
J. Parallel Distrib. Comput. 66 (2006) 600–611
www.elsevier.com/locate/jpdc

Static allocation of resources to communicating subtasks in a heterogeneous
ad hoc grid environment�

Sameer Shivlea, H.J. Siegela,b, Anthony A. Maciejewskia, Prasanna Sugavanama,∗, Tarun Bankaa,
Ralph Castainc, Kiran Chindama, Steve Dussingerd, Prakash Pichumania, Praveen Satyasekarana,

William Saylora, David Sendeka, J. Sousad, Jayashree Sridharana, José Velazcoe

aElectrical & Computer Engineering Department, Colorado State University, Fort Collins, CO 80523, USA
bComputer Science Department, Colorado State University, Fort Collins, CO 80523, USA

cAdvanced Computing Laboratory, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
dHP Technologies, Fort Collins, CO 80528-9544, USA

eStelex, San Juan, Puerto Rico

Received 17 February 2005; received in revised form 6 October 2005; accepted 15 October 2005
Available online 19 December 2005

Abstract

An ad hoc grid is a heterogeneous computing and communication system that allows a group of mobile devices to accomplish a mission,
often in a hostile environment. Energy management is a major concern in ad hoc grids. The problem studied here focuses on statically assigning
resources in an ad hoc grid to an application composed of communicating subtasks. The goal of the allocation is to minimize the average
percentage of energy consumed by the application to execute across the machines in the ad hoc grid, while meeting an application execution
time constraint. This pre-computed allocation is then used when the application is deployed in a mission. Six different heuristic approaches of
varying time complexities have been designed and compared via simulations to solve this ad hoc grid allocation problem. Also, a lower bound
based on the performance metric has been designed to compare the performance of the heuristics developed.
© 2005 Elsevier Inc. All rights reserved.

Keywords: Ad hoc grid; Communication scheduling; Mapping; Resource allocation; Task scheduling

1. Introduction

An ad hoc grid is a heterogeneous computing (HC) and com-
munication system, all of whose components are mobile. Ad
hoc grids allow a group of individuals to accomplish a mission
that involves computation and communication among the grid

� This research was supported in part by the Colorado State University
George T. Abell Endowment.

∗ Corresponding author.
E-mail addresses: ssameer@engr.colostate.edu (S. Shivle),

hj@engr.colostate.edu (H.J. Siegel), aam@engr.colostate.edu
(A.A. Maciejewski), prasanna@engr.colostate.edu (P. Sugavanam),
tarunb@engr.colostate.edu (T. Banka), rhc@lanl.gov (R. Castain),
kiran@engr.colostate.edu (K. Chindam), sjd@fc.hp.com (S. Dussinger),
prkash@engr.colostate.edu (P. Pichumani), moses@engr.colostate.edu,
moses@xilinx.com (P. Satyasekaran), sendekdm@lamar.colostate.edu
(D. Sendek), jso@fc.hp.com (J. Sousa), jaya@engr.colostate.edu
(J. Sridharan), jose.velazco@abbott.com (J. Velazco).

0743-7315/$ - see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2005.10.005

components, often in a hostile environment. Examples of ap-
plications of ad hoc grids include: disaster management, wild-
fire fighting, and defense operations [MaM03]. In all of these
cases, a grid-like environment is necessary to reliably support
the coordinated effort of a group of individuals working under
extreme conditions.

An important research problem is how to assign resources
to the subtasks (matching) and order the execution of the
subtasks that are matched (scheduling) to maximize some
performance criterion of a HC system. This procedure of
matching and scheduling is called mapping or resource allo-
cation. The mapping problem has been shown, in general, to
be NP-complete (e.g. [Cof76,Fer89,IbK77]). Thus, the devel-
opment of heuristic techniques to find near-optimal solutions
for the mapping problem is an active area of research (e.g.
[AlK02,BaS01,BaV01,BrS01a,BrS01b,Esh96,MaA99,MiF00,
WuS00]).

http://www.elsevier.com/locate/jpdc
mailto:ssameer@engr.colostate.edu
mailto:hj@engr.colostate.edu
mailto:aam@engr.colostate.edu
mailto:prasanna@engr.colostate.edu
mailto:tarunb@engr.colostate.edu
mailto:rhc@lanl.gov
mailto:kiran@engr.colostate.edu
mailto:sjd@fc.hp.com
mailto:prkash@engr.colostate.edu
mailto:moses@engr.colostate.edu
mailto:moses@xilinx.com
mailto:sendekdm@lamar.colostate.edu
mailto:jso@fc.hp.com
mailto:jaya@engr.colostate.edu
mailto:jose.velazco@abbott.com

S. Shivle et al. / J. Parallel Distrib. Comput. 66 (2006) 600–611 601

For this research, a known large application task composed of
communicating subtasks with data dependencies among them
is to be mapped to machines in an ad hoc grid. We statically
(offline) find a resource allocation for the application task that
will be needed later in the field for a mission to be completed
(e.g., response to a specific wildfire). For each mission that
uses this known application, mission-specific input data will
be processed by the subtasks. The goal is to map subtasks to
machines in such a way as to minimize the average of the per-
centage of the energy that is consumed by the machines in the
grid, while meeting an application execution time constraint.

The contributions of this paper are the design and comparison
via simulations of six different heuristic approaches, of varying
time complexities, to solve this ad hoc grid allocation problem.
Also, a lower bound (LB) based on the performance metric
has been derived to evaluate the performance of the heuristics
developed.

The next section describes the problem statement for this
paper. Section 3 discusses some of the literature related to this
work. In Section 4, heuristics studied in this research and the
LB developed for the problem are presented. Section 5, explains
the simulation setup used for this research. Section 6 describes
the results, and the last section gives a brief summary of this
research.

2. Problem statement

Each application task generated for this study is composed
of a set S of communicating subtasks with data dependencies
among them. The data dependencies among the subtasks are
represented by a directed acyclic graph (DAG). There is a
set M of machines in the ad hoc grid. As is typical in static
mapping studies, the estimated execution time for each sub-
task on each machine is assumed to be known a priori (e.g.
GhY93,KaA98,KhP93,MaB99,SiD97,SiY96). The estimated
time to compute (ETC) values are used by the mapping heuris-
tics. The ad hoc grid considered for this study is composed of
two classes of machines: “fast machines” (e.g., laptops) and
“slow machines.” (e.g., palmtops). Each machine j has four
energy parameters associated with it:

(a) initial battery energy: B(j);
(b) rate at which it consumes energy for executing a subtask,

per execution time unit: E(j);
(c) rate at which it consumes energy for sending subtask com-

munication, per communication time unit: C(j); and
(d) the machine’s communication bandwidth: BW(j).

Parameters (b) and (c) are a simplified model of real energy
consumption. A more complex model of energy consumption
may be considered in the future work. The details of the sim-
ulation environment are presented in Section 5.

Let the estimated execution time of subtask i on machine j
be ETC(i, j). Then the energy consumed for executing a single
subtask i on machine j is ETC(i, j) × E(j).

The time required to transfer one bit of a data item between
machine j and machine k is the inter-machine communication

time called CMT(j, k) and is given by

CMT(j, k) = 1/min (BW(j), BW(k)) .

