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ABSTRACT

BAYESIAN APPROACH TO THE ANISOTROPIC EIT PROBLEM AND EFFECT OF

STRUCTURAL CHANGES ON RECONSTRUCTION ALGORITHM USING 2-D D-BAR

ALGORITHM

Electrical Impedance Tomography (EIT) is a relatively new imaging technique that is non-

invasive, low-cost, and non-ionizing with excellent temporal resolution.In EIT, the unknown elec-

trical conductivity in the interior of the medium is determined from the boundary electrical mea-

surements. In this work, we attempt to find a direct reconstruction algorithm to the anisotropic EIT

problem based on the well-known Calderón’s method. The non-uniqueness of the inverse problem

is dealt with assuming that the directions of anisotropy are known. We utilize the quasi-conformal

map in the plane to accomplish Calderóns approach. Additionally, we derive a probability distri-

bution for the anisotropic conductivity values using a Bayesian formulation, where the direction

of anisotropy is encoded as the prior information. We show that this results in the generalized

Tikhonov regularization, where the prior information about the direction of anisotropy is incor-

porated in the regularization operator. The computations of the anisotropic EIT problem using

the Bayesian formulation is conducted on simulated data and the resulting reconstructions for the

data are shown. Finally, the work of this thesis is concluded by implementing dynamic changes in

boundary of a human data during respiration process successfully in the D-bar algorithm.

ii



ACKNOWLEDGEMENTS

I would like to thank my advisor Jennifer Mueller for her extensive guidance and support on

and off academic matters over the years that I have been away from home. Additional thanks go

to memebers of Electrical Impedance Tomography group student members. I would also like to

thank my family for their support and encouragement in my academic journey.

iii



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Electrical Impedance Tomography . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Advantages of EIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Applications of EIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Mathematical Formulation of EIT . . . . . . . . . . . . . . . . . . . . . . 4
1.2.1 Continuum Boundary Conditions . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Nonlinearity of EIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.3 Ill-posedness of EIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.4 Data Aquisition in EIT . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.5 Electrode Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.6 Current Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Numerical solution to the forward EIT problem . . . . . . . . . . . . . . . 10
1.4 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4.1 Calderón’s Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4.2 Further developments on inverse conductivity problem . . . . . . . . . 16
1.4.3 Reconstruction algorithms and computation . . . . . . . . . . . . . . . 17

Chapter 2 Anisotropic inverse conductivity problem . . . . . . . . . . . . . . . . . . . 22
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 Mathematical model of the anisotropic EIT problem . . . . . . . . . . . . 23
2.3 Difficulties of anisotropic inverse conductivity problem . . . . . . . . . . . 24

2.3.1 History of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.2 Further developments in anisotropic inverse conductivity problem . . . 25

2.4 Injectivity for the linearized anisotropic inverse conductivity problem based
on Calderón’s method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Bayesian formulation of the anisotropic EIT problem . . . . . . . . . . . . 34
2.6 Forward anisotropic EIT problem . . . . . . . . . . . . . . . . . . . . . . 35

2.6.1 Variational formulation of the anisotropic EIT . . . . . . . . . . . . . . 36
2.6.2 Finite Element Formulation of anisotropic EIT . . . . . . . . . . . . . . 36

2.7 Inverse problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.7.1 Construction of Priors . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.7.2 Numerical implementation . . . . . . . . . . . . . . . . . . . . . . . . 44
2.7.3 Computation of the Jacobian . . . . . . . . . . . . . . . . . . . . . . . 45
2.7.4 Implementation of the reconstruction algorithm . . . . . . . . . . . . . 45

2.8 Conclusions and Future work . . . . . . . . . . . . . . . . . . . . . . . . 46

iv



Chapter 3 Impact of structural changes in the reconstruction using 2-D D-bar algorithm 48
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.1 Effect of domain shape on reconstruction . . . . . . . . . . . . . . . . . 48
3.2.2 Effect of dynamic changes in the boundary on reconstruction . . . . . . 49

3.3 Implementation of dynamic changes in boundary . . . . . . . . . . . . . . 51
3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.5 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

v



LIST OF TABLES

1.1 Conductivity and permittivity values for various tissues and organs. (source: Linear
and Nonlinear Inverse Problems with Applications [97]) . . . . . . . . . . . . . . . . . 3

2.1 Conductivities in perpendicular and parallel directions on the pial surface of neocortex.
(Source: [4]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

vi



LIST OF FIGURES

1.1 Human Thoracic 2-D EIT data collection, with electrodes arranged in a plane around
the patient’s thorax. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 The placement of electrodes on the exterior of a circular domain with a circular inclu-
sion shown in red. Here the first electrode is placed on the horizontal axis at 0 degrees
and the electrodes are counted counter clockwise. The conductivity is given by σverint

inside the circular inclusion and σ1 in the annulus outside the circular inclusion. . . . . 40
2.2 Left: The potential on the 32 electrodes due to 31 linearly independent current patterns

applied to the electrodes when the conductivity in the circular inclusion is assumed to
be σverint . Right: The potential on the 32 electrodes due to 31 linearly independent cur-
rent patterns applied to the electrodes when the conductivity in the circular inclusion
is assumed to be σhorint . Each color represents a volatge arising from a different current
pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3 Left: Reconstruction of the diagonal conductivity along the x-axis d1. Right: Recon-
struction of the diagonal conductivity along the y-axis d2. It is clear that d1 is less than
that of d2 values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1 Change in the overall cross-sectional area during inhalation and exhalation. (Source:
[120]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 The EIT data collected during a spirometry test. . . . . . . . . . . . . . . . . . . . . . 50
3.3 PCA output during a spirometry test used for identifying the key time points for the

implementation of the dynamically changing boundary. TLC on the plot corresponds
to the maximum inhalation and EFE corresponds to maximum exhalation. . . . . . . . 52

3.4 Plots of reconstructions of the conductivity that corresponding to first frame, the first
exhalation, first inhalation, consequent exhalation, maximum inhalation and maximum
exhalation and the consecutive breaths . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5 Plots of reconstructions of the conductivity that corresponding to first frame, the first
exhalation, first inhalation, consequent exhalation, maximum inhalation and maximum
exhalation and the consecutive breaths . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6 The reconstructions of the EIT data for the same subject with and without accounting
for dynamically changing boundary. . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.7 The reconstructions of the EIT data for the same subject with and without accounting
for dynamically changing boundary. . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.8 Difference in the conductivity computed with and without the dynamically changing
boundary values for frames 36,93,148,229 . . . . . . . . . . . . . . . . . . . . . . . . 58

vii



Chapter 1

Introduction

1.1 Electrical Impedance Tomography
Electrical impedance tomography (EIT) is a relatively new medical imaging technique in which

the internal electrical properties such as conductivity σ, permittivity ε, or resistivity ρ = 1/σ of

an object are reconstructed using current density and voltage measurements on the surface of the

object. In data acquisition, current of the order of mA are applied to the electrodes on the bound-

ary, and the resulting potentials on the electrodes of the order of hundreds of mV are measured.

Inhomogenities in the internal electrical properties results in the perturbations in the surface volt-

age measurements from the homogeneous case. This can be used to reconstruct an image of the

object’s internal structures.

This thesis addresses two problems, first one being the problem of anisotropic EIT. Although,

the problem of EIT is well studied when the conductivity is isotropic, the anisotropic EIT problem

has not been given its due. One reason for this is the fact that the solution to the anisotropic

EIT is not unique. To overcome the problem of non unique solution to the anisotropic EIT, we

make assumptions on the nature of anisotropy. That is we assume that the direction of preference

of the conductivity is known. We then formulate the mathematical problem of anisotropic EIT

and in the spirit of Calderón show the injectivity of the linearized anisotropic inverse conductivity

problem. In addition to this we formulate the problem of anisotropic EIT in Bayesian setting.

In this approach, we construct the priors for the anisotropic conductivity using the fact that the

direction of the conductivity tensor is known, and show that the Bayesian formulation leads to

the generalized Tikhonov regularization. We solve this optimization problem to get maximum a

posterior estimates for the conductivity values. Second, we incorporate the dynamic structural

changes to the 2-D D-bar algorithm and successfully implement them on the human data.
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1.1.1 Advantages of EIT

EIT is an attractive option for many imaging tasks since the equipment is cost effective, elec-

trical currents can penetrate through many materials without damaging them and fast electronics

are available for real time applications.

Figure 1.1: Human Thoracic 2-D EIT data collection, with electrodes arranged in a plane around the pa-
tient’s thorax.

1.1.2 Applications of EIT

There are a variety of applications of EIT, including medical, engineering and industrial, and

new applications continue to emerge. The original motivation for EIT was the prospection of

the underground natural resources [35]. These days EIT is used in a number of geophysical ap-

plications such as subsurface flow monitoring and remediation [44, 46, 87, 107] and underground

contamination detection [47, 85, 87, 108]. In industrial applications, process tomography may be

used to understand the complex internal flows and multiphase mixtures occuring inside process

equipment. In this regard, EIT has been applied to pharmaceutical testing [24, 109, 110], mix-

ture and flow monitoring [50, 77, 89, 92], contaminant detection [93], nondestructive evaluation of

concrete and other structures [45, 74, 79, 81], and various other process applications [84, 118].
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In this dissertation, however, EIT is in the context of medical imaging applications. Medical

EIT relies on the fact that the conductivity and permittivity of various tissues and organs in the

body are measurable and have significant differences as shown in the Table 1.1

Table 1.1: Conductivity and permittivity values for various tissues and organs. (source: Linear and Nonlin-
ear Inverse Problems with Applications [97])

Tissue Conductivity(mS/cm) Permittivity(µ F/m)

Blood 6.70 0.05
Liver 2.80 0.49
Bone 0.06 0.0027
Cardiac Muscle(Longitudinal) 6.3 0.88
Cardiac Muscle(Transversal) 2.3 0.36
Lung(expiration) 1.0 0.44
Lung(inspiration) 0.4 0.22
Fat 0.36 0.18
Skin 0.0012 0.0144

In the field of medical imaging there are various imaging techniques available, each with its

own advantages and disadvantages. Techniques such as magnetic resonance imaging (MRI) and

X-ray computed tomography (CT) have the advantage of very good spatial resolution but require

large, expensive and non portable machines. CT scanning has the additional disadvantage of the

use of ionizing radiation. Ultrasound is safer and more portable, however, it is quite low contrast

and difficult to use on obese patients due to limitations in the depth of ultrasound penetration.

EIT has the potential of providing inexpensive, portable, high-contrast, real-time imaging with

excellent temporal resolution. The procedure is painless and does not expose patients to ionizing

radiation.

There is a long, diverse and ever-growing list of promising medical applications of EIT. A va-

riety of research groups have evaluated EIT for use in breast cancer detection, based on evidence

that malignant tumors have higher conductivity values than surrounding normal tissues [42, 43].

Some of the biomedical applications of EIT are: it can be used to monitor cardiac activity and
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diagnosis of pulmonary embolism [41, 82, 94, 105, 111, 117],ventilation and lung perfusion moni-

toring [62, 63, 65],gastric emptying and gastric volume [80], diagnosis of pulmonary edema [31]

prostate imaging [27, 28], and assessment of stroke and other neural imaging [2, 12, 54, 71, 80].

