
THESIS

CLASSIFICATION USING OUT OF SAMPLE TESTING OF NEURAL NETWORKS AND

SIAMESE-LIKE NEURAL NETWORK FOR HANDWRITTEN CHARACTERS

Submitted by

Sri Sagar Abhishek Yeluri

Department of Computer Science

In partial fulfillment of the requirements

For the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Summer 2020

Master’s Committee:

Advisor: Dr. Charles W. Anderson

Dr. Ross Beveridge

Dr. Ann Hess

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives

4.0 United States License.

To view a copy of this license, visit:

http://creativecommons.org/licenses/by-nc-nd/4.0

Or send a letter to:

Creative Commons PO Box 1866 Mountain View, CA 94042, USA.

ABSTRACT

CLASSIFICATION USING OUT OF SAMPLE TESTING OF NEURAL NETWORKS AND

SIAMESE-LIKE NEURAL NETWORK FOR HANDWRITTEN CHARACTERS

In a world where Machine Learning Algorithms in the field of Image Processing is being

developed at a rapid pace, a developer needs to have a better insight into all the algorithms to choose

one among them for their application. When an algorithm is published, the developers of the

algorithm compare their algorithm with already available well-performing algorithms and claim

their algorithm outperforms all or the majority of other algorithms in terms of accuracy. However,

adaptability is a very important aspect of Machine Learning which is usually not mentioned in their

papers. Adaptability is the ability of a Machine Learning algorithm to work reliably in the real

world, despite the change in the environmental factors in comparison to the environment in which

data used for training is recorded. A machine learning algorithm that can give good results only

on the dataset has no practical applications. In real life, the application of the algorithm increases

only when it is more adaptable in nature. A few other aspects that are important in choosing the

right algorithm for an application are consistency, time and resource utilization and the availability

of human intervention. A person choosing amongst a list of algorithms for an application will be

able to make a wise decision if given additional information, as each application varies from one

another and needs a different set of characteristics of an algorithm for it to be well received. We

have implemented and compared three Machine Learning algorithms used in image processing, on

two different datasets and compare the results. We observe that certain algorithms, even though

better than others in terms of accuracy on paper, fall behind when tested in real-world datasets.

We put forward a few suggestions that if followed will simplify the selection of an algorithm for a

specific purpose.

ii

ACKNOWLEDGEMENTS

I would like to thank Prof. Chuck Anderson for his constant support and guidance through

this project. Dr. Anderson has provided me with valuable insights and resources to work on this

project on a topic that has not been explored in-depth, thereby lacking a lot of material. I would like

to thank the CS Department of Colorado State University for providing its students with various

resources and amenities. I would like to thank my family and friends, especially Gary, for the

support they have extended towards me. Finally, I would like to appreciate my parents Diwakar

Yeluri and Sarala Yeluri for their love and support.

iii

TABLE OF CONTENTS

ABSTRACT . ii

ACKNOWLEDGEMENTS . iii

LIST OF TABLES . v

LIST OF FIGURES . vi

Chapter 1 Introduction . 1

Chapter 2 Background . 4

Chapter 3 Implementation . 12

Chapter 4 Results . 25

Chapter 5 Conclusion . 52

Bibliography . 54

iv

LIST OF TABLES

3.1 Other Fully Connected Neural Network models trained and tested on MNIST dataset . 14

3.2 Other Convolutional Neural Network models trained and tested on MNIST dataset . . . 18

3.3 Other Siamese-like Convolutional Neural Network models trained and tested on MNIST

dataset . 20

3.4 Other Fully Connected Neural Network models trained and tested on EMNIST dataset 21

3.5 Other Convolutional Neural Network models trained and tested on EMNIST dataset . . 22

3.6 Other Siamese-like Convolutional Neural Network models trained and tested on EM-

NIST dataset . 23

4.1 Observed accuracies of algorithms over MNIST dataset 26

4.2 Observed accuracies of algorithms over EMNIST dataset 26

4.3 Confusion Matrix of Fully Connected Neural Network on MNIST dataset 36

4.4 Confusion Matrix of Convolutional Neural Network on MNIST dataset 36

4.5 Confusion Matrix of Siamese-like CNN on MNIST dataset 37

4.6 Confusion Matrix of Averaged Siamese-like CNN on MNIST dataset 37

4.7 Precision, Recall, and F-1 score of Fully Connected Neural Network over MNIST dataset 38

4.8 Precision, Recall, and F-1 score of Convolutional Neural Network over MNIST dataset 38

4.9 Precision, Recall, and F-1 score of Siamese-like Convolutional Neural Network over

MNIST dataset . 39

4.10 Precision, Recall, and F-1 score of Averaged Siamese-like Convolutional Neural Net-

work over MNIST dataset . 39

4.11 Confusion Matrix of Fully Connected Neural Network on EMNIST dataset 40

4.12 Confusion Matrix of Convolutional Neural Network on EMNIST dataset 41

4.13 Confusion Matrix of Siamese-like CNN on EMNIST dataset 42

4.14 Confusion Matrix of Averaged Siamese-like CNN on EMNIST dataset 43

4.15 Precision, Recall, and F-1 score of Fully Connected Neural Network over EMNIST

dataset . 45

4.16 Precision, Recall, and F-1 score of Convolutional Neural Network over EMNIST dataset 46

4.17 Precision, Recall, and F-1 score of Siamese-like Convolutional Neural Network over

EMNIST dataset . 47

4.18 Precision, Recall, and F-1 score of Averaged Siamese-like Convolutional Neural Net-

work over EMNIST dataset . 48

4.19 Time utilization of algorithms over MNIST dataset 49

4.20 Time utilization of algorithms over EMNIST dataset 49

v

LIST OF FIGURES

2.1 Typical structure of a Convolutional Neural Network model 8

2.2 Typical structure of a Siamese-like CNN model . 10

3.1 Images to be predicted . 15

3.2 Samples images to be predicted for MNIST . 16

3.3 Samples images to be predicted for EMNIST . 17

4.1 Comparison of accuracy over train and test portion of MNIST dataset. 27

4.2 Comparison of accuracy over train and test portion of EMNIST dataset. 28

4.3 Comparison of accuracy over test portion of MNIST dataset and prepared dataset with

MNIST like data with base images from prepared dataset. 29

4.4 Comparison of accuracy over test portion of EMNIST dataset and prepared dataset

with EMNIST like data with base images from prepared dataset. 29

4.5 Comparison of accuracy over test portion of MNIST dataset and prepared dataset with

MNIST like data with base images from EMNIST dataset. 32

4.6 Comparison of accuracy over test portion of EMNIST dataset and prepared dataset

with EMNIST like data with base images from EMNIST dataset. 33

4.7 Comparison of time utilization over MNIST. 50

4.8 Comparison of time utilization over EMNIST. 51

vi

Chapter 1

Introduction

The term Machine Learning was coined by Arthur Samuel, in 1959, while at IBM. Even though

initially there was some research interest in the field, it lost its importance as the statistical approach

was replaced by expert systems. In the 1980s, with the re-imagination of backpropagation tech-

niques, Machine Learning came back into prominence. And in the 1990s and later, the advent of

Machine Learning took place due to the availability of huge amounts of data, the ability to digi-

tize data, the convenience of sharing data over the internet, and the availability of more powerful

systems/processors.

Since the 1990s, due to the better computers that were available for the Machine learning algo-

rithms to perform their computations, many developers and researchers released various algorithms

that try to provide a slight improvement over other existing algorithms. The newer algorithms are

taking advantage of the powerful system resources available to give better results. The develop-

ers/researchers then release the algorithm for public use, along with a paper putting forward the

results in terms of accuracy in comparison to other algorithms. Some papers also mention other

metrics such as training time and/or the time taken for prediction of a certain size of the test portion

of a dataset as seen in [1] where they gave training time and classification time for 25% of test data.

They give these metrics with respect to their runs over a certain data set. Training and testing are

done from data obtained from the same datasets.

With a plethora of algorithms available out in the industry to choose from, a developer or a busi-

ness choosing an algorithm to implement for their system/application, need to make an informed

choice about selecting the algorithm that suits their requirements the most. There are various other

factors that need to be considered in order to make a wise decision, such as adaptability, consis-

tency, time and resource utilization and the availability of human intervention. And the impact

of the factors varies from field to field and business model to business model. This report puts

forward suggestions to provide certain additional information which will help make an informed

1

decision. The information provided with is respect to the metrics of accuracy, consistency, time

and resource utilization, and the availability of human intervention.

We trained and tested Fully Connected, Convolutional, and Siamese-like Convolutional Neu-

ral [2] Networks over two datasets: MNIST and EMNIST datasets [3]. We compare the perfor-

mance of the algorithms and make some key observations in terms of accuracy, consistency, time

and resource utilization. We also tested the trained networks on a new dataset prepared by us to

compare this out-of-sample performance to the performance in comparison to the performance

over the test portion of the dataset used for training.

The type of testing used is out-of-sample testing, where the model trained on a dataset is tested

not only on a previously unexposed portion of that dataset but also to data recorded from a differ-

ent environment than the environment in which the dataset used for training was recorded. This

is different from domain adaptation/transfer learning where an algorithm trained on one particular

domain is also tested and observed on a different domain [4]. When an algorithm that has been

trained to identify a car in an image, is used to identify a truck in an image, it is domain adapta-

tion. The algorithm has not previously seen what a truck is but still tries to identify a truck using

the knowledge it acquired about cars. Out-of-sample is different from that in the aspect that an

algorithm is trained to identify cars in a parking lot of a building, but is used to identify cars out on

the open road. The point is to observe given an algorithm that is trained to identify/classify data

in one environment, can it also work in a different environment. If it does what is the observed

performance.