The energy consumed to send a data item g of size |g| from
machine j to machine k is given by

CMT (j, k) × C(j) × |g|.
For the environment considered in this study it is assumed

that devices are close enough to each other so that single-hop
communication is possible. In addition, for the simulations de-
scribed in Section 5, it is assumed that there are |M| = 8 dis-
tinct communication channels. Thus, each machine can transmit
data to any other machine, but only one destination at a time,
and can do so while computing. A machine can simultaneously
handle one outgoing data transmission and one incoming data
reception. Similar to the study in [WaS97], we assume that:

(a) a subtask can send out data only after it has completed
execution; and

(b) a subtask may not begin execution until it receives all of
its input data items.

The ad hoc grid that is considered for this project is a simplified
version of an actual one. The list of simplifying assumptions
that have been made are as follows:

(a) the energy consumed by a subtask to receive a data item
is ignored;

(b) any initial data (i.e., data not generated during execution
of the application task) is preloaded before the actual ex-
ecution of the application task begins;

(c) a machine consumes no energy if it is idle (i.e., not com-
puting or not transmitting).

The performance metric for this study is based on the en-
ergy consumption across all the machines in the ad hoc grid.
The total battery energy consumed by a machine j after the
entire application task has been completed is given by EC(j).
The performance metric, Bpavg used to evaluate the mapping
is defined as the percentage of energy consumed by each ma-
chine to complete the entire application task, averaged across
all machines, and is given by

Bpavg =
∑|M|−1

j=0 (EC(j)/B(j))

|M| .

The goal is to map all the subtasks to machines in such a
way as to minimize Bpavg while meeting certain constraints.
The motivation for minimizing Bpavg is to allow each machine
to retain energy for performing operations in addition to the
application task. The use of Bpavg as a metric is one way to
capture this attribute.

The first constraint is that all the subtasks in the application
task have to be executed. The second constraint is the energy
constraint. Each machine in the grid has some initial battery
energy. Every time a subtask is executed or data are transmitted
by a machine some of the battery energy on that machine is
consumed. Hence, the available battery energy on each machine
becomes a constraint while mapping the application task to

602 S. Shivle et al. / J. Parallel Distrib. Comput. 66 (2006) 600–611

the grid. In addition to the energy constraint, for this study
an additional execution time constraint � has been imposed,
during which the entire application task must finish executing.
The makespan is defined as the overall execution time of the
application task on the machine suite in the ad hoc grid. The
final makespan of a mapping must be less than or equal to a
time constraint �. Finally, the wall clock time for each mapper
itself to execute is required to be less than or equal to 60 min
on a typical unloaded 1 GHz desktop machine. This constraint
was to prevent some heuristics from taking an “unreasonable”
amount of time; the value of 60 min was arbitrary.

Six static mapping schemes are studied in this paper: Lev-
elized Weight Tuning (LWT), Bottoms Up, Min–Min, A*, Sim-
plified Lagrangian (SL), and Genetic Algorithm (GA). For this
study, 10 different ETC matrices and 10 different DAGs were
generated to create 100 different scenarios, where each sce-
nario is a combination of one of the application task graphs and
one of the ETC matrices. The performance of each heuristic is
studied across these 100 different scenarios.

3. Related work

A significant amount of research has been performed in the
areas of power constrained resource management in uniproces-
sors (e.g., [HoK99,YaD95]) and also in heterogeneous multi-
processors (e.g., [MiR03,YuP02]). In all these studies, however,
power management is achieved through voltage scaling, which
allows the reduction of the power usage by a CPU (which re-
quires a reduction in clock frequency) at the expense of increas-
ing the execution time of a task. Thus, these papers focused on
using voltage scaling, while our work assumes processors that
operate at only one voltage level and focuses on minimizing
Bpavg by using an appropriate allocation of resources.

The literature was examined to select a set of heuristics ap-
propriate for the HC environment considered here. New heuris-
tics based on these approaches were designed for minimizing
Bpavg for ad hoc grids. Three of the six heuristics presented
in this paper, namely Min–Min, GA, and A*, have been used
previously to map tasks onto heterogeneous machines (e.g.,
[BrS01b]). However, unlike [BrS01b], where the goal was to
minimize the total time required to complete an application
task, the goal of our study is to minimize the average per-
centage of energy consumed by the machines. The Min–Min
heuristic approach has proven to be a good heuristic for dy-
namic and static mapping problems in earlier studies (e.g.,
[BrS01b,MaA99]). The Bottoms Up heuristic used in this study
is a variation of the Min–Min heuristic. Bottoms Up assigns
tasks to machines in a manner similar to the Min–Min heuris-
tic, but considers tasks in a different order.

GAs are a technique used for searching large solution spaces
and have been used for mapping tasks to machines in an HC
environment (e.g., [BrS01b,SrP94,WaS97]). The GA used in
this study is based on [WaS97] and has been modified for this
problem environment. A* is a search technique that is highly
effective in searching a tree or graph and has been used for
many task allocation problems (e.g., [BrS01b,ChL91,KaA98]).
The SL heuristic presented in this paper is a modified version

of the one used in [LuZ00]. Lagrangian relaxation techniques
have been used in [LuZ00] for job scheduling in an industrial
environment.

4. Heuristics

For all the heuristics except Bottoms Up, only the subtasks
whose predecessors had been fully mapped could be consid-
ered during a given mapping iteration (referred to as mappable
subtasks). Also, for the final mapping of all six heuristics, the
energy constraint is that B(j) is not exceeded for any machine,
and the time constraint is that the execution time of the applica-
tion does not exceed �. This section describes the six heuristics
and a LB on the objective function, Bpavg.

4.1. Levelized Weight Tuning

In a manner similar to that used in [IvO95] and as shown
in Fig. 1, the LWT heuristic assigns subtasks to different lev-
els depending on the data precedence constraints. The lowest
level consists of subtasks with no predecessors and the highest
level consists of subtasks with no successors. Each remaining
subtasks is at one level below the lowest producer of its global
data items. Starting from the lowest level, each subtask on its
respective level is assigned a priority based on the total size
(sum) of its output global data items, the larger the sum the
higher the priority.

The LWT heuristic can be summarized by the following pro-
cedure:

1. All the subtasks are first assigned levels depending on the
precedence constraints. Subtasks on each level are assigned
a priority as described above.

2. Starting from the lowest to the highest level (see Fig. 1),
subtasks are considered for mapping by levels. Within each
level, subtasks are considered by priority, from high priority
to low priority.

3. For every level L, a ratio �(L) is calculated as follows:

�(L)=(current level number+1)/(total number of levels).

4. Every time a subtask Sj within a level is considered for
mapping on a machine:

Find a machine M1 that will increase the current Bpavg
of the system by the least amount. Also, find a machine
M2 that will increase the current makespan of the system
by the least amount. A ratio �, which is the ratio of current
makespan to � is calculated.

5. If � > (�(L) × F), where F is a weighting factor that is
experimentally determined,

then the subtask is mapped to machine M2,
else

the subtask is mapped to machine M1.
6. Update the time and energy availability of the machine on

which the subtask is mapped. Also, update the energy avail-
ability across all machines that send global data items to
the mapped subtask.

S. Shivle et al. / J. Parallel Distrib. Comput. 66 (2006) 600–611 603

level 0

(lowest level)

level 3

(highest level)

S1

S4

S3

S2

S5

S7

level 2

level 1

S0

S6

Fig. 1. Levelizing of subtasks S0, S1, S2, S3, S4, S5, S6, and S7 for a given
sample DAG.

