
DISSERTATION 

 

 

VULNERABILITY OF U.S. RIVER BASINS TO WATER SHORTAGE OVER THE 21ST 

CENTURY  

 

 

 

Submitted by 

Hadi Heidari 

Department of Civil and Environmental Engineering 

 

 

In partial fulfillment of the requirements 

For the Degree of Doctor of Philosophy 

Colorado State University 

Fort Collins, Colorado 

Spring 2021 

 

Doctoral Committee: 

             Advisor: Mazdak Arabi 
 
             Travis Warziniack 
             Thomas C Brown 
             Ryan Bailey 
             Christopher G. Goemans 



 

 

 

 

 

 

 

 

 

 

 

Copyright by Hadi Heidari 2021 

All Rights Reserved 

 

 

 

 

 

 

 



ii 
 

ABSTRACT 
 

 

VULNERABILITY OF U.S. RIVER BASINS TO WATER SHORTAGE OVER THE 21ST 

CENTURY  

 
 

Future changes in climate and population across the United States may cause a decrease in 

freshwater availability and an increase in water demand. These trends may lead to more frequent 

water shortage conditions when water demand exceeds water supply. The enhanced 

characterizations of changes in both long‐term anomalies such as aridity and evaporative indices 

and short-term anomalies such as multi-year and interannual water shortage events in a changing 

environment are requisite to the appropriate management and planning of future water resources, 

and improved implementation of regional adaptation and mitigation strategies. The main goal of 

this dissertation is thus to assess shifts in hydroclimatic conditions and water shortage (IDF) 

relationships across the conterminous United States (CONUS) over the 21st century.  

To achieve this goal, first, the effects of climate change on the regional hydroclimatology 

of U.S. river basins were assessed over the 21st Century to determine regions with prolonged dry 

or wetting periods. This analysis shows that U.S. river basins within the CONUS can be clustered 

into seven groups with unique hydroclimatic behaviors in response to climate change that are 

highly associated with regional landform, climate, and ecosystems of river basins. The South 

United States is more likely to experience warmer and drier conditions meaning higher chances of 

aridification. Second, the impact of climate change on hydroclimatic conditions of U.S. national 

forests (NFs) and national grasslands (NGs) was investigated. The results of this study indicate 

that NFs and NGs are more likely to experience larger changes in hydroclimatic variables 
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compared to the average of the United States. The findings help environmental scientists and forest 

managers to mitigate the negative consequences of climate change on forest and grassland 

resources. Third, shifts in hydroclimatology of U.S. megaregions in response to climate change 

were investigated. This analysis reveals that Houston may experience more arid climatic 

conditions with higher evaporative loss of freshwater resources in the future. These steps provide 

an improved understanding of the effects of climate change on the regional aridification or 

desertification across the CONUS.  

To accomplish the goal of the study, fourth, a probabilistic approach was developed to 

improve the characterization of both within-year and over-year socioeconomic droughts in a 

changing environment. The proposed approach provides a procedure to update sub-annual 

socioeconomic drought IDF relationships while taking into account changes in water supply and 

demand. Fifth, the developed probabilistic approach was applied to examine the effects of urban 

development patterns, i.e., sprawl versus high-density development, on the socioeconomic drought 

characteristics. The results of this study highlight that urban regions under the sprawl development 

pattern are likely to experience more frequent socioeconomic drought events with higher intensity 

and longer duration compared to the high-density development pattern. Finally, the developed 

approach was implemented across the CONUS to characterize vulnerability of U.S. river basins to 

water shortage from 1986-2015 to 2070-2099 periods.  The results show that prolonged water 

shortage conditions in drier basins and interannual water shortage events in wetter basins are likely 

to be the main concerns in the future and should gain more attention in future water resource 

planning and management. 
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CHAPTER 1.  

INTRODUCTION 

 

Water Shortage is an inevitable and complex phenomenon that has plagued civilization 

throughout history by affecting water and natural resources (Cook et al., 2015; Greve et al., 2015; 

Hagenlocher et al., 2019; Redmond, 2002). The water shortage conditions (or socioeconomic 

drought) occurs when water demand exceeds water supply (Yevjevich, 1967; Salas et al., 2005). 

Future changes in climate and population can beget shifts in water supply and demand (Naz et al., 

2016; Wang et al., 2016; Mahat et al., 2017; Brown et al., 2019). As the balance between water 

supply and demand becomes more unequal, water shortage characteristics may shift at various 

spatial and temporal scales (Mehran et al., 2015, 2017; Rajsekhar et al., 2015; Salas et al., 2018).  

This dissertation aimed to characterize the effects of climate change in both long‐term 

anomalies such as aridity and evaporative indices and short-term anomalies such as sub-annual 

water shortage events across the United States over the 21st century. The assessment of future 

water shortage condition and understanding mechanisms behind that can play an important role in 

future water resource management and planning that is requisite to the appropriate drought 

monitoring, early warning systems, and adaptation strategies (Andreadis & Lettenmaier, 2006; 

Hagenlocher et al., 2019; Svoboda et al., 2002; Tu et al., 2018).  

Recent water shortage events across the conterminous United States (CONUS) have shown 

that severe water shortage events can develop very rapidly if climate change leads to shifts in 

hydroclimatic conditions in a region (Andreadis & Lettenmaier, 2006; Piemontese et al., 2019). 

Assessing shifts in regional hydroclimatic conditions of river basins across the CONUS can be a 

different way of approaching future water resource management (Maliva & Missimer, 2013). 
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Long-term changes in the relationship between climate and water budgets of river basins may lead 

to aridification or desertification.  

This dissertation first investigated shifts in regional hydroclimatic conditions of U.S. river 

basins in response to climate change over the 21st Century (Heidari et al., 2020b). The integrated 

effects of climate change on the hydrology of a river basin were assessed using the Budyko 

framework by the combination of changes in aridity and evaporative indices. Other objectives of 

this study were to identify regions with unique hydroclimatic behavior in response to climate 

change; assess the most important factors which differentiate the hydroclimatic responses; and 

determine most prone regions for hydroclimatic changes across the CONUS over the 21st century. 

This study provides insights for decision-makers and water planners to prepare for changes in 

factors that influence the vulnerability to water shortage. 

Future shifts in regional hydroclimatic conditions may have severe impacts on natural 

resources such as national forests (NFs) and national grasslands (NGs) across the United States 

(Allen et al., 2010; Astigarraga et al., 2020; Bonan, 2008; Esquivel-Muelbert et al., 2019; Jeong et 

al., 2016; Jump et al., 2017; McIntyre et al., 2015). NFs and NGs provide a wide range of services 

that have broadened to hydrological, ecological, social, economic, recreational, and aesthetic 

(Bonan, 2008; Duan et al., 2016; Yannian, 1990). Long-term shifts in hydroclimatology of NFs 

and NGs may cause a decrease in freshwater availability and changes in the structure and 

composition of forests and grasslands (Allen et al., 2010; Astigarraga et al., 2020; Bonan, 2008; 

Esquivel-Muelbert et al., 2019; Jeong et al., 2016; Jump et al., 2017; McIntyre et al., 2015). 

This dissertation specifically assessed the effects of climate change on hydroclimatic 

conditions and basin characteristics of NFs and NGs across the CONUS over the 21st century. 

Although significant progress has been made in understanding the effects of climate change on 
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U.S. forests and grasslands (Bonan, 2008; Esquivel-Muelbert et al., 2019; Fekety et al., 2020; 

Littell et al., 2012; Rehfeldt et al., 2009; Yannian, 1990), there is a lack of comparative studies for 

characterizing the effects of climate change on regional hydroclimatology and basin characteristics 

of NFs and NGs at the local and national scales (Littell et al., 2012). Improved assessments of 

potential shifts in hydroclimatic conditions of NFs and NGs can help forest managers to mitigate 

the negative consequences of climate change such as deforestation (Peterson et al., 2011). 

Future shifts in regional hydroclimatology of the United States may furthermore 

significantly affect U.S. megaregions. The megaregions are large contiguous geographical regions 

across the CONUS that encompasses most population and economic growth of the United States 

(Hagler, 2009; Nelson, 2017; Nelson and Rae, 2016). Hydroclimatic change may exacerbate 

existing problems in the U.S. megaregions by negative consequences on energy sources, water 

supply, air quality, habitat preservation, ecosystem, and natural resources (Ashfaq et al., 2013; 

Ponce Campos et al., 2013; Greve et al., 2014). 

This dissertation specifically investigated the effects of climate change on the 

hydroclimatic conditions of fourteen U.S. megaregions including Seattle, San Francisco, Los 

Angeles, San Diego, Denver, Phoenix, Chicago, Miami, Washington D.C., Philadelphia, New 

York, Boston, Houston, and Atlanta. The improved understanding of future shifts in long-term 

hydroclimatology of U.S. megaregions may help urban planners to attenuate the potential 

consequences of climate change on cities and strengthen economic prosperity (Brown et al., 2019; 

Butler et al., 2017; McDonald et al., 2011). 

By the improved understanding of the effects of climate change on the hydroclimatology 

of U.S. river basins, national forests, national grasslands, and megaregions, we assessed changes 

in future water shortage properties across the United States in this dissertation. Climate change 
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combined with population growth can cause water shortage conditions at various scales from short-

time (interannual) to long-time (decadal drought) events (Evans & Sadler, 2008; Jaeger et al., 

2017; Wang et al., 2019). Both sub-annual and annual events may lead to significant consequences 

and disrupt water supply and agricultural systems (Foti et al., 2014a; Hao et al., 2018; Mehran et 

al., 2015; Otkin et al., 2018; Rajsekhar et al., 2015). 

This dissertation developed a novel probabilistic approach to simultaneously improve 

characterization of within-year and over-year socioeconomic drought intensity-duration-frequency 

(IDF) relationships in response to shifts in water supply and demand conditions. We addressed 

three important considerations in this approach. First, shifts in both water supply and demand 

conditions were considered. Second, socioeconomic drought properties were characterized at a 

sub-annual scale. Third, a mixture Gamma-Generalized Pareto (Gamma-GPD) model was 

proposed to enhance the characterization of both non-extreme and extreme socioeconomic 

droughts (Heidari et al., 2020a).  

We first evaluated the application of the proposed approach in the City of Fort Collins, 

Colorado, water supply system. The enhanced characterization of sub-annual socioeconomic 

drought IDF relationships undergoing climate and socioeconomic changes allows the 

implementation of effective adaptation and mitigation strategies to reduce the impact of droughts 

on communities (Brown et al., 2019; Gutzler & Nims, 2006; Warziniack & Brown, 2019). 

Although urban regions are being threatened by water shortage conditions due to climate 

change and rapid population growth, the role of urban development patterns on future 

socioeconomic droughts is rarely investigated (Bounoua et al., 2020; Forrest et al., 2020; Hemmati 

et al., 2020; Saraswat et al., 2017). The development of urban areas in the west and southwest of 

the United States has been exacerbated at a significant rate (Hummel, 2020). While the rapid 
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urbanization seems inevitable in the United States, understanding a sustainable way to mitigate 

potential negative consequences on urban water resources in the future is an important challenge 

(Butler et al., 2017; Forrest et al., 2020; Saraswat et al., 2017). 

In this dissertation, we investigated and compared future changes in socioeconomic 

drought IDF relationships under the sprawl development pattern versus the high-density 

development pattern for the City of Fort Collins, Colorado as a representative region that is rapidly 

developing over the last decades. Understanding how urban development patterns may affect 

municipal water shortage leads to developing an adaptive path to save water supply, meet future 

water demand, and mitigate drought impacts. 

Although diverse definitions, classifications, and methods have been used in previous 

studies for monitoring and assessing drought events in the United States, a few studies discussed 

the effects of shifts in both water supply and water demand on the intensity, duration, and 

frequency (IDF) relationships of water shortage conditions across the United States at various 

spatial and temporal scales (Guo et al., 2019; Heidari et al., 2020a; Salas et al., 2018; Tu et al., 

2018). More research is needed to support actionable managements to mitigate negative impacts. 

This dissertation applied the developed probabilistic approach across the CONUS at the 4‐

digit hydrologic unit code (HUC4) basin scale to characterize changes in IDF relationships in 

response to shift in water supply and water demand in light of population growth and climate 

change. The findings of this study can help decision-makers and water managers to assess and 

improve the ability of different U.S. water supply systems to future water shortage and address the 

considerations in water resource planning and management under considerable shifts in water 

supply and demand conditions. 
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Overall, the main goal of this dissertation was to assess future shifts in both hydroclimatic 

conditions and water shortage IDF relationships across the conterminous United States (CONUS) 

over the 21st century. Specifically, the objectives are to: 1) investigate shifts in regional 

hydroclimatic conditions of U.S. river basins in response to climate change over the 21st century; 

2) assess the impacts of climate change on the hydroclimatology of national forests (NFs) and 

national grasslands (NGs); 3) evaluate shifts in hydroclimatology of U.S. megaregions; 4) develop 

a probabilistic approach to improved characterization of sub-annual socioeconomic drought IDF 

relationships in a changing environment; 5) investigate the role of urban development patterns on 

changes in future drought IDF relationships; and 6) characterize shifts in water shortage IDF 

relationships of U.S. river basins from the interannual to decadal scales under shifts in both water 

supply and water demand conditions.  

These steps can provide an improved understanding of the effects of climate change on 

future water shortage across the United States to help decision-makers, urban planners, and water, 

land, and forest managers to be prepared and appropriately react to future water shortage 

conditions in the United States.  
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CHAPTER 2.  

ASSESSING SHIFTS IN REGIONAL HYDROCLIMATIC CONDITIONS OF U.S. RIVER 

BASINS IN RESPONSE TO CLIMATE CHANGE OVER THE 21ST CENTURY  

 
 
Characterization of shifts in regional hydroclimatic conditions helps reduce negative 

consequences on agriculture, environment, economy, society, and ecosystem. This study assesses 

shifts in regional hydroclimatic conditions across the continental United States in response to 

climate change over the 21st Century. The hydrological responses of five downscaled climate 

models from the Multivariate Adaptive Constructed Analogs (MACA) dataset ranging from the 

driest to wettest and least warm to hottest were simulated using the Variable Infiltration Capacity 

(VIC) model. Shifts in regional hydroclimatic conditions at 8-digit hydrologic unit scale (HUC8) 

were evaluated by the magnitude and direction of movements in the Budyko space. HUC8 river 

basins were then clustered into seven unique hydroclimatic behavior groups using the K-means 

method. A tree classification method was proposed to illustrate the relationships between 

hydroclimatic behavior groups and regional characteristics. The results indicate that hydroclimatic 

responses may vary from a river basin to another, but basins in the same neighborhood follow a 

similar movement in the Budyko space. The systematic hydroclimatic behavior of river basins is 

highly associated with their regional landform, climate, and ecosystem characteristics. Most 

HUC8s with Mountain, Plateau and Basin landform types will likely experience less arid 

conditions. However, most HUC8s with Plain landform types behave differently according to the 

regional ecosystem and climate. This study provides a potential roadmap of shifts in regional 

hydroclimatic conditions of U.S river basins, which can be used to improve regional preparedness 

and ability of various sectors to mitigate or adapt to the impacts of future hydroclimate change. 
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2.1.    Introduction 

Climate change may significantly beget shifts in long-term hydroclimatic conditions of 

river basins (Jaramillo et al., 2018; Xing et al., 2018; Piemontese et al., 2019; Zaninelli et al., 2019) 

and cause serious impacts on the environment, agriculture, economies and ecosystems (Ashfaq et 

al., 2013; Ponce Campos et al., 2013; Greve et al., 2014; Hemmati et al., 2020). Characterization 

of shifts in regional hydroclimatic conditions can help water managers and decision-makers to 

mitigate potential consequences of climate change on various sectors (Destouni et al., 2013). This 

study investigates future shifts in regional hydroclimatic conditions of river basins across the 

conterminous United States (CONUS) in response to climate change over the 21st century. 

In the CONUS, hydroclimatic parameters such as precipitation, temperature, evaporation, 

water yield (or total runoff), and potential evapotranspiration have been projected to change over 

the 21st century (Sankarasubramanian & Vogel, 2003; Hay et al., 2011; Sanford & Selnick, 2013; 

Mahat et al., 2017). The CONUS covers broad physiographic, ecological, and climatic conditions. 

Thus, regional hydroclimatic shifts in response to climate change can be quite different from one 

region to another (Abatzoglou & Ficklin, 2017). Regional characterization of hydroclimatic 

changes is vital to improve implementation of region-specific adaptation and mitigation strategies 

(Piemontese et al., 2019; Zaninelli et al., 2019). 

Most previous studies that discussed changes in hydroclimatiology of river basins within 

the CONUS focused on particular basins or individual parameters (e.g., streamflow, precipitation, 

evaporation) (Wang & Hejazi, 2011; Renner et al., 2012; Ashfaq et al., 2013; Weiskel et al., 2014; 

Naz et al., 2016). A few studies have assessed the integrated shifts in hydroclimatic conditions of 

river basins as the combination of changes in aridity and evaporative indices across the CONUS 
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to understand how different river basins with varying climatic, ecological and physiographical 

characteristics respond to climate change (Abatzoglou & Ficklin, 2017; Piemontese et al., 2019).  

One effective way to evaluate the combined hydroclimatic changes is through the Budyko 

framework (Van der Velde et al., 2014; Piemontese et al., 2019; Zaninelli et al., 2019). The Budyko 

framework describes a relationship between evaporative and aridity indices (Budyko, 1974, 1982). 

A number of previous studies have used the Budyko framework to estimate actual evaporation and 

streamflow from long-term water and energy balances (McKee, 1993; Yang et al., 2006; Reis et 

al., 2013; Rouholahnejad Freund & Kirchner, 2017; Zhang et al., 2017; Deng et al., 2018; Xing et 

al., 2018; Li et al., 2019). A river basin can move over time in the Budyko space due to a 

combination of shifts in aridity and evaporative indices (Van der Velde et al., 2014; Piemontese et 

al., 2019; Zaninelli et al., 2019). Additionally, movement in the Budyko space can be characterized 

by a magnitude and direction (Jaramillo et al., 2018; Piemontese et al., 2019; Zaninelli et al., 2019). 

Direction can determine regional differentiation and magnitude can characterize the most sensitive 

regions under climate change (Van der Velde et al., 2014). 

This study assesses regional hydroclimatic changes induced by shifts in the Budyko space 

across the CONUS over the 21st Century at an 8-digit hydrologic unit code (HUC8) basin scale 

under a range of possible climate change models. Specifically, the objectives are to: 1) evaluate 

changes in combined hydroclimatic variables in response to climate change using Budyko space; 

2) identify regions with unique hydroclimatic behavior in response to climate change using the K-

means clustering method; 3) assess the most important factors which differentiates the 

hydroclimatic responses using the tree classification method; and 4) determine hotspot regions of 

hydroclimatic changes across the CONUS over 21st century. This study provides a potential 

roadmap of changes in regional hydroclimatic conditions across the CONUS, which can help 
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decision-makers and water managers to implement region-specific adaptation and mitigation 

strategies for regional water resource management. 

2.2.    Material and Methods 

Future changes in climatic variables were obtained from the downscaled Multivariate 

Adaptive Constructed Analogs (MACA) datasets. The projected climatic variables were then used 

as inputs to the Variable Infiltration Capacity (VIC version 4.1) model to evaluate the hydrologic 

responses of future climate projections. The Budyko space was applied to estimate changes in 

hydroclimatic conditions of the CONUS at HUC8 river basin scales. HUC8 river basins across the 

CONUS were clustered into groups with unique hydroclimatic behavior in response to climate 

change using the K-means method. Then, the association between hydroclimatic behavior groups 

and basin characteristics such as regional climate, landform, and ecosystem was assessed using the 

tree classification method. The 1986-2015 period was used as the baseline to represent current 

conditions while the 2070-2099 period represented the future conditions.  

2.2.1.    Hydroclimatic Projections  

Raw global climate model (GCM) outputs cannot be used for regional hydroclimatic 

assessments due to the coarse resolution of grid cells, approximately on the order of 150-200 km 

(Naz et al., 2016). Thus, the downscaled MACA datasets were used to provide possible future 

climate change models in this study (Abatzoglou & Brown, 2012). The MACA climate dataset 

includes 20 models that were downscaled for the entire CONUS at the grid size of ~4 km (1/24 

degree) under the RCP 4.5 and RCP 8.5 emission scenarios. Joyce and Coulson (2020) selected 

five MACA climate models for the CONUS to represent a possible range of temperature and 

precipitation over the 21st century including the wettest, driest, hottest and the least warm models, 

and one model located near the middle of these ranges (Table 2.1) (Joyce and Coulson, 2020). In 
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this study, we used these five selected MACA models to study the shifts of combined hydroclimate 

conditions. It should be noted that HOT, WARM, WET, and DRY, respectively, indicate the 

MACA climate models that are on average the hottest, warmest, wettest, and driest models at the 

conterminous scale. For example, the DRY climate model is not always the driest in all river basins 

across the CONUS. 

Table 2.1. Projected MACA climate models (Joyce and Coulson., 2020). 

  HOT WARM WET DRY MIDDLE 

Name 
HadGEM2-
ES365 MRI-CGCM3 CNRM-CM5 

IPSL-CM5A-
MR  NorESM1-M 

Model 
Agency 

Met Office 
Hadley Center, 
UK 

Meteorological 
Research 
Institute, Japan 

National Centre of 
Meteorological 
Research, France 

Institute Pierre 
Simon Laplace, 
France 

Norwegian 
Climate Center, 
Norway 

 

The MACA climate dataset includes forcing data such as the maximum daily temperature 

near surface (tasmax), the minimum daily temperature near surface (tasmin), the average daily 

precipitation amount at surface (pr), the average daily eastward component of wind near surface 

(uas), and the average daily northward component of wind near surface (vas). The total wind speed 

was calculated in this study as the combination of the eastward and northward winds 

(√𝑢𝑎𝑠2  +  𝑣𝑎𝑠2).  

A good representation of the current climate is indeed a necessary condition required to 

realistically simulate future climate changes. Figure A-1 compares the 30-yr average of annual 

precipitation for each HUC8 river basin over the historical period (1986-2015). The 30-yr average 

values for each HUC8 river basin are approximately the same meaning that the variation between 

climate models is not significant at the 30-year average scale. Additionally, 30-yr average of all 

selected climate models over the historical period has a high correlation with the selected baseline 

historical model that is the combination of Daymet and PRISM. The MIDDLE climate model with 
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RCP 4.5 shows the strongest linear correlation (0.9964) between the 30-year average of the 

observed and simulated mean annual water yield. 

We used the term baseline to denote a historical period from 1986 to 2015 as a basis for 

comparison with future climate. The historical climate data were obtained from a combination of 

Daymet (Thornton et al., 1997) and the Parameter-elevation Regressions on Independent Slopes 

Model (PRISM, Daly et al., 2008) datasets. Precipitation and daily maximum and minimum 

temperature were calculated by Daymet and biased corrected with PRISM at the monthly scale. 

Additionally, wind speed was calculated from the North American Regional Reanalysis (NARR) 

dataset (Mesinger et al., 2006). Readers are referred to Oubeidillah et al. (2014) and Naz et al. 

(2016) for the details about this historic forcing dataset.  

In addition to the selected MACA models, we also conducted VIC simulation using this 

forcing dataset to estimate the baseline hydrologic conditions. The VIC version 4.1 hydrologic 

model (Liang et al., 1994) was set up at the grid size of ~4 km (1/24 degree) to simulate the 

hydrologic responses driven by different forcing datasets. The VIC model is a semi-distributed 

macroscale model that solves full water and energy balances using the variable infiltration capacity 

curves (Cherkauer & Lettenmaier, 2003). The VIC model has been widely used to simulate 

streamflow over a number of large river basins in North America (Andreadis & Lettenmaier, 

2006). Topography, soil characteristics, vegetation, land surface classification, and meteorological 

forcing are key hydrological inputs to the VIC model. Required meteorological forcing includes 

daily minimum and maximum temperature, precipitation, and wind speed. The VIC model uses 

the Penman–Monteith equation to estimate potential evapotranspiration.  

We obtained the VIC model parameters also from Oubeidillah et al. (2014) and Naz et al. 

(2016), which were calibrated using the historic monthly runoff from the USGS WaterWatch 
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runoff dataset (Brakebill et al., 2011) at each HUC8 unit. The aggregated monthly runoff obtained 

from the USGS National Water Information System gauge observations (WaterWatch dataset) 

(Brakebill et al., 2011) was used to calibrate the VIC model for each HUC8 basin.  The naturalized 

streamflow routed to gauge locations has been traditionally used to calibrate hydrological models. 

However, calibrating the VIC model using the WaterWatch monthly runoff data leads to the 

homogenous application of the VIC model for all grid cells with the same resolution, and the 

parameter transfer to ungauged basins is not required. 

 To calibrate the VIC model, the simulated monthly total streamflow (surface runoff plus 

baseflow) of each HUC8 basin was matched with the monthly runoff from the USGS WaterWatch 

runoff dataset. It should be considered that the historical human impairments might result in a 

biased estimation of HUC8s runoff. The VIC model was run in full energy mode. Readers are 

referred to Oubeidillah et al. (2014) and Naz et al. (2016) for the detailed description of the VIC 

model set up, calibration and evaluation. The daily hydroclimatic outputs were then aggregated to 

annual values at each HUC8 unit for evaluation.  

2.2.2.    Movements in the Budyko Space  

Changes in hydroclimatology of each HUC8 river basin across the CONUS were 

characterized as a function of shift in the Budyko space (Budyko, 1974, 1982). The Budyko 

framework describes an empirical relationship between the evaporative index and aridity index. 

The evaporative index is defined as 

𝐸𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑖𝑣𝑒 𝑖𝑛𝑑𝑒𝑥 = 𝑃 − 𝑄𝑃   (

(2.1) 
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where 𝑃 is precipitation, and 𝑄 is water yield (or total runoff) in the river basin. Water yield is the 

average of freshwater that runs off in a basin (Foti et al., 2012; Kumar et al., 2018). 𝑃 − 𝑄 can be 

simplified to actual evapotranspiration. The aridity (or dryness) index is defined as  

𝐴𝑟𝑖𝑑𝑖𝑡𝑦 𝑖𝑛𝑑𝑒𝑥 = 𝑃𝐸𝑇𝑃   (

(2.2) 

where 𝑃𝐸𝑇 is potential evapotranspiration. The aridity index is a ratio of long-term average 

potential water demand (i.e., 𝑃𝐸𝑇) to long-term average water supply (i.e., 𝑃) (Yang et al., 2006; 

Q. Zhang et al., 2017). The interaction between aridity and evaporative indices can be defined as 

the Budyko space (Figure 2.1) (Jaramillo et al., 2018). Aridity and evaporative indices have been 

commonly used to combine these hydroclimatic variables to assess changes in long-term 

hydroclimatic conditions of river basins. Characterization of changes in long-term anomalies such 

as aridity and evaporative indices is a different way of approaching the extreme events assessment 

rather than characterization of temporary anomalies such as floods (Ghanbari et al., 2019, 2020) 

and droughts (Maliva & Missimer, 2013; Heidari et al., 2020a). 

 

Figure 2.1. Characterization of magnitude and direction of movements in the Budyko space. 
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A river basin may move in the Budyko space over time due to a combination of changes in 

the aridity and evaporative indices (Van der Velde et al., 2014). The combination of shifts in the 

Budyko space can be identified by the direction and magnitude of movements (Jaramillo et al., 

2018; Piemontese et al., 2019; Zaninelli et al., 2019). The direction of movement can be defined 

by 

𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 (𝐷) = 𝑎𝑟𝑐𝑡𝑎𝑛(∆𝑦∆𝑥)  (

(2.3) 

where ∆𝑦 is change in the evaporative index and ∆𝑥 is change in the aridity index (Figure 2.1). 

Subsequently, the magnitude of change in the Budyko space can be obtained as follows: 

𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 (𝑀) = √𝑥2 + 𝑦2  (

(2.4) 

The direction represents regional differentiation and the magnitude of change identifies the 

most sensitive regions (Van der Velde et al., 2014). Movements in the Budyko space are 

constrained by physical limits on energy demand when the aridity index is equal to the evaporative 

index (red line in Figure 2.1), and water demand when the evaporative index is equal to one (blue 

line in Figure 2.1). Moving to the right means warmer and drier climatic conditions and moving 

to the left means less arid conditions. Besides, moving downward indicates higher rates of river 

discharge or wetter conditions while moving upward indicates less water yield or streamflow for 

a given HUC8 river basin. 

2.2.3.    Hydroclimatic Behavior Groups  

River basins in close vicinity may follow systematic and similar movements in the Budyko 

space. Systematic movements are meaningful and represent a common water and energy balance 

adaptation to regional climate change (Jaramillo et al., 2018; Piemontese et al., 2019; Zaninelli et 



16 
 

al., 2019). We used cluster analysis with the K-means method to identify unique hydroclimate 

behavior groups in response to climate change across the CONUS based on the direction and 

magnitude of movements in the Budyko space. The CONUS was subdivided into seven 

hydroclimatic behavior groups with similar direction and magnitude.  

The United States landform (Figure A-2), ecoregion (Figure A-3) and climate 

classifications (Figure A-4) were applied to explain the differentiations in hydroclimatic behavior 

groups in response to climate change. Figure A-2 represents five major types of landforms within 

the CONUS including Basin, Lake, Mountain, Plain and Plateau (ESRI, 2014). Figure A-3 

illustrates the spatial map of U.S. ecoregions provided by the Environmental Protection Agency 

(EPA) and the Commission for Environmental Cooperation (CEC) (Omernik & Griffith, 2014). 

Each ecoregion group specifies a unique ecosystem across the United States, which specifies type, 

quality, and quantity of environmental resources. The ecoregion classification uses four levels. 

Level I is shown in Figure A-3. Figure A-4 shows the main groups of the U.S. Koppen climate 

classifications including Dry, Temperate, Continental and Tropical ( Chen & Chen, 2013). This 

classification is based on the seasonal precipitation and temperature patterns. In addition, these 

main climate groups are based on vegetation types in a given climate classification region (Chen 

& Chen, 2013).  

Pearson's Chi-squared test was used to assess the statistical significance of the association 

between the aforementioned regional basin characteristics and the assigned hydroclimatic behavior 

groups as two categorical variables. Classifications with p-values less than 0.05 would suggest 

significant association. In addition, the statistical Goodman and Kruskal tau measure (Goodman 

& Kruskal, 1954) was also applied to determine the strength of associations. Classifications with 

higher values from the Goodman and Kruskal tau measure have higher strength of association to 
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the seven hydroclimatic behavior groups. Finally, a tree classification method was applied to test 

for relationships between each hydroclimatic behavior group and the regional landform, 

ecosystem, and climate types. 

2.3.    Results and Discussion 

The study reveals that shifts in U.S. regional hydroclimatic conditions in response to 

climate change vary from a region to another. However, HUC8 river basins in the same 

neighborhood can generally follow a similar and systematic movement in the Budyko space. The 

CONUS can be subdivided into seven groups with similar changes in direction and magnitude in 

the Budyko space. These hydroclimatic behavior groups are highly associated with the regional 

types of climate, ecosystem, and landform. This study suggests a potential roadmap of shifts in 

regional hydroclimatic conditions to improve the preparedness and ability of river basins across 

the United States to mitigate or adapt to the impacts of hydroclimate change over the 21st century. 

We further used the nine U.S. climate regions defined by the National Climatic Data Center 

(NCDC) (National Oceanic and Atmospheric Administration (NOAA), 2014) to explain regional 

shifts in hydroclimatic conditions across the United States through this section. This U.S. climate 

regions are regularly used in climate summaries. 

2.3.1.    Changes in Hydroclimatic Variables  

Changes in five hydroclimatic variables including precipitation, temperature, evaporation, 

water yield and potential evapotranspiration were first evaluated. Figure A-5 provides the 30-year 

baseline climatology maps of these five variables. Besides, Figure A-6 show the temporal 

evolution of the five selected MACA models under RCP 4.5 and 8.5 emission scenarios. Figures 

A-7, A-8 and A-9 represent the spatial patterns of the five selected MACA models under RCP 8.5 

emission scenario for precipitation, potential evapotranspiration, and water yield, respectively. It 
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should be noted that the estimated potential evapotranspiration highly depends on calculation 

method.  The Penman–Monteith equation was used in the VIC model to estimate potential 

evapotranspiration. The projections under all five climate models are highly variable. The DRY 

model with RCP 8.5 has the highest decreases in precipitation and evaporation, and the highest 

increases in potential evapotranspiration and temperature. Conversely, the WET model with RCP 

8.5 has the highest increases in precipitation, water yield and evaporation and the highest decrease 

in potential evapotranspiration. Note that temperature increases across all climate projections 

though the magnitude of temperature increases varies.  

The West United States has the highest increase in precipitation and water yield and the 

highest decrease in potential evapotranspiration. However, the South United States has the highest 

decrease in precipitation and water yield and the highest increase in potential evapotranspiration 

from current conditions to future conditions.  

Water yield, precipitation and potential evapotranspiration have the primary control on 

water and energy balance (Yang et al., 2006; Zhang et al., 2017). Figure 2.2.a shows the 30-yr 

average of annual aridity index during the baseline period (1986-2015). The majority of river 

basins in the Northeast, Central, Northwest, and Southeast United States with lower aridity indices 

have been limited by available energy, while most river basins located in the West and Southwest 

United States with higher aridity indices have been limited by water availability. In addition, 

Figure 2.2.b illustrates the 30-yr average of evaporative index during the baseline period. River 

basins in the West North Central, South, and Southwest United States with higher evaporative 

index have comparatively less water yield.  



19 
 

 

Figure 2.2. Maps of current (a) aridity index, and (b) evaporative index for the baseline period (1986-
2015). 

 

Figure 2.3 provides the 30-yr normal annual aridity and evaporative indices across all 

HUC8 river basins from 1980 to 2099 under RCPs 4.5 and 8.5 scenarios for the historic baseline 

and five selected MACA models. The historical period obtained from the combination of Daymet 

and PRISM from 1986 to 2015 was shown as a baseline in black. Under RCP 4.5, DRY and WET 

climate models are approximately representative of upper and lower bounds of future aridity and 

evaporative indices, respectively. However, there is not a substantial and consistent trend. Under 

RCP 8.5, the DRY climate projection foresees a substantial increase in aridity and evaporative 

indices over the 21st century. However, the WET and WARM models consistently project 

decreases in aridity and evaporative indices over the 21st century. Under the MIDDLE and HOT 

models, aridity and evaporative indices show slight changes compared to the baseline period.  
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Figure 2.3. Timeseries of annual aridity index and evaporative index under RCPs 4.5 and 8.5 emission 
scenarios. 

For a detailed assessment of hydroclimatic changes across the CONUS, we further used 

DRY, WET and MIDDLE climate models under RCP 8.5 to capture a wide range of potential 

future climate change across the entire CONUS. Figure 2.4 shows spatial changes in the aridity 

and evaporative indices of these three climate projections from baseline (1986-2015) to future 

(2070-2099) periods. Changes indicates the value of future indices minus the value of current 

indicis.  
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Figure 2.4. Spatial changes in (a) aridity and (b) evaporative indices from baseline (1986-2015) to future 
(2070-2099) periods (RCP 8.5). 

 

Under DRY, MIDDLE and WET climate projections, the majority of HUC8 river basins 

located in the West United States show decreases in evaporative and aridity indices. Decreases in 

evaporative and aridity indices suggest increases in the chances of higher river discharges in these 

regions (Piemontese et al., 2019). Most river basins located in the South United States will have 

higher aridity and evaporative indices under all three climate projections indicating the likelihood 

of prolonged droughts in these regions (Piemontese et al., 2019). These findings are in line with 

the projections for precipitation, potential evapotranspiration, and water yield (Figures A-7 to A-

9). 

2.3.2.    Movements in the Budyko Space 

Direction of movement in the Budyko space characterizes regional differentiation, while 

the magnitude of movement reveals the most sensitive regions (Van der Velde et al., 2014). Here, 
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we projected shifts of each HUC8 in the Budyko space from baseline (1986-2015) to future (2070-

2099) periods across the CONUS under DRY, MIDDLE and WET climate projections with RCP 

8.5 emission scenario. 

Under the DRY climate projection (Figure 2.5), most river basins deviate from the energy 

limit line (red line in Figure 2.1) meaning that the ratio of potential evapotranspiration to 

precipitation (i.e., aridity index) is increasing. In other words, most river basins are becoming more 

water limited. However, some HUC8 river basins in the West and Northwest United States move 

closer to the energy limit line. Additionally, most river basins in the Central and East North Central 

United States move to the upper-right meaning that the evaporative index is also increasing in 

these regions. Wind rose diagram in Figure 2.5 visualizes the summary of movements in the 

Budyko space including direction, magnitude, and frequency for all HUC8 river basins. This type 

of diagrams has been used in global hydroclimatic change assessments (Destouni et al., 2013). 

Based on the wind rose diagram in Figure 2.5, river basin movements are more likely to occur in 

the directions represented by the right, right-upper and left quadrants of the rose diagram, 

respectively. The results indicate that most river basins in the West and Southwest United States 

have high magnitude of changes meaning that the hydroclimatology of these regions is more 

sensitive to climate change.  
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Figure 2.5. Movements in the Budyko space under the DRY climate model with RCP 8.5. 

 

Under the MIDDLE climate projection (Figure 2.6), river basins in the West, Northwest, 

Northeast, and Southeast United States move closer to the energy limit line meaning that the aridity 

index is decreasing. However, most HUC8 river basins in the South US deviate from the energy 

limit line meaning that the climate is getting warmer and drier in this region. The majority of river 

basins do not show an increase or decrease in the evaporative index. There is only a slight decrease 

in evaporative indices of river basins located in the Central United States. According to the wind 

rose diagram in Figure 2.6, river basin movements are more likely to occur in the directions 

represented by the left, right and left-lower quadrants of the rose diagram, respectively. 



24 
 

 

Figure 2.6. Movements in the Budyko space under the MIDDLE climate model with RCP 8.5. 

 

Under the WET climate projection (Figure 2.7), a significant number of river basins moved 

towards left meaning that the aridity of river basins is decreasing. The HUC8 river basins in the 

WEST and Southwest United States have higher magnitude of changes meaning that the 

hydroclimatology of these regions is more sensitive to climate change compared to other regions. 

In addition, the majority of river basins in the Central and East North Central United States deviate 

from the water limit line (blue line in Figure 2.1) meaning that the evaporative index is decreasing 

in this region. In other words, the ratio of streamflow to precipitation is increasing, which resulted 

in higher river discharges. According to the wind rose diagram in Figure 2.7, river basin 

movements in the Budyko space are more likely to occur in the directions represented by the left 

and left-lower quadrants of the rose diagram, respectively.  
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Figure 2.7. Movements in the Budyko space under the WET climate model with RCP 8.5. 

 

Under all three climate projections, the systematic movements of HUC8 river basins in the 

Budyko space indicate that the CONUS will experience nonstationary changes in water and energy 

cycling over time. Figure A-10 compares changes in direction and magnitude across the three 

climate projections. As a common pattern across all three climate projections, climate change will 

cause a wetting trend over the western and eastern CONUS but a drying trend over the central and 

southern CONUS. A consistent pattern of changes in direction and magnitude was found across 

the three climate changes projections for the South and West United States, respectively. These 

river basins are likely to experience a similar hydroclimatic change regardless of the future climate 

projections. The magnitude of the change is particularly large along the West and Southwest 

United States under all three climate projections. The magnitude of change characterizes the most 

sensitive areas. Thus, hydroclimatic conditions of the West and Southwest United States are the 

most sensitive to climate changes over the 21st century. Direction determines regional 

differentiation. Most river basins in the South United States will likely get drier and warmer under 
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all three climate projections. Note that the movements in the Budyko space were projected to tend 

to be along the horizontal axis in most regions as shown in Figures 2.5 to 2.7 because the range of 

the evaporative index may be much smaller than the aridity index. 

2.3.3.    Hydroclimatic Behavior Groups 

HUC8 river basins with systematic and similar magnitude and direction of movements in 

the Budyko space can be clustered to a hydroclimatic behavior group in response to climate 

change. To better understand the pattern of shifts across the CONUS, we clustered movement in 

the Budyko space under the MIDDLE model which can have potential implications for regional 

adaptation and mitigation strategies. The K-means method was used to cluster HUC8 river basins 

to the seven regions with unique hydroclimatic behavior. Table 2.2 and Figure 2.8 provide the 

ranges of direction and magnitude of each hydroclimatic behavior group that are in line with the 

wind rose diagram in Figure 2.6.  

 

Figure 2.8. Regional hydroclimatic behavior groups of the United States under the MIDDLE climate 
model with RCP 8.5. 
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Table 2.2. Hydroclimatic behavior group. 

Behavior 

Group 

Direction (D) and Magnitude 

(M) 

1 D (135-190) with M (<0.095) 
2 D (135-190) with M (>3.4) 
3 D (135-190) with M (0.95-3.4) 
4 D (220-360) 
5 D (190-220) 
6 D (0-45) with M (>0.5) 
7 D (0-45) with M (<0.5) 

 

Groups 1, 2 and 3 have the same direction (moving to the left). However, they have 

different magnitude of changes. Groups 2 and 3 have higher magnitude than group 1. In addition, 

Groups 6, and 7 have the same direction (moving to the right-upper). However, Group 6 has higher 

magnitude of changes than Group 7. Group 6 and 7 are more likely to experience prolonged 

drought, while Group 5 with movement to the left-lower is likely to experience higher river 

discharge under wetter conditions. Group 4 includes a wide range of direction from 220 to 360 

degree with more frequent movements to lower and lower-right.  