The most important observations made were that the performance of Siamese-like Convolu-

tional Neural Network though not as good as Convolutional Neural Network in the test portion

of the dataset, it was significantly better than the latter when tested on the dataset prepared by

me. It was also observed that not all algorithms have the same consistency in the type of errors

commonly generated. Another observation was made in terms of the time and resource utilization

of each algorithm as they vary significantly and that Siamese-like Convolutional Neural Network

might need human intervention for it to have a good performance.

2

In the upcoming chapters, we will be discussing the background of Fully Connected, Convo-

lutional and Siamese-like Convolutional Neural Networks, implementations of the various algo-

rithms used by us, the results observed from those implementations and the conclusions that were

drawn from those results.

3

Chapter 2

Background

Fully Connected Neural Networks is a class of feed-forward artificial neural networks. It con-

sists of at least three layers of nodes: an input layer, a hidden layer(s), and an output layer. Except

for the input nodes, each node calculates a weighted sum of its inputs followed by a nonlinear

activation function. In a Fully connected Neural Network each node in one layer is connected

to all nodes in the next layer. Training utilizes a supervised gradient-descent technique called

backpropagation.

Convolutional Neural Networks are regularized versions of Fully Connected Neural Networks,

as the "fully-connectedness" of the regular Fully Connected Neural Networks makes them prone

to overfitting data, and the Convolutional Neural Network reduces this. Usual ways of regulariza-

tion include adding some form of weights to the loss function. However, Convolutional Neural

Networks take a different approach towards regularization, where they take into consideration the

hierarchical pattern in data and create more complex patterns from smaller and simpler patterns.

Therefore, on the scale of connectivity and complexity, Convolutional Neural Networks are on the

lower extremity.

Convolutional Neural Networks were inspired by biological processes that is the connectivity

pattern between nodes resembles the organization of the animal visual cortex. Individual cortical

neurons respond to stimuli only in a restricted region of the visual field known as the receptive

field. The receptive fields of different neurons partially overlap such that they cover the entire

visual field.

Convolutional Neural Network uses Kernel Convolution. It is a process where we take a small

matrix of numbers (called kernel or filter), and pass it over an image and transform it based on the

values from filter. Subsequent feature map values are calculated using (2.1).

4

G[a, b] = (f ∗ h)[a, b] =
∑

i

∑

j

h[i, j]f [a− i, b− j] (2.1)

where a and b indicate the rows and columns of the result matrix, h denotes the kernel, and f

denotes the input image, similar to what is observed in [5].

After placing the filter over a selected pixel, it takes each value from the kernel and multiplies

them in pairs with corresponding values from the image. Finally, it sums up everything and puts

the result in the appropriate position in the output feature map.

For an input image of size m × m pixels, if a kernel of size k × k is used, the size of the

feature map would be (m − k + 1) · (m − k + 1). As the image shrinks every time convolution

is performed, convolution can only be performed a limited number of times, before the image

disappears completely. Also, the impact of the pixels located on the outskirts is much smaller than

those in the center of the image. To solve both these problems, padding can be used to add an

additional border to the input image. Let us assume a padding of p pixel(s) is used on an input

image of size m*m pixels, the input image size will become (m+2p)× (m+2p) and if the kernel

size remains at k × k, then the feature map size will be (m+ 2p− k + 1)× (m+ 2p− k + 1). If

padding is used, then the equation is as given in (2.2)

p =
k − 1

2
(2.2)

where p is the padding and k is the filter dimensions, should always be satisfied. Padding should

be chosen keeping in mind this equation and the filter size.

Stride is the number of pixels the filter shifts at a time. It is usually 1 but can be made 2 or more

if we want less overlap in the receptive fields, or if we want smaller dimensions for the feature map.

The dimensions of the output matrix considering an input image of size m×m pixels, kernel/filter

of size k × k, padding of p, and stride of s is given by (2.3).

n =

⌊

m+ 2p− f

s
+ 1

⌋

(2.3)

where n is the size of the output matrix in one dimension, i.e. output matrix is of the size n× n.

5

If we want to use Convolutional Neural Networks with color images, or if we want to use

multiple filters in a single layer, the concept of convolution over a volume needs to be used. An

important thing to note is that when using convolution over a volume, the number of channels in

the filter and the input image on which the filter is applied should be the same. The dimensions of

the input tensor should follow (2.4)

[m,m, nc]× [k, k, nc] =

[⌊

m+ 2p− k

s
+ 1

⌋

,

⌊

m+ 2p− k

s
+ 1

⌋

, nf

]

(2.4)

where m is the image size, i.e input image is of the size m×m, k is the filter size i.e filter is of the

size k× k, nc is the number of channels in the image, c is the padding used, s is the stride used, nf

is the number of filters.

Convolutional Neural Networks have a convolution layer that is responsible for forward prop-

agation which consists of two steps. The first step is to calculate the intermediate value Z, which

is obtained as a result of the convolution of the input data from the previous layer with W tensor

which contains the filters and then adding bias b. This is done using the equation (2.5). The second

step is the application of a non-linear activation function, g, to the intermediate value. This is done

using (2.6)

Z
[l] = W

[l]
∗A

[l−1] + b[l] (2.5)

A
[l] = g[l](Z [l]) (2.6)

where Z
[l] denotes the intermediate matrix at layer l, W[l] denotes the weight matrix at layer l,

A
[l] denotes the output data/matrix at layer l, b[l] denotes the bias at layer l, and g[l] denotes the

activation layer at layer l.

A loss function is used to evaluate the performance of a Machine Learning model. For an input

it gives out an output whose value if high (in case of maximize loss function) or low (in case of

6

minimize loss function) and will give an idea if the model is performing well. The loss function

used will denoted as L.

For back-propagation, just like in any densely connected neural networks, derivatives are cal-

culated using equations (2.7), (2.8) and (2.9). These derivatives are later used to update the values

of the parameters in a process called gradient descent.

dW
[l] =

∂L

∂W[l]
(2.7)

db[l] =
∂L

∂b[l]
(2.8)

dA
[l−1] =

∂L

∂A[l−1]
(2.9)

dW
[l] and db[l] are derivatives of the parameters of the current layer, and dA

[l−1] is the derivative

of the input data of the previous layer. The derivative of the intermediate value dZ[l] is obtained by

applying a derivative of the activation function to the input tensor. Using chain rule we have (2.10)

dZ
[l] = dA

[l]g′(Z [l]) (2.10)

Backpropagation of convolution is obtained by a matrix operation called full convolution. This

operation can be described by (2.11).

dA = dA+

nheight
∑

m=0

nwidth
∑

n=0

W ∗ dZ[m,n] (2.11)

where the filter is denoted by W, and dZ[m,n] is a scalar that belongs to a partial derivative

obtained from the previous layer.

Apart from Convolution layers, Convolutional Neural Networks also use pooling layers to

reduce the size of the tensor and speed up calculations. Pooling layers also need to have backprop-

agation.

7

In Figure 2.1, we can look at the typical structure of a Convolutional Neural Network.

Figure 2.1: Typical structure of a Convolutional Neural Network model

In 1999, Yann LeCun, et al., [6] presented the idea of Convolutional Neural Networks and

trained and tested it on various image-based datasets. They compare their algorithms with other

algorithms in terms of error rates only.

In [7] published by Siddique, et al., in 2019 the authors compare different network models

of Convolutional Neural Network with each other. The build models with different number of

layers and hidden units, and compare with each other in terms of accuracy. This paper does help

in understanding the performance of Convolutional Neural Network, and how network structure

might have an impact on the performance, which we will use as an inspiration for my work to build

and test multiple models before choosing the best, however they could have additionally provided

other useful metrics like training time, consistency of the results.

A Siamese-like Neural Network is an artificial neural network that uses the same weights while

working in tandem on two different input vectors to compute comparable output vectors. Often

one of the output vectors are pre-computed, thus forming a baseline against which the other out-

put vector is compared. Siamese-like Neural Network consists of two Neural Network models that

take in two inputs and compares those two inputs with each other and tries to identify the similarity

between the two. Siamese-like Neural Networks was first introduced in 1993 by Bromley, et al., [2]

to solve signature verification as an image matching problem. In this paper they provided results

8

in terms of how many signatures were correctly identified as genuine or fake, and played around

with the way comparisons are made by eliminating certain data points However, no comparison

was made with the alternatives to observe the performance. Siamese-like Neural Network might

be used in fields where similarity is used a measure, i.e. fields such as recognizing handwritten

text, automatic detection of faces in pictures, and matching queries with indexed documents. Per-

haps the most well-known application of Siamese-like Neural Networks is face recognition, where

known images of people are pre-computed and compared to an image from public spaces such as

parks, and stations.

Siamese-like Neural Networks is considered a one-shot learning algorithm [8] and they vary

from the regular classification algorithms in the fact that the latter calculates probability distribution

over all the classes that it was trained for. Therefore, if the model was not trained for a certain

class, the model then needs to be retrained for that class, for it to be considered. The name one-

shot learning algorithm comes from the nature of the algorithm where a new class can be added

for prediction by just taking one shot of it and using that one shot for comparison for subsequent

predictions.

The other advantage of one-shot learning algorithms such as the Siamese-like Neural Network

is that they need relatively less data to learn [8]. It needs data just to calculate the degree of

similarity between two inputs by finding features rather than trying to identify which class the

input falls under.

