
Thesis

Synchronized Real-Time Simulation of Distributed Networked Controls

for a Power System Case Study

Submitted by

Abhishek Jain

Department of Electrical and Computer Engineering

In partial fulfullment of the requirements

For the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Fall 2013

Master’s Committee:

Advisor: Peter Young

Daniel Zimmerle
Siddharth Suryanarayanan

Copyright by Abhishek Jain 2013

All Rights Reserved

Abstract

Synchronized Real-Time Simulation of Distributed Networked Controls

for a Power System Case Study

The purpose of this study is to develop and implement a distributed networked control

framework for a power system simulation. The study addresses and improves upon speed

and accuracy of simulation for computationally intensive power system dynamic simulations

and distributed control utilizing Hardware-In-Loop (HIL) simulations. A dynamic four-

bus test-case microgrid simulation is first constructed using SimPowerSystemsTM toolbox of

MatlabTM with renewable energy penetration. Parallel processing is achieved using a discrete

real-time simulator Opal-RT by distributing the computation among its various processors

and thus achieving real-time performance.

Maximum power point tracking (MPPT) controls for various photo-voltaic (PV) systems

are distributed among external simulation platforms with the use of a client-server com-

munication architecture and application layer messaging network protocols. The various

networked platforms implementing control algorithms include general purpose and data-flow

graphical programming languages. The solar irradiance profile for various PV systems is

generated from an external spreadsheet data source as another networked module. Also

included in the communication network is a commercial off-the-shelf (COTS) controller - a

substation automation platform OrionLX which is used for supervisory control of the various

relays in the microgrid feeder simulation.

Finally, a case study is presented which involves all of the above mentioned components -

MPPT control and irradiance profile generation for PV systems as well as fault isolation in a

microgrid using HIL supervisory relay control - as distributed elements of a communication

ii

network with the real-time server. Modbus TCP/IP is used as the networking protocol

while the networked control platforms are developed in C# and SimulinkTM programming

languages. Performance and bandwidth of the interdisciplinary system are analyzed. From

the results of this study, it is concluded that the combination of a parallel processing and

distributed control approach can be an effective strategy for improving dynamic power system

simulations.

iii

Acknowledgements

First and foremost I would like to thank my adviser Dr. Peter Young for his guidance

in my thesis work and his amazing lectures in Control Theory which have inspired me to

continue my graduate studies in that area of expertise. His humble attitude and helpful

nature made my first steps in academic research a fulfilling and exciting experience.

I would like to thank Prof. Dan Zimmerle not only for his technical guidance regarding

my thesis but also for the opportunities he provided me which made this multidisciplinary

thesis work possible. I am grateful for the industrial research exposure I have received in the

last two years as his student.

I would like to thank Mr. Jerry Duggan for guiding me in the software development

process of my work. His patience and expertise have played a crucial role in my becoming a

better computer programmer and in the completion of this thesis.

I would also like to thank Dr. Siddharth Suryanarayanan for his valuable comments

and suggestions. Special thanks is given to Dr. Edwin Chong for his motivational (and

highly enthusiastic) talks on academic research, which have inspired me to pursue a research-

intensive career.

I would like to thank my friend and colleague Yi Han for his collaboration on my first

paper and his invaluable counsels on the intricacies of graduate school. Finally, I thank my

family for their love and support.

