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Abstract

We have developed a regime switching framework to compute the
Value at Risk and Expected Shortfall measures. Although Value at
Risk as a risk measure has been criticized by some researchers for lack
of subadditivity, it is still a central tool in banking regulations and in-
ternal risk management in the �nance industry. In contrast, Expected
Shortfall (ES) is coherent and convex, so it is a better measure of risk
than Value at Risk. Expected Shortfall is widely used in the insurance
industry and has the potential to replace Value at Risk as a standard
risk measure in the near future. We have proposed regime switching
models to measure value at risk and expected shortfall for a single
�nancial asset as well as �nancial portfolios. Our models capture the
volatility clustering phenomenon and variance independent variation
in the higher moments by assuming the returns follow Student�s t-
distributions.

Keywords: Value at Risk (VaR), Expected Shortfall (ES), Regime Switch-
ing, Student-t distribution, Fat tailed, Volatility Clustering

1 Introduction

Risk is always a concern in our lives. We face di¤erent kinds of risk everyday.
Risk is particularly important in economics, and �nance. However, risk is not
an objective concept, and, thus, it is not at all easy to give a precise de�nition.
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Roughly speaking, risk means a chance of injury or loss associated with a
given action.
In economics, people are interested in how to measure risk. There are

various attempts to look for risk measures. For a brief review of risk measures,
see Miao (2006) [19]. Value at Risk (VaR), or Capital at Risk, is an industry
benchmark for the disclosure of �nancial risk. Although Value at Risk is often
criticized for lack of subadditivity, being ine¤ective in recognizing the dangers
of concentrating credit risk, and being not able to indicate the severity of the
economic consequences of exposure to the rare events, it is likely to retain
its preeminent practical status since it is much easier to use than most other
risk measures.
The interest in value at risk stems from the tremendous changes and ex-

pansion of �nancial markets. As a result of the rapid movements of �nancial
markets, and the proliferation of derivative instruments in the past decades,
many companies have complex portfolios including large numbers of cash
and derivative instruments. Because of the complexity and frequent trading
of various derivative instruments, the magnitudes of the risks in companies�
portfolios change frequently and often are not obvious. Although many risk
measures are provided by researchers, most of them are quite complicated
and not understandable for senior managers. Therefore portfolio managers
need a quantitative risk measure which a manager can succinctly report to
the senior managers charged with the oversight of risk management and trad-
ing operations. Value at Risk (VaR) is the leading summary measure of this
type.
In the late 1980s VaR was introduced and �rst used by major �nancial

�rms to measure the risks of their trading portfolios. Since then, the use of
VaR has exploded. VaR is now widely used by other �nancial institutions,
and non-�nancial corporations.
As indicated by Du¢ e and Pan (1997) [6], the measurement of VaR of

a portfolio, including basic instruments and derivatives, relies on a model of
the price change of the underlying instruments, and a model for computing
the sensitivity of the prices of derivatives to the underlying prices. A variety
of approaches has been developed to estimate VaR. Basically there are four
groups of ways to compute VaR. They are historical simulation, fully para-
metric models, extreme value theory and quantile regression approaches. For
details of a comparison of the four groups, see Kuester et al. (2006) [16].
In the existing literature, two issues are key in order to calculate VaR.

They are the validity of the normality assumption for the value or return
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on an asset or portfolio, including the study of fat tails and the volatility
clustering, and the assumption of non-linearity of the assets. The study of
non-normal features of �nancial returns was pioneered by Mandelbrot (1963)
[18] and Fama (1963) [11]. From then on, many empirical studies have proven
the non-normality of �nancial returns. Those studies led some authors to pro-
pose other distributions with fatter tails than the normal distribution, such as
Pareto�s stable distribution, Student-t distribution, and the skewed Student-
t distribution. Other authors have proposed distributions to describe only
the behaviors of the extreme returns based on the Extreme Value Theory,
see for example Neftci (2000) [20].
Another branch of research in the area of the computation of VaR is the

use of regime switching models. Regime switching models are commonly used
to capture the dynamics of �nancial returns. Guidolin and Timmermann
(2003) [12] provide a four state multivariate regime switching model for the
joint distribution of monthly stock and bond returns and compare it with
two benchmarks. They found that the regime switching model is accurate
in out-of-sample VaR predictions. Billio and Pelizzon (2000) [3] propose
four di¤erent regime switching models and show that the models perform
better than the GARCH and GARCHB models. Kawata and Kijima (2005)
[15] introduce adjustment factors for state probabilities in regime switching
models for estimate portfolio VaR, and argue that their models perform well.
All the regime switching models mentioned above assume the returns