Regional landform, climate, physiology, ecology and landcover play important roles in the 

hydroclimatic behavior of a river basin in response to climate change. In this regard, Koppen 

climate classifications, ecoregions, and landform (Figures A-2 to A-4) were used to relate 

systematic movements in the Budyko space to the regional river basin characteristics. Based on 

the Pearson's Chi-squared test, all regional classifications have p-values close to zero meaning that 

they are associated to the hydroclimatic behavior groups. Table 2.3 shows the p-value and chi-

square values of each classification. In addition, the Goodman and Kruskal tau measure was used 

to determine strength of association between each classification with hydroclimatic behavior 

groups. Landform zones, ecoregion zones and climate zones have respectively higher associations. 
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A tree classification method was then used to find a relationship between hydroclimatic behavior 

groups and hydroclimatic factors based on the combination of these basin characteristics. Figure 

2.9 illustrates the relationship between each hydroclimatic behavior group and its regional 

landform, ecosystem, and climate. 

 

Figure 2.9. A tree classification to explain relationship between U.S hydroclimatic behavior groups and 
regional basin characteristics (landform, climate, ecosystem) under the MIDDLE climate model with RCP 

 

Table 2.3. Statistical test for association between hydroclimatic behavior groups and regional climate, 
ecoregion, and landform classification of the United States. 

Classification Pearson's P-value 
Pearson's 

Chi-squared 

Goodman 

and Kruskal 

tau measure  

Climate zones-Level1 p-value < 2.2e-16 707.83 0.157 
Climate zones-Level2 p-value < 2.2e-16 1160.4 0.13 
Climate zones-Level3 p-value < 2.2e-16 1580.3 0.118 
Ecoregion zones-Level1 p-value < 2.2e-16 1944.2 0.238 
Ecoregion zones -Level2 p-value < 2.2e-16 3173.3 0.128 
Ecoregion zones -Level3 p-value < 2.2e-16 5213.2 0.045 
Landform zones p-value < 2.2e-16 1410.5 0.245 
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Figure 2.10 shows projected hydroclimatic behavior groups based on the tree classification 

method.  It shows an acceptable accuracy for the spatial pattern of hydroclimatic behavior groups 

in comparison with Figure 2.8, which is useful to make a prediction for regional characteristics of 

each hydroclimatic behavior group. The tree classification method has the lowest accuracy for 

Group 6, though it has captured its spatial trend. 

 

Figure 2.10. Estimation of U.S hydroclimatic behavior groups based on the tree classification under the 
MIDDLE climate model with RCP 8.5. 

 

The majority of Group 1 is within the Mountain and Plateau types of landform. Group 2 

includes basin regions with a Dry climate, and Group 3 is related to basin regions with a Semi-arid 

climate. Group 4 includes some parts of Great Plain with Continental climate type. Group 5 

comprises most Plains which are located in the Eastern Forest type of ecosystem with both 

Continental and Temperate climate. Group 6 comprises Plains with Dry climate located in the 

South Central Semi-arid Prairies type of ecosystem, and majority of Group 7 is related to Plains 

with Temperate climate within the Great Plains.   
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Overall, the aridity in the Mountain, Plateau and Basin types of landforms is decreasing 

over the 21st century. Aridity will decrease more in the Basin region compared to Mountain and 

Plateau types of landform, meaning that the hydroclimatology of the Basin region is more sensitive 

to climate change than that of the Mountain region. In addition, within the Basin regions, Basin 

regions with Dry climate have larger declines in aridity than Basin regions with Semi-arid climates.  

However, river basins with the Plain landform type behave differently in response to 

climate change according to their ecosystem and climate. Some river basins in the Plains with Dry 

climates inside the West Central Semi-arid Prairie ecosystem behave like Mountains and will have 

wetter climate conditions. Plains with Eastern Forest ecosystems are more likely to experience 

wetter climate conditions over the 21st century. The evaporative indices of these regions will also 

decrease significantly compared to Mountain and Basin types of landforms, meaning that the rate 

of discharge will be higher in the future.  

Both aridity and evaporative indices will increase in Plains regions with Dry climate in the 

South Central Semi-arid Prairies ecosystems, and in Plains regions with Temperate climates in the 

Great Plains. These regions will experience less streamflow under drier climate conditions. 

However, some parts of the Great Plains with Continental climates experience decrease in their 

evaporative index with increase in aridity index, meaning that this region will experience higher 

streamflow even under drier climate conditions.  

It can be concluded that river basins inside the Great Plains are getting warmer and drier 

in terms of climate conditions. However, some parts of the Great Plains which are located in the 

Continental climate will have higher rates of streamflow in the future while other parts of the Great 

Plains with Temperate climates and Dry climates (located in South Central Semi-arid Prairies) will 

experience lower rates of streamflow. 
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These findings highlight the need for regional differentiation in adaptation and mitigation 

strategies according to regional climate, landform, and ecosystem of river basins in the United 

States to protect vulnerable resources and reduce potential consequences on agriculture, 

environment, economy, society, and ecosystem.  

The results of this study were subjected to a variety of uncertainties associated with climate 

models, emission scenarios, downscaling methods, hydroclimatic projections, and hydrological 

models. The uncertainty includes those introduced by the selection of the climate models and the 

hydrological models. The MACA climate models are highly uncertain because they depend on 

future anthropogenic and forcing scenarios. Additionally, future climate projections can be 

affected by the existence of internal climate variability and incomplete understanding and 

imprecise climate models (Wyard et al., 2020; Collins et al., 2020).  

We focused on a range of possible future climate conditions, from driest to wettest, to 

account for current uncertainty about long-term future climatic conditions. Although variability in 

the projection of future climate conditions can be affected by some sources of uncertainty and 

variability in climate change scenarios, projected shifts in hydroclimatic conditions of river basins 

showed some consistency across climate change models in terms of the direction and magnitude 

of changes.  

In addition to the uncertainty in the choice of climate models, some uncertainties remain, 

related to the hydrological model. The VIC model may not capture all physical basin 

characteristics, water management regulations, landcover changes (Naz et al., 2016). Furthermore, 

there are some uncertainties associated with the parameters of the VIC model and structural 

deficiencies of the model simulation (Gharari et al., 2019, 2020; Melsen et al., 2016).  
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Given the high uncertainty in the MACA climate projections, VIC hydrological modeling, 

K-means clustering and tree classification methods, this study is aimed to provide a general 

overview of future shifts in the regional hydroclimatic conditions of U.S. river basins in response 

to possible range of changes in climate variables. The findings can be used as a roadmap for 

decision-makers to implement adaptation and mitigation strategies at an improved and modified 

regional scale. 

2.4.    Summary and Conclusions 

Climate change can alter hydroclimatology of river basins at various spatial and temporal 

scales. This study evaluates the potential impact of climate change on hydroclimatic conditions of 

U.S. river basins over the 21st century. Five sets of hydroclimatic projections were conducted using 

the VIC hydrologic model driven by the downscaled MACA datasets. Shifts in the long-term 

hydroclimatic conditions at the HUC8 river basin scale were expressed by magnitude and direction 

of movements in the Budyko space. Hydroclimatic responses vary from one river basin to another. 

However, a consistent pattern of changes in direction and magnitude was found across the climate 

change projections. Overall, six important conclusions can be made here: 

1) HUC8 river basins can be clustered into seven hydroclimatic behavior groups with a 

similar, unique, and systematic movement in the Budyko space indicating that there should 

be common regional water and energy balance adaptations to climate change.  

2) This finding challenges the stationary assumption of long-term water and energy cycles 

meaning that climate change may lead to shifts in long-term water and energy balances and 

changes in hydroclimatic conditions. 

3) The hydroclimatic behavior of U.S river basins in response to climate change are highly 

associated with basin characteristics such as regional landform, climate, and ecosystems. 
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These findings highlight the need for regional differentiation in adaptation and mitigation 

strategies to protect vulnerable resources and reduce negative consequences of 

hydroclimatic shifts on various sectors.  

4) The aridity index in the Mountain, Plateau and Basin types of landforms will decrease over 

the 21st century with higher rates in Basin compared to Mountain and Plateau regions. 

Additionally, both aridity and evaporative indices will decrease in the Plains with Eastern 

Forest ecosystems. 

5) The aridity will increase over 21st century in Plains with Dry climates in the South Central 

Semi-arid Prairies, Plain with Temperate climates in the Great Plains and some parts of the 

Great Plains with Continental climates. The evaporative index also decreases in river basins 

inside the Great Plains with Continental climates, meaning that the rate of river discharge 

increases even though the climate gets warmer and drier. 

6) The South and Southwest United States are the hotspots for shifts in long-term 

hydroclimatic conditions. The majority of river basins in the South United States move to 

the right-upper with high magnitude indicating that this region is likely to experience 

warmer and drier conditions with higher chances of prolonged droughts. Most river basins 

in the West United States move to the left-lower with high magnitude indicating that this 

region is likely to experience wetter conditions and increased river discharges. 

These findings have potential implications for human and agricultural activities. 

Adaptation and mitigation strategies are best designed at a modified and improved regional scale 

to protect vulnerable ecosystems and freshwater resources. This study can help decision-makers 

to assess and improve the ability and preparedness of various resources to mitigate or adapt to the 

impacts of climate changes across the United States over 21st century.
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CHAPTER 3.  

IMPACTS OF CLIMATE CHANGE ON HYDROCLIMATIC CONDITIONS OF U.S. 

MEGAREGIONS, NATIONAL FORESTS, AND NATIONAL GRASSLANDS 

 
 
The conterminous United States includes national forests and grasslands that provide 

ecological, social, economic, recreational, and aesthetic services. Future climate change can alter 

long-term hydroclimatic conditions of national forests and grasslands and lead to negative 

consequences. Furthermore, most of the population and economic growth in the United States 

occurs in megaregions, whereas climate change may amplify negative impacts on water and 

natural resources. Thus, this study characterizes shifts in hydroclimatology and basin 

characteristics of US national forests (NFs), national grasslands (NGs) and megaregions in 

response to climate change over the 21st century under the DRY, MIDDLE and WET climate 

models with RCP 8.5 emission scenario.  

The results indicate that NFs and NGs are likely to experience larger changes in basin 

characteristics compared to the average of the United States. In general, across the conterminous 

US, the NFs in mountainous regions are likely to have larger changes in hydroclimatic variables 

than NFs with lower elevation and NGs. Comparing Forest Service regions, Pacific Northwest, 

Intermountain, and Northern regions may have a less arid climate with lower freshwater 

availability. The Southwestern, Northern, Intermountain, and Rocky Mountain regions are likely 

to experience higher shifts in their basin characteristics.  

The results at the megaregional scale indicate that Los Angeles, San Diego, and San 

Francisco are more likely to experience less arid conditions with some shifts from Continental to 

Temperate climate type while the hydroclimatology of Houston may become drier with some shifts 



35 
 

from Temperate to Continental climate type. Additionally, water yield is likely to decrease in 

Seattle. Change in the hydroclimatology of Denver and Phoenix highly depends on the selected 

climate model. However, the basin characteristics of Phoenix have the highest sensitivity to 

climate change. Overall, the hydroclimatic conditions of Los Angeles, San Diego, Phoenix, 

Denver, and Houston have the highest sensitivity to climate change. 

This study can help environmental scientists, and land and water managers improve future 

land management plans. Understanding of future shifts in hydroclimatology of megaregions can 

also help decision-makers to attenuate negative consequences by implementing appropriate 

adaptation strategies, particularly in the water-scare megaregions. 

 
3.1.    Introduction 

The United States National Forest System includes National Forests (NFs) and National 

Grasslands (NGs), which are divided into eight regions in the conterminous United States 

(CONUS) managed by the U.S. Forest Service (USFS) (Joyce et al., 2008). The USFS provides a 

wide range of services for present and future generations that have broadened to include 

hydrological, ecological, social, economic, recreational, and aesthetic services (Bonan, 2008; 

Duan et al., 2016; Yannian, 1990). A challenge for the agency is that climate change may lead to 

shifts in hydroclimatic conditions of NFs and NGs, such as a decrease in freshwater availability 

and may cause changes in the structure and composition of forests and grasslands at various spatial 

and temporal scales (Allen et al., 2010; Astigarraga et al., 2020; Bonan, 2008; Esquivel-Muelbert 

et al., 2019; Jeong et al., 2016; Jump et al., 2017; McIntyre et al., 2015). Assessments of potential 

shifts in hydroclimatic conditions of NFs and NGs can help decision-makers to mitigate the 

negative consequences of deforestation (Peterson et al., 2011). 
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Furthermore, the conterminous United States (CONUS) can be divided into large 

contiguous geographical regions referred to as ‘megaregions’ centered on major cities (Nelson and 

Rae, 2016). The megaregions represent clusters of cities across the CONUS in terms of economic 

structures, culture, history, topography, natural resources, ecosystem, climate, urban growth 

telecommunication, and institutions (Hagler, 2009; Nelson, 2017; Nelson and Rae, 2016). Most of 

the U.S. population and economic growth has been concentrated in megaregions (Ross, 2008). 

Improving policies, planning, and investments at the megaregional scale can address new 

challenges arising around the large metropolitan centers that can affect environment, economy, 

and society (Nelson, 2017; Ross, 2008).  

Rapid population growth, expansion of suburban areas, social equity, strained ecosystems 

are key challenges that U.S. megaregions are currently experiencing (Ross, 2008). Climate change 

may further exacerbate existing problems in metropolitan and regional planning over the 21st 

century by negative impacts on energy sources, water supply, air quality, habitat preservation, 

ecosystem, and natural resources (Ashfaq et al., 2013; Ponce Campos et al., 2013; Greve et al., 

2014).  

Current megaregions planning strategies mostly focused to deal with issues such as 

transportations and underestimate the need to deal with future changes in climate and freshwater 

availability of megaregions (Dewar & Epstein, 2007). Improved characterization of future shifts 

in long-term hydroclimatology of U.S. megaregions may help planners, researchers, and decision-

makers to attenuate the potential consequences of climate change on cities and strengthen 

economic prosperity (Brown et al., 2019; Butler et al., 2017; McDonald et al., 2011).  

Thus, this study first characterizes changes in regional hydroclimatology and basin 

characteristics of NFs and NGs across the CONUS (Heidari et al., 2021). Climate change has 
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already affected forests and grasslands throughout the CONUS via changes in wildfire frequency, 

forest pathogens, insect populations, and timber resources (Fekety et al., 2020; Rehfeldt et al., 

2009; Weed et al., 2013; Westerling et al., 2006). Although significant progress has been made in 

understanding the effects of climate change on US forests and grasslands (Bonan, 2008; Esquivel-

Muelbert et al., 2019; Fekety et al., 2020; Littell et al., 2012; Rehfeldt et al., 2009; Yannian, 1990), 

there is a lack of comparative studies for assessing the impacts of climate change on regional 

hydroclimatic conditions and basin characteristics of NFs and NGs at the local and national scales 

(Littell et al., 2012). 

Second, this study examines the effects of climate change on the hydroclimatic conditions 

of fourteen U.S. megaregions including Seattle, San Francisco, Los Angeles, San Diego, Denver, 

Phoenix, Chicago, Miami, Washington D.C., Philadelphia, New York, Boston, Houston, and 

Atlanta. Assessing changes in long-term anomalies such as shifts in hydroclimatology may provide 

insights to support future water resource planning and management. It is important because many 

megaregions may do not have sufficient natural resources to overcome hydroclimatic changes, 

particularly in water-scarce regions (Maliva & Missimer, 2013).  

We applied the Budyko framework to compare shifts in the integrated hydroclimatic 

conditions of U.S. NFs, NGs, and megaregions. In addition, we used Fu’s equation (Zhang et al., 

2004) to assess how shifts in hydroclimatic conditions of NFs, NGs and megaregions can lead to 

changes in their integrative basin characteristics such as land cover, and vegetation cover. 

We estimated future changes in hydroclimatology of U.S. NFs, NGs, and megaregions in 

response to climate change from current conditions (1986-2015) to future conditions (2070-2099) 

for eight-digit hydrologic subbasins (HUC8) containing all or part of NFs and NGs under the DRY, 

MIDDLE, and WET climate models with RCP 8.5 emission scenario. Specifically, the objectives 
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were to: 1) assess shifts in long-term hydroclimatic conditions of NFs and NGs using the Budyko 

space; 2) characterize changes in basin characteristics of NFs and NGs in response to hydroclimatic 

changes using the Fu’s equation; 3) evaluate comparative responses of eight US Forest Service 

regions within the CONUS to climate change; 4) investigate the effects of climate change on 

hydroclimatic conditions of U.S. megaregions using the Budyko framework; 5) assess and 

compare shifts in basin characteristics of U.S. megaregions using Fu’s equation; 6) characterize 

shifts in climate types of U.S. megaregions using the Fine Gaussian Support Vector Machine 

(SVM) method; and 7) determine the hotspots of megaregions which show consistent changing 

signals across all selected climate models.  

Characterizing shifts in regional hydroclimatology of NFs and NGs can help forest 

managers adapt appropriately to impending stresses caused by climate change. Besides, improved 

understanding of future change in hydroclimatology of megaregions can play a major role in the 

future urban planning and water resource management under the sustainable growth.       

3.2.    Materials and Methods 

The downscaled Multivariate Adaptive Constructed Analogs (MACA) datasets 

(Abatzoglou & Brown, 2012) were used to characterize changes in future climate variables under 

three climate models representing future wet, dry, and intermediate conditions. Then, the Variable 

Infiltration Capacity (VIC) model (Liang et al., 1994) was applied to simulate future hydrological 

variables driven with the future climate scenarios. Finally, the Budyko framework was used to 

project shifts in hydroclimatic conditions, and Fu’s equation was used to help assess changes in 

integrative basin characteristics. In this study, the 30-yr average of hydroclimatic variables from 

1986 to 2015 represents current conditions and the 30-yr average of hydroclimatic variables from 

2070 to 2099 describes future conditions. 
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3.2.1.    U.S. National Forests and Grasslands 

The CONUS is divided into eight Forest Service Regions (Figure 3.1). Each region 

encompasses NFs and NGs with diverse landscapes, ecosystems, fauna, and flora (Bonan, 2008; 

Duan et al., 2016). Although the Southern region is the largest region, spanning from Texas to 

Virginia, most NFs and NGs are located in the western United States. The total NF+NG area is 

about 114 million ha that NFs account for nearly 98% of this total NF+NG area in the CONUS. 

 
Figure 3.1. NFs and NGs of the CONUS divided to eight service regions. 

 

3.2.2.    U.S. Megaregions 

The U.S. Megaregions are formed based on similar societal and geographical 

characteristics (Nelson and Rae, 2016). Cities inside each megaregion have common natural 

resources, ecosystem, settlement, and land use pattern. Fourteen U.S. megaregions were selected 
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from Nelson and Rae (2016) to assess the effects of climate change on hydroclimatology of U.S. 

megaregions (Figure 3.2). These megaregions were selected due to their importance and various 

eco-hydrologic and climatic regimes which represents a wide spectrum of climate, demographic, 

policy, and cultural settings (Todorovich, 2009). Boston, New York, Philadelphia, and Washington 

D.C. megaregions were merged as a large megaregion (WPHNB) given their geographical 

proximity. Similarly, Los Angeles and San Diego were combined to one LOS-SAN megaregion 

because of their similar hydroclimatic conditions. 

 

Figure 3.2. The Selected U.S. Megaregions. 

 

Nelson (2017) reported the projected population, and economy of the U.S. megaregions 

based on the Wood and Poole Economics (2016). Approximately, 76% of the U.S. population is 

concentrated in the megaregions, whereas the U.S. megaregions occupy only a small land area of 

the CONUS. Houston, Phoenix, and Miami megaregions were projected to experience the highest 

increase in population. The economic growth was measured by changes in gross regional product 

(GRP). Miami, Houston, and phoenix were estimated to experience double GRP (Nelson, 2017). 
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These regions encompass climate regimes from coastal moist mid-latitude climates of the 

Mid-Atlantic to the subtropical semi-arid deserts of the Southwest (Nelson and Rae 2016; Ross 

2008). However, climatic conditions of megaregions are estimated to change faster than the global 

mean climate over the 21st century (America 2050, 2006; Nelson 2017). 

3.2.3.    Hydroclimatic Projections 

Current climate variables (1986-2015) including minimum and maximum temperature and 

precipitation at the grid size of ~4 km (1/24 degree) were obtained from a combination of Daymet 

(Thornton et al., 1997a) and the Parameter-elevation Regressions on Independent Slopes Model 

(PRISM) datasets (Daly et al., 2008). The daily precipitation and temperature were derived from 

Daymet and biased corrected with PRISM at the monthly scale. The North American Regional 

Reanalysis (NARR) dataset (Mesinger et al., 2006) was used to obtain the historical wind speed 

data. Readers are referred to Oubeidillah et al. (2014), Naz et al. (2016), and Heidari et al. (2020b) 

for the detailed description of the historical climate dataset. 

Future climate variables (2070-2099) were obtained from the downscaled Multivariate 

Adaptive Constructed Analogs (MACA) datasets (Abatzoglou & Brown, 2012). The MACA 

climate dataset provides CONUS-wide downscaled (to the grid size of ~4km, or 1/24 degree) 

climate projections for the RCP 4.5 and RCP 8.5 emission scenarios for twenty climate models. 

Three downscaled climate models were chosen to represent a range of possible climate scenarios, 

on average, ranging from wet to dry, plus one model that represents the middle of the range (Table 

3.1) (Heidari et al., 2020b; Joyce & Coulson, 2020). The WET, DRY, and MIDDLE climate 

models under RCP 8.5 emission scenario were selected based on a range of changes in precipitation 

from current to future conditions. The use of these climate models allows to characterize the 

estimated range in projected annual precipitation across all projections for entire the CONUS. 
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Note, opposite patterns in individual ensemble members can originate from internal variability in 

the large-scale circulation (Deser et al., 2012, 2017; Kjellström et al., 2013).  

A good representation of current climate is indeed a necessary condition required to 

realistically simulate future climate changes. Figure B-1 compares the 30-yr average of annual 

precipitation for each HUC8 watershed over the historical period (1986-2015). The 30-yr average 

values for each HUC8 watershed are approximately the same meaning that the variation between 

climate models is not significant at the 30-yr average scale. Additionally, 30-yr average of climate 

models over the historical period is close to the selected baseline historical model that is the 

combination of Daymet and PRISM.  

Therefore, for the consistency over the historical period, we decided to use the combination 

of Daymet and PRISM models. The three climate models were able to reproduce current climate 

conditions with the same statistics. Although the 30-yr average values for the selected baseline is 

close to the historical MACA climate models, the performance, and skills of each selected GCM 

are not specifically evaluated in this study. Readers are referred to Naz et al. (2016), and Joyce & 

Coulson, (2020) for the detailed information about the climate models and historical projections.  

Table 3.1. Projected MACA climate scenarios (Joyce & Coulson, 2020). 

 WET DRY MIDDLE 

Name CNRM-CM5 
(RCP 8.5) 

IPSL-CM5A-MR 
(RCP 8.5)  

NorESM1-M 
(RCP 8.5) 

Model 

Agency 

National Centre 
of Meteorological 
Research, France 

Institute Pierre 
Simon Laplace, 

France 

Norwegian 
Climate Center, 

Norway 
 

The projected climatic variables were then used as inputs to the Variable Infiltration 

Capacity (VIC version 4.1) model (Liang et al., 1994) at the grid size of ~4 km (1/24 degree) to 

project precipitation, potential evapotranspiration, and water yield across the CONUS over the 21st 



43 
 

century at a HUC8 level scale. The VIC model is a macroscale semi-distributed hydrological 

model to simulate land-atmosphere fluxes and the water and energy balances at the land surface 

(Cherkauer & Lettenmaier, 2003). The VIC model has been widely used to simulate streamflow 

over a number of large river basins in North America (Andreadis & Lettenmaier, 2006). 

The VIC model uses the variable infiltration capacity curve to solve full water and energy 

balances and estimate infiltration and surface runoff. The model takes into account snow processes. 

The land surface can be modeled as a grid of uniform cells at a daily or sub-daily time step. Each 

grid cell can represent the spatial variability of precipitation, topography, and vegetation 

(Cherkauer & Lettenmaier, 2003). Several key assumptions have been made in the VIC model, 

including that the atmosphere is the only source of incoming water for a grid cell, and that grid 

cells are independent of each other meaning that there are no horizontal water and energy 

exchanges between grid cells (Demaria et al., 2007). 

Topography, soil characteristics, vegetation, land surface classification, and 

meteorological forcing are key hydrological inputs to the VIC model. Organized and calibrated 

VIC input data for the US Geological Survey (USGS) eight-digit hydrologic subbasins (HUC8) 

across the entire CONUS were obtained from Oubeidillah et al. (2014) (Oubeidillah et al., 2014). 

The VIC model uses the Penman–Monteith equation to estimate potential evapotranspiration.  

Aggregated monthly runoff data from USGS National Water Information System gauge 

observations (WaterWatch dataset) (Brakebill et al., 2011) was used to calibrate the VIC model 

for each HUC8 basin. Calibrating the VIC model using the WaterWatch monthly runoff data 

allows the homogenous application of the VIC model to all relevant grid cells. To calibrate the 

VIC model, the simulated monthly total streamflow (surface runoff plus baseflow) of each HUC8 

basin was matched with the monthly runoff from the USGS WaterWatch runoff dataset. Readers 
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are referred to Oubeidillah et al., (2014) and Naz et al. (2016) for the detailed description of the 

VIC model set up, calibration, and evaluation. The daily hydroclimatic outputs were then 

aggregated to annual values at each HUC8 unit for evaluation. Figure B-2 compares the observed 

versus simulated annual water yield for each NFs and NGs from 1986 to 2015 period. The VIC 

model shows a strong linear correlation (0.9799) between observed and simulated mean annual 

water yield. 

3.2.4.    Movements in the Budyko Space 

The combined changes in hydroclimatic variables can be characterized by movements in 

the Budyko space (Budyko, 1974, 1982). The x-axis in the Budyko space shows the aridity index 

defined as:  

𝐴𝑟𝑖𝑑𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 = 𝑃𝐸𝑇𝑃  (3.1) 

and the y-axis in the Budyko space characterizes the evaporative index defined as: 

𝐸𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑖𝑣𝑒 𝐼𝑛𝑑𝑒𝑥 = 𝑃 − 𝑄𝑃  (3.2) 

where 𝑃𝐸𝑇, 𝑃, and 𝑄 are respectively potential evapotranspiration, precipitation, and water yield. 𝑃 − 𝑄 in Equation 3.2 can be simplified to actual evapotranspiration (Heidari et al., 2020b). 

Movements in the Budyko space over time from current conditions to future conditions can 

be a combination of shifts in aridity index (∆𝑥) and evaporative index (∆𝑦). Improved 

understanding of the relative contribution of such drivers is a challenge to comprehensively 

characterize changes in future hydroclimatic conditions and basin characteristics in response to 

climate change. The movement can be described by a direction (𝐷) and magnitude (𝑀) defined 

as (Heidari et al., 2020a):  
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𝐷 = 𝑎𝑟𝑐𝑡𝑎𝑛(∆𝑦∆𝑥) (3.3) 

𝑀 = √𝑥2 + 𝑦2 (3.4) 

 

where the direction of movements identifies regional differentiation and magnitude of movements 

describes sensitivity in response to climate change (Van der Velde et al., 2014).  

 

Figure 3.3. Characterization of magnitude and direction of movements in the Budyko space.  

 

A river basin may move toward the right (D = 0) in the Budyko space over time by increase 

in the aridity index, meaning that the climatic condition gets more arid. Conversely, a river basin 

may move toward the left (D = 180) by decrease in aridity index, indicating that the climatic regime 

becomes less arid. Additionally, a river basin may move upward (D = 90) over time by increasing 

evaporative index indicating lower river discharge, or downward (D = 270) indicating higher 

freshwater availability and lower evaporation. Direction of movement in the Budyko space can be 

representative of regional differentiation in response to climate change.  

Magnitude of change in the Budyko space can be representative of sensitivity of a river 

basin to climate change. Basins with high magnitude of change are more prone to experience 



46 
 

prolonged drought or long-term wetting period which can considerably affect their water and 

natural resources. Readers are also referred to Heidari et al., (2020b) for further explanation of 

movements in the Budyko space. In this study, we obtained the current and future PET, P, and Q 

from the VIC model and applied Equations 3.1 to 3.4 to estimate shifts in the Budyko space of 

NFs and NGs across the CONUS from current to future periods. Note that the PET obtained from 

the VIC model is potential evapotranspiration from open water. It was assumed that there is 

sufficient open water supply so that the PET values are the maximum (potential) 

evapotranspiration capacity.   

3.2.5.    Changes in Basin Characteristics 

Previous studies have proposed several analytical equations describing relationships 

between the aridity and evaporative indices, including the Fu’s one-parameter equation (Zhang et 

al., 2004). Fu’s equation accounts for influencing factors such as basin size, seasonal variability, 

and soil and vegetation characteristics that can affect the relationship. Fu’s equation is defined as: 

𝑃 − 𝑄𝑃 = 1 + 𝑃𝐸𝑇𝑃 − [1 + (𝑃𝐸𝑇𝑃 )𝜔]1𝜔 (3.5) 

 

where ω is a free parameter that has no physical meaning (Figure 3.3). The ω free parameter can 

represent an integrative property of the catchment that globally ranges between 1.3 to 4.6 with a 

median value at 1.8 (Yue et al., 2013). Previous studies reported that differences in ω are highly 

correlated with differences in land cover, vegetation cover, basin slope, and area (Coe et al., 2011; 

Zhang & Wei, 2012; Zhao et al., 2009; Zhou et al., 2015). 
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A Region with a sufficiently high ω is energy-limited, while a region with a sufficiently 

small ω is water-limited. In a water-limited region, forests have deeper and larger root systems 

that help them access more soil water (Zhou et al., 2015). The basin and vegetation characteristics 

of a region with small ω (i.e. a water-limited region) can be more affected by hydroclimatic 

changes (Li et al., 2019). Characterizing change in ω provides an understanding of how long-term 

climate and hydrological changes interactively affect forests, grasslands, and megaregions (Zhou 

et al., 2015). In this study, shifts in ω of NFs, NGs, and megaregions from current to future 

conditions was used to represent changes in integrative properties such as land cover, vegetation 

cover, and climate conditions. 

Under stationary climatic conditions, the parameter Omega in Fu's equation is primarily 

governed by surface vegetation. However, long-term changes in climate normal (e.g., 30-yr 

average annual temperature, precipitation, relative humidity) beet changes in hydroclimatic indices 

in the Budyko space. Thus, the current study characterized these climatic influences while surface 

vegetation is kept the same as the control period. Significant changes in the integrative basin 

properties of U.S. megaregions may considerably affect future agricultural, economic, social, 

ecosystemic and environmental activities, especially in the megaregions with insufficient natural 

and water resources and rapid population and economic growth. 

3.2.6.    Changes in the Regional Climate Zones 

The Koppen climate classification has been widely used to divide the United States to main 

climate groups including Arid, Temperate, Continental, and Tropical based on the empirical 

relationship between climate and vegetation (Chen & Chen, 2013). However, megaregions may 

shift from one type to another in the future. To understand this, we first determined the major 

regional climate zone of each HUC8 river basin (Figure B-3.a). Then, the Fine Gaussian SVM 
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(Cristianini & Shawe-Taylor, 2000) was applied to divide the Budyko space into three regions 

based on the Koppen Climate Classification and current aridity and evaporative indices. Koppen 

Climate Classification-Level1 has a high accuracy (76.2%) to classify Budyko space to three 

Regions. Figure B-3.b provides classification of the Budyko space based on the Koppen climate 

classification. Figure B-3.c illustrates the classified climate zones using the Fine Gaussian SVM. 

Arid region is pretty close to the water limited condition while the temperate region is close 

to the energy limited condition, and the Continental region is somewhere between the Arid and 

Temperate regions. In this study, spatial changes in climate types of the U.S. megaregions were 

projected using shifts in the Budyko space. The economic and population growths of U.S. 

megaregions can be highly influenced by climate change, especially in regions that are likely to 

experience new climate regime in the future. Rapid population and economic growth combined 

with considerable shifts in climate and water resources in the megaregions may beget irrecoverable 

consequences at national scale. Planners, policy makers and politicians may improve preparedness 

by providing an insight to future changes in advance and implementing adaptation and mitigation 

strategies. 

3.3.    Results  

This section summarizes changes in regional hydroclimatic conditions from the past period 

(1986-2015) to future period (2070-2099) for groups of NFs and NGs in eight National Forest 

service regions. Changes in hydroclimatic conditions of NFs and NGs were assessed by 

characterizing the direction and magnitude of shifts in the Budyko space. Finally, Fu’s equation 

was applied to determine hotspot regions with the highest change in their basin characteristics. The 

results for NFs and NGs reported below are precisely for HUC8 watersheds containing all or part 

of NFs and NGs. 
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In addition, the hydroclimatology of U.S. megaregions may respond differently to future 

climate change. While some regions such as Houston are more likely to experience long-term 

drying periods in the future, some regions such as Los Angeles, San Diego, and San Francisco are 

more likely to experience long-term wetting periods in the future. Besides, the megaregions like 

Phoenix may have significant changes in their integrative basin characteristics. The climate types 

of basins in Seattle and Houston have respectively the lowest and highest shifts in response to 

climate change. This section is aimed to provide an improved understanding of the effects of 

climate change on hydroclimatic conditions and basin characteristics of fourteen U.S. 

megaregions. 

3.3.1.    Changes in Hydroclimatic Conditions of U.S. NFs and NGs 

Table 3.2 summarizes average precipitation (PCP), water yield (YIELD), and potential 

evapotranspiration (PET) for NFs and NGs and the entire CONUS for the current (1986-2015) 

period from the combination of DAYMET and PRISM dataset. Values for HUC8s that include 

any proportion of NFs and NGs lands are area-weighted by fractional HUC area to make a 

comparison. The 30-year average of precipitation and water yield of NFs are above the CONUS 

average. However, the amounts of precipitation and water yield in NGs are considerably lower 

than the CONUS average. Although most NGs are in areas with low precipitation and water yield 

compared to the NFs, the 30-year averages of potential evapotranspiration of NFs and NGs are 

relatively close (Table 3.2). A higher proportion of precipitation was converted to water yield in 

the NFs than in the CONUS as a whole, confirming that NFs tend to be an important source of 

water yield. 
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Table 3.2. 30-year average of hydroclimatic variables under current conditions. 

Type 

PCP 

(mm) 

YIELD 

(mm) 

PET 

(mm) 

NFs 909 400 1533 
NGs 426 25 1523 

CONUS 876 301 1617 
 

Table 3.3 shows percentage changes in hydroclimatic variables of NFs and NGs from 

current conditions (1986-2015) to future conditions (2070-2099) under the MIDDLE, DRY, and 

WET scenarios. The 30-yr average precipitation of NFs increases under all three scenarios, and of 

NGs increases under the WET and MIDDLE scenarios. In contrast, average precipitation decreases 

for NGs under the DRY scenario, as it does for CONUS. 

Projected changes in water yield among the three scenarios largely reflect the changes 

precipitation, with increases projected for the MIDDLE and WET scenarios in the CONUS as well 

as in NFs and NGs, and decreases projected for the DRY scenario for CONUS and NGs. The 

exception is NFs under the DRY scenario, where average water yield decreases despite a small 

average increase in precipitation.  

Table 3.3. Changes in hydroclimatic variables of NFs, NGs, and CONUS from current conditions to 
future conditions (in percent). 

Climate 

models Type PCP (%) YIELD (%) PET (%) 

MIDDLE NFs 13.51 8.05 0.80 

 NGs 11.41 12.47 2.19 
  CONUS 9.11 12.26 2.41 

DRY NFs 1.98 -8.76 3.34 

 NGs -2.81 -12.20 3.62 
  CONUS -6.63 -12.46 5.01 

WET NFs 18.22 21.38 -0.92 

 NGs 10.63 18.99 -0.30 
  CONUS 15.86 36.87 -0.48 
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The percentage change in average potential evapotranspiration is small compared to 

changes in the other hydroclimatic variables. While potential evapotranspiration increases under 

the MIDDLE and DRY scenarios for all NFs and NGs, it consistently decreases under the WET 

scenario. Although NGs have higher changes in the average potential evapotranspiration and water 

yield under MIDDLE and DRY scenarios, NFs see greater changes in potential evapotranspiration 

and water yield under the WET scenario. 

Figures 3.4 and 3.5 illustrate spatial changes from the current to future time period in 

precipitation, potential evapotranspiration, and water yield of USFS land (NFs and NGs) of the 

eight USF regions of the CONUS. As shown in Figure 3.4, the direction and magnitude of changes 

in all three variables of most regions highly depends on the selected future climate model. 

Regarding the direction in average precipitation, for instance, in the Southwestern, Rocky 

Mountain, and Southern regions precipitation increases for the WET scenario and decreases under 

the DRY scenario, but consistently increases in the Northern, Intermountain, Pacific Southwest, 

Pacific Northwest, and Eastern regions. 
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Figure 3.4. Changes in precipitation, PET, and water yield of NFs and NGs within USFS regions from 

current conditions to future conditions. 

 

Despite the variability across future scenario, at least two findings stand out. First, 

precipitation is projected to increase in most regions under all three scenarios but decrease 

substantially in two regions (Southwestern and Southern) under the DRY scenario. Second, water 

yield is projected to increase under the WET and MIDDLE scenarios in all but one case 

(Southwestern under the MIDDLE scenario) and to decrease in five regions under the DRY 

scenario, with large percentage decreases in the Southwestern and Southern regions. Note, the 

DRY, MIDDLE, and WET climate models reflect conditions in general, not necessarily in every 

region. 
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Figure 3.5. Maps of percent changes in precipitation, PET, and water yield of NFs and NGs regions from 

current conditions to future conditions under the DRY, MIDDLE and WET scenarios. 

 

The NFs in high mountainous regions will experience higher changes in hydroclimatic 

variables than NGs and NFs at lower elevations (Figure 3.5). However, the direction of change 

varies based on the selected future climate model. Precipitation, PET, and water yield for the high 

mountainous NFs are likely to experience the largest changes in response to climate change. Table 

B-1 provides percentage changes in precipitation, potential evapotranspiration, and water yield of 

U.S. national forests and grasslands under WET, MID, and DRY climate scenarios in details.  

The Wilcoxon signed-ranked test was used to assess the significance of the future changes 

in PCP, PET, and Yield under DRY, MIDDLE, and WET scenarios at the 5% significance level 

(Table B-2). Under the WET scenario, change in PCP is significant in most NFs and NGs within 

the Pacific Southwest, Intermountain, Southwestern, Eastern, and Southern regions. Change in 

PET is statistically significant for most NFs and NGs located in the Rocky Mountain and Northern 
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regions. Changes in Yield is significant in most regions within the Pacific Southwest and Pacific 

Northwest. Under the MIDDLE scenario, change in PCP is statistically significant in most NFs 

and NGs within the Northern and Intermountain regions. Change in PET is significant for most 

NFs and NGs located in the Southwestern, Southern, and Eastern regions. Changes in Yield is 

significant in most regions within the Southwestern and Pacific Northwest regions. Under the DRY 

scenario, change in PCP is significant in most NFs and NGs within the Southern, Rocky Mountain, 

and Southwestern regions. Change in PET is statistically significant for most NFs and NGs located 

in the Eastern, Southern, Rocky Mountain, Southern, and Intermountain regions. Changes in Yield 

is significant in most regions within the Southern, Southwestern, and Pacific Northwest regions. 

Figures 3.6 shows the current aridity and evaporative indices of the NGs and NFs, and 

Figure 3.7 presents the averages of the current aridity and evaporative indices of the eight USFS 

regions. The NFs and NGs within the Southwestern, Rocky Mountain, and Intermountain regions 

currently have the most arid conditions along with the highest evaporative index. In contrast, the 

Southern, Eastern, and Pacific Northwest regions have the lowest aridity index and, along with the 

Pacific Southwest region, the lowest evaporative index, meaning that USFS and in these regions 

currently have generally a less arid climate with higher freshwater availability. 

 
Figure 3.6. Current aridity and evaporative indices of NFs and NGs. 
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Figure 3.7. Current aridity and evaporative indices of NFs and NGs within USFS regions. 

 

Figures 3.8 provides changes in the aridity and evaporative indices of NGs and NFs, and 

Figure 3.9 (right panel) shows changes in the average aridity and evaporative indices of those areas 

within the eight USFS regions. The Eastern, Southern, and Pacific Northwest regions, which are 

less arid under current conditions, are more likely to experience small changes in the aridity index 

under the future conditions. 

 
Figure 3.8. Changes in aridity and evaporative indices of NGs and NFs from current to future conditions. 
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Although the USFS lands of the Northern, Pacific Northwest, Southern, and Eastern 

regions, which are least arid under current conditions, are projected to incur only minor changes 

in aridity index under all three scenarios, the Southwestern, Intermountain, and Pacific Southwest 

regions are more likely to experience higher change in aridity index, especially under selected 

scenarios. The Intermountain, Pacific Southwest, and Pacific Northwest regions consistently are 

projected to experience a decrease in aridity index, meaning that they are likely to be less arid in 

the future. However, the Southwestern region under the DRY climate scenario shows the highest 

increase in aridity index, of approximately 5% meaning that this USFS region is vulnerable to a 

more highly arid condition in the future.  