The EIT lab in the Department of Mathematics at Colorado State University focuses on the

2-D thoracic imaging. This is accomplished by collecting data on approximately equally-spaced

electrodes that are placed in a single plane around the circumference of a human chest. To these

electrodes a low frequency, low amplitude AC current is applied and the resulting surface volt-

ages are measured, which provides the necessary data to reconstruct the electrical conductivity

distribution within the plane of the electrodes.

1.2 Mathematical Formulation of EIT
The propagation of electromagnetic fields in a body is governed by Maxwell’s equations. Due

to the very small magnetic permeability of the human body, and the low frequency time-harmonic

currents that are applied in EIT, Maxwell’s equations can be simplified to the generalized Laplace

equation.That is:

∇(σ(x, y)∇u(x, y)) = 0 (x, y) ∈ Ω, (1.1)

where Ω ⊂ R2 is a bounded, simply connected domain with Lipschitz boundary, σ : Ω→ R is the

electrical conductivity distribution within Ω, and u : Ω → R is the electrical potential within Ω.

The complete derivation is presented in [97]. Furthermore, conductivity σ is bounded away from

zero, such that 0 < σ < c for all (x, y) ∈ Ω. This condition ensures that (1.1) is elliptic.

1.2.1 Continuum Boundary Conditions

If the voltage distribution f = f(x, y) on the boundary ∂Ω is known, then we have the

Dirichelet boundary condition:

u|∂Ω = f (1.2)

The resulting current density distribution J on the boundary is measured:

4



J(x, y) · ν = σ(x, y)
∂u(x, y)

∂ν
= j (1.3)

where ν is the outward unit normal vector.

The Dirichlet to Neumann map (DN map), also known as voltage to current density map,

denoted by Λσ, takes the voltage distribution to the current density distribution:

Λσ : u|∂Ω → σ
∂u

∂ν

∣∣∣∣
∂Ω

(1.4)

If σ ∈ L∞(Ω), then it can be shown that the linear operator Λσ is bounded between the Sobolev

spaces:

Λσ : H1/2(∂Ω)→ H−1/2(∂Ω).

The DN map contains all possible EIT boundary measurements with infinite precision.

On the other hand, if current is applied on the boundary ∂Ω and the resulting voltage distribu-

tion on the boundary is measured, then this corresponds to knowledge of the Neumann to Dirichlet

map (ND map)R defined by

Rσ : σ
∂u

∂ν

∣∣∣∣
∂Ω

→ u|∂Ω (1.5)

and it is bounded between the Sobolev spaces:

Rσ : H̃−1/2(∂Ω)→ H̃1/2(∂Ω)

where H̃s spaces consists of Hs functions with mean value zero.

The forward conductivity problem is to determine u ∈ H1(Ω) by solving (1.1) subject to

Dirichlet condition (1.2). This requires the knowledge of σ inside the domain, Ω. The forward

problem can be solved numerically using, for example, Finite Element Methods.

The imaging problem of EIT is the inverse conductivity problem, where we are interested in

recovering the unknown conductivity σ uniquely, satisfying (1.1), given the knowledge of DN map

(1.4).

5



1.2.2 Nonlinearity of EIT

The problem of EIT is nonlinear, since the forward mapping σ 7→ Λσ is nonlinear. This can be

established by using the weak form of DN map.

< Λσu, j >=

∫
Ω

σ∇u · ∇vdxdy (1.6)

Since u itself is a function of σ, it is clear from (1.6), that the DN map (1.4) is a nonlinear function

of σ. The current densities on the electrodes are non linear functions of the conductivity σ. This

is in contrast with the X-ray tomography, where the measured data depends linearly on the density

of the medium.

1.2.3 Ill-posedness of EIT

EIT is severely ill-posed in the sense that the solution does not depend continuously on data.

That is, the forward map σ 7→ Λσ does not have a continuous inverse. This means that large

changes in internal conductivity distribution may result in negligible changes in the boundary mea-

surements (DN map). Thus, for any given finite measurement precision, there will exist distinct

conductivity distributions that lead to indistinguishable boundary current and voltage measure-

ments. This was established by Alessandrini in [5].

This leads to the EIT problem being very mathematically challenging. Apart from the mathe-

matical challenges of EIT, there are other various practical problems related to electrical properties

of the physical domain and imperfections of electronics and hardware [3]. We are interested in the

conductivity changes deep inside the interior of the domain, but only a relatively small amount of

the applied current penetrates deeply. In medical applications this effect is exacerbated by resistive

tissues such as bone, lungs, or fat. EIT is also highly sensitive to any imperfections in hardware or

difficulties with electrode contact.
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1.2.4 Data Aquisition in EIT

The continuum models given by equations (1.4) and (1.5) is an idealization and does not take

into account that in practice current is applied through a finite number of electrodes on the surface

of the body and not as a continuous current density along the boundary. For L electrodes, there

are N linearly independent current patterns where N ≤ L − 1. In the EIT lab at Colorado State

University, the ACE1 EIT machine is used to collect experimental data, and has been designed

to apply bipolar skip patterns [97]. Application of a skip s pattern on L electrodes results in

N = L− gcd(L, s+ 1) linearly independent measurements.

1.2.5 Electrode Models

The model given by (1.4) and (1.5) does not take into account that in practice current is applied

only through a finite number of electrodes on the surface of the domain. Various models have been

proposed to simulate the experimental situation and can be found in [97]. Below are the description

of some of the electrode models commonly used in EIT literature.

i. The Gap Model: The Gap model sets the current density J as 0 off the electrode and current

density on the lth electrode el is taken to be the current on electrode el divided by area of the

lth electrode.

J(z) =


Il
Al
, if z lies on electrode el, l = 1, ...., L,

0, off
⋃L
l=1 el.

(1.7)

The conservation of charge (1.3) is replaced by conservation of currents,

L∑
l=1

Il = 0 (1.8)

Voltages that are measured are assumed to have potential at the center of each electrode

u(center ofel) = Vl (1.9)
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with the reference potential being set so that

L∑
l=1

Vl = 0. (1.10)

ii. The Shunt Model: The gap model does not take into account the shunting effect of electrodes

when they are in contact with the surface of the medium being imaged. To overcome this

problem, the voltage is assumed to be a constant over the electrode by assuming the electrode

as a perfect conductor.The mathematical model is described as follows:

u(z) = Vl for z on el, l =, 2, ....., L, (1.11)

and

u(z) = 0 off
L⋃
l=1

el (1.12)

along with ∫
el

σ
∂u

∂ν
ds = Il, l = 1, 2, ....L, (1.13)

and

σ
∂u

∂ν
= 0 off

L⋃
l=1

el (1.14)

iii. The Complete Electrode Model: With human subjects, an electrochemical effect between

the electrode and the skin causes a thin, highly resistive layer to form at the electrode -

skin interface with impedance zl, known as contact impedance. This gives rise to a Robin

boundary condition,

u+ zlσ
∂u

∂ν
= Vl on el, l = 1, 2, .......L. (1.15)

Along with the Robin boundary condition, the condition on the applied current in complete

electrode model is given by,

8



∫
el

σ
∂u

∂ν
ds = Il, l = 1, 2, ...L,

σ
∂u

∂ν
= 0, off

L⋃
l=1

el

The unique solution specifies the choice of ground by

L∑
l=1

Ul = 0,

and Kirchhoff’s law,
L∑
l=1

Il = 0.

A detailed discussion of the complete electrode model for the EIT can be found in [38]

1.2.6 Current Patterns

The application of all possible currents is impossible as stated in the inverse problem. In

practice, since there are L electrodes, there are at most L− 1 linearly independent current patterns.

Any other current pattern will be a linear combination of these. Popular choice of the current

pattern are:

i. Trigonometric current patterns: This is modeled as follows:

Inl =


Mcos(nθl), n = 1, ....,

L

2
− 1,

Mcos(πl), n = L/2,

Msin((n− L/2)θl), n =
L

2
+ 1, ....L− 1

where M is the maximum current amplitude. The vector In is a discreet approximation to

Mcos(nθ) for 1 ≤ n ≤ L/2 or Msin(nθ) for L/2− 1 ≤ n ≤ L− 1

ii. Pairwise current injection: For a system with a single current source, current patterns that

apply equal and opposite current on pairs of electrodes will preserve Kirchhoff’s law. It is

given by

9



Ikl =



M, l = k, k = 1, 2, ...L

−M, l = k + 1, k = 1, ....L+ 1

−M, l = 1, k = L

0 otherwise

A detailed discussion of the optimal current patterns and distinuishability in EIT and a descrip-

tion of various current patterns for EIT can be found in [97]

1.3 Numerical solution to the forward EIT problem
A numerical solution to the forward EIT problem of computing the potential u from generalized

Laplace equation (1.1) knowing the interior conductivity σ and the boundary condition (1.4) can

be accomplished by Finite Element Methods (FEM). Below is a summary of the Finite Element

Method applied to forward EIT problem using complete electrode model. The detailed analysis of

FEM for CEM and the convergence of solutions is discussed in [97].

Computing DN matrix: Choosing some N > 0 and using the truncated Fourier basis functions

ϕn(θ) = (2π)−1/2einθ, n ∈ Z (1.16)

with −N ≤ n ≤ N , the DN map Λσ can be approximated by the (2N + 1) × (2N + 1) matrix

Lσ = [(Lσ)m,n] defined by

(Lσ)m,n := 〈Λσϕn, ϕm〉 =
1√
2π

∫ 2π

0

(Λσϕn)e−imθdθ. (1.17)

Variational formulation: Consider the boundary conditions for the complete electrode model.

∫
el

σ
∂u

∂ν
ds = Il, l = 1, 2, ....L, (1.18)

σ
∂u

∂ν
= 0 off

L⋃
l=1

el. (1.19)
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and Robin boundary condition

u+ zlσ
∂u

∂ν
= Ul on el for l = 1, 2, ....L, (1.20)

with the choice of ground being specified by the uniqueness condition

L∑
l=1

Ul = 0, (1.21)

and Kirchoff’s law
L∑
l=1

Il = 0. (1.22)

where zl denotes the effective contact impedance between the l electrode and the skin.

Denoting an electrical potential inside Ω by lowercase u or v, and the vectors of voltages

measured on L electrodes by uppercase letters, for any (v, V ), the variational form of the complete

electrode model is

Bs((u, U), (v, V )) =
L∑
l=1

IlV̄l (1.23)

where v ∈ H1(Ω) and V ∈ CL and V̄ denotes the complex conjugate of V and the sesquilinear

form Bs : HXH → C is given by

Bs((u, U), (v, V )) =

∫
Ω

σ∇u · ∇v̄ dx dy +
L∑
l=1

1

zl

∫
el

(u− Ul)(v − V̄l)dS. (1.24)

Discretizing the variational problem leads to the Finite Element Formulation. The domain Ω is

discretizied into small tetrahedral elements withN nodes in the mesh. Suppose (u, U) is a solution

to the complete electrode model with trigonometric current patterns, then a finite dimensional

approximation to the voltage distribution inside Ω is given by:

uh(z) =
N∑
k=1

αkϕk(z) (1.25)

11



and on electrodes

Uh(z) =

N+(L−1)∑
k=N+1

β(k−N)~n(k−n), (1.26)

where discrete approximation is indicated by h and the basis functions for the finite dimensional

spaceH ⊂ H1(Ω) is given by ϕk, and αk and β(k−N) are the coefficients to be determined

~nj = (1, 0, ..., 0,−1, 0, ...0)T ∈ RL×1 (1.27)

and −1 is in the position of (j − 1) The choice of ~n(k−N) satisfies the condition for ground in

(2.47), since ~n(k−N) in (2.53) results in

Uh(z) =

(
L−1∑
k=1

βk,−β1, ...,−βL−1

)T

(1.28)

In order to implement FEM computationally we need to expand (2.50) using approximating func-

tions (2.52) and (2.53) with v = ϕj for j = 1, 2, ...N and V = ~nj for j = N + 1, N + 2, .....N +

(L− 1) to get a linear system

A~b = ~f, (1.29)

where
−→
b = (−→α ,

−→
β )T ∈ CN+L−1 with the vector −→α = (α1, α2, ....., αN) and the vector

−→
β =

(β1, β2, .....βL−1), and A ∈ C(N+L−1) is of the form

A =

 B C

C̃ D

 (1.30)

where B,C and D are matrices that are built below.