iv

Table of Contents

Abstract . iii

Acknowledgements . iv

List of Tables . vii

List of Figures. viii

Chapter 1. Introduction . 1

1.1. Motivation of the Study. 1

1.2. Proposed Interdisciplinary System. 4

1.3. Organization of Thesis . 6

Chapter 2. Literature Review . 9

2.1. Distributed and Parallel Processing . 9

2.2. Hardware-In-Loop . 10

2.3. NCS and Cyber-Physical Systems . 11

2.4. Multi-Agent Systems for Microgrid Control . 12

2.5. Synchronized Control and Network Limitations. 13

2.6. Modbus/TCP in Networked Control . 14

2.7. Summary . 15

Chapter 3. Modeling of Microgrid System. 16

3.1. Photovoltaic Systems . 18

3.2. Protection System . 24

v

3.3. Simulation and Fault Analysis . 26

Chapter 4. System Architecture. 30

4.1. Real-Time Server: Opal-RT . 31

4.2. HIL Client: OrionLX . 33

4.3. Multi-Platform Distributed Clients . 34

Chapter 5. Software Architecture . 36

5.1. Modbus Protocol . 39

5.2. Multi-Client Single-Server Model . 44

5.3. Server Software Development . 45

5.4. Client Software Development . 50

Chapter 6. Case Study: Multi-Process Microgrid Simulation . 55

6.1. Timing and Synchronization . 56

6.2. Simulation Results . 58

6.3. Response-Time Analysis . 62

Chapter 7. Conclusion and Future Work . 66

7.1. Future Work . 67

Bibliography . 69

Appendix A. MPPT Algorithms & PV Array Specifications . 80

A.1. Perturb & Observe Method. 80

A.2. Incremental Conductance Method . 81

A.3. PV Array Specifications . 82

vi

List of Tables

3.1 Simulation Specifications . 18

5.1 Unit ID Assignation for Slave Devices. 49

A.1SunPower SPR-305-WHT PV Array Specifications . 82

vii

List of Figures

1.1 Distributed Networked Control Framework for a Microgrid . 5

3.1 One-line diagram of a 25 kV Microgrid System. 17

3.2 Block diagram of a Grid-connected PV System. 18

3.3 I-V and P-V curves for SunPower SPR-305-WHT PV Array . 21

3.4 PV Inverter Filtering Configuration . 24

3.5 Time Co-ordination for Feeder Relays. 25

3.6 Relay Configuration . 26

3.7 RMS Bus Currents for Relay Operation, showing time incerment (secs) on the x-axis

and RMS Current values (Amperes) on y-axis. 27

3.8 Duty Cycles for Microgrid PV Systems, showing time increment (secs) on the x-axis

and the control signal ‘duty cycle’ value on the y-axis . 28

4.1 Interconnected System Architecture. 30

5.1 Layered Network Architecture for Client-Server Model . 37

5.2 Modbus Client-Server Model . 39

5.3 Modbus/TCP Frame Format . 40

5.4 Modbus Client-Server Transaction . 43

5.5 Software Architecture for Multi-Client Single-Server Model. 44

5.6 Server Software Architecture . 45

5.7 Server Socket Flow of Events . 46

viii

5.8 Opal-RT Interface . 48

5.9 Client Software Architecture with Classification . 50

5.10Class Library Architecture with Base Libraries . 52

5.11Matlab Interface Layer Architecture . 53

6.1 Microgrid One-Line Diagram with Distributed Networked Control. 55

6.2 Timing Diagram for Client-Server Communication . 57

6.3 Current values for Feeder Fault Isolation with Supervisor Control, showing time

increment on the x-axis and current (amperes) on the y-axis . 59

6.4 Duty Cycles for Networked Control Microgrid PV Systems, showing time increment

on the x-axis and duty cycle value on the y-axis . 61

6.5 Irradiance Profile for PV Systems (Source:NREL), showing time increment on the

x-axis and irradiance value (W/m2) on the y-axis . 61

6.6 CDF Plot for Response-Time Analysis for Increasing Number of Clients) 63

6.7 Plot showing Number of Bad Data Packets for Increasing Number of Clients 64

6.8 Step-Responses of PID Controller with Various Network Delay Times 65

A.1Flowchart for Perturb & Observe Algorithm . 80

A.2Flowchart for Incremental Conductance Algorithm . 81

ix

CHAPTER 1

Introduction

1.1. Motivation of the Study

Problem Statement: Power system simulations play an important role in the study

of stability and performance of electrical power systems, for instance load flow analysis and

transient stability analysis. It involves modeling of power system equipment, integration of

conventional and renewable sources into the power grid, and implementing improved control

strategies for regulating the various dynamic and steady-state parameters in a power system.