An increase in the evaporative index indicates that more of the available precipitation is 

evaporated than under current conditions. The generally increasing evaporative index among the 

regions and scenarios reflects the overall increase in projected temperature and thus energy for 

evaporation (plus in some cases the decrease in precipitation). 

The significance of the future changes in the aridity and evaporative indices was assessed 

using the Wilcoxon signed-ranked test at the 5% significance level under DRY, MIDDLE, and 

WET scenarios (Table B-3). Under the WET scenario, change in aridity index is significant in 

most NFs and NGs within the Rocky Mountain, Intermountain, Pacific Southwest, and Northern 

regions. Change in evaporative index is statistically significant for most NFs and NGs located in 

the Pacific Southwest, Pacific Northwest, and Northern regions. Under the MIDDLE scenario, 

change in aridity index is statistically significant in most NFs and NGs within the Northern, 

Intermountain, and Pacific Southwest regions. Change in evaporative index is significant for most 

NFs and NGs located in Rocky Mountain, Southwestern, and Northern regions. Under the DRY 

scenario, change in aridity index is statistically significant in most NFs and NGs within the 
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Southwestern, Southern, Rocky Mountain regions. Change in evaporative index is statistically 

significant for most NFs and NGs located in the Southern, Eastern, Rocky Mountain, Northern, 

Southwestern, and Pacific Northwest regions. 

Figure 3.9 (left panel) shows in the Budyko space the changes depicted in Figure 3.9 (right 

panel) using the Forest Service region numbers. The hydroclimatology of the Northern, 

Intermountain, Pacific Southwest, and Pacific Northwest regions show the most consistency across 

the three climate scenarios. While the Northern, Intermountain, and Pacific Northwest regions are 

projected to experience less arid condition but with lower freshwater availability, the Pacific 

Southwest region is projected (under the WET and DRY scenarios) to move to the lower-left, 

meaning less arid conditions and higher freshwater availability. Long-term changes in the 

hydroclimatology of the Rocky Mountain, Southwestern, Southern, and Eastern regions vary in 

aridity index across the three scenarios, with aridity consistently decreasing under the WET 

scenario and increasing under the DRY scenario, with variable results under the MIDDLE 

scenario. 

 

Figure 3.9. Changes in aridity index, evaporative index, and Budyko space of NFs and NGs within USFS 
regions from current to future conditions. 
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Under the WET scenario, all forest service regions move to the left meaning less arid 

conditions in the future. However, the USFS regions located in the Central and Western United 

States have a higher magnitude of changes indicating that these regions are more sensitive to 

climate change. 

Under the MIDDLE scenario, similar to the WET scenario, most USFS regions move to 

the left. However, the magnitude of movements is smaller than in the WET scenario. Besides, the 

NFs and NGs within the Southwestern region behave differently under the MIDDLE scenario. 

Movements within the Southwestern region are more likely to the right indicating that this region 

may experience drier hydroclimatic conditions in the future.  

Under the DRY scenario, the Eastern, Southern, Rocky Mountain, Southwestern regions 

consistently show drier conditions with less water yield with the highest magnitude in the 

Southwestern and Southern regions, respectively. NFs and NGs within the Northern, Pacific 

Northwest and Intermountain regions behave differently under the DRY scenario. However, 

movements within the Pacific Southwest region are to the left indicating that this region is more 

likely to experience less arid hydroclimatic conditions in the future. 

Our findings are sensitive to the choice of climate model. The results presented in this study 

under DRY, MIDDLE and WET climate models are indicative of the effect the uncertainty 

associated with future climate change impacts on the hydroclimatology of U.S. NFs and NGs. 

Under all three scenarios, the Southwestern region has a high magnitude of change meaning that 

its hydroclimatic conditions have high sensitivity to future climate change. While the Southwestern 

region is getting warmer and drier with a high magnitude of change under the DRY and MIDDLE 
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scenarios, it is more likely to experience wetter and less arid hydroclimate conditions with high 

magnitude under the WET scenario. 

In addition to the average magnitude and direction of each USFS region, we assessed the 

distribution of changes in frequency, magnitude, and direction of each region using the wind rose 

diagram (Figures B-4 to B-6). The wind rose diagram visualizes the summary of movements in 

the Budyko space for the 8-digit hydrologic unit (HUC8) river basins within NFs and NGs. This 

type of diagram has been used in global hydroclimatic change assessments (Destouni et al., 2013). 

Figures B-4 to B-6 provide wind rose diagrams of movements in the Budyko space under WET, 

MIDDLE, and DRY scenarios, respectively. 

Figure B-7 compares changes in hydroclimatic conditions of NFs with NGs under the 

WET, MIDDLE, and DRY scenarios. Based on the wind rose diagrams under the DRY climate 

model, movements of river basins within US NGs are more likely to occur in the directions 

represented by the right quadrants of the rose diagram. The results indicate that most river basins 

in the NGs have a low magnitude of changes. However, under the MIDDLE and WET scenarios, 

river basin movements within both NGs and NFs are likely to occur in the directions represented 

by the left quadrant of the rose diagram. Although NFs are more likely to experience a higher 

magnitude of change under the WET scenario, NGs have a higher magnitude of change under the 

MIDDLE scenario. Table B-4 provides changes in the direction and magnitude of each U.S. NFs 

and NGs in the Budyko space under the WET, MID, and DRY scenarios. 

3.3.2.    Changes in Basin Characteristics of U.S. NFs and NGs 

Changes in integrative properties of basins in response to hydroclimatic shifts can be 

represented by changes in ω of Fu’s equation (Equation 3.5). Change over time in ω of a HUC8 

could demonstrate changes in integrative properties of NFs and NGs such as differences in land 
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cover, vegetation cover, and climate Table 3.4 represents current and future average ω of NFs and 

NGs across the CONUS. The change in ω from the current to the future period is small under all 

three climate scenarios. Under all three climate scenarios, NFs have larger changes in ω than NGs, 

meaning that NFs are more likely to experience higher changes in their basin characteristics 

compared to NGs assuming that a specific amount of change in omega has the same effect on 

likelihood of shift in characteristics in all USFS regions and both forests and grasslands. 

Additionally, under the WET and MIDDLE climate scenarios, an increase in ω for NFs and NGs 

is above the CONUS average, indicating that they may experience higher shifts in their properties 

compared to other regions. Under the DRY scenario, although NFs have higher changes in ω, 

change in ω of NGs is below the CONUS average. NFs under all three climate scenarios and NGs 

under the WET, and MIDDLE climate scenarios experience increasing ω while NGs and CONUS 

average have minor decrease in the ω under the DRY climate scenario. 

Table 3.4. Current and future ω of Fu’s equation for the NGs and NFs. 

Types Current WET MID DRY 

Forest 1.82 1.924 1.939 1.927 
Grassland 2.95 3.049 3.061 2.949 
CONUS 2.135 2.162 2.159 2.133 

 

Table 3.5 provides current and future ω of Fu’s equation for the eight USFS regions under 

the WET, MIDDLE, DRY scenarios. The ω for eight regions is nearly always increasing under 

three climate scenarios, the main exception being the decrease in ω of the Southwestern region 

under the DRY climate scenario. The ω in the Eastern, Southern, Pacific Northwest, and Pacific 

Southwest regions changes only slightly, indicating that these regions are more likely to experience 

only minor shifts in the basin characteristics. However, the Southwestern, Northern, 
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Intermountain, and Rocky Mountain regions are more likely to experience higher shifts in their 

physiographic and ecological characteristics. 

Table 3.5. Changes in ω of Fu’s equation for the Forest Service regions. 

Forest Service 

region Current WET MIDDLE DRY 

Northern 1.80 1.91 1.92 1.95 
Rocky Mountain 2.41 2.49 2.56 2.48 

Southwestern 2.21 2.36 2.40 2.11 
Intermountain 1.68 1.79 1.82 1.73 

Pacific Southwest 1.61 1.66 1.67 1.65 
Pacific Northwest 1.38 1.44 1.43 1.45 

Southern 2.00 2.05 2.01 2.04 
Eastern 1.71 1.71 1.71 1.74 

 

In this study, we assessed changes in ω from current conditions to future conditions to find 

which NFs and NGs are more prone to be affected by long-term hydroclimatic changes. The NFs 

and NGs with larger changes in ω are likely to experience higher moving in the direction of a shift 

in integrative properties of basin. Thus, we figured out which US Forest Service regions have the 

highest sensitivity to experience considerable shifts in the structure and composition of forests and 

grasslands. 

3.3.3.    Changes in Hydroclimatic Conditions of U.S. Megaregions 

The historic hydroclimatic conditions including the 30-year average of precipitation, 

evaporation, water yield, evapotranspiration, and temperature of the fourteen U.S. megaregions 

are shown in Figure B-8. Overall, Seattle has the highest amount of precipitation and water yield. 

Los Angeles, San Diego (LOS-SAN), Phoenix, and Denver have the lowest amount of historic 

precipitation, water yield, and evaporation. Miami, Houston, and Atlanta have the highest amount 

of evaporation and temperature. The variation in 30-year potential evapotranspiration of U.S. 
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megaregions is comparatively small compared to other hydroclimatic variables. Seattle has the 

lowest amount of potential evapotranspiration among all U.S. megaregions.  

Changes in hydroclimatic conditions of U.S. megaregions from current (1986-2015) to 

future (2070-2099) periods are provided in Figure B-9 using DRY, MIDDLE, and WET climate 

models. Los Angeles, San Diego (LOS-SAN), San Francisco, and Phoenix have respectively the 

highest changes in precipitation. The precipitation and water yield in Los Angeles, San Diego 

(LOS-SAN), San Francisco, Washington D.C, Philadelphia, New York, Boston (WPHNB), and 

Seattle are more likely to consistently increase under all three climate models. Houston is more 

likely to experience a consistent decrease in precipitation and water yield under the three climate 

models. However, change in 30-year average precipitation and water yield of Phoenix, Denver, 

Miami, and Atlanta highly depends on the future climate model.  

The potential evapotranspiration in Houston, Washington D.C, Philadelphia, New York, 

Boston (WPHNB), and Seattle is more likely to increase from current to future conditions. 

Although San Francisco is more likely to experience small changes in potential evapotranspiration, 

Phoenix, Denver, Miami, Atlanta, Los Angeles, San Diego, and Chicago shows various responses 

in potential evapotranspiration based on the future different climate model. 

The current aridity and evaporative indices of U.S. megaregions are illustrated in Figure 

B-10. Los Angeles, San Diego (LOS-SAN), Phoenix, Denver, and San Francisco have a high 

aridity index indicating that these regions are more limited by water availability. Additionally, 

these regions have a high evaporative index meaning that a considerable amount of precipitation 

is likely to evaporate from these regions.  
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Other U.S. megaregions including Chicago, Miami, Houston, Atlanta, Washington D.C, 

Philadelphia, New York, Boston (WPHNB), and Seattle have around the same aridity index under 

the current climate conditions. However, Chicago, Miami, Houston, and Atlanta have a higher 

evaporative index compared to Washington D.C, Philadelphia, New York, Boston (WPHNB), and 

Seattle. The finding indicates that while these regions have the same ratio of potential 

evapotranspiration to precipitation under current conditions, water yield (or streamflow) is lower 

in Washington D.C, Philadelphia, New York, Boston (WPHNB), and Seattle. 

Figure 3.10 shows changes in aridity and evaporative indices of U.S. megaregions in 

response to future climate change. Although variability in the projection of future hydroclimatic 

shifts is dominated by variability in climate change scenarios, projected changes in future 

hydroclimatology of U.S. megaregions showed some consistency across climate change models in 

terms of the direction and magnitude of changes. 

Changes of aridity index are projected to be small in Seattle, Chicago, Miami, Washington 

D.C, Philadelphia, New York, Boston (WPHNB), and Atlanta, indicating that climate change may 

have relatively small impacts on regional climatology in these regions. However, the aridity index 

of Los Angeles, San Diego, and San Francisco are projected to increase consistently across DRY, 

WET, and MIDDLE climate models. This finding indicates that these regions are more likely to 

experience less arid climate conditions in the future.  

The aridity index of Denver and Phoenix is highly dependent on climate models. While the 

aridity index may increase under the DRY climate model, it may remain constant under the 

MIDDLE climate model and decrease under the WET climate model. However, Houston is the 

only megaregion that consistently have an increasing aridity index under the three climate models, 
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indicating that Houston is more likely to have more arid climatic conditions by the end of the 

century.  

 

Figure 3.10. Change in 30-year average of hydroclimatic indices of the U.S. megaregions from current to 
future conditions. 

 

Houston and Seattle are the only megaregions that show consistently increasing 

evaporative index, indicating that river discharge is more likely to decrease in these regions in the 

future. The evaporative index of other regions highly depends on the future climate model. While 

Denver, Washington D.C, Philadelphia, New York, Boston (WPHNB), and Phoenix show the 

lowest change in evaporative index in response to climate change under all three climate models, 

the evaporative index of San Francisco, Los Angeles, San Diego, Chicago, Atlanta, and Miami is 

highly variable in the future according to the selected climate model. 
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Figure 3.11. The average movements of U.S. Megaregions from current to future climate conditions. 

 

Figure 3.11 shows the movement of each megaregion in the Budyko space under the DRY, 

MIDDLE, and WET climate models as the representation of changes in hydroclimatic conditions 

of each region. Houston is moving to the upper-right quadrant of the Budyko space under the three 

climate models meaning that Houston is more likely to get warmer and drier in the future. San 

Francisco, Los Angeles, San Diego (LOS-SAN), Washington D.C, Philadelphia, New York, 

Boston (WPHNB) are moving to the left quadrant of the Budyko space under the three climate 

models indicating that these regions are more likely to experience less arid climatic conditions in 

the future. Seattle is moving to the upper-left quadrant of the Budyko space under the three climate 

models meaning that the evaporative index is increasing while the aridity index is decreasing. 

3.3.4.    Changes in Basin Characteristics of U.S. Megaregions 

In this section, we used the Fu’s equation to characterize the effect of hydroclimatic change 

on basin characteristics of U.S. megaregion using the DRY, MIDDLE, and WET climate model. 

The basin characteristics of megaregions with a higher percentage of changes in ω are more 

sensitive to future estimated hydroclimatic change. Table 3.6 provides current and future ω under 
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the DRY, MIDDLE, and WET climate model for the fourteen U.S. megaregions. Changes in ω 

can be a sign for shifts in ecology, land cover, and vegetation cover (Coe et al., 2011; Zhang and 

Wei, 2012; Zhao et al., 2009; Zhou et al., 2015).  

Table 3.6. Current and future ω of U.S. megaregion. 

Mega region Current WET MIDDLE         DRY 

Seattle 1.31 1.38 (+5%) 1.35 (3%) 1.39 (6%) 

San Francisco 1.53 1.50 (-2%) 1.57 (3%) 1.50 (-2%) 

LOS-SAN 1.53 1.52 (-1%) 1.62 (6%) 1.45 (-5%) 

Denver 2.18 2.25 (3%) 2.27 (4%) 2.16 (-1%) 

Phoenix 2.15 2.25 (5%) 2.40 (12%) 2.03 (-6%) 

Chicago 1.82 1.74 (-4%) 1.71 (-6%) 1.88 (3%) 

Miami 2.46 2.49 (1%) 2.52 (2%) 2.44 (-1%) 

WPHNB 1.69 1.74 (3%) 1.74 (3%) 1.73 (2%) 

Houston 2.14 2.19 (2%) 2.14 (0%) 2.17 (1%) 

Atlanta 1.98 2.06 (4%) 2.04(3%) 2.07 (5%) 

 

Phoenix has the highest change in ω under all climate models, indicating that the basin 

characteristics of Phoenix are likely to experience higher shifts in response to the future 

hydroclimatic changes. Houston, San Francisco, Miami, Washington D.C, Philadelphia, New 

York, Boston (WPHNB) has comparatively lower changes in ω meaning that the basin 

characteristics of these regions are less sensitive to future hydroclimatic changes.  

In this study, we focused on applying Fu’s equation to characterize the U.S. megaregions 

that have the highest change in their basin characteristics in response to future hydroclimatic 

changes. Finding a statistical correlation between ω and various basin characteristics such as slope, 

physiography, ecology, landcover is more complicated and beyond the scope of this study. 

3.3.5.    Spatial Changes in the Climate Types of U.S. Megaregions 

Changes in the spatial extent of climate types were also characterized by changes in the 

areas occupied by the Koppen climate types (Figure 3.12). The light-yellow color shows the 
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regions with no changes in their climate types. Under the WET and MIDDLE scenarios few HUC8 

basins show change in climate classification. Under all three climate scenarios, some basins in the 

Washington D.C, Philadelphia, New York, and Boston (WPHNB) are projected to change from 

Continental to Temperate climate type. Under the WET scenario, some basins in Denver, Los 

Angeles, San Diego, Phoenix, and San Francisco megaregions are likely to change from Arid to 

Continental climate type. However, under the MIDDLE scenario, some basins in Los Angeles, 

San Diego, Phoenix, and Denver may experience shift from Continental to Arid. 

 

Figure 3.12. Shift in the U.S climate zones under three climate change scenarios (The light-yellow 
color shows the regions with no changes in their climate types). 

 

Under the DRY climate scenario, most basins in Houston are likely to experience shifts in 

their climate type from Continental to Arid, or from Temperate to Continental. Additionally, most 
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basins in Atlanta are projected to change from Temperate to Continental. Some basins in Denver 

megaregion are likely to change from Continental to Arid climate type. 

3.4.    Discussion 

Although the results of this study provide some possible insights about the potential 

hydroclimate changes in the U.S. NFs, NGs, and megaregions, a variety of uncertainties associated 

with climate models, emission scenarios, downscaling methods, hydroclimatic projections, and 

hydrological models are not considered in the current study. Thus, although the finding of this 

study provides an improved understanding of future hydroclimatology and basin characteristics of 

U.S. megaregions, NFs, and NGs, it is not an exact prediction of future conditions. 

The results are subject to several sources of uncertainty, including those introduced by the 

choice of the climate models and the hydrological models we used. Climate models are uncertain 

because they highly depend on future anthropogenic and natural forcing scenarios. Besides, the 

future climate projections can be affected by the existence of internal climate variability and 

incomplete understanding and imprecise climate models (Wyard et al., 2020; Collins et al., 2020). 

Using ensemble simulation rather than specific climate scenarios can be a prospect for this study 

to assess decrease in climate model variability. 

We focused on a range of possible future climate conditions, from driest to wettest, to 

account for current uncertainty about long-term future climatic conditions. Although variability in 

the projection of future climate conditions can be affected by some sources of uncertainty and 

variability in climate change scenarios, projected shifts in hydroclimatic conditions of some NFs, 

NGs, megaregions showed some consistency across climate change models in terms of the 

direction and magnitude of changes.  
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In addition to the uncertainty in the choice of climate models, some uncertainties remain, 

related to the hydrological model. The VIC model may not capture all physical basin 

characteristics, water management regulations, landcover changes (Naz et al., 2016). Besides, 

there are some uncertainties associated with parameters of the VIC model and structural 

deficiencies of the model simulation (Gharari et al., 2019, 2020; Melsen et al., 2016). Using 

multiple hydrologic models can be a prospect for this study to evaluate the modeling uncertainty 

associated with the role of hydrological models in hydroclimatic changes assessment (Oubeidillah 

et al., 2014). Furthermore, estimated changes in ω can originate from the assumptions associated 

to Fu’s equation. 

The hydroclimatology of U.S. megaregions can be influenced by anthropogenic factors 

such as rapid population growth. In the absence of any adaptive urban adaptation strategies, such 

as green, cool roof, and hybrid approaches, the temperature is expected to raise in response to the 

greenhouse gas-induced forcing (Benson-Lira et al., 2016; Georgescu et al., 2014). Increasing 

temperature itself can lead to shifts in hydroclimatic conditions of U.S. megaregions. Additionally, 

reservoir regulation and interbasin water transferred to support each megaregion was also not 

specifically addressed. 

We only focused on the state watershed as the major source that the megaregions derive 

their water supply. However, water supply to some megaregions can be from watersheds 

/reservoirs outside of the regions or groundwater resources. Note, we assessed shifts in future 

hydroclimatology of megaregions and evaluating anthropogenic factors and socioeconomic 

consequences are out of the scope of this paper. 

Additionally, future hydroclimatic changes may have various consequences for forests. For 

example, while a temperature rise is likely to decrease growth in lower elevations, it might increase 
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growth in higher elevations (Littell et al., 2012). Thus, future studies are needed to determine the 

relationships between hydroclimatology of US river basins and the composition, distribution, and 

growth of various types of forests and grasslands.  

Despite these limitations, comparisons of differences in long-term hydroclimatic variables 

from the current period (1986-2015) to the future period (2070-2099) are more likely to be 

accurately estimated than are the absolute amounts from which the differences are computed. The 

structural deficiencies and assumptions in the VIC model can be addressed by aggregating outputs 

over longer time periods such as 30-yr average (Gharari et al., 2019). The results suggest a need 

for flexible and regionalized forest management strategies under these scenario-sensitive, 

spatially-heterogeneous projections of future hydroclimatic conditions. 

3.5.    Summary and Conclusions 

Understanding change in hydroclimatic conditions of NFs, NGs, and megaregions and how 

those changes will impact natural and water resources, have risen in importance as our 

understanding of climate change has improved (Fekety et al., 2020). This study first focuses on 

shifts in long-term regional climate and hydrologic trends of two important sources of natural 

resources in the United States, National Forests (NFs) and National Grasslands (NGs). This study 

second evaluates changes in hydroclimatology and basin characteristics of fourteen U.S. 

megaregions in response to climate change using the Budyko framework.  

Changes in current climatic conditions (1986-2015) were first derived from a combination 

of Daymet and PRISM with wind speed data from the NARR dataset at the 4km-by-4km spatial 

scale. Changes in future climatic variables (2070-2099) were obtained from the MACA climate 

dataset at 4km-by-4km spatial scale for three climate models, yielding projections for three quite 

different climate scenarios. The forcing parameters from that data were then used as inputs to the 
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VIC hydrological model to obtain hydrological estimates at a daily timestep. The output 

hydroclimatic variables were aggregated at the HUC8 river basin scale and annual timestep. The 

aggregated hydroclimatic variables were then used to estimate current and future hydroclimatic 

conditions of NFs, NGs, and megaregions across the CONUS. Long-term changes in those 

conditions were depicted as movement in the Budyko space. Finally, the Fu’s equation was 

implemented to assess shifts in integrative basin characteristics. 

The response of basins to climate change varies from NFs to NGs and from one climate 

scenario to another. However, there was some significant consistency in regional long-term 

hydroclimatic changes on NFs and NGs. Both NFs and NGs are projected to experience less arid 

hydroclimatic conditions under both the WET and MIDDLE climate scenarios, in contrast to 

generally more arid conditions under the DRY scenario. Under the DRY climate scenario, the 

Northern, Eastern, Southern, Rocky Mountain, and Southwestern regions all show drier conditions 

with less water yield. Under all three climate scenarios, NFs are likely to experience larger changes 

in the basin characteristics than are NGs. The hydroclimatology of the Southwestern Forest Service 

region is found to have the highest sensitivity to climate changes across the CONUS, with 

especially high aridity under the DRY climate scenario. The dramatic differences in results 

between the WET and DRY scenarios demonstrates current uncertainty about the future impacts 

of climate change. 

Long-term hydroclimatic shifts may fundamentally change conditions of US forests and 

grasslands. This finding highlights the need to incorporate climate change impacts into forest and 

grassland resource management and planning. This study can be used as a roadmap for land and 

water managers to develop options for adapting to future climate change, such as increasing 

landscape diversity and facilitating biological diversity (Littell et al., 2012). This study can help 
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environmental scientists and water managers to mitigate the negative economic, social, and 

environmental consequences of climate change on US NFs and NGs. 

Furthermore, the findings indicate that the hydroclimatic responses of U.S. megaregions 

may vary under WET, DRY, and MIDDLE climate models. There are some clear consistencies in 

regional shifts in long-term hydroclimatology and basin characteristics. The findings point out that 

Los Angeles, San Diego, and San Francisco may experience a decrease in aridity under all three 

climate models indicating that these regions may become less arid by the end of the 21st century. 

Additionally, Houston may experience more arid climatic conditions in the future by increasing 

aridity index under all three climate models. Besides, the evaporative indices of Houston and 

Seattle are projected to increase by the end of the century under all three climate models indicating 

that the evaporative loss of freshwater resources in Houston and Seattle are likely to increase in 

the future. The population of Houston and Seattle megaregions is projected to increase 

significantly over the 21st century (Ross 2008; Nelson 2017). Thus, these metropolitan regions are 

likely to face more severe challenges in water resource planning and management in the future. 

Phoenix is also the megaregion with the highest change in ω consistently across all three 

climate models, suggesting that the basin characteristics of Phoenix may experience significant 

changes in the future. Under all three climate models, basins in Houston are likely to experience 

shifts in their climate type from Temperate to Continental. Besides, some basins in Washington 

D.C, Philadelphia, New York, Boston (WPHNB) are projected to change from Continental to 

Temperate climate type. 

These findings highlight the need for developing a national development strategy that 

addresses climate change policies to improve robust economic growth and protect vulnerable 

natural, water, and food resources in the U.S. megaregions and hence reduce negative 
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consequences on the economy, society, and environment. Hydroclimatic change accompanied 

with rapid population growth, urbanization and land use change in U.S. megaregions can 

accelerate future challenges in the megaregions, particularly, water-scarce regions that may do not 

have the water and natural resources to overcome significant shifts in their hydroclimatology. This 

study can help decision-makers, planners, policy makers and politicians to improve the 

understanding, planning, and preparedness for the future hydroclimatic changes through the 

sustainable growth to protect. 
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CHAPTER 4.  

A PROBABILISTIC APPROACH FOR CHARACTERIZATION OF SUB-ANNUAL 

SOCIOECONOMIC DROUGHT INTENSITY-DURATION-FREQUENCY (IDF) 

RELATIONSHIPS IN A CHANGING ENVIRONMENT  

 
Changes in climate, land use, and population can alter the frequency and intensity of annual 

and interannual socioeconomic droughts in water-scarce regions. This study develops a 

probabilistic approach to improve characterization of sub-annual to decadal socioeconomic 

drought intensity-duration-frequency (IDF) relationships over a range of water supply and demand 

conditions. A mixture Gamma-Generalized Pareto (Gamma-GPD) probability model is developed 

to coherently characterize the probabilistic properties of both non-extreme and extreme 

socioeconomic droughts. Subsequently, the mixture model is used to determine sub-annual 

socioeconomic drought intensity-duration-frequency (IDF) relationships, return period, 

amplification factor, and drought risk. A global sensitivity analysis was performed to understand 

the influence and importance of the model parameters individually and in combinations on drought 

return periods. The application of the framework is demonstrated for the City of Fort Collins 

(Colorado, USA) water supply system. The water demand and supply time series for the 1985–

2065 are estimated using the Integrated Urban water Model (IUWM) and the Soil and Water 

Assessment Tool (SWAT), respectively, with climate forcing from statistically downscaled 

CMIP5 projections. The results from the case study indicate that the mixture model leads to 

enhanced estimation of sub-annual socioeconomic drought frequencies, particularly for extreme 

events. The probabilistic approach presented in this study provides a procedure to update sub-

annual socioeconomic drought IDF curves while taking into account changes in water supply and 

demand conditions. 
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4.1.    Introduction 

Climate change and rapid population growth can significantly beget shifts in water supply 

and demand at various spatial and temporal scales (Brown et al., 2019; Mahat et al., 2017; Naz et 

al., 2016; Wang et al., 2016). As the balance between water supply and demand becomes more 

unequal, socioeconomic drought becomes a major concern (Mehran et al., 2015; Rajsekhar et al., 

2015). Socioeconomic drought refers to the condition when water demand exceeds water supply 

(Foti et al., 2014a; Hao et al., 2018; Mehran et al., 2015). Enhanced probabilistic characterization 

of socioeconomic drought properties in a changing environment plays an important role in water 

resource planning and management (Mishra & Singh, 2010; Rajsekhar et al., 2015; Salas et al., 

2005). This study develops a probabilistic approach to characterize sub-annual socioeconomic 

drought intensity-duration-frequency (IDF) relationships, return periods, amplification factors, 

and drought risk under shifts in water supply and demand conditions. 

Previous studies have used a wide range of methods to assess socioeconomic drought 

hazard (Brown et al., 2019; Foti et al., 2014a; Guo et al., 2019; Huang et al., 2016; Mehran et al., 

2015; Rajsekhar et al., 2015; Warziniack & Brown, 2019; Zhao et al., 2019). However, studies 

that discuss methods for assessing changes in intensity, duration, and frequency relationships of 

sub-annual socioeconomic droughts under nonstationary conditions are limited. Drought IDF 

curves are commonly applied to the design of water resource systems such as municipal storm-

water drainage systems. Three important considerations must be addressed to improve 

characterization of droughts IDF relationships in a changing environment: 

First, changes in future socioeconomic drought IDF relationships should be assessed by 

assuming the nonstationary conditions in both water supply and demand time series. Previous 

studies often describe socioeconomic droughts in terms of deficiencies in water supply systems, 
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in which water demand is defined as a constant threshold of water supply (Guo et al., 2019; Tu et 

al., 2018). However, climate change and anthropogenic drivers such as population growth can lead 

to a significant change in water demand and patterns. In such cases, socioeconomic drought IDFs 

are anticipated to increase due to increasing differences between water supply and demand (Salas 

et al., 2018). Thus, an improved socioeconomic drought definition and characterization is essential 

to account for a changing environment to evaluate and update drought IDF curves under shifts in 

both water supply and demand conditions. 

Second, a complete characterization of socioeconomic droughts may not be sufficiently 

obtained by comparing only annual water demand to annual water supply. Foti et al., (2014) 

proposed a probabilistic framework to assess vulnerability of water supply systems to shortage as 

the probability that annual water demand exceeds annual water supply (Foti et al., 2014a). 

However, interannual changes in weather and water consumption can lead to an increase in the 

variability of water supply and demand within a year (Gutzler & Nims, 2006; Yu et al., 2014). 

Even in regions where water is abundant overall, water scarcity during brief time periods within 

the year may be on the rise due to climate change and socioeconomic drivers (Jaeger et al., 2017). 

Characterizations of socioeconomic drought at sub-annual scale influences planning and 

management of water supply systems (Evans & Sadler, 2008; Wang et al., 2019). 

Third, nonstationary conditions in climate, land use, and population are expected to 

considerably alter the distribution of socioeconomic drought over time with the increasing 

occurrence of extreme drought events (i.e., drought with high intensity and long duration) (Furrer 

& Katz, 2008; Salas et al., 2018; Zhao et al., 2018). Fitting one of the classic families of 

distributions to sub-annual socioeconomic drought might lead to inappropriate characterization of 

likelihood, as it either fits well to the bulk density or to the tail (A. MacDonald et al., 2011; Solari 
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& Losada, 2012). Thus, the commonly used continuous probability distributions may fail to 

simultaneously capture both the non-extreme and extreme socioeconomic droughts. Mixture 

probability models have been developed to simultaneously characterize the bulk and tail of random 

phenomena (Ghanbari et al., 2019, 2020; A. MacDonald et al., 2011; Stephens et al., 2018). 

However, their application has not been investigated for characterizations of sub-annual 

socioeconomic droughts. 

Thus, this study develops a coherent probabilistic approach to address the aforementioned 

considerations by improving characterization of sub-annual socioeconomic drought IDF 

relationships under considerable shifts in water supply and demand conditions. Specifically, the 

objectives are to: (1) improve projection of future droughts by defining and characterizing sub-

annual socioeconomic drought under nonstationary conditions in both water supply and demand 

conditions; (2) enhance characterization of both minor and major socioeconomic droughts using 

the mixture Gamma-Generalized Pareto Distribution (Gamma-GPD); (3) investigate intensity-

duration-frequency relationships of socioeconomic droughts under nonstationary conditions; (4) 

evaluate the frequency amplification of sub-annual socioeconomic droughts; and (5) assess 

drought risk to update the accepted design drought event for water supply systems. The findings 

allow better characterization of sub-annual socioeconomic drought hazard in basins undergoing 

climate and socioeconomic changes. Improved assessment of sub-annual socioeconomic drought 

is critical for effective adaptation and mitigation strategies to reduce the impact of droughts on 

communities.  

4.2.    Materials and Methods 

     A probabilistic approach was developed to assess changes in IDF relationships of 

defined sub-annual socioeconomic drought under nonstationary shifts in both water supply and 
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demand conditions. A mixture Gamma-GPD distribution was proposed to simultaneously model 

both extreme and non-extreme socioeconomic drought events. The parameter estimation and 

goodness-of-fit (GOF) of the mixture model were discussed compared to the classic families of 

probabilistic distributions. Then, sub-annual socioeconomic drought IDF relationships, return 

period, frequency amplification factor and drought risk were characterized under nonstationary 

conditions. A global sensitivity analysis was performed to understand the influence and importance 

of the model parameters individually and in combinations on drought return periods. 

      4.2.1.    Definition and Characterization of Sub-annual Socioeconomic Drought 

Drought has been generally categorized into four types: meteorological, agricultural, 

hydrological, and socioeconomic drought. Meteorological drought implies a precipitation deficit. 

Agricultural drought refers a deficit in soil moisture. Hydrologic drought can be caused by a 

reduction in surface water (Bayissa et al., 2018; Otkin et al., 2018). Socioeconomic drought is 

defined in terms of deficiencies in water supply systems (Mehran et al., 2015; Rajsekhar et al., 

2015; Zhao et al., 2019). However, the characterization of water supply, water demand and water 

deficit in this study differs from most definitions of socioeconomic drought indicators. The water 

deficit (𝑑𝑡) at a time interval t is defined as: 

𝑑𝑡 = 𝐷𝑒𝑚𝑎𝑛𝑑𝑡 − 𝑆𝑢𝑝𝑝𝑙𝑦𝑡     𝑑𝑡 > 0  (4.1) 

where 𝑆𝑢𝑝𝑝𝑙𝑦𝑡 denotes the potential quantity of water allocated to a given or multiple 

sectors at a time interval 𝑡 and 𝐷𝑒𝑚𝑎𝑛𝑑𝑡 denotes the potential quantity of water requested by users 

at a time interval 𝑡 for a given or multiple sectors (Brown et al., 2019; Foti et al., 2014a; Warziniack 

& Brown, 2019).  
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Subsequently, drought events can be obtained from the time series of water deficits using 

the theory of runs (Yevjevich, 1967). Yevjevich, (1967) defined a drought event as a succession 

of consecutive periods in which water demand exceeds water supply. A drought event can be 

characterized by its duration (𝐷), magnitude (𝑀), intensity (𝐼) and frequency (F) (Salas et al., 

2005; Yevjevich, 1967) (Figure 4.1). 

 

Figure 4.1. Schematic of drought properties. 

 

Duration is defined as the number of consecutive months where the amount of water 

demanded exceeds the amount of water supplied to a given sector. Magnitude or severity is the 

cumulative deficit over the duration of the drought event defined as: 

𝑀 = ∑ (𝑑𝑗)𝑡+𝐷−1
𝑗=𝑡  (4.2) 

 

Intensity of drought is the magnitude of a drought event divided by its duration given by: 

𝐼 = 𝑀𝐷  (4.3) 

and frequency can be defined as the number of times that a specific drought event occurs in a given 

period. Frequency can be predicted based on the theoretical probability distribution. The designs 

of water supply systems are based on historical drought IDF relationships. However, these 
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relationships may need to be modified under the impact of climate change by developing the sub-

annual socioeconomic drought IDF curves (Cheng et al., 2014; Salas et al., 2018). 

      4.2.2.    Gamma-GPD Mixture Model 

Drought events have been modeled by many probabilistic distributions such as Gamma 

(Salas et al., 2005; Shiau, 2006; Zhao et al., 2017), Exponential (Shiau, 2006; Zhao et al., 2017), 

Normal (Foti et al., 2014a), Log-Normal and Weibull (Zhao et al., 2017). Gamma distribution is 

among the most commonly used probability distributions for characterizing drought properties 

(Andrade et al., 2017; Guo, et al., 2019; Mishra & Singh, 2010; Salas et al., 2005; Shiau, 2006). 

The Gamma distribution has a density function (De Andrade et al., 2017) as follows: 

𝐺(𝑥; 𝑟, 𝑎) =  1𝑎𝛤(𝑟) (𝑥𝑎)𝑟−1𝑒𝑥𝑝 (− 𝑥𝑎) (4.4) 

where 𝑥 denotes drought properties (duration or intensity), and 𝑟 and 𝑎 are the shape and scale 

parameters, respectively.  

Several characteristics motivate the use of the Gamma distribution for describing drought 

events. First, the distribution is bounded on the left at zero. Thus, it excludes negative values, 

which is important for drought applications because negative deficit, duration and intensity are 

impossible. Second, the Gamma distribution is positively skewed with an extended tail to the right. 

This property is well suited for characterization of droughts with frequent minor and infrequent 

extreme events. Third, the versatility of the Gamma distribution in taking exponential decay to 

nearly normal forms lends itself to modeling a range of drought intensity and duration 

combinations with reasonable accuracy (Husak et al., 2007). 

However, extreme drought events especially under nonstationary conditions may not be 

adequately characterized by the upper tail of the Gamma distribution. The distribution of drought 



81 
 

events will become less positively skewed over time with the increasing occurrence of extreme 

drought events (Farahmand & AghaKouchak, 2015; Furrer & Katz, 2008). As the Gamma 

distribution becomes less positively skewed, the upper tail of the distribution will be insufficient 

to capture the increasing extreme drought events (Husak et al., 2007). Thus, the Gamma 

distribution may fail to adequately characterize the upper tail of drought events with higher 

intensities and durations under nonstationary shifts in water supply and demand conditions.  

Extreme value analysis (EVA) is increasingly used for robust estimation of extreme events 

(Coles, 2001). The Generalized Extreme Value (GEV) approach of Block Maxima (BM) and 

Generalized Pareto Distribution (GPD) approach of Peak Over Threshold (POT) are two 

commonly used EVA methods for fitting the extremes of hydrological variables such as those used 

to characterize drought events (Engeland et al., 2005). However, the applicability of the GEV 

distribution by the method of BM is limited for assessment of drought events at sub-annual steps 

since only one extreme value per year is modeled. Thus, we use the GPD to fit the extreme of sub-

annual drought events by applying the POT method (Engeland et al., 2005; Ganguli, 2014). The 

cumulative distribution function (CDF) of the GPD is given by: 

𝑔𝑢,𝜉,𝛽(𝑥) = Pr (𝑋 ≤ 𝑥|𝑋 > 𝑢) =  {  
  1 − (1 + 𝜉 𝑥 − 𝑢𝛽 )−1𝜉    𝑓𝑜𝑟   𝜉 ≠ 01 − 𝑒𝑥𝑝 (−𝑥 − 𝑢𝛽 )    𝑓𝑜𝑟   𝜉 = 0  (4.5) 

 

where 𝑢, 𝜉 and 𝛽 are the location (threshold), shape and scale parameters, respectively (Coles, 

2001). The distribution is heavy-tailed when 𝜉 > 0, medium-tailed when 𝜉 = 0, and short-tailed 

with finite upper end point 𝑢 − 𝛽𝜉  when 𝜉 < 0 (De Andrade et al., 2017). The threshold should be 
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selected as the GPD location parameter to model statistical properties of events that exceed the 

threshold. 

Here, the Gamma distribution was reconciled with the GPD in a mixture model to 

simultaneously model the bulk and upper tail of drought events. In this model, values below the 

GPD threshold (i.e., location parameter) were fitted by the Gamma distribution while values above 

the threshold were fitted by the GPD (Figure C-1). The mixture Gamma-GPD cumulative function 

(𝐹) is given by:  

𝐹(𝑥|𝑟, 𝑎, 𝜉, 𝛽, 𝑢, 𝜙𝑢)  =  { (1 − 𝜙𝑢) 𝐺(𝑥|𝑟, 𝑎)𝐺(𝑢|𝑟, 𝑎)                    𝑥 < 𝑢(1 − 𝜙𝑢) + 𝜙𝑢 𝑔(𝑥| 𝜉, 𝛽, 𝑢)     𝑥 ≥ 𝑢 (4.6) 

 

where 𝑔(𝑥| 𝜉, 𝛽, 𝑢) is the unconditional GPD function, 𝐺(𝑥|𝑟, 𝑎) is the Gamma distribution 

function, 𝑢 is the GPD location parameter (threshold), and 𝜙𝑢 is the probability of 𝑥 being above 

the threshold (Behrens et al., 2004; A. MacDonald et al., 2011). Hence, the mixture model 𝐹(𝑥|𝑟, 𝑎, 𝜉, 𝛽, 𝑢, 𝜙𝑢) can be used to model the distribution of both non-extreme and extreme 

droughts intensity and duration by inserting equations 4.4 and 4.5 into equation 4.6.  