are drawn from di¤erent normal densities through time depending on states.
That is, in the two state models, there are only two variance levels. This is not
consistent with the empirical evidence and is in contrast with the GARCH
models in which the variance is continuous. These models do not give closed
formulas for parameter estimations, so they are not easy to apply in practice.
To resolve this issue, we shall propose a regime switching Student-t distrib-
ution model in which we assume the returns follow a Student-t distribution.
Under this assumption, the distributions can di¤er more than their scales
across regimes. We shall derive closed form estimates for all the parameters
in the model by applying �ltering theory.
Although Expected Shortfall, (ES hereafter), is less commonly used in

�nance industry, it is widely used in the insurance industry. ES is a good
measure of risk since it is coherent, convex and stable. Most of the methods
used to estimate VaR can also be applied to compute ES, so we compute
both of them in this paper.
The paper is constructed as follows. In section 2 we give a brief description
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of the mathematical de�nitions of Value at Risk and Expected Shortfall,
and the model set-up. In section 3 we derive the features of the model
and the solutions of the parameters. In section 4 and 5 we develop closed
form expressions for both VaR and ES. A conclusion summarizing the most
signi�cant �ndings is given in section 6.

2 De�nitions and Model Setup

2.1 De�nitions and Features of VaR

VaR is a single, summary statistical measure which aggregates all of the
risks in a portfolio into a single number suitable for use in the boardroom,
reporting to regulators, or disclosure in an annual report. It is simply a way
to describe the magnitude of likely losses in a portfolio. More precisely, VaR
is de�ned as:

De�nition 1 VaR is a statistical estimation of a portfolio loss with the prop-
erty that, with a small probability �, the owner of the portfolio stands to incur
that loss or more over a given (typically short) holding period.

Typical in practice, values for the probability � are 1; 2:5, and 5 percent;
common holding periods are 1, 2, and 10 business days and 1 month.
Delbaen (2000) [5] gave a more precise de�nition which is following:

De�nition 2 Let X be a random variable and � 2 [0; 1] ; q is called an
�-quantile if:

P [X < q] � � � P [X � q] :

The largest �-quantile is:

q� (X) = inf fxjP [X � x] > �g ;

and the smallest �-quantile is:

q� (X) = inf fxjP [X � x] � �g :

De�nition 3 Given a position X and a number � 2 [0; 1] we de�ne

V aR� (X) := �q� (X)

and we call X VaR-acceptable if V aR� (X) � 0 or, equivalently, if q� � 0:
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VaR has the following properties:

1. X � 0 =) V aR� (X) � 0;

2. X � Y =) V aR� (X) � V aR� (Y ) ;

3. V aR� (�X) = �V aR� (X) ;8� � 0;

4. V aR� (X + k) = V aR� (X)� k;8k 2 R:

This generalized de�nition of V aR� can be calculated for any random
variable. However, there are good reasons for rejecting V aR as an adequate
measure of risk. First of all, V aR� loses convexity properties, or is not sub-
additive, so it is not coherent. (see Artzner (1999) [2] or Delbaen (2000) [5]
for details on coherent risk measures.) This may result in that diversi�ed
portfolios are riskier than less diversi�ed portfolios. Secondly, V aR� is inef-
fective in recognizing the dangers of concentrating credit risk. Finally, V aR�
does not indicate the severity of the economic consequences of exposure to
the rare events.

2.2 De�nitions and Features of ES

As an alternative measure, ES has superior properties in many respects. ES
is a coherent risk measure. In this section, we shall present the de�nition
and properties of ES:
Although VaR is very broadly used as a standard risk measure in prac-

tice, it su¤ers from the three previous stated problems. Since VaR does not
indicate how "bad" the bad consequences can be, or in other words, VaR
does not give any information about how much the loss will be when the rare
events happen, we need a measure of risk which can provide this kind of in-
formation. Therefore, ES is a natural alternative to VaR. ES is the expected
loss incurred in the �% worst cases, whereas VaR indicates the minimum loss
incurred in the �% worst cases. It is clearly natural for a portfolio manager
or a CEO to worry about the expected loss instead of the minimum loss at
the worst situation, so ES is a more natural and reasonable risk measure
than VaR.
For simpli�cation, we give simpli�ed de�nition of ES. The de�nition below

is valid only for a smooth distribution function. For a precise de�nition, see
Rockafellar and Uryasev [21]; or Elliott and Kopp [7],
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De�nition 4 ES equals the conditional expectation of X, given that X >
V aR� (X) ; i.e.