In Figure 2.2 below, we can look at the typical structure of a Siamese-like Convolutional Neural

Network.

The contrastive loss function mentioned in the figure is a typical loss function used in Siamese-

like Convolutional Neural Network. It is a distance based loss function which tries to put semanti-

cally similar values closer together and different values are pushed apart. This helps in establishing

the degree of similarity between two images. The formula typically used for contrastive loss func-

tion as mentioned in [9] is

9

Figure 2.2: Typical structure of a Siamese-like CNN model

C =
1

2
((1− Y)(dW)2 + Y (max(0,m− dW))2) (2.12)

where the Y is the binary label assigned to the pair of images, dW is the distance between the

outputs of the sister networks, usually a euclidean distance. m is margin which is a value greater

than 0. Dissimilar pairs beyond the margin will not contribute to the loss.

In 2015, Gregory Koch, et al [8], tested Siamese-like Convolutional Neural Network over mul-

tiple datasets against multiple algorithms. The results were however compared in terms of accuracy

between the algorithms in the test portion of the dataset and no other metrics were provided to sup-

port their claim that the Siamese-like Convolutional Neural Network was better than most of the

other algorithms.

Very few papers compare Fully Connected and Convolutional Neural Networks. Syrine Ben

Driss, et al., in 2017, in [1] compare Fully Connected and Convolutional Neural Network models

for character recognition, on optical character recognition problem. The noticeable aspect is that

the comparison was made in terms of accuracy and time. The time metric is not usually specified

10

in the papers, but this paper does and provides more information. However, two aspects where this

paper falls short is that testing is done on the test portion of the dataset from which the training

portion was obtained and the consistency of errors was not touched upon. This means that the

standard deviation is low, the accuracy is high, the adaptable nature of the algorithm was never

tested, and the tendency of the algorithms to generate False-Positives (Type I Error) or False-

Negatives (Type II Error) was not tested.

Luca Di Persio, et al., in 2016 [10] compared Fully Connected and Convolutional Neural Net-

work, in a stock price prediction problem. As is common in papers talking about comparison

of two or more algorithms, this paper just talks about accuracy in terms of comparing the algo-

rithms. No information about the time and resource utilization or the consistency was provided.

The adaptable nature of the algorithms was also not tested as the test portion was again taken from

the same dataset from which the training portion was taken, and the standard deviation remained

low, keeping the accuracy high.

11

Chapter 3

Implementation

We have used the MNIST dataset(Modified National Institute of Standards and Technology

dataset) which is a subset of a larger dataset made by NIST (National Institute of Standards and

Technology) [11]. It is a supervised learning dataset of images of handwritten digits in 28×28 pix-

els resolution. It is a good dataset to test pattern learning and matching techniques as it represents

real-world data and requires minimal efforts on pre-processing and formatting. It is commonly

used by researchers to test the effectiveness of their algorithms or even see if their algorithm ac-

tually works. The other dataset that was used is EMNIST dataset (Extended Modified National

Institute of Standards and Technology database) which is a supervised dataset of handwritten dig-

its and characters in 28 × 28 pixels resolution [3]. In the paper [12] published by Baldominos, et

al., in 2019 the authors stated that the latest algorithms generated are doing fairly well on MNIST

dataset that it cannot be the only dataset to judge a performance of an algorithm. They tested

certain algorithms on the EMNIST dataset, and observed that it is better are establishing the differ-

ences between in algorithms in terms of error rate which reflects on the accuracy of the algorithms.

This is the reason for EMNIST dataset to be considered for this experiment. When the authors of

that paper compared the performance of various algorithms, they only used accuracy as a metric.

There are multiple sub datasets within EMNIST dataset. The sub datasets are:

• Letters dataset - It only has balanced sets of letters in it, both Upper and Lower case clas-

sified into 26 classes. We were using this dataset for our Convolutional Neural Network

model.

• Digits and MNIST dataset - They are balanced handwritten digit datasets.

• ByClass and ByMerge datasets - They have an uneven number of images per class and

there are more digits than letters. The number of letters roughly equate to the frequency of

use in the English language.

12

• Balanced dataset - It tackles the unbalanced nature of ByClass and ByMerge datasets by

reducing the misclassification errors due to capital and lower case letters by having a bal-

anced number of upper and lower case letters along with digits in 47 classes. We were using

this upper case images from this dataset for our experiment.

Three algorithms were used on these datasets. Fully Connected Neural Network, a rudimentary

algorithm in image processing. Convolutional Neural Network, a well-established algorithm in the

field of image processing with good results. Siamese-like Convolutional Neural Network that is

a one-shot learning algorithm, which uses Convolutional Neural Networks but in a probabilistic

manner.

In MNIST, we used 1000 entries of each class for training of Fully Connected and Convolu-

tional Neural Network, and 999 true and false pairs of images were used for training of Siamese-

like Convolutional Neural Network. 200 entries of each class is set aside for testing. In EMNIST,

2000 entries of each class were used for training of Fully Connected and Convolutional Neural Net-

work and 1999 true and false pairs of images for training of Siamese-like Convolutional Neural

Network. 500 entries of each class is set aside for testing.

Two datasets were prepared by me, first having data similar to MNIST dataset, where we have

images of digits, and the second dataset having data similar to EMNIST dataset with images of

alphabets in upper case. All these images have a 1:1 aspect ratio, but not necessarily a 28 × 28

pixels resolution. When using the image for prediction purposes, the images need to processed

to bring it to a 28 × 28 pixels resolution. Also the images may not necessarily have the digit or

the alphabet in the center but could be towards one side of the image. This is also taken care of

in pre-processing done before prediction. The reason for not sticking to 28 × 28 pixels resolution

and centering of the digit or the alphabet is to observe the impact of change in the environment

and pre-processing of images on the accuracy of the algorithms. The data was collected by writing

these digits and alphabets with different styles on a paper and then scanning the images using a

phone camera and then cropping them with a 1:1 aspect ratio. There are 10 images for each class

in both the prepared datasets.

13

Sample images from the MNIST and the EMNIST dataset can be seen in Figure 3.1a and

Figure 3.1b respectively. Sample images to be predicted can be seen in Figure 3.2a and Figure 3.3a

before pre-processing and in Figure 3.2b and Figure 3.3b after pre-processing for MNIST and

EMNIST respectively.

Fully Connected Neural Network used for training and testing in the MNIST dataset was built

using the sklearn package. It was trained using 3 hidden layers with the first layer having 1000

hidden units, second layer having 500 hidden units, and the third layer having 250 hidden units,

with the alpha value/learning rate being set to 0.00001. Optimizer used was Adam [13] and the

loss function used was a log loss function. This model took 98 seconds for training and provided

an accuracy of 97.05% on average. This model was chosen among the many models that were

tested and compared, as the time taken for training was not too high, and a good accuracy was

achieved. Some of the models that were tested are as seen in Table 3.1.

Table 3.1: Other Fully Connected Neural Network models trained and tested on MNIST dataset.

Parameters for the model Metrics for the model

Layer 1 Layer 2 Layer 3
Learning

Rate
Accuracy(%) Time for Training (seconds)

1 500 250 125 0.00001 96.89 64

2 1500 1000 500 0.00001 96.03 151

3 1000 500 250 0.0001 96.5 64

4 1000 500 250 0.000001 95.95 83

The values listed in each of the layers columns is the number of hidden units in that layer.

Convolutional Neural Network used for training and testing in the MNIST dataset was built

using Keras [14] package. The Convolutional Neural Network structure used consisted of 5 layers.

The first layer had 112 Convolutional 2D hidden units with LeakyReLU(Leaky REctified Linear

Units), kernel size of (2,2) and a Maxpooling2D of (2,2), the second layer had 224 Convolutional

2D hidden units with LeakyReLU, kernel size of (3,3) and a Maxpooling2D of (2,2), and the

third layer has 112 Convolutional 2D hidden units with LeakyReLU, kernel size of (2,2) and a

14

(a) Sample images from MNIST dataset.

(b) Sample images from EMNIST dataset.

Figure 3.1: Sample images sent for prediction from prepared dataset before and after pre-processing

15

(a) Sample images from prepared dataset to be predicted before

pre-processing.

(b) Sample images from prepared dataset to be predicted after

pre-processing.

Figure 3.2: Sample images sent for prediction from prepared dataset before and after pre-processing for

MNIST

16

(a) Sample images from prepared dataset to be predicted before

pre-processing.

(b) Sample images from prepared dataset to be predicted after

pre-processing.

Figure 3.3: Sample images sent for prediction from prepared dataset before and after pre-processing for

EMNIST

17

Maxpooling2D of (2,2). These units were Convolutional 2D units. The layers of Convolutional

2D units were followed by a flatten function and then two layers of Dense units, with the first

layer having 4096 units with sigmoid activation function and the second layer having 10 units with

softmax activation function. The learning rate used was 0.0001 and the optimizer used is Adam.

Adam optimizer was chosen over Stochastic Gradient Descent(SGD) due to the better accuracy

provided. The loss function used was Categorical Cross Entropy function. The model was trained

for 25 epochs with a default batch size of 32. This model took 2182 seconds for training(rounded

off) and provided an accuracy of 98.85% on average. This specific model was chosen among the

many models that were tested and compared, as the time taken for training was not too high, with

good accuracy being achieved. Some of the other models that were tested are as seen in Table 3.2.

Table 3.2: Other Convolutional Neural Network models trained and tested on MNIST dataset.

Parameters for the model Metrics for the model

Conv.