It should be noted that some previous studies have applied mixture distribution models to 

combine different distributions to simultaneously model both central and tail. However, the fit of 

mixture models has not been investigated in terms of sub-annual socioeconomic drought 

properties. It can be suggested that mixture models lead to better estimation of return periods of 

both minor and extreme drought events. 
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      4.2.3.    Joint Probability Distribution of Drought Intensity and Duration 

The mixture Gamma-GPD model is used in this study to determine sub-annual 

socioeconomic drought IDF relationships. Drought intensity, duration, and frequency properties 

are correlated random variables. The joint probability distribution of drought events for intensity I > I0 and duration D > D0 can be constructed by the product of the conditional distribution of 

drought intensity for a given duration and the marginal distribution of drought duration as follows: 

𝑃 (I > I0  ∩ D > D0) = 𝑃 (I > I0 | D > D0) . 𝑃 (D > D0) (4.7) 

 

where D0 and I0 denote any given values of duration and intensity, respectively. The term 𝑃 (I >I0| D > D0) is the conditional probability of I > I0 given D > D0, and 𝑃 (D > D0) is the marginal 

probability of drought with D > D0. The marginal probability of D > D0 from the mixture 

Gamma-GPD is given by: 

𝑃 (D > D0) = 𝐹(D > D0)  =  { (1 − 𝜙𝑢) 𝐺(D > D0|𝑟, 𝑎)𝐺(u|𝑟, 𝑎)                    𝑥 < 𝑢(1 − 𝜙𝑢) + 𝜙𝑢 𝑔(D > D0| 𝜉, 𝛽, 𝑢)     𝑥 ≥ 𝑢 (4.8) 

 

The conditional probability of 𝑃 (I > I0| D > D0) can be determined in the same way 

considering that the mixture model should be fitted to just drought events with D > D0 as follows: 

𝑃 (I > I0| D > D0) = 𝐹(I > I0|D > D0) (4.9) 

 

Finally, the joint probability distribution of drought intensity and duration can be computed 

by inserting Equations (4.8) and (4.9) into Equation (4.7) and assuming drought events follow the 

mixture Gamma-GPD model. Thus, Equation (4.7) can be used to improve estimation of drought 
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intensity, duration, and frequency relationships by assuming that both marginal and conditional 

probabilities are Gamma-GPD distributed. 

      4.2.4.    Parameter Estimation and Goodness-of-fit Tests 

The proposed mixture Gamma-GPD distribution was linked with population and climate 

change models in this study as an effective way to address shifts in drought properties under a 

changing environment. Then, the applicability of the proposed mixture Gamma-GPD distribution 

was investigated compared to classic families of probabilistic distributions, especially under 

considerable shifts in water supply and demand conditions. Nonstationary conditions arising from 

sub-annual changes in supply and demand are represented by time-varying parameters. Mixture 

Gamma-GPD model parameters were re-estimated as a function of time using 30-year overlapping 

moving windows on the nonstationary time series of drought events.  

In this study, the nonstationary climate data were obtained from the CMIP5 projections, 

and subsequently downscaled for meteorological stations in the region using a quantile-based 

empirical-statistical error correction method and a subsequent temporal (i.e., monthly to daily) 

downscaling procedure (Themeßl et al., 2012). Then, the nonstationary water demand and supply 

time series for the 1985–2065 were estimated using the Integrated Urban Water Model (IUWM) 

and the Soil and Water Assessment Tool (SWAT), respectively. The proposed mixture model 

holds the versatility to account for these changes in drought properties over time. 

The location parameter of the GPD should be estimated to define the threshold between 

the bulk and tail distributions. The appropriate threshold is the location at which the mean residual 

life plot is approximately linear (A. MacDonald et al., 2011; Solari & Losada, 2012). It should be 

high enough to follow a GPD. In addition, the sample size should be large enough for inference. 
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The other parameters of Gamma-GPD mixture model were estimated using the maximum 

likelihood estimator (MLE) in MATLAB (MathWorks, Natick, MA, USA). 

Several goodness-of-fit tests were applied to assess how well the proposed mixture 

Gamma-GPD model fits a set of drought intensities and durations. Here, the performance of the 

mixture model was evaluated using the chi-square goodness-of-fit test, root-mean-square error 

(RMSE), and the coefficient of determination. The performance of the model was compared with 

the performance of other standard distributions. Goodness-of-fit tests are frequently used as a 

measure of the differences between values predicted by a model or an estimator and the observed 

values (Alam et al., 2018; Chen et al., 2017). The smallest RMSE and Chi-square and largest R-

squared indicate the model with the best performance. 

      4.2.5.    Return Period 

Return periods of drought events are often used to design the capacity of water supply 

systems (Salas et al., 2005). The return period of droughts with intensity greater than or equal to a 

target (I > I0) was derived as a function of the expected drought interarrival time and cumulative 

drought intensity distribution function, expressed as: 

𝑇I>I0| D>D0 = 𝐸(D > D0)𝑃 (I > I0| D > D0) × 1𝑃(D > D0) =  𝐸(D > D0)𝑃 (I > I0 ∩  D > D0) (4.10) 

 

where 𝐸(D > D0) is the expected drought interarrival time with D > D0, which can be estimated 

from observed droughts, and 𝑃 (I > I0 ∩  D > D0) can be obtained from Equation (4.7). The 

expected value of the interarrival time between two successive drought events with a certain 

duration or greater is given by (Shiau & Shen, 2001; Zhao et al., 2017): 
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𝐸(D > D0) = 𝐸(∑DIi𝑁
𝑖=1 ) (4.11) 

 

where DIi is drought interarrival time between two successive drought events with a certain 

duration or greater, and 𝑁 is the number of drought events equal to or greater than a certain 

duration. 

      4.2.6.    Drought Risk and Amplification Factor 

The risk of failure over an n-year design or assessment period may be written as (Read & 

Vogel, 2015; Salas et al., 2018): 

𝑅𝑖𝑠𝑘 (I > I0| D > D0) = 1 − (1 − 1𝑇I>I0| D>D0)𝑛  (4.12) 

 

where 𝑇I>I0| D>D0 is the return period of droughts with intensity and duration greater than or equal 

to a certain threshold (I > I0, 𝐷 > 𝐷0) and n is the project life in years. Nonstationarity in drought 

risk projection can be accounted for by estimating changes in the exceedance probability of the 

mixture model using time-varying parameters.  

In addition, the change in drought frequencies under nonstationary conditions can be 

quantified by dividing the exceedance probability of a given drought event in the future to the 

current condition as: 

𝐴𝑚𝑝𝑙𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 (𝐴𝐹) = 𝑃𝑡(𝐼 > 𝐼0)𝑃𝐶(𝐼 > 𝐼0)  (4.13) 

 

where 𝐴𝐹 is the frequency amplification factor of drought with 𝐼 > 𝐼0, and 𝑃𝐶(𝐼 > 𝐼0) and 𝑃𝑡(𝐼 > 𝐼0) are the exceedance probability of drought events with 𝐼 > 𝐼0 for current and future 
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conditions, respectively. The drought events with higher frequency amplification factor are more 

sensitive to nonstationary conditions. 

      4.2.7.    Global Sensitivity Analysis 

A global sensitivity analysis was performed to simultaneously assess both relative 

contributions and interactions between each of the individual mixture model parameters. Several 

techniques have been commonly used to execute global sensitivity analysis. In this study, the 

method of Sobol (Sobol, 1993) was applied using the SIMLAB software package (Giglioli & 

Saltelli, 2008). Sobol decomposes the variance of the output into fractions, which can be allocated 

to individual inputs. Both relative contributions and interactions of individual inputs were 

calculated using the first-order and total-order sensitivity indices. Sensitivity indices are defined 

to measure the importance of variables. The distribution of the mixture model parameters was 

assumed to be uniform. The selected ranges of mixture model parameters are shown in Table D-1 

based on the observed data and their intervals. 

First-order sensitivity indices were used to assess the contribution of an individual 

parameter to the output variance. Parameters with the greater first-order sensitivity indices are 

more critical for the model. Figure 4.2 (left-panel) and Table D-2 illustrate the first order sensitivity 

indices of model parameters to return period of drought with duration equal or greater than one 

month. Below the threshold (non-extreme drought events), the mixture model is governed by 

Gamma parameters. The drought return period is more sensitive to the Gamma shape parameter 

than the Gamma scale parameter. Above the threshold (extreme drought events), the mixture 

model is governed by GPD parameters. The drought return period is respectively sensitive to the 

location, scale, and shape parameters of the GPD. 
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Figure 4.2. (a) The first order and (b) the total order sensitivity indices of Mixture Gamma-GPD model 
for drought return period. 

 

Total-order sensitivity indices were used to assess the interaction between each of the input 

variables. Changes in the total order sensitivity indices are presented in Table D-3 and Figure 4.2 

(right-panel). GPD scale and GPD shape parameters are more critical when the total-order 

sensitivity indices were considered. This indicates that shape and scale parameters of GPD have 

significant interactions with other parameters. 

Figure 4.3 illustrates the interaction between the GPD shape and Gamma shape parameters 

with GPD location (threshold) parameter. Below the threshold (Figure 4.3 left-panel), as Gamma 

shape parameter increases, sensitivity of drought return period to change in GPD location 

parameter increases. Conversely, as GPD location parameter increases, the sensitivity of drought 

return period to change in the Gamma shape parameter increases. Above the threshold (Figure 4.3 

right-panel), the sensitivity of drought return period to change in the GPD location parameter 

decreases. Conversely, as the GPD location parameter increases, the sensitivity of drought return 

period to the change in Gamma shape parameter decreases. 
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Figure 4.3. Sensitivity of drought return period to Gamma shape parameter and GPD location parameter 
below the threshold (left-panel) and GPD shape and GPD location parameters over the threshold (right-

panel). 

4.3.    Application and Discussion 

The proposed probabilistic approach was demonstrated for the City of Fort Collins 

(Colorado, USA) water supply system (Figure C-2) as a test case to investigate the applicability 

of the framework under considerable shifts in water supply and water demand conditions. Climate, 

water supply, and water demand for Fort Collins were projected out to 2065 under the hot-dry 

scenario to assess the capacity to improve characterization of sub-annual socioeconomic drought 

IDF relationships under significant shifts in water supply and demand conditions. The 1986–2015 

period was used to represent “current” conditions and the 2035–2065 period represented the “mid-

century” conditions. It should be emphasized that assessing various aspects of future drought 

impacts on the City of Fort Collins is not the purpose of this study. In fact, this study used the City 

of Fort Collins as a test case to demonstrate the application of the proposed approach under 

nonstationary conditions. 

Fort Collins is in the semi-arid American West, which is prone to extended droughts. It lies 

within the Cache la Poudre (CLP) watershed in Northcentral Colorado. Currently, a drought event 
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is defined as one or more years of below average annual runoff in the CLP River (AMEC 

Environment & Infrastructure, 2014). An exceptionally severe drought was reported in Fort 

Collins from September 2001 to August 2002. Over the last decades, CLP River discharge has 

been below average in most years, and the city has been experiencing water shortage conditions 

since 2000. In addition, high levels of population growth are projected within the CLP watershed, 

compounding the water shortage problems (AMEC Environment & Infrastructure, 2014). 

       4.3.1.    Future Climate Scenarios 

Changes in precipitation and temperature for the CLP watershed were estimated under the 

representative concentration pathway (RCP) 8.5 and a hot-dry scenario described below. This 

combination was chosen to represent a worst-case condition for the region. Observed daily 

temperature and precipitation data were collected from the Global Historical Climatology Network 

(GHCN), the Colorado Agricultural Meteorological Network (CoAgMet), and Northern Colorado 

Water Conservancy District (NCWCD). Missing data were filled using auxiliary information 

obtained from nearby stations based on the probability of rainy days, R-Squared and Jaccard index 

between the two nearest stations.  

Future monthly climate data were obtained from CMIP5 projections (U.S. Bureau of 

Reclamation, 2013). Subsequently, data were statistically downscaled for meteorological stations 

in the region using a quantile-based empirical-statistical error correction method (Themeßl et al., 

2012). A downscaling procedure was performed to obtain daily climate information from 

downscaled monthly data. Two hundred and thirty downscaled climate models were classified into 

hot-dry, hot-wet, warm-dry, warm-wet, and median categories based on the difference in current 

and future temperature and precipitation (Figure C-3).  
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Changes in precipitation and minimum temperature in Fort Collins under the median of 

230 climate models are shown in Figures 4.4(a) and 4.4(b), respectively. The average changes in 

minimum temperature for RCP 2.6, 4.5, 6.0 and 8.5 are also shown in Figure 4.4(c). Climate 

anomalies represent differences between the mid-century and current conditions. The kriging 

method in ArcGIS was applied to the spatial interpolation of precipitation and temperature 

anomaly records in the CLP watershed.  

For the median of 230 climate models (Figure 4.4), temperature consistently is expected to 

increase across the watershed. In addition, the rate of warming tends to increase with elevation, 

indicating that high-mountain environments of the Colorado Rocky Mountains will experience 

rapid changes in temperature. However, a relatively small increase in precipitation was projected, 

particularly in higher elevation areas. 

 
Figure 4.4. Mid-century (2035–2065) (a) precipitation anomaly for the CLP watershed; (b) minimum 

temperature anomaly for the CLP watershed; and (c) average annual minimum temperature time series for 
the City of Fort Collins meteorological station corresponding to the 230 climates. 

 

In this study, the statistically downscaled ‘ipsl-cm5a-mr’ scenario was selected from the 

hot-dry category with RCP 8.5 to represent the worst-case scenario for the mid-century conditions. 

This scenario was selected in order to assess significance and applicability of the proposed 
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framework under considerable shifts in water supply and demand conditions. Figure C-4 and 

Figure C-5 show changes in precipitation and temperature for the hot-dry scenario from current 

conditions to mid-century conditions. 

       4.3.2.    Water Supply Assessment 

The City of Fort Collins receives native water from the Cache la Poudre (CLP) River and 

imported water from Horsetooth Reservoir as part of the Colorado Big Thomson (CBT) project. 

According to the Fort Collins Water Supply and Demand Management Policy Revision Report 

(AMEC Environment & Infrastructure, 2014), the amount of usable water from the Poudre River 

depends on factors such as water demand, dry-year yields and exchange potential. In addition, 

water deliveries from the Colorado Big Thompson system to the city of Fort Collins depend on an 

annual quota set by Northern Water each year ranging from 50% to 100% of annual yields (AMEC 

Environment & Infrastructure, 2014). In this study, the potential amount of water supplied to the 

City of Fort Collins in the future was calculated assuming that the historical coefficients of water 

deliveries from the CLP River will be preserved and the City owns the potential amount of water 

from the Horsetooth Reservoir as the most flexible source to fill gaps from other sources.  

Changes in water yield in the CLP River at the Mouth of Canyon Station (National Water 

Information System (NWIS), 2019) was evaluated using the Soil and Water Assessment Tool 

(SWAT) (Arnold et al., 1998). SWAT is a comprehensive, distributed-parameter, process-based 

hydrologic model that has been used extensively to assess the hydrologic response to changes in 

climate and land use at a variety of scales (Chien et al., 2013; Ficklin et al., 2013; Gassman et al., 

2014; Records et al., 2014). The model was calibrated to historic naturalized flow data at multiple 

locations within the watershed (Havel et al., 2018). The calibrated model was driven by projected 
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alternative future climates for the region to obtain monthly discharge at the City of Fort Collins 

water intake facilities on the CLP River.  

       4.3.3.    Water Demand Assessment 

Municipal water demand under climate, population, and water demand management 

scenarios was estimated using the Integrated Urban Water Demand Model (IUWM). IUWM is a 

mass balance model that simulates water demand and wastewater production associated with urban 

water demand management strategies. The model simulates municipal water demand through use 

of population, household, land cover and climate data. The model was calibrated and tested for the 

City of Fort Collins with options for assessing demand management scenarios based on the 

projected population, temperature and precipitation (Sharvelle et al., 2017). The parameters of the 

IUWM models were calibrated to historical conditions and were assumed to be preserved under 

future conditions. The model was driven with future climate scenarios to obtain monthly total 

water use for the City of Fort Collins under nonstationary conditions. Population and household 

information were obtained from the U.S. Census Bureau (Bureau, 2011). Population growth 

projections were based on those reported in AMEC Environment and Infrastructure (AMEC 

Environment & Infrastructure, 2014) with a projected population of 165,000 by the middle of 

century. 

Figure 4.5 provides 12-month average of projected water supply and water demand for the 

City of Fort Collins under the hot-dry scenario. The balance between water supply and water 

demand becomes more unequal by the middle of the century under rapid climate changes and 

population growth. This situation can lead to considerable shifts in socioeconomic drought 

distributions. Thus, applicability of classic families of probabilistic distributions can be assessed 

compared to the mixture Gamma-GPD distribution in rapidly changing environment. Note that 
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changes in water resources management and strategies such as climate adaptation and mitigation 

strategies and water conservation were not assumed in the projection of water supply and water 

demand.  

 

 
Figure 4.5. 12-month average of projected water supply and water demand under hot-dry scenario. 

 

       4.3.4.    Water Deficit Record Extension 

Extreme drought events are usually infrequent and insufficient for fitting to a GPD model 

(Link et al., 2020; Salas et al., 2005). To create a statistically large monthly water deficit sample, 

the autoregressive (AR) time series model was used. The AR model of order 𝑝, AR (𝑝), is a time 

series defined by (Salas et al., 2005):  

𝑦𝑡 =  𝑐 + ∑ϕi (𝑦𝑡−𝑖) + 𝜀𝑡𝑝
𝑖=1  (5.14) 

 

with lagged values of 𝑦𝑡 as predictors where 𝜀𝑡 is an uncorrelated normal random variable 

with mean zero and variance 𝜎𝜀2, and 𝜙𝑖, and 𝑐 are the parameters of the model. The fourth-order 

autoregressive model was found to be effective for simulating a synthetic 67200-month deficits 

sample for the city of Fort Collins. This extended sample was used to determine intensity, duration, 

and frequency of drought events for the study system. The relative frequency distribution of 
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positive drought deficits (𝑑 > 0 ) from the historical record and the generated sample are shown 

in Figure 4.6. Furthermore, the synthetic sample was tested by comparing statistical properties of 

original data versus generated data using AR model for all deficits (Table 4.1). 

 

 
Figure 4.6. Relative frequency distribution of the deficit water. 

 

Table 4.1. Statistical properties of original data versus generated data for city of Fort Collins. 

Statistics Original Data Generated Data 

Single Deficit 

Min (million cubic meter) −3.851 −3.772 
Max (million cubic meter) 4.214 4.170 
Mean (million cubic meter) 0.173 0.173 

Standard deviation 1.114 1.054 
Coefficient of variation 6.422 6.070 

Severity 

Mean (million cubic meter) 8.823 7.644 
Standard deviation 22.380 22.323 

Coefficient of variation 2.536 2.920 
Intensity 

Mean (million cubic meter per month) 0.545 0.582 
Standard deviation 0.379 0.335 

Coefficient of variation 0.695 0.576 
Duration 

Mean (month) 9.974 8.373 
Standard deviation 18.576 17.456 

Coefficient of variation 1.862 2.084 
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       4.3.5.    Importance of Nonstationarity Assumptions in Both Water Supply and 

Demand Conditions 

While all types of droughts originate from a deficiency in water supplies, drought 

properties would not depend on only water supply conditions. Climate changes and population 

growth can lead to nonstationary conditions in both water supply and water demand conditions. 

Thus, definition and characterization of drought events that consider shifts in both water supply 

and demand are essential to account for a changing environment. However, most previous studies 

have defined socioeconomic drought only in terms of deficiencies in water supply systems (Guo 

et al., 2019; Tu et al., 2018).  

Table 4.2 shows the impact of nonstationary assumptions in both water supply and demand 

conditions on drought properties compared to shifts in only water supply or water demand 

conditions. The average drought magnitude, duration, intensity, and maximum monthly water 

deficit are determined under shifts in (1) only demand conditions; (2) only supply conditions; and 

(3) both supply and demand conditions. While the average magnitude and duration of drought 

events considerably increase by assuming shifts in both water supply and demand conditions, the 

average drought intensity increases slightly. Based on the drought intensity definition 

(magnitude/duration), minor changes in drought intensity can be justified considering that intensity 

is a normalized value (water deficit per month). However, maximum monthly deficit will increase 

to 1.04 (mcm/month). 

Table 4.2. Impacts of shifts in both water supply and water demand on drought properties. 

Drought Properties  
Shifts in  

Demand 

Shifts in  

Supply 

Shifts in  

Supply and Demand 

Magnitude (mcm) 1.03 1.74 8.20 
Duration (month) 4 3.30 9.38 
Intensity (mcm/m) 0.22 0.40 0.53 

Maximum water deficit (mcm) 0.32 0.68 1.04 
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Table 4.2 provides a general understanding of how shifts in water supply and water demand 

contribute to affect drought properties in the selected case-study. Under constant water demand 

assumption, the average magnitude, intensity, and maximum monthly water deficit are higher than 

the constant water supply assumption. Table 4.2 highlights that change in water supply may have 

higher impacts on drought magnitude and intensity compared to changes in water demand. It 

should be noted that these results are case-study specific and depend on the selected scenario. 

       4.3.6.    Importance of Socioeconomic Drought Assessment at a Sub-annual Scale 

Drought is traditionally defined as a climate phenomenon that takes many years. Most 

studies have characterized drought at annual scale. However, population growth and climate 

change can lead to higher interannual variability of water supply and water demand. Thus, 

characterization of socioeconomic drought properties at a sub-annual scale is needed in a changing 

environment. Figure 4.7 shows changes in drought intensity for D < 12 months from current 

conditions to future conditions. Intensity of within-year drought may increase significantly due to 

increases in interannual variability of water supply and demand conditions.  

 
Figure 4.7. Change in intensities of droughts with duration less than 12 months (D < 12). 

 

In addition, characterization of socioeconomic drought at a sub-annual scale makes a 

significant difference in the definition of drought duration. For example, droughts with duration 
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equal to 24 months (D = 24 months) are not equivalent to droughts with durations equal to 2 years 

(D = 2 years). In fact, droughts with D = 24 months mean that there are 24 consecutive months in 

which monthly water demand is greater than monthly water supply. However, droughts with D = 

2 years mean that there are two consecutive years in which total annual water demand is greater 

than total annual water supply. Thus, even during a two-year drought, there may be months with 

water surplus. As a result, characterization of drought events at a sub-annual scale can help to 

identify months with water surplus that can lead to enhanced decision-making in water resource 

planning and management. 

       4.3.7.    Importance of Applying Mixture Gamma-GPD Distribution under 

Nonstationary Conditions 

The Mixture Gamma-GPD distribution was used to estimate the frequency of 

socioeconomic drought intensity and duration at a sub-annual scale for the City of Fort Collins. In 

this study, the threshold related to the 95th sample percentile (Behrens et al., 2004; Engeland et 

al., 2005; Ganguli, 2014) was chosen, which was supported by using the mean excess plots 

(Figures C-6 and C-7) as a graphical diagnostics method.  

The model evaluation criteria including Chi-square, RMSE, and R-squared are summarized 

in Tables 4.3 to 4.6 for Exponential, Normal, Log-Normal, Weibull, Gamma and Gamma-GPD 

distributions under current and future conditions. Most classic families of distributions have better 

fit under current conditions compared to mid-century conditions. This finding indicates that the 

most standard probabilistic distributions will be insufficient to capture both bulk and tail of 

droughts distribution under shifts in drought properties by the mid-century. In addition, goodness 

of fit tests quantitively demonstrate that the standard Gamma distribution better fits to sub-annual 

socioeconomic drought durations and intensities compared to other probabilistic distributions for 
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both current and mid-century conditions. However, the mixture Gamma-GPD distribution leads to 

improved estimation of drought frequency compared to Gamma and other probabilistic 

distributions for both drought duration and intensity under current and future conditions. The 

approach improves the capacity to simultaneously characterize within-year and multi-year 

socioeconomics droughts. 

Table 4.3. The goodness of fit of various models under current conditions (drought intensity). 

Distribution R-squared RMSE Chi-Square 

Exponential 0.7104 0.14 86.1532 
Normal −16.8745 0.5912 333.0102 

Log-Normal 0.6728 0.1414 42.3706 
Weibull 0.6147 0.1749 186.4215 
Gamma 0.9447 0.0652 10.9257 

Gamma-GPD 0.9746 0.046 10.8214 
 

Table 4.4. The goodness of fit of various models under mid-century conditions (drought intensity). 

Distribution R-squared RMSE Chi-Square 

Exponential 0.2735 0.273 274.5355 
Normal −5.5551 0.6131 303.6521 

Log-Normal 0.5086 0.2233 71.4617 
Weibull 0.511 0.2145 321.0255 
Gamma 0.8736 0.1207 24.9927 

Gamma-GPD 0.945 0.0808 22.6967 
 

Table 4.5. The goodness of fit of various models under current conditions (drought duration). 

Distribution R-squared RMSE Chi-Square 

Exponential 0.701 7.2617 97.2247 
Normal −1.0406 19.7033 2393.4 

Log-Normal 0.6563 10.6014 213.2408 
Weibull 0.6739 7.5839 107.309 
Gamma 0.6476 4.2436 35.82 

Gamma-GPD 0.9488 1.6173 7.46 
 

Table 4.6. The goodness of fit of various models under mid-century conditions (drought duration). 

Distribution R-squared RMSE Chi-Square 

Exponential 0.5314 14.9834 440.1007 
Normal −1.0788 37.6708 9787.0 

Log-Normal 0.3578 25.6947 1271.9 
Weibull 0.7345 10.6867 201.576 
Gamma 0.7705 5.01 47.09 

Gamma-GPD 0.957 2.147 13.20 
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Figure 4.8 shows the quantile-quantile (QQ) plots of both Gamma-GPD and Gamma 

distributions for the current (1986–2015) and future (2035–2065) conditions. The Gamma-GPD 

model substantially improves characterization of socioeconomic drought intensity-duration 

relationships, particularly under nonstationary conditions. The proposed mixture model 

consistently provides a better fit to data compared to the standard Gamma distribution as QQ plots 

indicate.  

 
Figure 4.8. QQ plot of (a) the current and (b) future drought intensity (in million cubic meter), and (c) the 

current and (d) future drought duration (in month) for the mixture model versus gamma. 

 

While the Gamma distribution (red plus sign) seems to be adequate for drought events with 

smaller duration and intensities (non-extreme droughts), it tends to be inadequate for droughts with 

larger duration and higher intensity (extreme droughts) by deviating from the reference line. 
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However, the Gamma –GPD distribution (blue circle sign) enhances the characterization of 

extreme drought events by converging to the reference line. Thus, characterizations of sub-annual 

socioeconomic drought intensity and duration by fitting to only Gamma distribution may lead to 

inadequate estimation of socioeconomic drought properties, particularly for extreme events. 

Application of Gamma distribution without nonstationary assumption in water supply and demand 

conditions can affect decisions or other water planning consideration. 

Changes in the probability distribution functions of drought durations with intensity greater 

than zero (all drought events) are shown in Figure 4.9 left-panel. The GPD of drought durations is 

short-tailed (𝜉 < 0) under the current condition but becomes heavy-tailed (𝜉 > 0) during the mid-

century period, meaning that the duration of drought events will increase by the middle of century. 

The scale parameter of the Gamma distribution for drought duration is increasing, which means 

that the variability of drought durations will increase in the middle of century. 

 

Figure 4.9. (left-panel) Probability distribution functions of drought durations; and (right-panel) 
probability distribution functions of drought intensities. 

 

Drought intensities with duration greater than one month (all drought events) are depicted 

in the right panel of Figure 4.9. The GPD location parameter was increased over time from 1.0 to 

1.22 mcm (million cubic meter) per month, meaning that drought events that are currently 
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characterized as extreme events become non-extreme events in the middle of century. The scale 

parameter of the Gamma distribution for drought intensity also increases, indicating that the 

variability of drought intensity will increase. Changes in climate and population alter the 

distribution of both drought durations and intensities over time. There may be a discontinuity in 

the density at the threshold; however, the mixture probability distribution will be continuous. 

       4.3.8.    Application of Sub-annual Socioeconomic Drought IDF Relationships in a 

Changing Environment 

How socioeconomic drought properties will change in the future is one of the key research 

questions in water resource management and planning. This section discusses the practicality of 

the proposed approach to update drought IDF curves and designed drought event for water supply 

systems. These critical factors can affect water supply and demand management policies and 

practices. First, we assess changes in sub-annual socioeconomic drought IDF curves for the City 

of Fort Collins under significant shifts in water supply and demand. Improving the estimation of 

socioeconomic drought IDF curves under nonstationary conditions can play an important role in 

the design of water supply systems. Second, we assess changes in the designed drought event for 

the City of Fort Collins water supply systems under nonstationary conditions. 

IDF curves are commonly applied for the design of water resource systems such as 

municipal storm-water drainage systems. However, studies that discuss methods for assessing 

changes in IDF relationships of drought events are limited (Cheng et al., 2014; Salas et al., 2018). 

IDF curves were obtained through frequency analysis of drought events. Drought Intensity and 

duration time series were computed for overlapping 30-year moving windows to calculate changes 

in drought properties due to nonstationary water supply and demand. Changes in the parameters 

of the mixture model were estimated using overlapping 30-year moving windows and assuming 
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the parameters are time-varying. Figure 4.10 illustrates changes in the projected drought durations 

(left panel) and drought intensities (right panel) for the Fort Collins water supply system under the 

hot-dry scenario. Drought events with higher intensity have longer duration. Similarly, drought 

events with longer duration have higher intensities. The results also indicate that drought events 

with longer durations and higher intensities will be more frequent under the projected scenario. 

 

Figure 4.10. Change in drought durations (left) and intensities (right) (intensity is in mcm/month). 

 

The expected value of interarrival time between two successive drought events is shown in 

Figure 4.11. The occurrence probability of drought events is expected to change significantly over 

time under the hot-dry scenario. Drought events with longer duration have higher changes in the 

expected interarrival time. As an example, Figure 4.11 indicates that under mid-century 20 month 

droughts are going to be roughly as common as the mean duration now (10 months). 

 
Figure 4.11. Expected interarrival time (month). 
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The amplification factor was also calculated for different drought durations and intensities. 

Multi-year and higher intensity droughts (extreme droughts) tend to be more sensitive to 

nonstationary conditions than droughts with duration less than a year (Figure 4.12). The results 

point to a substantial increase in the occurrence of extreme events from 2005 to 2060 (i.e., drought 

events with higher intensities and longer durations). Socioeconomic droughts with longer duration 

will have higher likelihood of occurrence in the mid-century compared to current conditions. 

 
Figure 4.12. Amplification factor curves for frequency of drought events (intensity is in mcm/month). 

 

Then, the marginal and conditional probabilities of drought events as well as the joint 

probability distribution of drought events for intensity and duration greater than or equal to a target 

(I > I0, D > D0) were computed. Drought frequency analysis was performed for each set of 

drought duration to determine the exceedance probability of drought intensity 
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Figure 4.13. Intensity-duration-frequency curves for current (left-panel) and future conditions (right-

panel). 

 

Figure 4.13 depicts the drought IDF curves with durations greater than 1, 6, 12, 24 and 36 

months under nonstationary conditions for both current and future conditions. The results indicate 

that current IDF curves substantially underestimate extreme drought events. For example, the 

return periods of drought events with durations greater than 24 and 36 months decrease to less than 

1000 years in the future. In addition, the IDF curves for both current and future conditions indicate 

that the drought events with shorter durations tend to have higher intensities. Thus, current drought 

IDF curves seem inadequate for the design and management of water supply infrastructure under 

considerable shifts in water supply and demand conditions. The proposed probabilistic approach 

should be applied for improved characterization of future IDF relationships, particularly for 

extreme socioeconomic droughts. 

Based on the Fort Collins Water Supply and Demand Management Policy Revision Report 

(AMEC Environment & Infrastructure, 2014), the City’s water utility tries to maintain water 

supplies sufficient to meet demands during at least a 1-in-50 year drought. A 1-in-50 year drought 

is a drought event that occurs once every 50 years, on average (AMEC Environment & 



106 
 

Infrastructure, 2014). However, characterizing the intensity, duration, and frequency of sub-annual 

socioeconomic droughts may lead to the enhanced design of water supply systems and appropriate 

implementation of mitigation and adaptation strategies. Figure 4.14 shows the risk of 1-in-50 year 

drought events with different durations for current and mid-century conditions. 1-in-50 year 

drought risk decreases as drought intensity increases. The model used here shows that drought 

events with longer durations are more likely in the middle of the century compared to current 

conditions. Therefore, the design drought event for the City’s water supply system should be 

updated according to the accepted risk for the middle of the century. 

 
Figure 4.14. 1-in-50 year drought risk for current condition (left) and middle of century (right) (intensity 

is in mcm/month). 

 

The proposed mixture model thus leads to enhanced assessment of sub-annual 

socioeconomic drought IDF relationships by simultaneously capturing non-extreme and extreme 

droughts under annual and interannual shifts in water supply and demand trends. Design of water 

supply systems by using the proposed probabilistic approach can improve the capacity of city 

water managers to adequately implement drought adaptation strategies such as water supply 

development, water demand management, and conservation (Brown et al., 2019; Ganguli, 2014; 

Gutzler & Nims, 2006; Warziniack & Brown, 2019). Updating drought IDF curves and designed 

drought events help decision makers and system designers to understand uncertainties under 
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climate change and population growth and develop climate adaptation strategies to increase 

resilience and flexibility of water supply systems (Buurman & Babovic, 2016).  

Note that changes in the relationships between water supply and water demand conditions, 

and the implementation of future water resuorce management and adaptation strategies were not 

assumed in this study. Besides, the water supply from the Poudre river and the Horsetooth reservoir 

in the city of Fort Collins may change since the city has senior priority. 

4.4.    Conclusions 

In rapidly urbanizing areas, population growth along with changes in climate can lead to 

nonstationary drought conditions where water demand exceeds water supply. Three important 

considerations were addressed in this study under growing unequal balance between water supply 

and water demand. First, an improved socioeconomic drought assessment can be characterized by 

assuming shifts in both water supply and demand conditions. Second, assessing the drought 

properties at a sub-annual scale is essential toward improved water resource management. Third, 

a mixture distribution is needed to account for considerable shifts in both water supply and water 

demand conditions. These considerations are addressed in this study to update drought IDF 

relationships using defined sub-annual socioeconomic drought terminology. 

We outlined a statistically coherent probabilistic approach for assessing sub-annual 

socioeconomic drought IDF properties in a changing environment, while considering shifts in both 

water supply and water demand regimes to cope with climate changes and population growth. A 

mixture Gamma-GPD probability model was proposed to simultaneously represent the bulk and 

tail of drought events. The standard probabilistic distributions were found to be insufficient for 

modeling extreme socioeconomic droughts with longer duration and higher intensity especially in 

a rapidly changing environment. The proposed mixture model improved characterization of 
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socioeconomic drought intensity, duration, and frequency relationships at sub-annual time scales, 

particularly under significant shifts in water supply and demand trends. Under nonstationary water 

supply and demand conditions, current extreme and infrequent drought events may become more 

frequent. Thus, more attention should be given to the enhanced characterization of extreme 

socioeconomic droughts. The model can enhance the capacity to address challenges with 

interannual variability of water supply and demands under nonstationary conditions. 

Application of the framework was demonstrated for the City of Fort Collins, Colorado, 

water supply system. Climate changes were derived from GCM projections, and supply and 

growing demand were calculated using SWAT and IUWM models respectively by considering 

population growth and future climate scenarios. The hot-dry scenario was selected to represent the 

worst-case conditions for nonstationary water supply and demand. Assessments of sub-annual 

drought frequency for City of Fort Collins indicate that climate change and population growth will 

significantly affect the vulnerability of municipal water supply systems to shortage. The proposed 

mixture model improved the projection of sub-annual socioeconomic drought intensities and 

durations, particularly for extreme drought events. In the case of the City of Fort Collins, the 1-in-

50-year drought risk increases from current conditions by the mid-century, indicating that the City 

will experience socioeconomic droughts with higher intensity and longer duration. Moreover, 

drought events with longer duration have higher risk in the middle of century compared to current 

conditions. Drought events with longer duration are more sensitive to non-stationary conditions. 

This study provides a framework to statistically assess impacts of large shifts in water 

supply and demand on sub-annual socioeconomic droughts. However, global assessment of sub-

annual socioeconomic drought propagation under various anthropogenic water demand scenarios, 

climate change projections, and water supply infrastructure designed is needed.  
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The findings of this study can be applied to update socioeconomic drought IDF properties 

that are used to assess water storage, to plan water supply systems under nonstationary conditions, 

and to optimize water institutions and management including water rights in the American West. 

Finally, the methodology developed in this study can be applied for other sectors such as 

agriculture to evaluate the impacts of climate change, land-use change, and socioeconomic drivers 

on water shortage. 
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CHAPTER 5.  

EFFECTS OF URBAN DEVELOPMENT PATTERNS ON MUNICIPAL WATER 

SHORTAGE 

 
While urban areas are being threatened by water shortage due to climate change and rapid 

population growth, effects of urban development patterns on future municipal water shortage are 

rarely investigated. We address this aspect of urbanization by assessing the impacts of sprawl 

versus high-density patterns on future changes in the sub-annual socioeconomic drought intensity-

duration-frequency (IDF) relationships. The City of Fort Collins, Colorado, water supply system 

is chosen as a representative region that is rapidly developing over the last decades. The future 

water supply is estimated using the Soil and Water Assessment Tool (SWAT) driven with a hot-

dry climate model from the statistically downscaled Coupled Model Intercomparison Project, 

phase 5 (CMIP5) projections. Future water demand is projected using the Integrated Urban Water 

Model (IUWM) under both sprawl and high-density development patterns. The demonstration 

study reveals that urban areas under the sprawl development pattern are likely to experience 

socioeconomic drought events with higher intensity, duration, and frequency compared to the 

high-density pattern. Characterizing impacts of urban development patterns on future drought 

properties is required for sustainable water management and smart urban growth and can help 

urban planners and water managers to develop an adaptive path to meet future water demand and 

decrease the vulnerability of municipal water supply systems to socioeconomic drought. 

5.1.    Introduction 

Municipal water shortage is a crucial problem around the world due to the integrated 

impacts of climate change and rapid urbanization (Liang et al., 2020; Mukherjee et al., 2018). 

Municipal water shortage can be defined as the lack of sufficient water supply to meet demand in 
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urban areas (Foti et al., 2014a; Heidari et al., 2020a; Zhao et al., 2019). Although water supply 

may be significantly affected in the future by climate change as a result of varying precipitation 

and increasing temperature, water demand may increase over time due to rapid urbanization (Liu 

et al., 2020).  

Rapid urbanization can be a consequence of either population growth or urban 

development (Bhatta et al., 2010; Leyk et al., 2020; Xu et al., 2020). Previous studies have mostly 

assessed the impacts of climate change or population growth on municipal water shortage (Foti et 

al., 2014a; Hao et al., 2018; Rajsekhar et al., 2015; Sanchez et al., 2020; Warziniack & Brown, 

2019), while the pattern of urban development itself can considerably affect the regional 

hydrological cycles through changing the geology of the river basins (e.g., slope, permeability, 

etc.) (Hemmati et al., 2020; McDonald et al., 2011; McGrane, 2016; Mukherjee et al., 2018; 

O’Donnell & Thorne, 2020).  

In the spread of urban expansion, two patterns of urban development are frequently 

observed: Sprawl and high-density development patterns. Sprawl pattern refers to low-density 

urban areas with segregated land uses and homogenous populations, whereas a high-density 

pattern refers to urban areas with inhomogeneous populations accompanied by small areas of open 

or green space to accommodate large numbers of  residential and commercial buildings (Western 

Resource Advocates, 2003). Pattern of urban development is one of the main drivers of rising 

municipal water demand (Bouziotas et al., 2015; House-peters, 2010). Sprawl development 

patterns can lead to increases in per capita rates of outdoor water use while the high-density 

development pattern can lead to lower outdoor water use (Sanchez et al., 2020; Western Resource 

Advocates, 2003).  
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The importance of urban development patterns for future water shortage has received less 

attention compared to climate change as a source of increasing drought hazard (Hemmati et al., 

2020). Rapid urbanization compounded by climate change may pose significant pressures on 

municipal water supply systems in the future (Brown et al., 2019; Heidari et al., 2020a; Hemmati 

et al., 2020; McDonald et al., 2011). Understanding the important role of urban development 

patterns on municipal water resources in the future is required for smart urban development and 

sustainable water management (Bounoua et al., 2020; Forrest et al., 2020; Saraswat et al., 2017). 

In the United States, the urban population has grown from 6% to 81% over the past 200 

years (Leyk et al., 2020), and urban areas have increasingly expanded (Barrington-Leigh & 

Millard-Ball, 2015; Wheeler, 2008). The process of urban sprawl on the west and southwest of the 

United States has been exacerbated at tremendous rates (Hummel, 2020). While rapid urbanization 

seems inevitable in the United States, understanding a sustainable way to mitigate potential 

negative consequences on urban water resources in the future is an important challenge (Butler et 

al., 2017; Forrest et al., 2020; Saraswat et al., 2017).  

Although previous studies have described the impacts of land use changes on water use, 

characterizing the combined effects of changes in both water supply and water demand is vital to 

effectively manage and plan for future urban water resources. Increasing water use along with 

climate change may lead to more frequent imbalance between municipal water demand and supply. 

In this case, to the impacts of urban development patterns on municipal water shortage can be 

represented by changes in socioeconomic drought properties, where socioeconomic drought is 

defined as the condition in which the quantities of water demand exceeds the quantities of water 

supply (Brown et al., 2019; Foti et al., 2014a; Heidari et al., 2020a; Warziniack & Brown, 2019). 
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Improved understanding of the role of urban growth patterns on municipal water shortage 

not only helps decision-makers to save municipal water supply by decreasing potential water 

demand, but also can mitigate the negative consequences of future socioeconomic droughts on 

water supply systems (Butler et al., 2017). This study highlights the importance of urban growth 

patterns, i.e. sprawl versus high-density, to future municipal water shortage for the city of Fort 

Collins as a required task for sustainable water management and smart urban development. The 

objectives are to: 1) assess how urban development patterns can affect municipal water demand; 

2) evaluate the combined impacts of climate change and rapid urbanization on future water 

shortage; and 3) investigate the role of urban growth patterns on future socioeconomic drought 

IDF properties.  