ES� = E [XjX > V aR� (X)] :

Similarly, ES has the following properties:

1. X � Y =) ES� (X) � ES� (Y ) ;

2. ES� (�X) = � � ES� (X) ;8� � 0;

3. ES� (X + k) = ES� (X)� k;8k 2 R:

4. ES� (X) is convex, i.e.

ES� (�X + (1� �)Y ) � �ES� (X) + (1� �)ES� (Y ) :

A similar presentation of the conditional value at risk can also be found
in Tasche [22], where the name expected shortfall is used.

2.3 Model Setup

We consider a regime switching model in which there is an unobserved state
variable X: This variable can have di¤erent values, referred to as �regimes�
or �states�. The reason for introducing a state variable X is that in the
real world there are di¤erent events which have di¤erent in�uences on the
economy and, therefore, on the �nancial markets. For example, the returns
of �nancial instruments can be heavily a¤ected by economic news. It is
common knowledge that �important� news and �unimportant� news have
di¤erent e¤ects on the �nancial markets. We represent such "states of the
world" by a Markov chain X with a transition matrix A. In our model, we
assume the world will have 2 states. Therefore, the state space S for X is
the set of 2 column vectors with unity in the ith position and zero elsewhere.
That is

S = fei; i = 1; 2g =
��

1
0

�
;

�
0
1

��
:

Suppose pji = P (Xk = ejjXk�1 = ei), and write A = (pji) ; 1 � i; j � 2;
for the transition matrix of the chain X: Then, (see [10] )

Xk = AXk�1 + Vt: (1)
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where Vt is a martingale increment.
We suppose the returns Yk (0 � k � T ) of an individual �nancial asset,

S; follow a switching Student-t distribution with density function

T (xj�; �; �) = � ((� + 1) =2)

� (�=2)
p
���2

 
1 +

1

�

�
x� �

�

�2!�(�+1)=2
; for �; � > 0:

Thus the model can be written as

Yk �
�
T (�1; �1; �1) in state 1,
T (�2; �2; �2) in state 2.

That is, under the "real world" probability space, at time k, the density
function of Yk is

 (Yk) = hXk�1; e1iT1 (Yk) + hXk�1; e2iT2 (Yk) :

Therefore, the model can describe the fat-tailed phenomenon which is very
commonly noticed in high frequent �nancial data. The model can also cap-
ture the volatility clustering phenomenon using the di¤erent "regimes".
A Student-t distribution might arise in the following way:
Suppose:

Yk = log

�
Sk
Sk�1

�
= �k (Xk�1) + � (Xk; k) "k+1:

Here, "k+1 � N (0; 1) : Therefore, the returns are normally distributed
with mean �k and variance �

2
k: Here �k depends on the state variable Xk; and

�2k depends on the state variable Xk and time k. This would be a di¤erence
between our model and the previous regime switching VaR models in which
the variance, �2k; only depends on the state variable Xk: We could then
assume that the precision, the reciprocal of the variance, follows a gamma
distribution, so the variance in each state can take any positive value on the
real line since the support of the gamma distribution is R+: Thus, we have

�k = h�; Xk�1i ;
�2k =



�2; Xk�1

�
;
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where

� =

�
�1

�2

�
; �2 =

�
�21
�22

�
;

and
1

�2i
� G (�i; �i�i) ; for i = 1; 2:

Here G is a Gamma distribution with density function

G (xj�; �) = (�=2)�=2

� (�=2)
x�=2�1e1(�=2)xIfx�0g; �; � > 0;

where

� (x) =

Z 1

0

tx�1e�tdt:

Then we have
Ytjei � T (�i; �i; �i) ;

where �i is a location parameter, �i is a scale parameter, and �i is a shape
parameter or degrees of freedom.