Layer 1

Conv.

Layer 2

Conv.

Layer 3

Dense

Layer 1

Dense

Layer 2

Learning

Rate
Accuracy(%)

Time for

training

(seconds)

1
56

(2,2)

112

(3,3)
X

4096

sigmoid

10

softmax
0.0001 97.80 6891

2
224

(2,2)

448

(3,3)

224

(2,2)

4096

sigmoid

10

softmax
0.0001 98.9 4981

3
224

(3,3)

448

(3,3)

224

(2,2)

4096

sigmoid

10

softmax
0.0001 98.35 4959

4
224

(3,3)

224

(3,3)

224

(2,2)

4096

sigmoid

10

softmax
0.0001 98.75 4939

5
112

(2,2)

224

(3,3)

112

(2,2)

4096

sigmoid

10

softmax
0.00001 96.25 1981

6
112

(2,2)

224

(3,3)

112

(2,2)

1024

sigmoid

10

softmax
0.0001 98.9 1459

In the above table each convolutional layer is listed using the format:

Conv2D units

Kernel Size

18

Each convolutional layer uses a Maxpooling2D of (2,2),and uses LeakyReLU as the activation

function. After all the convolutional layers we have a flatten function which is followed by dense

layers. Each dense layer is listed using the format:

Dense units

Activation function

In the table above, the second model despite providing a higher accuracy than the chosen

model, was not selected as the time taken for training in comparison to the chosen model was way

higher and the gain in accuracy was minimal.

Siamese-like Convolutional Neural Network used for training and testing in the MNIST dataset

was also built using Keras package. For this purpose, two networks working hand in hand are

needed to identify the amount of similarity between two images, each supplied to one of the net-

works. The structure of both networks is the same. The structure of an individual neural network

in the Siamese-like Convolutional Neural Network consists of 4 layers. The first layer had 112 of

Convolutional 2D hidden units with ReLU(REctified Linear Units), kernel size of (2,2) and a Max-

pooling2D of (2,2), the second layer had 224 Convolutional2D hidden units with ReLU(REctified

Linear Units), kernel size of (3,3) and a Maxpooling2D of (2,2), and the third layer has 112 Convo-

lutional2D hidden units with ReLU(REctified Linear Units), kernel size of (2,2). These layers of

Convolutional 2D units were followed by a flatten function and then one layer of 1024 dense units

with sigmoid activation function. Unlike the structure used in Convolutional Neural Network used

above, the structure in the Siamese-like Convolutional Neural Network does not have the last layer

of 10 dense units. The learning rate used was 0.0001 and the optimizer used is Adam. Adam opti-

mizer was chosen over Stochastic Gradient Descent(SGD) due to the better accuracy provided. The

loss function used was contrastive loss function. The model was trained for 25 epochs with a batch

size of 128. This model took 2467 seconds for training(rounded off) and provided an accuracy of

98.01% on average. Some of the other models that were tested are as seen in Table 3.3.

Fully Connected Neural Network used for training and testing in the EMNIST dataset was

built using the sklearn package. It was trained using 3 hidden layers with the first layer having 500

19

Table 3.3: Other Siamese-like Convolutional Neural Network models trained and tested on MNIST dataset.

Parameters for the model Metrics for the model

Conv.

Layer 1

Conv.

Layer 2

Conv.

Layer 3

Dense

Layer

Learning

Rate
Accuracy(%)

Time for

training

(seconds)

1
112

(2,2)

224

(3,3)
X

4096

sigmoid
0.0001 97.21 4096

2
224

(2,2)

448

(3,3)

224

(2,2)

4096

sigmoid
0.0001 97.66 8201

3
112

(2,2)

224

(3,3)

112

(2,2)

4096

sigmoid
0.0001 97.61 2826

4
224

(3,3)

448

(3,3)

224

(2,2)

4096

sigmoid
0.0001 97.93 8229

5
224

(2,2)

224

(3,3)

224

(2,2)

4096

sigmoid
0.00001 97.88 5934

6
112

(2,2)

224

(3,3)

112

(2,2)

4096

sigmoid
0.00001 95.64 2939

7
28

(3,3)

56

(3,3)

28

(2,2)

1024

sigmoid
0.0001 97.01 446

hidden units, the second layer having 250 hidden units, and the third layer having 125 hidden units,

with the alpha value/learning rate being set to 0.00001. Optimizer used was Adam and the loss

function used was a log loss function. This model took 224 seconds for training and provided an

accuracy of 89.84% on average. This model was chosen among the many models that were tested

and compared, as the time taken for training was not too high, with good accuracy being achieved.

Some of the models that were tested are as seen in Table 3.4.

Convolutional Neural Network used for training and testing in the EMNIST dataset was built

using Keras package. The Convolutional Neural Network structure used consisted of 4 layers.

The first layer had 112 Convolutional 2D hidden units with LeakyReLU(Leaky REctified Linear

Units), kernel size of (3,3) and a Maxpooling2D of (2,2), the second layer had 224 Convolutional

2D hidden units with LeakyReLU, kernel size of (3,3) and a Maxpooling2D of (2,2), and the

third layer has 112 Convolutional 2D hidden units with LeakyReLU, kernel size of (3,3) and a

20

Table 3.4: Other Fully Connected Neural Network models trained and tested on EMNIST dataset.

Parameters for the model Metrics for the model

Layer

1

Layer

2

Layer

3

Layer

4

Learning

Rate
Accuracy(%) Time for Training (seconds)

1 1500 1000 500 X 0.00001 88.33 761

2 1000 500 250 X 0.00001 88.87 328

3 1000 500 250 X 0.0001 89.31 401

4 1000 500 250 X 0.000001 89.84 288

5 1000 500 250 125 0.000001 89.84 342

6 1000 500 X X 0.000001 87.37 173

Maxpooling2D of (2,2). These units were Convolutional 2D units. The layers of Convolutional

2D units were followed by a flatten function and then two layers of Dense units, with the first

layer having 1024 units with a linear activation function and the second layer having 27 units with

softmax activation function. The learning rate used was 0.0001 and the optimizer used is Adam.

Adam optimizer was chosen over Stochastic Gradient Descent(SGD) due to the better accuracy

provided. The loss function used was Categorical Cross Entropy function. The model was trained

for 25 epochs with a default batch size of 32. This model took 5900 seconds for training(rounded

off) and provided an accuracy of 94.90% on average. Some of the other models that were tested

are as seen in Table 3.5

Siamese-like Convolutional Neural Network used for training and testing in the EMNIST

dataset was also built using Keras package. For this purpose, two networks working hand in

hand are needed to identify the amount of similarity between two images, each supplied to one of

the networks. The structure of both networks is the same. The structure of an individual neural

network in the Siamese-like Convolutional Neural Network consists of 4 layers. As the images

of letters at a low resolution of 28 × 28 pixels can lead to the wrong classification of images of

similar-looking alphabets such as ’D’ and ’O’, or ’A’ and ’H’, we are measuring by considering

two different accuracies. The first accuracy is when the algorithm only considers one best match.

If the prediction for an is the expected class, we increment the count of correctly predicted images

21

Table 3.5: Other Convolutional Neural Network models trained and tested on EMNIST dataset.

Parameters for the model Metrics for the model

Conv.

Layer 1

Conv.

Layer 2

Conv.

Layer 3

Dense

Layer 1

Dense

Layer 2

Learning

Rate
Accuracy(%)

Time for

training

(seconds)

1
32

(3,3)

64

(3,3)

128

(3,3)

128

linear

27

softmax
0.0001 94.36 1274

2
112

(3,3)

224

(3,3)

112

(3,3)

128

linear

27

softmax
0.0001 94.08 5175

3
112

(3,3)

224

(3,3)
X

224

linear

27

softmax
0.0001 93.87 4802

4
224

(3,3)

448

(3,3)

224

(3,3)

128

linear

27

softmax
0.0001 94.53 16834

5
112

(3,3)

112

(3,3)

112

(3,3)

128

linear

27

softmax
0.0001 94.42 3914

6
112

(2,2)

224

(3,3)

112

(3,3)

128

linear

27

softmax
0.0001 94.78 5217

7
112

(3,3)

224

(3,3)

112

(3,3)

128

linear

27

softmax
0.00001 93.37 7585

by one, else, we do not increment the count. The second accuracy is when the algorithm gives out

the best 3 predictions for an image, and if the actual class of the image is one among the 3, then the

count of correctly predicted images is incremented by one, else, we do not increment the count.

We will call them ’Single Prediction Accuracy’ and ’Top Five Prediction Accuracy’ from now on.

The first layer had 112 of Convolutional 2D hidden units with ReLU(REctified Linear Units),

kernel size of (3,3) and a Maxpooling2D of (2,2), the second layer had 224 Convolutional2D hid-

den units with ReLU(REctified Linear Units), kernel size of (3,3) and a Maxpooling2D of (2,2),

and the third layer has 112 Convolutional2D hidden units with ReLU(REctified Linear Units), ker-

nel size of (3,3). These layers of Convolutional 2D units were followed by a flatten function and

then one layer of 4096 dense units with sigmoid activation function. Unlike the structure used in

Convolutional Neural Network used above, the structure in the Siamese-like Convolutional Neural

Network does not have the last layer of 27 dense units. The learning rate used was 0.0001 and the

22

optimizer used is Adam. Adam optimizer was chosen over Stochastic Gradient Descent(SGD) due

to the better accuracy provided. The loss function used was contrastive loss function. The model

was trained for 25 epochs with a batch size of 128. This model took 16990 seconds for train-

ing(rounded off) and provided a Single Prediction Accuracy of 62.62% and Top Five Prediction

Accuracy of 98.78% on average. This specific model was chosen among the many models that

were tested and compared, as the time taken for training was not too high, with a good accuracy

being achieved. Some of the other models that were tested are as seen in Table 3.6

Table 3.6: Other Siamese-like Convolutional Neural Network models trained and tested on EMNIST

dataset.

