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ABSTRACT OF DISSERTATION 

Recovering Spatially and Temporally Dynamic 

Regional Scale Carbon Flux Estimates 

This dissertation presents two review type chapters and three new research 

chapters that contribute to our theoretical and practical knowledge about terrestrial 

carbon fluxes on the regional scale. This research expands on previous carbon dioxide 

inversion work by providing estimates of ecosystem respiration and gross primary 

productivity, as opposed to only net ecosystem exchange, and provides estimates on 

scales in time and space not previously available. 

The first two chapters provide an introduction and review material. This is 

necessary to provide the reader with an understanding of the relatively complex 

geostatistical atmospheric inversion process which uses carbon dioxide concentration 

data to provide terrestrial carbon flux estimates. Issues of scale are discussed as well 

previous work which was fundamental to the research presented here. 

The third and fourth chapters use simulated data to present an analysis of the 

methodology to a case study of North America in 2004. In particular, simulated data is 

used to investigate the sensitivity of the inversion to theoretical components of the 

inversion process and it is concluded that reasonably robust estimates of ecosystem 

respiration and gross primary productivity can be achieved by using a limited network of 

eight carbon dioxide observing towers. Chapter 4 specifically looks at the issue of small 



scale variability in carbon fluxes and the impact it has on obtaining larger scale regional 

estimates. 

Chapter five contains an analysis of real collected CO2 observation data from 

2004 at the aforementioned eight observing sites. Results show significant seasonal and 

annual corrections to the a priori carbon flux estimates, in particular to the individual 

components of net ecosystem exchange, ecosystem respiration and gross primary 

productivity. Furthermore, the annual net ecosystem exchange, when presented spatially, 

provides clues to annual sources and sinks in 2004. Sensitivity is investigated with 

respect to numerous components of the inversion. Although large confidence bounds on 

estimates indicate statistical uncertainty in the mean estimate of net ecosystem exchange, 

estimates match reasonably well with previously conducted research as well as 

observational data. The research provides the estimates within a spatial context (and 

resolution) that was not previously available, allowing for the construction, and support, 

of much more descriptive hypotheses about carbon fluxes than was previously possible. 

Chapter six contains a summary of the results of the dissertation. 

Andrew E. Schuh 
Graduate Degree Program in Ecology 

Colorado State University 
Fort Collins, CO 80523 

Spring 2009 
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I. Introduction 

A thorough understanding of the dynamics of the carbon cycle is critical to 

predicting future climate change. The current pool of carbon in the atmosphere is 

approaching 800 petagrams (PgC) and growing exponentially. At no point in the past 

20,000 years has there been this much carbon in the atmosphere (IPCC, 2007). There are 

numerous lines of evidence that link this rise to increasing anthopogenic carbon dioxide 

emissions and changing agricultural practices. Fossil fuel combustion, land-use change, 

and cement production contribute about 8.5 PgC per year into this atmospheric pool. 

There are no current indications that this rate of carbon dioxide production will slow in 

the future. Estimates of carbon dioxide concentrations for the year 2100 range between 

500 ppm and 1000 ppm over a variety of emissions scenarios (IPCC, 2007). This would 

imply a 50% - 200% increase in carbon dioxide in the atmosphere over the next century. 

These estimates are highly uncertain due to variability in the estimation of future fossil 

fuel emissions and the lack of mechanistic knowledge regarding the fate of anthropogenic 

carbon. However, due to its radiative properties as a greenhouse gas, any sustained 

period of exponentially increasing atmospheric carbon dioxide concentrations could 

potentially have a large impact upon the future climate. 

The current input of anthropogenic carbon is about 8.5 PgC per year, but the 

actual realized carbon dioxide increases in the atmosphere are only about half of that 

amount. This implies that approximately 4 PgC per year, on average, is absorbed by 

other near surface carbon pools, namely the terrestrial biosphere and the surface ocean 

layers. This carbon sink varies annually from 1 to 6 PgC per year (Conway et al, 1994) 

and appears to be evenly distributed between the oceans and terrestrial biosphere (IPCC, 
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2007). There is growing consensus that the northern hemisphere is responsible for a 

large portion of the terrestrial biosphere carbon uptake over the last two decades. The 

supporting research generally involves either the upscaling/extrapolation of ground based 

measurements of annual change in biomass or atmospheric inversion based inferences 

using atmospheric carbon dioxide concentrations. Results based upon either method 

(atmospheric inversion or land-based measurements) are quite variable, both between 

each method as well as within each of the methods. Land-based analyses of the carbon 

flux for the coterminous United States are in the range of 0.08 to 0.35 PgC per year 

(Houghton et al., 1999; Birdsey and Heath, 1995, SOCCR 2007) while atmospheric 

inversion estimates are substantially larger and more variable, in the range of 0.5 to 1.7 

PgC per year (Fan et al., 1998; Gurney et al., 2002, Peters et al., 2007). Surprisingly, the 

high end estimates of the sink for the United States would mitigate its entire current 

anthropogenic carbon contribution. 

Despite the acknowledged existence of a northern hemispheric carbon sink, the 

lack of understanding regarding the mechanisms responsible for it preclude the ability to 

accurately predict its strength into the future. Several hypotheses for this sink have been 

proposed, and investigated, including fertilization effects from carbon and/or nitrogen 

(Oren et al., 2001; Caspersen et al., 2000; Joos et al., 2002), anthropogenic land use 

changes (Houghton et al., 1999), and forest fire suppression (Mouillot and Field, 2005). 

Many hypothesized sink mechanisms are limited in capacity, such as forest fire 

suppression (Tilman et al., 2000), implying that at some time in the future anthropogenic 

carbon emissions may begin to be fully realized in the atmosphere (Hurtt et al., 2002). 

The carbon fertilization hypothesis has been studied extensively and under appropriate 
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situations might constitute a much longer time scale sink mechanism than fire 

suppression, for instance. Nevertheless, this sink is dependent upon factors other than 

carbon dioxide concentration and thus is also likely to be limited in capacity (Oren et al., 

2001). There is also little evidence that these sinks could not turn into sources in the near 

future, providing a further increase in carbon dioxide in the atmosphere. For example, it 

is possible that continued global warming could cause a large release of carbon from 

boreal soils, which constitute 40% of world's reactive carbon (McGuire et al., 1995, 

Zimov et al., 2006) but are currently locked away in permafrost. In order to better 

understand these sink processes, tools are needed with which to test regional and 

ecosystem-level hypotheses. 

One of these tools is the atmospheric CO2 inversion. The concept behind the 

atmospheric inversion technique is as follows. Carbon dioxide is chemically inert once it 

enters the atmosphere. However, biologically, it is not. For example, carbon dioxide 

concentrations fluctuate daily through the light-dependent process of photosynthesis. If 

mechanistic information can be obtained about how atmospheric carbon interacts with the 

ocean and terrestrial biosphere, inferences can be made about this carbon sink from 

atmospheric carbon dioxide concentrations. 

In particular, assume that one "guesses" the carbon dioxide fluxes of the 

biosphere and their associated local changes on the surrounding carbon dioxide 

concentrations. If one can accurately predict the tracer transport of carbon dioxide 

through the atmosphere, for example through the use of a coupled meteorological model, 

then predictions can be made regarding what carbon dioxide concentrations should be in 

the atmosphere, at any point in space and time. If the initially guessed flux pattern 
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induced by the biosphere is wrong than one is likely to incorrectly predict carbon dioxide 

concentrations in the atmosphere. Conversely, if the carbon dioxide flux pattern is 

correctly specified, then one should be able to correctly predict carbon dioxide 

concentrations. Atmospheric inversion techniques attempt to correct for these initial 

carbon flux guesses in such a way as to reduce the differences between "expected" 

modeled carbon dioxide concentrations and actual carbon dioxide measurements. By 

proceeding in a fashion similar to this, one is able to derive spatially smooth regional 

estimates that are representative of large scale patterns of carbon exchange between the 

biosphere and atmosphere. It is this technique and its associated results applied over 

North America that will be investigated in this dissertation. 

Outline and Purpose of Dissertation 

Ch. 2 of the dissertation provides background material necessary for 

understanding the carbon cycle, the implications of potential changes in the carbon cycle 

on the earth's climate, and techniques and methods which can be used to investigate 

carbon cycle dynamics from the standpoint of the atmosphere. 

Ch. 3 and Ch. 4 provide an investigation into the regional atmospheric inversions. 

In particular, we investigate the effect of local scale variability in ecosystem respiration 

(ER) and gross primary production (GPP) and the effect upon prediction of larger scale 

regional patterns of net ecosystem exchange (NEE). Flux tower data has shown that 

incredible variability in NEE can exist at very fine scales in nature. These towers 

generally represent flux footprint areas of a few square kilometers and are often located 

hundreds or thousands of kilometers apart. It is often difficult to extrapolate these NEE 
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measurements due to their variability in space but they do provide important mechanistic 

and conceptual information at very specific locations. We investigate the ability to use 

atmospheric CO2 to "see" through this fine scale NEE variability and discover larger 

scale trends in NEE. 

While no real data is used in this chapter, we do use locations of actual towers, 

atmospheric transport patterns, and estimated biosphere fluxes. CO2 mixing ratio data is 

simulated from a mixed pattern of flux errors, representing larger scale patterns of NEE 

errors as well as smaller scale local variability. We then compare results at different 

spatial scales using both pre-aggregated flux regions and post-aggregated flux regions 

and report the robustness of the estimates. While the main point of this chapter is to 

explore the sensitivity of the inversion, it also provides a check on the ability of the 

inversion to do what it is supposed to, namely recover ER and GPP biases with a very 

small network of observation towers. 

In Ch. 5 we perform an inversion using carbon dioxide concentration data from 

eight flux towers in North America. Our goal in performing this inversion is to recover 

meaningful high resolution optimized NEE estimates. Since our underlying biosphere 

model is annually balanced with respect to NEE and it is widely believed that North 

America is still providing a sink for carbon, we expect to estimate a sink for the year on 

the order of 0.5 to 1.5 PgC per year. We use a global atmospheric transport and 

biosphere model to provide boundary conditions to the inversion. This is of particular 

interest given that this is often a very difficult quantity to estimate. Ideally, one would 

like to optimize global fluxes that contribute to the boundary inflow but this is currently 

beyond the capability of our system, however we do include boundary conditions 
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generated from an independent optimized global model as a comparison. Most of the 

inversions performed over the last decade share the same basic underpinnings (Fan et al. 

1998, Gurney et al. 2002, Rodenbeck et al. 2003, Gerbig et al. 2003, Michalak et al. 

2004, Peters et al. 2007) but each has enough distinction such that when each is 

convoluted with the great lack of data constraining the problem, the results show 

significant variance. As one of these inversions, our inversion shares many similarities 

with previous inversions while also differing in a few ways. It is a high-resolution 

inversion, with the forward model being run at 40 km resolution over North America for 

both the atmospheric transport and the biosphere making it of a much higher resolution 

than available global inversions (Fan et al. 1998, Gurney et al. 2002, Rodenbeck et al. 

2003, Michalak et al. 2004). It incorporates spatial smoothing to regularize the solution 

similar to [Michalak et al. 2004] and [Rodenbeck et al. 2003]. It is also biome 

independent, with corrections being made in space with little pre-aggregation of grid cells 

in contrast to [Peters et al. 2007]. We use a weekly time-step to assimilate observations 

and recalculate optimized NEE similar to [Peters et al. 2007]. Furthermore, in contrast to 

many other inversions, we provide optimized ER and GPP estimates which are then 

aggregated a posteriori to an optimized NEE estimate. 

When this dissertation was begun in 2004, there were virtually no NEE estimates 

available at scales less than that of continents. Even with the advent of the latest global 

nested flux estimates, such as CarbonTracker (Peters et al., 2007), this work establishes 

higher spatial resolution estimates of NEE as well as ecosystem respiration and gross 

primary productivity for North America. This body of work promises to bring robust 

atmospheric based NEE estimates to scales closer to that of biogeochemical model 
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estimates and field-based observations by using the increasing availability of calibrated 

CO2 measurements from eddy covariance towers. This will allow the synthesis of 

estimates from different communities of researchers and help to illuminate the 

differences in estimates between these research communities. 
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II. Introduction to the carbon cycle and atmospheric inversions 

The Carbon Cycle 

Carbon is of particular interest to those studying biogeochemical processes. It is 

the building block upon which all organisms are built. Photosynthetic organisms, such as 

plants, capture sunlight and use the energy to reduce carbon dioxide. These organisms 

release oxygen during the metabolic process. Heterotrophic organisms use the oxygen 

and subsequently oxidize and extract energy from the organic compounds created by 

these photosynthetic orgamisms, returning carbon dioxide to the overall cycle. The 

location of carbon in the enviroment as well as the dynamics that govern its movements 

are critical to scientists in many fields. 

Carbon storage and general carbon dynamics 

Over 99.99% of the earth's carbon is essentially non-active, buried away in 

sedimentary rocks and carbonate. The remaining amount consists of about 40,000 PgC in 

labile pools. The ocean pool is the largest of the labile pools, containing over 95% of this 

labile carbon mainly in the form of dissolved carbonate and DIC (dissolved inorganic 

carbon). The remaining non-oceanic labile carbon is distributed between soils, 

vegetation and the atmosphere in a ratio of approximately 2:1:1 respectively. There are 

also 4000 PgC in extractable fossil fuel sources. This source of carbon is currently being 

exploited for energy and enters into the active pool cycle (Fig. 2.1) with no apparent short 

term mitigating output back into a subsurface pool. There are pathways back to non-

labile pools, such as sedimentation processes in the oceans (Tans, 1998), but the time 
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scales at which they occur are orders of magnitude larger than those associated with fossil 

fuel extraction for energy. 

There are many available pathways by which carbon can be exchanged between 

different storage 
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steady state dynamics, e.g. constant rates of exchange between pools and constant pool 

sizes, one can characterize pools in terms of their turnover times, e.g. the pool size 

divided by the net rate of balanced loss/gain. For instance, the atmosphere exchanges an 

amount equal to its pool size in the course of about 3 to 4 years. From a modeling 

standpoint, it is important to note that turnover time is just a simple measure of average 

exchange and does not necessarily imply that every atom of carbon, or even the majority, 

is exchanged within the turnover time. For example, carbon exchange is much more 

vigorous within the boundary layer of the atmosphere than in the upper atmosphere, 

while the carbon that is used to create wood in a Redwood tree, or humus in deep soil, 
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will likely be there much longer than 10 years. This implies the need for further 

partioning of carbon pools, such as those in soils, into subpools homogeneous in content 

and dynamics in order to provide accurate turnover times. To further illustrate this point, 

the turnover rates for soil may range anywhere from a decade to several millenia 

depending upon the location in the soil profile (Schlesinger et al., 1977). 

Anthropogenic carbon emissions represent a significant contribution to near 

surface carbon pools. With the exception of the deep ocean, there is more carbon stored 

in extractable fossil fuel 
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signal. It is also uncertain what effect incorporating the fossil fuel reserves into the near 

surface carbon cycle will have on the vegetative, soil, and atmospheric pools and their 

associated dynamics. 

The issue of scale in carbon dynamics 

Carbon dynamics must be understood better in order to predict future carbon 

cycle dynamics under increased carbon scenarios. Knowledge of the carbon cycle can be 

obtained at many different spatial and temporal resolutions, each of which might be of 

interest to different researchers. For plant physiologists, this knowledge might consist of 

a better understanding of temporally fine plant carbon assimilation rates at the leaf level 

and how these measurements scale to canopy estimates under differing light conditions 

and nitrogen levels. Foresters and farmers might be interested in the effect that increased 

carbon dioxide concentrations has on biomass production (Long et al., 2006). Ecologists 

might wonder if increasing the carbon dioxide concentrations in the atmosphere, 

considered along with increased nitrogren deposition, would provide a certain species 

with a competitive advantage over another (Zhu et al., 2007). Increasing carbon dioxide 

in the atmosphere could affect mesoscale weather through global warming and this might 

interest atmospheric scientists (Eisner et al., 2008). A different kind of data is required to 

answer each of these questions, often at different scales in both time and space. 

At the finest spatial and temporal scales, carbon dynamics are driven by the 

physiological responses of plants and microbes to varying environmental conditions 

(Farquhar et al., 1980). Given the difficulty of obtaining isolated fine scale 

measurements of carbon flux in the field, most leaf level flux measurements must be 
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performed in a laboratory setting. These laboratory results of leaf level physiology are 

then used extensively in process-based models of photosynthesis (Sellers et al., 1996). 

This is often performed by making broad assumptions about photosynthesis in the 

canopy, as a function of height, in order to simplify modeling equations. These results 

are then extrapolated in space to reach canopy level flux estimates. Although uncertain 

and variable due to the upscaling, these microscale measurements have been critical to 

resolving sub-diurnal net ecosystem exchange (NEE) rates and associated effects in the 

surface energy balance in coupled atmosphere-biosphere models (Baker et al.2003, 

Denning et al., 2003). 

Inferences may be made about NEE at very coarse levels, such as continental-

scale to global scale, by using atmospheric carbon dioxide data and satellite-based 

estimates of NPP. The ocean is a relatively homogeneous pool of carbon governed by 

equilibrium chemistry relationship in contrast to the very dynamic hetrogenous land pool. 

Being governed by relatively simple chemistry and covering over 70% of the earth's 

surface, the oceans provide a strong constraint for inferences to be made about carbon 

transfer at continental scales (Tans 1998). Due largely to the ability to accurately 

estimate ocean fluxes, researchers have been able to use inversions on a variety of trace 

gases to partition carbon fluxes between the ocean and land (Tans et al., 1990; Battle et 

al., 2000). Carbon fluxes over land may be further partitioned via empirical relationships 

between satellite-based measures such as normalized difference vegetation indices 

(NDVI) and ground based measurements. The annual cycle of carbon flux is well 

understood relative to interannual and subannual scales and large scale circulation 

patterns of the atmosphere are also well understood. By using crude estimates of land 
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and ocean fluxes, coarse relationships between many pools can be established. 

Atmospheric carbon dioxide inversion studies performed at the global scale have 

provided strong evidence for the widely accepted hypothesis of a northern hemispheric 

land carbon sink over the last two decades (Tans et al., 1990; Fan et al., 1998; Rayner et 

al., 1999; Gurney et al. 2002). The spatial details of this sink are still relatively unknown 

but the results have allowed researchers to focus their efforts at finer scales in the area of 

the sink in order to better understand the mechanistic foundation for these continental-

scale sources/sinks (Goodale et al., 2002). 

With the increasing realization of the importance of land use change and 

agricultural practices to the carbon cycle, questions have become more focused on spatial 

and temporal resolutions that are tangible either in a management sense, (e.g. a large 

expanse of agricultural land, a national forest, or a watershed managed over the course of 

a few years to several decades), or in a mechanistic and biologically informative way, 

(e.g. a young pine forest, a mature old growth forest, or a forest downwind of pollution 

sources). Research has shown that eddy covariance methods can be used to estimate 

carbon fluxes between the atmosphere and an area of land at these scales (Baldocchi et 

al., 2003; Barford et al., 2001). It is important to note that the eddy covariance method 

measures the combined effect of the land on atmospheric carbon dioxide, including the 

effect of microbial respiration in the soil, and thus is a measure of the net ecosystem 

exchange (NEE) of carbon and not the net primary productivity (NPP). The footprint, or 

the area of influencing fluxes, of these eddy covariance measurements is usually on the 

order of less than a square kilometer. These measurements provide information from 

which hypotheses about mechanistic details of carbon transfer can be tested. For 
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example, important local-scale experiments have been run using this technique, such as 

the effect of stand-age on NEE (Amiro et al., 2001). 

Ground-based field studies are another important tool in increasing the 

understanding of the carbon cycle at the scales just mentioned. Recent field research has 

shown that soil organic matter pools are sensitive to varying agricultural practices, such 

as tilling, grazing, and crop rotations. (Robertson et al., 2000, Peterson et al., 1998). A 

long term controlled burn experiment in Minnesota provided evidence of decadal scale 

carbon sinks in managed forests (Tillman et al. 2000). These appeared to double the 

carbon sequestration rate of certain forests over a 50 year time span. It is important to 

note that these types of results can only be generalized to a certain degree. For example, 

if a pine forest in western Colorado has been a net carbon sink over the past decade, does 

not necessarily imply that a pine forest in New Jersey would also be a sink over that time 

period. Differences between the two forests might include forest management strategies, 

local climate, and potential fertilization effects from local pollutants. 

Despite the implied regional scale of many mechanistically based "missing sink" 

hypotheses (e.g. nitrogen fertilization, forest management practices, and land use 

change), there has been little direct research explicitly exploring carbon dynamics at this 

scale which lies somewhere between the global level and those scales obtainable in eddy 

covariance studies. One method might be to extrapolate this information from finer scale 

eddy covariance measurements. For example, one could hypothesize about the impact 

that nitrogen deposition in conjunction with increased atmospheric carbon dioxide levels 

might have on the eastern U.S. forests by extrapolation of controlled ecosystem 

experiments (Oren et al., 2001). The biosphere is heterogenous though and it can be 
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difficult to predict soil fertility and nitrogen deposition rates such that a proper 

extrapolation can be performed. Eddy covariance towers are generally representative of a 

very small, flat, homogeneous area of the biosphere. The tower flux footprints are also 

often less than one square kilometer, making the general extrapolation of results to other 

areas uncertain. Furthermore, if an important variable is missing from the 

extrapolation, such as forest regrowth (proxied by stand age) or warming atmospheric 

temperatures, the extrapolation can be biased (Schimel et al., 2000). Therefore it is often 

very difficult to produce an accurate process-based upscaling of fine scale carbon fluxes 

without extensive knowledge of the underlying processes and how they interact. 

Another seemingly plausible, and admittedly cheaper, method would entail 

interpolating fine scale flux inferences from coarser flux inversion models such as 

[Gurney et al., 2002]. However, this method is highly sensitive to model assumptions 

and often leads to biased results (Kaminski et al., 2001). Using a novel recepter-based 

inversion methodology (Lin et al., 2003, Gerbig et al., 2003 ) and thoroughly testing the 

sensitivity of model assumptions, it is possible to perform atmospheric inversions at the 

"hypothesis" scale previously mentioned. Mechanistic hypothesis of carbon dynamics 

may be tested by combining atmospheric transport (at a scale comparable to the 

hypothesis), geostatistical techniques, and aggregation of flux regions into regions in 

which fluxes may be estimated with some statistical certainty. This represents a unique 

departure from simply constructing hypotheses by simple geographic regions or biome 

type. Beyond simply validating or invalidating a hypothesis, which can be done as well, 

hypotheses may be forged by the ability to estimate fluxes at a variety of scales in time 

and space, and over a variety of potential relevant variables. An advantage to 
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atmospheric inversion methodology is that the effect of all variables of importance to flux 

prediction are implicitly included within the model through the atmospheric carbon 

dioxide concentrations. 

Inversion models generally lack an explicit underlying conceptual model which 

can cause problems in some scenarios. The aliasing of variable estimates is a problem 

that can occur when two signals are not distinguishable. For example, too much soil 

respiration or too little plant assimilation during midday summertime conditions can both 

lead to larger carbon dioxide concentrations in the atmosphere. Therefore if the 

observations show larger carbon dioxide concentrations than the a priori model does, it is 

not necessarily easy for the inversion model to distinguish whether it should lessen the 

gross primary productivity (GPP) or increase the ecosystem respiration (ER) since both 

have the similar effect of increasing carbon dioxide in the atmosphere. If the height of 

the planetary boundary layer (PBL), the top of the 'box' in which the biosphere carbon 

flux signals mix effectively on a diurnal basis, is biased too high, then the effect of GPP 

on the atmosphere in the model will be too weak, forcing the inversion to amplify GPP or 

reduce ER to match observations. Without a mechanistically based constraint relating all 

these different variables, it is often difficult to distinguish these signals. Inversion 

methodology should, in theory, be able to include a very complex process based model 

for which parameters are estimated during the inversion process. Increasing the 

complexity of the underlying model generally leads to a need for more parameters and 

must be balanced by the amount of constraining data that is available. 

Atmospheric inversion models are designed to use collected data to capture 

"snapshots" of souce/sink activity in a specified time frame. Although results can be 
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used to refine biogeochemical or dynamic global vegetation models (DGVM), which in 

turn are able to forecast into the future and better predict future dynamics, the 

methodology is inherently based upon collected data. Nevertheless, in a statistical sense, 

the atmospheric inversion methodology is a framework within which many 

mechanistically based hypotheses can be invalidated. Before forward-in-time process-

based models of carbon transfer can accurately predict future sinks and sources, the exact 

mechanisms behind the sources and sinks must be illuminated. Statistically defensible 

atmospheric inversion models have the capability to assist in this process through 

hypothesis-based learning. 

Modeling carbon dioxide dynamics 

In the atmosphere 

Accurate atmospheric transport is critical to estimating carbon dioxide fluxes via 

an atmospheric inversion methodology. Inversions rely upon the ability to "connect" 

upwind carbon fluxes on land, with downwind concentration measurements in the 

atmosphere. From a modeling standpoint, transport can be provided via a fully 

prognostic model, such as a global circulation model (GCM) or a regional atmospheric 

model (e.g. RAMS, MM5, or WRF), or from off-line analyzed winds (e.g. ETA, NCEP, 

or RUC). The choice of model often depends upon the region and resolution of the 

interest. Although carbon dioxide is biologically active via the metabolic activities of 

plants, once in the atmosphere, carbon dioxide is relatively inert (chemically). As a result 

of this, its forward-in-time or backward-in-time transport in the atmosphere can be 
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modeled as a simple tracer, essentially following the winds produced by a meteorological 

model. 