2.4 Why a Student-t distribution?

The Student-t distribution itself can improve the estimation of VaR. This is
shown by Lin and Shen (2006) [17]. They aimed to investigate how e¤ectively
the value at risk (VaR) estimated using the Student-t distribution captures
the market risk. In their study, they considered the Student-t distribution as
a �t to the empirical distribution for estimating the VaR measure, namely,
VaR-t method. They found that using the student-t distribution for estimat-
ing VaR can improve the VaR estimation and o¤er accurate VaR estimates,
particularly when the tail index technique is used to determine the degrees of
freedom and the con�dence level exceeds 98.5 percent. The following picture
compares Student-t and Normal distributions applied to the prompt month
Hub Nat. gas Nymex Futures contract.
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As the graphs show, the Student-t distribution is a better �t. Moreover
since, see Heikkinen, and Kanto (2002) [13], and Andreev, and Kanto (2004)
[1],

v = 4 +
6

k
;

one can estimate the degrees of freedom by estimating the excess kurtosis
k. The following graph shows this estimation for the Hub Nat. gas Nymex
Futures contract.
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Using these estimates for the degrees of freedom we can use Maximum
Likelihood to estimate the volatility of these contracts, see Tchernister, and
Rubisov (2005) [23]. The following graph shows that Student-t estimates are
more stable.

3 Parameter Estimation

3.1 Change of Measure

In this subsection, we shall develop non-linear �lters for the paremeters of the
model. Our �lters are new. These non-linear �lters make the computation
of VaR and ES much more easy and useful.
In practice, we only observe the return process Y1; Y2; :::; Yt; We want

to estimate the transition matrix A, and the means and variances in the
model based on the available information. Following Elliott et al. [8]; we
use the change of measure technique and initially work with a "reference"
probability �P . We suppose that under the probability space �P , the Yt are a
sequence of i.i.d. random variables independent of X and each of which is
T (1; 0; 1), where T (1; 0; 1) represents the "standard" Student-t distribution
with density function
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�(x) =
1R1

0
t1=2e�tdt

p
�

�
1 + x2

��1
:

De�ne:

�k =
 (Yk)

�(Yk)
; k = 1; 2; ::;

and

�0 = 1;

�t =

tY
k=1

�k for k > 1:

WriteFk = � fX0; X1; : : : ; Xkg for the �-�eld generated byX0; X1; : : : ; Xk:Then
the �ltrations

F0 � F1 � � � � � Fk
and fFkg is a �ltration which models all possible histories of X. Similarly
we write

Yk = � fY1; Y2 : : : ; Ykg ;
Gk = � fX0; X1; : : : ; Xk; Y1; Y2 : : : ; Ykg :

Then the �ltrations fFkg ; fYkg and fGkg represent possible histories of the
state process X, the observation process Y and both process fX; Y g, respec-
tively.

We de�ne a measure P by setting
dP

d �P
jGk = �k. Then P is the "real

world" probability, and we have the following lemma.

Lemma 1 Under P the Yk, k = 1; 2; :::; are sequences of independent ran-
dom variables and have the density

 k (Y ) = hXk�1; e1iT1 (Yk) + hXk�1; e2iT2 (Yk) :

Proof. What we must show is that for any measure function f (Yk)

E [f (Yk) jGk�1] =
Z 1

�1
f(y) k (y) dy:
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Using Bayes�Theorem we have

E [f (Yk) jGk�1] =
�E [�kf (Yk) jGk�1]
�E [�kjGk�1]

=
�E [�kf (Yk) jGk�1]
�E [�kjGk�1]

Consider the denominator

�E [�kjGk�1] = �E

�
hXk�1; e1iT1 (Yk) + hXk�1; e2iT2 (Yk)

� (Yk)

����Gk�1�
=

Z 1

�1

hXk�1; e1iT1 (y) + hXk�1; e2iT2 (y)
� (y)

� (y) dy

= hXk�1; e1i+ hXk�1; e2i = 1:

Also

�E [�kf (Yk) jGk�1]

= �E

�
hXk�1; e1iT1 (Yk) + hXk�1; e2iT2 (Yk)

� (Yk)
f (Yk)

����Gk�1�
=

Z 1

�1

hXk�1; e1iT1 (y) + hXk�1; e2iT2 (y)
� (y)

f (y)� (y) dy

= hXk�1; e1i
Z 1

�1
T1 (y) f (y) dy + hXk�1; e2i

Z 1

�1
T2 (y) f (y) dy

=

Z 1

�1
f(y) k (y) dy:

�
From the Lemma, we know that the probability measure is the "real

world" probability measure under which we assume the sequence Yk, k =
0; 1; 2; :::; are sequences of independent random variables following  k (Y ).
We wish to estimateX given the observations of Y under the "real world"

probability P; that is, we are interested in the quantity E [XkjYk] : As we have
stated above, �P is a nicer measure to work with. Using the Bayes�Theorem
(see [10]), we have

E [XkjYk] =
�E [�kXkjYk]
�E [�kjYk]

: (2)
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We write qk = �E [�kXkjYk] ; and notice that
2P
i=1

hXk; eii = 1; so

2X
i=1

�E [h�kXk; eii jYk] = �E

"
�k

2X
i=1

hXk; eii jYk

#
= �E [�kjYk] =

2X
i=1

hqk; eii :

Therefore
E [XkjYk] =

qk
2P
i=1

hqk; eii
:

The following lemma gives a recursive �lter for q:

Lemma 2 q satis�es the recurrence qk = AB(Yk)qk�1(h); where B(Yk) is a

2 dimension diagonal matrix with entries
Ti (Yk)

� (Yk)
:

Proof.

qk = �E [�kXkjYk]
= �E [�k�1�k (AXk�1 + Vk) jYk]

= �E

�
�k�1

hXk�1; e1iT1 (Yk) + hXk�1; e2iT2 (Yk)
� (Yk)

(AXk�1 + Vk) jYk
�

=
2X
i=1

�E [�k�1 hXk�1; eii jYk]
Ti (Yk)

� (Yk)
Aei

=
2X
i=1

hqk�1; eii
Ti (Yk)

� (Yk)
Aei

= AB (Yk) qk�1:

�
It is clear that to obtain an estimate of X, the parameters A = (pji) ;

� = (�1; �2) ; � = (�1; �2) ; and � = (�1; �2) should be estimated �rst. To
estimate these parameters we need estimates of the number of jumps from
state r to state s in the time period k:

Jrsk =
kX
l=1

hXl�1; eri hXl; esi ;
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and the amount of time X has spent in state r up to time k:

Ork =

kX
l=1

hXl; eri :

Also, we need an estimate of the process

Zrk =

kX
l=1

hXl�1; eri f (Yl) ;

where f (Y ) is a function of Y for the estimate of the components of �; �; and
�: (see [10] for details). Actually, these three processes can be constructed
as one special process. (see [9])
Notice that for a G-adapted process, if we write Ẑk = E [ZjYk] ; and

� (Z)k =
�E
�
��kZkjYk

�
we have

Ẑk =
� (Z)k
hqk; 1i

:

and

� (Z)k =
2X
i=1

h� (ZX)k ; eii :

The following lemmas give the recursions for � (JrsX)k ; � (O
rX)k ; and

� (T rX)k :

Lemma 3 With B(Yk) de�ned as the previous Lemma, we have

� (JrsX)k = AB (Yk)� (J
rsX)k�1 + hqk�1; eri

Tr (Yk)

� (Yk)
psrer:

Proof. See Appendix A. �
Similarly, we have the following Lemma.

Lemma 4

� (OrX)k = AB (Yk)� (O
rX)k�1 + hAB (Yk) qk�1; eri er;

� (ZrX)k = AB (Yk)� (Z
r (f)X)k�1 + hqk�1; eri

Tr (Yk)

� (Yk)
f (Yk)Aer:
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3.1.1 Parameter Estimation

All the regime switching papers just stated the application of Maximum
Likelihood Method, or the Expectation Maximization (EM) to estimate the
parameters, but no one really gave the formulas of the parameters. We shall
derive the formulas for all the parameters to facility the application of the
model.
In this section, we estimate the parameters of the model. Our model is

determined by several parameters. They are: the transition matrix A = (pji),
and the vectors � = (�1; �2) ; � = (�1; �2) ; and � = (�1; �2) : Write the
parameters as a set

� := fpji; �i; �i; �i; 1 � i; j � 2g ;

where pji � 0;
2P
j=1

pji = 1: One method of estimating parameters is the Max-

imum Likelihood Estimate (MLE) in which the optimal estimates maximize
the log-likelihood function with respect to some �xed probability P0 :

L(�) = E

�
log

dP�
dP0

jY
�
:

However the MLE is hard to compute. Also, because the variable X is
not observed directly we must consider the conditional expectation of the log-
likelihood. Consequently we shall use the Expectation Maximization (EM)
to compute the estimates. The basic idea of the EM algorithm is:

� We start with appropriate initial values �̂0 for

� := fpji; �i; �i; �i; 1 � i; j � 2g

which satisfy constraints for the parameters.