Parameters for the model Metrics for the model

Conv.

Layer 1

Conv.

Layer 2

Conv.

Layer 3

Dense

Layer

Learning

Rate

Single

Prediction

Accuracy

(%)

Top Five

Prediction

Accuracy

(%)

Time for

training

(seconds)

1
56

(2,2)

112

(3,3)

56

(2,2)

1024

sigmoid
0.0001 44.18 96.78 6024

2
112

(2,2)

224

(3,3)
X

1024

sigmoid
0.0001 40.96 94.90 17361

3
224

(2,2)

448

(3,3)

224

(2,2)

1024

sigmoid
0.0001 62.85 93.83 46463

4
112

(2,2)

224

(3,3)

112

(2,2)

4096

sigmoid
0.0001 59.13 97.75 23063

5
112

(2,2)

112

(3,3)

112

(2,2)

1024

sigmoid
0.0001 55.00 97.51 12259

6
112

(2,2)

224

(3,3)

112

(2,2)

1024

sigmoid
0.00001 36.00 82.46 13628

7
112

(3,3)

224

(3,3)

112

(2,2)

1024

sigmoid
0.0001 51.54 97.53 11745

8
56

(2,2)

112

(3,3)

224

(2,2)

1024

sigmoid
0.0001 55.31 97.77 5975

There are three versions of the Siamese-like Convolutional Neural Network. The first version

of the Siamese-like Convolutional Neural Network uses only one control image from each class to

compare the image to be predicted with. The second version that we refer to as Averaged Siamese-

23

like Convolutional Neural Network uses three control images from each class to compare the image

to be predicted with. The final version of the Siamese-like Convolutional Neural Network uses the

same concept of the Averaged Siamese-like Convolutional Neural Network of using three control

images but uses three threads to parallelize the comparison and prediction with each control image.

This version is referred to as the Multi-threaded Siamese-like Convolutional Neural Network.

Subsequent measures of accuracy for all versions of Siamese-like Convolutional Neural Net-

work are only Top Five Prediction Accuracies. All the comparisons made between all the algo-

rithms are using the Top Five Prediction Accuracies.

The testing is done in three phases. In the first phase, we compare the results of the three

algorithms over the training portion of the data. The second phase of testing involves testing over

the test portion, the portion from the dataset on which the three algorithms were not trained on.

The final phase of testing is done over a dataset prepared by us, which has similar data as from the

dataset, but the environmental factors might change. The last phase of testing is done to see the

adaptability of the three algorithms.

24

Chapter 4

Results

The testing phase provided some insightful results. The comparisons we discuss below are

based on the parameters of accuracy, consistency, time and resource utilization, and availability of

human intervention.

The first observation is the drop in the accuracy of Fully Connected Neural Network when

compared in terms of accuracy it delivers on the training portion of both MNIST and EMNIST

dataset, the testing portion of the MNIST and EMNIST dataset and the prepared dataset, as seen

in Table 4.1 and Table 4.2 and in Figure 4.1, Figure 4.2, Figure 4.3, and Figure 4.4 . Despite

the dataset we prepared having been normalized before prediction, the change in environmental

factors in which the image was recorded, such as the lighting conditions, the angle of the camera

with respect to the paper, the thickness of the ink, and more importantly the slight deviations

in the position of the digit or the character within the image, affected the accuracy of the Fully

Connected Neural Network on the prepared dataset. This does not reflect well upon the adaptable

nature of the Fully Connected Neural Network algorithm. This points to the fact that in the case

of image processing the Fully Connected Neural Network algorithm would not be a good choice

if the environmental factors change between training and prediction time. However, there are

applications to it in the field of image processing. If used in a photocopier machine to scan a paper

and convert the handwritten text to a text file, or if used to convert a hardcopy of a printed paper,

to a digital copy of the document, as the variations in such scenarios are limited, as the amount

of light, angle of the camera, the pattern of the printed font, remains the same, the variance is

reduced. As the training time and the resource utilization of Fully Connected Neural Network is

low, it could be a good choice in such a field, or in field where accuracy is not the most important

parameter.

25

Table 4.1: Average of observed accuracies of various algortihms over MNIST dataset

Fully Connected

Neural

Network

Conv.

Neural

Network

Siamese

-like

Conv.

Neural

Network

Averaged

Siamese

-like

CNN

Averaged

Siamese

-like

CNN

with base images

from prepared

dataset

Accuracy

on Training

Portion

100 100 99.78 99.83 X

Accuracy

on Testing

Portion

97.05 98.85 98.01 98.60 X

Accuracy

on prepared

dataset

59.00 88.00 80.00 82.00 91.00

Table 4.2: Average of observed accuracies of various algortihms over EMNIST dataset

Fully Connected

Neural

Network

Conv.

Neural

Network

Siamese

-like

Conv.

Neural

Network

Averaged

Siamese

-like

CNN

Averaged

Siamese

-like

CNN

with base images

from prepared

dataset

Accuracy

on Training

Portion

93.63 98.88 99.47 99.75 X

Accuracy

on Testing

Portion

87.82 94.80 97.82 98.42 X

Accuracy

on prepared

dataset

64.23 87.69 89.16 90.00 95.38

26

(a) Accuracy on train portion.

(b) Accuracy on test portion.

Figure 4.1: Comparison of the accuracy of various models.(a). Accuracy of Fully Connected Neural Net-

work, Convolutional Neural Network, Siamese-like CNN models and Siamese-like CNN models with three

control images on the train portion of the MNIST dataset. (b) Accuracy of Fully Connected Neural Net-

work, Convolutional Neural Network, Siamese-like CNN models and Siamese-like CNN models with three

control images on the test portion of the MNIST dataset.

27

(a) Accuracy on train portion Letters.

(b) Accuracy on test portion.

Figure 4.2: Comparison of the accuracy of various models.(a). Accuracy of Fully Connected Neural Net-

work, Convolutional Neural Network, Siamese-like CNN models and Siamese-like CNN models with three

control images on the train portion of the EMNIST dataset. (b) Accuracy of Fully Connected Neural Net-

work, CNN, Siamese-like CNN models and Siamese-like CNN models with three control images on the test

portion of the EMNIST dataset.

28

Figure 4.3: Accuracy of Fully Connected Neural Network, CNN, Siamese-like CNN models and Siamese-

like CNN models with three control images on the test portion of MNIST dataset compared to prepared

dataset, where the base images used are from the prepared dataset.

Figure 4.4: Accuracy of Fully Connected Neural Network, Convolutional Neural Network, Siamese-like

CNN models and Siamese-like CNN models with three control images on the test portion of EMNIST

dataset compared to prepared dataset, where the base images used are from the prepared dataset.

29

The second and very important observation was made when comparing the accuracy of Convo-

lutional Neural Network and Averaged Siamese-like Convolutional Neural Network on the MNIST

data in Table 4.1 and Figure 4.1. The accuracy of the Convolutional Neural Network was higher

compared to Averaged Siamese-like Convolutional Neural Network when compared over the train-

ing portion of the MNIST dataset and the testing portion of the MNIST dataset. So, on paper, Con-

volutional Neural Network would seem like a good choice in comparison to Averaged Siamese-like

Convolutional Neural Network. However, if we observe the accuracy of the Convolutional Neu-

ral Network and Averaged Siamese-like Convolutional Neural Network when tested on the dataset

prepared by us, we notice that the drop in the accuracy of the Convolutional Neural Network is way

higher than the drop of the Siamese-like Convolutional Neural Network. The Averaged Siamese-

like Convolutional Neural Network performs better than the Convolutional Neural Network in the

test dataset prepared by us. This is due to the probabilistic nature of the Averaged Siamese-like

Convolutional Neural Network where it compares the image to be predicted with a control image

and gives the amount of similarity/dissimilarity. Now if we observe the accuracy of the Siamese-

like Convolutional Neural Network against Averaged Siamese-like Convolutional Neural Network

and Convolutional Neural Network, the drop in Siamese-like Convolutional Neural Network is

high enough to still keep it under-performing in comparison to Convolutional Neural Network.

The Averaged Siamese-like Convolutional Neural Network is performing better due to the multi-

ple comparison, which allows for more deviation in the control data. The data in MNIST has less

standard deviation due to little or no change in the environmental factors and lack of very varied

handwriting. As the Averaged Siamese-like Convolutional Neural Network does not just try to

give a definite answer in terms of what digit/character is present in the picture, and it gives the

degree of similarity/dissimilarity, it tends to be more reliable. We can see that the adaptable nature

of the Averaged Siamese-like Convolutional Neural Network is much better than that of regular

Convolutional Neural Network. Due to this, Averaged Siamese-like Convolutional Neural Net-

work make more sense in applications where the environment in which the data will be recorded,

30

keeps changing by a significant amount, that is standard deviation is high. Convolutional Neural

Network can keep up with the changes only if the changes are smaller.