It is important that the meteorology model chosen for an inversion reflects the 

scale at which the inversion will be performed and capture important transport dynamics 

at that scale. To a first order, on the global scale, advective transport is the strongest 

transporter of atmospheric constituents. This transport, which is dominated by 

meridional flow, creates a zonal gradient in C02 when it is convoluted with seasonally 

varying carbon fluxes. At this scale, large diurnally-driven biospheric fluxes are 

smoothed and the seasonal cycle is the main effect seen. A careful interpretation of the 

Mauna Loa C02 record in Fig. 2.2 shows a seasonal cycle at the annual scale, increasing 

during the northern hemisphere winter and decreasing during the northern hemisphere 

summer. At a finer scale, synoptic weather patterns including cyclones and anti-cyclones 

provide the main mechanism for north-south mixing of this seasonally-driven zonal 

gradient. Recent work has shown that these synoptic patterns provide a significant source 

of small scale spatial variability in C02 concentrations (Wang et al., 2006). In particular, 

it has been shown that C02 can often collect along weather fronts and provides enormous 

variability in C02 concentrations over the matter of hours (Chan et al. 2004, Parazoo 

2007) which is critically important when comparing modeled C02 to observed C02 on 

sub-diurnal time scales. 

Global inversions have typically been performed at resolutions of from 3.75 

degrees latitude by 5.0 degrees longitude (Michalak, 2004), for geostatistical-based 

inversions, up to continental scale (Gurney et al. 2002) and larger (Fan et al., 1998) for 

inversions built upon basis functions (see Examples, pg. 30) and aggregation. Inversions 
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that provide the ability to make inferences about aggregated continental-scale regions 

(Gurney et al. 2002) still must use gridded transport estimates at a much higher resolution 

in order to capture atmospheric dynamics correctly. For example, in global transport 

models it is important to resolve features such as large scale circulation patterns while 

conversely, some finer-scale features such as vertical mixing processes can be coarsely 

estimated (i.e. by parameterization). The uncertainty and variability of transport across 

similar scale transport models must be estimated, and propagated forward into the 

inversion methodology, in order for one to be confident in inversion-based carbon flux 

estimates. The variability of global transport models was studied extensively in the 

Transcom 2 experiment (Denning et al., 1999) using 11 global circulation models with 

grid sizes between 2.5° latitude by 2.5° longitude to 7.5° latitude by 7.5° longitude. 

Results showed reasonable success from the models at simulating meriodonal gradients. 

Differences in meridional gradients between the global transport models could likely be 

attributed to vertical transport schemes in the models, particularly over land. 

Regional inversions require regional meteorology models. There are similarities 

and differences when comparing regional and global atmospheric transport models. The 

resolving of vertical transport, especially near the surface, parameterizations or direct 

resolution of convective and turbulent processes, and identification of boundary layer 

heights are problems that are common to both scales of model but are particularly 

important to finer scale regional models. For example, the comparison of modeled 

results to observations on hourly time scales requires that vertical mixing processes be 

resolved at scales much finer than that of global models. An observation of carbon 

dioxide at the surface during the night may display positive deviations in C02 an order of 

21 



magnitude higher than what is seen during the daylight periods of carbon drawdown due 

to the smaller volume (i.e. as a function of height) under which the biospheric fluxes are 

being mixed. The varying dynamics of vertical mixing under nocturnal and daytime 

conditions must be captured in order to avoid mischaracterization of fluxes. A bias in 

boundary layer height, the height at which biosphere carbon fluxes readily mix up to in 

the atmosphere, can be of great importance to models at all scales, particularly if the bias 

is not random and persists in time and/or space (McGrath-Spangler et al., 2008). One of 

the more difficult issues somewhat unique to regional transport modeling is the necessary 

specification of boundary conditions for the domain, including both atmospheric 

constraints and carbon dioxide concentrations. This can become very important when the 

temporal variability of the boundary condition carbon dioxide is as large, or larger, than 

the variability of carbon dioxide within the domain of interest. 

Several difficulties can be encountered in the statistical modeling of atmospheric 

transport. There is a high probability that errors arising from incorrect models of 

transport, at any resolution, will be correlated in both time and space. This is due to the 

continuous nature of atmospheric transport. Assume that one has a transport operator 

which summarizes transportation of particles in three dimensions. Releasing two 

particles arbitrarily close in space at time t/ should result in the two particles being 

arbitrarily close in space at any time ti+ t. Small errors in initial particle locations, or 

atmospheric transport fields should give rise to small errors in final particle locations. 

This error arises in inversion modeling when a tracer is released from the surface at some 

point and carried a distance downwind to an observation point. This observation point 

has some type of sensitivity to the upwind flux. There is an error in this sensitivity due to 
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potential transport errors. Not only must this error term be estimated (for each upwind 

flux region) but also the correlations between this error and the errors in sensitivity 

between this observation point and other upwind flux regions. In general, a lack of 

accounting for correlation in errors, whether temporal or spatial, will often lead to a false 

degree of confidence in estimates. 

In the biosphere 

The biosphere has a strong effect on carbon dioxide concentrations near the 

ground. Through photosynthetic activities, carbon dioxide is reduced by plants and 

converted to organic matter. Water is lost in the process of photosynthesis, in turn 

affecting the overall energy budget at the surface. In order to construct a truly coupled 

atmosphere-biosphere carbon model that is accurate on fine time scales (e.g. diurnal, for 

instance), one must capture the carbon and water exchanges correctly while maintaining a 

correct energy balance. A portion of the carbon that is assimilated into biomass is 

processed into perennial woody tissue while some of the carbon that is stored in biomass 

is lost to events such as litterfall and eventually decomposes. Diurnal-scale atmosphere-

biosphere interactions are generally not very sensitive to the actual fate of the carbon 

assimilated. However, on longer timescales, variations in carbon allocation dynamics 

become more noticeable. Modeling schemes must either explicitly model these dynamics 

or provide a mechanism through which temporal variations can be parameterized. 

Certain facets of carbon dynamics are known better than others. For instance, 

when the sun comes up in the morning the leaves begin to photosynthesize and generally 

continue to due so until the sun goes down in the evening. In locations to the north or 
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south of the equator, and in the warmth of summer, plants are usually healthy and 

photosynthesizing strongly during the day. Winter conditions are usually colder and less 

hospitable, many plants lose their leaves and GPP is greatly reduced. These (seasonal 

and diurnal) are the biggest sources of variability in carbon dioxide concentrations and 

fluxes and are generally understood and simulated fairly accurately. However, variability 

in carbon fluxes does not appear on seasonal and diurnal time scales alone. 

Anthropogenic land-use change (Houghton et al., 1999), variations in the dynamics of 

long turnover time soil organic matter pools (Zimov et al., 2006), C02 fertilization 

effects of increased atmospheric C02 (Oren et al., 2001), effects if nitrogen deposition, 

changing disturbance regimes such as fire/succession/regrowth dynamics in large 

expanses of forests (Tillman et al., 2000) all contribute to carbon fluxes on various scales 

that are often not captured in model simulations. Certain models may accurately predict 

one or more components while not including others and it is difficult to assume that all of 

these processes can be identified a priori and modeled explicitly. Therefore, 

deterministic forward simulations of the biosphere often try to capture as many aspects as 

possible, while focusing more on those with heavier consequences to their particular 

study, and leave those which are unknown, unexplored, or difficult to model, to 

atmospheric inversions to capture. 

The particular land surface parameterization that is coupled with the RAMS 

meteorological model for the inversions in this dissertation is based upon the third 

generation simple biosphere model (SiB3) developed by Piers Sellers (Sellers et al. 

1996). The model characterizes carbon, water, and radiation fluxes between the 

atmosphere and the terrestrial canopy, soil, and snow layers. SiB3 does not explicitly 
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model the storage of carbon in any reservoir other than the atmosphere. The SiB3 model 

includes a realistic photosynthesis-conductance model that describes leaf level transfer of 

CO2 and water vapor. This is critical not only for the modeling of carbon dioxide but for 

maintaining realistic surface level energy fluxes of latent and sensible heat. The original 

SiB3 model used satellite derived NDVI data to derive the fraction of photosynthetically 

available radiation (FPAR) (i.e. which provides the energy source for photosynthesis) and 

the one-sided green leaf area per unit ground surface area, leaf area index (LAI), over 

which the radiation is theoretically applied. For this dissertation, SiB3 code was changed 

to incorporate satellite-derived Moderate Resolution Imaging Spectroradiometer 

(MODIS) data, in particular the FPAR and LAI data products (MOD 15). Additional 

modifications to the biosphere scheme in SiB3 include a more detailed soil column 

consisting of 10 layers, a more detailed snow column consisting of 5 layers, and a more 

accurate soil water stress response curve. One particularly important characteristic of the 

model is that it is a net-zero annual flux model, implying that annually summed NEE 

fluxes in any one cell of the model grid must equal zero. Given the relative magnitude of 

annual NEE with respect to seasonal maximums and minimums of NEE (Michalak et al., 

2004), this zero flux annual requirement is probably valuable in constraining day to day 

diurnal flux activity when accurate coupling to biogeochemical models is not available. 

The importance can be conceptualized by considering that systematic biases in ER and 

GPP on the very fine time scales of a biophysical model, such as SiB, could quickly add 

up to unrealistic NEE values annually. However, there is a wide body of evidence in 

support of inter-annual variability in NEE and SiB3 does not currently accommodate this. 

This illustrates an important requirement of any atmospheric inversion model that is to be 
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used in conjunction with SiB3. Given the realistic expectation of non-zero annual fluxes, 

the inversion method must provide flexibility such that the estimated corrected NEE is 

not constrained to an annual sum of zero. This will be discussed more in Chapter 3. 

Inversion Methods 

Atmospheric carbon dioxide concentration measurements contain information 

about carbon fluxes in the terrestrial biosphere and oceans. As an example, assume that 

the carbon dioxide fluxes of the biosphere and their associated local changes on the 

surrounding carbon dioxide concentrations are known. Recall that carbon dioxide is 

essentially chemically inert in the atmosphere. If atmospheric tracer transport of carbon 

dioxide can be predicted through the use of a meteorological model, then one can predict 

what carbon dioxide concentrations should be in the atmosphere, at any point in space 

and time. Alternatively, if the carbon dioxide flux pattern is unknown and perhaps 

guessed incorrectly, and the transport process is correctly modeled, then one will 

incorrectly predict carbon dioxide concentrations. 

Atmospheric inversion techniques employ this concept to attempt to correct for 

these initial carbon flux guesses in such a way as to reduce the differences between 

"expected" modeled carbon dioxide concentrations and actual carbon dioxide 

measurements. If sufficient carbon dioxide concentration data exists to constrain the 

problem then a regular least squares, or weighted least squares, approach can be applied. 

In a statistical regression framework, the design matrix, G, summarizes the atmospheric 

transport of the fluxes via the Jacobian matrix (partial derivatives of carbon dioxide 
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concentration at different sampling locations with respect to different carbon dioxide 

fluxes), p represents a vector of bias factors, and ^.represents the carbon dioxide 

observations. The matrix L denotes the covariance between the (assumed) mean zero 

multivariate normal error terms, e = G fi -y. For n carbon dioxide observations and m 

contributing carbon dioxide flux regions, the model is then 

y = G/3 + s 
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For a full rank matrix G, the solution to this problem is 

^ = (Gr2-1G)_,GrE-V (2) 

and the variance of this estimator is 

var(^) = (GT£-XG)~ (3) 

This is not necessarily a unique solution. If the row rank of G is less than the column 

rank of G, and G is full rank, then there will be an infinite number of "least squares" 

solutions and the solution shown above can appear meaningless in application. 

One method to deal with this is to aggregate flux regions (Tans et al., 1990; 

Enting et al., 1995; Fan et al., 1998;), essentially reducing the column rank of G so that a 

unique solution may be constructed. A common way in which flux regions are 
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aggregated is by fixing a prescribed pattern of fluxes over a region, which is then allowed 

to increase or decrease linearly in order to fix the observed data. This aggregation could 

prescribe relative patterns in flux between regions (Fan et al. 1998) or could be a simple 

adjoining of different regions, assuming that their fluxes are the same (Rayner et al. 

1999). Temporal patterns, such as seasonal patterns of flux, can also be forced upon the 

data. These patterns in time and space, are often referred to as basis functions. 

[Kaminski et al., 2001] illustrated that if the flux regions are aggregated to form 

"coarser" inversion regions than those used in the atmospheric transport, then an 

additional source of error (termed "aggregation error by Kaminski et al., 2001) must be 

accounted for. There has been subsequent research into the estimation of this error term 

(Engelen et al., 2002) and as a result, some researchers have moved towards performing 

inversions based on grids with resolutions similar to that of their transport model 

(Rodenbeck et al. 2003). 

Another technique to dealing with an unconstrained inversion problem is to use 

Bayesian methodology to constrain the carbon flux estimates to an a priori "best guess" 

estimate (Gurney et al., 2002). These latter inversions are commonly referred to as 

Bayesian synthesis inversions (Tarantola 1987). There have also been a variety of recent 

modifications and extensions of the Bayesian synthesis inversion approach (Michalak et 

al. 2004). Many inversions have used a combination of the aggregation technique and the 

Bayesian synthesis inversion (Enting et al., 1995; Rayner et al., 1999;Gurney et al., 

2002). 

Bayesian Synthesis Inversion 
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Bayesian methods are used to provide solutions to under-constrained problems in 

a variety of applied settings (Tarantola, 1987; Gelman et al., 2004; Banerjee et al., 2004). 

Tarantola (1987) is one of the earliest, and widely cited, references of the Bayesian 

methodology being applied to the atmospheric chemical transport inversion problem. 

Recall from the last section, the statistical model and least squares solution to a "well-

constrained" inversion problem (one in which the number of unknowns is less than the 

number of observations). Under the assumption of multivariate normally distributed 

error terms, the solution can be characterized in terms of the minimization of the 

following cost function 

C(P) = {G/3-y)TI.-\Gp-y) W 

If there is not sufficient data to constrain the inversion to a unique solution, then the 

addition of a "penalty term" to the cost function will have the effect of keeping the 

solution close to a specified a priori flux, given by fi0- Assuming the difference between 

the actual fluxes and a priori fluxes is multivariate normally distributed, this cost function 

can be written as 

COS) = {Gp-yJirl(GJ3-y)+{p-pj\-\p-p0) w 

Notice that as x moves away from the a priori flux fi0, the second term in the equation 

above increases, essentially "penalizing" the solution for moving to far away from fi0. 

The covariance of the errors between the actual fluxes and the a priori solution, So, 
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dictate the strength and correlations of the penalty across individual carbon dioxide 

fluxes. 

It is informative to explain the Bayesian statistical model underlying this cost 

function. Assume that our observations are distributed normally around mean Gfl with 

known covariance matrix L. Furthermore, assume that x is a random variable and it is 

distributed normally around known mean /?# with known covariance matrix Lo-

y\P,I.~N(Gp,l) 
P~N{/10,10)

 W 

The posterior distribution of \i can then be derived and is also normally distributed. 

p{fi\y,I.)*~[(G0-yyi.-l(Gfi-y)+(/?-/3jzo-
l(j3-fio)] 

i \ (7) 

= Arfv1 + GT^G}1 (V'A, + GZ~ly} ( V + G^-'G]"' ) 

Thus the posterior mean of the fluxes can be seen to be a precision'-weighted average of 

the data and the prior mean. The posterior precision is the sum of the data precision and 

the prior precision. 

Examples 

In addition to being a Bayesian synthesis inversion application, the Transcom 3 

project provided a transport-sensitive intercomparison of atmospheric carbon dioxide 

inversions. For each inversion, the earth's surface was divided into 11 land regions and 

1 Precision is the inverse of variance. In Bayesian methodology, precision is often used to characterize 
variance. 
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11 ocean regions (Fig. 2.3). Each land region was associated with a "basis function"2, a 

fixed relative pattern of annual flux based upon annual NPP estimates provided by the 

CASA model (see Fig. 2.4). 

Figure 2.3: Tram com Basis Regions (Gwney etal, 2000) 

Similarly, ocean region basis functions were formed based on mean carbon exchange 

maps and sea-ice patterns. The Jacobian matrix, representing the influence of carbon 

fluxes to particular observations in time and space, was calculated by simulating 

independent pulse releases from each basis function. This portion of the inversion was 

allowed to vary, with different Jacobians calculated for each of 16 different transport 

models. The prior distributions of the fluxes were constructed from various ocean and 

terrestrial flux models, and fossil fuel inventory estimates and are shown in Fig. 2.5. 

Seventy-six stations provided carbon dioxide observations at various locations around the 

world for the five year period of 1992-1996 (Fig. 2.5). Important conclusions from the 

Transcom project included a temperate North American sink estimate that was 60% of 

that of an earlier study (Fan et al., 1998) and a more uniformly distributed sink over the 

2 These basis functions form the controversial and aforementioned aggregation portion of the inversion 
(Kaminski etal., 2001) 
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Northern hemispheric land regions. Given the extensive investigation of transport and 

the inclusion of several transport models, the flux distribution estimates should be 

considered robust with respect to transport. 

North American basis function 
kg C/in2/second x 10A{-9} 

distributed by UPP 

W 120 W 60W? 5 60~E TSOl TftO 

Figure 2.4: Temperate North America Basis Functions (Gurney et al, 2000) 
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Many of the difficulties surrounding the Bayesian synthesis method concern the 

specification of the prior flux distribution. In essence, this is the analog of the problems 

one encounters when aggregating flux regions in order to arrive at a unique solution. 

Without data to support the pattern of fluxes between flux regions, it is difficult to justify 

imposing a pattern upon flux regions. Similarly, without explicit a priori knowledge of 

the nature of the true fluxes, it is difficult to justify a prior flux distribution. External 

data, independent to the inversion, can often used to support these prior specifications. 
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Figure 2.5: Carbon dioxide observing network used in Transcom 3 with 
normal prior distributions specified (mean ± s.d.) (Gurney et al, 2003) 

Examples include the extrapolation of ground-based measurements of NEE (Enting et al., 

1995), modeling of satellite derived vegetation indices (Matross et al., 2006), the use of a 

fully coupled atmosphere/biosphere model (Wang et al. 2006). The more difficult, and 

often more controversial, part of the prior specification involves estimating the 

covariance matrix which describes the distribution of differences between the actual 

fluxes and the a priori fluxes. Obtaining an estimate of the variance of these prior flux 

estimates can be difficult and incorrect specifications can easily lead to unreasonable 

inversion results. Both of these problems can be mitigated, to some degree, by 

formalizing the estimation of the prior flux and prior flux variance. This can be done by 

replacing fio in the cost function (Eq. 5) with a statistical model of the prior mean. 

Michalak (2004) proposed the following model 

X = DP + 8 (8) 

Where x is a m x 1 vector of the fluxes, D is a known mxp matrix, p is a p x 1 vector of 

unknown drift coefficients, and £ is a zero mean multivariate normal random variable 
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representing the spatially correlated error in the estimate of the fluxes. The D matrix 

might consist of various underlying geographically referenced data, such as satellite-

based NDVI and land cover maps, from which the mean flux could be estimated. This 

method is attractive because it formalizes the estimation process and forces the 

underlying data to explain the entire flux estimate through a formal statistical spatial 

model. The estimation and validation of an appropriate spatial covariance structure is 

important part of this method. 

Michalak et al., [2004] presents a sample application of the geostatistical 

modification to the Bayesian synthesis inversion. The authors employ an annually 

averaged global carbon flux field with ocean and fossil fuel fluxes from the Transcom 3 

project (Gurney et al., 1998) and net ecosystem production (NEP) estimates from 

McGuire et al. (2001) for the true underlying annual mean fluxes of the inversion. Basis 

functions which represent the transport component of the inversion were from Rodenbeck 

(2003). The inversion is performed on a 3.75° by 5.0° longitude grid which yielded a 48 

x 72 grid. Observations are simulated at a site network similar to Transcom 3 (Fig. 2.5). 

NEP, fossil fuel, and ocean fluxes are estimated in the inversion. Parameters of the 

spatial covariance structure were estimated by applying maximum likelihood methods to 

the marginal distributions of the spatial covariance parameters. 

Four different cases are considered by (A) imposing and then estimating a single 

spatial covariance structure for the ocean and land regions, (B) imposing and then 

estimating different spatial covariance structures for the ocean and land regions, (C) 

using (B) along with a larger observation variance term, and (D) using (C) along with the 

specification that fossil fuel fluxes are known as opposed to estimating them separately 
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from the NEP. Estimated variance in case (A) was higher than the actual variance and 

the estimated correlation length scale was lower. The main consequence was higher 

variability and lack of "smoothness" in the ocean flux estimates. This in turn led to a 

large disparity between the estimated ocean fluxes and the true underlying ocean fluxes. 

This particular situation improved under case (B) and (C). However, the majority of land 

flux regions still appeared to be statistically insignificant under both of these cases. Case 

(D) considered the fossil fuel fluxes known. After the removal of fossil fuel fluxes, the 

only significant NEP annual mean fluxes were in poorly constrained regions of the world. 

Consequently, there was difficulty in estimating spatial covariance parameters and the 

land region carbon fluxes. The "power" of the data then went to producing very accurate 

ocean flux estimates. 

This paper represented the first attempt at using geostatistical methods to estimate 

carbon flux parameters in an inversion framework. It represents a conceptually 

meaningful and statistically rigorous method with which to add constraints to carbon 

fluxes in an inversion methodology. The authors noted particular difficulties encountered 

because of the small relative magnitude of the annually averaged NEP signal. Estimation 

of the spatial covariance structure appears to be difficult with the variance often being 

overestimated and the correlation length scale underestimated. The inversion results 

appear to be sensitive to the discrepancy in the estimated spatial correlation of the errors. 

There seems to be a need for further investigation of the spatial correlation structure of 

the errors and the effect upon inversion results. In particular, the pseudo observations do 

not appear to constrain the inversion well enough which would appear to warrant the oft 

asked question in science: "how much data is enough?" 
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State-space extension of Bayesian synthesis inversion method 

With increasing amounts of data available for atmospheric inversions, researchers 

have begun investigating new techniques for estimation. A traditional Bayesian synthesis 

approach makes use of observations and associated carbon fluxes at many locations in 

time and space concurrently. As available data grows, we would like to estimate fluxes 

at finer and finer resolutions, both temporally and spatially. Conventional Bayesian 

synthesis techniques rely upon a single large matrix inversion as part of the solution 

process which becomes increasingly difficult with the rising dimensionality of the 

problem. An alternative is to partition the data temporally and estimate the fluxes 

dynamically in time. While not as rigorous and statistically complete as a theoretical "all 

at once" synthesis inversion, the technique promises to handle much larger amounts of 

data while maintaining many of the traits of the conventional inversion techniques. 

The first application of the Kalman filter is generally credited to Stanley Schmidt 

who applied it to the non-linear navigation problems of the manned lunar missions while 

he was with the NASA Ames Research Center. Today, it is widely used in science and 

atmospheric inversion problems are no exception. The general idea centers around the 

recursive estimation of various model parameters which predict, or assist in predicting, 

carbon fluxes. The main advantage of the framework is that information is passed from 

one filter step to the next, both in the form of mean estimates of the model parameters as 

well as the error covariance of those estimates. The propagation of this information 

allows future estimates of carbon flux to capitalize upon past information already 
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processed while maintaining the flexibility to capture estimates of model parameters 

changing in time. There are a variety of adaptations of the filter that are applied to 

inversion flux problems and it is the basis from which many inversion systems are built. 

One of the more exciting adaptations is the ensemble Kalman filter (EnKF) (Evensen et 

al. 1994) which has been shown to have many favorable qualities for inversion problems 

involving large amounts of data and non-linear dynamics (Peters et al. 2005, Zupanski et 

al. 2007). These advantages include the fact that the EnKF does not need an explicit 

adjoint model and that it uses a smaller solution space than a typical Kalman Filter 

increasing computational efficiency. Many of the current inversion systems draw upon 

strengths of all of the aforementioned models, simple Bayesian synthesis, spatial 

correlation assumptions, and the Monte Carlo sampling aspects of the Ensemble Kalman 

filter. 

Adaptation of global inversion methodology to regional scale inversions 

While many individuals are interested in global carbon dynamics and the large 

scale climate effects induced by changes in the carbon cycle, many are also interested in 

more local effects. There has been increasing interest in regional scale inversions at the 

scale of a mesoscale meteorology model. Peters et al. [2005] presented a ensemble 

Kalman filter based system that optimizes NEE estimates over North America by using a 

combination of the Carnegie Ames Stanford Approach (CASA) Biosphere model and the 

TM5 atmospheric transport model. Their approach used optimized fluxes over a set of 

nested grids with increasing resolution centered over North America. Portions of the 

approach were used to construct the CarbonTracker system developed by National 
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Oceanic and Atmospheric Administration (NOAA). Peylin et al. [2005] used a somewhat 

similar nested approach to optimize daily carbon fluxes over Europe for a period of 

several months in the summer. High resolution regional inversions introduce difficulties 

not experienced at the global scale, most importantly, the effect of boundary inflow of 

CO2 on the inversion. These previous two papers both included optimized global carbon 

transport models to provide boundary conditions to the smaller regional domain. While 

the accuracy of global atmospheric transport is a consideration, so are the potential 

effects of carbon flux optimization outside the regional domain of interest. For example, 

a deficit of CO2 recorded in the Mid Northern United States could be a result of a 

stronger than expected sink of carbon upwind in the boreal forest of Canada or could be a 

large scale result of drawdown of carbon far upwind over Siberia. Regional inversions 

are often considered more difficult than larger scale global inversions because of these 

considerations. 