� After some observations of Y , we compute the new estimates.

� Using these values, we re-estimate the parameters iteratively until some
stopping criterion is satis�ed.

� After more observations we repeat the process again.
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Since the EM algorithm improves the estimates monotonically, the ex-
pected log-likelihood increases with each reestimation.
Consider the parameter pji, under P = P�, X is a Markov Chain with

transition A = (pji). We apply the change of measure technique and intro-
duce a new probability measure P�̂ so that under the new measure, X is now a
Markov Chain with transition matrix Â = (p̂ji); where P�̂ (Xt = ejjXt�1 = ei) =

p̂ji:), so p̂ji: � 0 and
NP
j=1

p̂ji: = 1:

Lemma 5 De�ne �0 = 1and �k =
kQ
l=1

�
NP

r;s=1

(
p̂sr
psr
) hXl; esi hXl�1; eri

�
: ( If

pji = 0, take p̂ji = 0 and
p̂ji
pji
= 1. ) De�ne P�̂ by setting

dP�̂
dP�

jFk = �t: Then

under the new measure P�̂, X is a Markov Chain with transition Â = (p̂ji).

The following proposition gives the EM estimates for the entries of the
transition matrix.

Proposition 1 Given the observations up to time k, fY0; Y1; Y2; :::; Ykg, that
is, given Yk; and given the parameter set � := fpji; �i; �i; �i; 1 � i; j � 2g,
the EM estimates of p̂ji are given by

p̂ji =
Ĵ ijk
Ôik

=
� (J ij)k
� (Oi)k

:

Proof. See Appendix B. �
Proposition 1 provides estimates for the elements of the transition matrix.

3.2 Estimate of �

Remark 1 In the following propositions 2, 3 and 4, the new parameter es-
timates �̂r; �̂r; �̂r, r = 1; 2, are obtained recursively. Initial estimates are
chosen and the right hand sides of the expressions calculated . These give
new estimates for �̂r; �̂r; �̂r. The right hand sides are then re-calculated us-
ing these revised estimates. This recursive procedure is continued until the
di¤erences between successive iterations are less than a pre-determined bound.
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Proposition 2 The estimate for the parameter � = (�1; �2
�); at time k,

�̂ = (�̂1; �̂2
�) is given by

�̂r =

P2
i=1

D
�
�
Zr
�

Yl
�r�

2
r+Y

2
l �2Yl�r+�2r

�
X
�
k
; ei

E
P2

i=1

D
�
�
Zr
�

1
�r�

2
r+Y

2
l �2Yl�r+�2r

�
X
�
k
; ei

E :
Proof. See Appendix C. �
We can use this recurrence to update �r at time k:

3.3 Estimate of �

Proposition 3 The estimate for the parameter � = (�1; �2�); at time t, �̂ =
(�̂1; �̂2�) is given by

�̂
2

r =

P2
i=1

D
�
�
Zr
�

Y 2l �2Yl�r+�2r
�r�

2
r+Y

2
l �2Yl�r+�2r

�
X
�
k
; ei

E
P2

i=1

D
�
�
Zr
�

1
�r�

2
r+Y

2
l �2Yl�r+�2r

�
X
�
k
; ei

E ;
and an up-dated estimate for the parameter � = (�1; �2�); at time t, �̂t =
(�̂1; �̂2�) is given by

�̂r =
Ôrk2664

�
1
2

R1
0 t

�r+1
2 �1e�t(log t)dtR1

0 t
�r+1
2 �1e�tdt

�
1
2

R1
0 t

�r
2 �1e�t(log t)dtR1

0 t
�r
2 �1e�tdt

�
Ôrk

�1
2
Ẑr
�
log

�
1 + 1

�r

�
Yl��r
�r

�2��
+ Ẑr

�
(�r+1)(Yl��r)2

2�r(�r�2r+Y 2l �2Yl�r+�2r)

�
3775
:

This is at the M stage of the estimation, after some more observations,
we �rst use the previous estimates for the parameters to compute the value
of those expectations. Then we use these parameter recurrences to update
the parameters. We always use the newest estimators to compute the next
one, until some criterion are reached.