The right-hand-side vector is given by

−→
f = (0, Ĩ)T , (1.31)
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where 0 ∈ C1×N and Ĩ = (I1− I2, I1− I3, ....I1− IL) ∈ C1×(L−1). The entries of −→α represent

the voltages throughout the domain, while those of
−→
β are used to find the voltages on the electrodes

by

Uh = C
−→
β (1.32)

where C is the L× (L− 1) matrix

C =



1 1 1 . . . 1

−1 0 0 . . . 0

0 −1 0 . . . 0

. . .

0 0 0 . . . −1


(1.33)

i. The entries of the block matrix B are determined as follows:

For 1 ≤ k, j ≤ N. In this case uh 6= 0, Uh = 0, v 6= 0, but V = 0. The sesquilinear form

can be simplified to

Bs((u
h, Uh), (v, V )) :=

∫
Ω

σ∇uh · ∇v̄dx+
L∑
l=1

1

zl

∫
el
uhv̄dS = 0. (1.34)

Thus, the (k, j) entry of the block matrix B becomes,

Bkj =

∫
Ω

σ∇φk · ∇φjdx+
L∑
l=1

1

zl

∫
el

φkφjdS. (1.35)

ii. The entries of the block matrix C are determined as follows:

For 1 ≤ k ≤ N,N+1 ≤ j ≤ N+ (L−1). In this case uh 6= 0, Uh = 0, v = 0, and V 6= 0.

The sesquilinear form simplifies to

Bs((u
h, 0), (0, V )) := −

L∑
l=1

1

zl

∫
el

uhV̄lds = I1 − Ij+1. (1.36)
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Therefore, entries of matrix C become,

Ckj = −
[

1

zl

∫
el

ϕk(
−→n j)ldS

]
. (1.37)

iii. The entries of the block matrix C̃ are determined as follows:

For N ≤ k ≤ N + (L − 1),1 ≤ j ≤ N. Here uh = 0, Uh 6= 0, v 6= 0, V = 0. The

expression for sesquilinear is

Bs((0, U
h), (v, 0)) := −

L∑
l=1

1

zl

∫
el

Uhv̄lds = 0. (1.38)

Thus the kjth entry of the C̃ is

C̃ = −
[ L∑
l=1

∫
el

ϕjds−
1

zl + 1

∫
ej+1

ϕj+1ds

]
. (1.39)

iv . The entries of the block matrix D are determined as follows:

For N ≤ k, j ≤ N + (L− 1). Here uh = 0, Uh 6= 0, v = 0, V 6= 0 The sequilinear form is

given by

Bs((0, U
h), (0, V )) :=

L∑
l=1

1

zl

∫
el

UhV̄lds = I1 − Ij+1. (1.40)

Thus, the entries of matrix D are given by

Dkj =


|e1|
z1

+
|ej+1|
zj+1

, j = k −N

|e1|
z1
, j 6= k −N

(1.41)

Solving (2.56) gives us the coefficients β(k−N) required for the voltages Uh on the electrodes.
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1.4 Literature Review

1.4.1 Calderón’s Problem

The inverse conductivity problem was first posed by Calderón [35] in 1980 in the theoretical

form for dimensions 2 and higher. In this paper he posed the question of whether the conductivity

distribution σ of a domain could be uniquely determined from the knowledge of of the quadratic

form of the DN map Qσ, also known as power map, where Qσ is defined by

Qσ(φ) =

∫
Ω

(σ∇u) · ∇udx (1.42)

and to calculate σ in terms of Qσ, if σ can be determined by Qσ. This problem came to be known

as Calderón’s problem. In his paper he proved the injectivity of the Fréchet differential of the

linearized problem,

dQ(φ)|σ =

∫
Ω

δ|∇u|2dx, (1.43)

by assuming σ(x) = 1+δ(x), i.e., the conductivity is a small perturbation from a constant through-

out the domain. This is equivalent to proving the the injectivity of the DN map under a linearized

assumption.

Most importantly, Calderón’s paper describes a set of complex exponential solutions to Laplace’s

equation,

u1(x) = eπi(z·x)+π(a·x) u2(x) = eπi(z·x)−π(a·x) (1.44)

where a and z are vectors in R2 such that |a| = |z| and a·z = 0. These solutions grow exponentially

in some directions and decay exponetially in others. They are also known as Complex Geometrical

Optics (CGO) solutions. Calderón uses CGO solutions to show that if (1.43) vanishes for all

harmonic u, then δ = 0 and dQ(φ)|σ=1 is injective. In addition to this, Calderón provides an

explicit method to approximate σ under the linearized assumption. This involves finding a formula

for the approximate Fourier transform of δ and then applying an Inverse Fourier transform. This

seminal paper however does not fully answer the question of whether DN map is injective or not.
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1.4.2 Further developments on inverse conductivity problem

This seminal paper of Calderón opened doors for many more years of further work on the

existence and uniqueness of solutions to inverse conductivity problem.

In 1984, R. Kohn and M. Vogelius proved the following [90]: If Ω ∈ C∞ is bounded and if

σ ∈ L∞(Ω̄), and σ > 0 in Ω̄, with σ ∈ C∞ in some neighbourhood of ∂Ω, then the boundary

values of conductivity σ could be uniquely determined in dimensions n ≥ 2, from the knowledge

of DN map Λσ. In the following year, the same authors extended the results to piecewise real-

analytic conductivities. They also proved that the interior values of σ can be determined in the

case of layered structure with σ ∈ C3(Ω̄) [91]. J. Sylvester and G. Uhlmann gave an explicit

reconstruction for σ on ∂Ω, when σ ∈ C∞(Ω̄) [112]

In the years 1986 and 1987, Sylvester and Uhlmann provided the first global uniqueness the-

orems showing the injectivity of the DN map. They proved the uniqueness for 2-D near constant

isotropic conductivities when ∂Ω ∈ C∞ [113]. The uniqueness results for the general isotropic

σ ∈ C∞ in dimensions n ≥ 3 followed later in [114]. In 1988, A. Nachman, J. Sylvester and G.

Uhlmann extended the results in dimesions n ≥ 3 to σ ∈ C1,1(Ω̄) [100]. Later, Nachman used

CGO solutions in [114] to provide the first general reconstruction procedure [101] and relaxed the

boundary smoothness to ∂Ω ∈ C1,1. These were extended by Alessandrini to Lipschitz domains,

which also included anisotropic conductivities [6]

Nachman in 1996, proved the injectivity of 2-D isotropic C2 conductivities in Lipschitz do-

mains [102]. In this seminal work, CGO solutions are constructed to a Schrödinger equation that is

obtained by transforming the conductivity equation. Then nonlinear Fourier analysis is performed

for the inverse conductivity problem. Furthermore, Brown and Uhlmann proved the uniqueness

results for σ ∈ C1(Ω) [33] and extended to non-smooth conductivities σ ∈ L∞(Ω). The same

reult was obtained by a different approach by Astala and Päivärinta based on CGO solutions [11].
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1.4.3 Reconstruction algorithms and computation

The problem of inverse conductivity was motivated by applications to real world situations.

The working computational algorithms for the engineering and biomedical applications are con-

tinuously sought by researchers. The goal of a reconstruction algorithm is to obtain an approxima-

tion to the conductivity σ on the interior of an object using finite number of finite precision noisy

boundary measurements. The numerical methods for the inverse conductivity problem fall into

five categories.

1. Linearization technique: In these techniques,the boundary data depends linearly on conduc-

tivity, since conductivity is assumed to be a small perturbation from a constant or known dis-

tribution. The linearized problem is solved using a regularized inversion method. Calderón

provided such a method in 1980 [35]. Computational work based on Calderón’s method

applied to simulated data can be found in [39], and applied to experimental data can be

found in [21, 29], and to elliptical domains in [76]. Noniterative Newton methods, based on

one step of a Newton-Raphson method, also known as the NOSER algorithm can be found

in [40]. Extensions of NOSER and other one-step Newton methods can be found in [23].

2. Iterative Algorithms: One of the popular methods of iterative algorithm involves reformu-

lating inverse problem as regularized least-squares minimization problem [26, 51, 53]. Here

a weighted least-squares error functional F (σ) is formed, with the assumption that σ min-

imizes F and hence fits boundary measurements in a least squares sense. The problem

is ill-posed and therefore regularized with a Tikhonov type regularization and then solved

using multiple iterations of a quasi-Newton method. Algorithms that are based on the min-

imization of a regularized equation-error functional can be found in [78]. Although these

methods provide accurate conductivity, speedy convergence is not guaranteed.

3. Layer Stripping: These methods are based on boundary voltages corresponding to the highest

spatial frequency being used to find the conductivity distribution within some thin layer of

the boundary. This is used to synthesize the voltages on subsurface close to boundary, by
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solving a Riccati type nonlinear differential equation. It can be assumed that the outermost

layer is being stripped off the domain, and conductivity of a second thin layer near this

new boundary is computed. This process repeats inductively, and the conductivity is found

layer by layer from outside in. This method can be found in [90]. The advantages of this

method are that it is computationally fast and provides good approximations for boundary

conductivities. However, it is highly unstable in the presence of noise and hence unsuitable

for experimental data.

4. Statistical Inversion Method: Statistical Inversion schemes reformulate the inverse problem

into a type of statistical inference, where all the unknowns of the problem are modeled as

random variables. Then the posterior probability density distribution of the unknown vari-

ables are estimated, from which the estimates of the conductivity can be computed along

with associated a posterior uncertainities.Estimates for conductivity can be found by com-

puting the conditional expectation. This is achieved by Markov Chain Monte Carlo sampling

method and can be found in [90]. The Bayesian algorithms are computationally expensive.

5. D-bar Methods: Regularized D-bar methods are both nonlinear and direct and allow for a

true regularization strategy. This makes them noise robust and hence suitable for real-world

data. The D-bar methods are a family of methods based on Complex Geometric Optics

solution and the method described here is an implementation of the reconstruction method

in [102]. The first numerical implementation was done by S. Siltanen, J.L. Mueller, and D.

Isaacson in [83], where the authors applied this method to high and low contrast C∞ radially

symmetric conductivities. Later in 2002, the same authors applied the algorithm to noise free

simulated chest phantom with elliptical organ boundaries. There has been extensive studies

done on this method and it is now used on clinical data.