Summary 

The terrestrial carbon cycle presents complex biogeochemical dynamics in both 

time and space which can make estimation of land-atmosphere fluxes difficult. NEE is 

one of the main interfaces of this biogeochemical cycle with the atmosphere. When NEE 

is convoluted by atmospheric transport, one gets increasingly complex patterns of C02 

across the landscape and into the upper air of the atmosphere. These patterns contain 

very important information about the ground carbon fluxes but are often hidden behind 

complex atmospheric transport patterns that operate on varying temporal scales. If the 

atmospheric transport and carbon fluxes can be organized and modeled properly, based 
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upon the scales at which they operate, then carbon fluxes can be estimated reliably by 

inverting (with respect to transport) carbon dioxide data collected at various locations in 

time and space. The inversion-based estimation process is very efficient when compared 

to brute force ground based sampling, which is very time and cost intensive. These 

inversion techniques provide an important, resource efficient, independent line of 

evidence into carbon flux estimation that will help to increase the understanding of the 

carbon cycle. 
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III. Investigation of the sensitivity of Bayesian atmospheric carbon dioxide 

inversions 

Introduction 

Bayesian synthesis inversion techniques provide an important tool in the 

investigation of the spatial and temporal distribution of carbon fluxes on earth. Over the 

last decade, researchers have been using these techniques to investigate various aspects of 

the missing sink of carbon (Fan et al., 1998; Rayner et al , 1999; Gurney et al., 2002). 

This body of research, combined with field research studies (Tilman et al. 2000), 

provides strong evidence for the existence of a Northern Hemisphere sink of carbon over 

the last several decades. Nevertheless, little more is known about where, or why, this 

sink exists. Popular theories include reforestation of previously cleared lands and the 

effects of fire suppression efforts (Casperson et al., 2000; Hurtt et al., 2002; Mouillot and 

Field, 2005), and various fertilization scenarios involving carbon fertilization and 

nitrogen deposition (Oren et al., 2001; Joos et al., 2002). 

Many of these global carbon flux inversion studies, including Gurney et al., 2002 

and Rayner et al., 1999 have been performed based upon the "basis region" concept of 

aggregation. This procedure involves the fixing of a prescribed pattern (basis region) of 

net ecosystem exchange (NEE) for each of 22 partitions of the globe. This type of 

aggregation of the inversion domain has been necessary in order to render the inversion 

computationally feasible and "strike a balance" between the available data and the 

number of parameters in the inversion. The basis region approach to aggregation has 

been criticized (Kaminski et al., 2001) as producing biased inversion results by not 

46 



properly accounting for the possible errors in the basis functions. From a statistical 

standpoint, this issue arises as a combination of the "hard constraint" nature of the basis 

functions and unequal sampling coverage or disproportionate "response" functions (as 

often termed in the geosciences). Besides giving falsely confident estimates of the actual 

fluxes, the estimates can also be biased. 

As a result of these findings, researchers have begun to perform inversions at 

resolutions closer in scale to that of the underlying transport model (Gerbig et al., 2003, 

Matross et al., 2006) while specifying covariance structures on the prior guesses for the 

carbon fluxes (Michalak et al., 2004). While the acknowledgment of variability inherent 

in the a priori flux and the corresponding specification of a covariance structure on the 

prior fluxes is likely a step in the right direction, little is known about how the choice of 

this covariance structure will impact inversion results. Given the fact that atmospheric 

inversions are generally heavily under-constrained at the transport model resolution, one 

usually has to make aggressive assumptions about the covariance structure of the prior 

fluxes. This typically has involved specifying a relatively long decorrelation length and a 

relatively small overall variance multiplier to the spatial covariance function (generally 

an exponential covariance structure) for the prior fluxes (Gerbig et al., 2003; Rodenbeck 

et al., 2003; Michalak et al., 2004). This has the effect of allowing the estimated field to 

change slowly and in a spatially correlated way, from the prior mean guess. The effects 

of the choices of the prior covariance structure upon the estimation of the unknown true 

underlying flux field is not well understood. A thorough investigation of the sensitivity 

of posterior estimates to a priori assumptions, as well as comparison to other important 
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error sources, is important in order to have any degree of confidence in the results of an 

atmospheric inversion. 

Sensitivity to variability assumptions is not restricted to spatial dimensions. 

Treating fluxes independently, an inversion that attempts to solve for m fluxes at p 

locations and at n points in time, is solving for m*p*n fluxes. In order to combat the 

increasing parameter space, as a result of estimating fluxes at finer resolutions in either 

space or time, researchers have begun to use state-space formulations of the inversion 

problem. In essence, this allows for the restricting of the time dimension of the problem. 

The methods involved are generally some variant of the Kalman Filter style approach, 

usually the extended Kalman Filter or ensemble Kalman Filter. In these methods, 

correction factors are treated as probability distributions (similar to a standard Bayesian 

Synthesis approach) and are propagated forward through time in a state-space fashion. A 

period of time must be chosen over which to estimate the correction factors, i.e. the 

temporal resolution of the state-space formulation. In order to avoid statistical 

complications, the temporal resolution should be chosen such that the errors in the 

modeled fluxes are somewhat independently and identically distributed in time. This 

ensures that an arbitrary sampling of the sequence of fluxes, which is likely under a 

general inversion setup, will not be biased in its estimate. 

In this chapter, simulations of carbon dioxide concentrations are used to 

investigate the sensitivity of atmospheric inversion results. We focused on the individual 

estimates of ecosystem respiration and gross primary productivity in particular, while the 

difference, NEE, will be the focus of Ch. 4. Different components of the inversion are 

perturbed, such as number of samples, assumed error levels, aggregation of inversion 
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region, and spatial decorrelation length scale of underlying flux patterns. This testing 

should be done for any model used in an under-constrained data framework. Many of 

these components have been investigated in research using other models but the 

investigation into the sensitivity of the spatial decorrelation length scale is somewhat 

novel. We tested the ability of the inversion to detect carbon flux patterns that 

represented varying degrees of smoothness even when the smooth pattern was degraded 

with small scale spatial variability (nugget variance). This work is critical in that it 

provides an argument for the robustness of the inversion across these inversion 

components and also shows that the inversion is able to correct for the individual flux 

components, ER and GPP, as opposed to just NEE. 

Methods 

Inversion Review 

Atmospheric carbon dioxide concentration measurements contain information 

about carbon fluxes in the terrestrial biosphere and oceans. Assume that the carbon 

dioxide fluxes of the biosphere and their associated local changes on the surrounding 

carbon dioxide concentrations are known. Recall that carbon dioxide is relatively inert, 

chemically, within the atmosphere. If atmospheric tracer transport of carbon dioxide can 

be predicted through the use of a meteorological model, then one can predict what carbon 

dioxide concentrations should be in the atmosphere, at any point in space and time. For 

example, assume researchers incorrectly modeled an area of land as grasslands when in 

fact it was composed of heavily managed croplands. One would assume that downwind 
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CO2 concentrations would reflect this discrepancy by being lower than what was 

expected a priori. Therefore, one is able to make inferences about fluxes from this area 

simply from an a priori flux model and downwind CO2 measurements. In this fashion, 

one is able to draw inferences about carbon fluxes by using carbon dioxide 

concentrations. 

Atmospheric inversion techniques employ this concept to attempt to correct for 

these initial carbon flux guesses in such a way as to reduce the differences between 

"expected" modeled carbon dioxide concentrations and actual carbon dioxide 

measurements. If sufficient carbon dioxide concentration data exists to constrain the 

problem then a regular least squares, or weighted least squares, approach can be applied. 

In a statistical regression framework, the design matrix, G, summarizes the atmospheric 

transport of the fluxes, x, via the Jacobian matrix (partial derivatives of carbon dioxide 

concentration at different sampling locations with respect to different carbon dioxide 

fluxes), to the carbon dioxide observations y. The matrix L denotes the covariance 

between the (assumed) mean zero multivariate normal error terms, s = Gx - y. For n 

carbon dioxide observations and m contributing carbon dioxide flux regions, the model is 

then 

y = Gfi + s (1) 
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For a full rank matrix G, the solution to this problem is 

p = {GTI,-xGyGTZ-xy (2) 

and the variance of this estimator is 

vw(p)={pTYrxGYGTirxy (3) 

This problem can equivalently be expressed in terms of solving for the minimum of the 

following cost function (the kernel of the Gaussian likelihood function). 

C(fi) = (Gft-yfS.-'{Gfi-y) (4) 

This is not necessarily a unique solution. If the row rank of G is less than the column 

rank of G, and G is full rank, then there will be an infinite number of "least squares" 

solutions and the solution shown above can appear meaningless in application. 

If there is not sufficient data to constrain the inversion to a unique solution, then 

the addition of a "penalty term" to the cost function will have the effect of keeping the 

solution close to a specified a priori solution. Assuming the difference between the 

actual fluxes and a priori fluxes is multivariate normally distributed, this cost function 

can be written as 

C{P) = {Gp-y)T^{Gp-y)+<J3-pJi:;t{p-p(>) (5) 

Notice that as x moves away from xo, the second term in the equation above increases, 

essentially "penalizing" the solution for moving to far away from xo. The covariance of 

the errors between the actual fluxes and the a priori solution, Eo, dictate the strength and 

correlations of the penalty across individual carbon dioxide fluxes. 
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Main Sources of Inversion Error 

The first error term in these methods is summarized via the covariance matrix E, i.e. the 

difference between expected and actual carbon dioxide measurements. Normally 

specified in an inversion as single error term, it can realistically be allocated to one of the 

following three categories: (1) aggregation error, (2) representation error, (3) observation 

error (measurement error), and (4) transport error (Engelen et al 2002). Although 

fundamentally different, observation error and transport error are very difficult to 

partition and are usually handled as a sum in the statistical model. Therefore, we will 

address the sum of these two as observation error. It is important to note that the 

transport portion of the sum is generally believed to be the larger of the two summands. 

The second error component is error assocated with the a priori estimate of the fluxes, 

which is summarized via the covariance matrix So. 

Aggregation Error 

Aggregation error arises as an effect of running an inversion on a different 

resolution, either in time or space, or both, than that of the coupled transport model. In a 

spatial context, this error term has been well documented in the literature (Kaminski, et 

al., 2001). Kaminski, et al. showed that spatial aggregation errors could be a 

consequence of the interplay between spatially changing correction factors (for the 

fluxes) and spatially unbalanced sampling of the surface fluxes. 

For tower-based regional inversion schemes, the impact of this error can be 

somewhat counter intuitive. Assume that there exists a simple stationary isotropic 

covariance on the prior distribution of fluxes, in other words the variance structure of the 
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errors in the fluxes (from the prior) is similar with distance between locations. It is then 

fairly easy to see that the errors in the inversion, in an aggregation-sense, will arise in 

areas that have the steepest sampling gradients. The most sampled area in tower-based 

schemes is generally the local area in the vicinity of the tower. The upstream influence 

drops off considerably with distance from the tower, with the steepest sampling areas 

being right at the tower. This is somewhat counter intuitive in that the worst aggregation 

errors, relative to their posterior variances, may very well occur right beneath the 

sampling towers, where one would expect to get the most reliable results. Adding to the 

problem, the posterior covariance is usually very small in the vicinity of the tower, owing 

to the dense sampling, giving a false sense of precision, or confidence. 

Less is known about aggregation error from a temporal viewpoint. Temporally, 

it is generally preferable to assimilate data "on the fly" from within the model, in a 

Kalman filter (or ensemble Kalman filter) manner, propagating errors forward through 

the actual model. However, the runtime of many detailed process models is prohibitively 

expensive and it is generally not feasible to run the multiple parallel instances of the 

model that are necessary to capture the error distributions. As a result, many inversions 

are run in an offline manner with a fixed resolution in space and time, choosing to only 

optimize certain parameters. 

Aggregation error in time can be illustrated using a hypothetical inversion 

scenario. Assume one has CO2 concentration data from a tower that is located 100 km to 

the south east of an intensively managed corn-dominated agricultural region. 

Furthermore, assume that the inversion is "blind" to the field of corn, i.e. the prior 

contains no information on the vigorous summer carbon drawdown located to the 

53 



Northwest of the tower. If the winds come from the Northwest in the spring and the 

Southwest in the summer and a mean correction factor is estimated over the entire 

summer period, it will likely be biased low because it only "sees" the cornfield during 

less intense assimilation periods. 

A more satisfying solution would be to find a period of time over which the flux 

correction factors remain somewhat constant. Note that this does not necessarily fix the 

problem of not "seeing" the cornfields during their most intense drawdown period. The 

sampling coverage in both space and time is a simple product of the observation network 

and the meteorology. However, it would be more reasonable to specify large variances in 

the prior covariance matrices in agricultural regions during periods in which crops are 

generally growing. 

It is very difficult to avoid, or account for, aggregation error. In most cases, 

researchers attempt to minimize this error by running higher resolution inversions. 

However, it would be expected that justifying inversion solutions where one has 

increased the number of parameters in an already under-constrained problem would 

provide an equally daunting challenge. 

Representation Error 

Representation error arises from the fact that many carbon dioxide concentration 

measurements are point measurements in both time and space, but often extrapolated to a 

grid cell and time frame in an inversion scheme. Essentially the error is a function of 

sub-grid scale dynamics that are essentially 'truncated' in order to perform calculations 

on a discrete grid. For example, a single measurement of CO2 at the WLEF tower in 
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Wisconsin might be used to represent the average of the entire 1600 km2 grid cell that 

contains it in the model. Representation error can be complicated but portions of the 

error are quantifiable by using correct "change of support" statistical methods (Raftery et 

al., 2003; Bannerjee et al., 2004). The examples in this paper employ an inverse 

Lagrangian particle transport approach which should mitigate possible representation 

errors due to point measurements of carbon dioxide. It is important to note that even 

though they are related, representation error is distinct from transport error. This is 

illustrated by the fact that the Lagrangian transport approach is used to provide sub-grid 

scale transport estimates and remove the representation error. However, this does not 

necessarily imply that it models the transport correctly. 

Observation Error 

The term "observation error", derived from the common statistical usage, is a bit 

of a misnomer for inversion studies since the error term generally combines two error 

terms, transport and measurement error, with starkly different magnitudes. The 

measurement portion of this error term is the actual error in the instrument reading of 

carbon dioxide. Given reasonably well-calibrated observations, these are small relative 

to the other error components and generally not of much concern. Transport errors, 

which arise from errors in the atmospheric transport of NEE fluxes to the tower 

(observing site), are of a much greater magnitude. Results from the Transcom 3 project 

(Gurney et al 2002) showed that there are substantial differences in transport dynamics 

by the leading transport models. It occurs when the transport operator, responsible for 

moving carbon dioxide in the modeled atmosphere, is incorrectly specified. This can 
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occur when the actual atmospheric physics are simplified, as in parameterized convection 

schemes, when the parameters of these simplifications are incorrectly specified, or when 

actual physics related to transport are excluded, such as the exclusion of convective 

motion from a transport scheme. The standard methology in inversion problems is to try 

to minimize aggregation, respresentation, and measurement errors, and specify transport 

error, assuming it is the main contributer to the "observation" errors. 

Prior Error 

Another source of error that must be specified in atmospheric inversions is the 

manner in which the prior NEE guess differs from the unknown truth. Atmospheric 

inversion techniques are generally ill-conditioned and thus require prior constraints to 

constrain the result to a reasonable solution. Therefore, prior constraints force the 

solution towards an a priori "best guess". Furthermore, if this prior best guess for the 

solution is different from the true underlying solution, then errors will result since the 

estimated solution will be pulled towards an incorrect solution. An error covariance 

matrix must also be specified that characterizes the variability between this "best guess" 

and the true underlying solution and this dictates the degree to which the inversion is 

"pulled" towards the prior estimate. 

The rest of this paper will investigate the sensitivity of inversion results to 

aggregation schemes, prior flux specification, and observation error levels. A pseudo-

data case study will be explored for which the true fluxes are known and inversion errors 

can be readily calculated. 
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North American Case Study 

Carbon flux estimates for North America display pronounced variability (Schimel 

et al., 2001). Atmospheric based inversion studies and ground based upscaling 

approaches have generally agreed on the sign of the NEE flux. However, atmospheric 

inversion studies have often estimated the flux at levels around twice that of upscaled 

ground measurement based estimates. Initial atmospheric inversion studies also showed 

a disporportionate amount of carbon being stored annually within the United States (Fan, 

et al 1998) while later studies seem to show a more uniform sink mechanism in the 

northern hemispheres (Gurney, et al 2002). 

The estimates are variable, both within each of the methods (atmospheric 

inversion and ground based) as well as between each. It is not clear what this variability 

is a function of and how one might proceed to investigate it. Most inversions, to this 

point, have focused on coupling global biosphere and transport models and inverting 

fluxes for relatively large areas of land. This has produced meaningful results (Gurney, 

et al 2002) that tend to agree with ground based observations, to a degree. Furthermore, 

the results seem to be somewhat robust to simple variability in the priors. Nevertheless, 

without higher resolution inversion studies, it is difficult to study the robustness of 

inversion results with respect to finer scale variables like landcover type, nitrogen 

deposition patterns, and forest stand age. 

Forward-in-time NEE Model 

The Simple Biosphere model (SiB) is based on a land-surface parameterization 

scheme originally used to compute biophysical exchanges in climate models (Sellers et 
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al., 1986), but later adapted to include ecosystem metabolism (Sellers et al., 1996a; 

Denning et al., 1996a). The parameterization of photosynthetic carbon assimilation is 

based on enzyme kinetics originally developed by Farquhar et al. (1980), and is linked to 

stomatal conductance and thence to the surface energy budget and atmospheric climate 

(Collatz et al., 1991, 1992; Sellers et al., 1996a; Randall et al., 1996). The model has been 

updated to include prognostic calculation of temperature, moisture, and trace gases in the 

canopy air space, and the model has been evaluated against eddy covariance 

measurements at a number of sites (Baker et al., 2003; Hanan et al., 2004; Vidale and 

Stockli, 2005; Philpott et al, 2007). SiB has been coupled to the Regional Atmospheric 

Modeling System (RAMS) and used to study PBL-scale interactions among carbon 

fluxes, turbulence, and CO2 mixing ratio (Denning et al., 2003) and regional-scale 

controls on CO2 variations (Nicholls et al., 2004; Wang et al, 2006). Other recent 

improvements include biogeochemical fractionation and recycling of stable carbon 

isotopes (Suits et al., 2004), improved treatment of soil hydrology and thermodynamics, 

and the introduction of a multilayer snow model based on the Community Land Model 

(Dai et al., 2003), 

Backward-in-time Mixing Ratio Adjoint Model 

High-frequency time variations of photosynthesis and respiration are assumed to be 

well understood and easily modeled processes (radiation, temperature, soil moisture). 

Longer-term time variations, such as those potentially caused by very subtle carbon sinks 

into the soil organic matter of agricultural lands, are estimated by solving for unknown 
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multiplicative biases in each component flux after smoothing in space and time. This is 

accomplished by convolving the influence functions generated from a Lagrangian particle 

dispersion model, LPDM (Uliasz and Pielke, 1991; Uliasz, 1993, 1994; Uliasz et al., 

1996), with gridded net photosynthesis (ASSIMN, gross primary production (GPP) - leaf 

level autotrophic respiration) and ecosystem ground respiration (RESPG, heterotrophic 

respiration in the soil and root respiration) at each time step in SiB-RAMS. The net 

ecosystem exchange (NEE) is composed of these two component fluxes: 

NEE(x,y, t) = RESPG(x,y, t) - ASSIMN(x,y, t) (6) 

where x and y represent grid coordinates and t represents time. Sub-hourly variations in 

the simulated component fluxes in time are primarily controlled by the weather 

(especially changes in radiation due to clouds and the diurnal cycle of solar forcing), 

whereas seasonal changes are derived from phenological calculations parameterized from 

satellite imagery. Fine-scale variations in space are driven by variations in vegetation 

cover, soil texture, and soil moisture. To estimate regional fluxes from atmospheric 

mixing ratios, we assume that the model of the component fluxes is biased, and that the 

biases are smoother in time and space than the fluxes themselves. 

NEE(x,y,t) = (\ + j3RESFG(x,yJ))RESPG(x,yJ)-(\ + j3ASSIMN(x,y^))ASSIMN(x,y,t)^ 

A persistent bias in photosynthesis might result from underestimation of leaf area, 

available nitrogen, or soil moisture, whereas a persistent bias in respiration might result 

from overestimation of soil carbon or coarse woody debris. In any case, it is reasonable 

that such biases vary much more slowly in time than the fluxes themselves. 

' Note that NEE(x,y,t) is constructed so that the bias correcting betas are estimated relative to ' 1' and 
represent the deviation from the a priori flux estimates) 
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To estimate slowly varying biases PRESPG and PASSIMN using SiB-RAMS and LPDM, 

we first generate surface flux influence functions by integrating the backward-in-time 

particle trajectories from LPDM. Using these, we can represent the carbon dioxide 

mixing ratio observed at a given station k at time m as 

Ck,m = Y,h^yRESPGxyn -j3A^ASSIMNx^n)c*km^jAtfAxAy + CBKGDXm (8) 

where x and y are grid indices in the zonal and meridional directions, n is the time at 

which ASSIMN and RESPG occurred (not usually the time at which the resulting change 

in mixing ratio was measured!). The influence function C k,m,x,y,n is then the discrete form 

of the partial derivative of the observed mixing ratio with respect to the NEE at grid cell 

(i,f) at time step n. The length scales Ax and Ay are the sizes of the grid cells in the zonal 

and meridional direction, and At/ is the time step over which the fluxes are applied. The 

term CBKGDXm represents the contribution of "background" CO2 flowing into the model 

domain from the larger scales. Summing where possible, this becomes: 

nCell nCell 

^obs= / . PIf ESP cell*" RF.SPnbsce.ll + / .PASSIMN .cell*" GPP.obs.cell ~^" BKGD.obs V*) 
cell=\ cell=\ 

where obs is an observation number (combines indices k and m), and cell is a grid cell 

number (combines indices / and j). The influence functions have been convolved with the 

ASSIMN and RESPG terms from the forward model and integrated over the time period 

over which the bias terms are assumed to apply: 

C * RESPG, ob.s,cell = 

AtjAxAy^RESPG^C* 
obs.cell,n 

(10) C *ASSIMN, ̂  = -AtfAxAyZASSIMNcel,nC * obs.cell,n 

60 

http://RF.SPnbsce.ll


Experiments have been run successfully with 10-day time scales for the bias terms, which 

allow influence functions on hourly fluxes and observations to be integrated for 240 

hours. This approach has two important advantages: (1) the area and strength of upstream 

influence over 10 days is much greater than for a single hour, so the inverse problem of 

estimating the bias terms, /?, is much better constrained than the estimation of the fluxes 

themselves; and (2) the storage of the influence functions (in eq 10) is 240 times smaller 

than would be required to store all the C0bs,ceii,n-

The result of equation (10) is basically a statistical regression problem that can, 

under the appropriate Gaussian assumptions, be solved using linear regression. However, 

the number of observations is usually small relative to the number of bias parameters to 

be estimates, leaving a very unconstrained regression problem. Fortunately, as was 

discussed earlier, there are some avenues of recourse to constrain this problem. 

On the justification of prior spatial covariance assumptions 

It has become increasingly fashionable to run inversions at increasingly fine 

resolutions and then apply a spatial correlation structure to the errors in one's prior flux 

estimate. This applies a very strong constraint to a generally unconstrained inversion 

problem and tends to "stabilize" (Kaminski et al., 2001) the solution. In a statistical 

sense, this essentially means that the solution space is very multi-modal (for an 

unconstrained problem) and that the spatial covariance constraint tends to constrain the 

problem well enough to focus in on a single mode in the space of the posterior pdf. 

There are countless solutions to unconstrained solutions, so although the utility can not be 

questioned, the justifiability of this solution as the solution is a separate matter. 
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Providing evidence of some degree of spatial correlation in the errors for the prior flux 

would be needed to provide a more justified solution. However, neither the covariance 

structure of the underlying carbon fluxes nor the related covariance structure of the errors 

in the prior flux are yet well understood and thus it is not clear whether this spatial 

correlation structure in the prior errors is justified. 

In this inversion scenario, SiB3 is being used to capture fine temporal scale 

fluxes. It is not expected to include longer term, more persistent flux differences. There 

are many mechanistic hypotheses for these unresolved longer time-frame flux 

differences. For example, on larger regional scales, atmospheric warming may increase 

the soil temperature in the boreal forest regions which would likely increase the activity 

of heterotrophs in the soil and subsequently provide an increase in respiration and carbon 

dioxide to the atmosphere (Zimov et al., 2006). Given the large amount of relatively 

labile carbon that is stored away in boreal soils, this would seem a plausible hypothesis. 

