such as the

69
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Figure V.1: Some discontinuous functions

following ones (Figure V.1):

f ∶R→ R , x ↦ ⌊x⌋ Round down to integer

g∶R→ R , x ↦ { sin(1/x) x /= 0
1 x = 0

h∶R→ R , x ↦ { 3 x ∈ Q
−3 x /∈ Q

If we investigate the function f around 1/2, there is no way to see that it jumps at 0
and at 1. Similarly, why is the value of g at 0 one (and not zero or −1, or something
in between). And we can’t even look �ne enough to decide from the graph that h
is a function.
Instead, we want that the graph of the function is smooth, that is that we get

close to a point x, we can predict the function value f (x). Getting closer will ulti-
mately give a better approximation.
Formally, we de�ne a function f ∶R → R to be continuous at a point x0 (other-

wise: discontinuous) if

�e limit lim
x→x0

f (x) exists and is equal to the function value f (x0).

If the function is continuous at every point x0, we simply call it continuous
(without “at”).
We see for example that the “rounding down” function f (x) = ⌊x⌋ is not con-

tinuous at 1, since the sequence a i = 1 − 1/i has limi→∞ a i = 1, but f (a i) =
f (1 − 1/i) = ⌊1 − 1/i⌋ = 0, and thus limi→∞ f (a i) = 0 /= 1 = f (1).
Informally, a function is continuous, if small changes in the argument imply

small changes in the value – that is we can approximate the function value at x0 by
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the function values at numbers close to x0. For the graph of the function thismeans
that it may not have any jumps, nor start wild oscillations, but should be followed
easily with a pencil. Most functions youwill encounter (that do not jump) are likely
to be continuous.
To show formally that a function is continuous, using the de�nition, can be

hard. We therefore do not investigate this further in this class1. Instead we study
what continuity is good for.

Some continuous functions

Many functions you know from school are continuous. And due to the laws of
limits, it is not just these functions, but also functions composed by arithmetic
operations (as long as a denominator does not become zero), and also compositions
of such functions:

• Nonnegative powers of x: xa for a ∈ R.�is includes the constant function
x0.

• �us also polynomials and (as long as the denominator is nonzero) rational
functions.

• Trigonometric functions sin(x), cos(x), and tan(x) = sin(x)/ cos(x) (when
the denominator is nonzero).

• Inverse trigonometric functions (Note that arcsin and arccos are only de�ned
on the domain {−1 . . . 1}.

• �e exponential function exp(x) = ex and (for positive x) its inverse the
natural logarithm log(x) = ln(x). (All logarithms in this course without a
speci�c basis are natural logarithms.)

�e de�nition of some of these functions (such as sin(x) as measurement on
a triangle in a circle) given in school is not amenable to easy computation, we will
see later↝ VII.2 how this can be done.

V.2 Why Care About Continuity

�e �rst use of continuity is that it makes approximationmeaningful.We canwork,
for example, with numerical approximations of x values, and trust that the function
value f (x) will not di�er too much from f (x0) if x is an approximation of x0.
A consequence of this is that we can “control” the function values. If we want

to �nd x to achieve a particular function value f (x), we can do so by iterative
approximation. On the other hand, the situation that small changes in the input

1�ere is a criterion that is used in the Calculus class for mathematicians that formalizes the “close
approximation” idea, but we do not need it here
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could produce (arbitrary) large changes in the output is close to the de�nition of
chaos.
A consequence of this property is the following statement:

x1 x2

a

b

c

x

Figure V.2:�e intermediate Value�eorem

Theorem V.2 (Intermediate Value�eorem): Let f ∶R → R be a continuous func-
tion and x1 < x2 ∈ R with f (x1) = a and f (x2) = b. Let c be a number between a
and b.�en there exists x1 ≤ x ≤ x2 such that f (x) = c (Figure V.2).
We can use this theorem to �nd x for a particular f (x)-value. Most frequently

this is done to �nd x, such that f (x) = 0.�e method is called halving intervals or
bisectionmethod.

1. Start with s, t ∈ R such that f (s) < 0 and f (t) > 0. (Or vice versa: f (s) > 0
and f (t) < 0.)

2. Letm = s+t
2 be themidpoint of the interval. If f (m) = 0 and stop. Otherwise:

3. If f (s) and f (m) have the same sign (positive or negative) replace s by m.
Otherwise replace t by m (since f (m) and f (t) have the same sign).

4. If ∣t − s∣ is not small enough (to the approximation quality we want), go to
step 2.

In each step of the algorithm, the length of the interval from s to t halves, and the
desired x value must lie in the interval. We can repeat until s and t approximate
this x su�ciently well.
For example, consider the function f (x) = sin(x). We want to approximate

the number π, knowing2 that f (π) = 0. We start with s = 2 and t = 4, since we
know that 2 < π < 4. We now iterate, setting m = (2 + 4)/2 = 3 and calculate f (3),
which is positive.�us we replace s by 3 and iterate.�e following table shows the

2Wemeasure the angle of a full circle as 2π
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further iterations (with underlined numbers indicating the end point that was re-
placed bym in each step). A�er 20 iterations, the length of the interval has become
2/220 ∼ 10−6. �is agrees with the fact that we gain a further correct digit every
log2(10) ∼ 3.3219 steps and thus should expect 20/3.3219 = 6 correct digits in the
result, approximating π as 3.141593 (versus the correct3 3.1415926 . . .).

# s t ∣t − s∣ f (s) f (t) m = s+t
2 f (m)

0 2 4 2 0.909297 -0.756802 3 0.141120
1 3 4 1 0.141120 -0.756802 3.5 -0.350783
2 3 3.5 0.5 0.141120 -0.350783 3.25 -0.108195
3 3 3.25 0.25 0.141120 -0.108195 3.125 0.016592
4 3.125 3.25 0.125 0.016592 -0.108195 3.1875 -0.045891
5 3.125 3.1875 0.0625 0.016592 -0.045891 3.156250 -0.014657
6 3.125 3.15625 0.03125 0.016592 -0.014657 3.140625 0.000968
7 3.140625 3.156250 0.015625 0.000968 -0.014657 3.148438 -0.006845
8 3.140625 3.148438 0.007813 0.000968 -0.006845 3.144531 -0.002939
9 3.140625 3.144531 0.003906 0.000968 -0.002939 3.142578 -0.000985
10 3.140625 3.142578 0.001953 0.000968 -0.000985 3.141602 -0.000009
11 3.140625 3.141602 0.000977 0.000968 -0.000009 3.141113 0.000479
12 3.141113 3.141602 0.000488 0.000479 -0.000009 3.141357 0.000235
13 3.141357 3.141602 0.000244 0.000235 -0.000009 3.141479 0.000113
14 3.141479 3.141602 0.000122 0.000113 -0.000009 3.141541 0.000052
15 3.141541 3.141602 0.000061 0.000052 -0.000009 3.141571 0.000022
16 3.141571 3.141602 0.000031 0.000022 -0.000009 3.141586 0.000006
17 3.141586 3.141602 0.000015 0.000006 -0.000009 3.141594 -0.000001
18 3.141586 3.141594 0.000008 0.000006 -0.000001 3.141590 0.000003
19 3.141590 3.141594 0.000004 0.000003 -0.000001 3.141592 0.000001
20 3.141592 3.141594 0.000002 0.000001 -0.000001 3.141593 -0.000000

Such a process of halving intervals can be implemented easily. It however takes a
while to get a good approximation, which is why we will see a better method in a
later chapter↝ VI.4.

V.3 Partial Sums and Derived Sequences

Before de�ning derivatives properly, let us look at an example of change that hap-
pens at discrete intervals, and how function values and change are related.
Imagine the ledger of a business that lists every day the sum of income minus

expenses (let’s call it the �ow), and the total money held by the business:

3Count the digits in each word in the sentence How I want a drink, alcoholic of course, a�er the
heavy chapters involving quantum mechanics.
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Day Income-Expenses Money held
0 - 0
1 893 893
2 70 963
3 992 1955
4 682 2637
5 115 2752
6 215 2967
7 -497 2470
8 -246 2224
9 252 2476
10 -301 2175

Going through the columns, we get two sequences, both indexed by the �rst
column.�e �rst sequence, which we shall call a i is the daily �ow.�e second se-
quence, let’s call it b i , is the money held by the business. Is there a relation between
the two columns?
Of course. Assuming we started with 0 money held, the money held on the end

of day i is the sum of the �ow of days 1 to i. We write this as

b i = a1 + a2 + a3 +⋯ + a i−1 + a i =
i
∑
j=1

a j

and have that the b i are the *partial sums* over the sequence a i .
Can we do the same thing backwards? Surely – solving for a i �nds that

a i =
i
∑
j=1

a i −
i−1
∑
j=1

a i = b i − b i−1 .

�e two sequences are thus “related” in that each sequence completely deter-
mines the other one and vice versa. We shall call the sequence {a i} the derivative
sequence of the sequence {b i} and the sequence {b i} an antiderivative or an indef-
inite integral of {a i}.
Calculus is about studying such a correspondence between functions de�ned

on (e.g.) the real numbers, while sequences are functions de�ned on the positive
integers.
Before going there, let us look at a few ways how this correspondence plays out

and helps us with determining information. First, imagine we would have started
not at 0 but with somemoney in the bank, say 1000 currency units.�en the ledger
would have looked almost the same, but for the last column being increased by
1000:
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Day Income-Expenses Money held
0 - 1000
1 893 1893
2 70 1963
3 992 2955
4 682 3637
5 115 3752
6 215 3967
7 -497 3470
8 -246 3224
9 252 3476
10 -301 3175

Denote the sequence given by the third column in this ledger by c i .We note that
c i is built from the *same changes* as b i is.�us a i is also the derivative of c i and
c i is an integral of a i . (�at is why we said “an integral” and not “the integral”.) It is
not hard to see that there are many more antiderivatives (namely, di�erent starting
values in the bank), but that any two antiderivatives simply di�er by a constant
(namely the di�erence of their starting account values).
If we care about the �ow over a number of days, say from day 4 to day 7 (inclu-

sively), we need to add up the �ows of these three days:

a4 + a5 + a6 + a7 =
7
∑
j=4

a j .

Using the sum notation, we see that this multi-day �ow di�erence also can be ex-
pressed as a di�erence of values of an antiderivative over multiple days, we have
that

7
∑
j=4

a j = (
7
∑
j=1

a j) − (
3
∑
j=1

a j) = b7 − b3 = c7 − c3 .

Here 7 is the time when the counting ends (the evening of day 7) and 3 the time
when it starts (the evening of day 3 as giving the same amount as on the morning
of day 4 which is not listed separately in the ledger.)

�is di�erence formula will hold for whatever antiderivative we are choosing.
�is holds, because the starting account value has no impact on the �ow over the
four days we aremeasuring.�us antiderivatives (more speci�cally the di�erence of
the values of antiderivatives between a start and an end point, which will be called
a de�nite integral.) We will encounter this easy idea later again under the name of
“Fundamental�eorem of Calculus”.

We have seen that an antiderivative helps with summing up changes over a
period. But what can derivatives be used for? To illustrate this, look at a di�erent
sequence {b i} (starting with b0) whose changes are smaller, but which we tabulate
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over a longer range:

0, 8, 15, 21, 24, 26, 28, 26, 25, 23, 21, 19, 18, 16, 15, 14, 13, 14, 15, 16, 18, 20, 22, 25,
28, 31, 34, 37, 40, 43, 46, 48, 50, 51, 52, 53, 52, 51, 49, 48, 45, 42, 40, 36, 33,
31, 28, 27, 26, 27, 30

We get a sequence of changes {a i} (starting with a1) as a i = b i − b i−1:

7, 6, 3, 2, 2,−2,−1,−2,−2,−2,−1,−2,−1,−1,−1, 1, 1, 1, 2

�e values of both sequences are depicted (with points connected) in Figure V.3.

Figure V.3: A sequence and its derivative

An obvious question one can ask for such a sequence b i is for what the maxi-
mum and minimum (largest and smallest) values over the investigated period are.
(In the previous example these would have been the lowest and the highest worth
of the business.)Wemark the areas where the function is (locally, that is in relation
to its neighbors) maximal or minimal in Figure V.4.
We note that at these index values (for which the function bn is maximal, re-

spectively minimal), which are aligned along the x-axis, the derivative is zero. (An
eagle-eyed reader might notice that we are slightly cheating here: Since we sum up
the values of the derivative, the maximum happens at the x-value plus 1, and our
derivatives are only close to zero.�is will be resolved later when we will decrease
the step-width more and more.)
Furthermore, at an index i, where b i has minimum value, the derivative a i

changes from being negative to being positive. And at the index i where b i has
maximum value, the derivative changes sign from positive to negative.�e reason
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Figure V.4: Maxima and Minima

for this is easily understood. To be a maximum value (say),at index im the val-
ues must have grown in step i (that is the derivative is positive at i), as otherwise
the value cannot be larger than other di�erent ones. But if the derivative did not
become negative at i + 1, the function would have been growing even further.

�us, if we look at all places where the derivative changes from positive to neg-
ative we see that these are exactly the *local maxima*, that is the places where the
function is larger than in the neighborhood (with the same argument about grow-
ing before but not a�er).
A similar kind of argument can be made for local minima.
Finding indices where the derivative is (close to) zero is easy. �e derivative

thus allows us to �nd maxima or minima (which are harder to �nd).
�is is a further indication that the concept of a derivative is a useful concept,

and we will spend most of the remainder of the class studying derivatives and an-
tiderivatives and their consequences.

V.4 Aliasing

�e concept of summing up changes is rather basic, and the reader might won-
der what else there could be to Calculus. One fundamental issue is that the prior
example had a natural step-width (the day), while this is not true for many other
situations. Indeed, results might be fundamentally wrong if we impose an arti�cial
step-width.�is phenomenon goes under the name of aliasing and also can occur
when digitizing pictures or sound signals. In this section (which is not required
later on) we illustrate what can happen.
Imagine we have temperatures oscillating as on a typical winter day in Col-

orado, with a cold mornings but temperate early a�ernoons.�e red curve in Fig-
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ure V.5, le� (with the x-axis indicating days) shows how temperature changes over
time. Now an alien (who has no concept of an Earth day) samples the temperature,
namely in intervals if 0.8 days.�e blue dots indicate the measurements. Based on
these measured values, one clearly would expect the temperature to �uctuate pe-
riodically in a cycle of 4 days, as indicated by the blue curve in Figure V.5, right.
Di�erent sample periods will lead to di�erently bad results (a sample period of ex-

Figure V.5: Bad sampling leads to aliasing

actly one day would indicate that
�eNyquist-Shannon sampling theorem in fact shows, that one needs to sample

a periodic signal at at least twice the maximal frequency (that is twice per period)
to be able to detect these frequencies.

�e same e�ect can be seen in so-calledMoiré patterns when overlaying fabric
meshes or when naively reducing the size of a digital image, as in Figure V.6:When
reducing the image by simply sampling pixels at regular intervals, not only does an
underlying regular grid (from taking a picture o� a monitor) become overwhelm-
ing, even the direction of the grid changes! Amore sophisticated algorithm instead
will try to keep colors in local areas the same and is able to produce a much better
result (the right image has the same reduced size parameters as the middle one).