7. Repeat steps 2–6 until all the subtasks are mapped and
calculate the final value of Bpavg.

The value of the weighting factor F was varied from 1 to 2
in steps of 0.1 for each complete mapping for each scenario.
From among all these different mappings for each scenario, the
mapping that gave the smallest value of Bpavg and also met the
energy and time constraints is chosen as the final mapping. The
average value of F for this study was found to be 1.6.

4.2. Bottoms Up

The Bottoms Up (BU) heuristic assigns subtasks to levels in
a manner similar to the LWT heuristic. However, unlike LWT,
the BU heuristic begins by mapping subtasks from the highest
level. Thus, for the BU heuristic, the set of mappable subtasks
at any given time consists of all subtasks that either have no
successors or subtasks whose successors have previously been
mapped.

Let the time for execution and communication of subtask i
on machine j , normalized with respect to the maximum time
required for execution and communication by subtask i across
all machines, be NT(i, j). Let the energy consumed for exe-
cution and output communication of subtask i on machine j ,
normalized with respect to the maximum energy consumed for
execution and output communication of subtask i across all ma-
chines, be NE(i, j). Then, using � as a weighting parameter,

the fitness value �ij is calculated as follows:

�ij = (� × NT(i, j)) + ((1 − �) × NE(i, j)).

The BU heuristic can be summarized by the following pro-
cedure.

1. All the subtasks are first assigned levels depending on the
precedence constraints as explained above.

2. Starting from the highest level to the lowest level, for each
level a list of mappable subtasks is generated.

3. For each mappable subtask i at the current level, find the
machine j across all machines that gives the subtask its
minimum fitness value �ij , ignoring other subtasks on that
level.

4. From among all the subtask/machine pairs found in the
above step, find the pair that gives the minimum fitness
value.

5. The subtask found in the above step is then assigned to its
paired machine.

6. Repeat steps 2–5 for each level (from highest to lowest
level) until all subtasks are assigned machines.

7. After all subtasks are assigned machines, they are scheduled
in the reverse order they were matched.

8. The entire mapping is then evaluated and the final value of
Bpavg is calculated.

The value of the weighting factor � was varied from 0 to 1
in steps of 0.1 for each complete mapping for each scenario.
From among all these different mappings for each scenario, the
mapping that gave the smallest value of Bpavg and also met the
energy and time constraints is chosen as the final mapping. The
average value of � for this study was 0.5.

4.3. Min–Min

Based on the Min–Min concept in [IbK77], this heuristic
utilizes a fitness function to evaluate all mappable subtasks.
The fitness function is chosen such that it reflects the change
in Bpavg and also the change in the makespan of the system if
a subtask is mapped onto a machine. Let PBpavg(i, j) be the
partial Bpavg of the system if subtask i was mapped to machine
j. Let PCT(i, j) be the partial completion time of machine
j, normalized with respect to �, if subtask i was mapped to
machine j. Then using � as a weighting parameter, the fitness
value f (i, j) of any subtask i on machine j is calculated as
follows:

f (i, j) = � × PBpavg(i, j) + ((1 − �) × PCT(i, j)).

The Min–Min heuristic can be summarized by the following
procedure:

1. A list of mappable subtasks is created. Initially, this list
consists of subtasks with no predecessors.

2. For each subtask i in the above list, across all machines,
find the machine j that gives the subtask its minimum fitness
value f (i, j), ignoring other subtasks in the list. This is the
first “Min.”

604 S. Shivle et al. / J. Parallel Distrib. Comput. 66 (2006) 600–611

3. From among all the subtask/machine pairs found in step 2,
find the pair that gives the minimum fitness value. This is
the second “Min.”

4. The subtask found in the above step is then removed from
the list of mappable subtasks and is mapped to its paired
machine.

5. Update the time and energy availability of the machine on
which the subtask is mapped. Also, update the energy avail-
ability across all machines that send global data items to
the mapped subtask.

6. The set of mappable subtasks is updated to include any other
new subtasks all of whose predecessors have been mapped.

7. Repeat steps 2–6 until all the subtasks are mapped and
calculate the value of Bpavg.

The value of � was varied from 0 to 1 in steps of 0.1 for each
complete mapping for each scenario. From among all these
different mappings for each scenario, the mapping that gave
the smallest value of Bpavg and also met the energy and time
constraints is chosen as the final mapping. The average value
of � for this study was 0.9.

4.4. A*

The A* technique used in this study is in concept based on
that used in [BrS01b,ChL91]. A* is a tree-search algorithm,
beginning at a root node that is a null solution. As the tree
grows, nodes represent partial mappings (a subset of subtasks
is assigned to machines). The partial mapping (solution) of a
child node has one subtask mapped more than the parent node.
For each node n, a cost function c(n) is calculated.

Let g(n) be the maximum of the machine completion times
for the subtasks mapped through node n (this calculation in-
cludes time for communications). Let mmct(n) be the maximum
of the minimum machine completion times over all unassigned
subtasks U at node n and is defined as follows:

mmct(n) = max
i∈U

(
min

0� j � |M|−1
(time machine j available

+ ETC(i, j))

)
.

The LB estimate of the completion time h(n), of all the unas-
signed subtasks U at node n (this calculation does not include
time for communications) is defined as follows:

h(n) = max(0, (mmct(n) − g(n))).

The function f (n) that is an estimate of the time required to
complete all the subtasks, normalized with respect to �, is then
given by

f (n) = (g(n) + h(n))/�.

The function p(n) is the LB of the estimated Bpavg for all
the subtasks through node n. Let g′(n) be the Bpavg for all the
subtasks mapped through node n (this calculation includes the
energy for communications). Let h′(n) be the LB estimate of

the Bpavg for the set of unassigned subtasks U at node n (this
calculation does not include energy consumed for communica-
tions) and it is defined as follows:

h′(n) =
|U |−1∑
i=0

(
min

0� j � |M|−1
(new Bpavg (if i is mapped to j)

− g′(n))

)
.

Thus, h′(n) is calculated assuming that every unassigned sub-
task is assigned to a machine that increases the Bpavg of the
system by the least amount. The function p(n) is then given as
follows:

p(n) = g′(n) + h′(n).

The cost function for node n is then given by

c (n) =
√(

� × f (n)2) + p (n)2.

The weighting factor of � was empirically determined by eval-
uating values between 0 and 1 in steps of 0.1, and then refining
in steps of 0.01 for a sample scenario. Using the results obtained
from this sample scenario, it was decided to use the weighting
factor of � = 0.07 as it gave complete valid mappings (within
the time and energy constraints) for all scenarios.

The A* heuristic can be summarized by the following pro-
cedure.

1. A valid total ordering of subtasks that satisfies the prece-
dence constraints for the entire application task is first gen-
erated. All subtasks are considered for mapping in this or-
der.

2. The root node generates eight nodes (partial mappings) by
allocating the first mappable subtask to each of the eight
machines.

3. After a parent node generates child nodes, it becomes inac-
tive (i.e., it is not eligible for further expansion). The new
nodes created are considered to be active nodes and are
stored in a node list. The size of the node list is always kept
at 100 by retaining only the best 100 active nodes (based
on c(n)) at any one time. Similar to [BrS01b], this is done
to keep the execution time of the heuristic tractable.