The outline of D-bar method is as follows. Consider the change of variables

q(z) =
4
√
σ(z)√
σ(z)

, ũ(z) =
√
σ(z)u(z). (1.45)
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This transforms the generalized Laplace equation (1.1) to the Schrödinger equation

−4ũ(z) + q(z)ũ(z) = 0 in Ω. (1.46)

We assume σ ≡ 1 near the boundary. Then the Schrödinger potential q satisfies q = 0 in the

same neighbourhood. Let k be a complex frequency parameter, k = k1 + ik2. Then we wish to

find the CGO solutions Ψ(z, k) to the Schrödinger equation

−4Ψ(z, k) + q(z)Ψ(z, k) = 0 in R2 (1.47)

subject to the asymptotic condition

e−ikzΨ(z, k)− 1 ∈ W 1,p̃(R2), k ∈ C \ {0} p̃ > 2. (1.48)

That is, Ψ(z, k) is asymptotic to eikz as |z| → ∞. Now, define a bounded function µ(z, k) by

µ(z, k) := e−ikzΨ(z, k). (1.49)

It is clear that µ(z, k) − 1 ∈ W 1,p̃(R2). From the Sobolev embedding theorem, µ ∈ L∞(R2) ∩

C(R2) and µ is asymptotic to 1 as |z| → ∞.

The D-bar operators are defined by

∂̄z =
∂

∂z̄
:=

1

2

(
∂

∂x
+ i

∂

∂y

)
∂z =

∂

∂z
:=

1

2

(
∂

∂x
− i ∂

∂y

)
.

It is clear from the definition of D-bar operator that

4 =
∂2

∂x2
+

∂2

∂y2
=

(
∂

∂x
+ i

∂

∂y

)(
∂

∂x
− i ∂

∂y

)
= 4∂̄z∂z. (1.50)
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Using (1.50) and Ψ(z, k) = eikzµ(z, k) in (1.47), we get,

q(z)eikzµ(z, k) = 4Ψ(z, k)

= 4∂∂̄(eikzµ(z, k))

= 4∂(eikz∂̄µ(z, k))

= 4(ikeikz∂̄µ(z, k) + eikz∂∂̄µ(z, k)

= eikz(4ik∂̄ +4)µ(z, k).

Thus we have,

(−4−4ik∂̄ + q(z))µ(z, k) = 0. (1.51)

Define Faddeev Green’s function to be [56]

gk(z) :=
1

(2π)2

∫
R2

eiz·ξ

|ξ|2 + 2k(ξ1 + iξ2)
dξ, (1.52)

where ξ = (ξ1, ξ2) ∈ R2 and z · ξ = xξ1 + yξ2. It is clear from standard PDE theory that (1.52) is

a fundamental solution to (1.51). Defining the Fourier transform F and its inverse F−1 by

(Ff)(ξ) = f̂(ξ) :=

∫
R2

e−iz·ξf(z)dz (F−1f̂)(z) = f(z) :=

∫
R2

eiz·ξf̂(ξ)dξ,

it is now straightforward to see that a solution to the Lippmann-Schwinger type integral equation

µ− 1 = −gk ∗ (qµ) (1.53)

is a solution to (1.51). The conductivity can be recovered from µ(z, k), by substituting q(z) = 4
√
σ√
σ

and taking k → 0 in (1.51). We get

4 µ(z, 0) =
4
√
σ(z)√
σ(z)

µ(z, 0). (1.54)
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Using asymptotic condition µ(z, 0)− 1 ∈ W 1,p̃(R2) and σ(z) ≡ 1 on R2\Ω, we get,

lim
k→0

µ(z, k) =
√
σ(z), (1.55)

and

µ(z, 0) =
√
σ(z) (1.56)

is a solution to (1.54).

The steps of the D-bar algorithm are as follows:

Step 1: Consider the input of noisy EIT data Λσ and the noise amplitude δ > 0

Step 2. Solve the boundary integral equation

Ψ(z, k)|∂Ω = eikz|∂Ω −
∫
∂Ω

Gk(z − ζ)(Λσ − Λ1)(Ψ(ζ, k))ds(ζ)

to get Ψ|∂Ω.

Step 3. Using Ψ|∂Ω compute the scattering transform t(k) by

t(k) =

∫
∂Ω

eik̄z̄(Λσ − Λ1)Ψ(z, k)ds(z)

Step 4. Use the scattering transform t(k) to solve the Fredholm integral equation

µ(z, k) = 1 +
1

4π2

∫
R2

t(k′)

(k − k′)k′
e−i(k

′z+k̄′z̄)µ(z, k′)dk′ (1.57)

for µ(z, k)

Step 5: From µ(z, k) compute σ(z) using (1.56)

The details of D-bar method, both theoretical and numerical implementation, can be found

in [97].
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Chapter 2

Anisotropic inverse conductivity problem

2.1 Introduction
The inverse conductivity problem, that is, given the boundary measurements,

Λσ : u|∂Ω → σ
∂u

∂ν

∣∣∣∣
∂Ω

(2.1)

to determine the interior conductivity from the generalized Laplace equation,

∇ · (σ∇u) = 0 (2.2)

thus far, has been studied extensively under the assumption that the conductivity σ is isotropic.

However, physical properties such as conductivity are dependent on the direction of measurement

and hence are anisotropic. The electrical conductivity of certain human tissues such as bones,

muscles and brain matter is highly anisotrpoic in nature. The most striking case is that of skeletal

muscle for which the longitudinal conductivity is 15 times more than that of the transversal. Below

is a table of electrical conductivities perpendicular and parallel to the pial surface, that is the surface

representing the boundary between grey matter and cerebrospinal fluid of neocortex and subcortical

matter from pediatric epilepsy surgery patients.

Modeling conductivity as anisotropic may also provide a way to account for out-of-plane cur-

rents in either 2-D or 3-D models. We conjecture it may also provide a way to account for inaccu-

racies in domain shape such as the changes in chest shape caused by breathing. Thus, the study of

anisotropic inverse conductivity problem is of practical importance.

The Table 2.1 below emphasizes the difference in the conductivity values that are perpendicular

and parallel to the directions of the surface representing the boundary between grey matter and
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cerebrospinal fluid, the pial surface of neocortex for various clinical variables. The data is obtained

from pediatric epilepsy surgery patients.

Table 2.1: Conductivities in perpendicular and parallel directions on the pial surface of neocortex. (Source:
[4])

Clinical variable Conductivity perpendicular (mS/cm) Conductivity parallel(ms/cm)

Lateral position 0.077 0.701
Gender 0.389 0.899
Seizure onset 0.788 0.986
Epilepsy Duration 0.788 0.161
Seizure frequency 0.573 0.796

2.2 Mathematical model of the anisotropic EIT problem
The mathematical model for an anisotropic conductivity EIT problem is as follows: If Ω ⊂ R2

is a simply connected domain, the conductivity is σ = [σjk] where j, k = 1, 2, is a symmetric,

positive definite matrix function, and φ ∈ H1/2(∂Ω) is the voltage on the boundary. We wish to

recover the conductivity σ from the generalized Laplace equation,

∇ · σ∇u =
2∑

j,k=1

∂

∂xj
(σjk(x)

∂

∂xk
u) = 0 in Ω (2.3)

u|∂Ω = φ (2.4)

When σ and ∂Ω are smooth, the Dirichlet to Neumann map is well defined and given by

Λσ(φ) = Bu|∂Ω, (2.5)

where

Bu = ν · σ∇u =
2∑

j,k=1

σjk(x, y)
∂u

∂xj
νk|∂Ω, (2.6)
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u ∈ H1(Ω) is a solution of (2.3), and ν is the unit outer normal vector of ∂Ω. Using the divergence

theorem,

Qσ,Ω(φ) :=

∫
Ω

2∑
j,k=1

σjk(x)
∂u

∂xj
∂u

∂xk
dx =

∫
∂Ω

Λσ(φ)φdS (2.7)

where dS denotes the arc length on ∂Ω. The quantityQσ,Ω represents the power needed to maintain

the potential φ on ∂Ω. By the symmetry of Λσ, having a knowledge of Qσ,Ω is equivalent to

knowing Λσ.

2.3 Difficulties of anisotropic inverse conductivity problem

2.3.1 History of the problem

The anisotropic inverse conductivity problem was first studied by Kohn and Vogelius in 1983

[91]. In this paper they proved that it is impossible to recover the full matrix σij from the boundary

value measurements. Ever since, the nonuniqueness of the anisotropic problem has been well

established [112].

The non-uniqueness of the anisotropy problem can be explained as follows: [73]

If F : Ω → Ω, F (x) = (F 1(x), F 2(x)) is a diffeomorphism with F |∂Ω = Id, then by making

the change of variables y = F (x) and setting v = u ◦ F−1 in the first integral in (2.7), we get

∇ · (F∗σ)∇v = 0 in Ω, (2.8)

where

(F∗σ)jk(y) =
1

det[∂F j

∂xk
]

2∑
p,q=1

∂F j

∂xp
(x)

∂F k

∂xq
(x)σpq(x)

∣∣∣∣∣
x=F−1(y)

(2.9)

That is,

F∗σ(y) =
1

det[∂F j

∂xk
]
DF (x)σ(x)DF (x)T

∣∣∣∣∣
x=F−1(y)

(2.10)

is the push forward conductivity of σ by F . Since F is the identity on ∂Ω, from (2.7), we get,

ΛF∗σ = Λσ (2.11)
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Therefore, from the change of coordinates, it is evident that a large class of conductivities results

in the same electrical measurements at the boundary [73]

2.3.2 Further developments in anisotropic inverse conductivity problem

Despite the issue of nonuniqueness in the anisotropic inverse conductivity problem, researchers

world-wide continue to work on it due to its real world applications. Lionheart in 1997 proved the

uniqueness result under two different hypothesis. The first of these results relies on the conduc-

tivity being determined by boundary measurements up to a diffeomorphism fixing points on the

boundary, which has been shown for analytic conductivities to be a constant. The apparatus of G-

structures is then used to show that the conformal mapping of a Riemannian manifold that fixes all

the points on the boundary must be identity. The second approach is an extension to the piecewise

analytic conductivity [96]. In the year 2001, Alessandrini et al proved the uniqueness and stability

results for the anisotropic conductivity of the form A = A(x, a(x)), where a(x) is an unknown

scalar function [8]. In the same paper, the uniqueness result for the interior conductivities of A

were also proved by piecewise analytic perturbations of the scalar term a.

There have been a number of theoretical developments on this problem. Lee and Uhlmann, in

the year 1984, studied this problem extensively, giving a symbol of the DN map and constructing

the diffeomorphism for anisotropic problem [95]. In 2004, Astala et al studied the problem for

σ ∈ L∞ in bounded and unbounded domains and the results were applied in the case when only

partial data on the boundary were known [11]. In the year 2008, Takuwa et al constructed complex

geometrical optics solutions with general phase functions for the second order elliptic equation in

two dimensions [115].