Given the "zero annual NEE" constraint in SiB, this may not be captured in the prior. 

Furthermore, it has already been shown that a warming atmosphere is correlated to a 

lengthening growing season (refs) in the far north. This might indicate the presence of 

relatively new carbon sinks, especially along an expanding forest-tundra ecotone. It is 

not certain to what extent the prior would account for this expansion. Certainly the use of 

satellite vegetation data is beneficial in this aspect. Disturbance is also a major driver of 

carbon fluxes and it is not well understood how complex disturbance regimes, such as 

fire, may change under the current trajectory. These persistent flux differences may 

operate on a number of different spatial and temporal scales, making them difficult to 
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estimate. The time frame of this case study precludes the ability to analyze disturbance 

regimes, however it may allow for snapshot views of them at a certain point in time. 

Many of the important variables which may influence the errors in the prior do 

appear to be spatially correlated themselves. Relevant information might include 

variables describing soil moisture levels and satellite derived LAI. Naively assuming 

some sort of linear relationship between flux corrections and these variables would imply 

a somewhat spatially correlated correction pattern. Unfortunately there appears to be 

little current evidence that the effect of biases may be so simple, even if they are spatial 

in nature. Nevertheless, we can move forward by examining if there is any apparent 

"cost" to including this prior if is incorrect. 

Inversion region and prior mean 

In the following example, pseudo data is used to investigate a 6000km by 3600km 

region of land encompassing much of North America (Fig. 3.1). The prior mean for the 

carbon fluxes is calculated by running the fully coupled SiB-RAMS biosphere-

atmosphere model. The model was run on a 150 x 100 cell grid with a resolution of 

40km, and covers the majority of North America. The time period was from May 1, 

2004 through August 31, 2004. RAMS was nudged to ETA reanalysis data to provide 

improved transport. The code in SiB was modified to accept MODIS landcover data 

which provided 8-day estimates of fPAR and LAI. The transport from RAMS was then 

processed into the LPDM model to provide source based estimates of sensitivity to 

upwind fluxes. To reiterate its utility, the main reason for using this particle model was 
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to avoid the explicit 

calculation of a full 

adjoint to SiBRAMS 

which would have been 

prohibitively expensive. 

For this particular 
Figure 3.1: Inversion region and calibrated carbon dioxide observing 

example, the initial 40 towers Eight towers in red available for 2003/2004, remaining green 
towers available in 2007/2008. 

km SiBRAMS grid was 

aggregated up to 100km grid cells to facilitate covariance matrix inversions. Flux 

uncertainty is only considered over the land cells of the aforementioned 60 x 36 - 100km 

x 100km grid, meaning that simulated flux biases were applied uniformly across 

individual 100km x 100km grid cells. Fluxes outside of this domain, as well as variation 

in inflow concentrations, fossil fuels fluxes, and ocean fluxes are prescribed and are 

considered fixed and without uncertainty in this example. 

CO2 measurements 

Eight flux towers are located in the region, at the WLEF site, the ARM site, the 

KWKT site, the Western Peatland site, the BERMS site, the NOBS site, and Harvard site, 

and the Argyle, ME site (shown in red in Fig 3.1). All of the sites have collected well 

calibrated carbon dioxide measurements since 2003. It is also anticipated that over 30 

towers will available for the same region for the summer of 2007 (shown in green in Fig 

3.1). Before inverting real concentration data, it must be determined how well these eight 
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towers will constrain an atmospheric inversion and how sensitive these results will be to 

inversion assumptions. 

Model Assumptions 

An assumption for this experiment is that the true carbon fluxes, both from the 

respiration of heterotrophic organisms and plant assimilation, are proportional to the prior 

fluxes estimated by the coupled biosphere-atmosphere model. It can not be reasonably 

assumed that all errors in the fluxes can be corrected via this mechanism. However, it 

will allow a first-order correction to the fluxes that might provide insight into model 

deficiences as well as potentially provide for the independent correction of GPP and 

respiration fluxes which is necessary in an annually carbon balanced model. The crux of 

the inversion is to estimate the multiplicative biases, PJJRESPG
 anf^J^ij,AssiMN^ a s w a s 

shown in Equation 9. 

The inversion will be calculated in a more or less traditional Bayesian synthesis 

fashion. As was shown before (Equation 5), the inversion can be solved by minimizing 

the following cost function. 

C(p) = {G/3 -yy!-l(Gp-y)+{/3-/30 J V ' (/? - A ) 

where, 
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20 = 
' Respg, prior 

0 

0 

' Assimn, prior 

For the case of correlated errors in the prior flux, the respiration and assimilation 

covariance matrices are each formed from the exponential covariance function, where ttj 

is the distance between points /?,- and/?;. 

Cov{pl,PJ) = \ 
(70 ( l - a 0 ) e x p 

h 
V no J 

,i*j 

a0(y0
2,i = j 

The ho parameter is the range (or decorrelation length) parameter, giving the distance at 

which the covariance between two points is equal to cr0 (1 -a0)e~]. The parameter do 

controls what percentage of the covariance can be attributed to spatial covariance and 

allows for easy interpretation. 

The transport portion of the inversion is fixed and the underlying true flux 

distributions are, in theory, unknown. In order to objectively test the sensitivity of the 

inversion to different spatial prior covariance assumptions, a reasonable range of true 

underlying covariance structures must be considered. Spatially correlated bias fields are 

generated by sampling from a multivariate normal distribution, with a spatially correlated 

variance, and using smoothing techniques to ensure small-scale continuity of the surface. 

The smoothing of the field generally results in a small dampening of the assumed 

variance. 

Observations are simulated 4 times a day at the eight sites over a 113-day period. 

Afternoon observations are simulated to lessen the impact of low precision measurements 
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made during times of extremely stable and stratified nighttime atmospheric conditions 

near the ground. In total, there are 3616 observations covering the period May 1, 2004 to 

August 20, 2004 (14916 for the 33 towers expected in 2007). CO2 observations were 

simulated by multiplying net photosynthesis and ground respiration influence functions 

by the bias factors in Figure 3.2 and adding a 1-2 ppm normal i.i.d. error term. This error 

term accounts for the observation and transport error previously discussed in section 2. 

This is a fairly unrealistic and simplistic error term for transport. For example, two 

observations taken 2 hours apart on the same tower most likely have very similar 

footprints of influence and thus are very likely strongly correlated. However, given the 

relatively even distribution of observations for each day and tower available in a pseudo 

data experiment, the effect of temporally correlated observations is likely small. We 

note, however, that this is probably an important component of inversions operating on 

real CO2 observations and is likely an area in which further research is 
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needed. 

True Bias Resp True Bias Assimn 

Figure 3.2: Example bias fields for net photosynthesis (ASSIMN) and ground respiration (RESPG). 

To summarize the point of this exercise, we are interested in estimating the 

correction factors, PRESP and PASSIMN, indicated in Equation 9 (and shown in Figure 3.2), 

using knowledge of atmospheric transport and simulated downwind carbon dioxide 

mixing ratio observations at the towers shown in Figure 3.1. Additionally, we will test the 

sensitivity of the inversion to many different variables in the inversion. 

Results 

Metric for gauging the inversion success 

In unconstrained regressions in which one has many more parameters than 

unknowns, it can be expected that observations will be fit very well. In other words, a 

plot of simulated CO2 and inversion-estimated CO2 at the towers should show very good 
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agreement with a very high R2 value. This is to be expected and would likely only be 

noted if it produced a suspect fit to the observations. This is quite different from the 

prediction ability of the inversion, which is how well the inversion recovers the 

underlying bias parameters. A useful measure of the prediction ability is the root mean 

squared error (RMSE), which is the square root of the mean squared error between the 

predicted biases and the underlying biases used in the simulation. So for most examples 

in the paper, a reduction in RMSE, from the prior to the posterior, is chosen as the metric 

of comparison (which is generally applied as an average over the entire domain), 

1 tiM^L p0STER10R 

RMSEPRIOR 

This statistic tends to one, as the posterior fit gets increasingly better. A zero value 

indicates that the posterior fit is of the same prediction quality as the prior, and 

accordingly, a negative value indicates that the posterior fit is a worse fit than the prior. 

It is important to note that inversions such as this will generally have greater success at 

capturing larger scale mean flux biases. As a result of the inability to capture fine scale 

flux biases perfectly, maximum reductions of the prior RMSE tend to be around 60% for 

these examples. 

69 



. .' '. 
1 

* V 

? \ 
, ' • ' • ' : ' ' 

v •'•'.'•'• 

•:-rO ^.-'-yl'i^f 
< \ •••r>.-V • . ^ -

• I'f-'l-:-->-&#/ 
U-j,v; '"vn.-'y 

•>:*. V- . u * - - . ' . 

0.4 

02 

0.0 

Est. Bias Resp.(1200 km) 

1 

if 
Est. Bias Assimn.(200 km) 

b ,̂:î I ,P 
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Figure 3.3: Evolution of inversion with increasing resolution of inversion, from 1200 km to 100 km. Plot generated by aggregating 
up assimilation and respiration influence functions and performing inversion on that 'coarser' aggregated domain. Underlying bias 
patterns were simulated by using exponential spatial covariance structure with a decorrelation length scale of 500 km length scale 
with 0.2 standard deviation and performing a post-hoc smoothing. Notice the last panels, bottom right and the plot above that, 
indicate the targeted corrections. 

Sensitivity to Inversion Domain Aggregation Errors 

The effect of aggregating the 60x36 grid by a factor of 2,3,4,6, and 12 leading to grids of 

size 30x18, 20x12, and 15x9, 10x6, and 5x3 is investigated first. Inversion estimates for 

correction factors for ground respiration and net photosynthesis are shown in Figure 3.3. 

Given the relatively unconstrained nature of the problem, it was not surprising that the 

inversion-based bias estimates predicted CO2 observations at the towers matching the 

simulated observations very well (R2 > 0.95 for all aggregations, not shown). It is 

70 



important to note that this does not necessary 

imply that the correction factors accurately 

predict the true underlying bias, which is the 

variable that needs to be recovered by the 1 
,o 
a! 

inversion. An overall measure of the ability 1 
UJ 
C/j 

or 

to predict the underlying bias field is f 
o 

<D 

summarized in Fig. 3.4. One will notice that ^ 

GPP is corrected better than respiration in 

Fig. 3.4 and this is likely a result of stronger 

GPP fluxes in summer (when the tests were 

run)) and daytime observations of carbon 

dioxide being more representative of 

terrestrial uptake conditions. 

Aggregation Error 
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Figure 3.4: Aggregation Error Plot. Simulated effect of 
aggregating inversion domain upon a prediction ability, as 
summarized by 1 - RMSEpollt.,im. / RMSEprlor. Underlying bias 
patterns are smooth 500km length scale with 0.2 standard 
deviation. Note that X-axis value of '30' equates to a 30 by 
36 * (30/60) = 30 bv IS zrid. A 1.4 ppm observation error 

It can be seen that aggregations 

resulting in an order of magnitude less 

inversion cells still are able to provide a 

significant amount of improvement over the 

prior in predicting biases. Given this fact, and 

taking into account computational concerns, a 

30 x 18 grid will be used in place of a 60 x 36 

for sensitivity tests involving many inversion 

realizations. 

Sample Size Effect 
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Figure 3.5. Inversion effectiveness as a function of 
sample size. Lack of smoothness is due to independent 
random draws of observation error for each 'weeks of 
data' data point. Averaging across multiple simulations 
would provide smoother curves. 
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Sensitivity to the Number of Samples 

Increasing the number of samples available to any statistical estimation technique 

will improve the estimation. However, investigation of this is very important on a 

problem-by-problem basis. This example constrains the corrected ground respiration and 

net photosynthesis to be proportional to prior estimates. This is not necessarily a bad 

assumption, given the data, but is a very strong assumption to make. Short-term temporal 

variations in NEE fields will be smoothed out by this approach, which may be beneficial 

for identifying trends in areas such as large relatively uniform expanses of native prairie 

or forest. This method is not wholly appropriate for regions with temporally rapidly 

changing NEE, such as might be experienced in the period before, during, and after the 

harvesting of a winter wheat field in Oklahoma, 

return in sample size is important. Inversions 

can then be discretized by this time period. 

This will allow the inversion to be more 

responsive to local temporal changes in NEE, 

such as those often induced by intensive 

agricultural operations. 

Results are shown in Fig. 3.5. It appears 

that the inversion might make more significant 

gains in prediction power during the first 4 or 5 

weeks of data, after which it still gains power 

but at an increasingly slower rate. More 

Thus identifying a point of diminishing 

Effect of size of observation error on inversion (30x18) 

- © - Respiration 

2 4 6 8 10 12 14 

standard deviation of i.i.d. gaussian observation error (ppm C02) 

Figure 3.6: Effect of increasing "observation error" 
on inversion. Underlying bias patterns are created 
from an exponential spatially covariance structure 
with 500 km decorrelation length scale with 0.2 
standard deviation. An ensemble of 10 simulations 
for each 'standard deviation' on the x-axis, is used to 
smooth the effect of a particular observation error 
pattern on result. 
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importantly, results seem to imply that a spatially correlated prior for the biases can be 

beneficial in prediction when the true underlying biases are spatially correlated. 

Sensitivity to the transport error 

This is one of the most important parameters in the inversion. If aggregation error 

can be minimized, transport error will be the main source of error in the observational 

portion of the cost function. It is a function of the true fluxes and it is one of the most 

likely errors to be incorrectly specified or over simplified. Assume that one has a 

reasonable idea of how their prior flux may vary from the true flux, i.e. through 

exploration of modeled and observed NEE at observation sites such as the Ameriflux 

network. The observation error covariance matrix, which is likely dominated by 

transport error, than completely dictates the balance of the power of the estimation 

between the data and the prior constraint. For this example, an independent and 

identically distributed Gaussian error term has been chosen to describe the observation 

error term. Results are shown in Figure 3.6. For the aggregate 30x18 grid, it appears that 

predictive ability drops off significantly over the range of 2 to 4 ppm while losses are not 

as great for increases beyond this range. 

Sensitivity of correction to variability in underlying NEE patterns 

While the NEE patterns illustrated in Figure 3.2 represent plausible patterns of 

bias for correcting the coupled SiB-RAMS model, it is important to investigate how the 

variability in possible underlying bias fields might influence the inversion estimates. 

Systematic and quickly generated bias fields are needed in order to methodically test this 

sensitivity. Randomly generated, spatially correlated fields will be generated as 
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candidate NEE correction fields from a multivariate normal distribution with mean zero 

and correlation matrix ~LTrue. This method is employed in order to speed computations 

and preserve the overall variability of the bias fields. It is important to note, that as a 

consequence, these fields have somewhat more small scale variability than smoothed 

fields and the maximum "recovery" of the inversion may be less than for smoothed 

biases. Therefore a locally weighted regression smoother (LOCFIT, http://www.cs.bell-

labs.com/cm/ms/departments/sia/project/locfit/index.html) is used to provide a slight 

degree of smoothing to the candidate fields, resulting in bias fields with slightly less 

variability than "advertised". 

Y -
True 

' Respg ,true 

0 I 
0 

Assimn ,true 

Cov(finfi,) = °true ( l - a ^ ) e x p 
r~h? 
V Kue J 

+ °true atrue^^J 

true ' l = J 

Sensitivity of the prediction accuracy to the three parameters of the spatial 

covariance function is investigated. In particular, we investigate sensitivity to alrue the 

variance of the NEE correction field, atrue the percentage of this variability allocated to 

independent small spatial-scale nugget variance (the rest allocated to spatial covariance), 

and htrue the range parameter of the spatial covariance, i.e. the distance between cells at 

which the spatial correlation has decreased to approximately 0.36 (e"1). It has been noted 

that a spatially correlated prior seems beneficial overall, given the superior predictive 
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ability when the true underlying biases are spatially correlated. In order to keep the 

results tractable, a reasonable prior distribution is fixed with a variance of 0.04, a range 

(decorrelation length) of 500km, and no nugget variance. This variance corresponds to a 

prior standard deviation of 0.2, representing a reasonable prior variance for correcting 

many biases in the range of-50% to 50%. 

The degree to which the true underlying variability in the correction factors 

partitions between independent nugget variance and variance due to spatial patterns in the 

data can be show to be very important. Figure 3.7 shows results of the inversion 

performed on random spatially correlated Gaussian surfaces with varying decorrelation 

length scales and nugget/'spatial variance partitioning. The most accurate inversions 

result from fields that are correlated over long distances, several hundred kilometers. 

Correspondingly, the prediction ability depends even more strongly on the amount of 

variability partitioned to the spatial component of the variance. It can be seen that the 

flux correction fields, over which the inversions provide the most correction, have 

correlation length scales on the order of 500km or more, with at least 25% of the 

variability being attributable to spatial 

75 



covanance. 

o. 
Err 

£ 

0.6 -

0.4 -

02 -

0.0 -

0.2 -

0.4 -

Effect of Nugget Variance and Decorrelation Length Scale on Fit (GPP) 36x18 (200km 

1km 

BIDS? 

100km 

s • 

500km 

$ T ... -

1 

1000km 

0 

Q 

A2 agg) 

2000km 

0 0grg 

0 0.25 0.5 0.75 1 0 0.25 0.5 075 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 

% Nugget Variance 

a. 
to" 
2 
04 

Effect of Nugget Variance and Decorrelation Length Scale on Fit (Heterotrophic Resp) 36x18 

1km 

B 5 § S § 

100km 

^ i ^ -

500km 

0 

1000km 

iS ^ -T. 

'''s 5 S 
1 

(200kmA2 agg) 

2000km 

5 0 ? n 

0 D.2S 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 

% Nugget Variance 

Figure 3.7: Effect of spatial correlation length scale and percentage of variability assigned to 
"nugget" variance on the inversion fit to simulated true underlying flux bias A 1 ppm observation 
error term was used for the results shown here.. 

Discussion 

Due to the increasing use of spatially constrained priors in carbon flux inversion 

problems, there has been a mounting interest in the sensitivity of inversion results to prior 

specifications of covariance structure. Results from this study seem to imply that 

prediction ability is far more dependent upon the existence of a smooth mean spatial 

pattern, at some spatial scale, than any spatial specification in the prior covariance 

structure. While inversions such as this are not designed to capture flux estimates at the 

scale of crop fields, it would be reasonable to expect the inversion to capture a large 

spatial scale mean trend over intensely managed agricultural lands. A spatially correlated 
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prior does not seem to damage the prediction ability of the inversion, regardless of the 

true covariance structure of the errors. However, in an under constrained inversion 

problem, improving prediction ability is very dependent upon smooth covariance 

structure to the errors in the biases. In essence, one only has the statistical power to 

extract large scale mean patterns from the data. Additionally, it would seem that the 

correlations need to be fairly persistent over long spatial scales. Fig. 3.7 indicates that, 

for this study, this might be in the range of several hundred kilometers for a decorrelation 

length scale, or range. These type of persistent (in space) biases would likely include 

effects such as those stemming from soley from large climatic changes while the nugget 

variance would likely represent effects such as land use change and natural sub-grid scale 

variability. This would seem to provide evidence to support the construction of a good 

prior which is relatively close to the truth but possibly more importantly, whose error 

structure is spatial in nature and therefore provides a bias that can be recovered. For 

example, with the ability to more accurately model fine scale carbon flux processes in 

agricultural lands, one may be able to recover more subtle processes such as changes in 

soil organic matter. A more accurate depiction of forest ages and species distributions in 

the North Eastern United States might provide the ability to see subtle underlying large 

spatial scale effects of nitrogen deposition. With an increasing number of flux stations 

coming online, one should soon be able to more accurately estimate this covariance 

structure. Results from this study seem to show that without this structure it may be very 

difficult to recover flux estimates accurately without an essentially brute-force upscaled 

estimate from a plethora of spatially distinct CO2 observing sites. 
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The Kalman-filter based inversions seemed remarkably robust to gaussian 

transport error specification. However, it is unlikely that errors are distributed exactly in 

this fashion. More research is needed to determine how relaxing this assumption will 

affect inversion results. 

Aggregation did not seem to affect the prediction ability of the inversion as much 

as was expected, a priori. This is somewhat of a surprising result but has to be tempered 

by the fact that the covariance structure in these examples is somewhat simple. More 

complicated non-stationary and "patchy" covariance structures, that might be a function 

of more than simply distance, might provide more aggregation-based difficulties. 

The maximum reduction in RMSE achieved during any of these simulations was 

about 60% for assimilation and 35% for respiration. This resulted from the full kalman 

filter operating on the unaggregated 60 x 36 100km grid. Sequentially applying the filter 

over time, along with a variation inflation scheme, and assuming a temporally changing 

underlying bias field would likely result in more modest gains in prediction. The study 

used only afternoon observations which probably had a direct impact on GPP being 

predicted better than respiration. The high level of correlation between GPP and 

respiration influence functions is a concern and might have additionally created 

difficulties for the inversion. It might be possible to formally test this by separating (GPP 

and respiration) and reshuffling the influence functions (in time) in order to break this 

correlation and rerunning the inversions, but this has not been done. Furthermore, the 

inversion results will likely be much better when aggregated up to larger regions. 
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IV. Seeing the forest through the Trees: Recovering large-

scale carbon flux biases in the midst of small-scale variability 

Abstract 

Results from eddy covariance flux towers, such as those in the Chequamegon Ecosystem-

Atmosphere Study (ChEAS), have shown that significant small scale spatial variability 

can exist in annual NEE due to factors such as forest age and structure. It is uncertain 

how the spatial variability seen in eddy covariance flux measurements, often applicable 

to areas less than one square kilometer, scales up in space but these studies certainly 

provide reason to believe that significant small scale spatial variability may exist in NEE. 

Biosphere-atmosphere models typically are run on grid spacings anywhere from several 

square kilometers to several square degrees and many of these models are not able to 

accurately capture the kind of carbon dynamics responsible for the small scale spatial 

variance seen in eddy covariance tower networks like those in ChEAS. Furthermore, 

even if models are available to capture dynamics at a point in space like a flux tower, it is 

unlikely that it can be confidently applied across continental sized regions at that scale. 

The question then becomes how does this small scale spatial variability scale up space 

and to what degree is this variability tolerable when using atmospheric inversion 

techniques to recover large regional carbon flux estimates. This paper investigates the 

effect of this variability upon regional carbon flux inversion estimates in North America 

using simulated data from May 1, 2004 through Aug 31, 2004 and a sparse network of 8 

towers in North American. Inversion techniques use carbon dioxide concentrations to 

improve a priori carbon flux estimates and in situations where regional scale spatial 

variability contributes at least 33% to 50% of the variability in the carbon flux errors, we 

find significant improvements in the RMSE of the model are possible across a wide range 

of spatial decorrelation length scales, with post aggregation providing even more 

dramatic corrections, in spite of a very sparse network of observing towers. 
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INTRODUCTION 

During the last decade, Bayesian-based atmospheric inversion techniques have 

emerged as a viable tool to investigate the spatio-temporal pattern of terrestrial carbon 

fluxes (Enting et al. 1995; Fan et al., 1998, Gurney et al. 2002). Earlier research has been 

focused on large continental-sized regions of the earth, using coupled general circulation 

models (GCM). Lately, researchers have begun applying these techniques to regional 

flux domains with increasingly finer resolution inversion domains. 

In general, regional scale inversions focusing on temporal biases that are of a 

seasonal length, or longer, are possible because biosphere models have become adept at 

capturing the majority of carbon exchange that occurs on diurnal and seasonal time 

scales. The effects of the temperature, available soil water, and sunlight have been 

modeled extensively and predictions have become reasonably accurate over a variety of 

conditions and scales (Baker et al., 2003, Hanan et al., 2004; Vidale and Stockli, 2005). 

However, the necessary components to model longer term processes such as nitrogen 

deposition, land management, and other biogeochemical dynamics are often missing from 

these advanced biophysical models and thus lead to errors in the model. These effects 

may be unrecognizable at the diurnal scale but may dominate over longer spatial and 

temporal scales. Thus, researchers can begin to estimate these unknown processes by 

effectively removing the high frequency diurnal signals at fine scales and estimating the 

residuals over longer time and space scales. 

The biggest hurdle to these inversions is insufficient carbon dioxide concentration 

data to constrain the flux inversion problem. Therefore, various additional constraints 

must be added. Two major methodologies have been employed to deal with this problem. 
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The first of these two methods, which was employed in earlier inversion papers (Enting 

et al. 1995; Fan et al., 1998, Gurney et al. 2002, Peters et al. 2007) involved the pre-

aggregation of large flux regions, generally according to prior guesses of flux patterns 

based upon global spatial net primary production (NPP) estimates. Largely in response to 

criticisms of this method (Kaminski et al, 2001; Engelen et al, 2002), geostatistical 

techniques were employed (Michalak et al. 2004) to constrain the inversion problem. 

Michalak et al. [2004] used maximum likelihood techniques to estimate spatial 

covariance parameters (of the carbon flux error component) and then applied the resulting 

smooth covariance matrices to the errors between the underlying fluxes and the a priori 

fluxes. As a consequence of these additional constraints, inversion resolutions could be 

used that were much closer to that of the underlying forward transport and carbon flux 

models. Zupanski et al [2007] used techniques similar to Michalak et al. 2004, with the 

exception that they used Monte Carlo style ensemble Kalman filters to track the 

covariance structure dynamically instead of using more traditional geostatistical point-

based estimates of spatial covariance parameters. Peylin et al. [2005] explored the effect 

of two different error correlation length scale assumptions when estimating daily fluxes 

over a large portion of Europe. 