The last few decades has seen the US electricity transmission system face many challenges, in-

cluding deregulation of the electricity grid, heavy integration of renewable energy sources and

storage systems and utilization of fast-acting power-electronics based control equipment like

FACTS compensation devices. Increasing demands on the transmission system has stretched

the electrical performance to its system tolerable limits [1]. As a result, the complexity of

(dynamic) power system simulations is increasing and improved novel approaches have to be

implemented for analysis of power systems considering important factors like accuracy and

speed of the simulation [2]. Some of the related topics discussed and implemented in this

thesis with regards to a more efficient dynamic power system simulations are as follows:

Parallel and Distributed Processing: The different components in power system simula-

tion models are usually made up of non-linear ordinary differential equations, which are

solved by the modeling packages, for instance SimPowerSystems toolbox of Matlab. These

equations can interact heavily with other sets of equations (for other components) in the sys-

tem, resulting in a much more complicated system with a multiple of states. Once modeling

is achieved, a thorough analysis of a practical system will generally require a large number

1

of simulation runs. If these runs prove too much for one single processor (simulation time is

very slow), the model is usually simplified by approximated low-order equations. This ap-

proach sacrifices accuracy of the model and thus can produce impractical and/or inefficient

results [2].

Using parallel processing of these simulation models can help preserve important system

dynamics like transient and small-signal stability. Parallel processing involves dividing the

simulation into multiple hardware components to perform the simulation as one single sim-

ulation [3]. In our study, we have used a discrete real-time simulator ‘Opal-RT’ for dividing

up our power system simulation in 12 processing cores. This enables the real-time simulation

required for hardware-in-loop analysis of physical system components. As described in [2],

the measure speedup denotes the actual advantage (gain) when moving a simulated model to

a parallel computing multiprocessor. These analysis are given in Chapter 6 and was observed

that speedup for our study is significant.

A distributed system on the other hand consists of a number of independent computers

connected via a communication network. These computers (or processors) are given specific

individual tasks to solve one common problem as a single unit. The communication network

can be composed of anything from Ethernet to fiber optic cables. Some of the advantages of

a distributed computing system as compared to running an application on a single processor

are reduced cost, freedom of model expansion (under the limit of communication bandwidth)

and increased configurability [4]. In our study, multiple autonomous computers are used as

various ‘clients’ in a client-server communication model for distributed control over the pri-

mary simulation components. The data packets are exchanged in real-time. Since the server

side of the above mentioned client-server model utilizes a parallel computing multiprocessor

2

for accurate real-time simulations, both parallel and distributed processing advantages are

implemented for system improvements.

HIL Testing of Commercial Equipment: Distribution protection and automation devices

are required to undergo a thorough testing procedure before they can be implemented with

the real grid [5]. For our study, a substation automation platform ‘OrionLX’ from NovaTech

LLC is used to isolate a three-phase fault in a simulated microgrid system. It is a processor in

itself and hence is able to make high-level decisions for various intelligent electronic devices

(relays) in the system. This allows us to monitor the performance and limitations of the

automation system. We can also analyze the efficiency of its programmed logic in special case

scenarios, for instance large renewable energy penetrations to the grid and the response of the

controller. Using a real-time simulator gives an added advantage of performing Hardware-In-

Loop (HIL) simulations over the same communication network as the distributed system [5].

In essence, the hardware-in-loop device becomes a part of the distributed system architecture

and can be regarded as just another autonomous computer system exchanging data with the

server simulation.

Limitations on Computational Style: Simulation packages for dynamic power system sim-

ulation like Simulink/SimPowerSystems use a variety of solvers for ordinary differential equa-

tions. The user also defines a specific time-step approach for the whole system [6]. For a

system with continuous states, a continuous solver is used and for a system with discrete

states, a discrete solver is used. The user selects a fixed step discrete solver or a variable step

discrete solver, depending on the model. Any one of the various integration techniques can

be used for the solvers [6] and it is not unusual to find that one technique performs better

over others for a specific part of the system. This problem is solved by using distributed

3

computing for different parts of the system. For instance, in our study, the incremental

conductance Maximum Power Point Tracking (MPPT) controller for a specific PV system

is running in variable step while the PV system itself runs on fixed step-size, while both

being components of the same system. Also, the input data for a system can be treated

as yet another distributed computer (though there is no feedback loop here). Instead of

porting input data from source software to a format recognized by the simulation, the data

can be directly fed through the communication network directly from the source software.