In the year 2011, Abascal et al [1] showed numericaly that the uniqueness can be restored by

providing information about diffeomorphism. In this paper they were able to show the uniqueness

results numerically for two constraints. First, having the knowledge of one eigenvalue and multiple

scalar of a general tensor. In the field of medical imaging this can correspond to having a priori

knowledge from MRI about the eigenvectors , even when eigenvalues are unknown. This opens

25



up a new door of solving the anisotropic EIT problem in conjuction with other imaging modalities

such as MRI or ultrasound.

In 2014 Hamilton et al proposed a reconstruction method for the anisotropic problem [76]. In

this paper, the anisotropic DN map is first transformed into anisotropic CGO traces, from which

Beltrami scattering data is obtained. This is then used to obtain Schrödinger scattering data, which

transforms the problem in to isotropic inverse conductivity problem for which numerical solutions

are readily available.

2.4 Injectivity for the linearized anisotropic inverse conductiv-

ity problem based on Calderón’s method
Let Ω ⊂ R2 be a simply connected domain with Lipschitz boundary ∂Ω, and conductivity

σ =
(
σjk
)
j,k=1,2

is a symmetric positive definite matrix function. Consider the second order

differential elliptic operator

Lσ· = ∇ · (σ∇·) (2.12)

acting on functions of H1(Ω) (in the weak sense). The quadratic form Qσ,Ω(φ), where the function

φ ∈ H1/2(∂Ω) is the voltage on the boundary is given by

Qσ,Ω(φ) :=

∫
Ω

2∑
j,k=1

σjk(x)
∂u

∂xj
∂u

∂xk
dx =

∫
∂Ω

Λσ(φ)φdS. (2.13)

The problem of anisotropic EIT is to determine whether σ is uniquely determined by the

quadratic form Qσ,Ω and if it is so, then to calculate σ in terms of Qσ,Ω. In order to determine

conductivity σ, we impose the following conditions on σ.

i. The conductivity σ is a positive definite matrix, i.e., there exists a universal constant λ ∈

(0, 1) such that

λ|ξ|2 ≤
2∑

j,k=1

σjk(x)ξjξk ≤ λ−1|ξ|2, for all x ∈ Ω and ξ ∈ R2.
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ii. The conductivity is assumed to be of the form σ = a(x)A0, where a(x) is a scalar function

to be determined and A0 is the known constant 2× 2 positive definite anisotropic tensor.

Let us introduce the norms in the space of σ and in the space of quadratic forms Qσ ≡ Qσ,Ω(φ)

as follows:

‖φ‖2 :=

∫
Ω

|∇u|2dx, (2.14)

where u ∈ H1(Ω) is a solution of the following constant second order elliptic equation

∇ · (A0∇u) = 0 in Ω, with u|∂Ω = φ on ∂Ω, (2.15)

and

‖Qσ‖ = sup
‖φ‖≤1

|Qσ(φ)| . (2.16)

Analyticity of Φ in the case that follow from the argument outlined below. Here Φ is given by

Φ : σ → Qσ (2.17)

σ is a perturbation from A0 given by σ := A = A0 + δ(x)A0. Let u be the solution to the PDE

LA(u) = ∇ · (A∇u) = 0; u|dΩ = φ. (2.18)

Let w = u+ v , where LA0u = 0, u|dΩ = φ. Then,

LA(w) = LA0+δ(x)A0(u+ v) = LA0v + LδA0v + LδA0u = 0, (2.19)

and v|∂Ω = 0.

Lemma 1. The operator LA0 has a bounded inverse operator G and v has the following H1 bound

‖v‖H1(Ω) ≤
‖G‖‖δ‖∞‖A0‖‖φ‖
1− ‖G‖‖δ‖∞‖A0‖

, (2.20)

27



where ‖G‖ := ‖G‖L(H−1;H1) denotes the operator norm from H−1 to H1, ‖A0‖ stands for the

Frobenius norm of the constant matrix A0, and ‖φ‖ is given by (2.14).

Proof. Since LA0u = 0 , u|∂Ω = φ has a unique solution u, the operator LA0 has a bounded inverse

G.

Then from (2.19) we get,

G (LA0v + LδA0v + LδA0u) = 0. (2.21)

That is

(I +GLδA0) v = −GLδA0u. (2.22)

We note that

‖LδA0w‖H−1(Ω) = sup
ψ∈H1

0 (Ω)

|
∫

Ω
∇ · [(δ(x)A0)∇w]ψdx|
‖ψ‖H1

0 (Ω)

, (2.23)

and

∣∣∣ ∫
Ω

∇ · [(δ(x)A0)∇w]ψdx
∣∣∣ =
∣∣∣ ∫

Ω

∇ψ · [(δ(x)A0)∇w]dx
∣∣∣

≤‖δ(x)A0‖L∞(Ω)‖∇w‖L2(Ω)‖ψ‖H1
0 (Ω). (2.24)

Thus, from (2.23) and (2.24), we get

‖LδA0w‖H−1(Ω) ≤ ‖δ(x)A0‖L∞(Ω)‖∇w‖L2(Ω). (2.25)

Next, consider the operator norm

‖GLδA0‖L(H1;H1) = sup
w 6=0

‖GLδA0w‖H1(Ω)

‖w‖H1(Ω)

≤
‖G‖L(H−1;H1)‖Lδ(x)A0w‖H−1(Ω)

‖w‖H1(Ω)

, (2.26)

where ‖ · ‖L(X;Y ) stands for the operator norm from two Banach spaces X to Y . That is,
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‖GLδA0‖L(H1;H1) ≤ ‖G‖L(H−1;H1)‖δA0‖L∞(Ω) (2.27)

When ‖δ(x)A0‖L∞(Ω) <
1

‖G‖L(H−1;H1)

, the Neumann series

[
∞∑
j=0

(−1)j(GLδA0)
j

]
(GLδA0u)

converges, and from (2.22), then one has

v = −

[
∞∑
j=0

(−1)j(GLδA0)
j

]
(GLδA0u). (2.28)

It is easy to see that

‖v +GLδA0v‖H1(Ω) ≥‖v‖H1(Ω) − ‖GLδA0v‖H1(Ω)

≥‖v‖H1(Ω)

(
1− ‖G‖L(H−1;H1)‖δ(x)A0‖L∞(Ω)

)
. (2.29)

Finally, by using relations (2.21) and (2.25),

(
1− ‖G‖L(H−1;H1)‖δ(x)A0‖L∞(Ω)

)
‖v‖H1(Ω) ≤ ‖v +G(−LδA0u− LA0v)‖H1(Ω)

= ‖v −GLδA0u− v‖H1(Ω)

≤ ‖G‖L(H−1;H1)‖LδA0u‖H−1(Ω)

= ‖G‖L(H−1;H1)‖δ(x)A0‖L∞(Ω)‖φ‖,

and substituting (2.29) into the above inequality results in

‖v‖H1(Ω) ≤
‖G‖L(H−1;H1)‖δ(x)A0‖L∞(Ω)‖φ‖
1− ‖G‖L(H−1;H1)‖δ(x)A0‖L∞(Ω)

. (2.30)

Therefore, the above calculations allow us to conclude that the mapping Φ (2.17) is analytic at A0,

which completes the proof.
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Next, linearize the map QA(φ) about a positive definite matrix A = A0 to get

QA0+δ(x)A0(φ) =

∫
Ω

[(A0 + δ(x)A0)∇w] · ∇wdx

=

∫
Ω

[(A0 + δ(x)A0)∇u] · ∇udx+ 2

∫
Ω

(δ(x)A0∇u) · ∇vdx

+

∫
Ω

[(A0 + δ(x)A0)∇v] · ∇vdx, (2.31)

where we have used that ∇ · (A0∇u) = 0 in Ω. We now show that
∫

Ω
(δ(x)A0∇u) · ∇vdx and∫

Ω
[(A0 + δ(x)A0)∇v] · ∇vdx are of o(‖δ‖). It is easy to see that

∣∣∣∣∫
Ω

(δ(x)A0)∇u · ∇vdx
∣∣∣∣ ≤ CA0‖δ‖L∞(Ω)‖φ‖‖v‖H1(Ω), (2.32)

and

∣∣∣∣∫
Ω

[(A0 + δ(x)A0)∇v] · ∇vdx
∣∣∣∣ ≤ CA0(1 + ‖δ‖L∞(Ω))‖v‖2

H1(Ω), (2.33)

for some constant CA0 > 0 independent of δ. By inserting (2.30) into (2.32), (2.33) and taking

‖δ‖L∞(Ω) sufficiently small, one obtains the desired result. Thus, the Fréchet derivative of QA(φ)

at A(x) = A0 is given by

dQA(φ)
∣∣∣
A=A0

=

∫
Ω

((δ(x)A0)∇u) · ∇udx, (2.34)

where u ∈ H1(Ω) is a solution of∇ · (A0∇u) = 0 in Ω with u = φ on ∂Ω.

Theorem 1. The Fréchet derivative dQA(φ)
∣∣∣
A=A0

is injective.

In order to prove the above theorem, we utilize the famous quasi-conformal map in the plane,

which can be found in [11, 115].

Lemma 2 (Quasi-conformal map). Given any 2× 2 matrix A, there exists a quasi-conformal map

Φ(A) : C→ C such that Φ(A) ∈ W 1,p(C;C) for some p > 2 with
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Φ(A)(z) = z +O

(
1

z

)
as z →∞,

with

Φ(A)
∗ A(z) =

√
det(A((Φ(A))−1(z)))I2,

where I2 is the 2× 2 identity matrix and

Φ(A)
∗ A(y) =

∇(Φ(A))(x)A(x)∇(Φ(A))T (x)

det(∇(Φ(A))(x))

∣∣∣
x=(Φ(A))−1(y)

, (2.35)

with

(Φ(A)
∗ A)i`(y) :=

1

det(∇(Φ(A)))

2∑
j,k=1

∂xj(Φ
(A))i(x)∂xk(Φ(A))`(x)Ajk(x)

∣∣∣
x=(Φ(A))−1(y)

.

Furthermore, Φ(A) solves the following Beltrami equation

∂zΦ
(A) = µA∂zΦ

(A),

where

µA =
A22 − A11 − 2iA12

A11 + A22 + 2
√

detA
. (2.36)

Proof. In order to prove that dQA(φ)
∣∣
A=A0

is injective, we only need to show that

∫
Ω

(δ(x)A0∇u) · ∇u dx = 0 implies that δ ≡ 0,

where u ∈ H1(Ω) is a solution of LA0u = 0 in Ω with u = φ on ∂Ω. On the other hand, since the

last integral in (2.34) vanishes for all such u, then it is equivalent to prove

∫
Ω

((δ(x)A0)∇u1) · ∇u2 dx = 0, (2.37)
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where u1, u2 ∈ H1(Ω) are solutions of LA0u1 = LA0u2 = 0 in Ω. Inspired by [35], we want to

find special exponential solutions to achieve our goal.

From Lemma 2, given an anisotropic conductivity A(x), it is known that there exists a C1

bijective map Φ(A) : R2 → R2 with y = Φ(A)(x) such that

Φ(A)
∗ A =

(
detA ◦ (Φ(A))−1

)1/2
I2, (2.38)

is equivalent to a scalar conductivity. Moreover, Φ(A) solves the following Beltrami equation in the

complex plane C,

∂Φ(A) = µA∂Φ(A),

where µA is given by (2.36) and

∂ =
1

2
(∂x1 + i∂x2), ∂ =

1

2
(∂x1 − i∂x2).