Figure V.6: Image reduced by bad and by good algorithm
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V.5 �e Derivative of a Function

We have seen that it can be useful to study how the values of a function change.
Let us look at what this means for a function de�ned on the real numbers: We
could, at a point x0 look how the function changes between x0 and x0 + 1 (namely
by f (x0 + 1) − f (x0)). But there is really no reason to take a step of 1. We could
similarly look at the change when taking a step by 2 or by 12 . And of course one
would expect the change to be larger if the step-width becomes larger.

Secant Slope

x0 x0+h

f (x0)

f (x0+h)

Δ f (x)

Δ x

f (x)

Figure V.7: A secant

We can deal with this variability by not considering the absolute change f (x0+
1)− f (x0) by one unit, but by considering a variable stepwidth (whichwe denote by
h or by ∆x, ∆ being used here to indicate a di�erence), and to consider the change
relative to the step width.�at is, we consider the fraction

f (x0 + h) − f (x0)
(x0 + h) − x0

= f (x0 + h) − f (x0)
h

(V.3)

�is fraction is the slope of the line between the points (x0 , f (x0)) and (x0 +
h, f (x0 + h)), Figure V.7. Such a line is called a secant, as it intersects the graph
twice.�e ratio in equation (V.3) gives the slope of this secant, and is called the dif-
ference quotient. Since the numerator is the change of function values, sometimes

this quotient is also written as ∆ f (x)
∆x

= ∆y
∆x
.
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x0 x0+h2

f (x0)

x0+h1 x0+h3

f (x)+f ‘(x0) x

f (x)

Figure V.8: Multiple secants and the tangent

But we can choose di�erent values of h (Figure V.8), and (unless the function is
a line) this will yield di�erent secants with di�erent slopes, depending on the value
of h.
To remove this ambiguity we now make h small.�at is, we consider the dif-

ference quotient as a function of h and study the limit

lim
h→0

f (x0 + hn) − f (x0)
hn

�is limit (if it exists) is the slope of the tangent line to the graph of f at x0.
�is approach immediately raises two questions:

Will this limit always exist? No. It is possible that the limit does not exist, for
example if the function is not continuous at x0. Also the limit might not exist. For
example, if the graph has a “corner” at x0 (as the graph for ∣x∣ has at x0 = 0), the
limit for a sequence of positive hn will di�er from the limit of a sequence of negative
hn .�e formal de�nition thus needs to require this limit to exist:

Definition V.4: Let f ∶R→ R be a function that is continuous at x0. If the limit

L = lim
h→0

f (x0 + hn) − f (x0)
hn

exists, then f is called di�erentiable at x0. �e value L (which is the slope of the
tangent to the graph of f at x0) is called the derivative of f at x0 and denoted by
f ′(x0).
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Figure V.9: Not di�erentiable

Note that in particular that a function that is not continuous at x0 ∈ R is not
di�erentiable at x0. But there are continuous functions that are not di�erentiable.
Figure V.9 shows some typical situations:

• �e function tends to in�nity (so might not even be continuous).

• �e slope becomes vertical at a point.

• �e graph of the function has a “kink”, so there will not be a unique tangent.

How can we test for being di�erentiable, and calculate the value of the deriva-
tive? Testing di�erentiability can be technical and is not a focus in this course.
We will see how this works in a few easy examples, but then introduce easier rules
for �nding derivatives.

V.6 Basic Derivatives, Polynomials

Let us consider a few easy cases. First, consider a constant function f (x) = c. In
this case f (x0) = c = f (x) for every x and thus

f (x0 + hn) − f (x0)
hn

= c − c
hn

= 0
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and thus the limit exists, and is always equal

lim
n→∞

f (x0 + hn) − f (x0)
hn

= 0

�erefore: A constant function is di�erentiable at every x0, andhas derivative f ′(x0) =
0.
Next consider the function f (x) = x.�en

f (x0 + hn) − f (x0)
hn

= (x0 + hn) − x0
hn

= hn

hn
= 1.

Again, the limit exists, and is always equal and we have that f ′(x0) = 1.
For the next cases, we will need the limit laws from Lemma IV.3: Consider the

function f (x) = xa for an integer a > 1.�en (by the binomial theorem 4) we have
that

f (x0 + hn) = (x0 + hn)a =
a
∑
i=0

(a
i
)xa−i
0 h i

n = xa
0 +

a
∑
i=1

(a
i
)xa−i
0 h i

n

and thus

f (x0 + hn) − f (x0)
hn

= (x0 + hn)a − xa
0

hn
=

xa
0 +∑a

i=1 (a
i)xa−i

0 h i
n − xa

0

hn

= ∑a
i=1 (a

i)xa−i
0 h i

n

hn
=

a
∑
i=1

(a
i
)xa−i
0 h i

n
hn

=
a
∑
i=1

(a
i
)xa−i
0 h i−1

n

= axa−1
0 +

a
∑
i=2

(a
i
)xa−i
0 h i−1

n .

But every summand in the sum on the right hand side has a factor hn and, since
limn→∞hn = 0 we have limn→∞∑a

i=2 (a
i)xa−i

0 h i−1
n = 0 and thus

lim
n→∞

(x0 + hn)a − xa
0

hn
= axa−1

0 .

Once more, the limit exists and is independent of the choice of sequence hn .�us
the function f (x) = xa is di�erentiable at every x0 and has the derivative f ′(x0) =
axa−1. �is result subsumes (for a = 0 and a = 1 the previous two, and one can
show that it even holds if a is an arbitrary real number.
A similar application of the limit laws gives us that, if f and g are di�erentiable

at x0, so is ( f + g)(x)with derivative f ′(x0)+ g′(x0), as is (c f )(x) (for a constant
c ∈ R) with derivative c f ′(x0).
Combining all of this, we have that a polynomial f (x) = ∑n

i=0 a i x i is di�eren-
tiable at every x0 and has the derivative5

f ′(x0) =
n
∑
i=1

a i ⋅ i ⋅ x i−1
0

4recall Pascal’s triangle
5and this is all you need to remember from this section!
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V.7 �e Derivative as a Function

We have so far, for a given function f de�ned a derivative at a point x0, as the slope
of the tangent line to the graph of the function at point (x0 , f (x0)) anddenoted it as
f ′(x0). Assuming the function f is di�erentiable at every x0 ∈ R, we can calculate
these derivative values f ′(x0) for every x0 and consider f ′ as a function itself (that
assigns to x0 the value f ′(x0)).�is function is called the derivative (function) of
f . Besides the name f ′, it also is denoted by d f

dx
or d
dx

f , where the ddx
is to be

considered as a particular symbol (alluding to the di�erence quotient), not as an
actual fraction. In Physics, also the notation ḟ is sometimes used.

�is derivative function assigns to every point x the slope of the tangent to the
graph of f at the point (x , f (x)). We already know how to determine a formula
for this derivative function for polynomials:

Example V.5: Let f (x) = x5 + x4 − 20x3 − 20x2 + 64x + 64. Figure V.10 shows
tangents (green) to the graph (red) of f at some points. If we determine the slope
of these tangents at all points (x , f (x)), we get the graph (blue) of the derivative
f ′(x).
By the result of the previous section, we actually can calculate a formula for

this derivative as f ′(x) = 5x4 + 4x3 − 60x2 − 40x + 64. Using this formula, we can
calculate exact values of f ′(x) for arbitrary points x, as in the following table:

x −4 −3 −2 −1 0 1 2 3 4
f ′(x) 288 −59 −48 45 64 −27 −144 −83 480

Note that these values agree with the slopes of the tangents.

Note V.6:�e notation d f
dx
serves another purpose, namely indicating with re-

spect to which variable we take the derivative. If we look at multiple functions (or
functions with a parameter), a function expression might contain other symbols,
though only one will be considered the variable with respect to which we take the

derivative. In the case of d f
dx
this variable is x, though one also might write d f

da
to

indicate that the relevant variable is called a.
Ultimately, of course such functions with be considered as being of multiple

variables, and the derivative with respect to one variable means we are considering
only a “slice” of the function. More about this will come in multivariable calculus.

Here we just should note that e.g. d f
da

= x2 for f (x) = a ⋅ x2, (considering a as

the variable and x as constant), while d f
dx

= a and d f
db

= 0.
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00-4-4 -2-2 22 44 66
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-100-100
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Figure V.10: Multiple tangents and the derivative

V.8 Derivatives of Elementary Functions

A function is called elementary6, if it cannot be composed from other functions.
�ese are typically functions that are useful in particular applications and that have
their own key on the calculator, such as exp(x) or sin(x).

By careful inspection of the graphs of some of these functions it is possible to
identify expressions for their derivatives, we give one example of this below. (�e
ultimate justi�cation for some of these formulas will for us come through Taylor
series VII.2.)

We note these derivative formulas in the following table:

6my dear Watson
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Function f (x) Derivative f ′(x)
sin(x) cos(x)
cos(x) − sin(x)

exp(x) = ex exp(x)
log(x) 1/x
arcsin(x) 1

√
1−x2

arccos(x) −1
√
1−x2

arctan(x) −1
1+x2

bla(x) e x
−1

x

�is table also gives an indication what is special about the basis e in the exponen-
tial function exp(x) = ex , as for this basis the function equals its own derivative.

NoteV.7:�e reader will note a function bla(x), that she did not encounter before.
It is a made-up function that is introduced solely to provide example problems for
homework and exams that cannot be solved with standard computational tools.

ExampleV.8: We have seen in Section V.6 a proof of the formula for di�erentiating

polynomials. Here we give a similar argument for why d sin(x)
dx

= cos(x):
To establish this we need to show that

lim
h→0

sin(x + h) − sin(x)
h

= cos(x).

Recall from trigonometry that sin(x + h) = sin(x) cos(h) + cos(x) sin(h).�en
some algebra and application of limit properties yields

lim
h→0

sin(x + h) − sin(x)
h

= lim
h→0

sin(x) cos(h) + cos(x) sin(h) − sin(x)
h

= lim
h→0

(
sin(x)( cos(h) − 1)

h
+ cos(x) sin(h)

h
)

= sin(x) lim
h→0

(cos(h) − 1
h

) + cos(x)( lim
h→0

sin(h)
h

).

It remains to evaluate the limits. Toward that end let us analyze the graphs of the
two summands. Figure V.11, shows on the le� the graph of cos(h)−1

h around h = 0,
while the right side shows the graph of sin(h)

h around h = 0.
From these graphs we see that

lim
h→0

cos(h) − 1
h

= 0, and lim
h→0

sin(h)
h

= 1

Putting it all together we �nd

lim
h→0

sin(x + h) − sin(x)
h

= sin(x) ⋅ 0 + cos(x) ⋅ 1 = cos(x)
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Figure V.11: Graphs of cos(h)−1
h and sin(h)

h , for h ≠ 0

which is what we wanted to show.
�ere is (of course) a formal, non-graphical, way to derive these limits which

requires some as well as a theorem from advanced calculus, called the “squeeze
theorem” (or “sandwich theorem”), which is beyond the scope of this text. Alter-
natively, we will see an argument involving Taylor series later in the text.

V.9 Di�erentiation Rules

When we studied functions, we looked at how we can build new functions from
simpler ones. �ese constructions also allow us to write down formulas for the
derivatives, as we will study in this section. We will aim to give a justi�cation for
each of these formulas, though will not always give a formal proof.
Let us start with some basic cases. (Some of these will end up later just being

special cases of a more general rule, so you won’t have to memorize all of this, but
it is to help justifying the more general cases.)
We start with the basic transformations to a function’s graph, as in section III.3.

Let us look at the graph of a function under transformations, and see how this
a�ects the slope of a secant. (Since the derivative is the slope of a tangent as limit
of the secant slope, it will be transformed in the same way.)
In the examples in FigureV.12, we always transform an original function f (red)

and its secant (orange) (from x0 = 0 to x0 + h = 8) to a new function p (blue, with
corresponding green secant). Recall that the slope of the secant is given as

∆ f
∆x

= f (x0 + h) − f (x0)
x0 + h − x0

= f (x0 + h) − f (x0)
h

,

and that we thus only need to see how ∆ f and/or ∆x transform. Note that vertical
shi� can be considered as a special case of addition, and that the rules for addi-
tion and for vertical scaling agree with what we’ve seen before in Section V.6 for
polynomials.
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Vertical Shi�:
p(x) = f (x)+3.�en
∆p = ∆ f and ∆x
stays the same:

∆p
∆x

= ∆ f
∆x

p′(x) = f ′(x).

Vertical Scaling:
p(x) = 2 ⋅ f (x).�en
∆p = ∆ f and ∆x
stays the same.

∆p
∆x

= 2∆ f
∆x

p′(x) = 2 ⋅ f ′(x).

Horizontal Scaling:
p(x) = f (2 ⋅ x).�en
∆p = ∆ f , but ∆x
shrinks by a factor 2.

∆p
∆x

= ∆ f
∆x/2 = 2

∆ f
∆x

p′(x) = 2 ⋅ f ′(x).

Addition:
p(x) = f (x) + g(x).
�en
∆p = ∆ f + ∆g, and
∆x stays the same.

∆p
∆x

= ∆ f + ∆g
∆x

p′(x) = f ′(x) + g′(x).

Figure V.12: Basic transformations of the derivative
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Product Rule

Next, lets look at the case of a product of functions, that is we have that p(x) =
f (x) ⋅ g(x), and the function values change by ∆ f = f (x0+h)− f (x0), respectively
by ∆g = g(x0 + h) − g(x0).�en (imagine f and g as sides of a rectangle, whose
area is p and that changes as both sides change length):

∆p = p(x0 + h) − p(x0) = f (x0 + h) ⋅ g(x0 + h) − f (x0)g(x0)
= (∆ f + f (x0)) (∆g + g(x0)) − f (x0)g(x0)
= ∆ f∆g + ∆ f ⋅ g(x0) + f (x0) ⋅ ∆g + f (x0)g(x0) − f (x0)g(x0)
= ∆ f∆g + ∆ f ⋅ g(x0) + f (x0) ⋅ ∆g .