4. For the next mappable subtask, the node with the minimum
c(n) in the node list is then expanded to generate eight more
new child nodes (corresponding to mapping that subtask to
each of the eight machines).

5. Repeat steps 2–4 for every mappable subtask until finally
a node is expanded to give eight complete mappings. From
these eight complete mappings, the mapping that gives the
best value of Bpavg and also meets the energy and time
constraints is then selected as the final mapping.

Experiments with node lists of sizes larger than 100 were also
conducted. However, it was found that there was no significant
improvement in the value of Bpavg, but the heuristic execution
time increased considerably.

S. Shivle et al. / J. Parallel Distrib. Comput. 66 (2006) 600–611 605

4.5. Simplified Lagrangian

Lagrangian-based approaches have been applied to solve
a wide range of complex production scheduling problems
[LuZ00]. The technique used here is a modified version of
[LuZ00] that is suitable for the problem environment in this
study. At any time k, if the energy remaining in machine j is
denoted ER(j, k) and the makespan is denoted makespan(k),
then the Lagrangian equation, L(�, k) is given by

L(�, k) = �

⎛
⎝ |M|−1∑

j=0

ER(j)/B(j)

/
|M|

⎞
⎠

+ (1 − �) (1 − (makespan(k)/�)) .

The value of � was empirically determined by evaluating
values between 0 and 1 in steps of 0.1 for a sample scenario.
Using the results obtained from this sample scenario, it was
decided to use the weighting factor of � = 0.8 as it gave com-
plete valid mappings (within the time and energy constraints)
for all scenarios.

The SL heuristic can be summarized by the following pro-
cedure.

1. Every time a subtask is considered for mapping, the next
available machine (i.e., the machine with the minimum ma-
chine availability time) is selected. If more than one ma-
chine has the same minimum machine availability time,
then one of these machines is selected randomly.

2. For the selected machine, the list of mappable subtasks is
generated. The list of mappable subtasks consists of all the
subtasks whose predecessors have been mapped and can
begin execution on the selected machine without violating
time or energy constraints.

3. Find the potential contribution of each mappable subtask
in the above list to the system Lagrangian (i.e., L(�, k)),
ignoring other subtasks in the list.

4. From among the mappable subtasks found in the above step
find the subtask that gives the largest value of the system
Lagrangian, L(�, k).

5. The subtask found in the above step is then removed from
the list of mappable subtasks and is mapped to its selected
machine.

6. Update the time and energy availability of the machine on
which the subtask is mapped. Also, update the energy avail-
ability across all machines that send global data items to
the mapped subtask.

7. Repeat steps 1–6 until all the subtasks are mapped and
calculate the value of Bpavg.

The SL heuristic allowed a mappable subtask to be scheduled
to execute at a time prior to the target machine’s availability
time (time when all subtasks already assigned to the machine
will be completed) if a sufficiently large “hole” in the existing
schedule could be found that complied with precedence con-
straints. As a result, the SL-generated mappings exhibited a
very small makespan as compared to all the other heuristics.

4.6. Genetic Algorithm

This method is adapted for this problem domain from the GA
approach used in [WaS97]. The GA operates on a population of
100 chromosomes. Each chromosome represents one solution
to the problem and a set of chromosomes is called a popula-
tion. Each chromosome is composed of a scheduling string and
a matching string. The scheduling string is a total ordering of
the subtasks in the DAG that obeys the precedence constraints,
while the matching string gives the subtask-to-machine assign-
ments. To form a scheduling string, the DAG is topologically
sorted to form a basis scheduling string. Then, for each chro-
mosome in the initial population, this basis string is mutated
(similar to the mutation procedure described below) a random
number of times to generate 96 other valid scheduling strings.
The corresponding 97 matching strings are generated by ran-
domly assigning subtasks to machines. The population also in-
cludes three chromosomes (seeds) that are the Min–Min, LWT,
and Bottoms Up solutions. Similar to the approach in [WaS97],
these chromosomes then undergo selection, crossover, muta-
tion, and evaluation.

Each chromosome has a fitness value (Bpavg) associated with
it. The rank-based roulette wheel scheme is used for selection
[SrP94]. This scheme probabilistically duplicates some chro-
mosomes and deletes others, where better mappings have a
higher probability of being duplicated in the next generation.
Elitism, the property of guaranteeing the best solution remains
in the population, is also implemented [Rud94]. The population
size stays fixed at 100.

In the crossover step, a pair of parent chromosomes is
selected from the chromosome population. For scheduling
string crossover, a random cut-off point that cuts the schedul-
ing strings into top and bottom parts is generated for each
pair selected. Then, the subtasks in each bottom part are re-
ordered. The new ordering of the subtasks in one bottom part
is the relative position of these subtasks in the other original
scheduling string in the pair, thus guaranteeing that the newly
generated scheduling strings are valid scheduling strings. For
matching string crossover, again a random cut-off point that
cuts the matching strings into top and bottom parts is gen-
erated. Then the machine assignments of the subtasks in the
bottom parts are exchanged. After the crossover operation for
both the scheduling and the matching strings, the newly gener-
ated chromosomes are evaluated and if the new chromosomes
generated do not violate energy or time constraints, then they
replace the parent chromosomes in the population; otherwise
the new chromosomes are dropped and no child chromosomes
are created.

In the mutation step, a parent chromosome is selected for
mutation from the chromosome population. In case of schedul-
ing string mutation, for each chosen parent scheduling string, a
subtask (called the victim subtask) is selected randomly. This
victim subtask is then moved randomly to another position in
the scheduling string in such a way that it does not violate
any precedence constraints to obtain a new valid scheduling
string. In case of matching string mutation, for each chosen
parent matching string, two subtask/machine pairs are selected

606 S. Shivle et al. / J. Parallel Distrib. Comput. 66 (2006) 600–611

randomly and their machine assignments are swapped. Similar
to crossover, after the mutation operation for both the schedul-
ing and matching strings, the new chromosome generated is
evaluated and if the new chromosome generated does not vio-
late energy or time constraints, then it replaces the parent chro-
mosome in the population; otherwise the new chromosome is
dropped and no child chromosome is created.

For both crossover and mutation operations, the chromo-
some population is traversed serially in the order generated
by the rank-based roulette wheel scheme. Every chromosome
is considered for crossover with a probability of 40% and for
mutation with a probability of 20%. These probabilities for
crossover and mutation were selected by experimentation. Se-
lection, crossover, mutation, and evaluation steps constitute a
single GA iteration. The GA stops after a total of 400 iterations.
Until the stopping criterion is met, the loop repeats, beginning
with the selection step. At the end of 400 iterations, the chro-
mosome that gave the best Bpavg is selected as the final map-
ping. For this study, at any point in time only chromosomes
that do not violate the energy or time constraint are allowed
to be in the population and the population size is always kept
constant at 100 chromosomes.

4.7. Lower Bound (LB)

The method developed for estimating a LB on Bpavg for
this study ignores data precedence constraints, inter-machine
communications, the battery power constraint, and �. For each
subtask (in any order) in the application task, the minimum
percentage energy it will consume over all the machines is
found. These minimum percentage energy values for all the
subtasks are summed up and then finally averaged over all
machines. This gives us a LB on Bpavg. Thus, the LB can be
given as

1

|M| ×
|S|−1∑
i=0

(
min

j

(
ETC(i, j) × E(j)

B(j)

))
.