For instance, a wind profile data generation software can deliver data packets directly to the

input of a simulated wind turbine system through the networked communication.

Model Environmental Characteristics: Since the objective of power system simulations

is to match the response of the real system as closely as possible, all aspects of the sys-

tem dynamics have to be considered for an accurate simulation. In most physical systems,

inter-device communication takes place through small communication networks themselves

[7]. These networks are not usually modeled when creating a simulation of the system.

Distributed processing facilitates modeling those networks in order to analyze scenarios like

node failure or network failure between two points. For slow-speed networks in real systems,

we can intentionally introduce latency to correctly simulate the behavior of the system. In

our study, an intentional latency of 1 sec is introduced between the Photo-Voltaic (PV)

system and the MPPT controller to simulate the real system.

1.2. Proposed Interdisciplinary System

The proposed interdisciplinary system, addressing all of the topics discussed above, has

a distributed networked control architecture (Figure 1.1) which serves as a framework for

Cyber-Physical Systems (CPS) and Networked Control Systems (NCS). As shown in the

4

fig below, the client-server communication network is implemented with Modbus TCP/IP

(Transmission Control Protocol/Internet Protocol) standard protocols. The discrete real-

time simulator Opal-RT serves as a central node (server) for the communication network

while the other nodes (clients) are networked distributed controllers. Every client or the

single server has a networking wrapper/layer on top of it to facilitate communication. Each

of the nodes in the system has a different IP address as indicated in the figure.

OrionLX
Substation

Automation
Platform

Modbus/TCP
--CLIENT (IP4)--

--CLIENT (IP3)--
--CLIENT (IP2)--

--SERVER—
(Future Work)

--SERVER (IP1)--

OPAL-RT
Real-Time
Simulator

(Microgrid)

C Code Layer C# Code Layer
C# Code Layer

MATLAB
Layer

Lua Code Layer

SCADA
System

(Integrid)

Simulink
Controller
(IC MPPT
Control)

Physical (HIL)
Controller
(Substation

Control)

Software
Controller

(PandO MPPT
Control)

TCP/IP

TCP/IP

TCP/IP

Physical
Systems

Multiple PV
Controllers

Multiple PV
Controllers

--CLIENT (IP5)--

C# Code Layer
Software

Data source
(Spreadsheet
PV Irradiance)

TCP/IP

Figure 1.1. Distributed Networked Control Framework for a Microgrid

The Server: The Opal-RT server has a layer of C code which contains socket programming

as well as Modbus/TCP implementation. Socket programming is implemented such that the

server can communicate with multiple clients simultaneously. A full dynamic microgrid

power simulation is running on the Opal-RT system in real-time with its multiple devices

5

communicating with the distributed clients for control data. For instance, a photovoltaic

system running on the server requests control data from the MPPT controller on a distributed

server. The PV system and the MPPT control are in a feedback loop through the network.

Other devices like overcurrent (OC) relays, wind turbine generation systems are also being

controlled. While not in a feedback loop, the photovoltaic system is receiving its input solar

irradiation data from one of the clients as well. The data is time-stamped for analysis and

proper execution. The server is given IP1.

Clients: The various distributed clients are networked control devices for the primary

simulation running on the server (Opal-RT). The control algorithms are all executing on

their native platforms on their host computers. Each of these nodes also has a software layer

for implementing network communication. The software controller node IP2 implements

algebraic algorithms in C# language. The simulink controller node IP3 implements simulink

& stateflow dynamic controllers in Matlab programming language. Matlab-.NET interfacing

is done to load the relevant .NET libraries in Matlab. The physical controller node IP4 is the

substation automation platform implementing relay control algorithms in Lua programming

language. The nodes IP2 and IP3 each have a software layer implemented with the help of

.NET libraries, written in C#, while the commercial control device OrionLX (IP4) has its

own in-built software layer for client-server communication.