The city of Fort Collins, Colorado was selected as a drought-prone area to provide an 

insight into the importance of urban patterns on future water shortage. The city is experiencing 

substantial population growth and urban development in recent decades (Forrest et al., 2020; 

Heidari et al., 2020a; Sharvelle et al., 2017).  A statistical approach proposed by Heidari et al., 

(2020a) was applied to assess the integrated effects of shifts in water supply and water demand on 

sub-annual socioeconomic drought intensity-duration-frequency (IDF) relationships under climate 

change and population growth. The probabilistic approach uses a mixture Gamma-GPD 

distribution model at sub-annual scale that leads to improved assessment of socioeconomic 

drought under considerable changes in both water supply and water demand. In this study, the 

same probabilistic approach was applied to compare future drought IDF characteristics under 

sprawl versus high-density development patterns. 
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5.2.    Material and Methods 

Based on the definition of socioeconomic drought, climate change, future water supply, 

and water demand projections are needed for the estimation of future socioeconomic drought 

properties. The Soil and Water Assessment Tool (SWAT) and the Integrated Urban Water Model 

(IUWM) were respectively used to estimate future water supply and water demand for the city of 

Fort Collins under a hot-dry climate model from the statistically downscaled Coupled Model 

Intercomparison Project, phase 5 (CMIP5) projections. Then, a probabilistic approach was used 

under sprawl and high-density patterns to assess the impacts of urban development patterns on 

socioeconomic drought intensity, duration, and frequency. 

5.2.1.    Study Region and Data 

Fort Collins in northern Colorado as a growing small city characterized by mostly low to 

medium density development (AMEC Environment & Infrastructure, 2014) was selected as an 

appropriate case study to characterize the role of future urban growth patterns on municipal water 

shortage. The population of Fort Collins has increased by 14 percent from 2010 to 2017 (Bureau, 

2011), forcing urban planners to develop a plan to support the growth.  

The observed climate data were obtained from the Global Historical Climatology Network 

(GHCN), the Colorado Agricultural Meteorological Network (CoAgMet), and Northern Colorado 

Water Conservancy District (NCWCD). Future Climate changes were projected under the hot-dry 

climate model (ipsl-cm5a-mr) with the representative concentration pathway (RCP) 8.5 obtained 

from the CMIP5 dataset (U.S. Bureau of Reclamation, 2013) which represents the worst-case 

conditions in the future. Readers are also referred to Heidari, et al., (2020b) for the detailed 

descriptions of future climate model selection. 
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5.2.2.    Future Water Supply 

The selected hot-dry climate model was used to estimate water supply for the city of Fort 

Collins from 1986 to 2065. Horsetooth Reservoir and the Cache la Poudre (CLP) river are the two 

main water sources for the city of Fort Collins (AMEC Environment & Infrastructure, 2014). 

Water deliveries to the city of Fort Collins are based on the annual quota set by Northern Water 

(AMEC Environment & Infrastructure, 2014). Here, we assumed that the historical coefficients of 

water deliveries to the city of Fort Collins will be maintained as current conditions.  

Future water yield in the CLP river basin at the Mouth of Canyon Station (National Water 

Information System (NWIS), 2019) was estimated using the Soil and Water Assessment Tool 

(SWAT) model (Arnold et al., 1998) driven with the hot-dry climate model. The SWAT model is 

a hydrological model that has been widely used to simulate streamflow in response to climate 

change (Chien et al., 2013; Ficklin et al., 2013; Gassman et al., 2014). Readers are referred to 

Havel et al. (2014) (Havel et al., 2018) for the details about the SWAT model set up, calibration, 

and evaluation for the CLP river basin. The monthly streamflow of the CLP river for the city of 

Fort Collins was simulated using the calibrated SWAT model driven with the hot-dry climate 

model. 

5.2.3.    Future Water Demand 

The Integrated Urban Water Management (IUWM) model was applied to estimate future 

water demand for the city of Fort Collins. The IUWM is a process-based water balance model that 

has been used to project urban water demand (Sharvelle et al., 2017). The model was calibrated 

and evaluated for the city of Fort Collins (Sharvelle et al., 2017). In this study, the IUWM model 

was driven with the hot-dry climate model and the population growth scenario obtained from the 

U.S. Census Bureau with an estimated population of 165,000 for the middle of the century. Readers 
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are referred to Sharvelle et al., (2017) for the details about the IUWM model set up, calibration, 

and evaluation for the city of Fort Collins.  

Housing density development has been identified as one of the factors that influence water 

use in urban areas (Western Resource Advocates, 2003). Thus, the future water demand for the 

city of Fort Collins was estimated under two high-density and sprawl development patterns using 

the IUWM model. Sprawl pattern refers to conditions when cities continue to grow horizontally 

that leads to higher occupied space and inefficient natural resource utilization (Bhatta et al., 2010; 

Rosni et al., 2016). Conversely, high-density development pattern refers to conditions that cities 

tend to grow vertically resulting in less occupied space and more efficient use of resources (Bhatta 

et al., 2010; Rosni et al., 2016). 

Table 5.1 provides changes in population and population density (people per sq. mile) for 

the city of Fort Collins from 2010 to 2050. Population was estimated to increase by 165000 under 

both sprawl and high-density scenarios. This assumption helps to consider only the effects of 

different urban development patterns on socioeconomic drought IDF relationships in response to 

rapid urbanization. Population density was assumed to increase over time under high-density 

development by 4263 (people per sq. mile) while it was assumed to decrease by 2762 (people per 

sq. mile) under sprawl development.  
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Table 5.1. Estimated population and population density of the city of Fort Collins. 

Scenario Year Population 
Density 

(people/sq.m) 

Baseline 2010 130000 3358 

Sprawl 2020 150000 3709 

 2030 158000 3576 

 2040 161000 3192 
  2050 165000 2762 
High 

Density 
2020 150000 3875 

 2030 158000 4082 

 2040 161000 4159 
  2050 165000 4263 

 

Figure 5.1 represents shifts in developed area including open, low, medium, and high 

intensities under sprawl and high-density growth patterns, respectively. Under current conditions, 

it was assumed that there is 38.7 (sq. miles) developed area for the city of Fort Collins including 

open (9.2 sq. miles), low (18.3 sq. miles), medium (8.8 sq. miles) and high (2.4 sq. miles) 

intensities. Under sprawl scenario, total developed area will increase from 38.7 (sq. miles) to 59.7 

(sq. miles) by the middle of century with the highest growth in low intensity area (14.3 sq. miles), 

and no change in high intensity area. Open and medium intensity area were assumed to increase 

by 4 (sq. miles), and 2.7 (sq. miles), respectively. 
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Figure 5.1. Estimation of population density (in sq. miles) for each developed area under high-density 
development. 

 

Under high-density development, total developed area was assumed to remain constant; 

however, the proportion of intensity will change with the highest decrease in low intensity area (-

4.6 sq. miles), and no change in open area by the middle of century. Medium and high intensity 

areas were assumed to increase by 3.7 (sq. miles), and 0.9 (sq. miles), respectively. 

5.2.4.    Socioeconomic Drought IDF Projection 

Heidari et al. (2020a) showed that the average magnitude and duration of socioeconomic 

droughts significantly increase assuming changes in both future water supply and water demand 

conditions (Heidari et al., 2020a). The probabilistic approach developed by Heidari et al., (2020a) 

was applied for the city of Fort Collins to evaluate the important role of urban development patterns 

on municipal water shortage induced by changes in future socioeconomic drought characteristics. 
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A sub-annual socioeconomic drought event can be defined as a succession of consecutive months 

with water demand greater than water supply (Heidari et al., 2020a; Yevjevich, 1967).  

Drought events can be identified by duration, magnitude, intensity and frequency (Heidari 

et al., 2020a; Salas et al., 2005; Yevjevich, 1967). Duration is the number of consecutive months 

in which water demand is greater than water supply. Magnitude is summation of monthly water 

deficit over the drought duration period. Intensity is the ratio of drought magnitude to duration and 

frequency is the number of times that an event occurs over a specific period. Drought intensity, 

duration and frequency (IDF) curves have been commonly used for design of municipal water 

supply systems (Heidari et al., 2020a). 

Heidari et al., (2020a) showed that characterization of drought IDF can be improved by 

applying a mixture Gamma-GPD distribution model at a sub-annual scale. The mixture probability 

models have been widely used to simultaneously capture bulk and tail of distribution (Ghanbari et 

al., 2019, 2020; A. MacDonald et al., 2011; Stephens et al., 2018). Heidari et al. (2020a) proposed 

the cumulative distribution function of mixture Gamma-GPD model as below: 

𝐹(𝑥|𝑟, 𝑎, 𝜉, 𝛽, 𝑢, 𝜙𝑢)  =  { (1 − 𝜙𝑢) 𝐺(𝑥|𝑟, 𝑎)𝐺(𝑢|𝑟, 𝑎)                    𝑥 < 𝑢(1 − 𝜙𝑢) + 𝜙𝑢 𝑔(𝑥| 𝜉, 𝛽, 𝑢)     𝑥 ≥ 𝑢 (5.1) 

 

where 𝐺(𝑥|𝑟, 𝑎) is the Gamma distribution function (equation 5.2), 𝑔(𝑥| 𝜉, 𝛽, 𝑢)  is the 

unconditional GPD function (equation 5.3),  𝑢 is the threshold, and 𝜙𝑢 is the probability of 𝑥 being 

above the threshold (Behrens et al., 2004; A. MacDonald et al., 2011). 

𝐺(𝑥; 𝑟, 𝑎) =  1𝑎𝛤(𝑟) (𝑥𝑎)𝑟−1𝑒𝑥𝑝 (− 𝑥𝑎) (5.2) 
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𝑔𝑢,𝜉,𝛽(𝑥) = 𝑃𝑟 (𝑋 ≤ 𝑥|𝑋 > 𝑢) =  {  
  1 − (1 + 𝜉 𝑥 − 𝑢𝛽 )−1𝜉    𝑓𝑜𝑟   𝜉 ≠ 01 − 𝑒𝑥𝑝 (−𝑥 − 𝑢𝛽 )    𝑓𝑜𝑟   𝜉 = 0  (5.3) 

 

Consequently, the joint probability distribution can be described as follows:  

𝑃 (I > I0  ∩ D > D0) = 𝑃 (I > I0 | D > D0) . 𝑃 (D > D0) (5.4) 

 

where D0 and I0 are respectively given values of drought duration and intensity. The term 𝑃 (I >I0| D > D0) and 𝑃 (D > D0) can be obtained from equation 5.1 using 𝐹(I > I0|D > D0) and 𝐹(D > D0), respectively. 

Moreover, drought return period and frequency amplification factor can be respectively 

defined as equations 5.5 and 5.6: 

𝑇I>I0| D>D0 = 𝐸(D > D0)𝑃 (I > I0| D > D0) ∗ 1𝑃(D > D0) =  𝐸(D > D0)𝑃 (I > I0 ∩  D > D0)   (5.5) 

 

𝐴𝑚𝑝𝑙𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 (𝐴𝐹) = 𝑃𝑡(𝐼 > 𝐼0)𝑃𝐶(𝐼 > 𝐼0)    (5.6) 

 

where 𝐸(D > D0) is the expected drought interarrival time for drought event with D > D0, and 𝑃𝐶(𝐼 > 𝐼0) and 𝑃𝑡(𝐼 > 𝐼0) are the exceedance events probability with 𝐼 > 𝐼0 for current and future 

conditions, respectively.  

Future assessment of municipal water shortage using the proposed sub-annual 

socioeconomic drought approach not only enhances understanding the effects of future urban 

patterns on urban water demand, but also provides an insight into how urban growth patterns and 
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to what extent leads to changes in future drought properties by considering sub-annual shifts in 

both water supply and water demand conditions (Heidari et al., 2020a) 

5.3.    Results and Discussion 

How urban growth patterns can lead to shifts in socioeconomic drought characteristics is a 

fundamental question for improved understanding of sustainable water resource management and 

planning. This section aims to provide a general understanding of how urban growth patterns can 

affect municipal water shortage in the city of Fort Collins to help decision makers to properly 

supply water and mange demand in the future. The drought event properties were assessed under 

two different urban development patterns (high-density and sprawl). The results indicate that urban 

areas under sprawl patterns are likely to have drought with higher intensity, duration, and 

frequency compared to the high-density pattern. In fact, sprawl development plays an important 

role in increasing vulnerability of cities to socioeconomic drought. The 1986-2015 and 2035-2065 

periods were used to respectively represent the current and mid-century conditions. 

5.3.1.    Future Water Supply and Demand Assessment 

While water supply decreases due to climate change, water demand increases in the future 

by the growing population and water use. Figure 5.2 presents 12-month average of projected 

monthly water supply and water demand for the City of Fort Collins under both sprawl and high-

density development and the hot-dry climate model by the middle of the century. We characterized 

the potential amount of available water supply and water demand for the city of Fort Collins and 

did not account for problems such as water deliveries or water conservation and storage in the 

future. 

The effects of urban development patterns, in particular, on future water supply and water 

demand has been evident over time (Figure 5.2). Although water demand for the city of Fort 
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Collins increases over time due to population growth, sprawl development results in higher total 

water demand compared to the high-density development pattern. This would be due to rising in 

per capita water use for keeping landscapes green and irrigation purposes. 

 

Figure 5.2. 12-month average of estimated water supply and water demand under the hot-dry climate 
model. 

 

Therefore, sprawl development leads to a higher gap between water supply and water 

demand by the middle of the century. By the middle of the century, sprawl development is likely 

to approximately double monthly water deficits for the city of Fort Collins, water supply system 

compared to the high-density development pattern (Figure 5.3). 

 

Figure 5.3. 30-year average of monthly water deficit in million cubic meters (mcm) under the hot-dry 
climate model. 

 



123 
 

Figure 5.3 indicates that developing cities under the high-density pattern can lead to saving 

a significant amount of water demanded and decreases pressure on municipal water supply systems 

in the future under climate changes and rapid population growth.  

Integrating climate models, hydrological models, and urban growth models may lead to 

high uncertainties in future drought hazard assessment and the future projections should not be 

considered definitive for the city of Fort Collins. The main purpose of this study was to identify 

the role of urban development patterns on municipal water shortage through two urban growth 

scenarios as a comparative study. A comprehensive assessment of future water supply and demand 

conditions in response to climate change is beyond the scope of this study. 

 

5.3.2.    Changes in Sub-annual Socioeconomic Drought IDF Properties under 

Sprawl and High-Density 

Sub-annual socioeconomic drought events can be characterized by the estimated monthly 

water deficit according to definitions and the applied probabilistic framework (Heidari et al., 

2020aa). While the expected interarrival time is forecasted to change significantly from the current 

conditions (1986-2015) to future conditions (2036-2035) under both sprawl and high-density 

patterns, sprawl development can lead to higher decreases in the expected interarrival than high-

density development (Figure 5.4). However, socioeconomic drought events with longer durations 

are more sensitive to urban growth patterns than droughts with a duration of less than a year. In 

fact, within-year drought events (D<12) would be less influenced by changing urban development 

patterns. 
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Figure 5.4. Expected interarrival time (in month). 

 

Figure 5.5 shows changes in frequency amplification factors under sprawl and high-density 

development patterns with various drought durations. Although the frequencies of sub-annual 

socioeconomic drought are estimated to increase as a result of climate change and population 

growth, changes in their frequencies are not the same under sprawl and high-density development 

patterns. The results indicate that the drought frequency for the study system was substantially 

higher for a sprawl urban growth compared to development under high-density patterns. 

 

Figure 5.5. Frequency amplification factor curves for drought events (intensity in mcm/month). 

 

Changes in IDF curves of sub-annual socioeconomic droughts were obtained using the 

developed approach by Heidari et al (2020a). Future drought IDF curves were generated with a 

duration greater than 1, 6, 12, 24, and 36 months for sprawl and high-density patterns (Figure 5.6). 

The comparison of the IDF curves for sprawl and high-density development patterns highlights 
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the importance of the pattern of urban growth on increasing sub-annual socioeconomic drought 

events. 

The return period of socioeconomic drought events under sprawl development is smaller 

than high-density development consistently under all varying drought durations (Figure 5.6). For 

a given return period, drought events with higher intensity and longer duration were estimated 

under the sprawl pattern compared to the high-density pattern for the middle of the century. The 

results indicate that urban development patterns can substantially affect future drought IDF curves. 

Drought IDF curves are widely applied for the design of municipal water supply systems. Thus, 

the choice of future urban development patterns can directly affect design of water supply systems 

in the future. 

 

  

Figure 5.6. Drought intensity-duration-frequency (IDF) curves for future conditions under sprawl 
patterns (left-panel) and high-density pattern (right-panel) for duration (D) greater than 1, 6, 12, 24, and 

36 months. 
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Quantitative parameters were estimated to demonstrate effects of urban growth patterns on 

drought properties (Table 5.2). The average drought magnitude, duration, intensity, and maximum 

water deficit were calculated under both sprawl and high-density development patterns. The 

socioeconomic drought magnitude, duration, and intensity substantially increase under the sprawl 

pattern with a higher rate in duration and magnitude. These results highlight that the choice of 

urban growth patterns may substantially affect future municipal water shortage.  The choice of 

urban patterns plays a key role in sustainable development and water use. 

Table 5.2. Impacts of urban growth patterns (sprawl vs high-density) on sub-annual socioeconomic 
drought properties. 

 

Drought Properties Sprawl High-Density 

Magnitude (mcm) 8.2 3.62 

Duration (month) 9.38 5.4 

Intensity (mcm/m) 0.53 0.45 

Maximum water deficit (mcm) 1.04 0.87 

 

Although climate change and rapid urbanization are two major causes of water shortage in 

urban areas, the results of this study in overall identified that the choice of the urban sprawl pattern, 

in particular, is as a fundamental factor contributing to raising drought intensity, duration, and 

frequency by growing future water consumption. Sprawl development itself can also lead to 

increases in pollutant emissions such as carbon monoxide over the long-term (Stone et al., 2007; 

Zhang et al., 2020), and hence exacerbating climate change.  

While urbanization under the high-density development pattern can lead to lower 

socioeconomic drought hazard in the future, it may have negative consequences on other aspects 

of urban water cycle such as an increase in stormwater due to more impervious areas. Thus, an 

integrated water resources and land management strategy is required to mitigate negative 
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consequences on society, economy, and environment. Rapid urbanization can change the behavior 

of river basins through changing their topology, geology, and hydrology and have some significant 

negative consequences on air, energy, land, and water noted in various studies (Wilson & 

Chakraborty, 2013). High density development typically results in high impervious area, and 

increased stormwater runoff with detrimental impacts for receiving water bodies and combined 

sewer overflow events (Bouziotas et al., 2015). Innovative stormwater management techniques 

such as low impact development (LID), and green infrastructure (GI) can reduce these negative 

impacts in high density development areas (Seo et al., 2017; Zhang et al., 2017).  

Decisions on land management should seek to balance impacts of water use and 

environmental impacts of urbanization. The importance of water shortage between sprawl and 

high-density development patterns may be different so that shortage for the sprawl pattern may 

mean not irrigating lawns while for the high-density pattern may mean no showers.  

Thus. this study aims to highlight the importance of urban growth patterns on drought 

hazard assessment rather than policy implementation or planning strategies. Comprehensive 

planning regulation and strategies for sustainable urban development in the future needs an 

interdisciplinary collaborative work between hydrologist, geologist, policymakers, economist, and 

social scientist that is beyond the scope of this paper. 

5.4.    Summary and Conclusions 

As population and urban areas continue to grow, enhanced urban planning and sustainable 

water resource management become more crucial. This study aimed to draw attention to the role 

of urban growth patterns in future drought hazard to provide insights for decision makers, water, 

and land managers. Improved understanding of factors that reduce future water shortage conditions 
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can help local and regional planners to identify policy solutions that result in more efficiency of 

future water use.  

Results indicated that sprawl development can result in more water consumption due to 

higher quantities of water used for outdoor activities such as landscape irrigation. The high-density 

pattern not only can save municipal water supply by decreasing future water use, but also can lead 

to decreasing drought impacts on municipal water supply systems by decreasing drought intensity, 

duration, and frequency. 

The findings of this study recommended that modification to development densities can 

reduce vulnerability to socioeconomic drought. However, decisions on future urban development 

patterns must balance considerations of drought with possible negative impacts of urbanization 

and include innovative strategies for stormwater management to mitigate those impacts. 
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CHAPTER 6.  

 VULNERABILITY TO WATER SHORTAGE UNDER CURRENT AND FUTURE WATER 

SUPPLY-DEMAND CONDITIONS ACROSS U.S. RIVER BASINS 

 

Climate change, population growth, urbanization, and interactions thereof may alter the 

water supply-demand balance and lead to shifts in water shortage characteristics at different 

timescales. This study assesses the vulnerability of water supply systems to the interannual to the 

decadal water shortage across the contiguous United States (CONUS) by characterizing shifts in 

intensity, duration, and frequency (IDF) of events from current (1986-2015) to future (2070-2099) 

periods. The monthly water yield was estimated using the Variable Infiltration Capacity (VIC) 

hydrological model driven with the Multivariate Adaptive Constructed Analogs (MACA) climate 

model with RCP 4.5 and 8.5 emission scenarios.  The monthly water demand was projected under 

the A1B population growth scenario. The Water Evaluation and Planning (WEAP) model was 

applied to determine water shortage conditions in which water demand exceeds water supply. 

Changes in characteristics of water shortage conditions were assessed using the Mixture Gamma-

GPD probability model. The results indicate that the frequency and intensity of over-year (D>12 

months) events at the monthly scale and decadal (D>10 years) events at the annual scale tend to 

increase in the Southwest, Southern, middle Great Plain, and Great Lakes regions. Conversely, the 

frequency of interannual (D<12 months) events at the monthly scale and annual (D>1 year) and 

multi-year (D>3 years) events at the annual scale are likely to increase in the West Coast regions. 

River basins with a higher rate of aridification are likely to experience more frequent over-year 

(D>12 months) events while river basins with a decrease in aridification were projected to undergo 

more frequent interannual (D<12 months) events due to an increase in the variability of extreme 
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weather anomalies within a year under future climate conditions. The findings of this study provide 

new insights in understanding current and future water shortage conditions and can inform the 

development of effective mitigation and/or adaptation strategies for river basins across the 

CONUS. 

 

6.1.    Introduction 

Water availability plays a critical role in a wide range of environmental, agricultural, 

industrial, and recreational activities. However, urbanization, population growth, and climate 

change may lead to shifts in water supply-demand conditions in river basins and culminate in 

short-term or chronic water shortages (Brown et al., 2019; Engström et al., 2020; Heidari et al., 

2020a; Heidari, et al., 2020b; Mahat et al., 2017; Naz et al., 2016; Warziniack & Brown, 2019; 

Xing et al., 2018). Water shortage occurs when water demand exceeds water supply and can be 

assessed on various spatial and temporal scales (Foti et al., 2012; Jose D. Salas et al., 2005; 

Yevjevich, 1967). Enhanced characterization of shifts in water shortage conditions is increasingly 

discussed in response to climate change and rapid population growth (Cheng et al., 2014; Heidari, 

et al., 2020a; Salas et al., 2018). 

Water shortage events have recently increased across multiple U.S. river basins with longer 

duration, higher intensity, and greater spatial extent than has occurred over the last decades (Martin 

et al., 2020). Although diverse methods have been used in previous studies for the assessment of 

future water shortage conditions across the United States, a few studies discussed the effects of 

shifts in both water supply and water demand on the intensity, duration, and frequency (IDF) 

relationships of water shortage events across the United States at various spatial and temporal 
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scales (Guo et al., 2019; Heidari et al., 2020a; Salas et al., 2018; Tu et al., 2018) and more research 

is needed to support actionable managements to mitigate negative impacts. 

Recent assessments of future water supply and demand across the conterminous United 

States (CONUS) have shown an increase in the frequency of water shortage in western basins 

(Brown et al., 2013, 2019; Foti et al., 2012, 2014b; Mahat et al., 2017; Mehran et al., 2017; 

Warziniack & Brown, 2019). While these studies examine frequency of long-term water shortage 

conditions, the effects of changes must be assessed in intensity, duration, and frequency (IDF) 

relationships of events at interannual to decadal timescales (Cayan et al., 2010; Gober & 

Kirkwood, 2010; Jaeger et al., 2017; G. M. MacDonald, 2010; Mann & Gleick, 2015; McDonald 

et al., 2011; Rosegrant & Cai, 2002; Sun et al., 2008; Yigzaw & Hossain, 2016).  

Previous studies have mainly focused on the frequency of water shortage occurrence. Foti 

et al., (2014b) assessed the vulnerability of the U.S. water supply system to the shortage as the 

probability that annual water supply is less than annual water demand. Brown et al., (2019) and 

Warziniack & Brown, (2019) quantified the frequency of water shortage as the number of months 

over a given multiyear time period when shortages occur. Engström et al., (2020) assessed the 

drought exposure of each state within the CONUS using drought frequency, population density, 

and protected waters indicators. They represented the drought frequency to show how often a state 

is in drought.  

However, few studies discussed the effects of shifts in both water supply and water demand 

on intensity, duration, and frequency (IDF) relationships of water shortage events at various 

temporal scales from interannual to decadal (Heidari et al., 2020a). Although IDF curves have 

been commonly used for the characterization of the designed event for water supply systems, these 

relationships may need to be modified in a changing environment under nonstationary conditions. 
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The improved estimation of future IDF relationships can enhance the management and planning 

of future water resources (Buurman & Babovic, 2016; Heidari et al., 2020a).  

Furthermore, interannual changes in the variability of weather and water consumption in 

the future may cause unequal supply-demand balance within a year (Gutzler & Nims, 2006; Yu et 

al., 2014). The assessments of water shortage conditions at various timescales allow characterizing 

of both prolonged and short-term events (Maliva & Missimer, 2013). Many regions that are prone 

to prolonged water shortage conditions may not have the food, water, and economic resources to 

overcome multi-year water shortage conditions (Maliva & Missimer, 2013). Besides, even in 

regions where water is abundant, water scarcity during short time periods within the year may be 

on the rise due to climate change and rapid population growth (Jaeger et al., 2017). Interannual 

water shortage conditions can lead to significant impacts, especially on agricultural regions during 

the growing seasons (Otkin et al., 2018).  

Recently, Heidari et al., (2020a) developed a probabilistic approach for enhanced 

characterization of intensity, duration, and frequency (IDF) relationships of water shortage events 

at a sub-annual scale under considerable shifts in water supply and demand conditions. The 

approach uses the mixture Gamma-Generalized Pareto (Gamma-GPD) model to simultaneously 

improve the characterization of both non-extreme and extreme events. The application of the 

developed probabilistic approach was demonstrated in this study for the CONUS at a 4‐digit 

hydrologic unit code (HUC4) basin scale under the IPSL-CM5A-MR model obtained from the 

Multivariate Adaptive Constructed Analogs (MACA) dataset as the driest climate model with the 

highest projected decrease in average precipitation (Joyce & Coulson, 2020).  

This study assesses future shifts in intensity, duration, and frequency (IDF) of water 

shortage conditions at interannual, annual, multi-year, and decadal scales across the CONUS in 
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response to shifts in water supply and water demand conditions. Specifically, the objectives are to: 

(1) assess shifts in IDF properties of water shortage events across U.S. river basins from current 

to future conditions; (2) evaluate the frequency amplification factors of water shortage events; and 

(3) identify factors that govern changes in water shortage frequency (or intensity) across regions 

in CONUS. The findings of this study can help decision-makers to assess and improve the ability 

of various water supply systems to shortage and address the considerations in water resource 

planning and management under considerable shifts in water supply and demand conditions. 

6.2.    Material and Methods 

The characterization of future water shortage conditions at various timescales and 

understanding mechanisms behind that is required for the enhanced water resource management 

and planning (Andreadis & Lettenmaier, 2006; Hagenlocher et al., 2019; Svoboda et al., 2002; Tu 

et al., 2018). Figure 6.1 illustrates the roadmap of this study. Current climate conditions (1986-

2015) of U.S. river basins were projected using the combination of the Daymet (Thornton et al., 

1997b) and the Parameter-elevation Regressions on Independent Slopes Model (PRISM) (Daly et 

al., 2008) datasets. Future climate conditions (2016-2099) were estimated using the driest 

MACAclimate model with RCPs 4.5 and 8.5 emission scenarios from the downscaled Multivariate 

Adaptive Constructed Analogs (MACA) datasets (Abatzoglou & Brown, 2012). The forcing 

climate variables were used as inputs to the variable infiltration capacity (VIC version 4.1) model 

to project the monthly water yields across the CONUS at the HUC4 river basin scale (Figure D-

1).  
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Figure 6.1. The proposed framework of water shortage analysis 

The monthly water demand of each basin was estimated in light of population growth and 

climate change. Then, the water supply of each basin was obtained using the Water Evaluation and 

Planning (WEAP) model. The estimated water supply and water demand were used to characterize 

changes in characteristics of water shortage events from current (1986-2015) to future (2070-2099) 

conditions. Additionally, the statistical relationships between the sub-annual water shortage 

conditions and aridification were assessed. Finally, regions with a level of shortage in the future 

were categorized into supply-based, demand-based, and supply/demand-based regions. Changes 

in the average duration, intensity, and frequency of water shortage events were characterized under 

shifts in only water demand conditions (demand-based), only water yield conditions (supply-

based) and both supply and demand conditions (supply/demand-based). We applied the term 

baseline to denote the historical period (1986-2015) as a basis for comparison with the future 

climate conditions. 

6.2.1.    Hydroclimatic Projection 

The daily precipitation and temperature of U.S. river basins for the current conditions 

(1986-2015) were obtained from the Daymet dataset (Thornton et al., 1997b) and then biased 

corrected using the Parameter-elevation Regressions on Independent Slopes Model (PRISM) 

climate dataset (Daly et al., 2008) at the monthly scale. The daily wind speed of U.S. river basins 
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for the current conditions was also calculated from the North American Regional Reanalysis 

(NARR) dataset (Mesinger et al., 2006). Readers are referred to Oubeidillah et al. (2014) and Naz 

et al. (2016) for more detailed information about the historical climate projection. 

The future precipitation, minimum and maximum temperature, and wind speed of U.S. 

river basins were obtained from the downscaled Multivariate Adaptive Constructed Analogs 

(MACA) datasets (Abatzoglou & Brown, 2012). The MACA climate dataset includes twenty 

downscaled climate models at the grid size of ~4 km (1/24 degree) with the RCP 4.5 and RCP 8.5 

emission scenarios. In this study, we selected the IPSL-CM5A-MR model for future climate 

projection over the CONUS where RCP 4.5 and RCP 8.5 were used as bounding scenarios. Note 

that the selected MACA climate model has on average the driest projection at the conterminous 

scale (Joyce & Coulson, 2020). 

A good representation of current climate conditions is a vital need required to realistically 

simulate future climate conditions. Figure D-2 compares the 30-year average of annual projected 

precipitation and temperature of the IPSL-CM5A-MR climate model and the baseline climate 

model (the combination of PRISM and Daymet) over the historical period (1986-2015) at the 

HUC4 basin scale. The 30-year average of precipitation and temperature for the climate model has 

a high correlation with the baseline historical model under both RCP 4.5 and 8.5 emission 

scenarios. The IPSL-CM5A-MRclimate model with RCPs 4.5 and 8.5 shows a strong linear 

correlation (from 0.9928 to 0.9985) for both annual precipitation and temperature. Readers are 

referred to Heidari, et al., (2020b), and Joyce & Coulson, (2020) for more detailed information 

about the future climate projections. 

The current and future climate projections were then inputted to the semi-distributed 

macroscale Variable Infiltration Capacity (VIC) version 4.1.1 hydrologic model (Liang et al., 
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1994; Cherkauer et al., 2003) at a daily time step to simulate the water yield of U.S. river basins 

at the grid size of ~4 km (1/24 degree). The VIC model has been commonly applied to project 

streamflow over different large river basins in North America (Andreadis & Lettenmaier, 2006). 

Topography, soil characteristics, vegetation, and land surface classification are other key 

hydrological inputs to the VIC model.  

The aggregated monthly runoff obtained from the USGS National Water Information 

System gauge observations (WaterWatch dataset) (Brakebill et al., 2011) was used to calibrate the 

VIC model for each HUC4 basin. Organized and calibrated VIC input data for the US Geological 

Survey (USGS) eight-digit hydrologic subbasins (HUC8) across the entire CONUS were obtained 

from Oubeidillah et al., (2014). The daily water yield outputs from the VIC model were then 

aggregated to monthly values or each HUC4 river basin.  

Figure D-3 compares the observed versus simulated annual water yield for each HUC4 

river basin within the CONUS over the 1986-2015 period. The VIC model shows a strong linear 

correlation (0.9894) between observed and simulated mean annual water yield. Readers are 

referred to Oubeidillah et al. (2014), Naz et al. (2016), and Heidari et al., (2020b) for the detailed 

description of the VIC model set up, calibration, evaluation, and simulation. 

6.2.2.    Water Demand Projection 

The method used in this study to estimate water demand follows that described by Brown 

et al., (2013, 2019). The monthly water demand of each HUC4 river basin was estimated by 

summing projections for six water use sectors including domestic and public, agricultural 

irrigation, thermoelectric, industrial, commercial, and mining, livestock, and aquaculture. The 

current water use data were obtained from the USGS water use circulars and for thermoelectric 

power water use from Diehl and Harris (Diehl & Harris, 2014). The future water withdrawal for 
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each sector was estimated as the product of a water use driver such as population and irrigated 

area; and a water withdrawal rate such as domestic withdrawals per capita and irrigation 

withdrawal per unit area. 

The A1B scenario from the Intergovernmental Panel on Climate Change (IPCC) Fourth 

Assessment set of global socioeconomic scenarios was chosen to project future changes in 

population and income levels using the AIM global emissions model (Brown et al., 2013; 

Nakicenovic, 2000). The A1B scenario closely extends the current trends in population and 

economic growth and simulates a high level of technological change and rapid spread of efficient 

technologies by assuming a balanced emphasis on all energy sources. The population of the United 

States has been estimated to approximately increase of 67% from current to future conditions with 

an annual growth rate that gradually declines by about 62% (Brown et al., 2013). 

Irrigated area has been estimated to rise in the East and decrease in the West (Brown et al., 

2013); and per capita total electricity consumption has been projected to increase about 7% from 

current to future conditions with an annual growth rate that gradually declines by 100%. Impacts 

of climate change on water demand were included in domestic, public, irrigation, and 

thermoelectric demand (Brown et al., 2013). Projected changes under the driest climate model can 

affect water use in several sectors (Brown et al., 2019; Georgakakos et al., 2014), as rising potential 

evapotranspiration rates, plus decreasing precipitation can lead to a significant increase in 

agriculture and landscape irrigation demands. 

6.2.3.    Water Supply Assessment 

The Water Evaluation and Planning (WEAP) model (Yates et al., 2005) was applied in this 

study to estimate the water supply allocated to each HUC4 river basin. The WEAP model applies 

linear programming to allocate water in order to maximize demand satisfaction that is subject to 
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allocation priorities, mass balances, water availability, and other constraints (Brown et al., 2019). 

The approach of the WEAP model is to satisfy demands and maintain reservoir storage levels. The 

water demand is satisfied from the current water yield before the utilization of reservoir storage.  

The WEAP model used in this study was set up by Brown et al., (2019) at HUC04 

watersheds spatial scale. The WEAP model runs at the monthly time step for the period of 1985 

to 2099 to calculate the past and future water supply of each HUC4 river basin. The monthly water 

yield, water demand, trans-basin diversion capacity, instream flow constraint; reservoir storage 

capacity, evaporation rate, and volume-elevation curve; and priorities of the different water uses 

are the key inputs to the WEAP model.  

The water supply of a basin was defined as the amount of water available to meet demands 

for a given month and obtained from the sum of water yield, net trans-basin diversions, reservoir 

storage from the prior month, and inflow from upstream minus the sum of required instream flow 

release, reservoir evaporation, and any required release to satisfy downstream demands. Note, the 

net trans-basin diversion is positive if the basin imports water and negative if the basin exports 

water. The surplus water supply will be stored in the reservoir when water supply exceeds 

consumptive use demands. 

This order of priority of different water uses was assumed so that a minimal amount of 

water for environmental and ecosystem needs will be maintained and major water diversion 

agreements will be satisfied. The highest priority was given to the instream flow requirement and 

trans-basin diversions and then the next two lower priorities were assigned to within basin 

consumptive demands, and the lowest propriety was given to the reservoir storage. Readers are 

referred to Brown et al., (2019) and Warziniack & Brown, (2019) for the detailed description of 

the WEAP model set up, calibration and evaluation. 
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6.2.4.    Characterization of Water Shortage IDF Relationships 

The probabilistic approach developed by Heidari et al., (2020a) was used in this study to 

assess shifts in intensity, duration, and frequency (IDF) of water shortage events across the 

CONUS at the monthly and annual scales. The projected water demand and water supply from 

sections 2.3 and 2.4 were used as inputs to identify changes from current to future conditions.  

The duration (𝐷), intensity (𝐼), and frequency (𝐹) of a water shortage event were 

respectively defined as the number of consecutive months/years where water demand exceeds 

water supply, the cumulative water deficit divided by its duration and the number of times that a 

specific event occurs (Figure D-4).  

The water shortage events were modeled using the mixture Gamma-GPD distribution to 

simultaneously capture bulk and tails of events. In this model, values below the GPD threshold 

(i.e., location parameter) were modeled by the Gamma distribution while values above the 

threshold were modeled by the GPD. The mixture Gamma-GPD cumulative function (𝐹) is given 

by: 

𝐹(𝑥|𝑟, 𝑎, 𝜉, 𝛽, 𝑢, 𝜙𝑢)  =  { (1 − 𝜙𝑢) 𝐺(𝑥|𝑟, 𝑎)𝐺(𝑢|𝑟, 𝑎)                    𝑥 < 𝑢(1 − 𝜙𝑢) + 𝜙𝑢 𝑔(𝑥| 𝜉, 𝛽, 𝑢)     𝑥 ≥ 𝑢 (6.1) 

where 𝑔(𝑥| 𝜉, 𝛽, 𝑢)  is the unconditional GPD function, 𝐺(𝑥|𝑟, 𝑎) is Gamma distribution function, 𝑢 is the GPD location parameter (threshold), and 𝜙𝑢 is the probability of 𝑥 being above the 

threshold. 

The joint probability distribution of events for intensity I > I0 and duration D > D0 can be 

obtained by the product of the conditional distribution of intensity for a given duration and the 

marginal distribution of duration as: 
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𝑃 (I > I0  ∩ D > D0) = 𝑃 (I > I0 | D > D0) . 𝑃 (D > D0) (6.2) 

where D0 and I0 denote any given values of duration and intensity, respectively. 𝑃 (D > D0) is the 

marginal probability of events with D > D0 and the term 𝑃 (I > I0| D > D0) is the conditional 

probability of I > I0 given D > D0. The marginal probability of D > D0 from the mixture Gamma-

GPD is given by: 

𝑃 (D > D0) = 𝐹(D > D0)  =  { (1 − 𝜙𝑢) 𝐺(D > D0|𝑟, 𝑎)𝐺(u|𝑟, 𝑎)                    𝑥 < 𝑢(1 − 𝜙𝑢) + 𝜙𝑢 𝑔(D > D0| 𝜉, 𝛽, 𝑢)     𝑥 ≥ 𝑢 (6.3) 

 

The conditional probability of 𝑃 (I > I0| D > D0) can be determined in the same way 

considering that the mixture model should be fitted to just water shortage events with D > D0 as 

follows: 

𝑃 (I > I0| D > D0) = 𝐹(I > I0|D > D0|𝑟, 𝑎, 𝜉, 𝛽, 𝑢, 𝜙𝑢)       (6.4)         

The annual return period of events under nonstationary conditions with intensity greater 

than or equal to a target (I > I0) were calculated as a function of the expected interarrival time and 

cumulative intensity distribution function, expressed as: 

𝑇I>I0| D>D0 = 𝐸(D > D0)𝑃 (I > I0| D > D0) ∗ 1𝑃(D > D0) =  𝐸(D > D0)𝑃 (I > I0 ∩  D > D0)     

(6.5) 

where 𝐸(D > D0) is the expected interarrival time with D > D0. The expected value of interarrival 

time between two successive socioeconomic events with D > D0 is given by (Shiau & Shen, 2001; 

Zhao et al., 2017): 
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𝐸(D > D0) = 𝐸(∑DIi𝑁
𝑖=1 ) (

(6.6) 

where DIi is interarrival time between two successive events with D > D0, and 𝑁 is the number of 

events equal to or greater than a certain duration. 

The change in frequencies under nonstationary conditions can be also quantified by 

dividing the exceedance probability of a given water shortage event in the future to the current 

condition as follows: 

𝐴𝑚𝑝𝑙𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 (𝐴𝐹) = 𝑃𝑡(𝐼 > 𝐼0)𝑃𝐶(𝐼 > 𝐼0)  (

(6.7) 

where 𝐴𝐹 is the frequency amplification factor of events with 𝐼 > 𝐼0, and 𝑃𝐶(𝐼 > 𝐼0) and 𝑃𝑡(𝐼 > 𝐼0) are respectively the exceedance probability of events with 𝐼 > 𝐼0 for current and future 

conditions.  