Next, from the representation (2.38) and (2.35), we know that there exists a quasi-conformal

map Φ(A0) such that

Ã0 :=Φ(A0)
∗ A0 =

∇Φ(A0)(x)A0∇(Φ(A0))T (x)

det(∇Φ(A0)(x))

∣∣∣
x=(Φ(A0))−1(y)

=
√

detA0I2 (2.39)

with detA0 > 0. Note that δ = δ(x) is a scalar function, then by using the formula (2.35) and

(2.39), one can see that

Φ(A0)
∗ (δ(x)A0) =

∇Φ(A0)(x) (δ(x)A0)∇(Φ(A0))T (x)

det(∇Φ(A0)(x))

∣∣∣
x=(Φ(A0))−1(y)

=δ(x)|x=(Φ(A0))−1(y)

√
detA0I2.

Let Φ ≡ Φ(A0), Ω̃ := Φ(Ω) and ũj(y) := uj ◦ (Φ−1(y) for j = 1, 2, by using (2.37) and change

of variables y = Φ(x) via the quasi-conformal map, then we obtain that
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∫
Ω̃

Φ∗(δ(x)A0)∇yũ1 · ∇yũ2dy =

∫
Ω

((δ(x)A0)∇u1) · ∇u2dx = 0, (2.40)

where ũj are solutions of

LÃ0
ũ1 = LÃ0

ũ2 = 0 in Ω̃. (2.41)

As a matter of fact, (2.41) is equivalent to the Laplace equation ∆yũj = 0 in Ω̃ for j = 1, 2

because Ã0 =
√

detA0I2 with detA0 being a positive constant. Based on Calderón’s constructions

[?], we can consider two special exponential solutions as follows. Let ξ ∈ R2 be an arbitrary vector

and a ∈ R2 such that ξ · a = 0 and |ξ| = |a|, then one can choose

ũ1(y) := eπi(ξ·y)+π(a·y) and ũ2(y) := eπi(ξ·y)−π(a·y), (2.42)

and it is easy to check that ũ1 and ũ2 are solutions of the Laplace equation. By plugging these

exponential solutions (2.42) into (2.40), one has

2π|ξ|2
∫

Ω̃

(
δ ◦ Φ−1(y)

)√
detA0 e

2πξ·ydy = 0, for any ξ ∈ R2,

which implies that δ = 0, due to the positivity of detA0. This accomplishes the proof.

It is worth mentioning that

i. Due to the remarkable quasi-conformal map in the plane, one can reduce the anisotropic con-

ductivity equation into an isotropic one. This method helps us to develop the reconstruction

algorithm for the anisotropic conductivity equation proposed by Calderón.

ii. The method fails when the space dimension n ≥ 3, because there are no suitable CGO

solutions for the anisotropic case.
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2.5 Bayesian formulation of the anisotropic EIT problem
Due to the non-uniqueness of the anisotropic inverse conductivity problem, we need to include

additional information in the reconstruction algorithm, that is, we need a prior. Our prior is the

knowledge of the tensor of anisotropy. This can be easily obtined for the problem with the help

of another imaging modality such as DT-MRI. With this prior knowledge we want to explore the

Bayesian framework. The Bayesian framework provides a way to include prior information in the

penalty term with a bit more flexibilty than traditional least squares regularization and some quan-

tification on the certainity of the chosen conductivity estimation as well as a set of possible solu-

tions. The use of the Bayesian framework has not yet been investigated for the anisotropic problem

in EIT and provides a natural way to incorporate priors, which is essential to obtain uniqueness in

the anisotropic inverse conductivity problem. The application of the Bayesian framework to the

EIT problem in the case of isotropic conductivity is explained in detail in [36].

The Bayesian framework is well suited for imaging problems, since it allows the utilization of

qualitative information about the image to be recovered. In the Bayesian approach the solution to

the imaging problem is a distribution of images as opposed to single image, and it is possible to

analyze the uncertainities due to measurement errors and to explicitly stated beliefs. The Bayesian

solution is a probability density function for the unknown of primary interest, which is built from

the a priori beliefs about the solution and the likelihood, which in turn encodes the information

carried by the available data [37,86]. In the Bayesian approach, randomness of the unknown is not

a property of that is to be recovered, but an expression of the lack of information about it. From this

perspective, the prior is not intended to be representative of the unknown, but rather of our belief

about it without considering the data, which can be either reinforced or contrasted by the data via

the likelihood. Thus, the posterior density is the result of the synthesis of the prior belief and the

information carried by data, and as such reflects the relative strengths of the prior and likelihood.
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2.6 Forward anisotropic EIT problem
To implement the Bayesian approach to the anisotropic EIT problem, we first need to compute

the forward solution. The physical setup for the EIT problem consists of L electrodes attached

on the surface ∂Ω of the body. The electrodes are modeled as surface patches and denoted by

el ∈ ∂Ω. A current Il is injected through each electrode el . The vector I = [I1, I2, ..., IL]T is

a current pattern. The forward problem is to compute u , the electric potential in Ω given by the

generalized Laplace equation

∇ · (σ∇u) =
2∑

j,k=1

∂

∂xj
(σjk(x, y)

∂

∂xk
u) = 0, (x, y) ∈ Ω (2.43)

subject to the boundary conditions

∫
el

2∑
j,k=1

σjk
∂u

∂xj
ds = Il, l = 1, 2, ....L, (2.44)

2∑
j,k=1

σjk
∂u

∂xj
= 0 off

L⋃
l=1

el. (2.45)

and Robin Boundary condition

u+ zl

2∑
j,k=1

σjk
∂u

∂xj
= Ul on el for l = 1, 2, ....L, (2.46)

with the choice of ground being specified by uniqueness condition

L∑
l=1

Ul = 0, (2.47)

and Kirchoff’s law
L∑
l=1

Il = 0. (2.48)

where zl denotes the effective contact impedance between the lth electrode and the skin.
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2.6.1 Variational formulation of the anisotropic EIT

Let φi be piecewise linear shape basis functions defined on a triangular mesh such that φi = 1

at the ith node and zero at the other nodes. Here i = 1, 2, ..., N are the number of vertices in the

mesh. Conductivity and voltage are expressed in terms of φi as

u =
N∑
j=1

ujφj and σ =
N∑
i=1

σiφi. (2.49)

Denoting an electrical potential inside Ω by lowercase u or v, and the vectors of voltages

measured on L electrodes by uppercase letters, for any (v, V ), the variational form of the complete

electrode model is

Bs((u, U), (v, V )) =
L∑
l=1

IlVl (2.50)

where v ∈ H1(Ω), V ∈ RL and the sesquilinear form Bs : H ×H → R is given by

Bs((u, U), (v, V )) =

∫
Ω

σ∇u · ∇v dx dy +
L∑
l=1

1

zl

∫
el

(u− Ul)(v − Vl)dS. (2.51)

2.6.2 Finite Element Formulation of anisotropic EIT

Discretizing the variational problem leads to the Finite Element Formulation. The domain Ω

is discretizied into small tetrahedral elements with N nodes in the mesh. Suppose (u, U) is a

solution to the complete electrode model with skip 0 current patterns, then a finite dimensional

approximation to the voltage distribution inside Ω is given by:

uh(z) =
N∑
k=1

αkφk(z) (2.52)

and on electrodes

Uh(z) =

N+(L−1)∑
k=N+1

β(k−N)~n(k−n), (2.53)
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where discrete approximation is indicated by h and the basis functions for the finite dimensional

spaceH ⊂ H1(Ω) is given by φk, and αk and β(k−N) are the coefficients to be determined. Let

~nj = (1, 0, ..., 0,−1, 0, ...0)T ∈ RL×1 (2.54)

and −1 is in the position of (j − 1) The choice of ~n(k−N) satisfies the condition for ground in

(2.47), since ~n(k−N) in (2.53) results in

Uh(z) =

(
L−1∑
k=1

βk,−β1, ...,−βL−1

)T

(2.55)

In order to implement FEM computationally we need to expand (2.50) using approximating

functions (2.52) and (2.53) with v = φj for j = 1, 2, ...N and V = ~nj for j = N + 1, N +

2, .....N + (L− 1) to get a linear system

A~b = ~f, (2.56)

where
−→
b = (−→α ,

−→
β )T ∈ RN+L−1 with the vector −→α = (α1, α2, ....., αN) and the vector

−→
β =

(β1, β2, .....βL−1), and A ∈ A(N+L−1) is of the form

A =

 B C

C̃ D

 . (2.57)

The right-hand-side vector is given by

−→
f = (0, Ĩ)T , (2.58)

where 0 ∈ R1×N and Ĩ = (I1−I2, I1−I3, ...., I1−IL) ∈ R1×(L−1). The entries of−→α represent the

voltages throughout the domain, while those of
−→
β are used to find the voltages on the electrodes

by
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Uh = C
−→
β (2.59)

where C is the L× (L− 1) matrix, given by

C =



1 1 1 . . . 1

−1 0 0 . . . 0

0 −1 0 . . . 0

. . .

0 0 0 . . . −1


. (2.60)

The entries of the block matrix A are determined as follows:

i. For 1 ≤ k, j ≤ N. In this case uh 6= 0, Uh = 0, v 6= 0, but V = 0. The sesquilinear form

can be simplified to

Bs((u
h, Uh), (v, V )) :=

∫
Ω

σ∇uh · ∇vdx+
L∑
l=1

1

zl

∫
el
uhvdS = 0 (2.61)

Thus, the (k, j)th entry of the block matrix B becomes,

Bkj =

∫
Ω

σ∇φk · ∇φjdx+
L∑
l=1

1

zl

∫
el

φkφjdS. (2.62)

That is

Bkj =
∑

i∈supp(k,j)

Ai

2∑
l=1

2∑
m=1

∂φ
(i)
k

∂xl
σ

(i)
lm

∂φ
(i)
j

∂xm
+

L∑
l=1

1

zl

∫
el

φkφjdS. (2.63)

where supp(i, j) is the support of the edge (i, j), σ(i)
lm is the average of the nodal values σlm

of the kth element and Ai is the area of the ith element in the mesh.

ii. The entries of the block matrix C are determined as follows: For 1 ≤ k ≤ N,N + 1 ≤

j ≤ N + (L − 1). In this case uh 6= 0, Uh = 0, v = 0, and V 6= 0. The sesquilinear form

simplifies to
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Bs((u
h, 0), (0, V )) := −

L∑
l=1

1

zl

∫
el

uhVlds = I1 − Ij+1 (2.64)

Therefore, entries of the matrix C become,

Ckj = −
[

1

zl

∫
el

φk(
−→n j)ldS

]
(2.65)

= −

[
1

zl

∫
el

φkdS −
1

zj + 1

∫
el

φkdS

]
(2.66)

iii. The entries of the block matrix C̃ are determined as follows:

For N ≤ k ≤ N + (L − 1),1 ≤ j ≤ N. Here uh = 0, Uh 6= 0, v 6= 0, V = 0. Thus

Bs((u
h, Uh), (v, 0) is given by

Bs((0, U
h), (v, 0)) = −

L∑
l=1

1

zl

∫
el

UhvldS = 0

Thus the kjth entry of the matrix C̃ is

C̃ = −
[

1

zl

∫
el

φjdS −
1

zl + 1

∫
ej+1

φj+1dS

]
(2.67)

iv. The entries of the block matrix D are determined as follows:

For N ≤ k, j ≤ N + (L− 1). Here uh = 0, Uh 6= 0, v = 0, V 6= 0 The sequilinear form is

given by

Bs((0, U
h), (0, V )) :=

L∑
l=1

1

zl

∫
el

UhVlds = I1 − Ij+1 (2.68)

This the entries of matrix D are given by
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Dkj =


|e1|
z1

+
|ej+1|
zj+1

, j = k −N

|e1|
z1
, j 6= k −N

(2.69)

Solving (2.56) gives us the coefficients β(k−N) required for the voltages Uh on the electrodes.