It seems reasonable to hypothesize that large scale patterns may exist in the errors 

for many models. For example, assume that one is modeling a large continental region 

such as North America. If the underlying flux model consistently under-predicts gross 

primary productivity (GPP) over forest regions and over-predicts over grassland regions 

over a given time interval such as a day or a year, then a map of the errors will likely 

show small positive errors in GPP over the grasslands and larger negative errors over the 
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forested regions. Since grasslands and forested regions tend to exist in "clumps" on 

larger scales, this has the effect of inducing a spatially correlated structure to the errors. 

It is difficult to exactly predict the structure, but it is reasonable to believe that 

correlations might exist on the order of several hundred kilometers or more. It is 

important to realize that this does not imply that the structure will be simple to recover. 

For instance, along ecotones such as the transition from the western to eastern slope of 

the Rocky Mountains and into the Great Plains of the central United States, one might not 

expect errors in fluxes to be strongly correlated. It is also reasonable to believe that the 

covariance function may not simply be a function of distance and may involve some kind 

of structuring around covariates such as biome classification. 

Small scale spatial variability has been a recurrent theme of eddy flux 

measurement towers. For instance, data from the Chequamegon Ecosystem Atmospheric 

Study (http://cheas.psu.edu) showed significant variability in annual NEE between 

mature hardwood forests and old growth hardwood forests (Desai et al., 2005). 

Disturbance histories and the associated age structure has also been shown to be 

important to carbon dynamics in ponderosa pines of the Western United States (Thornton 

et al., 2002, Law et al., 2003). Important factors explored in these papers, such as stand 

age and land management, are generally only coarsely modeled, or not modeled at all in 

larger scale inversion studies. Of course the sampling footprints of the towers that 

generate these estimates of variability are generally on the order of a square kilometer or 

two and thus aggregated flux results at, for instance, 40 kilometers might be expected to 

show less variability than that because of the averaging effect of aggregation. Regional 

inversions generally provide NEE corrections which exhibit features on much larger 
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scales than 40 kilometers (Gerbig et al., 2003; Peylin et al. 2005). The effect this has on 

fluxes is to introduce a layer of "noise" relative to potentially larger spatial scale error 

signals, such as continental scale sinks or large scale agricultural expansion. 

For example, assume that the flux model providing the prior estimates under-

predicts GPP, on average, for a large forested area of North America. It is reasonable, if 

not expected, that this bias would vary spatially over this area on fine scales as a function 

of local land management practices, natural fire regimes, climate, and anthropogenic 

fertilization effects. These types of effects have different magnitudes and can be 

persistent at different temporal scales. This small scale spatial variability has not 

typically been included as part of the prior error covariance structure (Michalak et al, 

2004, Peylin et al, 2005, Peters et al., 2005, Peters et al., 2007, Zupanski et al., 2007), 

where it would be represented by a independent variance component that is typically 

termed the "nugget" in geostatistical literature (Cressie 1993). In general, it is unclear 

how the existence and/or exclusion of this error term in the inversion will affect inversion 

results. 

In this paper we investigate the effect of fine scale spatial variability upon large 

spatial scale improvements in estimated NEE and show that regional inversions are 

robust to fine scale spatially independent variance in the flux errors. These inversions are 

performed in a manner in which assumptions need not be made about a fixed "pattern" of 

fluxes across large regions. In particular, we vary both the level of small scale 

independent variance (noise) as well as the decorrelation length scale of the spatially 

correlated portion of the bias which has a covarying effect upon the success of the 

inversion. A sparse network of 8 towers in North America is used and the effects of 
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varying these two quantities are tested using simulated fluxes and corresponding 

simulated measurements from a biosphere-meteorological model. 

METHODS 

Model 

The Simple Biosphere model (SiB) is based on a land-surface parameterization 

scheme originally used to compute biophysical exchanges in climate models (Sellers et 

al., 1986), but later adapted to include ecosystem metabolism (Sellers et al., 1996a; 

Denning et al., 1996a). The parameterization of photosynthetic carbon assimilation is 

based on enzyme kinetics originally developed by Farquhar et al. (1980), and is linked to 

stomatal conductance and hence to the surface energy budget and atmospheric climate 

(Collatz et al , 1991, 1992; Sellers et al., 1996a; Randall et al., 1996). The model has been 

updated to include prognostic calculation of temperature, moisture, and trace gases in the 

canopy air space, and the model has been evaluated against eddy covariance 

measurements at a number of sites (Baker et al., 2003; Hanan et al., 2004; Vidale and 

Stockli, 2005). SiB has been coupled to the Regional Atmospheric Modeling System 

(RAMS) and used to study PBL-scale interactions among carbon fluxes, turbulence, and 

CO2 mixing ratio (Denning et al., 2003) and regional-scale controls on CO2 variations 

(Nicholls et al , 2004; Wang et al, 2006). Other recent improvements include 

biogeochemical fractionation and recycling of stable carbon isotopes (Suits et al., 2004), 

improved treatment of soil hydrology and thermodynamics, and the introduction of a 

multilayer snow model based on the Community Land Model (Dai et al., 2003). This 
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latest version of SiB is termed SiB3. 

In SiB3, the net ecosystem exchange (NEE) is composed of two component 

fluxes, gross primary productivity (GPP) and ecosystem respiration (RESP), which 

includes autotrophic and heterotrophic respiration terms. 

NEE(x,y,t) = RESP(x,y,t)-GPP(x,y,t) (1) 

where x and y represent grid coordinates and t represents time. High-frequency time 

variations of photosynthesis and respiration are assumed to be well understood and easily 

modeled processes, i.e. due to changes in radiation, temperature, soil moisture, etc. 

Long-term, more persistent biases are estimated (Eq. 2) by solving for unknown 

multiplicative biases in each component flux after smoothing in space and time. This is 

accomplished by convolving the influence functions generated from a lagrangian particle 

dispersion model, LPDM (Uliasz and Pielke, 1991; Uliasz, 1993, 1994; Uliasz et al., 

1996), with GPP and RESP at each time step in SiB-RAMS. It is noted that at the present 

time convection is not included in the LPDM and it is uncertain what effect this will have 

on inversion results. 

To summarize, we estimate regional fluxes from atmospheric mixing ratios by 

assuming that the model of the component fluxes is biased, and that the biases are 

smoother in time and space than the fluxes themselves: 

NEE{x, y, t) = (1 + J3RESP (x, y))RESP(x, y, t)-(l + jBGPP (x, y))GPP(x, y, t) (2) 

The model domain, shown in Fig. 1, consists of most of the United States as well as a 

large portion of Canada and the northern portions of Mexico. SiB3-RAMS was run on a 

single 150 x 90 grid of 40 kilometer cells. RAMS meteorology was nudged with NCEP 
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ETA 40km analysis data throughout the domain using the 4DDA scheme (Walko et al., 

2002) to produce more reliable wind fields. SiB3 was run with 8-day fractional 

photosynthetically available radiation (FPAR) and leaf area index (LAI) fields derived 

from the MODIS MOD 15 product. This was provided from the Numerical 

Terradynamics Simulation Group at the University of Montana who generated it for use 

in constructing the official MOD 17 GPP product (Mu et al., 2007). The focus of this 

study was on the regional domain and therefore boundary inflow of CO2 was assumed 

fixed, without uncertainty, for the term of the study. An inversion of North America 

using real data would likely follow a nested coarse-inversion concept, similar to that 

presented by Peylin et al. 2005. 

Synthetic Data 

CO2 observations are simulated hourly at eight measuring sites (WLEF, Harvard 

Forest, ARM, BERMS, Fraserdale, Western Peatland, WKWT, and Argyle (ME), see Fig. 

3.1 for locations) over a 113-day period. These were produced by first running a realistic 

model run of SiB for the period and domain of interest to serve as our a priori biosphere 

flux model. Then we convolved specified pseudo bias fields for net photosynthesis and 

ground respiration with LPDM derived inverse transport fields. Gerbig et. al. [2003] 

found mean standard deviations on the order of 0.6 to 1 ppm when viewing morning and 

afternoon vertical profiles of CO2. As a consequence, robust afternoon hourly average 

observations, at 12PM, 2PM, 4PM, and 6PM local time, are used to lessen the impact of 

low quality modeled measurements made during times of extremely stable and stratified 
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nocturnal atmospheric conditions near the ground. The effect of a simulated inversion is 

a perfect flux correction model, i.e. a well behaved error structure, as well as a data set 

with no missing values, which lessens the potential impact of using a patchwork of sub-

daily CO2 observations. The use of real data would certainly lead to a more thorough 

investigation of time averaging CO2 hourly concentrations to obtain more robust 

observations. In total, there are 3616 observations covering the period May 1, 2004 to 

August 20, 2004. An independent mean-zero 2 ppm standard deviation Gaussian error 

term is added to the CO2 observations to provide a crude estimate of transport errors. 

In summary, we used a realistic continental scale model run of SiB, based upon a 

113-day period in the summer of 2004, to provide realistic GPP and respiration fluxes. 

We also used a realistic model run of RAMS during the same period to provide transport 

fields. We then assume 'truth' is actually represented by these biosphere fluxes 

multiplied by synthetic, simulated, bias fields. We then simulated what the carbon 

dioxide concentrations would be at the observing towers give these biases. Finally, we 

performed the inversion to see how well we can estimate the biases from the carbon 

dioxide concentration observations. 

Inversion Procedure 

Standard multivariate normal assumptions are made and data are assimilated using 

a Bayesian synthesis inversion, or equivalently, a single standard Kalman-filter updating 

step. The resolution of the inversion domain (36 X 60, 200km grid spacing) and the 

number of measurements (3616) were selected such that the needed matrix inversions 

91 



could be calculated relatively quickly and without the aid of additional covariance sub-

sampling procedures such as the Ensemble Kalman Filter methods (Evensen et al. 1994, 

Zupanski et al. 2007) employ. While sufficient for theoretical exercises, it is noted that 

additional measurements and increased inversion domain resolution would require more 

involved sub-sampling procedures such as those used in the ensemble methods as well as 

a filter mechanism to propagate information forward. In particular, for a length n CO2 

measurement vectory, length m CO2flux bias vector/?, nxn observation error covariance 

matrix Z, nx m Jacobian transport matrix G, length m prior flux estimate /?<?, and m x m 

model-prior mismatch covariance matrix Zo, the Bayesian statistical assumptions are1: 

y\Pt'L~N{GP,l) 
(3) 

/?~M/?o^o) 

The posterior distribution of the flux vector can be solved for analytically and is: 

p({J\y,X)K-\[(Gj3-y)TZ~](G/3-y) + {/3-{]0)
r\-](/J-f]0)] 

~ 4 v ' +G^s-,G)",(2:0-
,/?0 + Grs-v)i((I0-

, ^^-'a))"1) 

With a little bit of algebra, one can rewrite the mean/expectation of the posterior 

distribution of the mean, giving the familiar Kalman-filter updating equation. 

4<W]=/*<> ^G^G + ̂ y^iy-Gh) (5) 

With respect to constraining the problem with spatially correlated errors, the covariance 

matrix Zo will take on the following form. 

£0 = 
£ 0 
^RESP,prior " 

0 ^ GPP, prior 

(6) 

N(n,Z) represents a multivariate Gaussian/Normal distribution with mean vector u and covariance matrix 
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For the case of correlated errors in the prior flux, the respiration and GPP covariance 

matrices are each formed from the exponential covariance function, where titj is the 

distance between points Xj and Xj. 

Cov(j3„/3/) = 
cr 0

2( l -a 0)exp 
h 

V no J 

, i * j 

(7) 
a0(T0

2,i = j 

The ho parameter is the range, or decorrelation length scale parameter, giving the distance 

at which the covariance between two points is equal to<r0 (1 -a0)e~]. The a parameter 

is the scalar variance parameter and determines the variance of the marginal distribution 

of the particular flux component. The parameter <Xo controls what percentage of the 

covariance can be attributed to spatial covariance, as opposed to spatially independent 

errors. 

Given a posterior mean NEE xposterior of length n, a posterior mean NEE variance 

estimate £posleri0r of dimension n x n, and a scalar vector b of length n that maps higher 

resolution fluxes to coarser resolution fluxes, the following result from multivariate 

Gaussian statistics (Johnson and Wichern, 1988) can be employed to compare mean NEE 

at larger post-aggregated scales: 

NEEh = b'xposlemr ~ N(b'xpoxlerior,b'Xp„slenorb) (8) 

The scalar vector b can be chosen as a sequence of 1/k's and O's where one is estimating 

the mean of a block of k cells together. In essence, this is mapping the higher resolution 

posterior mean fluxes to coarser resolution mean fluxes. Given that we are considering 
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NEE as the sum of GPP and RESP, the above result can first be employed to sum GPP 

and RESP correctly and then employed again to aggregate up resulting NEE. In this 

example, our finest resolution was 100km, a grid of 60 by 36. Values of k were chosen to 

be 4, 9, 16, 36,144, and 2160, which represent aggregations to 400 km, 900 km, 1600 km, 

3600 km, 14400 km, and the entire domain. In order to compare to the prior, this 

calculation was performed on both the distribution of the mean of the posterior fluxes as 

well as the assumed distribution of the mean of the prior fluxes. 

This is a fairly long period of time over which to consider the flux biases 

absolutely constant. From initial forays into real data inversions under this same 

inversion setup, it appears that temporal coherence in the biases might be shorter than our 

current inversion timescale, on the scale of a month or two, or shorter, likely tracking a 

seasonally-dominated temporal error structure. For a filtering-style setup, e.g. Kalman 

filter, results should be similar to those shown in Fig. 2 but the absolute amount of the 

NEE correction might be expected to be different due to (1) lesser amounts of useable 

data per filtering step and (2) additional numbers of fitting parameters afforded by using a 

filter. 

Experiments 

In order to test the sensitivity of the inversion to fine scale spatial noise, we 

introduce a set of Monte Carlo inversion experiments. The point of the paper is to vary 

small scale spatial noise, however given the uncertainty surrounding the effect of the 

prior decorrelation scale length of the flux errors, we will include that as an adjustable 
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parameter in the inversion as well. The forward model of both fluxes (SiB3) and 

transport (RAMS) operates on 40 km and is post aggregated to 100 km for computational 

reasons. 

An intercomparison of atmospheric CO2 inversion models (Transcom3, Gurney et 

al., 2002) provided source/sink estimates on the order of a few tenths of a Pg of carbon 

per inversion region per year. When compared to the actual net photosynthesis or ground 

respiration fluxes for this region, this results in uncertainties on the order of 10 - 30% in 

either direction, on a cumulative basis. Mean-zero Gaussian-based biases for individual 

100 km grid cell GPP and respiration using 20% standard deviation appear reasonable 

given the model constraints. These biases also seem to be a reasonably conservative 

(broad, encompassing) a priori specification for the scalar multiplier on the spatial 

portion of the prior Gaussian covariance. Small scale spatial noise of the same order also 

seems reasonable, and in combination with the spatial component generates a reasonably 

wide range of potential biases, on the order of 40% standard deviation for the individual 

100 km grid cells for which they are applied. 

In particular, decorrelation length scale is investigated at levels of 100 km, 500 

km, 1000 km, and 2000 km. Small scale Gaussian flux noise will be allowed to vary 

between standard deviation levels of 1%, 5%, 10%, 20%, and 40% of the a priori fluxes. 

The a priori scalar standard deviation on the spatial covariance term is set to 20% and the 

prior inversion decorrelation length scale will be set to 500km, a reasonably conservative 

prior compromise between similar parameters used in some recent papers (Michalak et. 

al. 2004, Peylin et al. 2005). For each combination of these two levels, 20 realizations of 

each scenario will be run using randomly generated pseudodata corresponding to the 
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levels used. Since the temporally varying sampling pattern of the 8 towers is somewhat 

stationary with respect to their locations, we must ensure that many different potential 

flux patterns are realized by the experiments so that the results are not dependent upon 

the sampling footprint of the towers. 

A specific example is presented to show the methodology of one realization. Fig. 

1 shows the spatial noise pattern, the longer scale spatially correlated signal, as well as 

the summed bias and the inversion estimate for both GPP and respiration fluxes. This 

particular example employed a noise level of 20%, equivalent to the scalar variability of 

the spatially correlated signal. The spatial decorrelation length scale used to create the 

correlated flux errors was 500 km, equal to that used as the a priori estimate. Table 1 

shows summary statistics for the mean flux estimates of upscaled, increasingly coarse, 

gridded flux regions for this example. These statistics will be used as the measure of fit 

for inversions based upon the complete set of levels mentioned above. 
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Figure 4.1: Example correction of GPP and total respiration signal. 4 Panel Plots: Upper 
left: small spatial scale bias applied over model domain, upper right: large scale bias over 
model domain which we would like to recover, lower left: total signal (sum of small and 
large), lower right: posterior estimate of mean bias. The eight C02 observing towers are 

Table 4.1. Summary statistics for example inversion shown in Fig. 1. 

Flux-based Statistics 
Prior Mean RMSE (g/m2) 
Posterior Mean RMSE 
(g/m2) 
Percent Improvement 
over Prior 
Percent improvement in 
mean SD for grid cell 
mean over Prior (crude 
measure of tightening of 
posterior) 

200km 
45.3 
28.2 

39.2% 

32.5% 

400km 
38.4 
20.5 

49.1% 

40% 

600km 
35.3 
16.4 

56% 

45.8% 

1200km 
26.8 
8.0 

72.3% 

59.1% 

Domain 
2.6 
1.7 

57.1% 

77.9% 

Note: This result is based upon a simulated observation error and thus changes slightly 
with different realizations. Third row of table is what is presented in Fig. 2 for multiple 
inversion study. 
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Results 

Results from the sample realization, shown in Fig. 1, indicate that the posterior 

improves fluxes considerably over the a priori estimates. Improvement in the spatial 

average RMSE over the prior fluxes is from 40% to 90% depending upon the post 

aggregation level. This is promising, considering that the level of small scale noise (20% 

at 100 km) is equivalent to that of the spatially correlated portion of the flux errors (20%) 

for this example. 

Figure 2 shows these results over the entire range of small scale variability and 

decorrelation length scale parameters given in Sect. 2.4. The aggregated results, based 

upon 100 km resolution inversions, are shown in blue. Variability within each panel of 

the image is due to the fact that the underlying bias field is not known and therefore has 

to be sampled over the set of all possible bias fields. The improvement in the spatial 

average RMSE over the prior is generally in the range of 20% to 90% over all 

combinations. The results show that the inversion is robust to small scale spatial noise 

over a wide range of noise levels and decorrelation length scales. Although it may seem 

at first glance that these results contradict findings of others, such as Peylin et al. [2005] 

who found that changing a priori covariance assumptions impacts the strength and 

location of corrections, spatially, it must be understood that these results are presented as 

large scale spatial averages. The degree and location of correction is likely to change 

with varying a priori spatial assumptions on the errors but as one post aggregates results 

to larger scales,corrections appear more robust. This is likely a result of varying a priori 

spatial assumtions driving correlated posterior flux estimates. 
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The power of higher resolution inversions versus lower resolution "pre-

aggregated" inversions is shown in Fig. 2 as well. Inversions performed on the grid cell 

size shown in the x-axis are shown in red. For instance, at the point in an individual 

panel at which the x-axis indicates 600 km, the blue results give aggregated results based 

upon 100 km inversions while the red results give results based upon 600 km inversions. 

The difference is clearly most sensitive to the spatial correlation length scale of the bias 

pattern while much less sensitive to the layer of noise added to the flux biases. This is as 

one would expect, very smooth bias fields require less precise spatial estimates of the 

biases while less smooth bias fields require more precise spatial estimates. 

Figure 3 shows the "contraction" of the cumulative NEE integrated over the entire 

domain from the a priori cumulative flux to the posterior cumulative flux, centered 

around the assumed true cumulative NEE. The a priori NEE is the same for all the 

inversions while the posterior NEE distribution is based upon the example inversion 

given previously. The posterior cumulative flux estimates are much closer to the truth, 

displaying significantly less variability. Furthermore, the a priori spatially integrated 

cumulative fluxes appear to show a reasonable range of possible deviations, +/- 3PgC per 

year, from the a priori assumed mean-zero annual NEE balance of SiB3, representing the 

potential to encompass many realistic source/sink scenarios. 

99 



In
ve

rs
io

n
 S

en
si

tiv
ity

 to
 1

00
km

 N
oi

se
 

20
00

 k
m

 D
ec

or
r.

 T
ru

th
 

1%
 S

D
 In

d.
 G

P
P

/R
es

p 
N

oi
se

 

a
p

lf
f 

H
h 

$ 
^ 

10
00

 k
m

 D
ec

or
r 

T
ru

th
 

1%
 S

D
 In

d.
 G

P
P

/R
es

p 
N

oi
se

 

£ 
i $ 

§ 
* 

50
0 

km
 D

ec
or

r.
 T

ru
th

 
1%

S
D

 I
nd

. 
G

P
P

/R
es

p 
N

oi
se

 

a 
"i 

$ 
* 

* 
s?

 

10
0 

km
 D

ec
or

r.
 T

ru
th

 
1%

S
D

 I
nd

. G
P

P
/R

es
p 

N
oi

se
 

' 
rS

 

20
00

 k
m

 D
ec

or
r.

 T
ru

th
 

5%
 S

D
 In

d.
 G

P
P

/R
es

p 
N

oi
se

 

: 
-r

 
i,

 
r|

 
$ 

-L
 

• 
o

 

a
S

B
fB

ti 
« 

10
00

 k
m

 D
ec

or
r.

 T
ru

th
 

5%
 S

D
 In

d.
 G

P
P

/R
es

p 
N

oi
se

 

8 
$

^ iP
 

50
0 

km
 D

ec
or

r.
 T

ru
th

 
5%

 S
D

 In
d.

 G
P

P
/R

es
p 

N
oi

se
 

$ 

if 
"M

 

10
0 

km
 D

ec
or

r 
Tr

ut
h 

5%
 S

D
 In

d.
 G

P
P

/R
es

p 
N

oi
se

 

0 

a 

20
00

 k
m

 D
ec

or
r 

Tr
ut

h 
10

%
 

S
D

 In
d.

 G
P

P
/R

es
p 

N
oi

se
 

10
00

 k
m

 D
ec

or
r.

 T
ru

th
 

10
%

 
S

D
 In

d.
 G

P
P

/R
es

p 
N

oi
se

 

f 
J

S
9

? 

50
0 

km
 D

ec
or

r 
Tr

ut
h 

10
%

 
S

D
 In

d.
 G

P
P

/R
es

p 
N

oi
se

 

10
0 

km
 D

ec
or

r.
 T

ru
th

 
10

%
 

S
D

 In
d.

 G
P

P
/R

es
p 

N
oi

se
 

»J 
* 

* 
I?

 tl 

d8
 

n_
 

20
00

 k
m

 D
ec

or
r.

 T
ru

th
 

20
%

 
S

D
 In

d.
 G

P
P

/R
es

p 
N

oi
se

 

if
?
* 

10
00

 k
m

 D
ec

or
r.

 T
ru

th
 

20
%

 
S

D
 In

d.
 G

P
P

/R
es

p 
N

oi
se

 

a 
@

e^
 

a 

50
0 

km
 D

ec
or

r 
Tr

ut
h 

20
%

 
S

D
 In

d.
 G

P
P

/R
es

p 
N

oi
se

 

10
0 

ki
n 

D
ec

or
r.

 T
ru

th
 

20
%

 
S

D
 In

d.
 G

P
P

/R
es

p 
N

oi
se

 

a 
a 

a a
 

LA
 n

. 
_r

±i
_ 

20
00

 k
m

 D
ec

or
r.

 T
ru

th
 

40
%

 
S

D
 In

d.
 G

P
P

/R
es

p 
N

oi
se

 

r-
1-. 0 

. 
-r

 T
 T

 @
 5

 5
 

U
 

80
 

60
 

40
 

- 
20

 

10
00

 k
m

 D
ec

or
r 

T
ru

th
 

40
%

 
S

D
 In

d 
G

P
P

/R
es

p 
N

oi
se

 

9 

T 
I 

JL
 l

*l
 

U
 

0 
T

 1
 

: 
f 

50
0 

km
 D

ec
or

r 
Tr

ut
h 

40
%

 
S

D
 In

d 
G

P
P

/R
es

p 
N

oi
se

 

x
S

^ 

-L
 u a

 
10

0 
km

 D
ec

or
r.

 T
ru

th
 

40
%

 
S

D
 In

d 
G

P
P

/R
es

p 
N

oi
se

 

r 
s

a
y et

i 
^a

B 
ji

 E
 

E
 

E
 

E
 

£ 
E

 

P
os

ta
gg

re
ga

te
d 

G
rid

 s
iz

e 
fo

r 
m

ea
n 

co
m

pa
ris

on
 

F
ig

ur
e 

4.
2:

 I
m

pr
ov

em
en

t 
of

 po
st

er
io

r 
w

it
h 

re
sp

ec
t t

o 
pr

io
r,

 fo
r 

pr
e-

ag
gr

eg
at

ed
 (

re
d)

 
an

d 
po

st
-a

gg
re

ga
te

d 
(b

lu
e)

 in
ve

rs
io

n 
gr

id
, f

ac
to

re
d 

ov
er

 n
oi

se
 l

ev
el

 a
nd

 d
ec

or
re

la
ti

on
 le

ng
th

 s
ca

le
 o

f t
ru

e 
pa

tt
er

n 
us

ed
. 