If we now consider the value of the derivative as limit of the di�erence quotient

p′(x0) = lim
h→0

∆p
∆x

= lim
h→0

∆ f∆g + ∆ f ⋅ g(x0) + f (x0) ⋅ ∆g
∆x

= lim
h→0

∆ f∆g
∆x

+ lim
h→0

∆ f
∆x

⋅ g(x0) + f (x0) ⋅ lim
h→0

∆g
∆x

= f ′(x0)g(x0) + f (x0)g′(x0) + lim
h→0

∆ f∆g
∆x

and observe that in the remaining limit the numerator ∆ f∆g shrinks twice as fast
(because of the double-∆) as the denominator ∆x.�is limit is thus equal to zero
and we get (replacing x0 by a general x) the product rule

p′(x) = f ′(x)g(x)+ f (x)g′(x), d
dx

( f ⋅g)(x) = d f
dx

(x)⋅g(x)+ f (x)⋅(dg
dx

(x))

Chain Rule (= Composition Rule)

�e case of composition of functions looks most complicated, as we have a change
depending on change. �us, let us �rst look at some easy examples of how such
change accumulates, namely the case of polynomials of degree one.
For example, imagine that a bicyclist ascends a mountain road, at a rate of 3000

foot/hr, starting at ground level (5000 �). Measuring in units of hours and 1000 �,
her altitude a�er x hours thus is g(x) = 5 + 3x. �e temperature decreases by 2
degree per thousand foot and is, at altitude a, given as f (a) = 80 − 2a.�e tem-
perature at time x thus is p(x) = f (g(x)). But how does the temperature change
per time unit, i.e. what is p′(x)? We can answer this in three di�erent ways:

First, in this example, we can evaluate p(x) = f (g(x)) = 80−2(5+ 3x) = 70−6x
and calculate the derivative p′(x) = −6. (�at is per time unit, the tempera-
ture decreases by 6 degrees.)
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Secondly, we can observe that the composition consists of a horizontal scaling by a
factor of 3, and a le� shi� by 5 units.�e horizontal scaling (as in the example
in the previous section) will increase the slope of secants and tangents by a
factor of 3. (�e horizontal shi� means that the derivative values are shi�ed
as the function is – in this example this will make no di�erence.) �at is,
we get the derivative of the function f , which is f ′(a) = −2, evaluated at
a = g(x), and multiplied by a factor 3, resulting in p′(x) = −6 as before.

�irdly, we can work with the de�nition of the derivative as limit of the di�erence
quotient (and this will work not just in this particular example).We have that

∆p
∆x

= ∆p
∆g

⋅ ∆g
∆x

where we have set ∆g = g(x0 + h) = g(x0) and

∆p = p(x0 + h) − p(x0) = f (g(x0 + h)) − f (g(x0)).

Applying the limit rule for the product, we get

lim
h→0

∆p
∆x

= lim
h→0

(∆p
∆g

⋅ ∆g
∆x

) = (lim
h→0

∆p
∆g

) ⋅ (lim
h→0

∆g
∆x

)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=g′(x0)

= lim
h→0

f (g(x0 + h)) − f (g(x0))
g(x0 + h) − g(x0)

⋅ g′(x0)

We now replace g(x0 + h) by g(x0)+ h.�is of course is not true in general,
but one can show7 that for small values of h this is a good enough approx-
imation so that the value of the limit stays the same. �us, continuing the
equations we have

lim
h→0

∆p
∆x

= lim
h→0

f (g(x0) + h) − f (g(x0))
g(x0) + h − g(x0)

⋅ g′(x)

= f ′(g(x0)) ⋅ g′(x0)

with the last equation following from substituting g(x0) in place of x0. We
thus get the chain rule:

d( f ○ g)
dx

(x) = d f
dx

(g(x)) ⋅ dg
dx

(x)

In our example we have that f ′(x) = −2 and g′(x) = 3, thus ( f ○g)′(x) = −6.
But this chain rule can do many other functions.

7�is is done in Junior level mathematics classes, called “Analysis”
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If we have that p = f ○ g, we can also write (mirroring the way we did prove
the result, and making it look as if it was basic arithmetic with di�erentials:

dp
dx

= d f
dg

⋅ dg
dx

In the context of machine learning, the (multi-variable) version of the chain rule
goes under the name of back propagation.
Another application of the chain rule is in estimating the error of the value of

a function composition f ○ g, at a point x, given an error ∆x in x. We get from the
di�erence quotient that the error in the value f (g(x)) is

∆( f ○ g) ∼ ( f ′(g(x))g′(x))∆x .

Examples of using the Chain Rule

Since the chain rule is so important we give a number of examples where it is ap-
plied:

ExampleV.9: Consider the function f (x) = (3x2 +5)1014. In principle could com-
pute f ′(x) by expanding but that would be impossible to do by hand. Instead we
apply the chain rule:

f ′(x) = 1014(3x2 + 5)1013 ⋅ d
dx

(3x2 + 5) = 6 ⋅ 1014x + (3x2 + 5)1013 .

Next consider the function g(x) = sin(ln(x2)).�e function g is a composition of
three simpler functions sin, ln, and x2. To compute g′(x) we apply the chain rule
�rst for the composition of ln(x2) with sin(x):

g′(x) = [sin(ln(x2))]′

= cos(ln(x2)) ⋅ d
dx
ln(x2).

How do we compute d
d x ln(x2)? Simply by applying the chain rule again.

cos(ln(x2)) ⋅ d
dx
ln(x2) = cos(ln(x2)) ⋅ 1

x2
⋅ d

dx
x2

= cos(ln(x2)) ⋅ 1
x2

⋅ 2x .

Example V.10: Next, let’s think about computing the derivative of exponentiation
functions h(x) = bx where b > 0 is some arbitrary constant. We know how to �nd
derivatives if b = e (remember (ex)′ = ex ), but what is b = 2 or b = π or something
else? �en we simply rewrite the function as a composition with the exponential
function:

h(x) = bx = (e ln(b))
x
= e ln(b)x .
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Computing the derivative h′(x) now is simply the chain rule:

h′(x) = e ln(b)x ⋅ (ln(b)x)′ = e ln(b)x ln(b) = bx ln(b).

In words: the derivative an exponential function is just itself multiplied by the nat-
ural logarithm of its base.

Example V.11: Finally, let’s compute the derivative of j(x) = xx . �e power rule
doesn’t apply since that only works for functions like x2 or xπ , that is, x raised to
some power.�e rule for exponential functions we just derived doesn’t apply either,
because it assumed b was a constant.�e trick is to take the natural logarithm of
both sides of this equation to get ln( j(x)) = x ln(x). Di�erentiating the right hand
side yields

d
dx

x ln(x) = ln(x) + x ⋅ 1
x
= ln(x) + 1

by the product rule. But if we di�erentiate the le� hand side using the chain rule
we �nd that

d
dx
ln( j(x)) = 1

j(x) ⋅ j′(x) = j′(x)
xx .

�is means that we have j′(x)/xx = ln(x)+1.�erefore j′(x) = xx(ln(x)+1).�is
method of �rst taking natural logarithms, then di�erentiate, and �nally solve for
the derivative is applicable more generally and is called logarithmic di�erentiation.

Finally, the chain rule justi�es the derivatives of the inverse functions of sin(x)
and exp(x) that were given in V.8.
Write log(exp(x)) = x and take the derivative on both sides. With the chain

rule we get.
log′(exp(x)) ⋅ exp(x) = 1.

We substitute y = exp(x) for log′(y) ⋅ y = 1, and solve as

log′(y) = 1
y
, log′(x) = 1

x
.

Similarly, we derive both sides of arcsin(sin(x)) = x to get

1 = arcsin′(sin(x)) ⋅ cos(x) = arcsin′(sin(x)) ⋅
√
1 − sin2(x).

(recall that sin2(x) + cos2(x) = 1). Setting y = sin(x) this gives

1 = arcsin′(y) ⋅
√
1 − y2 .

and thus
arcsin′(x) = 1√

1 − x2
.
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�e quotient rule

We can write the quotient of two functions f (x)/g(x) as a product

f (x) ⋅ (g(x))−1 .

�e chain rule then gives us that

d
dx

(g(x))−1 = − (g(x))−2 ⋅ g′(x) = − g′(x)
g(x)2

and thus the quotient rule

d
dx

f (x)
g(x) = f ′(x)(g(x))−1 + f (x) ⋅ (− g′(x)

g(x) ) = f ′(x)g(x) − f (x)g′(x)
g(x)2

�e Derivative Algorithm

All the di�erentiation rules we have seen so far can be combined into an algorithm
that provides a purely mechanical way to calculate the derivative of a function giv-
en by a formula. (Indeed, it is a not-too-hard exercise to implement this in a pro-
gramming language of your choice.�e most di�cult part will actually be to parse
a string representing a formula, as to be able to take it apart into its constituent
parts.)

procedure Derivative( f ) ▷ f is a function
Find the outermost way how f is constructed
if f is a power: f (x) = xn then

▷ n can be a fraction (root) or negative (reciprocal)
5: return n ⋅ xn−1

else if f is a (“scalar”) multiple: f (x) = c ⋅ g(x) then
return c ⋅Derivative(g)

else if f is a sum: f (x) = g(x) + h(x) then
▷ Consider di�erence as sum g(x) + (−1) ⋅ h(x)

10: dg ∶= Derivative(g)
dh ∶= Derivative(h)
return dg + dh ▷ Sum rule: (g + h)′ = g′ + h′

else if f is a product: f (x) = g(x) ⋅ h(x) then
dg ∶= Derivative(g)

15: dh ∶= Derivative(h)
return dg ⋅ h + g ⋅ dh ▷ Product rule: (g ⋅ h)′ = g′ ⋅ h + g ⋅ h′

else if f is a quotient: f (x) = g(x)/h(x) then
dg ∶= Derivative(g)
dh ∶= Derivative(h)

20: return d g⋅h−g⋅d h
h2 ▷ Quotient rule: (g/h)′ = (g′ ⋅ h − g ⋅ h′)/h2

else if f is a composition: f (x) = g(h(x)) then
dg ∶= Derivative(g)
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dh ∶= Derivative(h)
return dg(h(x)) ⋅ dh(x) ▷ Chain Rule:

(g(h(x)))′ = g′(h(x)) ⋅ h′(x).
25: else if f is an exponentiation: f (x) = g(x)h(x) then

Write f (x) = exp(log(g(x)h(x)) = exp(h(x) ⋅ log(g(x))).
return Derivative(exp(h(x) ⋅ log(g(x))))

else
Look f up in the table in Section V.8, and return the associated deriva-

tive.
30: end if

end procedure

V.10 Higher Derivatives

�e derivative of a function is again a function on its own, and thus (assuming the
function behaves well) has its own derivative. We write

f ′′(x) = ( f ′(x))′ = d
dx
d f
dx

= d
2

dx2
f (x)

for this derivative. Similarly we can de�ne third derivatives etc. Since the notation
of multiple apostrophes can get overly complicated, one also writes

f (n)(x) = d
n

dxn f (x)

for the n-th derivative.
With the derivative describing a change, the second derivative describes the

change of the change.�e standard example of this in the real live would be a func-
tion that gives the position of an object over time. Its derivative indicates how fast
the position changes over time – that is the velocity. And the second derivative
indicates how fast the velocity changes.�at is the acceleration.

Example V.12: Many familiar functions like polynomials, sin(x), and ex have the
property of being in�nitely di�erentiable (meaning you can take the derivatives of
these functions asmany times as you’d like) but not all functions have this property.
Consider the piecewise function

f (x) =
⎧⎪⎪⎨⎪⎪⎩

x2 if x ≥ 0
−x2 if x < 0

whose graph is given in Figure V.13, le�.
�e graph of f is formed from a regular parabola except that the le� half has

beenmirrored across the x-axis. Since f (x) = x2 for x > 0 we know f ′(x) = 2x for
x > 0. Also since f (x) = −x2 for x < 0 we know f ′(x) = −2x for x < 0. Using the
limit de�nition of a derivative you can verify that f ′(0) = 0 (or just observe from
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Figure V.13: A function that is only di�erentiable once, and its derivative

the graph that the tangent line at x = 0 is horizontal).�en we can express f ′(x)
piecewise

f ′(x) =
⎧⎪⎪⎨⎪⎪⎩

2x if x ≥ 0
−2x if x < 0

.

Actually there’s a simpler way to express f ′(x): f ′(x) = 2∣x∣. �e graph of this
function, Figure V.13, right, has a “kink” at x = 0, which implies that it is not dif-
ferentiable there. Of course, it is in�nitely di�erentiable away from x = 0.
Interestingly, this can become far more complicated.�ere are functions f (x)

such that

• f (x) is di�erentiable everywhere ( f ′(x) exists for all x in the domain of f ).

• f ′(x) is continuous everywhere.

• f ′(x) is not di�erentiable anywhere in it’s domain.

However, such functions are extremely unlikely to arise in any practical context,
but just re�ect the fact that our de�nition of a function is rather general. Indeed,
the fact that such functions exist was only established hundreds of years a�er the
inception of calculus.



Chapter

VI

Applications of Di�erentiation

�e derivative of a function describes how the values of a function change, and this
indication of change can be used to understand a function better or to �nd x-values
at which the function behaves in a particular way (such as havingmaxima,minima,
or zeroes).
One way to think about this is if you imagine the graph of a function to depict

the track (viewed from above) along which a bicycle rode.�ere are places where
the rider performed actions to change the way she rode, and other places where
she basically continued in the same way as before.�ese are the places we want to
identify.
In many textbooks this topic goes under the name of “curve sketching”, which

was a main application before the advent of easily accessible plotting tools. Howev-
er, even if we do not want to plot a function by hand, understanding how a function
and its derivatives are related is useful for applications.

VI.1 Increasing and Decreasing

�e value of the derivative is the slope of the tangent line to the graph.�at means
that the graph goes up when the derivative is positive and goes down when the
derivative is negative. More formally, using the same language as with sequences:

Definition VI.1: Let D ⊂ R and f ∶D → R a di�erentiable function and x0 ∈ D.
We say that f is

increasing at x0 if f ′(x0) ≥ 0.

strictly increasing at x0 if f ′(x0) ≩ 0.

decreasing at x0 if f ′(x0) ≤ 0.

95
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strictly decreasing at x0 if f ′(x0) ≨ 0.

We say that f is increasing (& c.) on D, if it its increasing (& c.) at every x0 ∈ D

Note that f is increasing on D if f (a) ≥ f (b) (strictly, if f (a) ≩ f (b)) when-
ever a > b. We have analogous de�nitions for decreasing.

�is allows us to characterize when di�erentiable functions are one-to-one: A
function that is strictly increasing must be one-to-one, since two di�erent points
in the domain must have one of them larger (a, say), and then f (a) > f (b), in
particular f (a) /= f (b).
Again the same holds for a strictly decreasing function.We also see easily that a

(continuous) function that �rst increases and then decreases must reach the same
value twice, and thus cannot be one-to-one.

�e only further case that is permitted is if f ′(x0) = 0 at individual points (as
for x3 at x = 0). We state this (without a formal proof, that would be somewhat
technical):

Lemma VI.2: Let f ∶D → R be a di�erentiable function. �en f is one-to one, if
and only if f is increasing on D (or decreasing on D), and strictly increasing (re-
spectively strictly decreasing) at all but �nitely many points in D.

VI.2 �e Shape of a Curve

Knowing where a function increases and decreases also helps us to describe the
overall shape of the graph of a function. Consider for example the graph1 of a func-
tion f ∶R→ R in Figure VI.1:

Figure VI.1:�e graph of a function

1In case someone cares, it is the horribly looking horribly looking function 1109/31850496x9 −
63797/79626240x8 + 114341/19906560x7 − 61627/9953280x6 − 823919/9953280x5 +
1137739/4976640x4 + 68581/207360x3 − 5731/4320x2 + 2
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We calculate the derivative and look at where the derivative is negative (that is
the original function is decreasing):

Figure VI.2: Intervals where the function is decreasing

Note that at the points where increasing/decreasing changes (that is where the
derivative is zero), the function has a local maximum or minimum. “Local” here
means that it is larger than at any other point in the neighborhood, though it might
be even larger somewhere away2.