5. Simulation setup

In this study, the application task is composed of 1024 com-
municating subtasks. This large number of subtasks is chosen
to present a significant mapping challenge for each heuristic.
The pseudocode to generate the DAG is given in the appendix
of this paper. For this study, 10 different DAGs are developed.
The maximum fan-in (i.e., the number of input global data items
received by a subtask) and fan-out (i.e., the number of output
global data items sent out from a subtask) for all the 10 DAGs
generated are 12 and two, respectively. Also, for each DAG
there are seven subtasks with no predecessors, seven subtasks
with no successors, and the remaining 1010 subtasks have pre-
decessors and successors. The sizes of the global data items
to be transferred from one subtask to another are sampling de-
termined by a Gamma distribution, with a mean value of 2.8
megabits and a variance of 1.4 megabits.

Table 1
The values of B(j), C(j), E(j), and BW(j) for fast and slow machines

Fast machines Slow machines

B(j) 580 energy units 58 energy units
C(j) 0.2 energy units/s 0.002 energy units/s
E(j) 0.1 energy units/s 0.001 energy units/s
BW(j) 8 megabits/s 4 megabits/s

The ETC values for all the subtasks calculated for the simu-
lations, taking heterogeneity into consideration, were generated
using the Gamma distribution method described in [AlS00]. For
this research, a task mean and coefficient of variation (COV)
were used to generate the ETC matrices. The mean subtask ex-
ecution time was chosen to be 100 s and a COV of 0.9 was
used to generate an ETC matrix with high task and high ma-
chine heterogeneity. For this study, 10 different ETC matrices
were generated and used with each of the 10 DAGs to create
100 different scenarios.

The ad hoc grid considered for this study has a total of eight
machines, which were divided equally into two classes, such
that machines 0–3 are the four “fast machines” and machines
4–7 are the four “slow machines.” To obtain the two classes of
machines, all the ETC values for the slow machines are adjusted
by a multiplicative factor (MF). For each subtask i the ratio
diffi of the ETC value of the fastest slow machine (machines
4–7) to the ETC value of the slowest fast machine (machines
0–3) is calculated as

diff i =
(

min ETC(i, j) for j across slow machines

max ETC(i, j) for j across fast machines

)
.

Then the value of MF is given by

MF = 2/(min diff i for i = 0, . . . , 1023).

All the ETC values for the slow machines were multiplied by
MF to obtain their new adjusted values. After creating the two
classes of machines, the new mean estimated execution time
for a single subtask was 131 s. For this study, across all the
subtasks in an ETC matrix, the average ETC value across slow
machines is approximately seven times the average ETC value
across fast machines.

The values of B(j), C(j), E(j), and BW(j) for both fast
and slow machines are shown in Table 1. These values repre-
sent an approximate industry average based on microprocessors
and battery capacity selected on currently commercially avail-
able machines. Fast machines are typified by the DELL Preci-
sion M60 notebook computer using an Intel MP4M processor
operating at 1.7 GHz. The statistics for the slow machines are
typical personal digital assistant (PDA) computers, such as the
DELL Axim X5 that uses an Intel PXA255 processor operating
at 400 MHz.

The HC system simulated for this study was assumed to be
less than a day long operation. It was assumed that any of the
subtasks of the application task could receive external inputs
and can generate results in addition to the global data items
that one subtask sent to another.

S. Shivle et al. / J. Parallel Distrib. Comput. 66 (2006) 600–611 607

The value of the time constraint � was chosen so that it
prevented any heuristic from mapping subtasks only to slow
machines, which consume less energy to execute a subtask.
Experimentation with a simple greedy mapping heuristic was
used to determine the value of � as 34,075 s.

6. Results

The simulation results are shown in Figs. 2–4. The average
parameter values of all the heuristics are summarized in Ta-
ble 2. All heuristics were run for 10 different application task
graphs (DAGs), using 10 different ETCs (i.e., for a total of 100
different scenarios). The average values over the 100 scenarios
for Bpavg (Fig. 2) and makespan (Fig. 3) are shown along with
95% confidence intervals [Jai91]. The execution times of the
heuristics averaged over 100 scenarios, mapping 1024 subtasks
per scenario, are shown in Table 3.

As seen from Fig. 2, the three faster heuristics (Min–Min,
LWT, and Bottoms Up), performed comparably in terms of
overlapping confidence intervals. The LWT had the best average

0

0.1

0.2

0.3

0.4

0.5

0.6

M
in

-M
in

Le
ve

liz
ed

B
ot

to
m

s
up

S
im

p
lif

ie
d

La
gr

an
gi

an A
*

G
en

et
ic

Lo
w

er
B

ou
nd

B
p

a
vg

0

0.1

0.2

0.3

0.4

0.5

0.6

Fig. 2. The simulation results for Bpavg.

0

5000

10000

15000

20000

25000

30000

35000

M
in

-M
in

Le
ve

liz
ed

B
ot

to
m

s
U

p

S
im

pl
ifi

ed
La

gr
an

gi
an A

*

G
en

et
ic

m
ak

e
sp

an
 (

se
c)

0

5000

10000

15000

20000

25000

30000

35000

Fig. 3. The simulation results for makespan.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
in

-M
in

Le
ve

liz
ed

B
ot

to
m

s
U

p

S
im

pl
ifi

ed
La

gr
an

gi
an A

*

G
en

et
ic

av
er

ag
e

pa
ck

in
g

de
ns

ity

average packing
density (fast)

average packing
density (slow)

Fig. 4. The simulation results for average packing density across fast machines
and slow machines.

Table 2
The parameter values of the mapping heuristics averaged over 100 scenarios

Heuristic Average parameter values

Min–Min � = 0.9
Levelized Weight Tuning F = 1.6
Bottoms Up � = 0.5
A∗ � = 0.07 (constant)
Simplified Lagrangian � = 0.8 (constant)
Genetic Algorithm Crossover probability = 0.4

Mutation probability = 0.2

Table 3
The execution times of the mapping heuristics (for mapping 1024 subtasks)
averaged over 100 scenarios (using a typical 1 GHz unloaded machine)

Heuristic Average execution
times (seconds)

Min–Min 19
Levelized Weight Tuning 12
Bottoms Up 9
A∗ 645
Simplified Lagrangian 1200
Genetic Algorithm 3420

performance, though only marginally better than Bottoms Up.
LWT considers subtasks for mapping by levels. Within each
level, LWT tends to map subtasks to either their best Bpavg
machine or best completion time machine depending upon a
threshold factor that is level dependent. As compared to other
heuristics (except the GA), for most of the scenarios, the LWT
heuristic managed to map more subtasks to their best Bpavg

608 S. Shivle et al. / J. Parallel Distrib. Comput. 66 (2006) 600–611

machines, which are mostly slow machines in this study. Hence,
this heuristic tends to give a small value of Bpavg and a relatively
high value of makespan, as seen from Fig. 3.