The third observation was made when comparing the accuracy of Convolutional Neural Net-

work and Averaged Siamese-like Convolutional Neural Network on the EMNIST data in Table 4.2

and Figure 4.2. We see that the Convolutional Neural Network performs better than Siamese-

like Convolutional Neural Network when we only consider the Single Prediction Version of the

Siamese-like Convolutional Neural Network. However when we compare it to the Top Five Predic-

tion version of the Siamese-like Convolutional Neural Network, the latter provides better results.

The reason the Single Prediction performs so low when we have established that Siamese-like Con-

volutional Neural Network provides good results in the MNIST dataset is that unlike the data in

the MNIST dataset, data in the EMNIST dataset has more similarities. ’A’ looks similar to ’R’ and

’H’, ’K’ looks similar to ’X’. And there are even some images which might not seem like obvious

matches but tend to be. We can see one such example between ’N’ and ’W’. These similarities

lead to a higher wrong top Single Prediction Accuracy. When we consider the top five predictions

provided by the Top Five Prediction version of the Siamese-like Convolutional Neural Network,

we get a better result. This is possible due to the way Siamese-like Convolutional Neural Network

works by providing a degree of similarity between two images. Convolutional Neural Network

only provides the best match as the result not a list of possible matches. This plays in advantage

of Siamese-like Convolutional Neural Network. However, this advantage is only useful in fields

where a possible human intervention can be made should it be needed.

The fourth observation was made in terms of the flexibility of the Siamese-like Convolutional

Neural Network. When we compare Figure 4.3 and Figure 4.4 with Figure 4.5 and Figure 4.6

respectively, we notice that when we use the images from the MNIST and EMNIST dataset as

the base images to make comparisons with, the accuracy obtained from both Siamese-like Con-

volutional Neural Network and Averaged Siamese-like Convolutional Neural Network versions

were lesser than when the images from the prepared dataset were used as the base images. This

is because with images being from the prepared environment the difference in the environment

31

when compared to the images to be predicted is less. Siamese-like Convolutional Neural Network

provides the ability to adapt the algorithm to the target environment it will be deployed. So if a

small sample can be collected from the target environment and can be stored as the base samples to

be compared, Siamese-like Convolutional Neural Network or similar one-shot learning algorithms

have the ability to provide better results.

Figure 4.5: Accuracy of Fully Connected Neural Network, CNN, Siamese-like CNN models and Siamese-

like CNN models with three control images on the test portion of MNIST dataset compared to prepared

dataset, where the base images used are from the MNIST dataset.

The fifth observation was made in terms of consistency. There are four possible outcomes

from an algorithm working on a dataset with two classes. True-Positives, True-Negatives, False-

Positives (Type I error) and False-Negatives (Type II error). Ideally, we expect the algorithm to

give only True-Positives and True-Negatives as the outcome for every prediction. But in reality,

that cannot be achieved yet. Some algorithms give a balanced number of False-Positives (Type

I error) and False-Negatives (Type II error), while some give a greater number of False-Positives

(Type I error) over False-Negatives (Type II error) and the rest give a greater number of False-

Negatives (Type II error) over False-Positives (Type I error). Depending on the business model

and the application in which Machine Learning will be used, the ratio of False-Positives (Type

32

Figure 4.6: Accuracy of Fully Connected Neural Network, Convolutional Neural Network, Siamese-like

CNN models and Siamese-like CNN models with three control images on the test portion of EMNIST

dataset compared to prepared dataset, where the base images used are from the EMNIST dataset.

I error) to False-Negatives (Type II error) can have a huge impact. Let’s look at the following

examples to see the impact of consistency of False-Positives (Type I error) and False-Negatives

(Type II error).

1. Use of Machine Learning in medical diagnosis - When using Machine Learning in med-

ical diagnosis, both False-Positives (Type I error) and False-Negatives (Type II error) are

undesirable outcomes. As one could lead to diagnosing a present medical condition as not

present and not be treated while the other will lead to treatment even when the medical con-

dition is not present. Sometimes treating a patient for a non-existing medical condition can

be fatal. In 2017 [15] by Parampreet, et al., showed the importance of Type-I and Type-

II errors in the field of medical diagnosis and they stated that both types of errors can be

dangerous in the field of medical science.

2. Use of Machine Learning for Face Recognition Locking mechanism - The latest techno-

logical advancement in securing a device using someone’s identity has been to use their face

33

as a password. This involves using an RGB picture along with a 3D Depth map to identify

the person. Machine Learning is being implemented to identify subtle changes in facial ap-

pearance such as the growth of hair, beard, change in hairstyle, etc. In such an application,

False-Positives (Type I error) is way more dangerous than False-Negatives (Type II error),

as providing access to the device by wrongly predicting a non-owner as an owner could lead

to loss of device or the information within the device. However, failing to unlock the device

for the rightful owner leads to repeated attempts to unlock the device or use of secondary

authentication. This is a slight inconvenience but not a risky outcome.

3. Use of Machine Learning in threat detection in a security system - Machine Learning is

being used to identify any security holes in a system where security is of utmost importance.

In such a case False-Negatives (Type II error) is way more dangerous than False-Positives

(Type I error) as not identifying a security risk due to a False-Negative (Type II error) means

that the required measures needed to rectify that risk are never taken. In 2014, Junoven, et

al., in their paper [16] showed what a positive case is and a what a negative case is and the

type of errors were discussed. From that paper we can understand that Type-I error is a false

alarm, but Type-II error is a missed threat. Sensitivity needs to be high, i.e. real threats are

detected and Type-II errors are maintained as low as possible. If a security risk is identified

despite it not being present, it would only lead to a false alarm which is only a matter of

inconvenience.

In the case of an algorithm working with more than two classes as in the datasets used by us,

we do not of the type of errors as shown above. We understand the consistency by looking into

the confusion matrix. The observation is made in terms of what were the predictions for a given

image of a class. We can identify the accuracy of an algorithm by considering this matrix and three

variables, precision, recall, f-1 score. Precision gives us an idea about how many of the positive

predictions were actually positive. Recall gives us an idea about how many positive predictions

were made out of all the actual positive cases provided. f-1 score is used we need a balance of both

34

precision and recall in a single equation, where the concern lies with both - if all positives are truly

positive and all true positives are identified.

The formulae for precision, recall and f-1 score are as given in (4.1), (4.2), and (4.3) respec-

tively.

precision =
true positives

true positives+ false positives
(4.1)

recall =
true positives

true positives+ false negatives
(4.2)

f − 1 = 2×
precision× recall

precision+ recall
(4.3)

We compute the precision and recall for each class individually for an algorithm. As in the case

of two class predictions we discussed above, the desired value of precision and recall depends on

the specific application, however a higher F-1 score is always the desired quality. For facial recog-

nition like software we need higher precision and for threat detection, we need higher recall. Con-

fusion matrices for Fully Connected Neural Network, Convolutional Neural Network, Siamese-like

Convolutional Neural Network and Averaged Siamese-like Convolutional Neural Network with

base images from the prepared dataset are shown in Table 4.3, Table 4.4, Table 4.5, and Table 4.6

respectively for MNIST and Table 4.11, Table 4.12, Table 4.13, and Table 4.14 respectively for

EMNIST datasets. Precision, Recall, and F-1 score for Fully Connected Neural Network, Convo-

lutional Neural Network, Siamese-like Convolutional Neural Network and Averaged Siamese-like

Convolutional Neural Network with base images from the prepared dataset are shown in Table 4.7,

Table 4.8, Table 4.9, and Table 4.10 for MNIST, and in Table 4.15, Table 4.16, Table 4.17 and

Table 4.18 for the EMNIST dataset.

35

Table 4.3: Confusion matrix for the Fully Connected Neural Network model over prepared dataset with

MNIST data.

Actual

0 1 2 3 4 5 6 7 8 9

P
re

d
ic

ti
o
n

0 9 0 0 0 0 4 0 0 0 0

1 0 7 0 0 0 0 0 0 0 0

2 0 0 3 0 0 0 0 1 0 0

3 0 0 0 7 0 0 0 0 0 0

4 0 0 1 0 3 0 1 1 1 3

5 0 0 2 3 1 5 1 0 3 0

6 0 3 0 0 3 1 6 0 0 1

7 0 0 0 0 0 0 0 8 0 0

8 0 0 4 0 1 0 2 0 6 1

9 1 0 0 0 2 0 0 0 0 5

Table 4.4: Confusion matrix for the Convolutional Neural Network model over prepared dataset with

MNIST data.

Actual

0 1 2 3 4 5 6 7 8 9

P
re

d
ic

ti
o
n

0 10 0 0 0 0 0 0 0 0 0

1 0 10 0 0 0 0 0 0 0 0

2 0 0 9 0 0 0 0 1 0 0

3 0 0 0 10 0 0 0 0 0 0

4 0 0 0 0 9 0 0 0 1 1

5 0 0 0 0 0 6 0 0 0 0

6 0 0 0 0 1 0 9 0 0 0

7 0 0 0 0 0 0 0 9 0 1

8 0 0 0 0 0 0 1 0 9 1

9 0 0 1 0 0 4 0 0 0 7

36

Table 4.5: Confusion matrix for the Siamese-like CNN model over prepared dataset with MNIST data.

Actual

0 1 2 3 4 5 6 7 8 9

P
re

d
ic

ti
o
n

0 10 0 0 0 0 0 0 0 0 0

1 0 8 0 0 0 0 0 0 0 0

2 0 0 8 0 0 0 0 0 0 0

3 0 0 0 10 0 5 0 1 0 0

4 0 2 0 0 9 1 3 0 0 0

5 0 0 0 0 0 4 3 0 0 0

6 0 0 1 0 1 0 3 0 0 0

7 0 0 0 0 0 0 0 9 0 0

8 0 0 1 0 0 0 1 0 9 0

9 0 0 0 0 0 0 0 0 1 10

Table 4.6: Confusion matrix for the Siamese-like CNN model with multiple control images over prepared

dataset with MNIST data.