P
re

-a
gg

re
ga

te
d 

(r
ed

) 
in

ve
rs

io
ns

 a
re

 
on

ly
 p

er
fo

rm
ed

 fo
r 

gr
id

 s
iz

es
 b

et
w

ee
n 

20
0 

km
 a

nd
 1

20
0 

km
. 10

0 



(a) (b) 

i 1 1 1 1 1 1 i — i 1—I 1—I 1—I 

- 3 - 2 - 1 0 1 2 3 -0.8 -0.4 0.0 0.2 04 0.6 

Difference in NEE (Pg), Prior- Truth Difference in NEE (Pg), Posterior- Truth 

Figure 4.3: Prior(a) and posterior (b) cumulative NEE over period of 5/11/2004 - 8/31/2004 for 
example shown in Fig. 4.1 and Table 4.1. 

Conclusions 

The results of this paper show that NEE predictions can be significantly improved when large 

scale spatial bias patterns exist in the GPP and respiration estimates. Predictions are improved across a 

range of possible spatial decorrelation length scales. Furthermore, and most importantly, these 

relatively large-scale post-aggregated fluxes are robust to significant small scale spatial noise that may 

exist in the flux biases at resolutions that are commonly used for regional inversion studies. 

One might have predicted that the inversion would be influenced heavily by small scale 

variability in a few grid cells surrounding the towers where the CO2 observations were made. 

However, even when only 33% of the overall variability is on the larger scales, improvements of 

greater than 40% (RMSE) can made, dependent upon the post aggregation unit. In general, this is not 

true of eddy-covariance-based flux tower measurements which often capture the effect of a small flux 

footprint (a few km). These measurements may not be very representative of surrounding fluxes, even 

those in close proximity to the tower and shows the value of collecting and analyzing CO2 mixing ratio 

measurements. 
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There are several components of a standard regional inversion which are not addressed in this paper 

due to the nature of the hypothesis and result. For example, the choice of temporal averaging time for 

observations is not necessarily needed for this paper but needs investigation in an applied regional 

inversion. Boundary inflow of C02 also plays a very critical role in regional inversions but is not 

needed for this paper. These will be investigated and included in a paper utilizing real 2004 tower 

observation data in the next chapter. 
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V. A REGIONAL HIGH-RESOLUTION CARBON FLUX 

INVERSION OF NORTH AMERICA FOR 2004. 

Abstract 

Resolving the discrepancies between NEE estimates based upon (1) ground 
studies and (2) atmospheric inversion results, demands increasingly sophisticated 
techniques. In this paper we present a high-resolution inversion based upon a regional 
meteorology model (RAMS) and an underlying biosphere (SiB3) model, both running on 
an identical 40 km grid over most of North America. Previous papers have utilized 
inversion regions formed by collapsing biome-similar grid cells into large aggregated 
regions. The effect of this is that the NEE correction imposed on forested regions on the 
east coast of the United States might be the same as that imposed on forests on the west 
coast of the United States while there likely exist subtle differences in the two areas, both 
natural and anthropogenic. Our current inversion framework utilizes portions of the 
geostatistical approach taken by Michalak et al. [2004] and others and also allows carbon 
flux corrections to be biome independent. Temporally and spatially high-resolution 
results utilizing biome-independent corrections provide insight into carbon dynamics in 
North America. 

In particular, we analyze hourly CO2 mixing ratio data from a sparse network of 
eight towers in North America for 2004. A prior estimate of carbon fluxes due to gross 
primary productivity (GPP) and ecosystem respiration (ER) is constructed from the SiB3 
biosphere model on a 40 km grid. A combination of transport from the RAMS and PCTM 
models is used to forge a connection between upwind biosphere fluxes and downwind 
observed CO2 mixing ratio data. A Kalman filter procedure is used to estimate weekly 
corrections to biosphere fluxes based upon observed CO2. RMSE-weighted annual NEE 
estimates, over an ensemble of potential inversion parameter sets, show a mean estimate 
0.57 Pg/yr sink in North America. We perform the inversion with two independently 
derived boundary inflow conditions and calculate jackknife-based statistics to test the 
robustness of the model results. We then compare final results to estimates obtained 
from Level-4 Ameriflux data and the INTEX aircraft campaign. Results are promising, 
showing the ability to grossly correct carbon fluxes from the biosphere models over 
annual and seasonal time scales, as well as over the different GPP and ER components, 
and also providing interesting hypotheses for future work. 

Introduction 

Carbon dioxide inversion studies have generally been focused on improved 

estimation of terrestrial carbon fluxes such as ecosystem respiration (ER), gross primary 
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production (GPP), and net ecosystem exchange (NEE) as a means to better understand 

the carbon cycle of the earth. Researchers have progressively increased the resolution, in 

both time and space, and accuracy of the carbon flux estimates over the past decade. 

Early inversion studies were focused primarily with finding an explanation for the 

missing sink of carbon that can be easily identified from calculating a budget from annual 

fossil fuel emissions to the atmosphere, the effect of land use changes, and the oceanic 

carbon sink and comparing it to annual records of increasing atmospheric carbon dioxide 

concentrations. Given that it often represents a third of the annual fossil fuel emissions, it 

is of great interest to scientists and policy makers alike. Inversion results have been very 

effective at identifying large defining features of the terrestrial portion of the carbon sink 

(Fan et al., 1998, Gurney et al., 2002) although much debate remains even at extremely 

large scales (Stephens et al., 2007). However, the debate on a global scale has not 

deterred researchers from focusing these techniques on finer scale problems. In fact, 

criticism has been aimed at large scale global inversions because of the fact that their 

estimates can be biased on finer regional scales (Kaminski et al., 2001). The data 

available for regional inversion studies is increasing rapidly year after year, primarily 

within the developed industrial nations of the Northern Hemisphere. This provides 

researchers with some of the first opportunities to perform inversion studies in a very 

high-resolution setting. 

Gerbig et al. 2003 provided the first major regional inversion paper. They used a 

receptor-oriented inversion approach to investigate a series of flights from the CO2 

Budget and Rectification Airborne (COBRA) study conducted in 2000. Results showed 

that the effect of biosphere carbon fluxes could be seen at altitude in mixed layer CO2 
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observed by aircraft. The paper pointed out several areas for future improvements in 

regional inverse modeling including improving biosphere-atmosphere exchange and 

convective transport modeling. Peylin et al. 2005 followed this with a regional inversion 

based on western Europe in which he estimated daily fluxes for a month using relatively 

continuous measurements of CO2 from towers in the inversion domain. The most similar 

effort made for North America comes from the ongoing CarbonTracker project (Peters et 

al., 2007). Peters et al. used a nested transport structure (TM5) with a relatively high-

resolution 1-degree inner grid over North America. A priori carbon fluxes were 

estimated by modifying 1-degree by 1-degree monthly output from the Carnegie Ames 

Stanford Approach (CASA) model to provide diurnal variability by incorporating a Q10 

temperature relationship for respiration and a linear scaling of GPP with solar radiance. 

NEE estimates were optimized by estimating linear correction factors for NEE for each 

of 17 ecoregion-based (Olsen et al., 1992) sub-areas of North America based upon a 5-

week smoothing window. The coarseness of the inversion over North America is 

required in order to be able to solve biases simultaneously across the globe on the coarser 

nested grids. 

Our inversion framework has drawn upon certain techniques from previous 

inversions while including some new features. The aim of the inversion is to provide fine 

scale inversion results over North America for 2004. A novel feature of this inversion is 

the distinct estimation of GPP and ER instead of just NEE, which to our knowledge has 

not previously been performed, at least in the regional framework. We have drawn upon 

the spatial correlation constraints used by Rodenbeck et al. 2003 and Michalak et al. 

2004, largely in order to regularize the inversion problem. Large matrix inversions, 
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required of nearly all inversion techniques, limited the inversion grid size to 

approximately 10,000 km2 (100 km by 100 km cells). For sensitivity studies involving 

numerous inversion runs, a 40,000 km2 grid (100 km by 100 km cells) is used. Most 

previous global inversions have been performed upon grid areas of around 5 to 10 times 

that size. In order to provide some contrast, CarbonTracker optimizes 17 bias correction 

factors for NEE while this inversion typically optimizes 540 each for ER and GPP. 

However, this does not come without a cost since we can't simultaneously optimize 

fluxes outside of North America. Therefore we used offline-derived boundary conditions 

and provided these as fixed contributions to the tower CO2 budget. 

Previous work (Ch. 3) showed that considerable success could be achieved in 

estimating large spatial scale ER and GPP signals in the midst of small spatial scale 

variability in fluxes. We leveraged this result and put the problem in a Kalman filter 

framework in order to allow higher resolution spatial estimation. This filter is of a 

somewhat simple variety and allowed us to work with all portions of the inversion, such 

as complete prior and posterior covariance matrices, explicitly. We then tested sensitivity 

to a number of pieces of the inversion considered uncertain, including parameters in the 

actual inversion as well as fixed contributions to the modeled CO2 such as fossil fuel and 

boundary inflow. As far as we know this is also the first paper providing a comparison 

of inversion results derived by using two independent boundary inflow estimates. 

Additionally, the effect of including recently available high-resolution fossil fuel 

inventory data is quantified. 

Methods 
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Prior flux model and transport 

The Simple Biosphere model (SiB) is based on a land-surface parameterization 

scheme originally used to compute biophysical exchanges in climate models (Sellers et 

al., 1986), but later adapted to include ecosystem metabolism (Sellers et al., 1996a; 

Denning et al , 1996a). SiB has been coupled to the Brazilian version of the Regional 

Atmospheric Modeling System (RAMS, Pielke et al., 1992; Frietas et al., 2006) and used 

to study PBL-scale interactions among carbon fluxes, turbulence, and CO2 mixing ratio 

(Denning et al., 2003) and regional-scale controls on CO2 variations (Nicholls et al., 

2004; Wang et al, 2006). This latest version of SiB is termed SiB3. 

In SiB3, net ecosystem exchange (NEE) is composed of two component fluxes, 

gross primary productivity (GPP) and ecosystem respiration (ER), which includes 

autotrophic (canopy respiration and root respiration) and heterotrophic respiration terms 

(due to decomposition of dead organic matter), 

NEE(x,y,t) = ER(x,y,t)-GPP(x,y,t) (l) 

where x and y represent grid coordinates and t represents time. High-frequency time 

variations of photosynthesis and respiration are assumed to be well understood and easily 

modeled processes, i.e. due to diurnally varying quantities such as radiation, temperature, 

or longer term variations in modeled quantities such as soil moisture etc. Photosynthesis 

and assimilation are derived using a coupling of equations based upon the work of 

Farquhar, Collatz, and Ball (Farquhar et al., 1980; Collatz et al., 1992; Ball et al., 1987) 

while soil respiration is based upon a rather simple function of temperature and soil 

moisture and constrained in such a way that annual NEE is equal to zero (Raich et al., 

1991; Denning etal., 1996) 
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Several papers have provided comparisons of models to observations, largely by 

using eddy flux towers to estimate true fluxes of water, carbon, and energy (Baker et al., 

2003; Hanan et al., 2005; Baker et al., 2008). Longer-term, more persistent biases are 

estimated by solving for unknown multiplicative biases in each component flux after 

smoothing in space and time. While these biases could result from incorrectly modeled 

short term processes, such as errors in the daily development of the planetary boundary 

layer, or short-term processes not in the model such as seasonal fertilization and 

irrigation, the main purpose is to capture longer-term processes not explicitly modeled 

such as land use change (Robertson et al., 2000, Peterson et al., 1998), disturbances, 

anthropogenic fertilization effects (Oren et al., 2001), managed forestry (Tillman et al. 

2000), and large scale carbon removal (Ciais et al., 2007). This modeling is 

accomplished by convolving the influence functions generated from a lagrangian particle 

dispersion model, LPDM (Uliasz and Pielke, 1991; Uliasz, 1993, 1994; Uliasz et al., 

1996; Zupanski, 2007), with gridded gross primary productivity (GPP) and total 

ecosystem respiration (ER) at each time step in SiB3-RAMS. The LPDM transport 

scheme reverses advection derived from RAMS at very fine time scales and 

parameterizes vertical turbulent diffusion according to a Gaussian process. A large 

advantage of this model is the ability to simulate transport of atmospheric constituents at 

sub grid scales, reducing representation error that might be caused by associating an 

observing tower with a 40 km grid cell in the model. By tracking particles upwind, 

backward in time, from the towers, one may make inferences about the contribution of 

upstream GPP and ER sources. 

In particular, we have estimated regional fluxes from atmospheric mixing ratios 
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by assuming that the model of the component fluxes is biased, and that the biases are 

smoother in time and space than the fluxes themselves: 

NEE(x,y,t) = (l + ̂ RESP(x,^))£i?(x,>;,0 - (l + j3GPP(x,ypPP(x,y,t) (2) 

The model domain, shown in Fig. 5.1/Fig. 5.2, consists of most of the United States as 

well as a large portion of Canada and the northern portions of Mexico. Both SiB3 and 

RAMS were run on a single 150 x 90 grid of 40 kilometer cells, with SiB3 utilizing 3 

patches per cell to 

capture subgrid-scale 

variability in land cover. 

RAMS 

meteorology was nudged 

with 40 kilometer 

forecast meteorology 

from the National Center 

for Environmental 

Protection's Eta model Fig 5.1. Soil classes (/GBP) used for SiB3 

throughout the domain 

using a 4 dimensional data assimilation (4DDA) scheme to produce more reliable wind 

fields. Soil classes were calculated from 5 minute "% clay / % sand / % silt" soil data 

from the International Geosphere-Biosphere Programme (IGBP) (Fig. 5.1). Biomes were 

extracted from the UMD classification scheme of the MODIS 12 Landcover 1 km 

product and mapped to the most similar SiB biome class for all cells and for each of the 
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three patches used (Fig. 5.2). An exception are the C4 vegetation classes, grasses and 

crops, which were projected onto the MODIS biomes from [Wang et al. 2006]. The crop 

characterization is admittedly simple and more work is currently being done to 

incorporate more accurate crop maps and more realistic crop modeling into SiB 

(Lokupitiya et al., 200*). 

SiB has traditionally 

calculated fPAR, which 

defines the fraction of 

photosynthetically 

available radiation that is 

absorbed by the plant 

canopy, and leaf area 

index (LAI) using 

satellite derived NDVI 

fields. The code was 

Grasslands/Agriculture 

- No Vegetation (Desert) 

- Ground Cover (Tundra) 

Shrubs w Bare Soil 

C4 Crops (Maize) 

C4 Short Grasses 

Evergreen Needte 

Mixed Deciduous Broadleaf and Needle 

Broadleaf Deciduous 

Evergreen Broadleaf 

Water (or Empty for Patches 2 & 3) 

Fig 5.2. Dominant SiB3 biome classes for the first biome 
patch derived from MODIS 12 Landcover product 

changed to use fPAR and LAI fields derived by the Moderate Resolution Imaging 

Spectroradiometer (MODIS) (Mu et al., 2007) and averaged over appropriate biome-

areas based upon the three patch scheme. SiB3 was run with these 8-day fPAR and LAI 

products that were provided by the Numerical Terradynamics Simulation Group at the 

University of Montana who generated it for use in constructing the official Moderate 

Resolution Imaging Spectroradiometer GPP product. 

Modeled carbon dioxide at the tower is calculated as the sum of 3 component 

fluxes convoluted by time and tower dependent transport. 
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CO2 (time, tower) - Transport\ 
time, tower 

( Boundary Inflow (x, y, time) 

+ Fossil Fuel (x, y, time) 

V 
+ Domain Biogenic Fluxes (x, y, time) 

The boundary inflow component was calculated by convolving the influence functions 

from the LPDM model over boundary CO2 fields derived using a global biosphere-

transport model. At any point in time, the boundary inflow is the average of all upstream 

particles located in a 3 dimensional 40 km thick rectangular "ring" around the domain. 

CO2 resulting from the transport of fossil fuels to the towers is calculated by convolving 

the influence functions from the LPDM model with surface fossil fuel flux estimates. In 

particular, the boundary CO2 fields were calculated by combining transport from the 

parameterized chemistry transport model (PCTM) (Kawa et al., 2004; Parazoo, N.C. 

2007) and pre-calculated archived hourly SiB3 fluxes (Baker et al., 2007) on a 1.25-

degree by 1-degree global grid. The model was spun up for 2000-2004 and the C02 was 

centered around the Northern Hemispheric mean C02 for 2004. In addition to this, 

results from the CarbonTracker project, which provide globally optimized CO2 

concentration fields, are used for comparison purposes. 

Fossil fuel fields were constructed using recently available high resolution Vulcan 

fossil fuel inventory fields (Gurney et al., 2008), at a 10 km horizontal spatial scale and 

hourly temporal scale. Previously available fossil fuel flux fields were derived by 

distributing country-level fossil fuel sources spatially as a function of population at a 1-

degree resolution (Andres et al., 1995). The Vulcan fields provide many improvements 

including the incorporation of mobile emission sources and power plants, often located in 

areas distant from high density population centers, increased temporal resolution 
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allowing the modeling of diurnal variability, and increased spatial resolution allowing 

better delineation of high density population centers. The sensitivity to the new fossil fuel 

fields is tested by running inversions using both the Vulcan fields as well as the Andres et 

al. 1995 fields. 

SiB3 balances carbon annually by assuming that ER is in approximate balance 

with GPP on an annual time frame for each surface location and therefore annual NEE is 

zero for each surface location or grid cell (Raich et al., 1991; Denning et al., 1996). 

While this is accurate to a large degree and provides reasonable approximations of 

respiration on diurnal time scales, it ignores annual imbalances in carbon due to a number 

of external factors such as land use, fertilization effects, disturbance history, etc. For 

example, aerial photos and satellite images of the coastal mountains of Oregon show a 

patchwork of forest ages largely dictated by forest management practices. Under standard 

models of forest regrowth, a regenerating forest will eventually enter a long period in 

which carbon is being drawn from the atmosphere and stored in wood and roots, thereby 

providing a sink of carbon from the atmosphere to the biosphere. Conversely, recently 

burned forests usually enter a short-term period in which they represent a significant 

carbon source to the atmosphere. Processes such as these that are largely responsible for 

annual imbalances in NEE are not characterized in SiB3. 

The effect of this on boundary inflow estimates is that the PCTM-SiB3 calculated 

boundary CO2 fields lacks the effect of sources or sinks in 2004. Given the consensus 

opinion of an annual mean sink for carbon resulting from the biosphere, this means that 

the CO2 fields used will be biased somewhat by the effect of not including this expected 

global sink. We investigate the effect of this by including a comparison of the inversion 
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using CarbonTracker optimized CO2 concentration fields for boundary inflow, which 

provides an estimate of sources/sinks. As of this time, carbon dioxide resulting from 

forest fires is not included in the global PCTM-SiB3 inflow or domain SiB3 runs, but is 

included in the CarbonTracker inflow providing one more contrast between the two 

fields. 

Observational Data 

Calibrated CO2 observations were provided half-hourly at eight measuring sites 

(WLEF, Harvard Forest, ARM, BERMS, Fraserdale, Western Peatland, WKWT, and 

Argyle (ME)) for 2004 (Parazoo, 2007). Gerbig et al. [2003] found mean standard 

deviations on the order of 0.6 to 1 ppm when viewing morning and afternoon vertical 

profiles of CO2 in the mixed layer. As a consequence, robust afternoon snapshot 

observations, at 12PM, 2PM, 4PM, and 6PM local time, are used to lessen the impact of 

low quality modeled measurements made during times of extremely stable and stratified 

nocturnal atmospheric conditions near the ground. One exception is the WKWT tower in 

Moody, TX. Data at this tower consistently showed high diurnally-influenced CO2 

concentrations in the 12PM records for most days. It is uncertain exactly what the cause 

of this is but it appears that it may be due to some kind of systematic late venting of 

nocturnal respiration-based CO2 buildup. For this tower, mixed boundary layer 

conditions appeared to be better represented by snapshot observations shifted by 2 hours: 

2PM, 4PM, 6PM, and 8PM. The first 10 days of the year are not comparable due to a 

lack of transport preceding 2004. In all there were 2433 missing observations, resulting 

in 4 (observations/day) * 8 (towers) * 355 (days) - 2433 (missing) = 8927 observations. 

116 



In a previous pseudo-data inversion using a very similar model (Zupanski et al., 

2007), the errors on the observations were assumed to be 1 ppm for afternoon 

observations. Nevertheless, relative to the inversion techniques presented in the next 

section, the errors on these observations should include errors due to calibration error, 

mapping error, transport error, and representation error. For this inversion, transport 

error and representation error are likely the largest components which are notoriously 

tricky to quantify. Investigations into the sensitivity of inversion test results combined 

with initial maximum likelihood estimation results suggest errors in the range of 5-6 ppm 

are appropriate for this particular inversion. For the remaining inversions, the errors are 

assumed to be identical and independently distributed (i.i.d.) mean zero errors with 

standard deviation set to 5.5 ppm. It should be noted that while it is possible to run 

inversions with artificially low prescribed "observation" errors, this will generally 

manifest itself in a need to "over tighten" the a priori covariance structure. 

Climatic Conditions for 2004 

The 2004 year was the 6( wettest in the contiguous United States over the 

preceeding 110 years (1894-2004). It was also warmer than on average. Nevertheless, 

there was a great amount of variability in precipitation and temperature as a function of 

location and season. Drought continued in the west through the summer of 2004, 

essentially prolonging a multi-year period of drought conditions. The spring was also 

very dry for the southeast, extending a period of dry conditions from late in 2003. 

However, summer brought increased precipitation to the east and southeast, culminating 

in enormous amounts of rain in late summer and early fall due to an extremely active 
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hurricane season. The south (Texas, Louisiana, Mississippi, Arkansas, Oklahoma, and 

Kansas) had the wettest summer on record and was much cooler than average. These 

conditions were important as they provided initial conditions for the inversion that 

involved soil moisture induced plant stress over large areas of the United States. 

Inversion Technique 

Standard multivariate Gaussian assumptions are made and data are assimilated 

using a modified Kalman Filter algorithm (Kalman 1960). In particular, for an initial 

length n CO2 measurement vector y representing the first set of measurements, length m 

unknown CO2 flux bias vector fi, n x n observation error covariance matrix £, n x m 

Jacobian transport matrix G, length m prior flux estimate fi 0, and m x m model-prior 

mismatch covariance matrix So, the Bayesian statistical assumptions are: 

y\P2L~N(GPJL) 
/3 ~ N(fi0,i:0)

 (4) 

The posterior distribution of the flux vector can be solved for analytically and is: 

pifl\y,V*-±lG/3-yYz-l(Gfi-y) + (p-fiJZ0-
l(p-fi0)] 

I \ (5) 

~ 4 v ' +G^-1G)",(V'A, +G7S-V)((V1 +G7I-,G))"') 

With a little bit of algebra, one can rewrite the mean of the posterior distribution of the 

mean, giving the Kalman-filter updating equation for the mean. 

E\J3] = PQ+{GT^G + i:;x)f}TY.-\y-GPQ) (6) 

The posterior mean and variance of x are then fed into the next filter step with a 

new set of measurements. This particular inversion estimates biases over 7-day periods 

using available data from that 7-day period of time. Therefore, bias estimates for both 
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ecosystem respiration and GPP as well as corresponding variance estimates are available 

for all of 2004 with the bias estimates changing with a weekly resolution. 

Two difficulties often arise when using filter-style correction schemes. The filter 

estimates can drift away from realistic values if the data are not plentiful or precise 

enough to constrain it. Secondly, the nature of the Kalman filter at each step is to create 

posterior variance estimates that are in general smaller than the prior estimates. This can 

essentially cause the filter to get "stuck" and also produce unrealistically small posterior 

variance estimates around the biases. There is generally no easy solution to this problem. 

Artificially inflating the posterior variance at each filter step is one method in which one 

can try to circumvent (Zupanski et al. 2007). This accommodates the fact the biases are 

likely to change in reality and it allows the filter to consider a wider range of possibilities 

for the bias factors. However, it does not necessarily constrain the biases to any 

particular "reasonable" region of values allowing the bias estimates to drift into 

unrealistic parameter space. Therefore, we have chosen to weight the filter at each step 

with a "grand" prior. This effectively handles both of the preceding problems. With 

respect to our inversion, there will be three pieces of information at each step, the grand 

prior which is derived from the forward SiB3-RAMS model with an error assumption, the 

local prior which is derived from the previous filter step's posterior flux bias distribution, 

and the data which forms the statistical likelihood function. In some sense, this new 

piece of the covariance structure provides a bound upon how much the inversion can 

"learn" about the bias structure. 
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In order to quantify, we denote the grand prior as a multivariate Gaussian 

distribution around Pgrand with covariance matrix agranci Sgrand, and additional weight 

factor w, and we rewrite the expression given in (4) as: 

Thus P is distributed as a multivariate Gaussian with parameters: 

Mean(p)= E\p\= ^ cr^Y. granll~
l +a0~%~1 +Grcrahs

2IGf ' ( w c r ^ / 2 ! ^ / 1 ^ , / + (T0~%~]po + GT(yob^Iy) 

Variance {/3) = E[/32]-(E\PY={{W a ̂ Z ^ / +a0~X~l + G7aobs~
7icf 

Eq. 7 specifically separates out the variance scalars, agrand2, c?o2, and a0bS
2 from 

the covariance matrices, leaving the covariance matrices essentially scaled to 1. The w 

weight is a redundant factor and is simply included to facilitate easier interpretation of 

tightening/loosening of the grand prior covariance (around the SiB3 derived a priori 

carbon fluxes). Unless otherwise specified, this weight, w, on the grand covariance 

matrix is set to 2. This means that the initial variance around the grand prior is increased, 

thus providing a weaker constraint. For the initial filter step, only the grand prior is used. 