Shown below are the potentials obtained by implementing the forward code in MATLAB. The

complete electrode model with 32 electrodes is considered for the forward model. We consider a

simple test case here. The adjacent current pattern, that is skip 0 current pattern is applied with

a current of magnitude 1A , which is higher than a physically realistic model. Circular geometry

with a circular inclusion is assumed. The contact impedance is assumed to be 2.4 mili-ohms per

meter. The electrode placement on the surface of the body is shown below.

Figure 2.1: The placement of electrodes on the exterior of a circular domain with a circular inclusion shown
in red. Here the first electrode is placed on the horizontal axis at 0 degrees and the electrodes are counted
counter clockwise. The conductivity is given by σverint inside the circular inclusion and σ1 in the annulus
outside the circular inclusion.

The potential on the electrodes where in the interior the preference for the direction of current is

vertical as opposed to horizontal and with the reversal of the preference for the direction of current

is given below. The background conductivity is both the cases is assumed to be isotropic, given by

σ1 =

 1 0

0 1

 and that inside the circle where vertical direction for the flow of current preferred
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over the horizontal, given by σverint =

 1 0

0 4

 and that of the horizontal direction preference

over that of vertical, given by σhorint =

 4 0

0 1

 are shown below.

Figure 2.2: Left: The potential on the 32 electrodes due to 31 linearly independent current patterns applied
to the electrodes when the conductivity in the circular inclusion is assumed to be σverint . Right: The potential
on the 32 electrodes due to 31 linearly independent current patterns applied to the electrodes when the
conductivity in the circular inclusion is assumed to be σhorint . Each color represents a volatge arising from a
different current pattern.

2.7 Inverse problem
The aim is to compute an approximation for the conductivity distribution inside the body based

on the measured voltages and injected currents. We assume that the conductivity can be diagonal-

ized for every point in the domain. This is consistent with the assumption of our problem that σ is

a symmetric positive definite matrix in Rn. Diagonalization is defined using the eigenvalue decom-

position by an orthonormal transformation as σ = ADAT where A = [a1, a2] is a known matrix

of orthonormal eigenvectors ai and D = diag(d1, d2) is a matrix of real positive eigenvalues. The

nonlinear forward problem can be represented as V = F(D) + ε, where F (D) : RN×2 → RM is

the forward nonlinear operator, V ∈ RM is the measured data, that is voltages on the electrodes
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due to different current patterns and D ∈ RN×2 is the unknown conductivity to be determined.

The noise is the measured data is considered to be ε ∼ N (0, γ2Im)

Abascal et al [1] did a numerical study on the feasibility of the recovery of a piecewise linear

finite element conductivity tensor in anisotropic media with known eigenvectors representing the

directions of anisotropy from complete boundary data. The minimization of the least squares

functional

L(D) =
1

2
‖F(D)−V‖2

2 (2.70)

was done using gradient-based approach to recover the eigenvalues D

In this thesis, we formulate the priors for the unknown conductivity D using our information on

the preferential direction for the flow of current. Additionally, we derive the probability distribution

for the unknown conductivity using these priors and show that this results in genearlized Tikhonov

regularization.

2.7.1 Construction of Priors

Let A : Ω → R2×2 denote a matrix-valued mapping on Ω. For each x ∈ Ω, let A(x) be a

positive semidefinite and symmetric matrix. Let the eigenvalue decomposition of A be given by

A = V∆V T where V = V (x) is n orthonormal matrix and ∆ = ∆(x) = diag(δ1(x), δ2(x)),

where δ1 ≥ 0 and δ2 ≥ 0.

Consider the functionals W1(d1) and W2(d2) to be given by

W1(d1) =

∫
Ω

‖A(x)∇(d1(x))‖2
RNdx (2.71)

and

W2(d2) =

∫
Ω

‖A(x)∇(d2(x))‖2
RNdx (2.72)

By the eigenvalue decomposition, we have ,

A(x)∇d1(x) =
2∑
j=1

(δj(x)vTj (x)∇d1(x))vj(x) (2.73)
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and

A(x)∇d2(x) =
2∑
j=1

(δj(x)vTj (x)∇d2(x))vj(x) (2.74)

Thus, by the orthonormality of V (x), we have

W1(d1) =
2∑
j=1

∫
Ω

|δj(x)vTj (x)∇(dj)|2RNdx (2.75)

and

W2(d1) =
2∑
j=1

∫
Ω

|δj(x)vTj (x)∇(dj)|2RNdx (2.76)

Therefore, W (di) measures the square integral norm of the derivative of di in the directions

vj with weights δj . These functions W (di), therefore, can be used in building prior probability

density of di and d2.

Let us assume that the conductivity that we are interested in recovering has a preference of

vertical direction, that is y-direction over horizontal, that is x-direction. Let us further assume that

the probability density for the diagonal conductivities are of the form

pprior(d1) = exp(β2W1(d1)) (2.77)

and

pprior(d2) = exp(β2W2(d2)) (2.78)

From Bayes’ law, we have

p(V |d1) ∝ p(d1|V )p(d1) (2.79)

and

p(V |d2) ∝ p(d2|V )p(d2) (2.80)

Then, the maximum a posterior density for d1 and d2 is found by minimizing
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‖F(D)−V‖2 + β2W1(d1) (2.81)

and

‖F(D)−V‖2 + β2W2(d2) (2.82)

2.7.2 Numerical implementation

Thus, searching for maximum a posterior (MAP) estimator for d1 and d2 can be seen as solving

an inverse problem using Tikhonov regularization. For a piecewise linear conductivity of the form

σ =
∑N

j=1 σjϕj , the gradient of conductivity ∇σ is a piecewise constant function. In order to

find the MAP estimator, we need to construct the matrix mapping A such that it incorporates the

preference of conductivity in the y-direction over the x-direction. This can done by choosing the

standard orthogonal vectors for the Euclidean space as the choice of orthogonal vectors vk, that is

v1 = (1, 0)T and v2 = (0, 1)T . Then, for each element Ωj , the matrix A(x) will be defined by

A(x)|∂Ωj
= δj1v

j
1(vj1)T + δj2v

j
2(vj2)T (2.83)

To account for the preference of conductivity in y-direction, we make the weight for x-direction

much smaller compared to the weight in y-direction. That is, we let δ1 < 1, and δ2 = 1. We then

solve the (2.81) and (2.82) using Gauss-newton method, which is outlined below

dk+1
i = dki +4dki (2.84)

where

dki = −H−1∇Φ (2.85)

Φ = (‖V − F(D)‖)2 + ‖β2Wi‖2 (2.86)

and H is the Gauss-Newton approximation to the Hessian matrix of Φ. The Hessian is given by

H = −(JTJ + αLTL)−1 [̇J−1(V − F (D)− αLTL(D)] (2.87)
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2.7.3 Computation of the Jacobian

The computation of the Jacobian J from the forward map F(D) is as follows: Let dδσFij be

the directional derivative of the forward operator Fij in the direction of δσ

dδσFij = ∇σFij · δσ (2.88)

Here i represents the various current injection patterns and j represents the voltage on the j th

electrode, due to ith current pattern.

The directional derivative is given by

dδσFij = −
∫

Ω

dr(∇ui) · (δσ∇u∗j) = −
∫

Ω

2∑
l,m=1

∂ui
∂xm

δσlm
∂u∗j
∂xm

(2.89)

The directional derivative is the product of current and measurement, where u is the forward

solution and u∗ is the adjoint forward solution which is obtained by considering the measurement

points as the injection points. The Jacobian with respect to the conductivity coefficients σslm at the

node s is obtained by the substitution of the basis in (2.89) and given by

J = −
∫

Ω

drφs(r)

(
∂ui
∂xm

∂u∗j
∂xm

+ (1− δlm)
∂ui
∂xm

∂u∗j
∂xm

)
(2.90)

= −
∑

k∈supp(φs)

Ak
3

∂ui
∂xm

∂u∗j
∂xm

(2.91)

.

2.7.4 Implementation of the reconstruction algorithm

Implementation of the reconstruction algorithm: In the simulation the conductivity was as-

sumed to prefer y-direction over the x-direction. The conductivity distribution was assumed to be

σ =

 1 0

0 4

 in the interior of the circle used for the forward problem. The voltages on the

45



electrodes were simulated using a 32 electrode placement over the boundary of the domain with

31 current injection patterns.

The reconstructions were done on a coarser mesh with 4217 elements and 3161 nodes. Assum-

ing the weight on diagonal conductivity d1 as δ = 0.1 and on d2 as δ2 = 1, the reconstructions were

performed. The reconstructions of the diagonal conductivity are as shown below in Figure 2.3. It

can be seen from Figure 2.3 that the interior conductivity in the y-direction is higher than the

x-direction.

Figure 2.3: Left: Reconstruction of the diagonal conductivity along the x-axis d1. Right: Reconstruction of
the diagonal conductivity along the y-axis d2. It is clear that d1 is less than that of d2 values.

2.8 Conclusions and Future work
1. The computational Bayesian framework that allows for the priors to incorporate the direc-

tional preference of the conductivity is derived. If the conductivity is assumed to be di-

agonalizable, the reconstructions for the diagonal conductivity is shown possible with the

maximum a posterior estimates.

Future work in this direction is to do an Uncertainty Quantification analysis, which will

require sampling using, for example Gibbs sampling or Randomize-then-Optimize process

[15].
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2. The linearized injectivity of the anisotropic EIT problem can be further developed into a

direct reconstruction algorithm. We can formulate the bilinear form which in turn gives us

the inverse Fourier transform for the isotropic problem. This results in a direct reconstruction

algorithm, which can be implemented on both synthetic data and real data.
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Chapter 3

Impact of structural changes in the reconstruction

using 2-D D-bar algorithm

3.1 Introduction
In thoracic imaging, which is a current research focus of the EIT lab in the Department of

Mathematics at Colorado State University, one promising application is to monitor pulmonary

ventilation and fluid volume changes. Diseases that cause variation in the lung composition can be

monitored by EIT by measuring the lung resistivity changes. Since the lung is the largest organ in

the thorax, the resistivity change can be more accurately measured by EIT. Pulmonary applications

of EIT require a good understanding of what contributes to the measured resistivity changes. It is

often assumed that the measured resistivity change in EIT is caused by actual resistivity change of

a tissue or in some cases the volume change of the vessel. Structural changes such as location of

organs or vessels, or the overall cross-sectional area are rarely considered. Respiratory activity in-

volves a rhythmic movement of the rib cage by as much as 10% of the anterior-posterior dimension.