Definition VI.3: A point x0, where f ′(x0) = 0 is called a critical point for f .

We have seen that (local) maxima and minima occur only at critical points,
namely a maximum if the derivative changes from positive to negative, and a min-
imum if the derivative changes from negative to positive.
In the example we have critical points at −2.5,0, and 6 (maxima) as well as at

−2 and 2 (minima).
But there is a further critical point, namely we have f ′(4) = 0. Here the deriva-

tive becomes zero, but does not change its sign (i.e. stays nonnegative). What hap-
pens is that the function brie�y stops growing3 but then immediately grows again.
Such a point is called a saddle point.
We can distinguish easily between the three kinds of critical points, if we also

look at the second derivative. At a maximum, the derivative was positive and be-
comes negative, so the second derivative must be negative. At a minimum, with an
analogous argument, the second derivative is positive. And at a saddle point, the
derivative becomes zero but does not change its sign. �at means a saddle point
is a local minimum or maximum of the derivative, and thus must have the second
derivative zero as well.

2In the same way as the tallest person in town is not guaranteed to be the tallest person in the
country

3 like a mountain climber who brie�y stops to catch a deep breath
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Turning Points

Let us now look at the general impact of the second derivative. Figure VI.3 now
shows �rst (green) and second (blue) derivative, as well as an indication of the
places where the derivatives become zero.

Definition VI.4: A point x0, where the second derivative is zero, f ′′(x0) = 0 is
called a turning point (or in�ection point) for f .

Figure VI.3: Critical and Turning points

We see that when the second derivative is positive, the derivative becomes larg-
er and the growth of the function increases.�e graph of the function is therefore
convex, that is it turns le�. (Some textbooks use “concave down” in place of “con-
vex”.) Similarly, the graph is concave, that is it turns right, if the second derivative is
negative. At turning points, when the second derivative changes its sign, the graph
of the function changes from le� turn to right turn, or vice versa.

Let us summarize these observations on the shape of f in table VI.1.�emiddle
column describes critical points, the second and fourth row turning points.
Using this table, we now can describe the shape of the graph of a function,

though it does not allow us to determine absolute function values or decide on
tie-breaks amongst local maximal/minima which ones are larger.
Note that there is a symmetry between a function and its negative (�ipped up-

side down), and both will have the same critical points and turning points. We
thus need to have at least one information about a derivative value being positive
or negative to be able to distinguish between these two cases.
Let us do this for the function in the example. Using the zeroes of the two

derivatives (the colored vertical lines in Figure VI.3), we split the domain from
−3 to 7 into intervals. We indicate the type as Critical or Turning. Note how two
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f ′(x0) > 0 f ′(x0) = 0,
Critical Point

f ′(x0) < 0

f ′′(x0) < 0 f increases
and is convex.

f reaches a
maximum.

f decreases
and is convex.

f ′′(x0) = 0
and f ′′

changes from
− to +. (I.e.
f ′′′(x) > 0)
Turning
Point

f increases and
has a turning
point from
right to le�

f has a saddle
point, increasing.
f ′ stays positive

f decreases and
has a turning
point from
right to le�

f ′′(x0) = 0
constant
zero

f increases
straight. f ′
is constant.

f is constant. f decreases
straight. f ′
is constant.

f ′′(x0) = 0
and f ′′

changes from
+ to −. (I.e.
f ′′′(x) < 0)
Turning
Point

f increases and
has a turning
point from
le� to right

f has a saddle
point, decreasing.
f ′ stays negative

f decreases and
has a turning
point from
le� to right

f ′′(x0) > 0 f increases
and is concave.

f reaches a
minimum.

f decreases
and is concave.

Table VI.1:�e local shapes of a curve
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critical points are separated by turning points.

x Type f (′(x) f ′′(x)
+ −

−2.5 C 0 −
− −

−2.2 T − 0
− +

−2 C 0 +
+ +

−1.1 T + 0
+ −

0 C 0 −
− −

0.85 T − 0

x Type f (′(x) f ′′(x)
− +

2 C 0 +
+ +

2.75 T + 0
+ −

4 CT 0 0
+ +

5.45 T + 0
+ −

6 C 0 −
− −

We now can (Figure VI.4) �nd the corresponding local shapes in the table and
compose them to approximate the overall shape of the function graph.

Figure VI.4: Composing local shapes

�e advantages of using the derivative over other potential methods are:

• No plot is needed.

• One can �nd the relevant points exactly

• Identifying a point where a derivative is zero is o�en easier than identifying
the point of a maximum or minimum4

• One can solve the problem, even if the de�nition of the function involves
other variable parameters (and one thus cannot plot).

4Imagine a pool in which the water level is changing. It is easier to see when the water level is
crossing a threshold than when it is maximal.
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Example VI.5: For a more complicated example, consider the function f (x) =
x2e−x . Let’s �nd the critical points, turning points, and determine where the func-
tion is increasing/decreasing and where it is concave up/down.
First we �nd the critical points. To do that we need to �nd the derivative f ′(x):

f ′(x) = (x2e−x)′

= (x2)′e−x + x2(e−x)′ (product rule)
= 2xe−x x2 + x2(−e−x) (power rule on x2, chain rule on (e−x)′)
= (2x − x2)e−x (simpli�cation).

Now we solve f ′(x) = (2x − x2)e−x = 0. �e factor e−x is never zero so we just
need to �nd the zeros of 2x − x2, which are x = 0 and x = 2.�ese are the (only!)
critical points.
Nowwe �gure out where f (x) is increasing and decreasing.�is is determined

by the sign of f ′(x), which must stay the same outside the critical points. We thus
consider f ′(x) on the intervals (−∞, 0), (0, 2), (2,∞). From a calculator we �nd
f ′(−1) ≈ −8.15, so f ′ is negative at x = −1, and thus f is decreasing for x < 0.
Similarly, we calculate f ′(1) ≈ 0.3679 and thus have f increasing for 0 < x < 2.
And f ′(3) ≈ −0.1494 so f (x) must be decreasing again for 2 < x. �is together
tells us that f has a local minimum at x = 0 and a local maximum at x = 2.
Nowwe �nd turning points and think about concavity. Toward that end we will

need f ′′(x):

f ′′(x) = ((2x − x2)e−x)′

= (2x − x2)′e−x + (2x − x2)(e−x)′ (product rule)
= (2 − 2x)e−x + (2x − x2)(−e−x) (power rule and chain rule)
= (x2 − 4x + 2)e−x (simpli�cation).

Again the factor e−x is never zero andwe thus only need to consider the polynomial
x2 − 4x + 2. Its roots are x = 2 −

√
2 ≈ 0.586 or x = 2 +

√
2 ≈ 3.414.�ese are the

turning points. A calculator gives us that f ′′(0) = 2, f ′′(2) ≈ −.2707, f ′′(4) ≈
0.0366, thus f (x) is concave up for x < 2 −

√
2, concave down for (2 −

√
2 < x <

2+
√
2) and concave up for 2+

√
2 < x. A look at the graph of f (x) in Figure VI.5

illustrates this.

VI.3 Optimization

An important application for �nding maxima/minima is in optimization. We are
considering a problem that involves a parameter that can be chosen, and have a
cost function whose value we want to minimize (or a “gain” function we want to
maximize), that means we look for the maximum or minimum of a function.
As we have seen, these extrema must happen at critical points. We just need to

decide which ones aremaxima, which onesminima, and, if there are several, which
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Figure VI.5:�e graph of x2 ⋅ e−x with critical points and turning points.

ones are best. Furthermore, if the set of valid parameter values is not the whole real
axis, it is possible that a maximum/minimum is reached at the maximal/minimal
parameter values:�e function f (x) = x + 1 has, for values 2 ≤ x ≤ 5 the maximal
value 6 at x = 5, though this is not even a critical point.

Let us consider this in an example:
We have a fence of 100 units length and want to use it to surround a rectangular

area that is as large as possible. Assuming we use the whole fence, we denote the
length of one side (and the opposite side) by x, then the other two sides5 both have
length 50 − x.

�e area of the rectangle then is f (x) = x ⋅ (50 − x) = 50x − x2 square units,
and the permitted values for x are from 0 to 50 (in both end cases the rectangle
degenerates to a line).
To �nd the critical points, we calculate f ′(x) = 50 − 2x and �nd x = 25 is the

only critical point. Since f (25) = 252 = 625 > 0 and f (0) = 0 = f (50) this is a
maximum and the global maximum.�e best fence thus has one side of length 25
(and thus the other side also of length 50 − 25 = 25).

For amore involved problem, imagine that themanufacturerConsolidated Wid-
gets decides to produce a new exquisite widget, using their trademark magic dust.
Due to the interaction of the magic dust with the other ingredients, the manufac-
turing cost of a widget containing x units of dust is f (x) = x3 −50x2 +700x − 1000
doubloons. To be exquisite, the widget also needs to contain at least 5 units of dust,
and can contain at most 50 units. For which amount of dust is the manufacturing
cost per widget minimal?

5It is 50 − x and not 100 − x as there are two sides in each direction.
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Again, we consider the derivative f ′(x) = 3x2− 100x+700 = (x− 10)(3x−70).
�e critical points thus are 10 and 70/3 ∼ 23.33.We now evaluate f (x) at the critical
points, as well as the end points:

x 5 10 23.33 50
f (x) 1375 2000 814.81 34000

We �nd that the minimal manufacturing cost (namely 814.81) is obtained when
using 23.33 units of dust per widget (while the maximum cost would be for 50
units).

VI.4 Newton’s Method

We go back to the problem already studied in Section V.2 on how to �nd (an ap-
proximation of) x0 such that f (x0) = 0. We had seen that the method of halving
intervals required log2(10) ∼ 3.3219 steps in average for each extra digit of accuracy
in the approximation – in the example we got an error < 10−6 (i.e. 6 decimal digits)
a�er 20 iterations.�is is far too bad for many practical applications, and we want
to try better.

�e problem of the interval halving method is that it always goes to the middle
of the interval, while the actual point x0 with f (x0) = 0 might be far closer to the
a side of the interval. Figure VI.6, for example, shows four di�erent functions on
the interval [2, 5], all of which have f (2) = 1 and f (5) = −1 (and thus a zero in the
interval), but the placement of the zeroes is quite di�erent.�e le� or right side of
the interval thus might not be a much better approximation of the root.

Figure VI.6: Di�erent placement of zeroes

�e idea of the Newton method is to not just consider halved intervals as a
good approximation, but use the tangent line (whose slope indicates how steep the
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function is) to �nd a better approximation6.�at is, if we have a point xn as approx-
imation of the root, we follow the tangent to f at xn (whose slope is f ′(xn)) to the
point where it intersects the x-axis, and take that x-value as the next approximation
xn+1. Figure VI.7 illustrates this process.

    xn+1 xn

Figure VI.7:�e Newton Method

To �nd a formula for xn+1 observe that the tangent line goes through the points
(xn+1 , 0) and (xn , f (xn)) and has slope f ′(xn).�us

f ′(xn) =
f (xn) − 0
xn − xn+1

and we solve (assuming that f ′(xn) /= 0) for

xn+1 = xn −
f (xn)
f ′(xn)

Let us look at this in the same example as we did for the halving method. We take
f (x) = sin(x) and start at x0 = 2.�e formula gives us the recursion

xn+1 = xn −
sin(xn)
cos(xn)

and we calculate values as

x0 = 2, x1 = 4.185039863, x2 = 2.467893675, x3 = 3.266186277
x4 = 3.140943912, x5 = 3.141592654, x6 = 3.141592654

6�at is, to �nd a valley, we go downhill
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Note that a�er 5 iterations (instead of 20 before) we approximated the zero to 6
digits. Evenmore, at that point we actually have it approximated already to 9 digits!

�is is not just happenstance. One can show that, as long as the starting value
is not too far away for the root, the Newton method converges quadratically, that
(up to a constant) the error a�er each step is bounded by the square of the previous
error.�at means that the number of correct digits a�er each step will increase by a
factor (in the above example it seems to be roughly 2), while for the interval halving
method it only increased by one digit every three steps.�is shows that theNewton
method is far more powerful than interval halving.

VI.5 Inde�nite Limits and L’Hospital’s rule

For reasons we shall see in the next section, we want to be able to calculate limits
of quotients.
We have see the limit rule for quotients that (in a version for functions) gives

us that for a number a (or a =∞) and functions f , g∶R→ R we have

lim
x→a

f (x)
g(x) = limx→a f (x)

limx→a g(x) ,

if the fraction of limits on the right hand side exists. But what if numerator and
denominator on the right hand side are both 0? Or both ∞? An answer to this
question is given by a test that is called7 L’Hospital’s rule (pronounced lowpytaal’s
rule).

Theorem VI.6: Let f , g∶R → R be di�erentiable functions and a ∈ R or a = ∞
such that limx→a f (x) = 0 limx→a g(x), respectively limx→a f (x) =∞ limx→a g(x).
�en, if limx→a

f ′(x)
g′(x) exists, we have that

lim
x→a

f (x)
g(x) = lim

x→a

f ′(x)
g′(x) .

�e reader surely will have noted that this quotient of derivatives is not the
derivative of the quotient!
Proof: We give a proof only for the case that a ∈ R and f (a) = 0 = g(a) and
that f ′(x) and g′(x) are continuous at a. (�e other cases are signi�cantly harder.)
�en

lim
x→a

f (x)
g(x) = lim

x→a

f (x) − 0
g(x) − 0 = limx→a

f (x) − f (a)
g(x) − g(a)

= lim
x→a

f (x)− f (a)
x−a

g(x)−g(a)
x−a

=
limx→a

f (x)− f (a)
x−a

limx→a
g(x)−g(a)

x−a

= f ′(a)
g′(a) = lim

x→a

f ′(x)
g′(x) .

7Not a�er the inventor, but a�er a popularizer of it
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◻

For example, we have that

lim
x→∞

x − 1
x2 − 1 = limx→∞

1
2x

= 0

Note that a situation of∞/∞ can give us �nite (nonzero) limits. For example

lim
x→∞

3x − 5
7x − 15 = limx→∞

3
7
= 3
7

It is possible to apply L’Hospital’s rule multiple times. In the following example,
the �rst application of L’Hospital’s rule still leaves us with an ∞/∞ case, but the
second one then gives the value:

lim
x→∞

4x2 + 3x − 1
5x2 − x + 1 = lim

x→∞

8x + 3
10x2 − 1 = limx→∞

8
10

= 4
5
.

More generally, if we have a quotient of polynomials, we need to apply L’Hospital’s
rule as many times as (the smaller of) the degrees of numerator and denominator:

TheoremVI.7: Let f (x), g(x) be nonzero polynomials.�en limit of the quotient

lim
x→∞

f (x)
g(x)

equals:

0 if the degree of g(x) is larger than the degree of f (x).

±∞ if the degree of f (x) is larger than the degree of g(x)

a/b if the degree of f equals the degree of g, and a is the leading coe�cient of f
and b the leading coe�cient of g.

�e same statement obviously also holds with n in place of x and explains the
limits of sequences we observed earlier.