The applied probabilistic approach allows enhanced assessments of vulnerability to water 

shortage at the both interannual and annual time steps in basins undergoing climate and 

socioeconomic changes (Heidari et al., 2020a). Improved characterization of IDF relationships is 

critical in the design of water supply systems under nonstationary conditions  (Guo et al., 2019; 

Heidari et al., 2020a; Mehran et al., 2015; Salas et al., 2018). 

6.2.5.    Characterization of Changes in the Aridity Index  

long-term changes in the relationship between climate and water budgets of river basins 

may lead to aridification or desertification (Maliva & Missimer, 2013). Aridification can be 

defined as the long-term severe lack of freshwater availability in a region. Recent water shortage 

events across the conterminous United States (CONUS) have shown that severe events can develop 
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very rapidly if climate change leads to aridification in a region (Andreadis & Lettenmaier, 2006; 

Piemontese et al., 2019).  

The aridity (or dryness) index is commonly used in previous studies to characterize regions 

that are more prone to aridification in response to long-term climate change (Yang et al., 2006; Q. 

Zhang et al., 2017). The aridity index is defined as the ratio of annual potential evapotranspiration 

(PET) to annual precipitation (P). The river basins with increases in the long-term average aridity 

index are more likely to face aridification in the future.  

The annual precipitation of HUC4 river basins was obtained from the IPSL-CM5A-

MR(driest) climate model of the MACA dataset. The potential evapotranspiration of HUC4 river 

basins was calculated using the VIC hydrological model. The Penman-Monteith equation was 

implemented in the VIC model for the estimation of the PET. The VIC model assumes that PET 

is from open water meaning that there are sufficient open water supplies. Thus, the PET values are 

the maximum (potential) evapotranspiration capacity.    

In this study, the statistical correlation between changes in aridity index, and changes in 

the intensity and duration of sub-annual water shortage events were calculated at the HUC4 river 

basin scale to figure out how long-term anomalies such as aridification can be related to short-term 

anomalies such as sub-annual water shortage events. The hypothesis defined as there is no 

correlation. Thus, the p-values less than the significance level (0.05) indicate rejection of the 

hypothesis meaning that changes in aridity index water shortage characteristics are statistically 

correlated.  
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6.3.    Results and Discussion 

The study reveals that shifts in IDF relationships of water shortage conditions in response 

to climate change and population growth vary from one HUC4 river basin to another. The majority 

of HUC4 river basins within the Southwest, Southern, and the middle Great Plain regions were 

projected to undergo a significant increase in intensities and frequencies of over-year (D>12 

months) events at the monthly scale, and decadal (D>1-0 years) events at the annual scale. 

However, most river basins within the West Coast regions were estimated to experience a decrease 

in the intensity of water shortage conditions. However, the frequency of interannual (D<12 

months) events at the monthly scale and annual (D>1 year) and multi-year (D>3 years) events at 

the annual scale were projected to increase in the West Coast regions under the driest climate 

projection for the CONUS. 

Note that the characterization of water shortage at the monthly and annual scales makes a 

significant difference in the definition of water shortage events. The events with duration (D) = n 

months mean that there are n consecutive months in which monthly water demand is greater than 

monthly water supply. However, events with duration (D) = n years mean that there are n 

consecutive years in which total annual water demand is greater than total annual water supply. 

For example, events with duration equal to 24 months (D = 24 months) are not equivalent to events 

with duration equal to two years (D = 2 years). Thus, even during a two-year event, there may be 

months with water surplus. As a result, characterization of water shortage events at both monthly 

and annual scale can help to identify interannual to decadal events that can lead to enhanced 

decision-making in water resource planning and management. 



144 
 

6.3.1.    Changes in Water Yield and Demand 

Figure 6.2 shows changes in monthly water yield and water demand of HUC4 river basins 

under  climate change with RCPs 4.5 and 8.5 emission scenarios. The current water yield and water 

demand vary substantially across the HUC4 basins with higher water yield in the wetter regions 

(e.g., Southeast and Northwest US) and the higher water demand in drier regions (e.g., the West, 

Southwest, and Midwest US) (Figure 6.2.a).  Note that higher water demand is likely to occur in 

basins with lower water yield. The unit of deficit in this study is million cubic meters (MCM) and 

the unit of water yield is cubic meters per second (CMS). 

 

Figure 6.2. (a) Current monthly water yield and water demand by basin; and projected changes from 
current (1986-2015) to future (2070-2099) conditions under the driest MACA climate model with (b) 

RCP 4.5 and (c) RCP 8.5. 
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Changes in water yield from current (1986-2015) to future (2070-2099) conditions are 

highly variable from a 30% decrease in the southern United States to more than 50% increase in 

the western United States under RCP 4.5 (Figure 6.2.b). While the pattern of changes in water 

yield under the RCP 8.5 scenario is like the RCP 8.5 scenario, a decrease in water yield tends to 

be extended to some river basins in the Southwest, middle Great Plains, and Southeast United 

States (Figure 6.2.c).  

Estimated changes in water demand from current to future conditions are highly variable 

across the CONUS, that is positive in most HUC4 basins but slightly changes in basins located in 

the West, Southwest and Northwest United States under both RCPs 4.5 and 8.5 emission scenarios 

(Figures 6.2.b and 6.2.c) due to the effect of the projected decrease in the irrigated area (Brown et 

al., 2013). The highest increase in future water demand is likely to occur in the Ohio Valley and 

Upper Midwest United States. Decreasing water yield, increasing water demand, or especially 

their combination can lead to potential conditions for water shortage. 

6.3.2.    Changes in IDF Relationships of water shortage conditions at the monthly 

scale 

Under the driest climate model and RCP 4.5 and 8.5 emission scenarios, 64 and 73 HUC4 

river basins were respectively projected to experience some level of monthly water shortage in the 

future (Figure 6.3.a). Thus, in this study, we assessed shifts in intensity, duration, and frequency 

(IDF) of water shortage events across these basins. Although the majority of basins located in the 

Southwest region were projected to experience a higher increase in the number of months with 

water shortage in the future, the HUC4 river basins in the West Coast region were estimated to 

have decrease in the number of months with water shortage. 
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Figure 6.3. Changes in the frequency of months with water shortage by basin from current (1986-2015) 
to future (2070-2099) conditions and (b) the months with the highest occurrence of water shortage  under 

RCP 4.5 and RCP 8.5. 

 

Furthermore, Figure 6.3.b shows the months with the highest occurrence of water shortage 

conditions in each HUC4 river basin. The majority of water shortage conditions were projected to 

occur over the summer months (July, Aug, and Sep). 

We then assessed the IDF relationships of current (1986-2015) and future (2070-2099) 

water shortage conditions at the monthly scale to estimate shifts in characteristics of interannual 

and over-year (D>12 months) water shortage events. Figure 6.4.a shows the current IDF 

relationships of HUC4 river basins across the United States. Under the current conditions and for 

a given return period (e.g., T=10 years), the intensity decreases as the duration becomes longer. 
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Additionally, for a given duration (e.g., D>1 month), the intensity was projected to slightly change 

as the return period increases (e.g., from T=10 years to T=100 years). Overall, the West Coast and 

the middle Great Plain river basins were projected to currently have more intense water shortage 

conditions (~ 400 mcm/months) at the sub-annual scale.  

However, under the future conditions (Figure 6.4.b), the intensity of water shortage events 

was projected to mostly increase from current to future conditions with a higher rate of increase in 

events with longer duration and higher return period. Water shortage events with a duration greater 

than one month (D>1 month) and a return period of 10 years (T=10 years) have the lowest increase 

in intensity. Conversely, events with a duration greater than twelve months (D>12 months) and a 

return period of 100 years (T=100 years) were projected to have the highest increase in intensity. 

For T=10 years, the intensity was projected to significantly increases from D>1 month to 

D>6 months while for T=100 years, the highest increase in intensity was projected from D>6 

months D>12 months. The result means that at the sub-annual scale, the intensity of water shortage 

events with a duration greater than 12 months (12 consecutive months with water deficit) is more 

vulnerable to climate change and population growth compared to the intensity of interannual water 

shortage events, especially for longer return periods. 

For water shortage events with D>1 month, there are minor differences in the intensity of 

current and future water shortage events. Additionally, the intensity of future events with D>1 

month was projected to slightly change as the return period increases (e.g., from T=10 years to 

T=100 years). The finding indicates that sub-annual events that occur every 10 years are likely to 

experience the same magnitude of increase in intensity compared to sub-annual events that occur 

every 100 years. 
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For water shortage events with D>6 months, the majority of river basins are more likely to 

experience higher increases in the intensity of more frequent events (T=10 years) compared to the 

less frequent events (T=100 years). Thus, this reveals that events that occur every 10 years are 

likely to experience a higher magnitude of changes in the intensity compared to events that occur 

every 100 years. 

Conversely, for water shortage events with D>12 months (12 consecutive months with 

water deficit), river basins are more likely to experience higher changes in the intensity of less 

frequent events (T=100 years) compared to the more frequent events (T=10 years). This means 

that events with a duration greater than twelve months (D>12 months) that occur every 10 years 

are likely to experience a lower magnitude of changes in intensity than events with a duration 

greater than twelve months (D>12 months) that occur every 100 years. 

The results indicate that less frequent (T=100 years) and longer (D>12 months) sub-annual 

events and more frequent (T=10 years) and shorter (D>6 months) sub-annual events are likely to 

experience the highest increase in intensity in the future. Overall, the majority of river basins in 

the Southwest, Southern, and the middle Great Plain regions were estimated to experience 

interannual water shortage conditions with higher intensity in the future. However, West Coast 

river basins are likely to experience a decrease in the intensity of interannual water shortage events 

up to more than -90%. 

Figures D-5 to D-68 show intensity-duration-frequency (IDF) curves of each HUC4 river 

basin for current and future conditions. The unit of intensity in this study is the million cubic meters 

per month (MCM/month). In general, the assessment of water shortage at the monthly scale 

indicates that the interannual water shortage conditions are likely to become more intense in the 
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future. Note that the driest climate model under the RCP 8.5 emission scenario leads to a higher 

increase in the intensity of interannual events although the patterns are similar.  

 

 

 

Figure 6.4. (a) Current intensity and (b) changes in the intensities of events from current (1986-2015) to 
future (2070-2099) conditions under RCP 8.5 at the monthly scale. 

 

Then, we investigated the effects of shifts in future water supply and demand conditions 

on the frequency of sub-annual water shortage events using the frequency amplification factor 

(AF). Figure 6.5 compares the frequency amplification factors of water shortage events with the 

duration less than twelve months (D<12 months) with water shortage events with the duration 

greater than twelve months (D>12 months) across the united states for both RCP 4.5 and 8.5 

emission scenarios. 
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Although both RCPs 4.5 and 8.5 show the same spatial pattern of amplification factors, the 

RCP 8.5 emission scenario projected a greater amplification factor meaning that water shortage 

events will become more frequent under the RCP 8.5 emission scenario. In the Southwest, 

Southern, and middle Great Plain river basins, while the frequency amplification factors of events 

with D<12 months (interannual events) have slightly decreased, the amplification factor of events 

with D>12 months (12 consecutive months that monthly water demand exceeds monthly water 

supply) was projected to increase.  

The result reveals that the frequency of over-year events (D>12 months) is likely to 

increase in the future while interannual events are likely to be less frequent in the future. However, 

the river basins in the West Coast region are more likely to experience less frequent over-year 

(D>12 months) events and more frequent interannual (D<12 months) events. 

 

Figure 6.5. The frequency amplification factor (AF) under (a) RCP 4.5 and (b) RCP 8.5 at the monthly 
scale. 
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In general, the assessment of water shortage at the monthly scale indicates that the 

Southwest, Southern, and the middle Great Plain river basin are likely to experience more intense 

sub-annual water shortage conditions in the future with more frequent over-year events (D>12 

months) and less frequent interannual events (D<12 months). Conversely, the West Coast river 

basins are likely to experience a decrease in the intensity of sub-annual water shortage events in 

the future with less frequent over-year (D>12 months) events and more frequent interannual (D<12 

months) events. 

6.3.3.    Changes in IDF Relationships of water shortage conditions at the annual 

scale 

We assessed the IDF relationships of current and future water shortage conditions in this 

section at the annual scale to estimate shifts in characteristics of annual (D>1 year), multi-year 

(D>3 years) and decadal (D>10 years) water shortage events. Figure 6.6.a shows the current IDF 

relationships of HUC4 river basins across the United States at an annual scale. In general, water 

shortage events at the annual scale tend to slightly have higher intensity compared to water 

shortage events at the sub-annual scale.  

Under the current conditions and for a given return period (e.g., T=50 years), the intensity 

decreases as the duration becomes longer. Additionally, for a given duration (e.g., D>1 year), the 

intensity was projected to slightly change as the return period increases (e.g., from T=50 years to 

T=100 years). Overall, similar to the water shortage at the sub-annual scale, the West Coast and 

the middle Great Plain river basins were projected to currently have more intense water shortage 

conditions (~ 400 mcm/year) at the annual scale. 

However, under the future conditions (Figure 6.6.b), the intensity of water shortage events 

was projected to mostly increase from current to future conditions, particularly for water shortage 
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events with longer duration (multi-year and decadal) and higher return period (T=100 years). 

Water shortage events with shorter duration and a lower return period were projected to experience 

smaller changes in intensity. Conversely, events with a longer duration (e.g., D>10 years) and a 

higher return period (e.g., T=100 years) were projected to experience a higher increase in the 

intensity of water shortage events. 

For a given return period (e.g., T=50 years), the decadal events were projected to 

experience a higher increase in the intensity compared to the multi-year and annual water shortage 

events.  The result means that at the annual scale, the intensity of decadal water shortage events 

(i.e., D>10 years) is more vulnerable to climate change and population growth compared to the 

intensity of annual and multi-year water shortage events. Subsequently, the intensity of multi-year 

water shortage events (i.e., D>3 years) can be more affected by climate change and population 

growth compared to the intensity of annual water shortage events. 

For a given duration (e.g., D>10 years), the intensity of future events was projected to 

slightly alter as the return period increases from T=50 years to T=100 years. Additionally, for 

water shortage events with D>1 year, there are minor differences in the intensity of current and 

future water shortage events. The finding indicates that at an annual scale, events that occur every 

50 years are likely to experience the same magnitude of increase in intensity compared to annual 

events that occur every 100 years. The results indicate that less frequent (T=100 years) and longer 

(D>10 years) water shortage events tend to experience a higher increase in the intensity in the 

future. 

Overall, most river basins in the Southwest, Southern, and the middle Great Plain regions 

were estimated to experience more intense water shortage conditions in the future, particularly for 

decadal and multi-year events. However, West Coast river basins are likely to experience a 
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decrease in the intensity of decadal and multi-year water shortage events up to more than -90%. 

The unit of intensity is the million cubic meters per month (MCM/year). In general, the assessment 

of water shortage at the annual scale indicates that the multi-year and decadal water shortage events 

are likely to become more intense in the future.  

 

Figure 6.6. (a) Current intensity and (b) changes in the intensities of events from current (1986-2015) to 
future (2070-2099) conditions under RCP 8.5 at the annual scale. 

 

Then, we investigated the effects of shifts in annual water supply and demand conditions 

on the frequency of annual, multi-year, and decadal water shortage events using the frequency 

amplification factor (AF). Figure 6.7 compares the frequency amplification factors of water 

shortage events with 1<D<3 years, 3<D<10 years, and D>10 years across CONUS for both RCP 

4.5 and 8.5 emission scenarios. RCPs 4.5 and 8.5 emission scenarios approximately show the same 

spatial pattern of amplification factors.  
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For events with 1<=D<3 years, the frequency was projected to mostly decrease (AF ~ 0.2) 

in the Southwest, Southern, and middle Great Plain river basins. However, the West Coast river 

basins are more likely to experience more frequent water shortage events (AF ~ 0.2 to 0.4). For 

events with 3<=D<10 years, the frequency was projected to mostly decrease (AF ~ 0.2) in the 

middle Great Plain river basins with a lower rate (AF ~ 0.5) compared to events with 1<=D<3 

years. However, the frequency was estimated to increase in the West Coast river basins with a 

lower rate compared to the events with 1<=D<3 years. 

For events with D>10 years, unlike the events with 1<=D<3 years and 3<=D<10 years, the 

frequency is more likely to increase in most river basins located in the Southwest, Southern, and 

middle Great Plain regions. Additionally, the decadal events were projected to decrease in the 

West Coast region. Note that the highest increase in the frequency of decadal events was projected 

to occur in Great Lakes regions. 

Overall, the result indicates that the frequency of decadal events (D>10 years) is likely to 

increase in the future while annual and multi-year events are likely to be less frequent. Conversely, 

the West Coast river basins are more likely to experience less frequent decadal (D>10 years) events 

and more frequent annual and multi-year events in the future. 
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Figure 6.7. The frequency amplification factor (AF) under (a) RCP 4.5 and (b) RCP 8.5. 

 

Additionally, the assessment of water shortage at the annual scale indicates that the 

Southwest and the middle Great Plain river basin are more likely to experience more intense multi-

year and decadal water shortage events with more frequent decadal events (D>10 years) and less 

frequent annual and multi-year events. Conversely, the West Coast river basins are likely to 

experience a decrease in the intensity of multi-year and decadal water shortage events in the future 

with less frequent decadal (D>10 years) events and more frequent annual and multi-year events. 

6.3.4.    Relationship between water shortage characteristics and changes in water 

supply and demand conditions 

In this section, we separately evaluated the effects of changes in water supply and water 

demand conditions on the water shortage properties to characterize change in which of them is 

more effective on shifts in water shortage IDF relationships for each HUC4 river basin. For this 

purpose, we considered two different scenarios: first, we assumed that demand would remain 
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constant from current to future conditions, and second, we assumed that water yield will not change 

from current to future conditions. Then, HUC4 river basins with higher changes in water shortage 

characteristics under the first scenario were considered demand-based basins (more vulnerable to 

changes in the demand), and HUC4 river basins with higher changes under the second scenario 

were considered supply-based basins (more vulnerable to changes in the supply).  

Figure 6.8 shows demand-based, supply-based, and supply/demand-based river basins 

according to higher changes in intensity, duration, and frequency of water shortage conditions. 

According to changes in the intensity of water shortage events, the river basin within the middle 

Great Plain region is demand-based under both RCP 4.5 and 8.5 emission scenarios meaning that 

keeping the water demand constant in this region leads to a higher decrease in the intensity of 

water shortage conditions in the future. Thus, implementation of demand-based adaptation and 

mitigation strategies can be recommended in this region. Conversely, most river basins located in 

the Southwest region are supply-based under both RCP 4.5 and 8.5 emission scenarios indicating 

that keeping the water yield conditions constant in this region leads to more reduction in the 

intensity of water shortage events in the future. Therefore, the application of supply-based 

strategies can be more effective to attenuate the effects of climate change.  

Besides, according to changes in the duration of water shortage events, the river basin 

within the middle Great Plain region is demand-based under RCP 4.5 and supply-based under RCP 

8.5 emission scenarios meaning that the implementation of adaptation and mitigation strategies for 

decreasing the duration of water shortage events in this region can be sensitive to the future 

emission pathway scenario. However, the Southwest river basins are supply-based under both RCP 

4.5 and 8.5 emission scenarios. This means that keeping the water yield conditions constant in this 

region leads to more reduction in both intensity and duration of water shortage events compared 
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to keeping the water demand constant. Therefore, the application of supply-based strategies can 

be recommended to reduce both the intensity and duration of water shortage events in this region. 

  

 

Figure 6.8. The characterization of river basins that are more vulnerable to changes in demand (demand-
based), supply (supply-based), or both water demand and water supply (supply/demand-based) under (a) 

RCP 4.5 and (b) RCP 8.5. 

 

Finally, we compared the two aforementioned scenarios in terms of decreases in the 

frequency of water shortage events in the future. Under this assumption, there are more river basins 

(e.g., Great Lakes region) that both supply-based and demand-based strategies can be 

recommended meaning that keeping water supply and water demand constant have similar effects 

on decreases in the frequency of water shortage events.  

Additionally, we statistically assessed the relationships between the intensity, duration, and 

frequency of water shortage events and aridity index (the ratio of the potential evapotranspiration 

to the precipitation) in the supply-based regions. Figure D-69 shows changes in the aridity index 
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of river basins from current to future conditions.  We aimed to figure out how the long-term 

anomalies such as changes in aridity index can affect the short-term anomalies such as sub-annual 

water shortage events. Table 6.1 provides the coefficient and the P-value of correlation between 

aridity index with the frequency amplification factor (AF) and intensity of sub-annual water 

shortage events.  

The p-value under all correlations is less than 0.05 indicating that there is a significant 

correlation between the aridity index with all sub-annual water shortage characteristics. Although 

the frequency amplification factor of events with D>12 months is directly correlated with the 

aridity index, the frequency amplification factor of events with 1<=D<12 months is inversely 

correlated with the aridity index. This indicates that the increase in the aridity index is likely to 

increase the frequency of over-year (D>12 months) water shortage events while decrease the 

frequency of interannual (D<12 months) events.  

Overall, the South, Southwest, middle Great Plain, and Great Lakes regions are likely to 

experience aridification under long-term changes in climate and freshwater availability. This 

situation may also lead to water shortage events with more frequency, higher intensity, and longer 

duration. The findings highlight that long-term increases in the aridity index of river basins can 

lead to the initiation of prolonged events, particularly in more arid regions where natural, water, 

and economic resources even during normal years may be inadequate to meet water needs. Besides, 

the intensity of water shortage events is significantly correlated to the aridity index, meaning that 

an increase in aridity index can lead to an increase in the intensity of sub-annual water shortage 

events.  

Conversely, the West Coast region is likely to experience wetter hydroclimatic conditions. 

Although this condition can lead to higher freshwater availability, this region is likely to 
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experience more frequent water shortage events within the year due to an increase in extreme 

weather anomalies over the basin. The findings highlight that while the long-term 

hydroclimatology of a river basin can tend to wetter conditions, the frequency of interannual events 

may increase very rapidly if extreme weather anomalies rise over the basin. Interannual water 

shortage events are likely to occur during the growing seasons that may exacerbate the negative 

consequences on agriculture and crop productions.  

Table 6.1. Statistical correlation between changes in the aridity index and water shortage events 

Aridity index correlation with  Coefficient P-value 

AF (D>12) 0.40 0.0059 
AF (1<=D<12) -0.54 0.0002 
Intensity (T=100 years) 0.66 0.0000 

 

The results of this study were subject to several sources of uncertainty in the climate model 

and population growth projections, water demand, water yield and water allocation simulations, 

and characterization of water shortage IDF relationships. In this study, we only used the IPSL-

CM5A-MR (driest) climate model under RCP 4.5 and 8.5 emission scenarios as the worst-case 

projection on average for the CONUS to compare the various responses of HUC4 river basins to 

shifts in water shortage properties under the worst-case future climate projection. Note that the 

IPSL-CM5A-MR climate model is not always the driest in all river basins across the CONUS. The 

driest climate model indicates the model that is on average the driest MACA models at the 

conterminous scale. Using ensemble climate simulation or more different climate models can be a 

prospect for this study to assess the vulnerability of the U.S. water supply to water shortage under 

a wider range of future climate possibilities. 
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In addition to the uncertainties in the climate projections, some uncertainties remain 

associated with the population growth and water demand estimation, VIC model, and WEAP 

model. Using multiple socioeconomic scenarios and different hydrologic and network analysis 

models at a finer resolution with accurate legal arrangements can be also a prospect for this study 

to assess the uncertainty in future water shortage IDF characterization. Despite these limitations 

and uncertainties in our methods, the important role of water shortage IDF characterization from 

the interannual to decadal scales can be highlighted in the future water resource planning and 

management. The approach improves the capacity to simultaneously characterize extreme and 

non-extreme events over a range of temporal scales. 

6.4.    Summary and Conclusions 

Climate change and rapid population growth may exacerbate the decrease in freshwater 

availability and increase in water demand. This situation increases the vulnerability of water 

supply systems to water shortage at various spatial and temporal scales. The evolution, 

propagation, and spread of water shortage conditions at the various temporal scales from 

interannual to multi-year and decadal are crucial considerations to be appropriately characterized 

across the Unites States over the 21st century. Enhanced assessments of water shortage 

characteristics under climate, population growth, and socioeconomic changes can be applied to 

improve the design of water supply systems, and optimize water institutions and management, 

particularly in the American West. The characterization of water shortage events at various 

timescales allows determining short-term dry periods during a long-term wet period. The more 

frequent interannual water shortage events can lead to significant impacts, especially on 

agricultural regions during the growing seasons.  
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The monthly water demand and water supply at the HUC4 watershed level were projected 

under the A1B population growth scenario and the driest climate model with RCP 4.5 and 8.5 

emission scenarios for current (1986-2015) and future (2070-2099) conditions. The water demand 

data was also obtained from the product of a water use driver and a water withdrawal rate for six 

water use sectors including domestic and public, agricultural irrigation, thermoelectric, industrial, 

commercial, and mining, livestock, and aquaculture. The WEAP model was used to project the 

water supply allocated to each HUC4 river basin. 

A consistent spatial pattern of changes in the IDF relationships of water shortage events 

was found across the RCP 4.5 and RCP 8.5 emission scenarios. However, the RCP 8.5 emission 

scenario also leads to a higher increase in the intensity of events. Besides, the water shortage events 

will become more frequent under the RCP 8.5 emission scenario. 

Changes in intensity, duration, and frequency of water shortage conditions at monthly and 

annual scales were assessed using the Mixture Gamma-GPD model. The projected shifts in water 

shortage characteristics of river basins across the CONUS vary from one region to another. The 

current patterns of water yield and water demand indicate that higher water demand occurs in 

basins with lower water yield. 

Overall, the characterization of water shortage conditions at various temporal scales from 

interannual to decadal events indicates that the river basins located in the Southwest, Southern, 

and the middle Great Plain regions may experience more intense water shortage conditions. 

Besides, the Southwest, Southern, and the middle Great Plain river basin are likely to experience 

less frequent interannual (D<12 months), annual (D>1 year), and multi-year (D>3 years) events in 

the future. However, the frequency of over-year (D>12 months) events at the sub-annual scale and 
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decadal (D>10 years) events at the annual scale were projected to increase in the future in these 

regions. 

Conversely, the river basins located in the West Coast region are likely to experience a 

decrease in the intensity of water shortage conditions. Although the frequency of over-year (D>12 

months), and decadal (D>10 years) events were estimated to decrease in the West Coast regions, 

the interannual (D<12 months) events at the monthly scale and annual (D>1 year) and multi-year 

(D>3 years) events at the annual scale were projected to increase in the future in the West Coast 

regions. The intensity of water shortage events with longer duration and higher return periods is 

likely to be more affected in the future in response to climate changes and population growth.  

Then, we characterized the statistical relationships between the aridity index as the long-

term anomalies and sub-annual water shortage events as the short-term anomalies. The results 

indicate that river basins with a higher increase in aridity index from current to future conditions 

are more prone to experience more intense water shortage conditions in the future. We found that 

increase in the aridity index of river basins in the future tends to increase the frequency of over-

year (D>12 months) events and decrease the frequency of interannual (D<12 months) events. 

Subsequently, we figured out that river basins with the projected decrease in aridity index are likely 

to experience more frequent interannual (D<12 months) water shortage conditions due to the 

increase in extreme weather anomalies under future climate conditions. Besides, the results 

illustrated that most river basins located in the Southwest, middle Great Plain, and Great Lakes 

regions are respectively supply-based, demand-based, and supply/demand-based.  

Rising CO2 concentrations, increasing temperatures, rapid population growth, and 

precipitation changes will combine to cause shifts in IDF relationships of water shortage events at 

various spatial and temporal scales leading to prolonged events in drier regions and interannual 
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events in wetter regions. The results recommend that more attention should be gain to prolonged 

water shortage conditions in drier regions and interannual events in wetter regions of the United 

States at the end of the 21st century. This study highlights the importance of water shortage IDF 

assessments at both sub-annual and annual scales and findings are the crucial considerations to be 

characterized sufficiently on a national scale in the United States for enhanced water resource 

managements in the future in response to climate change and population growth.  
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CHAPTER 7.  

SUMMARY AND CONCLUSIONS 

 
Water shortage events have recently increased across multiple U.S. river basins with longer 

duration, higher intensity, and greater spatial extent that are unprecedented over the last decades 

(Martin et al., 2020). Climate change and rapid population growth may exacerbate the decrease 

in freshwater availability and increase in water demand (Mehran et al., 2017). This situation 

increases the vulnerability of water supply systems to water shortage at various spatial and 

temporal scales. The main goal of this dissertation was to enhance the characterization of shifts in 

both hydroclimatic conditions and water shortage IDF relationships across the conterminous 

United States (CONUS) over the 21st century.  

First, hydroclimatic variables were projected over the 21st century using VIC hydrological 

model driven by downscaled MACA climate dataset. Hydroclimatic shifts of U.S. river basins at 

the HUC8 basin scale in response to climate change were evaluated by movements in the Budyko 

space. HUC8 river basins were clustered into seven unique hydroclimatic groups associated with 

the regional climate, landform, and ecosystem. The results challenge the stationary assumption of 

long-term water and energy cycles indicating that climate change may cause shifts in long-term 

water and energy balances and changes in hydroclimatic conditions. South and Southwest U.S. are 

the hotspots regions of shifts in long-term hydroclimatic conditions. 

Then, we focused on the characterization of future hydroclimatic changes in U.S. national 

forests and national grasslands that provide a wide range of hydrological, ecological, social, 

economic, recreational, and aesthetic services. The Pacific Northwest, Intermountain, and 

Northern regions may have a less arid climate with lower freshwater availability. The 
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hydroclimatic conditions of the Southwestern Forest Service region are likely to have the highest 

sensitivity to future climate changes with especially high aridity under the DRY climate scenario. 

We then focused on the characterization of shifts in hydroclimatic conditions of U.S. megaregions 

as the clustered metropolitan regions where climate change may amplify negative impacts on water 

and natural resources. We found that Houston is likely to experience the highest changes in 

hydroclimatic conditions with some shifts from Temperate to Continental climate type.  

Furthermore, we developed a probabilistic approach to improve the characterization of 

socioeconomic drought (or water shortage) intensity, duration, and frequency (IDF) characteristics 

under climate change and population growth. The application of the probabilistic approach was 

first demonstrated for the city of Fort Collins, Colorado. The results indicate that the proposed 

approach enhances the estimation of sub-annual drought IDF relationships, particularly for 

extreme events. Then, we assessed shifts in future drought IDF relationships for the City of Fort 

Collins, Colorado under two different urban development patterns, sprawl versus high density. The 

findings recommended that high-density development is likely to reduce vulnerability to 

socioeconomic drought due to lower water consumption used for outdoor activities. 

Finally, the developed probabilistic approach was applied to assess changes in future IDF 

relationships of sub-annual and annual water shortage conditions across the CONUS at the HUC4 

basin scale. The WEAP model was used to project the water supply allocated to each HUC4 river 

basin. The water demand data was also obtained from the product of a water use driver and a water 

withdrawal rate for six water use sectors including domestic and public, agricultural irrigation, 

thermoelectric, industrial, commercial, and mining, livestock, and aquaculture. The findings show 

that although the frequency of interannual events in the West Coast region is likely to rise in the 

future, the frequency of prolonged events is likely to increase in the Southwest, South, and the 
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middle Great Plain region. The results recommend that more attention should be gain to prolonged 

water shortage conditions in drier regions and interannual events in wetter regions of the United 

States at the end of the 21st century. 

Overall, the South and Southwest US are likely to experience aridification under long-term 

changes in climate and freshwater availability. This situation may also lead to water shortage 

events with more frequency, higher intensity, and longer duration. The findings highlight that long-

term changes in hydroclimatic conditions of river basins can lead to the initiation of prolonged 

events, particularly in more arid regions where natural, water, and economic resources even during 

normal years may be inadequate to meet local needs.  

Conversely, the West US is likely to experience wetter hydroclimatic conditions. Although 

this condition can lead to higher freshwater availability, this region is likely to experience more 

frequent water shortage events within the year in response to climate change and rapid population 

growth. The findings highlight that while the long-term hydroclimatology of a river basin can tend 

to wetter conditions, interannual events may develop very rapidly if extreme weather anomalies 

rise over the basin. Interannual water shortage events are likely to occur during the growing 

seasons that may exacerbate the negative impacts of interannual events on agriculture.  

The findings of this dissertation can be used as an input into a comprehensive plan to 

determine the most appropriate preparedness actions that can be implemented for drought-related 

disasters in response to future changes in climate and population of the United States. The 

developed steps in this dissertation can help decision-makers to assess the efficiency of various 

adaptation and mitigation strategies at a regional and national scale to attenuate the negative 

consequences of water shortage conditions. The adequacy of adaptation and mitigation strategies 

such as the reduced irrigation, instream flow reductions, groundwater mining, municipal water 
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demand management strategies, and additional reservoir storage capacity can be examined to 

accommodate the projected increase in intensity, duration, and frequency of water shortage 

conditions across the U.S. river basins.  

Furthermore, the primary impacts of future changes in hydroclimatology, decadal, and 

interannual water shortage events in agricultural regions and crop yield projections can be 

investigated as another prospect for this dissertation. Agriculture is by far one of the largest water 

users in many regions of the United States. Long-term hydroclimatic changes may force farmers 

to change their crops based on the new regional climate conditions. 

Improvements in the characterization of water shortage conditions from interannual to 

decadal events by incorporating shifts in long-term hydroclimatic conditions across the CONUS 

over the 21st century can result in enhanced infrastructure operation and water allocation, 

particularly during increasingly severe future events. Although the results of the study are directly 

beneficial to water planners and policymakers in the United States, the developed approach can be 

applied to any other regions of the world. 
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APPENDIX A 

SUPPORTING INFORMATION FOR CHAPTER 2: 

ASSESSING SHIFTS IN REGIONAL HYDROCLIMATIC CONDITIONS OF U.S. 

RIVER BASINS IN RESPONSE TO CLIMATE CHANGE OVER THE 21ST CENTURY 
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Figure A-1. Comparing 30-yr average annual precipitation of the baseline model and 

MACA climate models over the historical period 
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Figure A-2. Map of the types of landforms for the United States 

 

Figure A-3. Map of the ecoregions Level I for the United States 
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 Figure A-4. Map of the Koppen climate classification of the United States 
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Figure A-5. Maps of 30-yr average of annual U.S. hydroclimatic parameters for the 

baseline period (1986-2015) 
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Figure A-6. Temporal changes in 30-yr normal annual hydroclimatic variables of all HUC8 U.S river basins 
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Figure A-7. Spatial changes in normal precipitation from current condition to future 

condition  

 

Figure A-8. Changes in normal PET from current condition to future condition 



202 
 

 

Figure A-9. Changes in normal water yield from current condition to future condition 

 

 

Figure A-10. Movements in the Budyko space under all three climate projections  
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Table A-1. Koppen climate classification groups 

1st 2nd 3rd 

A (Tropical) 

f (Rainforest)  

m (Monsoon)  

w (Savanna, Wet)  

s (Savanna, Dry)   

B (Arid) 

W (Desert)  

S (Steppe)  

 h (Hot) 

  k (Cold) 

C 

(Temperate) 

s (Dry summer)  

w (Dry winter)  

f (Without dry season)  

 a (Hot summer) 

 b (Warm summer) 

  c (Cold summer) 

D 

(Continental) 

s (Dry summer)  

w (Dry winter)  

f (Without dry season)  

 a (Hot summer) 

 b (Warm summer) 

 c (Cold summer) 

  d (Very cold winter) 

E (Polar) 

T (Tundra)  

F (Eternal winter (ice cap))   
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APPENDIX B 

SUPPORTING INFORMATION FOR CHAPTER 3: 

 IMPACTS OF CLIMATE CHANGE ON HYDROCLIMATIC CONDITIONS OF U.S. 

MEGAREGIONS, NATIONAL FORESTS, AND NATIONAL GRASSLANDS 
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Figure B-1. 30-yr average of precipitation (1986-2015) for HUC08 watersheds 

 

 

Figure B-2. Comparison of simulated and observed annual water yield for 1986–2015 

period for each NFs and NGs 
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Figure B-3. a) U.S Koppen climate zones, b) Clustering Budyko space based on Koppen 

climate classification, C) Projected U.S Climate zones based on the Budyko space classification 

 

 

 

Figure B-4. Wind rose diagrams of movements in the Budyko under the WET climate 

model  
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Figure B-5. Wind rose diagrams of movements in the Budyko under the MIDDLE 

climate model  
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Figure B-6. Wind rose diagrams of movements in the Budyko under the DRY climate 

model  
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Figure B-7. Wind rose diagrams of movements in the Budyko for NFs and NGs under 

DRY, MIDDLE and WET climate models 
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Figure B-8. 30-year average of current hydroclimatic variables in the U.S. Megaregions 
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Figure B-9. Change in 30-year average of hydroclimatic variables from current 

conditions to future conditions in the U.S. Megaregions 
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Figure B-10. 30-year average of current hydroclimatic indices in the U.S. Megaregions  
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Table B-1. Changes in precipitation, PET and water yield of U.S. national forests and 

grasslands  

 Current (mm) 
Future (WET) - 

Change (%) 

Future (MID) - 

Change (%) 

Future (DRY) - 

Change (%) 

Name PCP Yield PET PCP Yield PET PCP Yield PET PCP Yield PET 

Tonto National 

Forest 
414.9 23.4 2091.6 47.8 113.6 -3.4 -1.8 -47 2.8 -24.9 -16.7 6.8 

Sitgreaves National 

Forest 
307.4 1.9 1999.8 37.3 48.9 -0.9 5 -39.1 3.3 -34.8 -56.4 8.5 

Coconino National 

Forest 
394.5 12.9 1996.8 20.7 -14 1.7 9.7 -36.6 3.3 -37.2 -51.8 10.7 

Kaibab National 

Forest 
340.3 19.4 1982.6 26 1.4 -0.3 11.8 -36.7 1 -25.6 -37.6 7.9 

Prescott National 

Forest 
353.2 19.5 2085 54.8 107.4 -2 32.1 25 0.3 -22.3 -20.3 6.4 

Coronado National 

Forest 
377.4 12 2141.6 21.4 37.2 -1.3 -0.2 -39 4.2 -44.9 -60.4 9.1 

Saint Francis 

National Forest 
1363.5 575.7 1598.7 9.8 22.2 -1.5 3.3 10 2.6 -23.4 -45.1 5.7 

Ouachita National 

Forest 
1439.7 554.4 1692.6 5.6 5.5 0.8 0.1 -7.4 4.3 -29.9 -56.7 9.8 

Ozark National 

Forest 
1260.6 401.5 1623.2 6.9 10.8 -0.1 1 -3.4 4.8 -23.9 -55.1 7.7 

Tuskegee National 

Forest 
1353.8 443.7 1677.3 6 2.1 -2 3.9 1.6 0.1 -16.7 -38.6 2.8 

Conecuh National 

Forest 
1626.5 672.7 1729.3 2 -5.5 -1 1 -2.5 0.5 -16.7 -34.7 3.2 

William B. 