This results in a movement of the electrodes which violates the assumption of constant geometry.

This tends to introduce artifacts into the reconstructed images which needs to be accounted for in

image interpretation [120].

3.2 Literature Review

3.2.1 Effect of domain shape on reconstruction

Jain et al, in 1997, studied the EIT problem with complex conductivity distributions with non-

circular boundary [6]. They showed that for a homogenous conductivity in an elliptical body with

the axis ratio of 0.73 had an artifact at the center with an error of 20% when image was constructed

assuming the boundary to be circular. The error increased to 37% when the axis ratio was 0.64. A
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Figure 3.1: Change in the overall cross-sectional area during inhalation and exhalation. (Source: [120])

reconstruction algorithm with the same axis ratio as the elliptical boundary reduced the error in the

conductivity values within 0.5% of the actual values. In the year 2005, Kolehmainen et al showed

that an inaccurate model for the boundary causes errors in the reconstruction [90]. The authors

introduced a new algorithm to find deformed image of the original isotropic conductivity based

on the theory of Teichmüller spaces. In 2007, Murphy et al computed the scattering transform on

an ellipse to get static conductivity reconstructions of conductive and insulative targets in a saline

tank using D-bar method [6]. They showed that the spatial artifacts in the images significantly

reduced when the domain was modeled properly. In the year 2009, Murphy and Mueller computed

the scattering transform for the D-bar method on chest-shaped domain [48]. In this paper the chest

shape was approximated by a parametrization of the boundary by a function r(θ) , with the arc

length as dσ =
√
r2 + (r′)2dθ. With this parametrization it was shown that the reconstructions

were improved from circular approximation of the boundary. All of these results illustrates that

using proper shape of the domain increases the robustness of the reconstructions. The next ques-

tion in this direction would be the effect of changes in the size of the boundary, since it is clear that

respiratory activity involves a movement of the rib cage.

3.2.2 Effect of dynamic changes in the boundary on reconstruction

Zhang et al [120] studied the influence of chest expansion during respiration on EIT images

using a two dimensional thorax finite element model. In this paper the effect of electrode movement
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due to chest expansion is modeled. The movement of any point (x, y) at a cross-section of the 3D

throax model was described by the following:

d̄ = M

[
(y − yc)ȳ + L

APD

LD
(x− xc)x̄

]
(3.1)

where (xc, yc) are coordinates of the center of the thorax, d̄ is the displacement, x̄, ȳ unit vectors in

lateral and anterior-posterior (AP) directions. APD is the displacement in the AP direction and LD

is the displacement in the lateral dimesion. The parameter L represents the ratio of the lateral to AP

displacement and M represents fractional expansion in the AP direction. The results showed that

thorax expansion contributed to the measured change in conductivity and accounted for up to 20%

of the reconstructed image amplitude in the broad zone at the center of the image [?]. Zhang et al

showed that with the increase of simulated chest expansion, the percentage contribution of chest

expansion relative to lung resistivity change in the EIT image remained relatively constant [?]

Of interest to the EIT Lab at CSU is the imaging of lung function in human subjects. One of

the important applications of EIT is pulmonary imaging. To diagnose and assess obstructive and

restrictive lung disease, physicians use Pulmonary Function Test (PFT) tests. In a PFT, a person

breathes in to mouthpiece that is connected into an instrument called a spirometer. The spirometer

records the amount and the rate of air that is breathed in and out over a specified time. Often this

requires forced exhalation after a deep breath. Flow Volume loops that are plots of volume vs

flow rate, parametrized by time are computed during PFTs. The Figure 3.2 below shows EIT data

collected during spirometry.

Figure 3.2: The EIT data collected during a spirometry test.
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It is clear that the size of the domain increases significantly during the deep inhalation and ex-

halation, required for PFTs. Thus we intend to study the effect of the change in domain size on the

reconstructions. The current D-bar direct reconstruction algorithm that we are using on the data

from Children’s Hospital Colorado,Aurora, Colorado, assumes the boundary to be static during

reconstructions. However, during the Pulmonary Function Tests, we have consistently observed

that the exterior (chest) changes considerably during the big breath in and exhale part of it. There-

fore, we would like to implement a dynamically changing boundary boundary to our current D-bar

reconstruction algorithm to better the spatial resolution.

3.3 Implementation of dynamic changes in boundary
To implement a dynamically changing boundary in the D-bar, we will use time traces of the

data to inform the D-bar algorithm about the stage in the ventilatory cycle, so that the boundary

changes do not have to rely on videos or additional information. The D-bar Algorithm discussed

in Chapter 1 is repeated here for convenience.

Step 1: Consider the input of noisy EIT data Λσ and the noise amplitude δ > 0

Step 2. Solve the boundary integral equation

Ψ(z, k)|∂Ω = eikz|∂Ω −
∫
∂Ω

Gk(z − ζ)(Λσ − Λ1)(Ψ(ζ, k))ds(ζ)

to get Ψ|∂Ω.

Step 3. Using Ψ|∂Ω compute the scattering transform t(k) by

t(k) =

∫
∂Ω

eik̄z̄(Λσ − Λ1)Ψ(z, k)ds(z)

Step 4. Use the scattering transform t(k) to solve the Fredholm integral equation

µ(z, k) = 1 +
1

4π2

∫
R2

t(k′)

(k − k′)k′
e−i(k

′z+k̄′z̄)µ(z, k′)dk′ (3.2)
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for µ(z, k)

Step 5: From µ(z, k) compute σ(z) using µ(z, 0) =
√

(σ(z)

To implement a dynamically changing boundary in the D-bar algorithm, we use a principle

component analysis (PCA) of a preliminary reconstruction to inform the D-bar algorithm about the

stage in the ventilatory cycle, so that boundary changes do not have to rely on videos or additional

information. A PCA of the voltage data would serve equally well. An example of PCA is shown

in Figure 3.3

Figure 3.3: PCA output during a spirometry test used for identifying the key time points for the implemen-
tation of the dynamically changing boundary. TLC on the plot corresponds to the maximum inhalation and
EFE corresponds to maximum exhalation.

The percentage of change in the outer boundary between a normal exhale and maximal inhale

was taken to be 12.5% and between a maximum inhale and maximum exhale was found to be

4% of the boundary measured. This was estimated by repeatedly measuring on a healthy subject

during maximum inhale and exhale. The boundary corresponding to the first frame was data was

estimated by a flexible ruler. These data points was then scaled to a maximum radius of 1 and then

used to construct a Fourier series approximation to the boundary function r(θ)

r(θ) = a0 +
N∑
i=1

ai cos(θ) + bi sin(θ),
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where the coefficients are chosen so as to minimize the error ‖r(θmeas)− rmeas‖ over all the mea-

surements in a least squares sense. Once both boundary functions are defined, given a discrete set

of angles θi, 0 = θ1, . . . , θM = 2π−∆θM the boundary function r(θ) for frames between maximal

inhalation and exhalation is interpolated for each θi, i = 1, . . . ,M . To do the interpolation, the

number of frames N between a given maximal inhalation and exhalation was calculated from the

PCA, and the radius r(θi) of the boundary was interpolated between the radius corresponding to

maximum inhale rmax(θi) and the radius corresponding to maximum exhale rmin(θi) according to

the formula

rj(θi) = rmin(θi) + j(rmax(θi)− rmin(θi))/N,

where j denotes the number of frames since the most recent maximal exhalation..The organ bound-

aries can be treated in the same manner.

Due to equation Rσ(m,n) = (s`J
m,vn)L, the discretized DN map, Λσ : u|∂Ω → σ ∂u

∂ν
|∂Ω

changes at each frame of the respiratory process. The Boundary integral for Ψ(z, k) in step 2 of

the algorithm, which depends on the difference in the DN maps Λσ −Λ1 and is integrated over the

boundary ∂Ω, changes. This leads to changes in the scattering transform t(k) that is dependent on

difference in DN maps Λσ−Λ1, boundary ∂Ω, and the boundary integral Ψ(z, k), in turn changing

in the interior conductivity σ. We expect that the images that are obtained by taking into account

these changes will reduce the artifacts.

3.4 Results
In this section, the reconstructions of the human data where the movement of the boundary

was taken into account is presented. The data were collected at the Children’s Hospital Colorado,

Aurora, CO under the approval of the Colorado Multiple Institutional Review Board (COMIRB)

(approval number COMIRB 14-0652). The EIT data was collected on 25 electrodes of width

2.22 cm and height 3.33 cm for one specific subject studied here. Principle Component Analysis

(PCA) of the data was used to identify the frames corresponding to maximum inhalation and

maximal exhalation. The perimeter of the boundary for this subject was found to be 0.7112 m.
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The reconstructions of the human data collected during a spirometry test that accounts for the

dymanically changing boundary are plotted in Figure 3.4 and Figure 3.5. Here, the blue color

on the color bar represent low conductivity and red color on the color bar represent the higher

conductivity.

Figure 3.4: Plots of reconstructions of the conductivity that corresponding to first frame, the first exhalation,
first inhalation, consequent exhalation, maximum inhalation and maximum exhalation and the consecutive
breaths

The reconstructions of the human data that accounts for the dynamically changing boundary

and that do not account for the dynamically changing boundary are given side by side for the

frames that correspond to the first exhalation, first inhalation, consequent exhalation, maximum

inhalation and maximum exhalation and the consecutive breaths after that are shown in Figure 3.6

and Figure 3.7
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Figure 3.5: Plots of reconstructions of the conductivity that corresponding to first frame, the first exhalation,
first inhalation, consequent exhalation, maximum inhalation and maximum exhalation and the consecutive
breaths

3.5 Discussions
The change in the conductivity value when computed with and without dynamically changing

boundary for each of the pixels for frames 36, 93 and 148 are plotted in Figure 3.8.

For the frame 36, it is clear from the difference in conductivity plot that the artifacts to the left

are reduced where as the shape of the left lung gets better with dynamically changing boundary.

For the frame 93, it is clear that from the the artifacts to the left are reduced while the shape of

the lungs gets better with the incorporation of dynamically changing boundary.

For the frames 148 and 229, the frames corresponding to maximum inhalation and maximum

exhalation, there is not much difference in the conductivity values with the incorporation of the

dynamically changing boundary. This is to be expected since, maximum inhalation boundary are

the same for dynamically changing and regular D-bar algorithms. For the minimum exhalation,
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Figure 3.6: The reconstructions of the EIT data for the same subject with and without accounting for
dynamically changing boundary.

since the conductivity values are the difference from this particular frame, we do not expect signif-

icant difference in the reconstructions made by accounting for the dynamically changing values as

against the reconstructions made by regular D-bar method.

3.6 Conclusions
The dynamically changing boundary was implemented in [9]. In this paper we implemented

dynamic boundaries to compute spatial priors in the 2-D D-bar algorithm and the effectiveness of

the method was demonstrated on human subject ventilatory data.

As a part of this thesis, I have actively participated in data collection and image reconstruction

with D-bar and data analysis on cystic fibrosis patients at Children’s Hospital Colorado. This

resulted in publication of two papers of which I am a co-author.
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Figure 3.7: The reconstructions of the EIT data for the same subject with and without accounting for
dynamically changing boundary.
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Figure 3.8: Difference in the conductivity computed with and without the dynamically changing boundary
values for frames 36,93,148,229
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