4 Closed-form VaR and ES for a single Asset

In the previous section, we have derived closed-form recurrences for all the
parameters. Now we can give a closed-form expression for VaR and ES. Since
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we have the EM estimates for all the parameters, we can compute V aR� for
a single asset whose returns follow the previously described regime switching
Student-t distribution model.

V aR� at time k is de�ned as the value V such that

� =
2X
i=1

Ôi
k

Z �V=S0

�1

�((�i+1)=2)

�(�i=2)
p
��i�2i

�
1 +

1

�i

�
x��i
�i

�2��(�i+1)=2
dx: (3)

ES� =
1

�

2X
i=1

Ôi
k

Z �V=S0

�1
x �((�i+1)=2)

�(�i=2)
p
��i�2i

�
1 +

1

�i

�
x��i
�i

�2��(�i+1)=2
dx

For �i > 2; the variances are given by vi
�i�1�

2
i : By solving 3 for V; we

would obtain explicit values for computing V aR� and ES� during the time
period 0 to k as:

V aR� =
1

k

2X
i=1

"
Ôi

 
��iS0 + vi�iS0

r
1� �i
�i

!#
;

and

ES� =
1

k

2X
i=1

"
Ôi

 
��iS0 +

vi�iS0

�B
�
�i
2
; 1
2

�
(�i � 1)

!#
�
�i�1
2

i : (4)

Here Sk�1 is the value of the position at time k � 1; �i = I�1[�i=2;1=2] (2�)

and I�1[�i=2;1=2] is the inverse of the incomplete beta function, which can be
computed in many statistical software packages, for instance SAS. For a
detailed derivation of the expressions of 3 and 4, please see Kamdem (2005)
[14], and Bormetti et. al. (2006) [4].

5 Closed-form VaR and ES for a Portfolio

In reality, people are worried about the risk of a portfolio or the risk of the
total assets held by a company, so closed form expressions of VaR and ES for
portfolios are more important than for a single asset. It is not easy to obtain
closed form expressions of VaR and ES for a portfolio, since the relationship
between the individual assets in the portfolio might be very complicated.
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However, when a portfolio�s aggregate return is a linear function of the re-
turns of its components, we can derive closed form expressions for VaR and
ES: In practice, people apply the RiskMetrics methodology to estimate VaR
when the portfolios satisfy the linearity property and the returns of the indi-
vidual assets can be assumed to be normally jointly distributed. If the port-
folios are non-linear, or the joint distribution of the returns is non-normal,
Monte Carlo methods are used. Monte Carlo methods are quite �exible, but
slow when the portfolio is made up of a large number of individual assets.
In our model, the normality property is not satis�ed, but under the linearity
assumption of the portfolios, we can obtain closed form expressions for VaR
and ES.

De�nition 5 A portfolio with value V (k) at time 0� k � T is linear if
its pro�t or loss 4V (k) = V (k) � V (0) is a linear function of the returns
r1 (k) ; r2 (k) ; : : : ; rm (k) of its components over the same time period. i.e.

4V (k) = �1r1 + �2r2 + : : :+ �mrm;

or
4V (k) = �rt;

where � =(�1; �2; : : : ; �m) represents the initial values of the m components
of the portfolio, and r =(r1; r2; : : : ; rm) :

Similarly to the treatment in the previous section for a single asset, we
assume the returns ri (1 � i � m) follow Student-t distributions, with two
di¤erent parameter sets in the two "regimes". The multivariate Student-t
distribution then takes the following form:

Ti (r) =
� ((�i +m) =2)

� (�i=2)

r
(��i)

m
���X

i

���
�
1 +

1

vi
(r� �i)

t
X�1

i
(r� �i)

�� �i+m

2

:

where �i=(�
i
1; �

i
2; �

i
3; : : : ; �

i
m) 2 Rm (i = 1; 2) is the vector of the means of

the returns of the individual assets in the portfolio, �i > 2 represents the
degree of freedom, and

P
i = CCt is the correlation matrix in regime i:

Theoretically, by applying the previous framework, we can obtain re-
cursive estimates for �i;�i; and

P
i. Then we can obtain the closed form
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expressions of VaR and ES for the portfolio as:

V aR� =
1

k

2X
i=1

"
Ôi

 
���ti + q�;�i

r
�
P
i

�t

!#
;

and

ES� =
1

k

2X
i=1

"
Ôi

 
���ti + es�;�i

r
�
P
i

�t

!#
;

where q�;�i and es�;�i are scalar quantities depend on the value of � and �:
See Kamdem (2005) [14] Table 1-4 for the values of q�;�i and es�;�i.
However it is complicated to do so, since the correlation matrix grows

quadratically when the number of individual assets in the portfolio grows.
For a portfolio with n individual assets, the correlation matrix has n2 en-
tries. To deal with this situation, the interest in copula method is growing
dramatically. Following this direction, we shall develop a regime switching
copula model in a next paper.

6 Conclusion

We have developed a regime switching Student-t distribution model to esti-
mate VaR and ES: The Student-t distribution assumption captures the real
world fat-tailed fact for �nancial data. The regime switching setup gives
our model the power to �t the volatility clustering phenomenon. We have
obtained closed-form recursive estimates for all the parameters, VaR, and
ES for a single asset. We shall test our result numerically by applying real
�nancial return time series in a second paper. The framework can also be ap-
plied to portfolios, but the computation is complicated and time consuming
since the number of parameters grows quickly. To handle this situation, we
suggest a regime switching copula model which is our future research topic.
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A Proof of Lemma 3

Proof.

� (JrsX)k
= �E [�kJ

rs
k XkjYk]

= �E
�
�k�1�k

�
Jrsk�1 + hXk�1; eri hXk; esi

�
XkjYk

�
= �E

�
�k�1

hXk�1; e1iT1 (Yk) + hXk�1; e2iT2 (Yk)
� (Yk)

Jrsk�1 (AXk�1 + Vk) jYk
�

+ �E

�
�k�1

hXk�1; e1iT1 (Yk) + hXk�1; e2iT2 (Yk)
� (Yk)

hXk�1; eri hAXk�1 + Vk; esi esjYk
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Tr (Yk)

� (Yk)
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� (JrsX)k�1 ; ei

� Ti (Yk)
� (Yk)

Aei + hqk�1; eri
Tr (Yk)

� (Yk)
psres

= AB (Yk)� (J
rsX)k�1 + hqk�1; eri

Tr (Yk)

� (Yk)
psres;

where where B(Yk) is a 2 dimension diagonal matrix with entries
Ti (Yk)

� (Yk)
on

its diagonal. �

B Proof of Proposition 1

Proof. As above we de�ne P#̂ by:

dP#̂
dP#

jYk = �k =
kY
l=1

 
2X

i;j=1

(
p̂ji
pji
) hXl; eji hXl�1; eii

!
:

Then

log
dP#̂
dP#

=

kX
l=1

2X
i;j=1

hXl; eji hXl�1; eii (log p̂ji � log pji)
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=
2X

i;j=1

J ijk log p̂ji +R(a);

where R(a) does not depend on â: Then

L(#) = E

�
log

dP#̂
dP#

jYk
�
=

2X
i;j=1

Ĵ ijk log p̂ji +R(a): (5)

Recall that
2P
j=1

p̂ji = 1, and
2P
j=1

J ijk = Oik, so
2P
j=1

Ĵ ijk = Ôik: Then, the optimal

estimate of p̂ji is the value that maximizes the right side of (5), and subject

to
NP
j=1

p̂ji = 1. Let � =
�
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�0
be the Lagrange multiplier and put

L(P̂ ;�) =
2X

i;j=1

Ĵ ijk log p̂ji +R(a) + �i(
2X
j=1

p̂ji � 1):

Di¤erentiating in p̂ji and �
i and equating the derivatives to 0 and solving the

equations, we have
�i = �Ôik;

and

p̂ji =
Ĵ ijk
Ôik

=
� (J ij)k
� (Oi)k

:

�

C Proof of Proposition 2

Proof. The density which changes � to �̂ = (�̂1; �̂2�) is given by
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jGk =
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:
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Then
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The best estimate of the parameter is the one which maximizes the above
conditional expectation. Di¤erentiating in �̂r and setting the derivative equal
to 0. Then we obtain an up-dated estimate for the parameter �r:
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where, we use the previous estimates for �r; �r; and �r in the expression. �
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