Bankhead National 

Forest 

1507.9 616.1 1657.8 8.3 10.6 -2.6 6.3 8 1 -18.6 -41.1 3.4 

Talladega National 

Forest 
1393.6 521.6 1655.2 8.2 9.2 -2 5.6 6.3 0.7 -17 -36.5 3.2 

Roosevelt National 

Forest 
635.5 142.4 1632.3 7.9 -10.2 -4 4.8 -24 

-

1.8 
-15.8 -60.9 5.3 

Grand Mesa 

National Forest 
395.3 121.3 1733.9 29.7 53.6 -2.1 17.1 18.8 0.1 -13.1 -30.9 7.1 

Arapaho National 

Forest 
605 131 1668.8 13.6 8.1 -4.3 8.1 -15 

-

1.8 
-15.1 -48.1 5.4 

White River 

National Forest 
607.7 178.6 1651.3 16.3 9.8 -3.9 12 -4.1 

-

1.6 
-12.6 -33.8 6.3 

San Juan National 

Forest 
738.3 245.6 1711.2 22.8 19.1 -2.6 4 -22.2 1 -19.4 -38 8.9 

Pike National Forest 502.7 69 1699.6 16.3 5.4 -3.2 6.7 -26.1 
-

0.4 
-20.3 -49.7 7 

Uncompahgre 

National Forest 
539.7 112.2 1758.1 29.4 52.7 -3.6 10 -12.1 

-

0.9 
-18.5 -54 7.2 

Gunnison National 

Forest 
738.3 245.6 1711.2 22.8 19.1 -2.6 4 -22.2 1 -19.4 -38 8.9 

Rio Grande National 

Forest 
644.4 166.4 1725.2 20.1 0.1 -3.4 3 -43.4 0.3 -22.2 -57.9 7.8 

San Isabel National 

Forest 
456.5 8 1753.3 14.8 -37.7 -5.1 0.9 -85.8 -1 -27.9 -97.9 5.6 

Comanche National 

Grassland 
411.7 8.2 1843.4 12.4 -50 -2.6 -1 -69.3 0.9 -34.3 -81.8 7.6 

Routt National 

Forest 
650.6 185.9 1639.7 13.2 6 -4.3 10.8 -4.8 

-

2.2 
-11.3 -39.7 5.5 

Tahoe National 

Forest 
829.9 321.3 1811.3 44.9 54.9 -1.9 21.2 14.9 

-

3.8 
21.4 17.8 1.1 

Stanislaus National 

Forest 
862.9 347.8 1861.6 59.2 97.5 -2.5 11.9 3.7 

-

2.9 
22.9 38.3 0.7 
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Six Rivers National 

Forest 
2000.9 1166.5 1630.9 26.7 35.9 1.6 9.2 8 

-

0.5 
10.9 7.8 1.8 

Sierra National 

Forest 
258.3 67.9 1895.9 50.9 86.8 -0.7 -6.2 -22.4 1.2 12.3 19.6 2 

Shasta National 

Forest 
1330.6 606.8 1667 41.7 67.2 -1 19.9 26.9 

-

2.1 
23.3 30.1 0.5 

Sequoia National 

Forest 
567.9 222.1 1859.8 65.2 117.1 -1.9 -2.9 -20.8 

-

0.4 
33.7 66.9 1.4 

Plumas National 

Forest 
1336.4 487 1775.8 44.7 80.3 -3.4 15.8 16.1 

-

4.7 
18.6 17.8 -1.6 

Modoc National 

Forest 
397.7 131.7 1642.4 38.8 60.1 0.7 25.3 29.4 

-

0.1 
26.2 39.8 3.2 

Mendocino 

National Forest 
1170.7 522.3 1731.2 31.2 46.9 -0.6 3.7 -4.9 

-

1.5 
9.6 9.8 0.6 

Lassen National 

Forest 
898.2 310.5 1783.6 46.9 80.1 -1.2 20.5 25 

-

2.3 
22.6 32.3 0.6 

Cleveland National 

Forest 
379.3 29 2037.5 62.9 138.3 -1.8 

-

21.1 
-57.7 3.4 35.9 134.5 3 

Yurok Redwood 

Experimental Forest 
2619.9 2215.9 1576.9 23.9 26 0.1 10.3 9.5 

-

1.9 
8.6 7 -0.3 

Ocala National 

Forest 
1259.7 331.7 1714.9 10.5 19.8 -2.4 7.1 9.7 

-

0.1 
-9.1 -22.6 2.6 

Apalachicola 

National Forest 
1473.7 396.2 1778.9 8.1 8.6 -2.6 8.6 14.4 

-

1.4 
-6.8 -24.7 1.3 

Osceola National 

Forest 
1313.7 268.7 1812.6 8.1 12 -2.3 8.2 12.6 

-

1.4 
-1 -2.5 1.4 

Chattahoochee 

National Forest 
1514.8 628.2 1608.4 11.5 15.6 -1.4 11 13.9 1.9 -12.7 -30.2 4.2 

Rich Mountain 

Wilderness 
1486.1 586.8 1623.6 10.9 10.3 -1.6 10.4 8.3 1.8 -14.9 -37.6 4.3 

Clearwater National 

Forest 
914.6 325.9 1376.8 6.3 -23.7 -3.6 15.3 -5.2 

-

2.7 
10.1 -23.2 -1.1 

Salmon National 

Forest 
523.3 130.9 1440.3 26.7 20.7 -4.4 27.5 5 

-

2.1 
5.5 -27 2.6 

Challis National 

Forest 
655.1 206.3 1526.1 24.4 9.8 -3.6 28.9 12.8 

-

2.2 
16.2 -4.7 2 

Coeur D 824.1 371.8 1355.4 9.4 -7.8 -2.4 19.3 10.3 
-

1.7 
11.3 -10 -0.3 

Curlew National 

Grassland 
343.1 92.1 1631.9 40.1 28.7 -3.8 41.9 23.6 

-

2.2 
12.2 0.1 2.5 

Boise National 

Forest 
729.1 266.1 1571.2 22.2 29.1 -4.3 24.9 38.6 

-

3.2 
20.9 26.7 0.2 

Saint Joe National 

Forest 
1092.1 551.2 1385.1 8.6 -1.4 -4 17.4 14.2 

-

2.9 
6.5 -8.2 -1.5 

Poyette National 

Forest 
750.6 382 1512.8 19.8 14 -3.2 21.8 18.8 

-

2.3 
15.7 7.2 1.2 

Nez Perce National 

Forest 
743.1 263.4 1425.7 16.9 1 -2.4 20.8 10 

-

1.6 
9.2 -14.9 1.8 

Shawnee National 

Forest 
1258.7 471 1520.1 7.9 14.9 -1.1 4.9 11.3 3.6 -11.5 -29 3.9 

Hoosier National 

Forest 
1230.7 511.9 1459 9.3 17.7 -1.2 8.9 18.9 3.1 -3.9 -13.1 2.5 

Cimarron National 

GrassLand 
439.4 0.4 1942.8 6.6 159.8 -0.3 -7.4 132.6 3.1 -36.7 -43.9 9.1 

Daniel Boone 

National Forest 
1190 429.9 1531.7 14.2 23.4 -2.2 11.8 13.3 1.7 -5 -20.4 2.8 

Kisatchie National 

Forest 
1507.7 483.7 1745.1 -0.7 -9 0.2 2 -0.3 1.4 -28.9 -61.4 8.1 

Superior National 

Forest 
732 285.6 1281.4 12.6 20.6 1.8 9.2 12.3 5.2 4.4 1.5 5.2 

Chippewa National 

Forest 
676.7 155.7 1289.5 7.9 17 1.1 4 6.7 6 -2.7 -9.2 6.3 

Delta National 

Forest 
1429.2 560.2 1643.8 8.4 16 -1.1 5.7 10.8 2.2 -24.5 -45.9 5.8 

Tombigbee 

National Forest 
1452.8 594 1624.1 9.7 14.9 -1.6 3.9 5 2.3 -21.1 -42.6 5.1 
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Holly Springs 

National Forest 
1469.5 628.9 1627.3 12.9 24.3 -1.6 4.3 7.5 3.2 -18.3 -37.7 5.4 

DeSoto National 

Forest 
1586.4 526.1 1742.7 4 -1.3 -1 4.2 4.5 0.5 -20.4 -48.8 4.4 

Homochitto 

National Forest 
1493.3 408.9 1720.9 3.2 3.3 -0.6 5.5 13.1 1.1 -26.7 -59.2 6.5 

Bienville National 

Forest 
1477.3 502.4 1705 6.7 5 -0.8 6.1 8.6 1.8 -22.9 -50.3 5.7 

Mark Twain 

National Forest 
1182.5 334.8 1576.1 6.3 12.6 -0.3 3 2.4 4.7 -17.7 -43.1 5.7 

Deerlodge National 

Forest 
514.2 92.7 1435.8 23.4 14.9 -4.8 19.1 -8.4 -2 4.9 -37.1 1.3 

Gallatin National 

Forest 
668.1 237.2 1442.3 29.1 34.1 -5 26.5 17.8 

-

2.2 
9.9 -9.2 1.8 

Lewis and Clark 

National Forest 
479.1 100.9 1413.2 22.3 19.4 -3 19.3 1.6 

-

0.3 
7.5 -20.6 2 

Beaverhead 

National Forest 
535.6 118.2 1428.1 32 34.6 -4.8 31.3 14.8 

-

2.2 
7.5 -23.5 2.5 

Flathead National 

Forest 
782 379.4 1351.1 10.8 0.8 -2.3 21 15.6 

-

1.4 
11.6 -2.5 0.7 

Helena National 

Forest 
496.8 118.2 1432.7 25 25.2 -4.5 18.7 0.2 

-

1.4 
6.8 -20.6 1.2 

Lolo National Forest 741.2 294 1372.9 10.7 -6.4 -3.2 18.2 7.2 -2 11 -11.5 -0.3 

Oglala National 

Grassland 
428 9.6 1522.3 9.9 8.8 -1.5 9 5.6 0.8 -6.1 -19.6 2.9 

Inyo National 

Forest 
937.3 263.4 1792.9 55.5 95 -4.2 7.7 -17.9 

-

4.4 
22.8 22 0.2 

Humboldt National 

Forest 
336.1 36.5 1684.8 41.6 63.5 -2.1 38.9 43.3 

-

0.9 
25.8 50.9 3.3 

Toiyabe National 

Forest 
321.6 94 1992.4 55.9 96.1 -2.2 51.8 91 

-

2.7 
22.2 48.8 1.8 

Santa Fe National 

Forest 
436.6 39.5 1931.3 12 -19.1 -1.2 -6.5 -57.5 2.3 -42.3 -80.3 9.7 

Gila National Forest 341.6 21.1 2106.9 14.7 -8.7 0.4 -3.2 -48 4.8 -46.9 -77.1 9.9 

Nantahala National 

Forest 
1513.3 654.4 1621 13.2 19 -2.4 13 16.5 1.1 -9.6 -25.4 3.3 

Uwharrie National 

Forest 
1172.3 333.9 1597.6 17.3 33.3 -2.3 20.7 37.4 

-

0.1 
4 0.5 1.7 

Pisgah National 

Forest 
1306.4 485.2 1601.7 14.4 21.5 -2.4 14.8 18.2 0.6 -3.9 -16.5 2.8 

Croatan National 

Forest 
1398.9 441.7 1568.9 12 22.6 1.3 13.6 19.4 2.9 5.1 11.1 4.7 

Little Missouri 

National Grassland 
416.4 29.1 1353.5 1.3 39.6 3.4 2.7 21.6 4.9 -2.4 3.3 4.2 

Wayne National 

Forest 
1088.9 393.7 1451.3 11.4 17.5 -1.3 13.8 19.4 1.9 -1.1 -12 2.9 

Black Kettle 

National GrassLand 
711.4 4.6 1859.8 1.9 -7.8 1.6 -3.2 -13.9 6.3 -27.9 -45 10.3 

Umpqua National 

Forest 
1017 410.7 1575.7 14.7 4.6 1 8.2 -3.7 0.3 8.8 -5.7 2.3 

Wallowa-Whitman 

National Forest 
630.1 248.7 1449.2 21.6 22.1 -2.4 21.3 23.8 

-

1.8 
4.8 -11.4 1.7 

Malheur National 

Forest 
465.6 110.2 1573.5 30.7 52.9 -1.8 20.4 28.8 -1 19.2 26.4 2 

Ochoco National 

Forest 
430.5 93.7 1555 24.2 32.8 -0.7 16.5 16.8 

-

0.2 
21.4 28.5 2.2 

Rogue River 

National Forest 
1108.2 613.5 1577.6 13.6 11 -0.6 5.8 1.4 

-

1.1 
8.5 2.7 0.9 

Deschutes National 

Forest 
819.4 293.2 1564.5 5.8 -30.5 0.7 4.1 -27.6 0.6 8 -24.9 1.9 

Mount Hood 

National Forest 
1738.3 1290.1 1343.6 3.8 -0.9 0.5 9.3 7.3 1.1 9.4 4.2 0.9 

Winema National 

Forest 
1271.4 727.1 1526.6 11.2 -12 0.9 6.5 -16 0.6 9.6 -12 2.1 
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Fremont National 

Forest 
567.4 160.6 1662.1 26.1 21 -0.9 16 3.1 

-

1.4 
22 18.7 1.5 

Oregon Dunes 

National Recreation 

Area 

1884.9 1123.9 1368.1 8 6.1 4.4 5.6 2.5 3.1 -4.5 -16.8 5.1 

Crooked River 

National Grassland 
850.1 363.5 1544.8 0.6 -33.1 1.2 0.5 -28.4 1.2 3.4 -28.7 2.1 

Allegheny National 

Forest 
1152.9 594.8 1401 11.3 14.6 0.3 15.3 17.2 2.7 0.9 -4.4 4.1 

Sumter National 

Forest 
1298 434 1656.5 13.4 22.3 -2.7 13.8 22 

-

0.1 
-5.7 -17.4 2.2 

Black Hills National 

Forest 
425.9 12.3 1515.1 10.9 17.8 -1.3 15.7 35.8 0.9 0 -15.8 2.7 

Buffalo Gap 

National Grassland 
474.6 20.5 1485.9 13.4 47.7 -0.3 6.1 9.3 3.5 -3.9 -2.6 3.3 

Lyndon B Johnson 

National GrassLand 
874.8 115.6 1887.4 -0.4 -14.8 2.3 -7.3 -29.5 6.4 -29.1 -48.2 12.1 

Angelina National 

Forest 
1323.2 306.8 1795.5 -5.2 -16.3 1.7 -5.5 -17.7 3 -36.6 -78.7 11 

Sabine National 

Forest 
1404.4 337.5 1766.7 -4.6 -12.1 1.5 -4.3 -12.6 2.8 -35 -72.3 10.3 

Sam Houston 

National Forest 
1200.3 258.9 1815.6 -4.3 -13.2 1.5 -3.4 -8.2 3 -35.9 -75.2 10.8 

Davy Crockett 

National Forest 
1315.8 266.4 1812.7 -5.3 -21.7 1.5 -4.7 -17.9 2.6 -37 -79.7 11.1 

Cache National 

Forest 
581.4 140 1551 25.7 35.6 -3 31.5 48.8 

-

1.2 
3.2 -0.6 4.3 

Wasatch National 

Forest 
517.5 88.9 1627.4 28.6 30.5 -4.2 26.6 10.7 

-

2.1 
-0.5 -19.2 3.5 

Ashley National 

Forest 
405.7 61.9 1662.1 30.2 38.7 -2.8 28.2 11.3 

-

1.8 
-7.3 -25.4 5.6 

Fishlake National 

Forest 
432.8 55 1741.5 32.7 77.8 -2.1 24.2 13.5 

-

1.3 
-3.7 -1.3 5.9 

Caribou National 

Forest 
464.7 111.1 1552.2 31 74.8 -3.3 37.6 93.4 -2 8.1 24.1 3.5 

Dixie National 

Forest 
375.6 25 1877.9 29.3 35 -0.9 16 -36.2 

-

0.5 
-13.5 -15.5 6.7 

Uinta National 

Forest 
475.6 78.1 1638.5 28.2 24.3 -3.7 25 0.7 

-

1.6 
-1.6 -15.9 4.4 

Green Mountain 

National Forest 
1229.8 657 1338.1 14.2 17.8 -0.8 18 21.8 1.2 7.8 5.2 3.7 

Umatilla National 

Forest 
512.4 163.4 1436.4 22.7 29.8 -1.7 19.8 23.7 

-

0.8 
8.6 -5.6 2 

Okanogan National 

Forest 
1458.6 1164.1 1264.4 12.2 7.7 1.2 11.6 8.9 3.5 12.9 7.2 2.1 

Wenatchee 

National Forest 
773.8 475.4 1405.4 3.1 -8 -0.1 7.4 0.5 2.2 11.1 0.1 -0.3 

Osceola National 

Forest 
3367.5 2977.3 1171.8 7.8 6.8 1.4 14.2 14.1 2.8 8.5 7.1 2.1 

Colville National 

Forest 
721.2 405 1316.8 14.4 11.6 0.4 14.8 13.6 2.3 11.7 6.9 1.9 

Gifford Pinchot 

National Forest 
1151.9 626.8 1406.7 -6.6 -37.6 -2.4 2.7 -21.3 0 1.8 -25.7 -2.6 

Mount Baker-

Snoqualmie 

National Forest 

2418.9 2008.8 1139.9 10.1 5.7 -0.7 12.7 9.2 3 10.4 4.9 0 

Nicolet National 

Forest 
775.6 234.5 1344.4 11.6 19.9 1 19.6 38.3 2.2 -1.8 -8 4.5 

Teton National 

Forest 
601.8 267.3 1544.8 12.4 0.8 -3.2 19.4 4.8 

-

1.5 
1.1 -11.3 4.2 

Medicine Bow 

National Forest 
461 94.6 1695.6 17.1 9.4 -3 17.6 4.7 

-

1.2 
-3.9 -25.2 4.9 

Thunder Basin 

National Grassland 
362 5.3 1537.7 11.4 -0.9 -0.9 16.9 12.5 1 -0.4 -13.8 3.4 

Shoshone National 

Forest 
454.8 165.1 1496.1 16.3 10.2 -4.1 21.1 12.4 

-

1.7 
2.3 -16.2 2.5 
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Bighorn National 

Forest 
422.3 46.7 1452.7 21.3 -5 -4.7 24.6 -11.2 

-

2.7 
3.3 -53.2 0.1 

Bridger National 

Forest 
489.5 165.3 1589.8 16.4 3.5 -2.9 21.6 2.2 

-

1.6 
2.9 -11.8 4 

Manistee National 

Forest 
937.9 374.2 1389.3 4 6 0.8 17.8 35.4 1.9 -9.7 -19.7 3.9 

Ottawa National 

Forest 
855.4 344.3 1309 10.9 9.2 1.4 13.6 10 3.3 -1.9 -16.5 4.5 

Hiawatha National 

Forest 
851.1 384.2 1307 11.8 15 2.3 17.8 27.7 2 -6.4 -14.7 4.1 

Huron National 

Forest 
771 243.8 1373.8 8.4 13 1 17.8 32.9 1.3 -7 -12.3 3.3 

Siskiyou National 

Forest 
1328 761 1527.4 15 19.9 2.3 7.8 8.5 1.1 3.3 -0.9 3.1 

Siuslaw National 

Forest 
2190.7 1520.6 1305.9 8.6 9.7 5.3 10.9 12.7 4.3 0.3 -4.8 5.8 

Cherokee National 

Forest 
1362.6 586.3 1592.5 13.8 16.6 -2 13.6 11.9 1.4 -6.9 -20.9 3.6 

Los Padres National 

Forest 
259.4 86.8 2031.5 54 83 -3 

-

11.4 
-31.5 0.4 33.8 61 -0.1 

Angeles National 

Forest 
509.5 107.6 2033.9 44.3 57.1 -3.1 

-

22.6 
-55.9 

-

0.1 
33.1 55.9 -1.3 

Nebraska National 

Forest 
494.4 35.1 1540.8 10 3.7 -0.6 3.2 -3.7 3 -10.5 -25 3.7 

Midewin National 

Tallgrass Prairie 
996.1 378.3 1363.6 11 26 0 12.7 31.4 4.1 -5.3 -13.3 3.7 

McClellan Creek 

National Grassland 
587 28.6 1956 -0.2 -15.2 1.5 -12 -31.9 6.2 -34.5 -55.1 10.8 

Kaniksu National 

Forest 
958.8 481.7 1303 9.9 0.7 -0.8 21.5 19.3 0.3 13.1 0.8 0.9 

Bitterroot National 

Forest 
664.3 189.7 1457.8 14.5 -12.9 -4.6 14.2 -21.4 

-

2.3 
2.1 -46.8 1.2 

Samuel R McKelvie 

National Forest 
570.3 63.1 1532.9 13.8 96.3 -0.8 -2.1 18 4.4 -14.6 -30.5 4.5 

Kootenai National 

Forest 
865.8 347.9 1345.7 6.1 -9.9 -1.3 18.7 14.7 

-

0.7 
11.7 -6.1 0.3 

Eldorado National 

Forest 
854.3 330.7 1772.2 49.3 88.6 -1.8 12.3 14.8 -2 19.1 32.3 0.5 

Apache National 

Forest 
422.4 6.7 2009 26.7 -18.9 -0.1 -0.4 -56.1 4.3 -42.5 -72.5 10.7 

Carson  National 

Forest 
480.6 78.6 1812.7 17.5 9.6 -2.3 -1.2 -39.7 0.9 -32 -69.7 8.3 

Chequamegon 

National Forest 
825.8 286.4 1318.4 10.7 18 1.1 12.8 19.6 3.9 -3 -13.4 5.4 

Cibola National 

Forest 
333.9 10.7 2017.7 17.3 -4.1 -0.1 -3.8 -43.7 3.8 -44 -69.5 9.6 

George Washington 

National Forest 
1061.7 341.4 1546.4 13.4 19.7 -1.3 16.8 21.7 0.9 10 11.4 2.4 

Jefferson National 

Forest 
1102.2 378.2 1554.7 12.2 14.7 -1.6 14.5 14.6 0.7 5.7 0.4 2.6 

Klamath National 

Forest 
713.6 173 1645.7 27.6 33.4 -0.8 12.4 4 

-

2.2 
15.3 10.3 0.8 

Lincoln National 

Forest 
326 33.3 2184.4 10.8 -2.7 0.6 -3.5 -21.4 4.5 -43.8 -53.1 10.1 

Monongahela 

National Forest 
1086.8 371.3 1551.8 12.8 16.4 -1.6 14.9 16 0.7 5.3 -0.1 2.8 

San Bernardino 

National Forest 
428.4 92.6 2034.1 61.2 116.5 -2.7 

-

18.1 
-47.3 2.1 42.3 114.5 0.7 

Targhee National 

Forest 
454.3 95.9 1433.6 31.2 27.5 -4.5 33.5 11.6 

-

2.2 
6.2 -21.2 2.7 

Trinity National 

Forest 
1483.7 679.9 1673.3 30.3 45.2 0 10.1 7.2 

-

1.8 
12.7 8 0.9 

White Mountain 

National Forest 
1293.4 717.6 1304.2 11.1 11.2 -1 12.1 10 0.8 5.8 0.3 3.4 

Custer National 

Forest 
464.4 87.2 1467.3 12.1 31.5 -0.7 14.7 24.1 1.1 1 -17.9 2.6 
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Francis Marion 

National Forest 
1317.5 331.7 1660.8 9.6 14.6 1.1 13.1 16.7 2.9 -1.1 -7.9 5.2 

Cedar River 

National Grassland 
429.8 18.6 1434.3 1.2 19.3 1.9 2.7 22.8 4.1 -0.6 0.6 2.6 

Fort Pierre National 

Grassland 
570.1 19 1449.1 17.6 200.7 -0.6 5.3 83.5 5.1 -9.2 -0.6 5 

Fort Pierre National 

Grassland 
420.2 16.2 1460.5 3.7 42.2 1.7 5.7 22.4 3.7 0.4 -9.9 2.8 

Kiowa National 

Grassland 
431.9 5 1974.9 4.7 -7.8 -0.4 -9.6 -37.7 2.9 -41.1 -59.1 9.3 

Pawnee National 

Grassland 
389 34.1 1630 11.6 35.9 -2.6 9 0.5 

-

0.2 
-17.6 -61.6 4.4 

Rita Blanca National 

Grassland 
427.1 3.9 1994.6 3 -4.4 -0.1 

-

11.3 
-29.3 3.4 -39.2 -49.3 9.5 

Sheyenne National 

Grassland 
594 29.4 1264.5 4.7 17.5 2.1 0.1 8.6 7.2 -6.2 -5.8 6.6 

Finger Lakes 

National Forest 
972.9 411.5 1312.4 13.4 21.4 -1 13.3 18.8 2.4 5.9 3.5 3.5 

Sawtooth National 

Forest 
371 92.6 1608.3 33.7 36 -3.2 34.8 27.8 

-

1.7 
13.4 8.8 2.8 

Snoqualmie 

National Forest 
2230.8 1817.9 1225.2 2.4 -1.7 -0.4 9.7 8.3 2.1 8.4 4.1 -0.8 

Mount Baker 

National Forest 
2344.2 1974.4 1207.4 4.4 -2.4 -1.4 8.8 3.1 1.7 7.8 0.4 -1.4 

La Sal National 

Forest 
448.7 63.1 1802.8 30.7 33.8 -3.8 11.1 -25.3 

-

1.1 
-18.7 -38.2 6.3 

Manti National 

Forest 
350.7 79.9 1740.8 25 56.7 -2.1 20.8 35.4 

-

1.1 
-11.6 -25.2 6.1 

Caddo National 

GrassLand 
1149.4 242.8 1738.5 2.6 6.7 1.5 -2.2 -12.2 4.5 -29.8 -66.6 10.5 

Jefferson National 

Forest 
1115.6 443.1 1536.7 13.6 16.6 -2.1 13.9 11.6 1 -2.2 -14.4 3 
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Table B-2. P-values of Wilcoxon signed-ranked test at the 5% level (PCP, PET, Yield)  

Name 
PCP PET Yield 

MID DRY WET MID DRY WET MID DRY WET 

Allegheny National Forest 0 0.8 0 0 0 0.81 0 0.44 0 

Angeles National Forest 0.17 0.14 0 0.59 0.12 0 0.03 0.26 0.05 

Angelina National Forest 0.23 0 0.44 0.02 0 0.24 0.15 0 0.12 

Apache National Forest 0.89 0 0 0 0 0.81 0 0 0.25 

Apalachicola National Forest 0.11 0.18 0.11 0.14 0.25 0.02 0.25 0.01 0.52 

Arapaho National Forest 0.27 0 0.13 0.13 0 0 0 0 0.11 

Ashley National Forest 0 0.45 0 0.12 0 0.01 0.04 0.02 0 

Beaverhead National Forest 0 0.32 0 0.07 0.04 0 0.07 0 0 

Bienville National Forest 0.18 0 0.14 0.04 0 0.44 0.43 0 0.93 

Bighorn National Forest 0 0.59 0 0 0.96 0 0.14 0 0.53 

Bitterroot National Forest 0 0.75 0 0.04 0.39 0 0 0 0.21 

Black Hills National Forest 0.01 0.56 0.15 0.63 0.03 0.52 0.03 0.49 0.3 

Black Kettle National GrassLand 0.49 0 0.98 0 0 0.33 0.09 0 0.27 

Boise National Forest 0 0.01 0 0 0.39 0 0 0.04 0 

Bridger National Forest 0 0.8 0.09 0.98 0 0.34 0.6 0.18 0.36 

Buffalo Gap National Grassland 0.42 0.56 0.05 0.01 0.05 0.88 0.7 0.61 0.11 

Cache National Forest 0 0.94 0 0.48 0 0.54 0.06 0.4 0.08 

Caddo National GrassLand 0.8 0 0.77 0 0 0.21 0.7 0 0.99 

Caribou National Forest 0 0.83 0.03 0.21 0 0.02 0.01 0.83 0.03 

Carson National Forest 0.32 0 0.13 0.23 0 0.17 0 0 0.12 

Cedar River National Grassland 0.69 0.91 0.57 0 0.21 0.35 0.64 0.91 0.33 

Challis National Forest 0 0.05 0 0.49 0.01 0.04 0.25 0.81 0.08 

Chattahoochee National Forest 0.05 0.01 0.05 0.05 0 0.1 0.01 0 0.09 

Chequamegon National Forest 0.01 0.8 0.03 0 0 0.11 0.05 0.17 0.03 

Cherokee National Forest 0 0.69 0.01 0.04 0 0.21 0.04 0.29 0.03 

Chippewa National Forest 0.5 0.54 0.04 0 0 0.29 0.3 0.18 0.01 

Cibola National Forest 0.26 0 0.08 0 0 0.6 0 0 0.72 

Cimarron National GrassLand 0.15 0 0.54 0.02 0 0.59 0.69 0 0.43 

Clearwater National Forest 0.01 0.04 0.12 0.03 0.2 0 0.26 0 0 

Cleveland National Forest 0.04 0.14 0 0 0 0.19 0 0.04 0 

Coconino National Forest 0.22 0 0.02 0 0 0.07 0 0 0.14 

Coeur D'Alene National Forest 0.01 0.04 0.12 0.03 0.2 0 0.26 0 0 

Colville National Forest 0 0.08 0.01 0.89 0.77 0.08 0.01 0.56 0.13 

Comanche National Grassland 0.37 0 0.06 0.24 0 0.01 0 0 0 

Conecuh National Forest 0.85 0 0.67 0.43 0 0.33 0.77 0 0.25 

Coronado National Forest 0.64 0 0.08 0 0 0.44 0.01 0 0.98 

Croatan National Forest 0.02 0.64 0.02 0 0 0.09 0.11 0.78 0.17 

Crooked River National Grassland 0.69 0.8 0.86 0.13 0.12 0.21 0 0 0 
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Curlew National Grassland 0 0.2 0 0.14 0.1 0 0.01 0.94 0 

Custer National Forest 0.16 0.73 0.4 0.06 0.04 0.44 0.29 0.2 0.89 

Daniel Boone National Forest 0.01 0.48 0 0.03 0.02 0.03 0.09 0.07 0.01 

Davy Crockett National Forest 0.34 0 0.38 0.05 0 0.19 0.24 0 0.07 

Deerlodge National Forest 0 0.05 0 0.01 0.33 0 0.66 0 0.08 

Delta National Forest 0.37 0 0.11 0.02 0 0.37 0.16 0 0.23 

Deschutes National Forest 0.69 0.8 0.86 0.13 0.12 0.21 0 0 0 

DeSoto National Forest 0.52 0 0.4 0.31 0 0.26 0.93 0 0.63 

Dixie National Forest 0.03 0.1 0.01 0.48 0 0.56 0.02 0.05 0.69 

Eldorado National Forest 0.09 0.15 0 0.1 0.96 0.06 0.34 0.3 0 

Finger Lakes National Forest 0 0.08 0 0 0 0.49 0 0.61 0 

Fishlake National Forest 0 0.43 0 0.05 0.03 0 0 0.94 0 

Flathead National Forest 0 0.17 0.02 0.61 0.15 0.23 0.94 0 0.26 

Fort Pierre National Grassland 0.42 0.81 0.47 0 0.09 0.26 0.93 0.67 0.61 

Francis Marion National Forest 0.02 0.66 0.08 0 0 0.09 0.29 0.12 0.45 

Fremont National Forest 0.04 0.07 0.01 0.85 0.25 0.91 0 0.04 0 

Gallatin National Forest 0 0.11 0 0.31 0.59 0 0.44 0.08 0 

George Washington National 

Forest 
0 0.03 0 0.18 0.03 0.12 0.01 0.16 0.02 

Gifford Pinchot National Forest 0.42 0.7 0.17 0.72 0.02 0.03 0 0 0 

Gila National Forest 0.39 0 0.11 0 0 0.83 0.03 0 0.56 

Grand Mesa National Forest 0.02 0.02 0 0.64 0 0.09 0.21 0 0 

Green Mountain National Forest 0 0.2 0 0.86 0 0.12 0 0.93 0.03 

Gunnison National Forest 0.8 0 0 0.34 0 0.01 0.01 0 0.59 

Helena National Forest 0 0.25 0 0.3 0.39 0 0.17 0 0 

Hiawatha National Forest 0 0.09 0.01 0.34 0.01 0.42 0 0.01 0.01 

Holly Springs National Forest 0.23 0 0.02 0 0 0.19 0.44 0 0.02 

Homochitto National Forest 0.19 0 0.57 0.19 0 0.43 0.42 0 0.96 

Hoosier National Forest 0.01 0.78 0.02 0 0 0.52 0.01 0.25 0.01 

Humboldt National Forest 0 0 0 0.33 0.05 0.02 0.07 0.22 0 

Huron National Forest 0 0.12 0.02 0.27 0 0.48 0 0.01 0 

Inyo National Forest 0.25 0.08 0 0 0.63 0 0.37 0.69 0 

Jefferson National Forest 0 0.16 0 0.21 0.01 0.01 0.02 0.01 0.01 

Kaibab National Forest 0.25 0.03 0 0.48 0 0.06 0 0.03 0.27 

Kaniksu National Forest 0 0 0.01 0.25 0.17 0.01 0.01 0.73 0.67 

Kiowa National Grassland 0.05 0 0.66 0.02 0 0.54 0 0 0.43 

Kisatchie National Forest 0.6 0 0.49 0.07 0 0.49 0.99 0 0.19 

Klamath National Forest 0.02 0.03 0 0.99 0.01 0.19 0.06 0.08 0 

Kootenai National Forest 0 0.03 0.34 0.7 0.98 0.21 0.16 0.08 0.1 

La Sal National Forest 0.05 0.02 0 0.17 0 0 0.12 0.04 0.54 

Lassen National Forest 0.03 0.1 0 0.17 0.44 0.59 0.06 0.29 0 

Lewis and Clark National Forest 0 0.17 0.02 0.61 0.15 0.23 0.94 0 0.26 

Lincoln National Forest 0.66 0 0.22 0 0 0.85 0.03 0 0.52 
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Little Missouri National Grassland 0.93 0.78 0.96 0 0.02 0.03 0.06 0.49 0.02 

Lolo National Forest 0 0.01 0.01 0.5 0.83 0.05 0 0.07 0.1 

Los Padres National Forest 0.36 0.04 0 0.91 0.5 0 0.04 0.07 0 

Lyndon B Johnson National 

GrassLand 
0.29 0 0.75 0 0 0.1 0.01 0 0.13 

Malheur National Forest 0 0.07 0 0.25 0.37 0.02 0.72 0.26 0.12 

Manistee National Forest 0 0.04 0.12 0.02 0 0.24 0 0 0.08 

Manti National Forest 0 0.06 0 0.39 0 0.07 0.01 0.13 0.02 

Manti-La Sal National Forest - La 

Sal Division 
0.3 0.01 0 0.35 0 0.02 0 0 0.01 

Mark Twain National Forest 0.57 0 0.3 0 0 0.96 0.88 0 0.6 

McClellan Creek National 

Grassland 
0.1 0 0.96 0 0 0.44 0 0 0.05 

Medicine Bow National Forest 0 0.5 0 0.32 0 0.01 0.56 0.03 0.24 

Mendocino National Forest 0.91 0.63 0 0 0.09 0.01 0.4 0.77 0 

Midewin National Tallgrass 

Prairie 
0.01 0.12 0 0.01 0 0.61 0 0.08 0 

Modoc National Forest 0.02 0.03 0 0.99 0.01 0.19 0.06 0.08 0 

Monongahela National Forest 0 0.25 0.01 0.39 0.01 0.14 0.04 0.85 0.08 

Mount Baker National Forest 0.78 0.16 0.5 0.01 0.88 0.66 0 0 0 

Mount Baker-Snoqualmie 

National Forest 
0 0 0 0 0.01 0.31 0 0.03 0.01 

Mount Hood National Forest 0.08 0.14 0.94 0.18 0.73 0.78 0.15 0.47 0.53 

Nantahala National Forest 0.06 0.08 0.09 0.57 0.01 0.01 0.02 0 0.14 

Nebraska National Forest 0.81 0.01 0.07 0 0 0.99 0.13 0 0.29 

Nez Perce National Forest 0 0.07 0 0.69 0.04 0.16 0.53 0.05 0.78 

Nicolet National Forest 0 0.85 0.02 0.01 0 0.42 0 0.14 0.02 

Ocala National Forest 0.48 0.81 0.04 0.31 0.02 0.01 0.05 0.15 0.18 

Oconee National Forest 0.08 0.01 0.06 0.81 0.01 0.01 0.07 0 0.15 

Oglala National Grassland 0.17 0.32 0.42 0.5 0.01 0.43 0.6 0.06 0.64 

Okanogan National Forest 0.1 0.13 0 0 0 0.04 0.02 0.01 0 

Olympic National Forest 0 0.05 0.01 0 0 0.01 0 0.1 0.04 

Oregon Dunes National 

Recreation Area 
0.19 0.69 0.15 0.01 0 0 0.27 0.37 0.19 

Osceola National Forest 0 0.08 0.06 0.01 0.08 0.34 0.01 0.15 0.16 

Ottawa National Forest 0 0.75 0.02 0 0 0.28 0.14 0.02 0.13 

Ouachita National Forest 0.94 0 0.52 0 0 0.67 0.6 0 0.98 

Ozark National Forest 0.99 0 0.2 0 0 0.48 0.66 0 0.52 

Pawnee National Grassland 0.18 0 0.25 0.86 0 0.06 0.75 0 0.31 

Pike National Forest 0.06 0 0 0.08 0 0 0.04 0 0.3 

Pisgah National Forest 0 0.22 0.01 0.35 0 0.01 0.03 0.01 0.01 

Plumas National Forest 0.06 0.15 0 0 0.12 0 0.11 0.38 0 

Poyette National Forest 0 0.13 0 0.04 0.8 0 0.01 0.56 0.04 

Prescott National Forest 0.01 0 0 0.36 0 0.35 0.63 0.01 0 

Rich Mountain Wilderness 0.08 0.01 0.05 0.03 0 0.14 0.42 0 0.36 

Rio Grande National Forest 0.44 0 0.01 0.5 0 0 0 0 0.04 

Rita Blanca National Grassland 0.05 0 0.66 0.02 0 0.54 0 0 0.43 
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Rita Blanca National Grassland 0.05 0 0.66 0.02 0 0.54 0 0 0.43 

Rogue River National Forest 0.94 0.81 0.05 0.83 0.08 0.26 0.7 0.53 0.18 

Roosevelt National Forest 0.27 0 0.13 0.13 0 0 0 0 0.11 

Routt National Forest 0.27 0 0.13 0.13 0 0 0 0 0.11 

Sabine National Forest 0.22 0 0.52 0.02 0 0.36 0.34 0 0.22 

Saint Francis National Forest 0.52 0 0.14 0.01 0 0.17 0.39 0 0.09 

Saint Joe National Forest 0.01 0.04 0.12 0.03 0.2 0 0.26 0 0 

Salmon National Forest 0 0.75 0 0.04 0.39 0 0 0 0.21 

Sam Houston National Forest 0.56 0 0.42 0.03 0 0.24 0.28 0 0.07 

Samuel R McKelvie National 

Forest 
0.61 0.01 0.11 0 0 0.73 0.21 0.01 0 

San Bernardino National Forest 0.31 0.13 0 0.04 0.07 0.01 0.03 0.1 0 

San Isabel National Forest 0.44 0 0.01 0.5 0 0 0 0 0.04 

San Juan National Forest 0.8 0 0 0.34 0 0.01 0.01 0 0.59 

Santa Fe National Forest 0.12 0 0.02 0.57 0 0.02 0 0 0.44 

Sawtooth National Forest 0 0.05 0 0.49 0.01 0.04 0.25 0.81 0.08 

Sequoia National Forest 0.43 0.01 0 0.83 0.88 0.01 0.85 0.02 0 

Shasta National Forest 0.02 0.05 0 0.36 0.49 0.96 0.03 0.12 0 

Sheyenne National Grassland 0.78 0.38 0.4 0 0 0.06 0.53 0.53 0.17 

Shoshone National Forest 0 0.61 0 0.01 0.54 0 0 0.15 0.01 

Sierra National Forest 0.91 0.44 0 0.29 0.09 0.47 0.12 0.73 0 

Siskiyou National Forest 0.2 0.64 0.01 0.38 0.08 0.13 0.27 0.81 0.03 

Sitgreaves National Forest 0.54 0 0 0 0 0.31 0 0 0.05 

Siuslaw National Forest 0.3 0.52 0.72 0 0 0 0.39 0.32 0.61 

Six Rivers National Forest 0.2 0.31 0 0.07 0.88 0.99 0.27 0.88 0 

Snoqualmie National Forest 0.07 0.13 0.78 0.31 0.44 0.39 0.12 0.27 0.42 

Stanislaus National Forest 0.11 0.08 0 0.02 0.78 0.02 0.77 0.25 0 

Sumter National Forest 0.01 0.15 0.02 0.89 0.02 0.01 0 0.02 0.01 

Superior National Forest 0.01 0.44 0 0 0 0.15 0.04 0.81 0.01 

Tahoe National Forest 0.01 0.08 0 0.01 0.42 0.11 0.15 0.52 0 

Talladega National Forest 0.56 0 0.2 0.24 0 0.18 0.81 0 0.66 

Targhee National Forest 0 0.32 0 0.07 0.04 0 0.07 0 0 

Teton National Forest 0 0.7 0.02 0.08 0.02 0 0.63 0.23 0.98 

Thunder Basin National Grassland 0 0.57 0.09 0.12 0 0.59 0.2 0.38 0.57 

Toiyabe National Forest 0 0.03 0 0.02 0.01 0.48 0.26 0.18 0 

Tombigbee National Forest 0.2 0 0.03 0.09 0 0.04 0.52 0 0.06 

Tonto National Forest 0.83 0.01 0 0.01 0 0 0.04 0.15 0.01 

Trinity National Forest 0.17 0.2 0 0.14 0.01 0 0.38 0.38 0 

Tuskegee National Forest 0.42 0 0.18 0.98 0 0.04 0.86 0 0.77 

Uinta National Forest 0 0.03 0 0.47 0 0.08 0.26 0.01 0.38 

Umatilla National Forest 0 0.02 0 0.85 0.49 0.05 0 0.48 0 

Umpqua National Forest 0.04 0.07 0.01 0.85 0.25 0.91 0 0.04 0 

Uncompahgre National Forest 0.08 0.01 0 0.4 0 0 0.73 0 0 
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Uwharrie National Forest 0 0.48 0 0.94 0.05 0.02 0 0.83 0.01 

Wallowa-Whitman National 

Forest 
0 0.43 0 0.02 0.98 0 0 0.42 0 

Wasatch National Forest 0 0.45 0 0.12 0 0.01 0.04 0.02 0 

Wayne National Forest 0 0.7 0.01 0.02 0 0.11 0.04 0.1 0.01 

Wenatchee National Forest 0.49 0.53 0.44 0.05 0.36 0.47 0 0 0 

White Mountain National Forest 0 0.18 0 0.21 0 0.49 0.02 0.7 0.03 

White River National Forest 0 0.34 0 0 0 0 0.25 0.04 0.11 

William B. Bankhead National 

Forest 
0.15 0 0.09 0.24 0 0.01 0.34 0 0.26 

Winema National Forest 0.69 0.8 0.86 0.13 0.12 0.21 0 0 0 

Yurok Redwood Experimental 

Forest 
0.11 0.32 0 0.17 0.83 0.86 0.16 0.45 0 
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Table B-3. P-values of Wilcoxon signed-ranked test at the 5% level (Aridity, 