The next two best fast heuristics, Bottoms Up and Min–Min,
are basically two-phase greedy heuristics that optimize a fit-
ness function. The major difference between the two other than
the fitness function is that Min–Min used the top to bottom ap-
proach beginning from the root node to the leaf node of the
subtask graph, whereas Bottoms Up used the bottom to top ap-
proach. To see the impact of the fitness function, experiments
were conducted using exactly the same procedure as Min–Min
but using the Bottoms Up fitness function. It was found that
the new results obtained were comparable to the old results ob-
tained using the old Min–Min fitness function. Thus, the slight
variation in the average values of Bpavg for Min–Min and Bot-
toms Up, was mainly because of the way the application task
graph was traversed rather than the fitness function used. The
Min–Min fitness function involved the calculation of partial
makespan and hence it was not possible to implement the Bot-
toms Up procedure using the Min–Min fitness function.

Overall among all the heuristics, the GA performed the best
and in fact performed only 14% greater than the unattainable
LB. It was expected that the GA would give the best perfor-
mance among all the heuristics because the GA was seeded us-
ing solutions obtained from the Min–Min, LWT, and Bottoms
Up heuristics and also because it used the concept of elitism
that ensured that the Bpavg of the new solution obtained was
either better or at least the same as the seed.

The SL had the highest average Bpavg because it tried to op-
timize the makespan along with the main objective function of
Bpavg. It tried to fill in the gaps in the machine subtask queues,
when the machine was not computing and waiting for global
data items, by allowing a mappable subtask to be scheduled
for a time prior to the target machine’s availability time (time
when all subtasks already assigned to the machine will be com-
pleted) if it was possible to do so without violating precedence
constraints. As described below, this resulted in a higher av-
erage usage of fast machines, which in turn leads to a higher
Bpavg. As seen in Fig. 3, the makespan generated by the SL is
significantly less than that of the other heuristics.

Another parameter, called packing density, was used to
study the behavior of the heuristics for the given problem.
Packing density is defined as the ratio of the total time spent
by a machine for subtask execution only (ignoring the time

required for communication) to the total makespan. As seen
from Fig. 4, the SL had a higher average packing density over
the fast machines. Thus, for all the heuristics except the SL, the
fast machines had many time gaps when the machines were not
doing any computation but were waiting for global data items.

7. Summary

Six static heuristics were designed, developed, and simulated
using the HC environment presented. Application tasks com-
posed of communicating subtasks with data dependencies were
mapped using the heuristics described in this research.

The best Bpavg value was obtained by using the GA, ap-
proaching the theoretical LB derived for this study by a margin
of 14%. The LWT and Bottoms Up heuristics performed com-
parably and were the second best. The GA used LWT and Bot-
toms Up as seeds and on average did approximately 4% better
than these two. However, the time required for the GA itself
to execute (i.e., heuristic execution time) is extremely high as
compared to either the LWT or Bottoms Up heuristic.

Clearly, the results shown are for the specific parameters
used for the simulation study. In practice, different missions
may result in parameter values that differ from the ones used
here. This includes the number of subtasks in each application,
the total number of machines, and the mixture of fast and slow
machines. While the relative performance of the heuristics pre-
sented here may change, the model can still be applied and the
concepts underlying the heuristics are still valid.

In conclusion, the results of this research may be used in the
development of ad hoc grids in support of many applications of
importance, such as disaster management. In particular, many
of the heuristics developed for the environment considered per-
formed well with respect to a loose LB. A specific heuristic
may be selected based on characteristics of the application do-
main such as heuristic execution time.

Acknowledgements

A preliminary version of portions of this material was pre-
sented at the 13th IEEE Heterogeneous Computing Workshop
(HCW 2004). The authors thank Shoukat Ali, Jong-Kook Kim,
and Jay Smith for their valuable comments.

Appendix

Pseudocode for generating the DAGs

/∗ input:
Na subtask nodes with no predecessors and only successors, with id #s ranging from 1

to Na
Nb subtask nodes with both predecessors and successors, with id #s ranging from Na + 1

to Na + Nb
Nc subtask nodes with no successors and only predecessors, with id #s ranging from

Na + Nb + 1 to Na + Nb + Nc
maxFanOut, the maximum number of edges out of a node
minFanOut, the minimum number of edges out of a node

∗/

S. Shivle et al. / J. Parallel Distrib. Comput. 66 (2006) 600–611 609

/∗ output:
a DAG where all edges point from a smaller id node to a larger id node

∗/

DAG generator pseudocode
1. for every node with successors, i,

/∗ the maximum number of outgoing edges of node i must be equal to the
maximum fanout or the number of nodes with id larger than node i ∗ /

2. maxedges = min(maxFanOut, number of nodes with id larger than i)
3. generate a random number, j , between (minFanOut, maxedges)
4. randomly select j nodes with id larger than i and generate an edge from i to each of

the j nodes, updating the data structures accordingly
5. endfor

/∗ check for nodes from (Na + 1) to (Na + Nb + Nc) that do not have an incoming edge∗/

6. for each node, i,
7. if there is no incoming edge

/∗ find the first node with id less than i that can be used to make an edge to the
node i ∗ /

8. for k = 1 to (i − 1) do
9. if k does not have max outgoing edges
10. generate an edge between the node k and the node i, and break out of this

for loop
11. else if k has an outgoing edge pointing to a node that has more than 1 incoming

edge
12. move the outgoing edge to point to node i, and break out of this for loop
13. endif /* matches the if in Line (9) ∗/

14. endfor /* matches the for in Line (8) ∗/

15. endif /∗ matches the if in Line (7) ∗/

16. endfor /∗ matches the for in Line (6) ∗/

End of DAG generator pseudo code.

References

[AlK02] S. Ali, J.-K. Kim, Y. Yu, S.B. Gundala, S. Gertphol, H. J.
Siegel, A.A. Maciejewski, V. Prasanna, Utilization-based techniques
for statically mapping heterogeneous applications onto the HiPer-
D heterogeneous computing system, Parallel Distributed Comput.
Practices 5 (4) (2002) (Special issue on Algorithms, Systems and
Tools for High Performance Computing).

[AlS00] S. Ali, H.J. Siegel, M. Maheswaran, D. Hensgen, S.
Ali, Representing task and machine heterogeneities for
heterogeneous computing systems, Tamkang J. Sci. Engg. 3
(3) (2000) 195–207 (invited) (Special 50th Anniversary Issue),
http://www.engr.colostate.edu/∼hj/journals/70.pdf

[BaS01] H. Barada, S.M. Sait, N. Baig, Task matching and scheduling
in heterogeneous systems using simulated evolution, 10th
IEEE Heterogeneous Computing Workshop (HCW 2001), 15th
International Parallel and Distributed Processing Symposium
(IPDPS 2001), Paper HCW 15, April 2001.

[BaV01] I. Banicescu, V. Velusamy, Performance of scheduling scientific
applications with adaptive weighted factoring, 10th IEEE
Heterogeneous Computing Workshop (HCW 2001), 15th
International Parallel and Distributed Processing Symposium
(IPDPS 2001), Paper HCW 06, April 2001.

[BrS01b] T.D. Braun, H.J. Siegel, N. Beck, L. Boloni, R.F. Freund, D.
Hensgen, M. Maheswaran, A.I. Reuther, J.P. Robertson, M.D.
Theys, B. Yao, A comparison of eleven static heuristics for
mapping a class of independent tasks onto heterogeneous distributed
computing systems, J. Parallel Distributed Comput. 61 (6) (2001)
810–837.