ExampleVI.8: Note that even if L’Hospital’s rule is applicable, there is no guarantee
that the result is helpful for solving the problem. Consider the limit

lim
x→∞

ex − e−x

ex + e−x .

It is easy to see that ex − e−x → ∞ and ex + e−x → ∞ as x → ∞, so it is valid to
apply L’Hospital’s rule here. But if we do, we �nd

lim
x→∞

ex − e−x

ex + e−x = lim
x→∞

d
d x (ex − e−x)
d

d x (ex + e−x)
= lim

x→∞

ex + e−x

ex − e−x .
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�is limit really doesn’t seem any simpler. Indeed, if we try L’Hospital’s rule again
we �nd

lim
x→∞

ex + e−x

ex − e−x = lim
x→∞

d
d x (ex + e−x)
d

d x (ex − e−x)
= lim

x→∞

ex − e−x

ex + e−x

which is where we started! We can keep trying to apply L’Hospital’s rule, but we’ll
simply alternate back and forth between these equally-di�cult-to-compute limits.

VI.6 Order of growth

Definition VI.9: For two functions f , g∶R → R, we say that f is of order of g (or
f is big O of g) if there exists c,N ∈ R, such that ∣ f (x)∣ ≤ c ∣g(x)∣ for all x ≥ N . We
write8 f (x) = O (g(x)).
If f (x) = O (g(x)), this means that behavior of f for large values of g is dom-

inated by the behavior of g.
For example, we have that x2+5x = O (x2), since for x ≥ 5 we have that x2 ≥ 5x

and thus ∣x2 + 5x∣ ≤ x2 + x2 = 2x2.

�is notation is o�en used when comparing the performance of algorithms.
Here f (n) 9 is a function that, for a given algorithm indicates the cost (number
of operations) required for an input that has size n. If there is a second algorithm,
whose cost is given by a function g, we consider the �rst algorithm as not worse
than the second, if f (x) = O (g(x)). If in addition g(x) = O ( f (x)), the algo-
rithms are considered equivalent.10We consider this more formally below.

�e justi�cation for such reasoning is that the constant c will make such a com-
parison independent of particular computers or programming languages used.�e
focus on large values of the input size allows us to ignore artifacts for small exam-
ples, or e�ects such as caching or results.�e use of the O () notation also allows
us to focus an the main contribution to an algorithms runtime.
For example, when searching an object in a list of length l , a linear search has

cost O (n) (go through the list until you �nd the object), while if the list is sorted
a binary search has only costO (log(n)), which we shall see is much better.

�e test for f (x) = O (g(x)) looks a little bit like the criterion for limit of a
series, and proving it might be technical. �e following theorem shows that this
can be tested easier in many cases:

Theorem VI.10: Let f , g∶R → R be two functions such that L = lim
x→∞

f (x)
g(x) exists.

�en

8�e use of the equal sign is somewhat misleading and awkward, but that is the convention that is
usually used, so we stick with it.

9It is common to give these classes as functions of a variable n, rather than x
10�ere is a plethora of variants ofO () that provide modi�ed kinds of comparisons.
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a) if L = 0 then f (x) = O (g(x))

b) if L =∞ then g(x) = O ( f (x)).

c) if 0 < L /=∞ is a �nite number then f (x) = O (g(x)) and g(x) = O ( f (x)).

�e proof of a) is basically to apply the de�nition of a limit, and to multiply
by the denominator g(x), this will yield the criterion for O (). For b) and c) also
consider the reciprocal fraction g(x)/ f (x).
NoteVI.11:�e criteria in this theorem are su�cient, but not necessary. For exam-
ple consider f (x) = sin(x) and g(x) = 1 ⋅ x0.�en clearly sin(x) = O (1) (choose
constants c = 1 and N = 1), but the limit lim

x→∞

sin(x)
1

does not exist.

An important consequence of this theorem is the following observation, that
allows to ignore “lower order” terms as “noise”:
Suppose that f (x) = O (g(x)) and h(x) = O ( f (x)).�en11 f (x) + h(x) =

O (g(x)).
�us, for example, setting f (x) = g(x) = x3, h(x) = 9x2 + 17 + log(x), we get

that x3 + 9x2 + 17 + log(x) = O (x3).

Complexity classes

�e criterion of�eorem VI.10 is o�en ready-made for using L’Hospital’s theorem.
For example let f (x) = x + 1 and g(x) = x2 − 3x + 2. We have that

lim
x→∞

x + 1
x2 − 3x + 2 = limx→∞

1
2x − 3 = 0

�us x + 1 = O (x2 − 3x + 2).
�e same argument will work for any pair of polynomials of degree 1 and 2.
Indeed, by applying L’Hospital’s theorem several times, we �nd that if f (x) is

a polynomial of degree m, and g(x) a polynomial of degree n ≥ m then f (x) =
O (g(x)). In particular (setting g(x) = xm) we have that f (x) = O (xm).
More generally, we get that for a, b > 0 with a < b that xa = O (xb) but not

vice versa.
We similarly compare a power xa (for a > 0) to exp(x) and to log(x) (we give

the argument for a ∈ Z, the argument for non-integral a is very similar):

lim
x→∞

xa

exp(x) = lim
x→∞

a ⋅ xa−1

exp(x) = ⋯ = lim
x→∞

a ⋅ (a − 1)⋯1 ⋅ xa−a

exp(x)

= lim
x→∞

a!
exp(x) = 0,

11Since, by the limit rules,
f (x) + h(x)

g(x)
=

f (x)
g(x)

(1 +
h(x)
f (x)

) and lim
x→∞

(1 +
h(x)
f (x)

) = 1.
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so xa = O (exp(x)). Similarly

lim
x→∞

log(x)
xa = lim

x→∞

1/x
a ⋅ xa−1 = limx→∞

7
a ⋅ xa = 0

and thus log(x) = O (xa).
We thus get a hierarchy of function classes that all have di�erent growth (and

thus would describe di�erent algorithmic performance).We summarize this in Ta-
ble VI.2 and Figure VI.8. �e most prominent class distinctions are sub-linear,

Name Example algorithm in class
O (1) constant, or bounded Append to a list
O (log(n)) logarithmic Binary search in sorted list
O (nc), 0 < c < 1 sublinear, or frac-

tional power
Testing n for primality by tri-
al division

O (n) linear Searching through an un-
sorted list

O (n log(n)) superlinear Merge sort
O (nc), 1 < c < 2
O (n2) quadratic Bubble sort
O (nc), 2 < c < 3
O (n3) cubic Solving a system of n lin-

ear equations (standard
method)

O (nc), 3 < c
All up to here are
called “polynomial
time”

O (exp(nc)), 0 <
c < 1

subexponential Best known factorization of
n-digit number.

O (exp(n)) exponential Brute-force breaking of a
password of length n

O (n!) factorial Traveling salesman by trying
out all tours

O (exp(exp(n))) doubly exponential Solving a system of n poly-
nomial equations (using
Gröbner bases).

Table VI.2: Common complexity classes and examples

linear, polynomial and exponential+beyond, since the composition of functions in
these classes (which corresponds one algorithm calling another one) again lies in
the same class.
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x

x log(x)

log(x)

x2

√x

x3

exp(x)

exp(exp(x))

Figure VI.8: Some common growth functions

Complexity Equivalence

We claimed above that two functions could be considered equivalent if either isO
of the other. What we shall show here is that this indeed de�nes an equivalence
relation on functions, with this the objects O ( f (x)) can be simply considered as
equivalence classes of functions.
As in Section II.4, we start with a relation. De�ne a relation ∼ on the set of

functions R → R as f (x) ∼ g(x) if and only if f (x) = O (g(x)) and g(x) =
O ( f (x)). Now we need to show that ∼ is re�exive, symmetric, and transitive, this
will establish that ∼ is an equivalence relation,

Re�exivity: Let f (x) be a function. We must show that f (x) ∼ f (x), that is,
f (x) = O ( f (x)) (and the identical a second time, formally swapping the
two f (x)). Take c = 1 and N = 0, then for x > N it follows immediately that
∣ f (x)∣ ≤ ∣ f (x)∣.

Symmetry: Let f (x) and g(x) be functions. We must show that if f (x) ∼ g(x),
then g(x) ∼ f (x).�is follows immediately from the symmetry in the de�-
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nition of the equivalence relation. If f (x) = O (g(x)) and g(x) = O ( f (x))
then we get the same statements if we swap the roles of f (x) and g(x).

Transitivity: Let f (x), g(x), and h(x) be functions. Wemust show that if f (x) ∼
g(x) and g(x) ∼ h(x), then f (x) ∼ h(x). Suppose that f (x) = O (g(x))
and g(x) = O (h(x)), then we have some c1 , c2 ,N1 , and N2 such that

∣ f (x)∣ ≤ c1∣g(x)∣ if x ≥ N1 and ∣g(x)∣ ≤ c2∣h(x)∣ if x ≥ N2 .

Note that both statements hold simultaneously if we take x to be greater than
the maximum of N1 and N2. Denote this maximum by N .�en we can com-
bine the inequalities to obtain

∣ f (x)∣ ≤ c1c2∣h(x)∣ if x ≥ N .

�us we have shown that f (x) = O (h(x)). Proceeding in the same way, we
can �nd that h(x) = O ( f (x)) as well.

We have thus shown that the relation ∼ satis�es all the requirements to be an
equivalence relation.

�e relation ∼ thus creates a partition of the set of function onto equivalence
classes (which we shall call complexity classes).�e notationO ( f (x)) then can be
interpreted as the complexity class containing f (x).

�e reader might be wondering about why we de�ned the relation in such a
complicated way. What if we de�ned a similar relation ⊢ by having f (x) ⊢ g(x)
if f (x) = O (() g(x)). Is this still an equivalence relation? It turns out that it is
not. Notice that the proof of re�exivity and transitivity still hold just as well in the
case of ⊢, but in contrast to ∼, symmetry is not built into the de�nition of our new
relation. Consider the functions f (x) = x and g(x) = x2. For c = 1 and N = 0 it
follows that ∣x∣ ≤ 1 ⋅ ∣x2∣ for x ≥ 0. On the other hand, it is impossible to �nd a c and
N so that ∣x2 ≤ c∣x∣ for x ≥ N .





Chapter

VII

Taylor Series

Polynomials are inmanyways the easiest, most convenient, functions to workwith,
and it thus would be nice if every function was a polynomial.�e formula for the
geometric series shows that this might be possible, if we allow for something like a
polynomial, but of in�nite degree: Consider the function f (x) = 1/(1 − x), that is
not a polynomial.�en, as long as ∣x∣ < 1 we have that

1
1 − x

= 1 + x + x2 + x3 +⋯ =∑
i≥0

x i

(by the summation formula for the geometric series).
In this chapter we will work with three ideas:�e �rst is how we can approx-

imate any function by a polynomial (called a Taylor polynomial), and to see that
such approximations become better as the degree increases. �e second topic is
what a polynomial of in�nite degree should be (it will be called a power series).
Finally we will extend Taylor polynomials to in�nite degree to see how we can rep-
resent most of the functions that we encounter as power series.

VII.1 Taylor Polynomials

�e basic idea for �nding a polynomial approximation of a function is that we want
the polynomial and the function to have the same values at a point, as well as the
same values of the derivatives.1
We start by considering values at 0 and consider a polynomial

p(x) = a0 + a1x + a2x2 +⋯ + an xn =
n
∑
i=0

a i x i

1We shall see that this turns out to be a useful approach. In fact it is better than the alternative
approach of having the same values at a number of di�erent points.

113
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Its derivatives are

p′(x) = a1 + 2a2x + 3a3x2 +⋯ + n ⋅ an xn−1 =
n
∑
i=1

i ⋅ a i x i−1 ,

p′′(x) = 1 ⋅ 2a2 + 2 ⋅ 3a3x +⋯ + (n − 1) ⋅ n ⋅ an xn−2 =
n
∑
i=2

(i − 1)i ⋅ a i x i−2 ,

and generally, for the k-th derivative

p(k)(x) =
n
∑
i=k

(i − k + 1)⋯(i − 1)i ⋅ a i x i−k .

�is means that the value of this derivative at 0 is the constant term (for i = k):

p(k)(0) = 1 ⋅ 2⋯(k − 1) ⋅ kak = k!ak ,

where k! (called k-factorial) is the product over all numbers from 1 to k.

To ensure that the derivatives of p(x) are equal to those of f (x), we thus get
the conditions f (k)(0) = k!ak which we can solve for

ak =
f (k)(0)

k!
.

Definition VII.1: Let f ∶R→ R be a function that is repeatedly di�erentiable.�e
Taylor polynomial for f around a = 0 of degree n is the polynomial

n
∑
i=0

f (i)(0)
i!

x i

(where f (k)(0) is the value of the k-th derivative at 0).

For example, if f (x) = exp(x) = ex (we pick this example for the easy pattern
of derivatives), we have that

f (0) = e(0) = 1, f ′(0) = e(0) = 1, f ′′(0) = e(0) = 1, . . . , f (k)(0) = e(0) = 1
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and we thus get the Taylor polynomials of degree 0, 1, 2, 3, . . . as

p0(x) = 1
0!

x0 = 1

p1(x) = 1
0!

x0 + 1
1!

x = 1 + x

p2(x) = 1 + x + 1
2!

x2 = 1 + x + x2

2

p3(x) = 1 + x + x2

2
+ 1
3!

x3 = 1 + x + x2 + x3

6

p4(x) = 1 + x + x2

2
+ x3

6
+ x4

24
⋮

pn(x) =
n
∑
i=0

x i

i!

�e �rst few polynomials, together with the function f (x) = exp(x) are shown in
Figure VII.1.

f(x)=exp(x)

p5(x)

p4(x)

p3(x)=1+x+x2/2+x3/6

p2(x)=1+x+x2/2 p1(x)=1+x

p0(x)=1

Figure VII.1: Taylor approximations to exp(x)
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If we choose instead f (x) = 1
x+2 , we get

f ′(x) = − 1
(x + 2)2

f ′′(x) = 2
(x + 2)3

f ′′′(x) = − 6
(x + 2)4

f (k)(x) = (−1)k k!
(x + 2)k+1

and thus Taylor polynomials

p0(x) = 1
2

p1(x) = 1
2
− x
4

p2(x) = 1
2
− x
4
+ x2

8
⋮

p5(x) = 1
2
− x
4
+ x2

8
− x3

16
+ x4

32
− x5

64

�ese polynomials are shown in Figure VII.2.

f(x)=(x+2)-1

p5(x)

p4(x)

p3(x)
p2

p1(x)=1/2-x/4
p0(x)=1/2

Figure VII.2: Taylor approximations to (x + 2)−1

Finally, take f (x) = sin(x), and we get

f (0) = sin(0) = 0, f ′(0) = cos(0) = 1, f ′′(0) = − sin(0) = 0, f ′′′(0) = − cos(0) = −1, . . .