1.3. Organization of Thesis

The thesis has been organized as per the following chapters:

• Chapter 2: This chapter presents the literature review for the proposed system.

The study presented in this thesis is largely experimental with theoretical concepts

and referred analytical results taken from the noted references.

6

• Chapter 3: This chapter examines the power system modeling done in SimPower-

Systems/Simulink of Matlab for the case study presented in Chapter 6. Modeling of

various components in the microgrid power system is explained in somewhat detail

and analysis is done in Matlab to verify their correct behavior. These components

are then integrated to form a single four-bus feeder serving as a microgrid to the

utility grid. Performance of two of the most widely used MPPT controllers is also

shown.

• Chapter 4: This chapter describes the system architecture of the proposed sys-

tem. An overview of commercial devices like Opal-RT and OrionLX is given with

explanation on their working and their role in the project. Also explained is the role

of distributed computers used for networked control of renewable energy sources in

the microgrid.

• Chapter 5: This chapter explains the software architecture for the distributed

system. With the help of figures, the client-server networking methodology and its

implementation in the current context is explained. The architecture of the server

programming layer is also given. This chapter studies the implementation of vari-

ous distributed control platforms for the system. First the structure of the .NET

programming layer, for client-server communication, is explained. Then the imple-

mentation of control algorithms by interfacing software class libraries and Matlab

is explained.

• Chapter 6: This chapter gives a case study for visualizing all the interdisciplinary

aspects of this thesis in one practical application. Fault isolation, in case of a three-

phase overcurrent fault, is done in the microgrid supported by distributed controller

7

supervisory logic. Analysis is done on the performance of the built system and

limitations are monitored and noted. Robustness of the system is analyzed by

increasing the number of networked clients and monitoring response times. Latency

issues and bandwidth limitations on the network are noted.

• Chapter 7: The final chapter highlights the important features of the distributed

control system framework and the scope of future research. Along with developing

a groundwork for CPS, this thesis addresses the performance aspects of the devel-

oped system. However, improvements to the system in future work are required as

detailed in this chapter.

8

CHAPTER 2

Literature Review

This chapter reviews the current trends of the various components, methods and ideas

implemented and discussed in this thesis. The first six sections of this chapter cover a brief

literature review of all the interdisciplinary aspects of this work. The final section correlates

the study in this thesis with the general literature as described in previous sections of this

chapter.

2.1. Distributed and Parallel Processing

For dealing with large-scale and computationally intensive power system problems, dis-

tributed and parallel processing is proving to be one of the most effective new developments

[3, 4, 8]. The two forms in which parallel processing has been widely implemented are: mul-

tiprocessors and multicomputers [9]. A multiprocessor consists of various processors sharing

a common memory while multicomputers use message passing to communicate among its

various processor-memory pairs [2]. The various advantages of distributed computing over

conventional approaches are given in [8]. In power system applications, parallel and dis-

tributed processing have impacted several areas such as real time control for voltage stability

assessment and optimal power flow [10, 11] and developing real-time simulators for accurate

dynamic power simulations and design/testing of new equipment [12, 13, 14]. Several par-

allel and distributed techniques/algorithms as applied to power systems have been reviewed

in [2]. One major advantage of parallel processing has been in the development of real-time

simulators. An overview of parallel discrete event simulations and timing synchronization is

given in[15]. Commercial real-time simulators like RTDS (Real-Time Digital Simulator) and

Opal-RT system have been successful for industrial and academic research purposes [16].

9

2.2. Hardware-In-Loop

Hardware-In-loop simulation connects a physical controller is connected to a simulated

plant, which is executing on a real-time platform [16]. This technology is thus a direct

consequence of both parallel and distributing processing. Some of the case studies involving

real-time HIL implementations include:

• Digital controller testing using Real-Time Virtual Testbed (RTVTB) [17].