Evaporative)  

Name 
Aridity index Evaporative index 

MID DRY WET MID DRY WET 

Allegheny National Forest 0 0.34 0.01 0.12 0.04 0.07 

Angeles National Forest 0.49 0.15 0 0 0.45 0.24 

Angelina National Forest 0.23 0 0.3 0.21 0 0.05 

Apache National Forest 0.31 0 0.02 0 0 0 

Apalachicola National Forest 0.18 0.17 0.09 0.57 0 0.7 

Arapaho National Forest 0.23 0 0.03 0 0 0.02 

Ashley National Forest 0 0.17 0 0.1 0.01 0.19 

Beaverhead National Forest 0 0.73 0 0.02 0 0.63 

Bienville National Forest 0.5 0 0.38 0.88 0 0.37 

Bighorn National Forest 0 0.73 0 0 0 0 

Bitterroot National Forest 0.01 0.83 0 0 0 0 

Black Hills National Forest 0.04 0.77 0.2 0.05 0.42 0.37 

Black Kettle National GrassLand 0.17 0 0.54 0 0 0 

Boise National Forest 0 0.06 0 0.02 0.17 0.02 

Bridger National Forest 0 0.8 0 0.02 0.05 0.53 

Buffalo Gap National Grassland 0.94 0.25 0.13 0.44 0.6 0.21 

Cache National Forest 0 0.24 0 0.33 0.11 0.73 

Caddo National GrassLand 0.47 0 0.85 0.43 0 0.98 

Caribou National Forest 0 0.38 0.02 0.21 0.78 0.32 

Carson National Forest 0.27 0 0.19 0 0 0.01 

Cedar River National Grassland 0.66 0.73 0.67 0.66 0.93 0.36 

Challis National Forest 0 0.34 0 0.2 0.21 0.52 

Chattahoochee National Forest 0.12 0 0.08 0.1 0 0.21 

Chequamegon National Forest 0.2 0.19 0.12 0.53 0.01 0.26 

Cherokee National Forest 0.01 0.53 0.01 0.49 0.02 0.48 

Chippewa National Forest 0.5 0.06 0.28 0.73 0.21 0.05 

Cibola National Forest 0.09 0 0.02 0 0 0.01 

Cimarron National GrassLand 0.09 0 0.99 0.61 0 0.99 

Clearwater National Forest 0 0.08 0.04 0 0 0 

Cleveland National Forest 0.03 0.49 0 0 0.02 0.02 

Coconino National Forest 0.78 0 0.14 0 0 0 

Coeur D'Alene National Forest 0 0.08 0.04 0 0 0 

Colville National Forest 0 0.14 0.01 0.77 0.12 0.53 

Comanche National Grassland 0.29 0 0.1 0 0 0 

Conecuh National Forest 0.88 0 0.73 0.53 0 0.04 

Coronado National Forest 0.21 0 0.15 0 0 0.47 
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Croatan National Forest 0.1 0.54 0.09 0.69 0.98 0.52 

Crooked River National Grassland 0.83 0.75 0.69 0 0 0 

Curlew National Grassland 0 0.57 0 0.02 0.06 0.14 

Custer National Forest 0.3 0.59 0.93 0.39 0.14 0.88 

Daniel Boone National Forest 0.03 0.2 0 0.85 0.01 0.05 

Davy Crockett National Forest 0.23 0 0.3 0.21 0 0.05 

Deerlodge National Forest 0 0.11 0 0.03 0 0.33 

Delta National Forest 0.8 0 0.24 0.48 0 0.47 

Deschutes National Forest 0.83 0.75 0.69 0 0 0 

DeSoto National Forest 0.72 0 0.57 0.57 0 0.16 

Dixie National Forest 0.04 0.03 0.01 0 0.15 0 

Eldorado National Forest 0.06 0.39 0 0.99 0.47 0.04 

Finger Lakes National Forest 0 0.59 0 0.04 0.38 0.02 

Fishlake National Forest 0 0.72 0 0.1 0.81 0.02 

Flathead National Forest 0 0.63 0.03 0 0 0 

Fort Pierre National Grassland 0.96 0.88 0.75 0.54 0.17 0.83 

Francis Marion National Forest 0.1 0.21 0.18 0.89 0.07 0.75 

Fremont National Forest 0.03 0.18 0.01 0 0 0 

Gallatin National Forest 0.01 0.47 0 0 0 0.61 

George Washington National Forest 0 0.14 0.01 0.33 0.69 0.27 

Gifford Pinchot National Forest 0.35 0.44 0.52 0 0 0 

Gila National Forest 0.1 0 0.24 0 0 0.16 

Grand Mesa National Forest 0.09 0.01 0.01 0.75 0 0.23 

Green Mountain National Forest 0 0.81 0 0.36 0.09 0.91 

Gunnison National Forest 0.88 0 0 0 0.02 0.54 

Helena National Forest 0 0.8 0 0 0 0.98 

Hiawatha National Forest 0 0.06 0.03 0.01 0.01 0.34 

Holly Springs National Forest 0.8 0 0.08 0.53 0 0.05 

Homochitto National Forest 0.57 0 0.66 0.67 0 0.67 

Hoosier National Forest 0.09 0.39 0.03 0.02 0.05 0.09 

Humboldt National Forest 0 0.02 0 0.47 0.88 0.24 

Huron National Forest 0 0.05 0.08 0 0.02 0.04 

Inyo National Forest 0.1 0.25 0 0.04 0.54 0.2 

Jefferson National Forest 0.01 0.09 0 0.5 0 0.05 

Kaibab National Forest 0.29 0.01 0 0 0.26 0.35 

Kaniksu National Forest 0 0 0 0.59 0.07 0.2 

Kiowa National Grassland 0.03 0 0.77 0 0 0.03 

Kisatchie National Forest 0.98 0 0.63 0.61 0 0.14 

Klamath National Forest 0.02 0.15 0 0.57 0.32 0.02 

Kootenai National Forest 0 0.05 0.24 0.2 0 0 

La Sal National Forest 0.08 0.01 0 0.01 0.15 0.59 

Lassen National Forest 0.01 0.25 0 0.91 0.67 0.03 

Lewis and Clark National Forest 0 0.63 0.03 0 0 0 



226 
 

Lincoln National Forest 0.56 0 0.3 0 0 0.24 

Little Missouri National Grassland 0.53 0.32 0.38 0.01 0.54 0 

Lolo National Forest 0 0.04 0.01 0.04 0.01 0 

Los Padres National Forest 0.57 0.13 0 0.02 0.09 0.17 

Lyndon B Johnson National 

GrassLand 
0.1 0 0.56 0 0 0.02 

Malheur National Forest 0 0.3 0 0.06 0 0.15 

Manistee National Forest 0 0.01 0.33 0 0 0.35 

Manti National Forest 0.01 0.01 0.01 0.14 0.25 0.11 

Manti-La Sal National Forest - La Sal 

Division 
0.54 0 0.01 0 0.18 0.75 

Mark Twain National Forest 0.52 0 0.42 0.49 0.03 0.98 

McClellan Creek National Grassland 0.03 0 0.48 0 0 0.02 

Medicine Bow National Forest 0 0.14 0 0.04 0.01 0.49 

Mendocino National Forest 0.42 0.66 0 0.02 0.15 0.31 

Midewin National Tallgrass Prairie 0.12 0.06 0.02 0 0.12 0.01 

Modoc National Forest 0.02 0.15 0 0.57 0.32 0.02 

Monongahela National Forest 0.01 0.89 0.01 0.85 0.29 0.43 

Mount Baker National Forest 0.73 0.33 0.42 0 0 0 

Mount Baker-Snoqualmie National 

Forest 
0.05 0.08 0.06 0.54 0.11 0.25 

Mount Hood National Forest 0.09 0.32 0.78 0.04 0.01 0.01 

Nantahala National Forest 0.07 0 0.01 0.49 0 0.23 

Nantahala National Forest 0.01 0.01 0 0.33 0 0.07 

Nebraska National Forest 0.99 0.13 0.52 0.08 0 0.11 

Nez Perce National Forest 0 0.42 0.01 0.11 0 0.01 

Nicolet National Forest 0 0.35 0.06 0 0.16 0.36 

Ocala National Forest 0.59 0.59 0.05 0.03 0.05 0.48 

Ochoco National Forest 0 0.09 0 0.21 0.36 0.01 

Oconee National Forest 0.15 0 0.05 0.3 0.01 0.32 

Oglala National Grassland 0.49 0.21 0.5 0.5 0.01 0.57 

Okanogan National Forest 0.5 0.44 0.03 0.75 0.64 0.89 

Olympic National Forest 0.04 0.1 0.15 0.85 0.14 0.23 

Oregon Dunes National Recreation 

Area 
0.27 0.26 0.49 0.6 0.01 0.35 

Osceola National Forest 0.04 0.1 0.15 0.85 0.14 0.23 

Ottawa National Forest 0.02 0.25 0.05 0.47 0 0.6 

Ouachita National Forest 0.45 0 0.66 0.42 0 0.96 

Ozark National Forest 0.21 0 0.25 0.24 0 0.86 

Pawnee National Grassland 0.31 0 0.19 0.35 0 0.36 

Pike National Forest 0.09 0 0 0 0 0.69 

Pisgah National Forest 0.01 0.1 0.01 0.52 0 0.12 

Plumas National Forest 0.01 0.22 0 0.91 0.94 0.01 

Poyette National Forest 0 0.32 0 0.93 0.44 0.83 

Prescott National Forest 0.01 0.05 0 0.88 0.2 0.04 
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Rich Mountain Wilderness 0.23 0 0.03 0.73 0 0.93 

Rio Grande National Forest 0.64 0 0.01 0 0 0.01 

Rita Blanca National Grassland 0.03 0 0.77 0 0 0.03 

Rogue River National Forest 0.85 0.72 0.07 0.22 0.14 0.49 

Roosevelt National Forest 0.23 0 0.03 0 0 0.02 

Routt National Forest 0.23 0 0.03 0 0 0.02 

Sabine National Forest 0.18 0 0.39 0.31 0 0.2 

Saint Francis National Forest 0.77 0 0.25 0.24 0 0.11 

Saint Joe National Forest 0 0.08 0.04 0 0 0 

Salmon National Forest 0.01 0.83 0 0 0 0 

Sam Houston National Forest 0.33 0 0.36 0.29 0 0.05 

Samuel R McKelvie National Forest 0.25 0 0.23 0.09 0.01 0 

San Bernardino National Forest 0.32 0.4 0 0 0.04 0.09 

San Isabel National Forest 0.64 0 0.01 0 0 0.01 

San Juan National Forest 0.88 0 0 0 0.02 0.54 

Santa Fe National Forest 0.09 0 0.02 0 0 0.06 

Sawtooth National Forest 0 0.34 0 0.2 0.21 0.52 

Sequoia National Forest 0.49 0.08 0 0.45 0.04 0.04 

Shasta National Forest 0.01 0.14 0 0.61 0.66 0.02 

Shawnee National Forest 0.44 0.01 0.03 0.21 0.02 0.13 

Sheyenne National Grassland 0.14 0.07 0.96 0.28 0.56 0.08 

Shoshone National Forest 0 0.94 0 0.69 0 0.5 

Sierra National Forest 0.88 0.77 0 0.03 0.94 0.19 

Siskiyou National Forest 0.25 0.94 0.02 0.69 0.1 0.18 

Sitgreaves National Forest 0.85 0 0 0 0 0.64 

Siuslaw National Forest 0.54 0.19 0.33 0.86 0.04 0.47 

Six Rivers National Forest 0.11 0.47 0 0.63 0.28 0.06 

Snoqualmie National Forest 0.09 0.15 0.93 0.77 0.21 0.23 

Stanislaus National Forest 0.05 0.29 0 0.47 0.4 0.15 

Sumter National Forest 0.02 0.08 0.01 0.01 0 0.03 

Superior National Forest 0.49 0.59 0.03 0.34 0.2 0.11 

Tahoe National Forest 0.01 0.27 0 0.36 0.64 0.43 

Talladega National Forest 0.19 0 0.03 0.94 0 0.96 

Targhee National Forest 0 0.73 0 0.02 0 0.63 

Teton National Forest 0 0.8 0.02 0.01 0.02 0.05 

Thunder Basin National Grassland 0.03 0.98 0.24 0.8 0.09 0.61 

Toiyabe National Forest 0 0.22 0 0.27 0.31 0.22 

Tombigbee National Forest 0.6 0 0.06 0.85 0 0.33 

Tonto National Forest 0.44 0 0 0 0.39 0.11 

Trinity National Forest 0.23 0.59 0 0.48 0.36 0.02 

Tuskegee National Forest 0.56 0 0.17 0.6 0 0.38 

Uinta National Forest 0.01 0.01 0.01 0.01 0.02 0.63 

Umatilla National Forest 0 0.08 0 0.06 0.09 0.01 
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Umpqua National Forest 0.03 0.18 0.01 0 0 0 

Uncompahgre National Forest 0.18 0 0 0.2 0 0.17 

Uwharrie National Forest 0 0.73 0 0.06 0.37 0.06 

Wallowa-Whitman National Forest 0 0.7 0 0.21 0.1 0.17 

Wasatch National Forest 0 0.53 0 0.43 0.01 0.67 

Wayne National Forest 0.02 0.35 0.01 0.34 0.04 0.08 

Wenatchee National Forest 0.37 0.53 0.77 0 0 0 

White Mountain National Forest 0 0.53 0.01 0.57 0.17 0.85 

White River National Forest 0 0.22 0 0.28 0.01 0.69 

William B. Bankhead National Forest 0.49 0 0.08 0.75 0 0.8 

Winema National Forest 0.83 0.75 0.69 0 0 0 

Yurok Redwood Experimental Forest 0.05 0.49 0 0.45 0.16 0.43 
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Table B-4. Changes in the direction and magnitude of the Budyko space for the U.S. 

national forests and grasslands  

  Current Future (WET) Future (MID) Future (DRY) 

Name x1 y1 Dir Mag Dir Mag Dir Mag 

Tonto National Forest 5 0.9 180.8 1.7 6.2 0.2 359.8 2.1 

Sitgreaves National Forest 6.5 1 180 1.8 178.5 0.1 0 4.3 

Coconino National Forest 5.1 1 179.3 0.8 177.3 0.3 0.1 3.9 

Kaibab National Forest 5.9 0.9 179.5 1.2 176.5 0.6 0.2 2.7 

Prescott National Forest 6 0.9 180.4 2.2 179.6 1.5 180 2.2 

Coronado National Forest 5.7 1 180.2 1 3.5 0.3 0.1 5.8 

Saint Francis National Forest 1.2 0.6 201.5 0.1 254 0 15 0.5 

Ouachita National Forest 1.2 0.6 176.4 0.1 29.6 0.1 12.3 0.7 

Ozark National Forest 1.3 0.7 187.2 0.1 15.9 0.1 13.5 0.6 

Tuskegee National Forest 1.2 0.7 172.8 0.1 170.8 0 16.5 0.3 

Conecuh National Forest 1.1 0.6 135.6 0 113 0 19.3 0.3 

William B. Bankhead 

National Forest 
1.1 0.6 184.5 0.1 187.1 0.1 20.8 0.3 

Talladega National Forest 1.2 0.6 181.9 0.1 186.3 0.1 17.2 0.3 

Roosevelt National Forest 2.6 0.8 172.7 0.3 155.8 0.2 10.4 0.7 

Grand Mesa National Forest 4.6 0.7 182.9 1.1 180.6 0.7 2.4 1.1 

Arapaho National Forest 2.8 0.8 178 0.4 170.7 0.3 7 0.7 

White River National Forest 2.8 0.7 179.1 0.5 172.8 0.3 8.3 0.7 

San Juan National Forest 2.3 0.7 178.8 0.5 128.6 0.1 5.4 0.8 

Pike National Forest 3.4 0.9 178.8 0.6 168.4 0.2 2.7 1.2 

Uncompahgre National 

Forest 
3.3 0.8 183 0.8 173.6 0.3 5.1 1 

Gunnison National Forest 2.3 0.7 178.8 0.5 128.6 0.1 5.4 0.8 

Rio Grande National Forest 2.8 0.8 179 0.5 141.8 0.1 3.8 1.1 

San Isabel National Forest 3.8 1 179.3 0.7 168.2 0.1 0.5 1.8 

Comanche National 

Grassland 
4.5 1 178.9 0.6 10.4 0.1 0.3 2.9 

Routt National Forest 2.5 0.7 177.4 0.4 171.8 0.3 10 0.5 

Tahoe National Forest 2.2 0.6 182.2 0.7 177.4 0.5 178.2 0.4 

Stanislaus National Forest 2.2 0.6 186.6 0.8 174.1 0.3 187.4 0.4 

Six Rivers National Forest 0.8 0.4 194.8 0.2 175 0.1 166.8 0.1 

Sierra National Forest 7.3 0.7 181.4 2.5 4.5 0.6 181.5 0.7 

Shasta National Forest 1.5 0.6 191 0.4 186.3 0.3 185.4 0.3 

Sequoia National Forest 3.4 0.6 185.2 1.4 96.9 0.2 187.1 0.8 

Plumas National Forest 1.3 0.6 191.5 0.5 180.2 0.2 179.4 0.2 

Modoc National Forest 4.2 0.7 182.6 1.2 180.8 0.9 182.4 0.8 

Mendocino National Forest 1.5 0.6 187.9 0.4 154.6 0.1 179 0.1 

Lassen National Forest 2.3 0.6 187.3 0.8 181.8 0.5 184 0.5 
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Cleveland National Forest 5.4 0.9 181.1 2.2 1.2 1.7 182.8 1.3 

Yurok Redwood 

Experimental Forest 
0.6 0.2 186.9 0.1 174.9 0.1 165.6 0.1 

Ocala National Forest 1.4 0.7 187.6 0.2 150.9 0.1 13.2 0.2 

Apalachicola National Forest 1.2 0.7 180.6 0.1 187.3 0.1 26.3 0.1 

Osceola National Forest 1.4 0.8 183.2 0.1 183.9 0.1 5.4 0 

Chattahoochee National 

Forest 
1.1 0.6 186.8 0.1 186.2 0.1 21.7 0.2 

Rich Mountain Wilderness 1.1 0.6 179 0.1 175.1 0.1 23.1 0.3 

Clearwater National Forest 1.5 0.6 144.5 0.2 164.9 0.2 144.8 0.2 

Salmon National Forest 2.8 0.8 178.2 0.7 176 0.7 138.3 0.1 

Challis National Forest 2.7 0.7 173.3 0.7 175 0.7 167.5 0.3 

Coeur D 1.7 0.5 159.4 0.2 173.4 0.3 155.6 0.2 

Curlew National Grassland 4.8 0.7 179.2 1.5 178.7 1.5 176 0.4 

Boise National Forest 2.3 0.6 179.9 0.5 182.2 0.5 179.5 0.4 

Saint Joe National Forest 1.3 0.5 163.9 0.2 177.2 0.2 145.8 0.1 

Poyette National Forest 2.1 0.5 176 0.4 178.3 0.4 171.8 0.3 

Nez Perce National Forest 2 0.7 170 0.3 174.1 0.4 149.9 0.2 

Shawnee National Forest 1.2 0.6 194.1 0.1 244.6 0 19.5 0.2 

Hoosier National Forest 1.2 0.6 195.7 0.1 212 0.1 27.4 0.1 

Cimarron National 

GrassLand 
4.4 1 180.3 0.3 359.8 0.5 0 3.2 

Daniel Boone National 

Forest 
1.3 0.6 188.4 0.2 181.7 0.1 29.1 0.1 

Kisatchie National Forest 1.2 0.7 83.9 0 140.2 0 13.7 0.6 

Superior National Forest 1.8 0.6 188.4 0.2 189.4 0.1 45.9 0 

Chippewa National Forest 1.9 0.8 189.3 0.1 351 0 4.9 0.2 

Delta National Forest 1.2 0.6 195.4 0.1 206.5 0 13.5 0.5 

Tombigbee National Forest 1.1 0.6 189.8 0.1 174.1 0 16.7 0.4 

Holly Springs National Forest 1.1 0.6 196.9 0.1 228 0 17.6 0.3 

DeSoto National Forest 1.1 0.7 156.2 0.1 177.1 0 19.2 0.4 

Homochitto National Forest 1.2 0.7 180.3 0 202.5 0.1 13.1 0.5 

Bienville National Forest 1.2 0.7 176.3 0.1 189.4 0 15.8 0.4 

Mark Twain National Forest 1.3 0.7 181 0.1 126.9 0 11.7 0.4 

Deerlodge National Forest 2.8 0.8 178.2 0.7 174.7 0.5 135.7 0.1 

Gallatin National Forest 2.2 0.7 181.1 0.6 177.1 0.5 157.1 0.2 

Lewis and Clark National 

Forest 
3 0.8 177.8 0.6 176.3 0.5 144.4 0.2 

Beaverhead National Forest 2.8 0.8 180.3 0.8 177.9 0.7 149.8 0.1 

Flathead National Forest 1.8 0.5 164.1 0.2 176.4 0.3 158.6 0.2 

Helena National Forest 3 0.8 178.7 0.7 175.8 0.5 158.4 0.2 

Lolo National Forest 1.9 0.6 162.5 0.3 172.3 0.3 154.8 0.2 

Oglala National Grassland 3.6 1 180 0.4 179.9 0.3 0.5 0.3 

Inyo National Forest 1.9 0.7 185.5 0.7 162.8 0.2 179.7 0.4 

Humboldt National Forest 5.2 0.9 180.4 1.6 180.1 1.5 170 0.9 

Toiyabe National Forest 8.2 0.8 181.4 3.1 179.7 3.1 182.4 1.2 
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Santa Fe National Forest 4.6 0.9 176.8 0.6 8.7 0.4 1 4.2 

Gila National Forest 6.2 0.9 179.1 0.8 3.1 0.5 0.3 6.6 

Nantahala National Forest 1.1 0.6 188.8 0.1 186.9 0.1 26.4 0.2 

Uwharrie National Forest 1.4 0.7 189.6 0.2 189.6 0.2 162.6 0 

Pisgah National Forest 1.2 0.6 187.2 0.2 184.4 0.2 30.8 0.1 

Croatan National Forest 1.1 0.7 195.6 0.1 188.7 0.1 258.5 0 

Little Missouri National 

Grassland 
3.3 0.9 311.2 0.1 314.8 0.1 177.9 0.2 

Wayne National Forest 1.3 0.6 187.4 0.2 187.4 0.1 37.8 0.1 

Black Kettle National 

GrassLand 
2.6 1 175.9 0 0.2 0.3 0.1 1.4 

Umpqua National Forest 1.6 0.6 181.5 0.2 176.1 0.1 150.4 0.1 

Wallowa-Whitman National 

Forest 
2.4 0.6 180.4 0.5 181.1 0.5 123.4 0.1 

Malheur National Forest 3.4 0.8 183.2 0.8 181.9 0.6 181.8 0.5 

Ochoco National Forest 3.7 0.8 180.4 0.7 178.3 0.5 181.2 0.6 

Rogue River National Forest 1.5 0.5 175.7 0.2 159 0.1 143.5 0.1 

Deschutes National Forest 1.9 0.6 112.7 0.2 110.4 0.2 122.4 0.2 

Mount Hood National Forest 0.9 0.3 128.4 0 168.7 0.1 153.1 0.1 

Winema National Forest 1.5 0.6 138.6 0.2 137.5 0.1 138.9 0.2 

Fremont National Forest 3.1 0.7 177 0.7 173.9 0.5 177.6 0.6 

Oregon Dunes National 

Recreation Area 
0.7 0.4 169.2 0 151.6 0 42 0.1 

Crooked River National 

Grassland 
1.8 0.6 85.8 0.1 84 0.1 99.5 0.1 

Allegheny National Forest 1.2 0.5 187.1 0.1 183.5 0.1 35.2 0 

Sumter National Forest 1.3 0.7 187.7 0.2 189.4 0.2 22 0.1 

Black Hills National Forest 3.6 1 180.2 0.4 180.4 0.5 101.6 0.1 

Buffalo Gap National 

Grassland 
3.1 1 182.1 0.4 226.3 0.1 219.3 0.2 

Lyndon B Johnson National 

GrassLand 
2.2 0.9 17.7 0.1 5.7 0.3 1.6 1.3 

Angelina National Forest 1.4 0.8 14.9 0.1 13.8 0.1 8.6 1 

Sabine National Forest 1.3 0.8 13 0.1 12.2 0.1 8.9 0.9 

Sam Houston National 

Forest 
1.5 0.8 12.5 0.1 6 0.1 6.8 1.1 

Davy Crockett National 

Forest 
1.4 0.8 19.4 0.1 14.7 0.1 7.4 1.1 

Cache National Forest 2.8 0.8 179.4 0.6 180.1 0.7 89.3 0.2 

Wasatch National Forest 3.3 0.8 179.9 0.9 178.5 0.8 46 0.2 

Ashley National Forest 4.2 0.9 180.1 1.1 178.3 1 2.8 0.6 

Fishlake National Forest 4.1 0.9 182.5 1.1 179.9 0.9 224.2 0.5 

Caribou National Forest 3.5 0.8 183.6 0.9 184.2 1 222.5 0.2 

Dixie National Forest 5.1 0.9 180.4 1.2 177.3 0.7 143.9 1.3 

Uinta National Forest 3.5 0.8 179.5 0.9 177.4 0.7 53.5 0.2 

Green Mountain National 

Forest 
1.1 0.5 186 0.1 186 0.2 157.3 0 

Umatilla National Forest 2.8 0.7 179.3 0.6 179.4 0.5 131 0.3 

Okanogan National Forest 1.9 0.3 164.8 0.2 170.5 0.1 163.9 0.2 

Wenatchee National Forest 2.3 0.4 125 0.1 158.7 0.1 161.5 0.3 
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Osceola National Forest 0.3 0.1 157.9 0 179.1 0 151.7 0 

Colville National Forest 2 0.4 176.4 0.2 178.7 0.2 171.1 0.2 

Gifford Pinchot National 

Forest 
1.2 0.5 73.2 0.2 104.1 0.1 109.7 0.2 

Mount Baker-Snoqualmie 

National Forest 
0.5 0.2 150.4 0.1 157.4 0.1 144.7 0.1 

Nicolet National Forest 1.7 0.7 187.9 0.2 190.6 0.3 9.6 0.1 

Teton National Forest 2.7 0.6 174.8 0.4 175.5 0.5 38.5 0.1 

Medicine Bow National 

Forest 
3.8 0.8 178.8 0.6 177.6 0.6 6.5 0.3 

Thunder Basin National 

Grassland 
4.3 1 179.8 0.5 179.9 0.6 14.1 0.2 

Shoshone National Forest 3.4 0.6 178.3 0.6 177.9 0.6 85.9 0.1 

Bighorn National Forest 3.4 0.9 178.1 0.7 177.6 0.8 150.5 0.1 

Bridger National Forest 3.3 0.7 175.1 0.5 174.8 0.6 95.3 0.1 

Manistee National Forest 1.5 0.6 187.1 0 196.5 0.2 11.5 0.2 

Ottawa National Forest 1.5 0.6 177.3 0.1 174.7 0.1 31.2 0.1 

Hiawatha National Forest 1.5 0.5 185.7 0.1 190.5 0.2 13 0.2 

Huron National Forest 1.8 0.7 186.2 0.1 189.1 0.3 5.2 0.2 

Siskiyou National Forest 1.2 0.4 190.3 0.1 182.9 0.1 109 0 

Siuslaw National Forest 0.6 0.3 168 0 185.1 0 46.6 0 

Cherokee National Forest 1.2 0.6 183.5 0.2 177.3 0.1 36.6 0.2 

Los Padres National Forest 7.8 0.7 181.2 2.9 4.2 1 182 2 

Angeles National Forest 4 0.8 180.8 1.3 4.5 1.2 182 1 

Nebraska National Forest 3.1 0.9 179.4 0.3 122 0.1 1.1 0.5 

Midewin National Tallgrass 

Prairie 
1.4 0.6 201 0.1 211.4 0.1 13.9 0.1 

McClellan Creek National 

Grassland 
3.3 1 7.7 0.1 0.9 0.7 0.4 2.3 

Kaniksu National Forest 1.4 0.5 162.9 0.1 177.7 0.2 160.9 0.2 

Bitterroot National Forest 2.2 0.7 168.3 0.4 165.7 0.3 93.4 0.1 

Samuel R McKelvie National 

Forest 
2.7 0.9 193.1 0.4 352.7 0.2 2 0.6 

Kootenai National Forest 1.6 0.6 149.2 0.1 174.7 0.3 155.9 0.2 

Eldorado National Forest 2.1 0.6 188.2 0.7 181.9 0.3 187.5 0.3 

Apache National Forest 4.8 1 179.7 1 2.2 0.2 0.1 4.4 

Carson  National Forest 3.8 0.8 180.3 0.6 40.2 0.1 2.5 2.4 

Chequamegon National 

Forest 
1.6 0.7 188.9 0.1 188.4 0.1 14.7 0.1 

Cibola National Forest 6.1 1 179.5 0.9 1.6 0.5 0.2 5.8 

George Washington National 

Forest 
1.5 0.7 185.3 0.2 183.6 0.2 175.6 0.1 

Jefferson National Forest 1.4 0.7 182.1 0.2 179.8 0.2 155.2 0 

Klamath National Forest 2.4 0.8 180.2 0.5 170.4 0.3 168.5 0.3 

Lincoln National Forest 6.7 0.9 178.5 0.6 1.9 0.6 0.2 6.4 

Monongahela National 

Forest 
1.4 0.7 183.5 0.2 181 0.2 152.6 0 

San Bernardino National 

Forest 
4.9 0.8 182.3 2 3.2 1.2 183.9 1.4 

Targhee National Forest 3.2 0.8 179.3 0.9 177.6 0.9 152.6 0.1 
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Trinity National Forest 1.1 0.6 190.6 0.3 175 0.1 173 0.1 

White Mountain National 

Forest 
1 0.4 180.2 0.1 173.3 0.1 129.5 0 

Custer National Forest 3.3 0.8 183.6 0.3 180.2 0.4 48.5 0.2 

Francis Marion National 

Forest 
1.3 0.7 186.7 0.1 184 0.1 12.3 0.1 

Cedar River National 

Grassland 
3.3 1 341.4 0 349.3 0 359.7 0.1 

Fort Pierre National 

Grassland 
2.5 1 187.5 0.4 259.7 0 359.5 0.4 

Fort Pierre National 

Grassland 
3.5 1 187.5 0.1 189.4 0.1 73.9 0.1 

Kiowa National Grassland 4.6 1 179.6 0.2 0.5 0.6 0.1 3.9 

Pawnee National Grassland 4.2 0.9 182 0.5 178.7 0.4 2.4 1.1 

Rita Blanca National 

Grassland 
4.7 1 179.7 0.1 0.1 0.8 0 3.7 

Sheyenne National 

Grassland 
2.1 1 186.3 0.1 358.4 0.2 360 0.3 

Finger Lakes National Forest 1.3 0.6 189.9 0.2 188.8 0.1 163.1 0 

Sawtooth National Forest 4.7 0.8 178.8 1.3 178.6 1.3 176.8 0.4 

Snoqualmie National Forest 0.6 0.2 129.6 0 176.5 0 155.5 0.1 

Mount Baker National Forest 0.6 0.2 150.5 0.1 161.8 0.1 153.1 0.1 

La Sal National Forest 4.3 0.9 180.2 1.1 173 0.5 1.6 1.4 

Manti National Forest 5 0.8 183.1 1.1 181.8 0.9 2 1 

Caddo National GrassLand 1.5 0.8 207.2 0 9.6 0.1 6.8 0.9 

Jefferson National Forest 1.4 0.6 183 0.2 177 0.2 39.2 0.1 
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APPENDIX C 

SUPPORTING INFORMATION FOR CHAPTER 4: 

 A PROBABILISTIC APPROACH FOR CHARACTERIZATION OF SUB-ANNUAL 

SOCIOECONOMIC DROUGHT INTENSITY-DURATION-FREQUENCY (IDF) 

RELATIONSHIPS IN A CHANGING ENVIRONMENT 
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Figure C-1. Schematic of Gamma-GPD mixture model. 

  

 

Figure C-2. City of Fort Collins, Colorado, USA. 
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Figure C-3. Classification of downscaled climate scenarios into hot-dry, hot-wet, warm-

dry, warm-wet, and median categories based on the difference in current and future temperature 

and precipitation. 

 

Figure C-4. 30-year normal annual precipitation from the current conditions to the future 
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Figure C-5. 30-year normal annual minimum temperature from the current conditions to 

the future 

 

 

Figure C-6. Mean residual life plot of drought durations 

 

Figure C-7. Mean residual life plot of drought intensities 
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Table C-1. Boundaries of mixture model parameters 

Parameter Minimum Maximum 

GPD Shape -0.3 0.3 

GPD Scale 0.1 0.3 

GPD Location  1 1.3 

Gamma Shape 1 2 

Gamma Scale 0.2 0.3 

 

Table C-2. First order sensitivity indices of mixture model parameters 

  GPD Gamma Sum 

Intensity Shape Scale Location Shape Scale   

0.01 0 0 0 0.978 0.018 0.997 

0.5 0 0 0.005 0.735 0.247 0.987 

1 0 0 0.514 0.266 0.171 0.685 

1.3 0.026 0.17 0.219 0 0 0.415 

 

Table C-3. Total order sensitivity indices of mixture model parameters 

  GPD Gamma Sum 

Intensity Shape Scale Location Shape Scale   

0.01 0 0 0 0.991 0.031 1.022 

0.5 0 0 0.005 0.759 0.271 1.035 

1 0 0 0.568 0.3 0.195 1.063 

1.3 0.454 0.72 0.792 0 0 1.966 
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APPENDIX D 

SUPPORTING INFORMATION FOR CHAPTER 6: 

 VULNERABILITY TO WATER SHORTAGE UNDER CURRENT AND FUTURE 

WATER SUPPLY-DEMAND CONDITIONS ACROSS U.S. RIVER BASINS 
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Figure D-1. The 204 HUC4 river basins across the CONUS 
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Figure D-2. The comparison of baseline climate model (HIST) and the driest MACA 

climate model over the historical (1986-2015) period. 

 

Figure D-3. The comparison of VIC simulated runoff and USGS observed runoff over the 

historical period 
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Figure D-4. Schematic of drought characteristics (Heidari et al, 2020) 

 

 

Figure D-5. Intensity-duration-frequency curves for current (left-panel) and future conditions 

(right-panel) 
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Figure D-6. Intensity-duration-frequency curves for current (left-panel) and future conditions 

(right-panel) 

 

Figure D-7. Intensity-duration-frequency curves for current (left-panel) and future conditions 

(right-panel) 
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Figure D-8. Intensity-duration-frequency curves for current (left-panel) and future conditions 

(right-panel) 

 

Figure D-9. Intensity-duration-frequency curves for current (left-panel) and future 

conditions (right-panel) 
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Figure D-10. Intensity-duration-frequency curves for current (left-panel) and future 

conditions (right-panel) 

 

Figure D-11. Intensity-duration-frequency curves for current (left-panel) and future 

conditions (right-panel) 
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Figure D-12. Intensity-duration-frequency curves for current (left-panel) and future 

conditions (right-panel) 

 

Figure D-13. Intensity-duration-frequency curves for current (left-panel) and future 

conditions (right-panel) 
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Figure D-14. Intensity-duration-frequency curves for current (left-panel) and future 

conditions (right-panel) 

 

Figure D-15. Intensity-duration-frequency curves for current (left-panel) and future 

conditions (right-panel) 
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Figure D-16. Intensity-duration-frequency curves for current (left-panel) and future 

conditions (right-panel) 

 

Figure D-17. Intensity-duration-frequency curves for current (left-panel) and future 

conditions (right-panel) 
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Figure D-18. Intensity-duration-frequency curves for current (left-panel) and future 

conditions (right-panel) 

 

Figure D-19. Intensity-duration-frequency curves for current (left-panel) and future 

conditions (right-panel) 
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Figure D-20. Intensity-duration-frequency curves for current (left-panel) and future 

conditions (right-panel) 

 

Figure D-21. Intensity-duration-frequency curves for current (left-panel) and future 

conditions (right-panel) 
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Figure D-22. Intensity-duration-frequency curves for current (left-panel) and future 

conditions (right-panel) 

 

Figure D-23. Intensity-duration-frequency curves for current (left-panel) and future 

conditions (right-panel) 
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Figure D-24. Intensity-duration-frequency curves for current (left-panel) and future 

conditions (right-panel) 

 

Figure D-25. Intensity-duration-frequency curves for current (left-panel) and future 

conditions (right-panel) 
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Figure D-26. Intensity-duration-frequency curves for current (left-panel) and future 

conditions (right-panel) 

 

Figure D-27. Intensity-duration-frequency curves for current (left-panel) and future 

conditions (right-panel) 
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Figure D-28. Intensity-duration-frequency curves for current (left-panel) and future 

conditions (right-panel) 

 

Figure D-29. Intensity-duration-frequency curves for current (left-panel) and future 

conditions (right-panel) 
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Figure D-30. Intensity-duration-frequency curves for current (left-panel) and future 

conditions (right-panel) 
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Figure D-31. Intensity-duration-frequency curves for current (left-panel) and future 

conditions (right-panel) 

 

Figure D-32. Intensity-duration-frequency curves for current (left-panel) and future 

conditions (right-panel) 
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Figure D-33. Intensity-duration-frequency curves for current (left-panel) and future 

conditions (right-panel) 

 

Figure D-34. Intensity-duration-frequency curves for current (left-panel) and future 

conditions (right-panel) 
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Figure D-35. Intensity-duration-frequency curves for current (left-panel) and future 

conditions (right-panel) 

 

Figure D-36. Intensity-duration-frequency curves for current (left-panel) and future 

conditions (right-panel) 
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Figure D-37. Intensity-duration-frequency curves for current (left-panel) and future 

conditions (right-panel) 

 

Figure D-38. Intensity-duration-frequency curves for current (left-panel) and future 

conditions (right-panel) 
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Figure D-39. Intensity-duration-frequency curves for current (left-panel) and future 

conditions (right-panel) 

 

Figure D-40. Intensity-duration-frequency curves for current (left-panel) and future 

conditions (right-panel) 
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Figure D-41. Intensity-duration-frequency curves for current (left-panel) and future 

conditions (right-panel) 

 

Figure D-42. Intensity-duration-frequency curves for current (left-panel) and future 

conditions (right-panel) 
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Figure D-43. Intensity-duration-frequency curves for current (left-panel) and future 

conditions (right-panel) 

 

Figure D-44. Intensity-duration-frequency curves for current (left-panel) and future 

conditions (right-panel) 
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Figure D-45. Intensity-duration-frequency curves for current (left-panel) and future 

conditions (right-panel) 

 

Figure D-46. Intensity-duration-frequency curves for current (left-panel) and future 

conditions (right-panel) 
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Figure D-47. Intensity-duration-frequency curves for current (left-panel) and future 

conditions (right-panel) 

 

Figure D-48. Intensity-duration-frequency curves for current (left-panel) and future 

conditions (right-panel) 
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Figure D-49. Intensity-duration-frequency curves for current (left-panel) and future 

conditions (right-panel) 

 

Figure D-50. Intensity-duration-frequency curves for current (left-panel) and future 

conditions (right-panel) 
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Figure D-51. Intensity-duration-frequency curves for current (left-panel) and future 

conditions (right-panel) 

 

Figure D-52. Intensity-duration-frequency curves for current (left-panel) and future 

conditions (right-panel) 
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Figure D-53. Intensity-duration-frequency curves for current (left-panel) and future 

conditions (right-panel) 

 

Figure D-54. Intensity-duration-frequency curves for current (left-panel) and future 

conditions (right-panel) 
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Figure D-55. Intensity-duration-frequency curves for current (left-panel) and future 

conditions (right-panel) 

 

Figure D-56. Intensity-duration-frequency curves for current (left-panel) and future 

conditions (right-panel) 
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Figure D-57. Intensity-duration-frequency curves for current (left-panel) and future 

conditions (right-panel) 

 

Figure D-58. Intensity-duration-frequency curves for current (left-panel) and future 

conditions (right-panel) 
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Figure D-59. Intensity-duration-frequency curves for current (left-panel) and future 

conditions (right-panel) 

 

Figure D-60. Intensity-duration-frequency curves for current (left-panel) and future 

conditions (right-panel) 
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Figure D-61. Intensity-duration-frequency curves for current (left-panel) and future 

conditions (right-panel) 

 

Figure D-62. Intensity-duration-frequency curves for current (left-panel) and future 

conditions (right-panel) 
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Figure D-63. Intensity-duration-frequency curves for current (left-panel) and future 

conditions (right-panel) 

 

Figure D-64. Intensity-duration-frequency curves for current (left-panel) and future 

conditions (right-panel) 
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Figure D-65. Intensity-duration-frequency curves for current (left-panel) and future 

conditions (right-panel) 

 

Figure D-66. Intensity-duration-frequency curves for current (left-panel) and future 

conditions (right-panel) 
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Figure D-67. Intensity-duration-frequency curves for current (left-panel) and future 

conditions (right-panel) 

 

Figure D-68. Intensity-duration-frequency curves for current (left-panel) and future 

conditions (right-panel) 

 

Figure D-69. Changes in the aridity index from current to future conditions under the 

driest MACA climate model with RCP 8.5. 