Actual

0 1 2 3 4 5 6 7 8 9

P
re

d
ic

ti
o
n

0 10 0 0 0 0 0 0 0 0 0

1 0 8 0 0 0 0 0 0 0 0

2 0 0 8 0 0 0 0 0 0 0

3 0 0 0 10 0 0 0 0 0 0

4 0 0 0 0 9 1 0 0 0 0

5 0 0 0 0 0 7 0 0 0 0

6 0 2 0 0 1 2 9 0 0 0

7 0 0 0 0 0 0 0 10 0 0

8 0 0 2 0 0 0 1 0 10 0

9 0 0 0 0 0 0 0 0 0 10

37

Table 4.7: Precision, Recall, and F-1 score of Fully Connected Neural Network over MNIST dataset

Precision Recall F-1 Score

0 0.90 0.69 0.78

1 0.70 1.00 0.82

2 0.30 0.75 0.43

3 0.70 1.00 0.82

4 0.30 0.30 0.30

5 0.50 0.33 0.40

6 0.60 0.43 0.50

7 0.80 1.00 0.89

8 0.60 0.43 0.50

9 0.50 0.62 0.56

Table 4.8: Precision, Recall, and F-1 score of Convolutional Neural Network over MNIST dataset

Precision Recall F-1 Score

0 1.00 1.00 1.00

1 1.00 1.00 1.00

2 0.90 0.90 0.90

3 1.00 1.00 1.00

4 0.90 0.82 0.86

5 0.60 1.00 0.75

6 0.90 0.90 0.90

7 0.90 0.90 0.90

8 0.90 0.82 0.86

9 0.70 0.58 0.64

38

Table 4.9: Precision, Recall, and F-1 score of Siamese-like Convolutional Neural Network over MNIST

dataset

Precision Recall F-1 Score

0 1.00 1.00 1.00

1 0.80 1.00 0.89

2 0.80 1.00 0.89

3 1.00 0.62 0.77

4 0.90 0.60 0.72

5 0.40 0.57 0.47

6 0.30 0.60 0.40

7 0.90 1.00 0.95

8 0.90 0.82 0.86

9 1.00 0.91 0.95

Table 4.10: Precision, Recall, and F-1 score of Averaged Siamese-like Convolutional Neural Network over

MNIST dataset

Precision Recall F-1 Score

0 1.00 1.00 1.00

1 0.80 1.00 0.89

2 0.80 1.00 0.89

3 1.00 1.00 1.00

4 0.90 0.90 0.90

5 0.70 1.00 0.82

6 0.90 0.64 0.75

7 1.00 1.00 1.00

8 1.00 0.77 0.87

9 1.00 1.00 1.00

39

Table 4.11: Confusion matrix for the Fully Connected Neural Network model over prepared dataset with EMNIST data.

Actual

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

P
re

d
ic

ti
o

n
A 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

B 0 4 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

C 0 0 10 0

D 0 1 0 8 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 2 0 0 0 0 0

E 0 1 0 0 9 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

F 2 0 0 0 1 9 0 0 0 0 0 1 0 0 0 5 0 1 1 0 0 0 0 0 0 0

G 0 1 0 0 0 0 9 0 0 0 0 0 0 0 0 0 2 0 1 0 0 0 0 0 0 0

H 1 0 0 0 0 0 0 8 0 0 0 0 6 0 0 0 0 0 0 0 1 0 1 0 0 0

I 0 0 0 0 0 0 0 0 6 1 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 2

J 1 1 0 0 0 0 0 0 0 9 0 0 0 1 0 0 0 0 2 0 4 2 3 0 0 0

K 0 0 0 0 0 0 0 1 0 0 8 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0

L 1 0 0 0 0 0 0 0 4 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M 0 0 0 0 0 0 0 1 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0

N 0 0 0 0 0 0 0 0 0 0 1 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0

O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 1 0 0 0 0 0 0 0 0 0

P 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

Q 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0

S 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0

T 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0

U 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 2 1 0 0 0 0

V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 6 1 0 1 0

W 0 0 0 0 0 0 0 0 0 0 1 0 0 3 0 0 1 0 0 0 0 0 5 0 0 0

X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 9 3 0

Y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 6 0

Z 0 2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 8

40

Table 4.12: Confusion matrix for the Convolutional Neural Network model over prepared dataset with EMNIST data.

Actual

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
P

re
d

ic
ti

o
n

A 8 0

B 0 8 0

C 0 0 10 0

D 0 2 0 9 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0

E 0 0 0 0 10 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

F 0 0 0 0 0 10 0

G 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

H 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

I 1 0 0 0 0 0 0 0 9 2 0 1 0 0 0 0 0 0 0 0 3 0 0 0 0 0

J 0 0 0 0 0 0 0 0 0 8 0 0 0 1 0 0 0 0 0 0 2 3 0 0 0 0

K 1 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

L 0 0 0 0 0 0 0 0 1 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M 0 0 0 0 0 0 0 1 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0

N 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 1 0 0 0 0 0 0 0 0 0 0

O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0

P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0

Q 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 10 2 0 0 0 0 0 0 0 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0

S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0

T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0

U 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0

V 0 6 0 0 1 0

W 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 10 0 0 0

X 0 10 0 0

Y 0 9 0

Z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 10

41

Table 4.13: Confusion matrix for the Siamese-like CNN model over prepared dataset with MNIST data.

Actual

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

P
re

d
ic

ti
o

n

A 8 0

B 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

C 0 0 10 0

D 0 0 0 10 0

E 0 0 0 0 10 0

F 0 0 0 0 0 10 0

G 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

H 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

I 0 0 0 0 0 0 0 0 10 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

J 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

K 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

L 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M 1 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0

N 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0

O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0

P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 1 0 0 0 0 0

Q 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0

S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 1 0 0 0 0 0

T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 2 1 0 0 0 0

U 0 5 0 0 0 0 0

V 0 9 1 0 0 0

W 0 1 0 8 0 0 0

X 0 10 0 0

Y 1 0 1 0 10 0

Z 0 10

42

Table 4.14: Confusion matrix for the Siamese-like CNN model with multiple control images over prepared dataset with EMNIST data.

Actual

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

P
re

d
ic

ti
o

n

A 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

B 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

C 0 0 10 0

D 0 0 0 10 0

E 0 0 0 0 10 0

F 0 0 0 0 0 10 0

G 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

H 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

I 1 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

J 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

K 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

L 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M 1 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0

N 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0

O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0

P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 1 0 0 0 0 0

Q 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0

S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 1 0 1 0 0 0

T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 2 0 0 0 0 0

U 0 4 0 0 0 0 0

W 0 8 0 0 0 0

V 0 8 0 0 0

X 0 10 0 0

Y 0 1 1 0 0 10 0

Z 0 10

43

The sixth observation is about time and resource utilization. The time taken for training and

prediction by Fully Connected, Convolutional, Siamese-like and Averaged Siamese-like Convolu-

tional Neural Network is shown in Table 4.19 and Table 4.20, and Figure 4.7 and Figure 4.8 for

MNIST and EMNIST datasets respectively. With the technological advancements that we have

been making, applications of Machine Learning are spreading across fields and platforms. Ma-

chine learning is being implemented in mobile devices, which have a limited amount of resources

available. Due to the limited availability of resources, a mobile device such as a phone, tablet

computer, smartwatch, etc., cannot afford to have some or most of its resources run an algorithm

for a long time. It can be seen that the training time and prediction time of algorithms tested by

us, increases in the order of Fully Connected Neural Network, Convolutional Neural Network and

all versions of Siamese-like Convolutional Neural Network. Running a complex algorithm in a

mobile device where accuracy is not of utmost importance, such as object/face detection in the

photo gallery is an unnecessary and unwise move. Mentioning the time and resource utilization of

an algorithm in the paper will allow the business or the developer from falling into such pitfalls if

they know the requirements for the proper functioning of the algorithm before they start designing

their product around the algorithm.