After that point, there exist both a grand prior and a prior (from the posterior of the 

previous filter step). The inversion is further constrained by the assumption of spatially 
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correlated errors in the grand prior, i.e. the covariance matrix £grand will take on the 

following form. 

grand 
Respg,prior 

0 I , 
Assimn, prior 

(10) 

The respiration and GPP covariance matrices are each formed from the exponential 

covariance function, where ty is the distance between points /?, and flj. 

(-t,.~\ 

Cov(P„fiJ) = 
cr 0

2( l -a 0)exp 
\ K j 

,i* J 
(11) 

a0a0
2,i = j 

The h0 parameter is the range, or decorrelation length scale parameter, giving the distance 

2 —1 ? 

at which the covariance between two points is equal to<r0 (1 - a0)e . The a parameter 

is the scalar variance parameter and determines the variance of the marginal distribution 

of the particular flux component. The parameter do controls what percentage of the 

covariance can be attributed to spatial covariance, as opposed to spatially independent 

errors. 

Inversion techniques can be extremely sensitive to assumptions. It was shown in 

Chapter 3 that this inversion model is robust to small spatial scale random deviations in 

flux bias and that post-aggregated (in space) estimates can be very good even when using 

a fairly sparse network of towers observing CO2. Nevertheless, given the unconstrained 

nature of the inversion problem, it is always important to assess the impact of varying 

certain unknown parameters in the inversion, such as spatial decorrelation length scales, 

the weight given to the "grand" prior, and the fixed CO2 contributions from both the 

boundary inflow and fossil fuel sources. 
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Sensitivity 

The inversion essentially guarantees some improvement in prediction of observed 

C02 (Eq. 5). However, when using a regression style approach in a heavily 

unconstrained environment, this improvement can often be overstated because of the 

great freedom the inversion has to fit the data. Therefore, it is often desirable to go 

beyond simply comparing observed carbon dioxide at the towers to model-based 

predicted carbon dioxide. Comparing model observations to independent observations 

not used in the inversion, comparing models which predict similar quantities, as well as 

testing the sensitivity of the model to variations in unknown parameters are all methods 

of generating more confidence in estimates. 

We used a variety of different procedures to test the sensitivity of the inversion. 

Regional inversions have been shown to be very sensitive to boundary inflow variations. 

Therefore, we first test the sensitivity of the inversion to varying the inflow of CO2 at the 

boundaries. To do this, we derive boundary inflow to the 8 towers using the LPDM 

model and optimized carbon dioxide concentration fields from the CarbonTracker project 

(Peters et al., 2007). Inversion results are then compared with the results derived from 

the LPDM model and the PCTM inflow. Secondly, we vary several different variance 

parameters and derive annual domain-summed NEE and tower observation based RMSE 

based upon the varied parameters. Thirdly, we use a re-sampling procedure in which we 

create 100 different observation data subsets by holding out a randomly selected 50% of 

the observation data for each. Each set of data is run through the weekly inversion 

scheme and the sensitivity of the predicted CO2 at the towers and the estimated flux 

biases is explored. This provides estimates of the variability of the flux correction factors 
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and can be used to assess the sensitivity of the source/sink to the constraint provided by 

the data. Using the held out data as independent evaluation data and the complementing 

data as training data for the inversion, one may also derive a more accurate estimate of 

root mean-squared error (RMSE) of the inversion-optimized fluxes. We test the impact 

of the high resolution Vulcan fossil fuel inventory on the inversion results by comparing 

inversion results relying upon Vulcan to those results utilizing the Andres et al. [1995] 

fossil fuel inventory. 

SiB3 has been evaluated at many sites and over many time periods, nevertheless, 

the particular model run used for the a priori flux estimates was not optimized to fit the 

flux data at any site in particular. Even though there is a mismatch in representation, with 

the flux towers representing footprints of less than a square kilometer and the inversion 

results representing flux estimates on the scale of thousands of square kilometers, we 

believe that these comparisons are of value, especially in locations that are more spatially 

homogeneous than others, such as grasslands and large forest reaches. This is then the 

fourth comparison we make. 

Results 

As was indicated in the previous section, there are a number of variables that the 

inversion will likely be sensitive to and therefore the results are expected to be quite 

variable. For results, we choose to present one particular case with a fixed set of 

inversion inputs as an initial case study and then use it to compare the effect of varying 

the boundary inflow and the source of the domain fossil fuel fluxes. With reference to 

the preceding section and Eq. 7 in particular, the following values are used for these 
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inversions: agrand = 0.15, CT0 = 0.15, aobs
2 = 5.5 ppm, w = 2, h0 = 250 km. In particular, a 

value of agrand = 0.15 would mean that we expect that approximately 68% of the GPP and 

ER biases are within +/- 15% of the original SiB3 estimated fluxes, with 95% within +/-

30%. This variation when combined with positive spatial correlations was shown to 

provide a reasonable a priori range of annual domain-summed NEE. These deviations 

must generally be kept to less than 30% - 40%) to ensure that posterior ER and GPP 

fluxes are not reduced by more than 100 percent, which makes no conceptual sense. We 

then test the sensitivity of the results over a number of varying inversion inputs using the 

PCTM boundary conditions and the Vulcan fossil fuel flux field. 

General Structure of Results 

CO2 can be predicted by invoking the relationship shown in Eq. 3. The predicted 

mean observed CO2 is derived as Gx where x represents one (for the prior fluxes) plus 

the inversion-optimized flux biases. Using the PCTM boundary conditions and the 

Vulcan fossil fuel inventory, a comparison of the inversion-corrected posterior 

predictions at the towers to the observations is shown in Fig. 5.3. For domain-summed 

temporal plots, NEE is calculated via Eq. 2 while ER and GPP are calculated via the two 

respective summands on right hand side of that equation. These domain-summed 

temporal results are shown in Fig. 5.4. 

The observed carbon dioxide concentrations contain information that infers a 

dampening of the a priori annual GPP cycle, and hence the a priori annual ER cycle (due 

to the strong correlation of the annual sums of each). Since both GPP and ER are 

significantly dampened, it is not surprising that the NEE signal is dampened as well. 
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Furthermore, the data suggest a weak temporal shift in the prior NEE signal. This 

manifests itself as a stronger, but more gradual onset of spring, followed by a weaker 

overall carbon sink over the middle and late summer periods. 

Time ser ies, REDtSIBRAMS, BLUE:OBS, G R E E N : B O U N D A R Y , B L A C K t P O S T E R I O R 
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Figure 5.3: Time series plots of carbon dioxide observations (blue), SiBRAMS prior (red), boundary 
inflow estimate (green), and posterior prediction (black). 

We use a resampling procedure to account for variability that might be associated with 

over fitting the model and which provides additional variability to the standard 

covariance estimates of the biases given in Eq. 6. One hundred different inversions are 

run, each based upon a different subsample of the observations. Assuming temporal 

independence of the errors in the filter, one may simulate properties of the annual NEE 

probability density functions (pdf) for each of these 100 inversions by using the posterior 
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covariance provided at each step of the Kalman Filter for each inversion. A 95% 

confidence interval (CI) for the entire domain can be calculated at each step of the filter 

for each of the 100 inversions. The CI shown in Figure 5.4 then characterizes variability 

in the NEE by selecting the 95% CI of each set of 95% CIs for each weekly time step. 

Carbon Dynamics for North America (2004) 

GPP, prior mean 
GPP, post mean 
ER, prior mean 
ER, post mean 
NEE, prior mean 
NEE, post mean 
95% CI NEE Post 

\ 

Jan Feb Mar Apr May Jun 

— I — 

Aug Sep Oct Nov Dec 

Week of 2004 

Figure 5.4: Plots of prior and posterior estimates for GPP, ER, and NEE. Results are shown for a 
single inversion while the confidence intervals are derived from an ensemble of 100 inversions. 

The ensemble mean of the domain summed annual NEE flux is approximately -0.5 Pg/yr 

while the standard deviation of this estimate is about 0.15 Pg/yr. It is important to note 

that this standard deviation estimate does appear to be too small, giving tighter bounds on 

the flux than found in other inversion papers (Gurney et al. 2002; Peters et al. 2007). An 

additional source of variability in the estimate is discussed later (section on Sensitivity 

and Robustness of Results to Prior Variance Structure) and likely provides another 0.1 

Pg/yr - 0.15 Pg/yr to this standard deviation estimate. The spatial representation of these 
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sources and sinks can be seen in the first panel of Fig. 5.7. Depictions of this variability 

in a spatial framework are shown in Fig. 5.5. This variability is partitioned into two 

pieces, variability associated with the spread of mean estimates over the 100 inversions 

(measure of over fitting) and variability associated with summing up the posterior 

variances at each filter step (regular KF variance) evaluated over all 100 inversions. 

Besides the spatial display of posterior variance information for NEE, which roughly 

tracks the convolution of the sampling footprint of the network and the prior ER/GPP 

signals, the results show that over fitting the model may provide a significant source of 

variability comparable to that which is normally constructed from each filter step's 

posterior covariance matrix. 

Marginal Standard Deviations of Annual NEE (g/m2) 

1e+06 -

Oe-00 -

-1e*08 -

, 
Resamplinq 

f:KsWpM 
iCtV-^'lClT^ 
\ \ /. ' v ;••-*' /-''..-'• 4 

\ ) 1 n* "~i -K~y 

• W u * xat^x 

•00 le»06 2e 06 

Filer 

a.- i 

%-. H * .Jf'%4 
:-A- j \ r r--HN J$M 

lf?W~i34^ 
i\ \ ..... j ; W V--4 
ST rifT'rtZrS 
n, \ i r^-r \ Y 
•rpcj 

-2e*06 -le+05 Oe.00 1e.06 2e+G6 

Figure 5.5: Uncertainty measures in annual NEE. The left panel is the result of running 100 inversions each 
using a randomly selected 50% of the data and then calculating the variance of each cell's mean estimate, 
over the 100 inversions, and summing over each of the weekly filter cycles. Finally, the square root of this 
summed variance (standard deviation) is displayed and is a measure of the uncertainty of the mean estimate 
due to model overfitting. For the right panel, the summed annual variance in NEE is calculated for each 
inversion, from the weekly filter estimates, and the the square root of this (standard deviation) is shown for 
each cell. These plots aim to provide a measure of the uncertainty of each cell's NEE estimate, incorporating 
the correlation between ER and GPP in each cell, but not incorporating the spatial correlation in the 
covariance matrices. 
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CarbonTracker Optimized C02 Inflow - Unoptimized PCTM Inflow 
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Figure 5.6: Difference of boundary inflows (1420 sequential '12/2/4/6PM' observation sequences for 
each of 8 towers.) 

Sensitivity and Robustness of Results to Inflow 

Inflow of CO2 from the boundaries has typically been a large concern of regional 

models (Gerbig et al., 2003; Peylin et al., 2005). In extremely limited domain problems, 

the variance of the CO2 coming in from the boundary can easily dwarf the changes inside 

the domain due to local biotic uptake and release. Therefore it is of interest to gauge the 

sensitivity of the inversion to varying boundary inflows. The boundary conditions 

included in this model were constructed from a global simulation using SiB3 and PCTM 

(Parazoo et al., 2007). The CarbonTracker project has provided CO2 mixing ratio data 

based upon globally optimized fluxes (Peters et al., 2007). SiB3 has no annual 
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source/sinks whereas CarbonTracker includes an annual source/sink estimated from 

observations of CO2. A plot of the difference between the two inflows is shown in Fig. 

5.6. The inflow annual mean and temporal pattern is very similar for PCTM and 

CarbonTracker with the main difference being a seasonally stronger cycle in the PCTM-

SiB3 results, likely a result of the underlying biosphere model, SiB3, providing a stronger 

seasonal GPP/NEE signal than the corresponding CASA model used in CarbonTracker. 

In addition to running comparison inversions between these two CO2 inflow estimates, 

we also run the inversion with a fixed inflow estimate of 378 ppm representing the 

annually averaged PCTM inflow over the period of the simulation in order to show the 

necessity of reasonable boundary inflow values in calculating reasonable source/sink 

estimates. 

Fig 5.7 shows a comparison plot of maps of the annual mean NEE estimate based 

upon CarbonTracker (w/ CASA), PCTM (w/ SiB3), and the fixed inflow condition. The 

results are similar for the CarbonTracker and PCTM inflows but also surprising in their 

differences. The estimates have similar spatial and temporal characteristics and differ 

mainly in magnitude. However, the PCTM-based inversion results in a sink of 0.1 - 0.2 

Pg/yr less than that of the CarbonTracker-based result, which is the opposite of what one 

might guess. Fig 5.6 shows inflow from CarbonTracker that is generally less than that of 

PCTM for the first 4 months of the year. During this period the inversion must add sinks 

to the model to account for a lower concentration of C02 coming in from the boundaries. 

During the summer, when the situation is reversed the opposite occurs, the inversion 

must add sources to the model to compensate for the fact that CT inflow is higher than 

PCTM inflow. However, the magnitude of this adjustment does not seem to be a simple 
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linear function of the concentration differences seen in Fig. 5.6, which would imply that 

larger sources are needed in the CT-inflow model during the summer time than in the 

winter. On the contrary, the relative carbon sources that are a result of CT inflow being 

higher during the summer months are actually less than the carbon sinks resulting from 

the CT inflow being less during the winter/spring months. This results in the CT-inflow 

based inversion having a larger annual sink estimate than the PCTM-inflow based 

inversion. The sink estimated with the PCTM inflow was 0.47 Pg/yr while the sink 

estimated with the CarbonTracker inflow was estimated at 0.58 Pg/yr. It does seem 

somewhat surprising that the results from the two inflows are so close, within 

approximately 20% of one another. This indicates that local observations may be 

affected significantly more by local fluxes than by larger scale fluxes in distant locations 

outside of the model boundary. 
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Figure 5.7: Inversion estimates for three different inflow scenarios, one without modeled annual source/sink 
(PCTM w/ SiB), one with modeled source/sink (CarbonTracker w/ CASA), and a uniform fixed 3 78 ppm 
inflow. Summed annual sinks are 0.47 PgC/yr, 0.59 PgC/yr, and 0.27 PgC/yr respectively. 

Sensitivity of Results to Fossil Fuel Inventory 

Until the release of the Vulcan fossil fuel inventory in 2008, most researchers 

were reliant upon the Andres et al. [1995] fossil fuel inventory, which was released at 

annual time scales and at a 1-degree resolution over the globe. For many large-scale 

inversion applications, this inventory is adequate. However, for higher resolution studies 

within the United States, the Vulcan fossil fuel inventory provides a dramatic 

improvement in both space and time accounting of fossil fuel fluxes. The main 

difference between these inventories is the redistribution of some fossil fuel sources from 

population centers to more distant locations representing mobile sources and power 

plants. The Vulcan fossil fuel flux estimates are at a much higher resolution in both time 
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and space. Previous inversions had to grapple with the fact that some observing stations 

are located within enormous fossil fuel flux regions. For example, a semi-rural location 

like Harvard Forest would very likely be located in the same grid cell as the large 

metropolitan city of Boston. Given no sub-annual temporal resolution to the fossil fuel 

fluxes, an observing tower located at Harvard Forest was often seeing a 24 hour 

continuous stream of fossil fuel fluxes arising from a city over 100 km away. However, 

the 10 km horizontal resolution of the Vulcan inventory allows these to be separated and 

additionally provides a diurnal and seasonal estimate of these fluxes, which is important 

for inversions based upon hourly observations. 

In order to gauge the impact of incorporating the Vulcan data, we first contrasted 

the contributions to each of the 8 towers from each of the inventories. For many of the 

stations, the afternoon differences between the two were very small. Differences at the 

ARM site in Oklahoma, the WLEF site in Wisconsin, the Canadian sites, and the Argyle, 

Maine site were on the order of a few ppm. Differences at the Moody, Texas tower were 

in the range of -5 ppm to 5 ppm. While the differences across most towers were 

relatively small, the differences at Harvard Forest were between -25 ppm and 30 ppm! 

The difference in the annual NEE estimate is shown in Fig. 5.8. The effect on the 

inversion is far from trivial with differences of up to 300 g/m2 per year recorded along 

the northeast coast of the United States. These differences are a result of coarse fossil 

fuel flux fields providing artificially high sources of CO2 to the Harvard Forest tower 

which must be neutralized via a large local sink. 
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Figure 5.8: Difference in annual sink inferred by inversions based upon the Vulcan fossil fuel inventory and 
the Andres et al. [1995] fossil fuel inventory. Spatially-summed annual difference between Vulcan-based 
NEE estimate for 2004 and Andres [199 5] based NEE estimate for 2004 is -0.05 PgC. 

Sensitivity and Robustness of Results to Prior Variance Structure 

A test of the sensitivity and effect of the prior upon results is important because of 

the use of an informative Bayesian prior, that is, a prior flux estimate in which the 

inversion will likely be sensitive. With reference to Eq. 5 and Eq. 7, the w, CT0
2, and h0 

parameters are varied and results are shown in Fig. 5.9. These figures show that results 

are sensitive to nearly all of these parameters, providing different degrees of RMSE and 

sink strength depending upon the particular combination. In particular, sink estimates 

range between 0 and 1 Pg/yr. The ensemble of estimates, over the various a priori 
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variance parameters, have a standard deviation of approximately 0.2 Pg/yr. This likely 

contributes another 0.1 Pg/yr to 0.15 Pg/yr (depending upon the existence of correlation 

between the variance shown here and earlier variance estimates due to jackknife 

resampling and the Kalman filter posterior variances) to the initial standard deviation 

estimate of 0.15 Pg/yr given earlier. This would give a corrected estimate of 0.5 Pg/yr 

+/- ( 0.25 Pg/yr - 0.3 Pg/yr) to the posterior annual NEE estimate shown in Fig. 5.4. 

An RMSE-weighted average of the sink estimates show a sink of 0.57 PgC/yr, 

20% higher than our single case scenario that we have followed throughout these results. 

Values very near the lower left of the plot are somewhat unrealistic since low spatial 

correlation (ho) and a low variance on the prior (CTO ) will not provide a reasonable 

enough range around the prior to provide a realistic posterior sink estimate which 

generally is thought to range between 0 and 1.5 Pg/yr (Schimel et al., 2000; Gurney et al., 

2002) inter-annually. Increasing either the variance multiplier (along x-axis) or the 

spatial decorrelation length scale (along y-axis), or both jointly, increases the error 

variance around the a priori mean allowing more realistic domain-wide summed posterior 

flux estimates. Therefore if one "de-weights" these sink estimates occurring in the lower 

left hand portions of the panels in Fig. 5.8, the RMSE-weighted sink will likely increase 

to more than 0.57 PgC/yr. 

134 



Sink Strength (PgC/yr) Root Mean Squared Error 

0.15 020 0.25 0 30 0.35 0 15 0.20 0 25 0.30 0.35 

w - 1 

w= 0.01 

w - 2 

w=0.5 

800 

600 

400 

200 

0.15 0.20 0 25 0 30 0 35 

o0 (standard deviation multiplier on starting cov. and grand cov) 

a) 600 -

w - 1 

w= 0.01 

w= 2 

w- 0.5 

soo 

600 

015 0.20 0 25 0 30 0 35 

o0 (standard deviation multiplier on starting cov. and grand cov) 

Figure 5.9: Sensitivity of (a) sink estimate and (b) root mean squared error to varying covariance 
parameters in inversion. 

The weight of the grand prior (w) has two effects. First, it constrains solutions 

back towards the prior, essentially anchoring the Kalman filter so that, over time, it does 

not drift too far from the prior. Given the fact that this grand prior is fixed in time, it also 

provides a degree of variance inflation (over the regular KF) by providing a lower bound 

on the prior variance for each filtering step. It is interesting to note that, for cases in 

which the global prior is weaker (bottom two panels), the maximum sink estimate occurs 

on the inside of the plot bounds and not at the boundary. The Kalman filter becomes 

more entrenched without the grand prior since there is no lower limit on the prior 

variability at each inversion filter step and there is no inflation. Therefore it is likely that 

the initial reduction in respiration and associated "sink" of carbon in the early months of 

the year becomes entrenched and leaves a strong sink signature on the rest of the year 

resulting in the largest sink estimates. We did not test any additional forms of variance 
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inflation on the model and acknowledge that additional efforts are needed to construct 

more robust filter techniques. 

Comparison to 2000-2005 NTGS NPP anomaly estimates 

From a practical standpoint, the inversion results are more "well behaved" for 

longer correlation length scales since "di-poling" and large small-scale deviations from 

the prior are less likely. Annual NEE results are shown in Fig. 5.10 for agrancj = 0.15, ao = 

0.15, (70bs2 - 5.5 ppm, and ho = 1000 km (instead of 250 km). NPP anomaly estimates 

from the Numerical Terradynamic Simulation Group (http://www.ntsg.umt.edu/) are 

presented in Fig. 5.11 for 2000-2006. Although not directly comparable because of the 

inclusion of respiration components in NEE, it seems feasible that there might be 

correlations in annual NPP anomalies and annual NEE estimates. Exceptionally 

productive years in growing forests for instance would likely leave a signature on annual 

NEE because of the carbon that is pulled into the wood portions of the vegetation. The 

inversions in this paper universally place a large sink to the east of the WKWT and ARM 

towers, centered over northern Louisiana and southern Arkansas. In general, the 

magnitude of the sink appears too high from an intuitive standpoint, considering it rivals 

the sink that would be induced by the growth and export of a crop like corn (Prince S. 

2000) ( and some speculation on reasons for this are provided in the conclusions). Fig. 

5.11 shows a very large NPP anomaly centered a few hundred kilometers to the north 

over Missouri and Arkansas. Both figures show a significant carbon sink over the marine 

forests of the Northwest. The southeast experienced a very dry spring, following a dry 

conditions in late 2003, which could be responsible for reduced springtime NEE and the 
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source of carbon seen in Fig. 5.11. Our inversions show a source as well but positioned 

much further to the north. There is little constraint in this area of the inversions so it 

would seem reasonable that the sink may be placed incorrectly. Both figures show 

anomalous carbon sources in the northeastern reaches of Canada but the NTGS estimates 

place a large broad source over the northern boreal region of Canada while our inversion 

results generally show a slight sink there. Furthermore, NTGS estimates show sinks to 

the south of the boreal zone while our inversion results show little source or sink in lower 

British Columbia and Alberta. Finally, the NTGS estimates show strong sinks over the 

Rocky Mountains of the United States which are not evident in our inversions, possibly 

due to limited data constraints in the region. It is interesting to note that relative to the 

mean NPP field that NTGS provides, these estimates over the Rocky Mountains 

constitute sinks of nearly 50% over their estimated mean NPP levels. 
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decorrelation length scale from 250 km to 1000 km. 
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Comparison to CarbonTracker flux estimates 

Given the fact that the majority of the underlying observations supporting the 

inversion were also used in the CarbonTracker project, one would expect posterior flux 

estimates to be somewhat similar. One of the most important differences between these 

inversions and CarbonTracker is the optimization of encompassing global fluxes, which 

affect C02 concentrations within our domain. However, this can be mitigated somewhat 

by the use of optimized C02 concentrations from CarbonTracker in the inversion. Under 

this scenario, one would expect the inversion results to be similar to CarbonTracker but 

there are still many differences. As can be seen in Fig. 5.12 , Fig. 5.13, Fig. 5.14, and 
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Fig. 5.15, the carbon fluxes in the priors, CASA and SiB3, play an important role in the 

posterior estimates. The posterior estimates of both inversion models display the 

signature of the a priori fluxes prominently. These results would lead one to believe that 

either the data does not provide sufficient constraint or the covariance structure is 

specified too tightly around the prior. 

Comparison to filled Level 4 Ameriflux data 

Posterior respiration and GPP estimates from the model can also be compared to 

Ameriflux level 4 data. As indicated earlier, there is a spatial representation mismatch in 

doing so due to the fact that the model estimate is an average over approximately 1600 

km2 and the associated flux tower estimate is over a much smaller footprint, likely less 

than 1 km2. Nevertheless, some useful comparisons and observations can be made. 
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Fig. 5.16 shows comparisons of the model to the observations for weekly ER and GPP at 

three Ameriflux sites, which appear in the more observation constrained portion of the 

model domain. The ARM site is one of the more constrained sites in the domain and lies 

in a relatively homogenous landscape making it an excellent candidate for analysis. The 

prior site NEE estimate appears to be improved on average by the posterior flux 

estimates. In particular, the prior model is corrected significantly in the summer when it 

predicts significant respiration occurring. Clearly one can see an early spring winter 

wheat signal in the observations, forming a significant amount of carbon drawdown over 

an 8-10 week period. SiB3 necessarily balances GPP and ER annually and is thus forced 

to redistribute this carbon into respiration in other portions of the year. This is the likely 

reason for displacement of the prior estimate in the summer. The posterior corrects for a 

large portion of this but the large distance between the prior and observed fluxes make a 

complete correction difficult. Just as important, but perhaps more subtle, is the fact that 

the inversion is able to provide significant corrections to ER and GPP separately. SiB3 

appears to significantly overestimate GPP. However, due to the annual NEE balance 

constraint, SiB3 will overestimate ER as well, providing an NEE signal that appears very 

reasonable. If the forward model is only compared to NEE estimates at various sites then 

this fact can be easily overlooked but is likely very important to biosphere dynamics on 

certain time scales. 