• Parallel simulation of power drives and electric circuits using Opal-RT discrete real-

time simulator [18].

• Simulation of distributed intelligent energy management systems for microgrids,

using intelligent agents and zigbee wireless communication protocol.

• Power system modeling for active compensator and realy HIL tests, using National

Instruments PXI controller 8196 as a digital simulator [19].

Another technique for testing of physical devices with simulations, derived from HIL, is

called the Power Hardware-In-Loop (PHIL). While HIL can only be used for small-signal

control applications while PHIL involves actual power transfer from to/from the hardware

being tested [20]. PHIL is accomplished by the means of a logical partitioning of the full

system into Hardware Under Test (HUT) and Rest of the System (ROS). This methodology

decouples the physical device from the base simulation [20]. Several PHIL applications -

for instance high-speed generator testing, fault current limiter testing and ship propulsion

drive testing - have been discussed in [21, 22]. Differentiation and comparison between

Controller Hardware-In-Loop (CHIL) and PHIL experimental studies have been given in

[23]. Protection systems equipment simulation and fault isolation studies have been studied

extensively in the context of HIL tesing [24, 25, 26].

10

2.3. NCS and Cyber-Physical Systems

A Networked Control System (NCS) is a feedback control system wherein the interface

between the plant and the controller is built via a network communication system. With the

increase in complexity due to the network, several NCS issues have been addressed in the

literature [27]

• Network-induced delay while exchanging information can degrade the performance

of overall system [28]. Delay compensation techniques like gain-schedular middle-

ware [29], predictive modeling of NCS [30] and Linear Matrix Inequalities (LMI)

minimization [31] have been studied.

• Finite amount of available bandwidth can limit the number and size of input/output

control signals. Bandwidth allocation and scheduling strategies for NCS have been

studied in [32, 33, 34].

• Network security in wireless NCS is an issue as these network mediums are highly

susceptible to easy interceptions. While taking care of network security, the trade-

off between security and performance of NCS should also be considered. Security

protocols such as wired equivalent privacy (WEP) and extensible authentication

protocol (EAP) have been implemented in [35, 36] to address these issues.

A few of the various case studies involving NCS are:

• A multi-sensor network-controlled navigation system for multi-robots, using a novel

concept known as iSpace has been developed at North Carolina Sate University [37].

Sensor data is fed through cameras to the networked controller, which then gives out

control signals to the robots for obstacle avoidance and other navigation objectives.

11

• A supervisory load-frequency control (LFC) strategy for multi-area power systems

using a Distributed Reference Offset Governor (DROG) device [38]. The latency

due to the network is modeled by a time-delay in the simulation.

• A water process remote monitoring network system in a firepower plant using Mod-

bus TCP protocol [39].

The above described networked control systems, coupled with real-time (power) hardware-

in-loop simulations, can potentially be seen as a basis for an interdisciplinary CPS where the

physical system (plant) is combined with multiple networked software modules (controllers)

over a communication network. A model-integrated development approach to cyberphysical

systems (CPS) is explained in [7], where the authors recommend an early simulated-to-

physical world integration approach for model-based design. A review of developments in

the Cyber-Physical Energy Systems (CPES) [40] emphasizes power systems/applications (es-

pecially smart grids), keeping in mind optimal power flow and energy control. Control of

the microgrid is proposed to be achieved via a Microgrid Central Controller (MGCC) which

is interfaced with real-world physical components of the grid - for instance PV systems and

conventional generators - via a communication network [40].

2.4. Multi-Agent Systems for Microgrid Control

The next logical progression in distributed controls, as related to power systems, has

been the development and implementation of Multi-Agent Systems (MAS), especially for

microgrid control [41, 42]. An overall review of MAS utilized in power system applications

is provided in [43] . According to [44, 45], MAS technology can be the basis of an organized

control strategy where the full microgrid control is split among various intelligent distributed

local controllers. The distributed technology has been evolved with new capabilities for more

12

complex microgrid controls [46]. MAS for wide-area control of power systems and single-

machine systems has been studied in [47, 48, 49, 50]. A MAS can be either a physical

hardware system or a simulated virtual one.