VII.1. TAYLOR POLYNOMIALS 117

�us every second coe�cient is zero and we get new Taylor polynomials only for
odd indices:

p1(x) = p2(x) = x
p3(x) = p4(x) = x − x3/6
p5(x) = p6(x) = x − x3/6 + x5/120

as shown in Figure VII.3.�ese calculations allow us to make the following obser-

f(x)=sin(x)

p11(x)

p9(x)

p7(x)

p5(x)=1-x3/6+x5/120

p3(x)=x-x3/6

p1(x)=x

Figure VII.3: Taylor approximations to sin(x)

vations:

1. As the degrees increase, Taylor polynomials just accumulate further terms.

2. �e Taylor polynomials approximate well around a = 0, but the approxima-
tion becomes worse if we go away from a = 0.

3. �e approximation gets better, the higher the degree of the Taylor polyno-
mial is.

We shall give a justi�cation for this (and show that this true in general) below.

So far we have formed Taylor polynomials around a = 0. �e rules we know
about shi�ing functions horizontally allow us to de�ne a polynomial around ar-
bitrary real numbers a by shi�ing accordingly.�e corresponding (more general)
de�nition is unsurprising.
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Definition VII.2: Let f ∶R→ R be a function that is repeatedly di�erentiable and
a ∈ R.�e Taylor polynomial for f around a of degree n is the polynomial

n
∑
i=0

f (i)(a)
i!

(x − a)i

(where f (k)(a) is the value of the k-th derivative at a). We call a the center of the
Taylor polynomial.

Note that for a = 0 this just gives the prior de�nition.
For example, using the calculations of the derivatives we already did, we �nd

the Taylor polynomial of degree 5 for f (x) = 1
x+2 around x = −1 as

1 − (x + 1) + (x + 1)2 − (x + 1)3 + (x + 1)4 − (x + 1)5 .

Figure VII.4 compares this Taylor polynomial with the one around a = 0 we had
computed above. Unsurprisingly the polynomial around a = −1 approximates bet-
ter for x-values closer to −1, while the one around a = 0 approximates better for
x-values closer to 0.

f(x)=(x+2)-1

Taylor polynomial
around a=0

Taylor polynomial
around a=-1

Figure VII.4: Taylor approximations to (x + 2)−1 around a = −1 and a = 0

Approximation Error

�e core to understanding the way a Taylor polynomial approximates a function is
the error term. One can show:

Theorem VII.3: Let f ∶R → R be a function that can be di�erentiated n times,
a ∈ R, and l > 0.�en the approximation error of the Taylor polynomial of degree
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n for x in in an interval of length 2l , centered at a (that is, ∣x − a∣ ≤ l , equivalently
a − l ≤ x ≤ a + l) is:

∣ f (x) − pn(x)∣ ≤ M
(n + 1)! ∣x − a∣n+1 ≤ M

(n + 1)! l
n+1

where M is an upper bound for the value of the n + 1-st derivative of f on the
interval a − l ≤ x ≤ a + l .
We shall not attempt to prove this theorem, but let’s explain what is says:

1. Taylor polynomials can be used to approximate a function, and the quality
of the approximation can be quanti�ed.
In sciences, it is common to replace a complicated function in approximation
by a Taylor polynomial of small degree (o�en degree 1, also called �rst order
approximation). A nonlinear phenomenon is one that cannot be explained
by using a Taylor polynomial approximation of degree 1, but which requires
a higher degree.

2. �e factor ∣x − a∣n+1 in the error term tells us that the approximation is the
better the closer x is to the center a.

3. With (n + 1)! in the denominator and a numerator l n+1, the approximation
usually gets better, if the degree of the polynomial gets larger. (�is is basi-
cally the fact that n! is in a higher complexity class than 2n .)

4. Finally for the somewhat mysterious parameter M: It is a number, namely
a bound for the values of the n + 1-st derivative of f on the interval. For
most functions (basically all functions that we shall encounter in this course,
maybe all you will ever encounter in your professional life) these derivatives
are bounded, independent from n. For if this was not the case, higher and
higher derivatives would need to be larger and larger, which means that the
function is in someway “strange”2 You are unlikely to encounter them in this
course.
As long as this numberM is bounded (and again, this is something we shall
assume), the Taylor polynomials provide increasingly good approximations.

In other words, this theorem is a justi�cation of the approximation properties we
observed in the examples above.
Indeed, if you press a key for “sine” or “exp” on your calculator, or if you call

the built-in functions sin or exp in your favorite programming language, what is
happening internally, that the resulting value is obtained fundamentally (there are
many other practical tricks involved) through a Taylor polynomial of suitably high
degree.

2�e standard example is the function exp(−x−2) around a = 0, which is, for small values of x,
practically indistinguishable from the constant zero function.
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Using approximations

To further illustrate howTaylor polynomial approximations work, consider the fol-
lowing four functions:

1 + sin(x), exp(x), 1√
1 − 2x

, 1
1 − x

.

All four have value 1 at 0 and increase, in a plot (Figure VII.5, deliberately not

Figure VII.5: Four close functions

labeled) they are close for small values of ∣x∣. It seems hard to determine by hand
which graph belongs to which function.
To help with this decision, consider Taylor approximations of the four func-

tions:

a) 1 + sin(x) ∼ 1 + x − x3

6
+ x5

120
− x7

5040
+⋯

b) exp(x) ∼ 1 + x + x2

2
+ x3

6
+ x4

24
+ x5

120
+⋯

c) 1√
1 − 2x

∼ 1 + x + 3x
2

2
+ 5x

3

2
+ 35x

4

8
+ 63x

5

8
+⋯

d) 1
1 − x

∼ 1 + x + x2 + x3 + x4 + x5 +⋯

All start with 1+ x, which explains why the functions are so close for small ∣x∣. But
the coe�cients of the x2 terms di�er, they are (in increasing order) 0 for a), 12 for
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b), 1 for d) and 32 for c).�is means that for small values of x, we expect 1 + sin(x)
to be the smallest and 1

√
1−2x to be the largest. Since x2 = (−x)2 this will hold for

both positive and negative x, as the plot shows. And for ∣x∣ su�ciently small the
graph of 1+x+ 34 x2 would3 lie in the middle between the top and bottom two lines.

Using the error estimate

We brie�y illustrate how the error term formula can be used to get a concrete
estimate of the approximation error. Suppose we want to approximate sin(x) on
the interval from −2 to 2 by a Taylor polynomial, centered at a = 0. �en (be-
cause of the interval) ∣x − a∣ ≤ 2. Next we want to estimate the derivatives. Since
d
dx
sin(x) = cos(x) and ddx

cos x = − sin(x) we choose M = 1 as the largest value
of these functions. (We could have chosen also M = 5 as a (not that tight) bound.
In other cases it can be harder to give very tight estimates, but usually even a rough
estimate will usually do well.�e error estimate then gives us an error

∣ f (x) − p3(x)∣ ≤ 1
4!
24 ∼ 0.66

for a polynomial of degree 3. 4 For a degree 8 approximation 5

∣ f (x) − p8(x)∣ ≤ 1
9!
29 = 512

362880
∼ 0.0014.

If we wanted to guarantee an error of less than 10−6 we can try out increasing values
for n 6 and �nd that this is the case for n ≥ 14.
An somewhat obvious improvement of the approximation is by cranking up the

degree. Basically, we shall show in SectionVII.2 that a Taylor polynomial “of degree
in�nity” can be used in place of the function (with exact values, no approximation).

Fast inverse square root

An application of Taylor approximations together with Newton’s Method is found
in a famous example of an optimized routine, namely the evaluation of the function
a ↦ 1

√
(a)
.

�is function is used in digital signal processing to re-scale a vector to length 1,
which is required for example when calculating the illumination level and shading
of a surface in 3D graphics.

3not depicted in the plot as this requires serious zooming in for negative x.
4Note that this is an estimate and a promise that the error is not worse. Actually the error typically

will be much smaller than what the estimate.
5For f (x) = sin(x) the degree 8 Taylor polynomial is actually the same as the degree 7 Taylor

polynomial.
6since solving the equation for n is not possible
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When rendering a scene, this value has to be calculated separately for each tri-
angle, its execution therefore is highly time critical.
While the newer x86 SSE instruction set includes a dedicated operationrsqrtss

for it, historically this functionality had to be coded from more basic operations.
However both square root and division are expensive, which explains why other
approaches have been considered.

�e followingmethod becameprominent in the early 2000s as being used in the
video game Quake III, though it dates back to uses in computer graphics in the
1980s, for example on SGI Indigo graphics workstations. What we shall describe
is a somewhat simpli�ed version, that leaves out subtleties in how numbers are
coded on the computer7, and how error is minimized.

�e method works by �rst computing one rough approximation of the value,
and then using one step of the Newton method to re�ne the result. (It turns out
that the initial approximation is good enough that one step of the Newton method
su�ces, but we shall not show this.)

ExampleVII.4:�e input number a (when computing 1/
√

a) is given as a �oating
point number in the form8

a = 2e ⋅ (1 + m)

with 0 ≤ m < 1 (if we had m > 1 one could instead increase e).�at means that

1√
a
= 2− 12 e ⋅ 1√

1 + m
.

�e term 2− 12 e can immediately be taken as a factor of a power of 2. For the second
factor we look at the Taylor polynomial (with respect to the variable m) for 1

√
1+m ,

which is

1 − m
2
+ 3m

2

8
+⋯

and use the degree 1 approximation 1 − m
2 . (Here in fact, the code uses a number

di�erent from 1 to minimize the error, but how this is done is beyond the scope of
this text.) Note that m/2 can be computed cheaply as a shi� of a binary number.
We thus have the initial approximation

a0 = 2−
1
2 e ⋅ (1 − m

2
) .

Now for the Newton method.�e function we want to �nd a zero of is

f (x) = 1
x2

− a,

7this incidentally is also the reason for the name “0x5F3759DFmethod” that is sometimes used
8�is is dictated by the CPU of the computer
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whose value will be zero exactly when x = 1
√

x . Newton’s method (Section VI.4)
states that the next iteration must be

an+1 = an −
f (an)
f ′(an

).

We calculate f ′(x) = − 2
x3 and thus

f (x)
f ′(x) =

1−x2a
x2

− 2
x3

= x(1 − ax2)
2

.

�e �rst Newton iterate is thus

a1 = a0 +
a0(1 − a0x2)

2
= a0(3 − a0x2)

2
= a0 (

3
2
− a
2

a20) .

�is gives us the algorithm (as published on theweb, e.g.https://en.wikipedia.
org/wiki/Fast_inverse_square_root):

1 const float threehalfs = 1.5F;

2 x2= number * 0.5F;

3 y = number;

4 i = *(long*) &y; // floating point hacking

5 i = 0x5f3759df-(i>>1);

6 y = * ( float * ) &i;

7 y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration

Lines 4-6 calculate 2− 12 e ⋅ (c − m
2 ) with some trickery that uses bit operations on

�oating point numbers by reinterpreting their bit pattern as an integer – the(i>>1)
is the m

2 and the hexadecimal constant is the optimized value for c. Line 7 then is
the Newton iteration. (�e code in fact includes a second iteration that has been
commented out, as the �rst one turned out to be good enough in practice.)

VII.2 Taylor Series

If we form Taylor polynomials of increasing degree for a function f (x) (that is in-
�nitely o�en di�erentiable), we get a sequence of partial sums of the in�nite Taylor
Series9

t(x) =
∞

∑
i=0

f (i)(0)
i!

x i .

While it might look strange to have the variable x involved, one could imagine
setting x to some number, then this becomes just an ordinary series. We call such
series, that involve powers of a variable x, power series.

9For reasons of time we now focus only on the case of series centered around a = 0. �e same
theory would hold if we center around another a and replace x by x − a.

https://en.wikipedia.org/wiki/Fast_inverse_square_root
https://en.wikipedia.org/wiki/Fast_inverse_square_root
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For example, we get for f (x) = exp(x) the Taylor series

t(x) =
∞

∑
i=0

1
i!

x i .

One can show that for such a series there exists b ≥ 0 such that:

a) �e series converges, if −b < x < b.

b) If −b < x < b one has that f (x) = t(x) (where t(x) is the limit of the in�nite
series for the chosen value x.

c) If there is any power series with properties a) and b) that produces the values
of f , it must be identical to t(x).

�e actual value of b will depend on the coe�cients (and thus on the function f ),
or one can describe it using the error term from the previous section. In bad cases
it can be just 0, but there are many important functions for which b can be chosen
arbitrary large. (Such functions are called analytic.)

�ese facts have a number of important consequences, which we shall brie�y
explore:

Treating Functions as if they are Polynomials: We shall see below that such
power series can be treated, for arithmetic, as well as for calculating derivatives, as
if they were polynomials (albeit of in�nite degree).�is can make some arguments
about such functions easier.

Finding Taylor polynomials and Taylor series: Taylor polynomials are just par-
tial sums of Taylor series. We shall see that we can manipulate Taylor series to ob-
tain series for functions for which it would be harder to �nd Taylor polynomials by
direct means (that is calculating derivatives).

De�ning new functions: A very convenient way of de�ning functions with par-
ticular properties is as Taylor series. Indeed, this is how functions such as exp(x)
and sin(x) get properly de�ned:�e de�nition in school, as powers ex or ratios of
sides of triangles, cause di�culties10 in how one would evaluate these for irrational
values of x.
Instead, mathematicians de�ne these functions through power series

exp(x) =
∞

∑
i=0

1
i!

x i

sin(x) =
∞

∑
i=0

(−1)i

(2i + 1)!x
2i+1 = x − x3

3!
+ x5

5!
−⋯

10Not to say they actually never address the question!
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and then show that these functions agree with (and have the same properties) as
the functions with the same names known from school.

�ere are many other functions (for example so-called “Bessel functions”) that
arise in applications of mathematics, and that are only de�ned as such a Taylor
series.

Complex Numbers

Taylor series thus also are the key of extending the de�nition of functions to the
complex numbers. Being based on polynomials, one can evaluate a Taylor series
at a complex number as well as one could do at a real number.�is makes it pos-
sible to de�ne (say) sin(x) for a complex value of x, even though the geometric
interpretation then does not make sense.
We illustrate this in a classical example, that is called Euler’s formula, which

connects the exponential function with sine and cosine: Substitute ix (where i2 =
−1) for x in the exponential function, and we get

e ix = 1 + ix + (ix)2
2!

+ (ix)3
3!

+ (ix)4
4!

+ (ix)5
5!

+ (ix)6
6!

+ (ix)7
7!

+ (ix)8
8!

+⋯

= 1 + ix − x2

2!
− ix3

3!
+ x4

4!
+ ix5

5!
− x6

6!
− ix7

7!
+ x8

8!
+⋯

= (1 − x2

2!
+ x4

4!
− x6

6!
+ x8

8!
−⋯) + i (x − x3

3!
+ x5

5!
− x7

7!
+⋯)

= cos(x) + i sin(x),

and thus in particular that
1 + e i⋅π = 0.

Evaluating also e−ix allows us to solve for sin(x) and cos(x) and express both func-
tions in terms of the exponential function as

sin x = Im (e ix) = e ix
−e−ix

2i ,

cos x = Re (e ix) = e ix
+e−ix

2 .