Evaluation of annual NEE source/sinks against ancillary data and hypotheses 

Using two sets of boundary conditions, we arrived at a final sink estimate of 

approximately 0.5 PgC per year +/- 0.25 PgC per year. This is significantly less than 
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CarbonTracker's sink estimate of 1.08 PgC per year and other estimates currently 

emerging from an ongoing top-down synthesis project. It is clearly possible that other 

globally based inversions provide more constraint on certain areas of North America, 

such as the Pacific Northwest forest regions of North America or the Southeastern United 

States. Both of these areas have large annual GPP signals and are thus capable of being a 

strong source/sink of CO2. However, our inversion results show a generous sink in the 

coastal N.W. forests while CarbonTracker shows little sink there. Furthermore, 

CarbonTracker's sink is largely located in the agricultural Midwest of the United States 

(and a portion of Canada), an area reasonably constrained by the observation network 

we've used. 

On the other hand, perhaps the globally based sink estimates are too high. The 

recently completed State of the Carbon Cycle Report (SOCCR 2007) provides an 

inventory-based sink estimate for North America of approximately 0.66 PgC per year 

(land sink) using a variety of data sources collected over the last ten to fifteen years. 

Uncertainty is presented as a 95% confidence interval, 0 PgC to 1.32 PgC. This is similar 

to what we've recovered in these inversions. However, this is a mean sink estimate over 

many years and 2004 is believed to be a year in which the sink in North America was 

very strong, likely putting the SOCCR estimate closer to 0.8 - 0.9 PgC/yr, the upper 

range of their annual estimates. Stephens et al. 2007 called into question the magnitude 

of the Northern Hemispheric (and North American) global annual NEE sink which has 

been a cornerstone of inversion results for the last 10 years (Fan et al. 1998, Gurney et al. 

2002, Peters et al. 2007) indicating that it may be much smaller than previously assumed. 

In any case, the rapid expansion of the calibrated CO2 tower network (currently over 30 
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towers in North America) should soon provide significant additional data constraints to 

researchers performing atmospheric CO2 based inversions. 

The spatial character of the annual NEE estimate has several distinctive features. 

The most definitive feature of the annual NEE estimate shown in Fig. 5.6 is the large sink 

estimated between the ARM and WKWT sites in south central portion of the domain. At 

first glance this may appear to be an artifact of incorrect transport, poor boundary 

conditions, or incorrect fossil fuel emissions specifications. However, summing the 

ARM NEE observations for the year provides a sink estimate of approximately 275 g/m2, 

similar to that seen in Fig. 5.6. A likely hypothesis for this sink is the lateral export of 

crops, primarily winter wheat that draws most of its carbon from the atmosphere in the 

spring and then is harvested and exported in early summer. Nevertheless, the strength of 

the source, primarily in its center that is located a significant distance from both the ARM 

and WKWT towers, would appear to be too strong. Sinks of 500 g/m2 rival the harvest 

and complete export of very high GPP crops such as maize/corn (generally not planted in 

this area) and thus the magnitude of this sink appears unrealistic. The WKWT tower 

concentrations have proven to be somewhat difficult to model given its late diurnal 

venting of nocturnally built up carbon dioxide, its close proximity to both the model 

boundary and the ocean, and its proximity to fossil fuel sources of major metropolitan 

areas and oil refining facilities. Given the negative correlation in annual NEE from the 

north of WKWT to the south of WKWT, it is likely that incorrectly estimated sources to 

the south are in part responsible for the strength of the sink to the north. 

The second strongest sink area is located to the east and northeast of the ARM 

tower, largely along the Mississippi river. This is an area of significant crop production, 
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with corn and soybeans being grown extensively in the northern portions while soybeans, 

rice, and other crops are grown to the south in the Arkansas/Mississippi region. Similar 

to the sink seen between ARM and WKWT, this sink appears somewhat too strong and 

"spread out". Crop growing regions are fairly tightly bound to the Mississippi river and 

the spread of the sink around the river is likely an artifact of spatial correlation, both a 

priori and induced by the data. Future work may focus on introducing some coarse 

landcover factors into the model in order to strengthen gradients in areas with rapid 

transitions in landcover. Again, the magnitude is likely overestimated due to 

uncertainties in the inversion process. It is also easy to see the negative correlations 

developing in the NEE estimate (upper left of Fig 5.6) between the lower Mississippi 

valley and the Appalachian Mountains region. These regions would likely be more 

constrained as a sum, resulting in a smaller magnitude NEE estimate for the combined 

area. 

It is interesting to note that the most intensely cultivated portion of the 

Midwestern United States, centered on the state of Iowa, shows little to no sink. This is 

an area typically planted extensively with corn, which has been shown to be an extremely 

effective consumer of atmospheric CO2. The a priori estimate of NEE based upon SiB3 

included a very strong summer time sink of carbon over the Iowa region using a C4 

photosynthesis scheme from Collatz et al. 1992. Whether the CO2 flux is reasonably 

close to the truth is difficult to determine although the increased amplitude of the 

seasonal cycle due to the increased summer time GPP of the corn seems to have put a 

slight signature upon the inversion results (top left panel of Fig 5.6). 
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One other hypothesis for this disparity in sink strength concerns the lateral 

transport of crop harvest. Significant annual sinks can only occur if carbon is added or 

removed from the system. In the case of croplands, the mechanism for this is usually the 

export of harvested crops, which should provide the appearance of a carbon sink in the 

area. Annual NEE estimates from the corn-planted Bondville, IL Ameriflux site indicate 

a sink on the order of 500-600 g/m2. Soybeans can be expected to provide sinks of about 

half of this. Assuming steady state conditions over several years, these types of sinks can 

be attributed directly to the harvest. Approximately 20% of the corn harvest and 35% of 

the soy harvest is exported overseas, mostly for animal feed, while approximately 60% of 

the corn harvest and 50% of the soy harvest is used to feed livestock domestically (Wise, 

2005, National Corn Growers Association website: 

http://www.ncga.com/03world/main/consumption.htm. Soy Stats, 

http://www.soystats.com). Most of the carbon in this livestock feed is then returned to 

the atmosphere as CO2 and CH4 at locations where it is consumed by livestock. Almost 

70%> of the feedlots in the United States are located in just 3 states: Texas, Kansas, and 

Nebraska (http://www.cattlenetwork.com). This may provide a partial explanation for 

the lack of an agriculturally-induced sink over Nebraska and Kansas, states with very 

high crop production and intense livestock operations, and the existence of sinks over 

portions of Arkansas, Mississippi, Missouri and Illinois, states with relatively high crop 

production but with significantly less livestock operations. 

Forested regions in the northwestern United States and boreal forests of Canada 

show slight sinks. However, variability estimates surrounding these sink estimates are 

typically much smaller than the variability estimates of similar sink magnitudes in the 
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Midwest or southeastern United States showing relatively more confidence in the sink 

despite the lack of proximity to the observing towers. The sink estimate in the 

northwestern United States is not surprising since the northwestern coastal mountains of 

California, Oregon and Washington have been intensely managed over the last 50 years 

and are expected to provide a sink of carbon for many decades into the future (Alig et al. 

2006). The estimate for the boreal forest regions appears much harder to objectively 

evaluate. Most studies have indicated that Canadian sources should currently be a weak 

sink, although the projection of this weak sink into the future is highly uncertain. The 

inversion results show a fairly carbon neutral Canada on average, but shows the boreal 

forests of central Canada and the boreal and coastal forests of western Canada as slight 

sinks while the agricultural plains of Canada and the forests of eastern Canada provide 

slight sources. It is interesting to note that areas to the south of the two Canadian towers 

show an annual source of carbon in an area just to the east of large expansive forest 

ecosystems of British Columbia that have recently experienced unprecedented bark beetle 

invasions and tree mortality. It is important to note that forest fires were not included in 

the SiB3 domain run for the regional inversion. Average carbon emissions from 

Canadian forest fires were estimated at 27 +/- 6 Tg/yr (Amiro et al., 2001), a non-trivial 

amount that could increase the strength of the boreal forest sink predicted by the 

inversion. 

Evaluation against 2004INTEX aircraft data 

High resolution C02 data collected during the Intercontinental Chemical 

Experiment-North America (INTEX-NA) provided a unique opportunity to evaluate both 
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a priori and a posteriori C02 concentrations produced from the SiB3-RAMS model and 

associated inversion framework. A DC-8 was outfitted with sensors to measure a number 

of different of chemicals including C02. Eighteen flights were made between July 1, 

2004 and August 15, 2004. The majority of the ground covered was in the United States, 

primarily in areas east of the Mississippi River. The aircraft descended into the boundary 

layer several times over the course of each flight allowing one to assess the effect of the 

biosphere on the mixed layer of the lower troposphere. Given the wide range of 

measured chemicals, the authors were able to differentiate various convective and 

stratospheric-tropospheric exchange process as well as provide evidence of contributions 

to measured C02 from boreal wildfires, long range transport from Eastern Asia, and 

surface fluxes induced by the biosphere. A thorough summary of the mission in the 

context of C02 is available in [Choi et al., 2008] 

Prior and optimized C02 fluxes were input as tracers into RAMS and resulting 

C02 concentrations were compared to INTEX observations in order the gauge the 

success of the inversion. The model was run from July 1, 2004 to July 31, 2004. While 

the optimized C02 concentrations provided improvement in certain spots where the 

INTEX mission flew, most observations were outside of the main area of constraint of 

the tower data and thus optimized concentrations were unlikely to provide much 

improvement over a priori concentrations. However, the flight data did provide 

important information to assess the quality of the a priori model used for C02 

concentrations (SiB3-RAMS-LPDM). In certain flights, such as Flight 009, which flew 

from the Northeast United States into the Midwest and north into Canada, the model was 

able to capture a number of boundary layer C02 averages very well (Fig. 5.18). 
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FLT_004 Time (Hour, UMTI 

Fig 5.17 SiB3-RAMS C02 compared to INTEX C02 observations for Flight 009 (left) and 
Flight 004 (right) 

However, there were also several flights like Flight 004 (Fig. 5.18), where the model 

clearly showed more C02 in the boundary layer than the aircraft as well as showing more 

C02 in the boundary layer than in the free troposphere above. It is important to note the 

sub grid-scale variability of C02 concentrations in the aircraft data that is theoretically 

provided as an average in the model. For example, in the second boundary layer descent 

of Flight 009 (or Flight 004), the data show a range of over 20 ppm in C02 over a very 
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short time interval. In the case of Flight 009, SiB3-RAMS captures the very sharp 

changes in C02 gradient while it does not in Flight 004. Nevertheless, the mean 

recorded concentrations in the boundary layer in these aircraft descents are generally less 

than the mean concentration above the boundary layer, as would be expected during 

summer conditions in North America, and this is often not shown in the model. 

Given reasonable agreement of C02 concentrations at upper altitudes, differences 

such as these might be explained by incorrect vertical distributions of C02 induced by 

faulty mixing, badly specified prior carbon fluxes at the surface, or C02 increases due to 

low level advection of C02 anomalies from neighboring land. Specifically, C02 in the 

model was frequently higher in the boundary layer than in the free troposphere above, in 

many areas on the east coast of the United States, particularly the Piedmont regions of 

Virginia, North Carolina, South Carolina, and Georgia and also into Alabama and 

Mississippi which seems unrealistic for non-stressed mid-summer conditions. 

Investigations into the development of the mixed layer in the RAMS model did not 

illuminate any significant deficiencies although we do note that the mixed layer appeared 

slow to develop in the morning hours, forcing photosynthesis to consume nocturnally-

derived respiration-caused C02 rather than start building a strong C02 deficit at the 

surface. Similarly, the boundary layer appeared slow to be separated from the ground in 

the early evening allowing the daytime minimum concentrations in the model to arrive at 

sunset in the lowest level of the model. WLEF tower has recorded calibrated C02 at 

levels of 11 meters, 30 meters, 76 meters, 122 meters, 244 meters, and 396 meters, which 

allows one to compare the effectiveness of the modeled mixing, at least in the lower 

portions of the boundary layer. While not ideally situated in the areas of interest, it at 
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least allows a cursory examination of general morning mixing behavior. Diurnal average 

vertical profiles for the month of July are presented for the WLEF site in Fig. 5.18. 

Although the effect is not strong, potentially because of the well-studied and presumably 

well-modeled location, one can see the late onset of morning mixing as well as the late 

development of the nocturnal boundary layer. Similar results were found by [Denning et 

al., 2003] as well as [Case et al. 2002]. 

C02 Vertical Profile by UMT Hour (WLEF) (Mean July Profiles) 
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Fig. 5.18 Comparisons o/C02 at surface to 400 meters for the forward SiB3-RAMS model. 

Diurnal development of vertical profiles for locations in the southeast United States show 

similar traits to WLEF except for a large positive bias in boundary layer C02. Advection 

of C02 has been shown to be an important component to C02 tower measurements 

(Parazoo, 2004) but generally doesn't provide a consistent enough source of C02 to 
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explain the numerous positive C02 anomalies seen in the model. A more likely culprit is 

the relatively low NEE predicted by the a priori SiB3 model over many of these areas. 

Ecosystem respiration (ER) rates for some areas on the leeward side of the Appalachians 

in North Carolina had nocturnal ecosystem respiration rates of 10 umol/m2/sec, some of 

the highest rates during the month of July in the domain. However, these areas had peak 

daytime NEE rates only a few micromoles higher and often had average daily NEE rates 

of about -1 umol/m2/sec, indicating that the system was almost at balance with respect to 

carbon gains and losses over the course of a day. This effect appeared wide spread over 

the southeastern United States (Fig. 5.19) and 
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Fig. 5.19 Rates of Net Ecosystem Exchange (NEE) averaged for July 1, 2004 
through July 31,2004 from SiB3. 

into the western portions of the United States. The western portions of the country were 

in the midst of a severe drought and thus the low NEE would appear reasonable there 
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although there is little INTEX data in that region to make comparisons to. Anomalous 

morning build ups of C02 are shown in Fig. 5.20. Although fossil fuel sources can 

contribute up to about 25% of this buildup for locations near the Appalachians, biological 

activity is generally the source of most of the build up of C02 seen in Fig. 5.20. 
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Fig. 5.20 C02 tracer(ppm) from biological sources and fossil fuel sources, averaged for 
July 1, 2004 through July 31, 2004 and shown for 12 UMT (6 A.M. MDT, 8 A.M. EDT). 

Review of vegetation stress in the SiB3 model show that that anomalous patterns were 

largely due to long term soil moisture deficits originating from 2003 and continuing 

through the spring of 2004. The east and southeast had a relatively wet summer which 

lessened the stress but did not improve modeled soil moisture levels to the point at which 

average summertime NEE could be realized. Low NEE combined with relatively high 
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rates of nocturnal respiration and weak boundary layer mixing contribute larger errors in 

the early morning and sunset hours. Fig. 5.21 shows a measure of late morning / early 

afternoon surface winds and one can see that weak winds typically exist in several key 

areas seen as anomalous in Fig. 5.20. 

30 Meter Wind Speed (m/s) 

Fig. 5.21 Thirty meter winds from RAMS, averaged for July 1, 2004 through July 31, 2004 
and shown for 18 UMT (12 P.M. MDT, 2 P.M. EDT). 

In particular, two areas of morning C02 buildup on the Front Range of Colorado are 

correlated well to two areas with weak average winds in the late morning. Low NEE due 

to vegetation stress explains the source of C02 to the anomalous regions in Fig. 5.20 but 

weak winds and weak atmospheric mixing appear to amplify the effect in many spots, 

especially in the vicinity of topography like the Northern San Joaquin Valley, the Front 

Range of Colorado, and the Piedmont region of the east coast. Although it was not 

explored in detail, many mountainous areas appeared to have less nocturnal buildup of 
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C02 and thus cold air pooling 

cannot be ruled out as an 

additional contributor to the 

morning time anomalies of C02 

in many locations. 

It is then believed that 

plant stress in the model is 

artificially high due to incorrect 

soil moisture recovery from an 

extended dry period including the 

end of 2003 and the start of 2004. 

The effect is then a negative bias 

in GPP over the southeast during 

the spring and into the summer. It 

is important to realize that 

although these effects appear to 

be localized to certain portions of 

the domain, advection of these 

surface anomalies might heavily 

impact concentrations downwind 

and therefore inversion results. 

For example, Fig. 5.22 shows 

vertical profiles over a location in 
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ground, showing contributing sources to anomalously 
high boundary layer C02 in model for July 2$ 
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West Virginia where the INTEX campaign aircraft flew. The multi-modal shape of the 

boundary layer C02 concentrations clearly indicates whether wind is coming from areas 

in the south with weak NEE. Influence functions were averaged for 1 P.M. to 5 P.M. 

EDT on the 29th of July for this location and produced a near perfect correlation to 

nocturnal buildup from the night before (Fig. 5.23). 

Conclusions 

GPP, ER, and NEE flux corrections implied by this inversion provide posterior 

annual NEE estimates similar to those provided by a number of independently derived 

models including CASA (via CarbonTracker optimized) and the MODIS 17 GPP 

product. NEE estimates for the entire domain appear on the low side of estimates derived 

from global models, which is understandable given the lack of constraint on some key 

regions of high annual GPP, and hence potentially high annual NEE. This was 

corroborated by the comparison to INTEX aircraft data which shows the existence of a 

deficit in GPP over the southeast which would, when all other things are considered 

equal, inflate the domain-wide sink closer to levels estimated from global models such as 

CarbonTracker. Results are relatively sensitive to a number of parameters in the 

inversion setup, which is also to be expected with an inversion constrained by such a 

sparse observing network. Using a temporally uniform boundary condition seems to 

produce a very unrealistic annual sink on the order of 0.27 Pg per year, supporting the 

notion that regional inversions require realistic boundary inflow of CO2. However, much 

to our surprise, we find that two completely independent boundary inflow estimates 

provide very similar results with the main difference being an approximately 20% 
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difference in magnitude. This leads us to believe that, while probably not preferable to 

optimized global CO2 fields, the inclusion of annual NEE balanced models in global 

models used to provide boundary inflow estimation does not significantly damage 

inversions based upon it. 

In the course of trying to improve NEE estimates, we were able to find that the 

inversion was able to provide some degree of correction to the individual summands of 

NEE, ER and GPP, which are generally highly correlated at many different scales in time 

and space. Considering that SiB3 currently calculates ER as a relatively simple function 

of soil moisture and temperature such that annual ER equals annual GPP, the significant 

adjustment inferred upon GPP may prove to be valuable estimation of other quantities of 

interest in the biosphere. For example, while photosynthesizing, plants must generally 

release water to compensate, meaning that artificially high GPP may infer artificially 

high water exchange with the atmosphere and possibly associated latent heat fluxes. 

The agricultural Midwestern United States appears to play a large role in the 

inversion results, providing a large sink. However, the sink does not correlate exactly 

with crop productivity, when compared to crop production maps from the United States 

Department of Agriculture, and several states with significant crop production such as 

Nebraska, Kansas, and Iowa, appear to be in approximate annual carbon balance. While 

the magnitude of this difference between carbon neutral states with crops and carbon sink 

states with crops is likely influenced by the lack of data in the inversion and the general 

unconstrained nature of the solution at fine scales, the discrimination between them 

seems likely to stay. One hypothesis proposed is the lateral movement of crops which 

has been shown to be a major portion of the carbon budget globally (Ciais et al., 2007). 

161 



The main crops of interest in the domain are wheat, soy and corn. Soy and corn are 

grown across large expanses of the north-central Midwest and are primarily used to feed 

livestock. These livestock are typically fed in feedlots in the states of Iowa, Colorado, 

Nebraska, Kansas, and Texas, generally located to the west and south of the areas of 

growth and harvest. The end result would be that eastern states within the Midwest 

would be a sink because of the near complete export of crops grown there. However, 

states in the western portion of the Midwest would receive the majority of these crops 

where they would be fed to cattle and other animals, returned to the atmosphere as CO2 

and CH4 and largely balance any local sinks due to crop production. 

Technical considerations concerning the inversion could also affect these results. 

In particular, a large amount of missing data for the WKWT (Moody, TX) tower leaves 

the southern boundary inflow unconstrained beyond the normal PCTM inflow. This 

could result in the inflation of an Oklahoma/Texas sink to account for a positive bias in 

the inflow at the southern boundary, particularly after July 1, 2004 when the Midwest 

receives its heaviest influence from the Gulf of Mexico. The WLEF tower was also 

missing most of its observations for June, a time of intense drawdown for croplands to 

the south of the site. 

In 2004, the southern states of Texas, Oklahoma, Kansas, Louisiana, Arkansas, 

and Mississippi had the wettest summer ever potentially mitigating some degree of 

drought and providing an increase in GPP for the region which includes managed forests, 

a large percentage of the United States' exported wheat crop, and soybeans and other 

crops along the lower Mississippi river valley. Additional research is needed to 

determine if any of these could represent a plausible hypothesis that would result in the 
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net carbon neutrality of large crop growing states in the western portions of the Great 

Plains and the expansive southern and Mississippi river valley sink predicted by the 

inversion. 
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VI. Summary 

There is little dispute about the first order effects of C02 as an insulating 

greenhouse gas in the earth's atmosphere. The amount of C02 in the atmosphere has 

steadily risen as a result of increased combustion from fossil fuels over the last century. 

However, the increase in C02 in the atmosphere only represents about half of the C02 

resulting from fossil fuel burning. It has been concluded that a large terrestrial carbon 

sink must exist in order to balance this missing carbon. The specifics of this terrestrial 

sink are uncertain, in particular, the spatial and temporal dynamics of sources and sinks 

of carbon are not well understood. In order to understand these dynamics and predict into 

the future, carbon fluxes must be estimated at higher resolutions in time, space, and 

carbon source (ER/GPP). 

Carbon flux estimation is generally based some combination of eddy-covariance 

tower measurements, biogeochemical inventory estimates, direct observations, and 

atmospheric inversions. Eddy-covariance flux towers provide a way to effectively 

estimate NEE. However, the sampling footprint of these towers is usually on the order of 

one square kilometer or less, meaning that it would be difficult to estimate large regional 

scale carbon fluxes with eddy-covariance towers. NEE estimates can also be constructed 

with observational data as they are in the State of the Carbon Cycle Report (SOCCR). 

While this provides the most comprehensive accounting of carbon, it is very expensive 

and time consuming and does not always provide full coverage over the area of interest. 

Biogeochemical models provide very complete estimates in time and space but generally 

do not directly use atmospheric carbon dioxide which is an obvious constraint on the 

carbon dynamics. Atmospheric carbon dioxide inversions provide an attractive 
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alternative to these other methods in situations where larger regional scale fluxes are 

sought. 

It was shown in Chapter 4 that large-scale regional patterns in ecosystem 

respiration, gross primary productivity, and NEE can be estimated with atmospheric 

inversions effectively over North America with a relatively sparse network of carbon 

dioxide observing towers. Furthermore, this technique proved robust to variations in the 

correlation length scale of the pattern that was being estimated. When smooth regional 

carbon flux patterns are masked with small-scale spatial variability in the fluxes, the 

accuracy of the regional flux estimates is a natural concern. However, it was shown that 

large-scale spatial flux patterns are effectively estimated through significant levels of 

small-scale spatial variability modeled by Gaussian noise. 

The inversion methods presented in Chapter 4 were applied to carbon dioxide data 

that was available from an eight-tower network in 2004. Results implied significant 

reductions to both ecosystem respiration and gross primary productivity. ER, GPP and 

NEE observations from the ARM site in Oklahoma provided corroborating evidence for 

this result. The a posteriori annual NEE for the entire domain ranged between 0.5 and 

0.8 PgC per year. This is consistent with the estimates provided in the SOCCR report. 

The most distinct feature of the annual sink was a large regional sink positioned over the 

south-central United States, an area that often experiences drought and severe weather. 

This area had record summer rainfall in 2004, potentially providing beneficial summer 

time conditions for biomass growth. The eastern portion of this sink consists of 

croplands and young forests that are heavily managed for lumber production while the 

western portion of the sink contains vast expanses of winter wheat. 
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The results of this work are exciting but difficult to use confidently because of the 

lack of comparability to any 'ground truth'. For example, there are few inventory or 

observational results available on the scale of the results of this dissertation. Therefore, it 

is difficult to corroborate the large sink exhibited in the south central United States with 

any information other than with the results of a single flux tower in the northern portion 

of the sink. The future of this work involves extending the 2004 results to 2003-2008 and 

comparing to inventory-based methods, which is already underway. The longer time 

frame will provide valuable information on inter-annual variability while the synthesis 

work will provide information necessary to provide explanations for the fine scale 

source/sink structure that we are able to provide with these inversion techniques. 
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