[BrS01a] T.D. Braun, H.J. Siegel, A.A. Maciejewski, Heterogeneous
computing: goals, methods, and open problems, 2001 International
Conference on Parallel and Distributed Processing Techniques and
Applications (PDPTA 2001), June 2001, pp. 1–12 (invited keynote
paper).

[ChL91] K. Chow, B. Liu, On mapping signal processing algorithms to a
heterogeneous multiprocessor system, International Conference on
Acoustics, Speech, and Signal Processing (ICASSP ’91), vol. 3,
1991, pp. 1585–1588.

[Cof76] E.G. Coffman Jr. (Ed.), Computer and Job-Shop Scheduling Theory,
Wiley, New York, NY, 1976.

[Esh96] M.M. Eshaghian (Ed.), Heterogeneous Computing, Norwood, MA,
Artech House, 1996.

[Fer89] D. Fernandez-Baca, Allocating modules to processors in a
distributed system, IEEE Trans. Software Eng. SE-15 (11) (1989)
427–1436.

[GhY93] A. Ghafoor, J. Yang, Distributed heterogeneous supercomputing
management system, IEEE Comput. 26 (6) (1993) 78–86.

[HoK99] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, M.B. Srivastava, Power
optimization of variable-voltage core-based systems, IEEE Trans.
Computer-Aided Design Integrated Circuits Systems 18 (12) (1999)
1702–1714.

[IbK77] O.H. Ibarra, C.E. Kim, Heuristic algorithms for scheduling
independent tasks on non-identical processors, J. ACM 24 (2) (1977)
280–289.

[IvO95] M.A. Iverson, F. Ozguner, G.J. Follen, ‘Parallelizing existing
applications in a distributed heterogeneous environment,’ 1995
Heterogeneous Computing Workshop (HCW ’95), 1995, pp.
93–100.

http://www.engr.colostate.edu/hj/journals/70.pdf

610 S. Shivle et al. / J. Parallel Distrib. Comput. 66 (2006) 600–611

[Jai91] R. Jain, The Art of Computer Systems Performance Analysis
Techniques for Experimental Design, Measurement, Simulation, and
Modeling, Wiley, New York, 1991.

[KaA98] M. Kafil, I. Ahmad, Optimal task assignment in heterogeneous
distributed computing systems, IEEE Concurrency 6 (3) (1998)
42–51.

[KhP93] A.A. Khokhar, V.K. Prasanna, M.E. Shaaban, C.L. Wang,
Heterogeneous computing: challenges and opportunities, IEEE
Comput. 26 (6) (1993) 18–27.

[LuZ00] P. Luh, X. Zhao, Y. Wang, L. Thakur, Lagrangian relaxation neural
networks for job shop scheduling, IEEE Trans. Robotics Automat.
16 (1) (2000) 78–88.

[MaA99] M. Maheswaran, S. Ali, H.J. Siegel, D. Hensgen, R.F. Freund,
Dynamic mapping of a class of independent tasks onto
heterogeneous computing systems, J. Parallel Distributed Comput.
59 (2) (1999) 107–121.

[MaB99] M. Maheswaran, T.D. Braun, H.J. Siegel, Heterogeneous distributed
computing, in: J.G. Webster (Ed.), Encyclopedia of Electrical and
Electronics Engineering, vol. 8, Wiley, New York, NY, 1999, pp.
679–690.

[MaM03] D. Marinescu, G. Marinescu, Y. Ji, L. Boloni, H.J. Siegel,
Ad hoc grids: communication and computing in a power
constrained environment, Workshop on Energy-Efficient Wireless
Communications and Networks 2003 (EWCN 2003), 22nd
International Performance, Computing, and Communications
Conference (IPCCC), April 2003.

[MiF00] Z. Michalewicz, D.B. Fogel, How to Solve It: Modern Heuristics,
Springer, New York, NY, 2000.

[MiR03] R. Mishra, N. Rastogi, Z. Dakai, D. Mosse, R. Melhem, Energy
aware scheduling for distributed real-time systems, International
Parallel and Distributed Processing Symposium 2003 (IPDPS 2003),
April 2003, pp. 22–26.

[Rud94] G. Rudolph, Convergence analysis of canonical genetic algorithms,
IEEE Trans. Neural Networks 5 (1) (1994) 96–101.

[SiD97] H.J. Siegel, H.G. Dietz, J.K. Antonio, Software support for
heterogeneous computing, in: A.B. Tucker, Jr. (Ed.), The Computer
Science and Engineering Handbook, CRC Press, Boca Raton, FL,
1997, pp. 1886–1909.

[SiY96] H. Singh, A. Youssef, Mapping and scheduling heterogeneous
task graphs using genetic algorithms, in: 5th IEEE Heterogeneous
Computing Workshop (HCW 1996), 1996, pp. 86–97.

[SrP94] M. Srinivas, L.M. Patnaik, Genetic algorithms: a survey, IEEE
Comput. 27 (6) (1994) 17–26.

[YaD95] F. Yao, A. Demers, S. Shenker, A scheduling model for reduced
CPU energy, IEEE Annual Foundations Comput. Sci. (1995)
374–382.

[YuP02] Y. Yu, V.K. Prasanna, Power-aware resource allocation for
independent tasks in heterogeneous real-time systems, 9th
International Conference on Parallel and Distributed Systems,
December 2002, pp. 341–348.

[WaS97] L. Wang, H.J. Siegel, V.P. Roychowdhury, A.A. Maciejewski, Task
matching and scheduling in heterogeneous computing environments
using a genetic-algorithm-based approach, J. Parallel Distributed
Comput. 47 (1) (1997) 8–22.

[WuS00] M.-Y. Wu, W. Shu, H. Zhang, Segmented min–min: a static mapping
algorithm for meta-tasks on heterogeneous computing systems, 9th
IEEE Heterogeneous Computing Workshop (HCW 2000), May
2000, pp. 375–385.

Sameer Shivle is currently working as a Soft-
ware Engineer with the Parametric Technology
Corporation (PTC), India. He received his M.S.
degree in Electrical and Computer Engineering
from the Colorado State University and his B.E.
degree in Electrical Engineering from the Gov-
ernment College of Engineering, Pune, India.
His fields of interest are heterogeneous com-
puting, computer architecture, resource manage-
ment, and digital system design.

H.J. Siegel was appointed the George T. Abell
Endowed Chair Distinguished Professor of Elec-
trical and Computer Engineering at the Colorado
State University (CSU) in August 2001, where
he is also a Professor of Computer Science. In
December 2002, he became the first Director
of the university-wide CSU Information Science
and Technology Center (ISTeC). From 1976 to
2001, he was a professor at the Purdue Univer-
sity. He received two B.S. degrees from the MIT,
and the M.A., M.S.E., and Ph.D. degrees from
the Princeton University. Prof. Siegel has co-
authored over 300 published papers on parallel

and distributed computing and communication. He is a Fellow of the IEEE and
a Fellow of the ACM. He was a Coeditor-in-Chief of the Journal of Parallel
and Distributed Computing, and was on the Editorial Boards of both the IEEE
Transactions on Parallel and Distributed Systems and the IEEE Transactions
on Computers. He was Program Chair/Co-Chair of three major international
conferences, General Chair/Co-Chair of six international conferences, and
Chair/Co-Chair of five workshops. He has been an international keynote
speaker and tutorial lecturer, and has consulted for industry and government.
For more information, please see www.engr.colostate.edu/∼hj.