Taylor Series Operations

Before looking at (and constructing) more examples, we brie�y state some of the
properties for arithmetic with Taylor series.�e basic rule is that in the interval of
convergence, Taylor series behave like polynomials:

TheoremVII.5: Let f , g∶R→ R be functions that are in�nitely o�en di�erentiable
and that are (for values of x in a given interval) equal to their respectiveTaylor series

f (x) =
∞

∑
i=0

a i x i , g(x) =
∞

∑
i=0

b i x i .
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�en (for values of x in the interval) we have that

1. For c ∈ R, (c f )(x) = ∑∞i=0(c ⋅ a i)x i .

2. ( f + g)(x) = f (x) + g(x) = ∑∞i=0(a i + b i)x i .

3. ( f ⋅ g)(x) = f (x) ⋅ g(x) = ∑∞i=0 (∑i
j=0 a j ⋅ b i− j) x i .

4. f ′(x) = ∑∞i=0(i + 1)a i+1x i = ∑∞i=1 i ⋅ a i x i−1.

5. �e power series F(x) = ∑∞i=0 a i
i+1 x

i+1 has the derivative F′(x) = f (x). (I.e.
F is an antiderivative of f .)

In summary, Taylor series can be treated like polynomials.

Note that – since Taylor series are unique – these equations give the Taylor
series for the respective functions, and any operation (such as substituting xk for
x) on a Taylor series must be the Taylor series for the same operation of a function.

As with polynomials, if a function is even (that is f (x) = f (−x)) then all pow-
ers of x in the Taylor series have even exponent. Similarly all powers have odd
exponent, if the function is odd ( f (−x) = − f (x)).

Examples and Applications

�is theoremhas interesting consequences for �nding derivatives andTaylor series.
Let us start with the Taylor series for exp(x) which is (for any x ∈ R)

exp(x) =
∞

∑
i=0

1
i!

x i .

Its derivative thus is

d
dx
exp(x) =

∞

∑
i=0

i + 1
(i + 1)!x

i =
∞

∑
i=0

i
i!

x i = exp(x).

�is proves that ddx
exp(x) = exp(x).

Similarly, consider the Taylor series for sin(x) which is

sin(x) =
∞

∑
i=0

(−1)i

(2i + 1)!x
2i+1 = x − x3

3!
+ x5

5!
−⋯

We thus have the derivative

d
dx
sin(x) = 1 − x2

2!
+ x4

4!
−⋯ =

∞

∑
i=0

(−1)i+1

(2i)! x2i = cos(x)
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(and similarly for the derivative of cos(x).)
�ese observations are ultimately the justi�cations for the derivatives of elemen-

tary functions we stated in Section V.8.
Next, if ∣x∣ < 1 the formula for the geometric series gives us that

1
1 − x

= 1 + x + x2 + x3 +⋯ =
∞

∑
i=0

x i

Substituting −x for x gives us

1
1 + x

=
∞

∑
i=0

(−1)i x i

We know that F(x) = log(1+ x) is a function with F′(x) = 1/(1+ x) and F(0) = 0.
We thus get the new Taylor series

log(1 + x) = x − x2

2
+ x3

3
−⋯ =

∞

∑
i=1

(−1)i+1

i
x i .

Returning to the use of the geometric series, we can write

x
x − 3 = −

x
3

1
1 − x/3 .

Substituting x/3 into the series for 1
1−x gives us

1
1 − x/3 = −

∞

∑
i=0

(x
3
)

i
,

and thus
x

x − 3 = −
x
3

∞

∑
i=0

(x
3
)

i
=

∞

∑
i=1

(x
3
)

i
.

One can use this idea more generally (this goes under the name of partial fractions,
but we won’t go into details here) for rational functions, that is fractions of polyno-
mials. If we can write these as sums of fractions with easier denominators (that is,
factors of the original denominator), it is possible to combine Taylor series of the
summands to a series for the original function.
For example (You should be able to follow this calculation, but it is not expected

that you would be able to come up with it on your own), consider

f (x) = 21x − 15
x3 − 7x2 + 5x − 35 =

−3x
x2 + 5 +

3
x − 7 .

As above, we calculate

3
x − 7 = −

3
7

1
1 − x/7 = −

3
7

∞

∑
i=0

(x
7
)

i
=

∞

∑
i=0

−3x i

7i+1 .
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and

−3x
x2 + 5 =

3x
5

1
1 − (−x2/5) = 3x

5

∞

∑
i=0

(−x2

5
)

i

= −3x
5
+ 3x

3

25
− 3x

5

125
+⋯,

combining to a Taylor series for f (x):

21x − 15
x3 − 7x2 + 5x − 35 = 3

7
− 132x
245

− 279x2

1715
+ 5808x

3

60025
+ 13011x

4

420175
− 287892x

5

14706125

− 640839x6

102942875
+ 14090208x

7

3603000625
+ 31384611x8

25221004375

−690502692x
9

882735153125
− x 1537928439x 10

6179146071875
+⋯

VII.3 Outlook: Solving Recursions

A powerful mathematical tool, called generating functions uses Taylor series ma-
nipulations to �nd explicit expressions for recursively de�ned series.
We illustrate this with the example of the Fibonacci numbers, de�ned as:

f0 = 0, f1 = 1, fn+2 = fn+1 + fn .

We now de�ne a function from a Taylor series, whose coe�cients are the Fibonacci
numbers:

F(x) =
∞

∑
i=0

f i x i = x + x2 + 2x3 + 3x4 + 5x5 + 8x6 + 13x7 +⋯

Note that
xF(x) =

∞

∑
i=0

f i x i+1 =
∞

∑
i=1

f i−1x i

and
x2F(x) =

∞

∑
i=0

f i x i+2 =
∞

∑
i=2

f i−2x i

and thus

xF(x) + x2F(x) = f0x +
∞

∑
i=2

( f i−1 + f i−2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

= f i

x i =
∞

∑
i=2

f i x i

=
∞

∑
i=0

f i x i − f0 − f1x = F(x) − x .

We can solve this equation for F(x), and get

F(x) = x
1 − x − x2

= x ⋅ ( a
x − α

+ b
x − β

)
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for

α = −1 +
√
5

2
, β = −1 −

√
5

2
, a = −1√

5
, b = 1√

5
.

�e geometric series gives us (as above) that

a
x − α

=
∞

∑
i=0

−a
α i+1 x i , b

x − β
=

∞

∑
i=0

−b
β i+1 x i ,

and thus the Taylor series

F(x) = x ⋅
∞

∑
i=0

( −a
α i+1 +

−b
β i+1 ) x i

=
∞

∑
i=0

( −a
α i+1 +

−b
β i+1 ) x i+1 =

∞

∑
i=1

(−a
α i +

−b
β i ) x i .

Comparing the coe�cients of x i (whichwe candobecauseTaylor series are unique)
gives us that for i > 0 we have

f i = −a
α i +

−b
β i = 1√

5 ⋅ α i
+ −1√

5 ⋅ β i

= 1
√
5 ⋅ (−1+

√
5

2 )
i +

−1
√
5 ⋅ (−1−

√
5

2 )
i

= 1√
5
⎛
⎝
( 2√
5 − 1

)
i

+ ( 2√
5 + 1

)
i⎞
⎠
,

which is an explicit formula for the Fibonacci numbers.





Chapter

VIII

Antiderivatives

VIII.1 Reverting Integration

So far we have looked at derivatives, that is takes a function and considered how it
changes.
Clearly one can also look at the reverse process, that is take a function f (x) and

�nd a new function g(x) such that g′(x) = f (x), i.e. whose derivative is f (x). We
then call g(x) an antiderivative of f (x).
Note VIII.1: We are careful in talking about an antiderivative and not the an-
tiderivative.�is is that if we de�ne h(x) = g(x)+ c for some c ∈ R, then g(x) and
h(x) are both antiderivatives of f (x).
Definition VIII.2:�e set of all antiderivatives of a function f (x) is called the
inde�nite integral of f (x) and written as

∫ f (x)dx

In this integral, we call f (x) the integrand1.
If we have one antiderivative, all other antiderivatives will di�er by an additive

constant.2 We therefore o�en will express inde�nite integrals by giving one rep-
resentative function, and add a +C to indicate that an arbitrary constant could be
added. For example:

∫ cos(x)dx = sin(x) + C ,

since sin′(x) = cos(x).
1�at is the function that is to be integrated
2Formally, we can de�ne an equivalence relation on functions as having the same derivative.�e

equivalence classes then are the inde�nite integrals.

131



132 CHAPTER VIII. ANTIDERIVATIVES

Wecan verify such statements about antiderivatives easily by calculating a deriva-
tive. For example, the claim

∫ exp(x) ⋅ (x + 1)dx = x ⋅ exp(x) + C

is easily veri�ed by computing the derivative:

d
dx

x ⋅ exp(x) = exp(x)(x + 1).

Antiderivatives typically are not used to investigate functions (as we have done
with derivatives), but to express a summation operation on function values and to
calculate areas↝ VIII.5.

VIII.2 Basic Antiderivative Rules

While calculating derivatives is a straightforward process that can easily be au-
tomated, calculating antiderivatives is much harder. In particular, there are many
situations whether it is not possible to give an easy formula for an antiderivative of
a function given by a formula.
Engineering Calculus courses spend a large amount of time to teach strategies

that can be used to �nd antiderivatives in many practical cases. However much
of this work can be done nowadays by computer algebra systems that implement
such strategies as well as a more generic algorithm (called the Risch-algorithm,
and being far more complicated than the derivative algorithm given in an earlier
chapter, thus we will not study it here).
Our goal thus will be just to describe some of the basic methods for �nding

antiderivatives, without aiming to make the reader an expert in these techniques.
Rather the goal is to describe the basic techniques that are used so that it would be
possible to follow a calculation of an antiderivative.

Sums and multiples �e two most basic derivative rules are

d
dx

( f (x) + g(x)) = f ′(x) + g′(x), and d
dx

(c ⋅ f (x)) = c ⋅ f ′(x)

(for c being a constant, independent of x). �is immediately gives the following
antiderivative rules:

∫ f (x)+g(x)dx = ∫ f (x)dx+ ∫ g(x)dx , and ∫ c⋅ f (x)dx = c⋅ ∫ f (x)dx .
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Polynomials and Power series �e derivative rule for powers of x:

d
dx

xa = a ⋅ xa−1

reverts to the antiderivative rule for a /= −1:

∫ xa = 1
a + 1x

a+1 + C .

that is veri�ed by taking the derivative on the right. (If a = −1, the integral will be
log(x) + C.)
Together with the rules of the previous paragraph this gives us a general rule

for the antiderivative of a polynomial:

∫ (
n
∑
i=0

a i x i)dx =
n
∑
i=0

a i

i + 1x
i+1 + C .

�is rule also extends to power series:

∫ (∑
i≥0

a i x i)dx =∑
i≥0

a i

i + 1x
i+1 + C .

Looking up the Result We can take a table for known derivatives and swap its
columns to get a table of antiderivatives.3 For us, the table in Section V.8 immedi-
ately gives the following list of antiderivatives:

Function f (x) Antiderivative ∫ f (x)dx
cos(x) sin(x) + C
sin(x) − cos(x) + C

exp(x) = ex exp(x) + C
1/x log(x) + C

1/ cos2(x) tan(x) + C
1

√
1−x2

arcsin(x) + C
−1
1+x2 arctan(x) + C
e x
−1

x bla(x) + C

Example VIII.3:�e rules for sums and multiples already allow us to �nd an-
tiderivatives for more complicated functions, even if they look scary at �rst glance.
Suppose we are given f (x) = 7 sin(x)+ 4x3 − π

1+x2 −
2e x

x + 2
x and want to compute

∫ f (x) dx. We can do this by applying the sum and multiple rules along with our

3Such integral tables can be weighty and prominent tomes.
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table of common integrals.�en

∫ f (x) dx = ∫ 7 sin(x) + 4x3 − π
1 + x2

− 2e
x

x
+ 2

x
dx

= ∫ 7 sin(x) dx + ∫ 4x3 dx + ∫ −π
1 + x2

+ ∫ −2 ex − 1
x

dx

= 7 ∫ sin(x) dx + 4 ∫ x3 dx − π ∫ 1
1 + x2

− 2 ∫ ex − 1
x

dx

= −7 cos(x) + x4 − π arctan(x) − 2bla(x) + C .

Of course, this problemwas contrived to appear complicated but actually be straight-
forward to solve. However, in practice, a surprising number of antidi�erentiation
problems really boil down to something like the above. In general if you have some
functions f1(x), f2(x), . . . , fn(x) whose antiderivatives you know and a function
g(x) = ∑n

i=1 c i f i(x), where c1 , c2 , . . . , cn are some constants then the sum andmul-
tiple rules together tell us

∫ g(x) dx =
n
∑
i=1

c i ∫ f i(x) dx .

But since we already know each ∫ f i(x) dx the problem is solved. Problems like
this are a matter of simple bookkeeping.

VIII.3 Integration by parts

For products of functions the situation is more complicated.�e product rule for
derivatives tells us that

d
dx

( f (x)g(x)) = f ′(x)g(x) + f (x)g′(x)),

that is, a product of function gets transformed into the sum of two products. We
therefore cannot revert this rule directly as a rule for products. But we can rewrite
it as

f ′(x)g(x) = d
dx

( f (x)g(x)) − f (x)g′(x)

and thus (taking antiderivatives on both sides) get:

∫ f ′(x)g(x)dx = f (x)g(x) − ∫ f (x)g′(x)dx .

(�ere is no +C on the right hand side, since an integral remains.)�at is, we can
transform the integral over a product f ′(x)g(x) into an expression involving an
integral over another product f (x)g′(x) that requires us to �nd the antiderivative
of one factor and replace the other factor by its derivative. If this second integral
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is easier than the �rst one (e.g. if the derivative of g makes some factor disappear),
this can be of use.�is process is called integration by parts
For example, consider the integral ∫ cos(x) ⋅ xdx. We set f (x) = sin(x) and

observe that f ′(x) = cos(x) is one of the factors. Similarly we set g(x) = x which
gives us g′(x) = 1.�us

∫ cos(x) ⋅ xdx = sin(x) ⋅ x − ∫ sin(x) ⋅ 1dx .

But we know that ∫ sin(x)dx = − cos(x) + C.�us

∫ cos(x) ⋅ xdx = sin(x) ⋅ x − (− cos(x)) + C = sin(x) ⋅ x + cos(x) + C .

Similarly, we can calculate ∫ exp(x) ⋅ xdx: We set f (x) = exp(x) and g(x) = x.
�en f ′(x) = exp(x) and g′(x) = 1 and

∫ exp(x)⋅xdx = exp(x)⋅x− ∫ exp(x)⋅1dx = exp(x)⋅x−exp(x)+C = exp(x)(x−1)+C .

Note that it is important, which of the factors we call f ′(x) and which one g(x). If
we had switched the roles, we would have gotten

∫ exp(x) ⋅ xdx = 1
2

x2 ⋅ exp(x) − ∫ 12x2 exp(x)dx ,

and thus amore complicated integral. And of course, there is no guarantee that it is
always possible to use integration by parts in a suitable way and to obtain a “good”
integral on the right hand side. It is a game of trial and error.
A �nal, somewhat sneaky, application can be found by setting f ′(x) = 1 a factor

that is not actually written down. In some cases this allows to integrate functions
that have an “easier” derivative. For example,

∫ log(x)dx = ∫ 1 ⋅ log(x)dx = x log(x) − ∫ 1x ⋅ xdx = x log(x) − ∫ 1dx ,

and the integral on the right hand side easily evaluates as x + C, thus giving a new
antiderivative

∫ log(x)dx = x log(x) − x + C .