44

Table 4.15: Precision, Recall, and F-1 score of Fully Connected Neural Network over EMNIST dataset

Precision Recall F-1 Score

A 0.40 0.67 0.50

B 0.40 0.80 0.53

C 1.00 1.00 1.00

D 0.80 0.67 0.73

E 0.90 0.82 0.86

F 0.90 0.45 0.60

G 0.90 0.69 0.78

H 0.80 0.47 0.59

I 0.60 0.46 0.52

J 0.90 0.39 0.55

K 0.80 0.73 0.76

L 0.70 0.58 0.64

M 0.40 0.80 0.53

N 0.60 0.86 0.71

O 0.80 0.89 0.84

P 0.10 0.50 0.17

Q 0.30 0.75 0.43

R 0.30 1.00 0.46

S 0.50 0.83 0.62

T 1.00 0.91 0.95

U 0.20 0.33 0.25

V 0.60 0.60 0.60

W 0.50 0.50 0.50

X 0.90 0.64 0.75

Y 0.60 0.75 0.67

Z 0.80 0.67 0.73

45

Table 4.16: Precision, Recall, and F-1 score of Convolutional Neural Network over EMNIST dataset

Precision Recall F-1 Score

A 0.80 1.00 0.89

B 0.80 1.00 0.89

C 1.00 1.00 1.00

D 0.90 0.64 0.75

E 1.00 0.91 0.95

F 1.00 1.00 1.00

G 0.90 1.00 0.95

H 0.80 1.00 0.89

I 0.90 0.56 0.69

J 0.80 0.57 0.67

K 1.00 0.91 0.95

L 0.90 0.90 0.90

M 1.00 0.91 0.95

N 0.80 0.89 0.84

O 0.90 1.00 0.95

P 0.70 1.00 0.82

Q 1.00 0.71 0.83

R 0.80 1.00 0.89

S 0.90 1.00 0.95

T 1.00 1.00 1.00

U 0.40 0.80 0.53

V 0.60 0.86 0.71

W 1.00 0.83 0.91

X 1.00 1.00 1.00

Y 0.90 1.00 0.95

Z 1.00 0.91 0.95

46

Table 4.17: Precision, Recall, and F-1 score of Siamese-like Convolutional Neural Network over EMNIST

dataset

Precision Recall F-1 Score

A 0.80 0.80 0.80

B 1.00 1.00 1.00

C 1.00 1.00 1.00

D 1.00 0.91 0.95

E 1.00 1.00 1.00

F 1.00 1.00 1.00

G 1.00 1.00 1.00

H 1.00 1.00 1.00

I 1.00 0.91 0.95

J 0.90 0.75 0.82

K 1.00 1.00 1.00

L 1.00 1.00 1.00

M 1.00 0.91 0.95

N 1.00 1.00 1.00

O 0.90 1.00 0.95

P 0.90 0.90 0.90

Q 1.00 1.00 1.00

R 1.00 1.00 1.00

S 1.00 0.91 0.95

T 1.00 1.00 1.00

U 0.60 0.75 0.67

V 0.50 0.71 0.59

W 0.80 1.00 0.89

X 1.00 1.00 1.00

Y 1.00 0.83 0.91

Z 1.00 1.00 1.00

47

Table 4.18: Precision, Recall, and F-1 score of Averaged Siamese-like Convolutional Neural Network over

EMNIST dataset

Precision Recall F-1 Score

A 0.80 1.00 0.89

B 1.00 0.91 0.95

C 1.00 1.00 1.00

D 1.00 1.00 1.00

E 1.00 1.00 1.00

F 1.00 1.00 1.00

G 1.00 1.00 1.00

H 1.00 1.00 1.00

I 1.00 0.91 0.95

J 0.90 1.00 0.95

K 1.00 1.00 1.00

L 1.00 1.00 1.00

M 1.00 0.91 0.95

N 1.00 1.00 1.00

O 1.00 1.00 1.00

P 0.90 0.90 0.90

Q 1.00 1.00 1.00

R 1.00 1.00 1.00

S 1.00 0.91 0.95

T 1.00 0.77 0.87

U 0.50 1.00 0.67

V 0.90 0.90 0.90

W 0.80 0.89 0.84

X 1.00 1.00 1.00

Y 1.00 0.83 0.91

Z 1.00 1.00 1.00

48

Table 4.19: Average of time utilization of various algortihms over MNIST dataset

Model observed

Fully Connected

Neural

Network

Conv.

Neural

Network

Siamese

-like

Conv.

Neural

Network

Averaged

Siamese

-like

CNN

Multi-threaded

Averaged

Siamese

-like

CNN

Training

Time
98 2182 2467 X X

Prediction

Time

200

samples

0.08 2.59 178.89 526.73 465.89

Table 4.20: Average of time utilization of various algortihms over EMNIST dataset

Model observed

Fully Connected

Neural

Network

Conv.

Neural

Network

Siamese

-like

Conv.

Neural

Network

Averaged

Siamese

-like

CNN

Multi-threaded

Averaged

Siamese

-like

CNN

Training

Time
98 2182 2467 X X

Prediction

Time

200

samples

0.15 7.75 501.392 1376.11 1032.42

49

(a) Training time.

(b) Prediction time.

Figure 4.7: Comparison of the time metric of various models.(a). Time taken for model training of Fully

Connected Neural Network, Convolutional Neural Network, and Siamese-like CNN models on MNIST

dataset. (b) Time taken to predict 200 samples of each of the 10 classes of MNIST dataset by Fully Con-

nected Neural Network, CNN, Siamese-like CNN, Siamese-like CNN with 3 control images and Siamese-

like CNN with 3 control images and Multi-threading.

50

(a) Training time.

(b) Prediction time.

Figure 4.8: Comparison of the time metric of various models.(a). Time taken for model training of Fully

Connected Neural Network, Convolutional Neural Network, and Siamese-like CNN models on EMNIST

dataset. (b) Time taken to predict 200 samples of each of the 26 classes of EMNIST dataset by Fully Con-

nected Neural Network, CNN, Siamese-like CNN, Siamese-like CNN with 3 control images and Siamese-

like CNN with 3 control images and Multi-threading.

51

Chapter 5

Conclusion

We have observed that among the Fully Connected, Convolutional and Siamese-like Convolu-

tional Neural Network when implemented over MNIST and EMNIST datasets, there are multiple

other metrics that can be used to measure their performance. All algorithms give a lower per-

formance on the prepared dataset in comparison to their performance in terms of accuracy on

train and test portions of the datasets. Convolutional Neural Network provides better accuracy

than Siamese-like Convolutional Neural Network, when tested on the train and test portions of the

datasets, however, falls behind the latter when verified on the prepared dataset. This gives the idea

that verification cannot be done entirely on the basis of test portion performance. Consistency in

terms of precision or recall and the f-1 score is important depending on the type of application over

which the algorithm might be deployed. Other metrics like time and resource consumption play

a vital role with ML algorithms being deployed over smaller devices. Unavailability of human

intervention can sometimes eliminate some algorithms from the list of suitable algorithms as they

may not be up to par without human intervention in certain edge cases.

Further work in this field involves implementing a version of Siamese-like Neural Network

where the base image can be saved as a feature vector, and the image that needs to be predicted can

be directly compared with that by calculating the cosine distance. This methodology will make the

comparison process a lot faster and will bring down the prediction time. More algorithms can be

implemented apart from this and the co-relation of the results can be observed for possibly more

metrics that can be used for algorithm selection. Due to limitation of time, one more aspect was not

studied where some algorithms have two peak performance accuracies with two different sets of

parameters, i.e. the total error plot does not look like a ’U’ shaped graph but a ’W’ shaped graph.

This could also be explored further, as this provides more information about selecting parameters

for training an algorithm. Another topic that can be explored is the mislabeled data in the datasets.

Siamese-like Convolutional Neural Network is more resilient to mislabeled data as it works on

52

similarities between images rather working on probability distribution. Further study about this

can provide more details about how resilient it is with respect to others.

53

Bibliography

[1] Syrine Ben Driss, Mahmoud Soua, Rostom Kachouri, and Mohamed Akil. A comparison

study between mlp and convolutional neural network models for character recognition. In

SPIE Conference on Real-Time Image and Video Processing, volume 10223, 2017.

[2] Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Säckinger, and Roopak Shah. Signa-

ture verification using a siamese time delay neural network. In Proceedings of the 6th In-

ternational Conference on Neural Information Processing Systems, pages 737–744. Morgan

Kaufmann Publishers Inc., 1993.

[3] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik. EMNIST: an exten-

sion of MNIST to handwritten letters. CoRR, abs/1702.05373, 2017.

[4] Mei Wang and Weihong Deng. Deep visual domain adaptation: A survey. CoRR,

abs/1802.03601, 2018.

[5] Gentle dive into math behind convolutional neural networks. https://towardsdatascience.

com/gentle-dive-into-math-behind-convolutional-neural-networks-79a07dd44cf9. Last Ac-

cessed: 2020-06-30.

[6] Y. LeCun, P. Haffner, L. Bottou, and Y. Bengio. Object recognition with gradient-based

learning. In Feature Grouping. Springer, 1999.

[7] Fathma Siddique, Shadman Sakib, and Md. Abu Bakr Siddique. Recognition of handwrit-

ten digit using convolutional neural network in python with tensorflow and comparison of

performance for various hidden layers. 2019 5th International Conference on Advances in

Electrical Engineering (ICAEE), 2019.

[8] Gregory R. Koch, Richard Zemel, and Ruslan Salakhutdinov. Siamese neural networks for

one-shot image recognition. In Proceedings of the 32nd International Conference on Machine

Learning, Lille, France, volume 37, 2015.

54

[9] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by learning an

invariant mapping. In Proceedings of the 2006 IEEE Computer Society Conference on Com-

puter Vision and Pattern Recognition, volume 2 of CVPR 06, pages 1735–1742. IEEE Com-

puter Society, 2006.

[10] Luca Di Persio and Oleksandr Honchar. Artificial neural networks approach to the fore-

cast of stock market price movements. International journal of circuits, systems and signal

processing, 1:158–162, 2016.

[11] Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. ATT Labs

[Online]. Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

[12] Alejandro Baldominos, Yago Sáez, and Pedro Isasi. A survey of handwritten character recog-

nition with mnist and emnist. Applied Sciences, 2019:3169, 2019.

[13] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International

Conference on Learning Representations, 12 2014.

[14] Keras.io. https://keras.io/. Last Accessed: 2020-06-30.

[15] Parampreet. Kaur and Jill. Stoltzfus. Type I, II, and III statistical errors: A brief overview.

International Journal of Academic Medicine, 3(2):268–270, 2017.

[16] Antti Juvonen and Tuomo Sipola. Anomaly detection framework using rule extraction for

efficient intrusion detection. CoRR, abs/1410.7709, 2014.

55