Anthony A. Maciejewski received his B.S.E.E,
M.S., and Ph.D. degrees from the Ohio State
University in 1982, 1984, and 1987. From 1988
to 2001, he was a Professor of Electrical and
Computer Engineering at the Purdue University,
West Lafayette. He is currently the Department
Head of Electrical and Computer Engineering at
the Colorado State University. Tony is a Fellow
of the IEEE. A complete vita is available at:
www.engr.colostate.edu/∼aam.

Prasanna Sugavanam received his M.S. degree
in Electrical and Computer Engineering from
the Colorado State University in 2005, where
he was a Graduate Research Assistant. He re-
ceived his Bachelor of Engineering in Electrical
and Electronics from the Kumaraguru College
of Technology, India in 2001. He is currently
working as a Senior Software Developer for a
leading biotech company in California.

Tarun Banka is a Ph.D. candidate in the
Department of Electrical and Computer En-
gineering at the Colorado State University
(CSU). He received his M.S. degree in Com-
puter Science from the CSU and B.E. degree
in Computer Science and Engineering from
the Punjab Engineering College, India. His
research interests include sensor networks,
overlay networks, application-aware protocols,
network performance modeling, and hetero-
geneous computing. He is a student lead and
member of the student advisory council of
the NSF Engineering Research Center CASA

at the CSU. He is serving on the executive committee of international honor
society for the computing Sciences, Upsilon Pi Epsilon (UPE) since Spring
2004 at the CSU. Tarun has worked for 2 years as a Software Engineer for the
Honeywell Technology Solution Lab, India. He has also gained experience
as an intern at the Indian Institute of Science, India and Compaq/HP, USA.

Ralph H. Castain is currently serving in the
Center for Homeland Security at Los Alamos
National Laboratory. In addition to defining
programmatic directions, he conducts research
into resilient systems that predict and respond to
incipient failures. He previously served as a Re-
search Scientist within the Electrical and Com-
puter Engineering Department at the Colorado
State University where he conducted research
focused on robust resource management within
distributed computing systems, and led the

http://www.engr.colostate.edu/hj
http://www.engr.colostate.edu/aam

S. Shivle et al. / J. Parallel Distrib. Comput. 66 (2006) 600–611 611

Colorado Grid Computing (COGrid) Initiative, an effort that he founded in
late 2002 to create a statewide grid computing system capable of meeting the
needs of industry, government, and academia of all levels. Prior to joining the
University, he spent 8 years in industry-leading technology initiatives, and 11
years at the Los Alamos National Laboratory. During his previous time at the
Los Alamos, he served as a Chief Scientist for Nonproliferation and Arms
Control. His technical paper in the early 1990s on next-generation methods for
proliferation detection has served as the foundation for the US government’s
nonproliferation research program for over 10 years. He received his B.S.
degree from the Harvey Mudd College, and the M.S., M.S.E.E., and Ph.D.
degrees from the Purdue University.

Kiran Chindam has received his M.S. degree in
Electrical and Computer Engineering from the
Colorado State University in 2005. He received
his B.Tech. degree in Electronics and Commu-
nication Engineering from the Jawaharlal Nehru
Technological University in 2001. He is cur-
rently working as a consultant in Cisco Sys-
tems Inc. His research interests include VLSI
systems design, heterogeneous, parallel and re-
configurable computing.

Steve Dussinger received his B.S. in Electri-
cal Engineering and his B.S. in Computer En-
gineering from the University of Florida in De-
cember 1999. He received his M.S. in Electrical
Engineering from the Colorado State University
in May 2005. He currently works for the Intel
Corporation as a VLSI design engineer.

Prakash K. Pichumani is working as a Se-
nior Software Developer for a leading Apparel
Manufacturing company in New Hampshire.
He received his M.S. degree in Electrical and
Computer Engineering from the Colorado State
University in 2003, where he was a Graduate
Research Assistant. He received his Bachelor of
Engineering in Electronics and Instrumentation
from the Annamalai University, India in 2001.
His research interests include Heterogeneous
Computing, Distributed Computing Systems,
SCADA, Computer Architecture, and Digital
Signal Processing.

Praveen Satyasekaran received his Bachelor of Engineering in Electrical
and Electronics from the Kumaraguru College of Technology, India in 2001
and M.S. degree in Electrical Engineering from the Colorado State University
in 2004. He currently works for Xilinx.

William W. Saylor is currently serving as the
Schriever Chair in the Department of Astronau-
tics at the United States Air Force Academy.
In addition to teachning course in astronauti-
cal engineering he is the Chief Engineer for
the small satellite program and is conducting
research into methods for autonomous com-
munication and control across constellations
of distributed payload sensors and computing
resources. He previously served as a Senior
Scientist with SAIC, Inc. supporting advanced
satellite technology programs for various DoD
agencies. Prior to that he consulted for several

years in the energy and defense sectors after working at Los Alamos National
Laboratory for 12 years on a variety of defense and space programs. He
spent 8 years in the Army and received his B.S. from the United States
Military Academy and the M.S., M.S.N.E., from the Massachusetts Institute
of Technology.

David Sendek is pursuing a Ph.D. from the
Department of Electrical and Computer Engi-
neering at the Colorado State University. His
main research interest is in VLSI computer ar-
chitectures. He received his B.S. in Mathematics
from the College of Charleston in 1981 and His
M.S.E.E. from the Naval Postgraduate School
in 1990. Prior to pursuing higher education,
Commander Sendek served in the United States
Navy as an engineer where he managed the
acquisition, research and development, systems
engineering and life cycle support of military
satellite communications systems and missile

weapons systems. During active duty military service, he obtained advanced
level Defense Acquisition Workforce Improvement Act certifications in Pro-
gram Management, Systems Engineering and Test and Evaluation Engineer-
ing. He is currently employed in the aerospace industry as an analyst with
satellites, ground/control and user segments focused on ASIC/FPGA imple-
mentations.

Jayashree Sridharan is a graduate student
pursuing a Masters degree in the Department of
Electrical and Computer Engineering, Colorado
State University. She received her Bachelors
degree in Electronics and Communication En-
gineering from the M.S. Ramaiah Institute of
Technology (affiliated to the Visveswaraiah
Technological University, Karnataka) in 2002.
Her research interests include Computer Archi-
tecture, system-level hardware design, hardware
description languages, and VLSI.

J. Sousa received his Associates Degree in Elec-
trical Engineering from the Ricks College in
1994 and B.S. in Electrical Engineering from
the University of Utah in 1999. He is pursuing
a M.S. degree in Electrical Engineering at the
Colorado State University. He currently works
for Intel Corporation as a VLSI design engineer.

José Velazco received his B.S. degree in Electrical Engineering from the
University of Puerto Rico at Mayagüez. He then received his M.E. degree from
the Colorado State University. He has worked in the semiconductor industry
with the Hewlett-Packard in Fort Collins, CO, and is currently employed by
the Abbott Laboratories in a manufacturing facility in Barceloneta, PR. His
research interests include VLSI design, analog IC design, networking, and
digital communications.