VIII.4 Substitution

A similar problem arises with compositions of functions.�e chain rule

d
dx

f (g(x)) = f ′(g(x)) ⋅ g′(x) (VIII.4)
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introduces an extra factor g′(x) in addition to the composition. �at basically
means that we can take the antiderivative of a composition only if such an extra
factor is there. One way around this would be to create such a factor and simulta-
neously to divide by it to keep the expression the same.�e process of substitution
is a way to process such cases systematically.

�e process of doing this is called substitution since we replace an expression
in x with a new variable (o�en called u).
However, in practice, it can be an art to �nd the “correct” (which is sometimes

not obvious) expression to substitute. A regular calculus course will cover many
strategies and heuristics for this, while this course will only consider basic cases
(or situations in which the substitution is provided).
We �rst pick a sub-expression we want to substitute. Call this expression u.

Since it will be a function in x we can write u = g(x). We can write (while it looks
as if we are working with fractions, it is a formal symbol manipulation, not really
proper arithmetic)

du
dx

= d
dx

g(x) = g′(x)

which we can write as

g′(x)dx = du, respectively dx = 1
g′(x)du

Now supposewewant to integrate the derivative of a composition (as given in equa-
tion (VIII.4),

∫ f ′(g(x)) ⋅ g′(x)dx .

Say we decide to substitute the subexpression g(x). We identify this expression, as
well as the expression g′(x)dx, and substitute

∫ d
dx

f (g(x)
±
=u

) = f ′(g(x)) ⋅ g′(x)dx
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

=du

= ∫ f ′(u)du

We now calculate the antiderivative (in the new variable u), getting

= f (u) + C

and �nally substitute back for u to get the antiderivative

= f (g(x)) + C

as desired.
For example, to calculate

∫ (sin(x))2 cos(x)dx ,
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we could set u = sin(x) and thus cos(x)dx = du and substitute

= ∫ (u)2du = 1
2

u3 + C = 1
2
(sin(x))3 + C .

Alternatively, with the same result, we could have replaced only the dx as

∫ (sin(x))2 cos(x)dx = ∫ (u)2 cos(x) 1
cos(x)du = ∫ u2du.

For another example take

∫ cos(x2)xdx

and substitute u = x2 and dx = 1
2x du:

= ∫ cos(u) x
2x
du = ∫ cos(u) 1

2
du = 1

2
sin(u) + C = 1

2
sin(x2) + C .

What is important is that a�er the substitution process the old variable will have
vanished completely in favor of the new variable.�is might require us to use the
inverse function of the substitution g(x) to rewrite an x-expression in terms of u.
Say we change the last example slightly to

∫ cos(x2)x3dx ,

and substitute u = x2, we get

= ∫ cos(x2)x2 ⋅ xdx = ∫ 12 cos(u)udu.

(�is integral now can be solved using integration by parts.)
�is resolving of remaining expressions can cause problems, and not every sub-

stitution will ultimately lead to success. Say we change the example once more to

∫ cos(x2)x2dx ,

and again substitute u = x2, we get (using x =
√

u)

∫ cos(x2)x2dx = ∫ cos(u)u 1
2x
du = ∫ cos(u)u

2
√

u
du,

which is an integral we cannot solve either.
Substitutions o�en are of sub-expressions of the integrand, but can be more

subtle. For example if we want to integrate

∫ 1
√
1 − x2

3 dx = ∫ 1
(1 − x2)3/2 dx
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we can4 substitute u = sin−1(x) (that is x = sin(u)) and get du = 1
√
1−x2
dx and thus

= ∫ 1
(1 − sin2(u))3/2

√
1 − sin2(u)du = ∫ 1

(1 − sin2(u))
du

which, using the fact that sin2(u) + cos2(u) = 1 and thus 1 − sin2(u) = cos2(u),
gives us

= ∫ 1
cos2(u)du = tan(u) + C = tan(sin−1(x)) + C

VIII.5 De�nite Integrals

An important application of antiderivatives is in calculations of areas (and vol-
umes), or more generally in summations of in�nitely many terms that are in�nites-
imally small. In investigating this, we shall start with geometric aspects, and the
connection to antiderivatives will emerge later.

Figure VIII.1: Area below a graph

Definition VIII.5: Consider the graph of a function f ∶R → R for x-values in an
interval a ≤ x ≤ b, as depicted in Figure VIII.1 for a = 1 and b = 8.�e value of the
area enclosed by

• �e x-axis,

• the line x = a,
4�is is not something you would be expected to come up with, just to be able to follow
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• the line x = b, and

• the graph of f .

is called the de�nite integral of f from a to b and denoted by

∫ b

a
f (x)dx .

Obviously there is no +C in the de�nite integral – the area is not subject to
choice.

Note VIII.6: For completeness, a few extra rules and observations on the de�nite
integral are in order:

• If a = b the area is zero: ∫ a

a
f (x)dx = 0.

• If b < a, we count the area negatively.

• Similarly, if the function f (x) ≤ 0. �e area above the x-axis is counted
positively, the area below the x-axis negatively.

• We can split an area by a vertical line x = c into two parts, for a ≤ c ≤ b.
�en

∫ b

a
f (x)dx = ∫ c

a
f (x)dx + ∫ b

c
f (x)dx .

the area is zero: ∫ a

a
f (x)dx = 0.

• If we add two functions, we can split the area into two parts, using one of the
functions.�at is

∫ b

a
f (x) + g(x)dx = ∫ b

a
f (x)dx + ∫ b

a
g(x)dx

Besides the obvious geometric applications, we can use this area for example to
de�ne the average of the function f on the interval from a to b as

∫ b
a f (x)dx

b − a
.

Riemann Sums

While we can de�ne the area under the graph, we have so far no general formula
from geometry to calculate it, unless f has a very particular form5.

5say a straight line, or a half-circle
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But we can approximate or estimate the area by covering it with smaller pieces,
whose area we can calculate. In the picture in Figure VIII.1, the grid depicted helps
with such an approximation, giving an area between about 32 and 36 units6.
While it seems clear that cutting in �ner pieces will give a better result, it is

not clear how to do this cutting so that it will work for arbitrary functions. �e
approach we shall employ, named Riemann sums7 is simple enough to allow for
an easy description, while allowing for the de�nition of exact results: We split the
area in vertical stripes of equal width, such that the height of the stripe matches
the function value on the le� side. Figure VIII.2 depicts such approximations for
n = 1, 2, 3, 4, 10, 25 stripes.�e area of the stripes becomes a better and better ap-
proximation of the area under the graph.

1 rectangle: 38.43 2 rectangles: 34.84 3 rectangles: 34.69

4 rectangles: 34.53 10 rectangles: 34.11 25 rectangles: 33.91

Figure VIII.2: Integral approximations by Riemann sums

Lemma VIII.7: If we split the interval into k stripes of equal width, each stripe has
width ∆x = (b − a)/k and the i-th stripe starts at x i = a + (b − a)/k ⋅ (i − 1).�e
total area of the k stripes thus is

Ak =
k
∑
i=1

f (x i) ⋅ ∆x =
k
∑
i=1

f (a + (b − a)(i − 1)
k

) ⋅ b − a
k
.

In our example, (beyond the pictures shown), 100 intervals give us an area of
33.81, 200 intervals give 33.79, 1000 intervals 33.779, and 10000 intervals 33.7759.

6while the correct area is about 33.7756 units
7named a�er the German mathematician Bernhard Riemann, 1826-1866
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Note VIII.8:�e decision to set the height of a stripe at the function value on the
le� side does not necessarily give the best approximation. Others options are right
side, middle, or largest or smallest value of the function in the interval. Indeed such
di�erent strategies are all used if one wants to approximate the area numerically.
For our purposes however the di�erence between these methods is irrelevant, as
we aim to make the stripes in�nitesimally narrow.

We note that, unsurprisingly, a choice of �ner and �ner stripes gives an in-
creasingly better approximation of the area. Indeed, one can show if we consider
the values of the stripe approximations Ak as a sequence, (Ak), indexed by k, that
this sequence converges in our example.

Definition VIII.9: More generally, we call a function integrable on the interval
from a to b, if the limit

lim
k→∞

Ak

exists (and is �nite).�is is for example the case if f is continuous. And the value
of the de�nite integral then is de�ned as this limit:

∫ b

a
f (x)dx = lim

k→∞
Ak .

Note VIII.10:�e summation formula in Lemma VIII.7 is the origin for the inte-
gral notation. �e ∑ is transformed in a lengthy “S”, the integral sign ∫ , and the
interval width ∆x becomes the end delimiter dx.

Note VIII.11:�e reader might worry that we now de�ned the de�nite integral
twice – once as area, and once as limit. Indeed, the proper approach would be to
de�ne the improper integral as a limit as in de�nition VIII.9, show that it obeys the
properties, in particular the area additivity of Note VIII.6, and show that in cases
that a graph de�nes an area that is a geometric object de�ned in school, the geomet-
ric area, and the value of the improper integral agree. Doing so is not particularly
illustrative, and thus we do not do so here. For areas that were never calculated in
geometry class, the de�nite integral then is the de�nition of their area.

VIII.6 �e Fundamental�eorem

�e de�nition of the de�nite integral as a limit is not particularly helpful to calcu-
lating it. We thus instead use another approach that will lead us to a connection
with antiderivatives.
For this, assume now that f (x) is an integrable function.We de�ne a new func-

tion that gives values of certain de�nite integrals:

F(z) = ∫ z

0
f (x)dx .
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(�e choice of 0 is arbitrary, one could chose any other number instead.) Note that
we need to call the integration variable (here x) di�erently from z to avoid confu-
sion of variables.

�at is, the function F assigns to every number z the value of the de�nite inte-
gral from 0 to z over the function f ; that is the area under the graph of f from 0 to
z.
We now consider how F(z) changes when z changes:

Theorem VIII.12 (Fundamental�eorem of Calculus):
a)�e function F(z) is di�erentiable with respect to the variable z, and we have
that

d
dz

F(z) = f (z),

that is F(x) is an antiderivative of f (x).
b) For any a, b ∈ R, we have that

∫ b

a
f (x)dx = F(b) − F(a).

c) If G is any antiderivative of f , we have that

∫ b

a
f (x)dx = G(b) −G(a).

To show the connection and to save space, we write F(x) ∣
b

a
= F(b) − F(a).

Proof: a) We use the de�nition of the derivative as limit of the di�erence quotient:

d
dx

F(x) = lim
h→0

F(x + h) − F(x)
h

�e di�erence in the numerator is the di�erence of the two areas, as depicted in
green in Figure VIII.3. As h → 0, this area is approximated by a single vertical strip
of width h and height f (x), and thus area f (x) ⋅ h.�e quotient thus has the limit
f (x).
b) By the rules for additivity of area, we have that

∫ b

a
f (x)dx = ∫ b

0
f (x)dx − ∫ a

0
f (x)dx = F(b) − F(a).

c) IfG(x) is another antiderivative, we have thatG(x) = F(x)+c for some constant
c. But then

G(b)−G(a) = F(b)+c−(F(a)+c) = F(b)−F(a)+c−c = F(b)−F(a) = ∫ b

a
f (x)dx .

◻
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Figure VIII.3: Proof of the Fundamental�eorem

Example VIII.13:

∫ π

0
sin(x)dx = (− cos(x)) ∣

π

0
= − cos(π) − (− cos(0)) = −(−1) − (−1) = 2

and (verify the antiderivative by di�erentiation!)

∫ 1
−1

√
1 − x2dx = ( 1

2
(x

√
1 − x2 + arcsin(x))) ∣

1

−1
= 1
2
(π/2 − (−π/2)) = π

2

the area of a half-circle (thus verifying the circle-area formula from school).

Some examples of applications of de�nite integrals are:

Areas and Volumes If we can describe an regions using functions, we can o�en
use integrals to calculate their areas. Building on this we can calculate not only the
volumes of prisms (area of the base times height), but also volumes of objects that
can be built from areas in a regular way – pyramids and cones, or volumes obtained
by rotating a region through higher dimensional space.

Averages We have already seen that one can de�ne an “average” value of a func-
tion over an interval as the quotient of the de�nite integral by the interval length.
In similar way one can calculate other statistical measures, determine centers of
mass, or renormalize functions to make them comparable.

In�nite summations �e de�nition of de�nite integrals is as limit of a sum.�ere
are other measures that can be described as such a limit – for example the length
of a curve, or a more complicated surface area, and the limit expression then can
be interpreted as a de�nite integral.
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Geometry onFunctions What is probably themost important application of def-
inite integrals for computer science might also initially seem the most cryptic one.
You will see in Linear Algebra classes, that de�nite integrals can be used to de�ne
an “length” of function on an interval [a, b]. Concretely, the length of the functions
f can be de�ned as √

∫ b

a
f (x)2dx

Using the concept of length, it is possible to continue in de�ning angles, orthogo-
nality, projections, close approximations, and ultimately use the tools of geometry
to investigate functions.
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elements, 1
empty set, 4
equality, 27
equivalence class, 28
equivalence relation, 27
error term, 118
Euler’s formula, 125
existence statement, 12

factorial, 49, 114
Fibonacci numbers, 53
�ow, 73
function, 35

generating functions, 128
geometric, 63
geometric series, 63
graph, 21
graph isomorphism, 29

halving intervals, 72
harmonic series, 62
hash functions, 46
Hasse diagram, 5

identity function, 40
image, 35
inclusion, 4
increasing, 95
inde�nite integral, 74, 131
index, 15, 51
index set, 15
in�ection point, 98
injective, 46
integrable, 141
integral tables, 133
integrand, 131
integration by parts, 135
intersection, 6

labelled graphs, 29
limit, 56, 58, 59
linear, 43

map, 35

mapping, 35
matrix, 16
modular arithmetic, 32
modulo, 32
Moiré, 78
monotonically decreasing, 55
monotonically increasing, 55
multiset, 17

non-constructive, 14
nonlinear, 119
Nyquist, 78

one-to-one, 46
onto, 44
order of, 107

pair, 14
partial fractions, 127
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partition, 27
position, 51
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power set, 5
predicate, 3
product rule, 88

quanti�ers, 12
quotient rule, 92

range, 23, 35
rational function, 40
recursion, 52
re�exive, 24
relation, 19
relational database, 20
representative, 28
Riemann sums, 140

saddle point, 97
secant, 79
sequence, 51
set, 1
Shannon, 78
source, 22
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strictly decreasing, 96
strictly increasing, 95
strictlymonotonically decreasing, 55
strictly monotonically increasing, 55
subset, 4
substitution, 136
supremum, 61
surjective, 44
symmetric, 24

target, 22
Taylor polynomial, 114
Taylor Series, 123
transcendental, 61
transitive, 25
tuples, 15
turning point, 98

union, 6
universal statement, 12
universe, 7

vacuously true, 25
value, 35
Venn diagram, 7
vertices, 28
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