The control of distributed energy sources in a microgrid by using control, management

and ancillary agents, has been proposed in [51]. The authors also use a Microgrid Central

Controller (MGCC) for managing various agents in the system. Similar to the study in this

thesis, the HIL technology with the Opal-RT simulator has been used for the implementation

of physical agents. In [52], authors present another variation to the MAS technology, i.e.,

Intelligent Distributed Autonomous Power Systems (IDAPS). The focus is on customer-

owned DER units which may or may not belong to different utilities. Implementation of

the IDAPS concept is realized in [53] where SimPowerSystems toolbox of Matlab is used to

simulate microgrid hardware with integrated agent control. TCP/IP protocols are used for

software-simulation-hardware communication.

2.5. Synchronized Control and Network Limitations

For networked control of simulated and/or physical devices, synchronization is required

between the plant and the controller over the transmission network. This introduces two

new factors: time delays and response times, which have to be considered for optimal per-

formance and stability of the networked distributed system [54, 55]. Synchronized control

for distributed generators over an IP network from synchrophasor measurements is shown

in [54]. Response-time analysis fora private network connected IEDs in a system is done in

[55]. Both these works show independent studies on private networks and hence a case study

for response time analysis on a LAN network in needed.

13

2.6. Modbus/TCP in Networked Control

Modbus is a request/response distribution automation protocol widely used to control

industrial devices over a network [17]. Hence industrial devices for power distribution already

have Modbus interface built-in and thus the wide use of Modbus as a communication protocol

for HIL simulations seems a logical choice. The basic structure, with framing and error

checking techniques, is given in [56]. For Ethernet compatible equipment, TCP/IP protocol

can be integrated into Ethernet to form the physical and data link layers of the OSI model

[39]. In this study, Modbus TCP protocol has been used for networking distributed clients

with the real-time server. Modbus/TCP has been used a master-slave protocol in various

industrial and academic applications:

• In [57], Modbus/TCP was used for the client-server communication and interfacing

between different controls equipment of the SCADA control system for analyzing

its security.

• The protocol was implemented for the HIL testing of power electronics equipment

using a multi-threaded server model for Modbus [17].

• In [58, 59], it is shown that Modbus/TCP can be used effectively for the IED archi-

tecture. IED’s provide various functions in power system industry like protection,

monitoring, control and metering.

• The protocol can also be used in a NCS due to its simple and wide usage and low

latency [39].

• The protocol was used for communication between two separate real-time simula-

tors, the RTDS system and the Opal-RT system, for a combined electro-thermal

simulation framework as shown in [60].

14

2.7. Summary

The literature review describes the current trends in the interdisciplinary field of dis-

tributed controls, as applied to power system distribution networks (including microgrids)

and its simulations. This thesis presents a case study of the proposed hardware-in-loop dis-

tributed controls set-up for a microgrid and takes various theoretical concepts from the noted

references in this chapter. Besides providing a novel experimental framework for CPSs, this

study also indicates which type of power devices can be a part of this framework as per the

response time analysis done in this study and also the stability of the system due to delays

induced because of the network latency.

15

CHAPTER 3

Modeling of Microgrid System

A Microgrid is a localized power system, which views generation and associated loads as

a subsystem [61]. Microgrids generally contain multiple distributed generation sources and

can operate in both islanded and grid-connected modes. The distributed generation in a

microgrid can include renewable sources of energy like photovoltaic systems, wind turbines,

fuel cells etc. Microgrids can thus be a highly reliable and green electric power source.

In this chapter, a four-bus, 25 kV transmission-level microgrid 1 system is constructed

with high renewable energy penetration in the form of multiple PV systems. Protection

equipment is simulated in the form of overcurrent relays and autorecloser circuit breakers.

The simulation is carried out with the help of SimPowerSystemsTM toolbox of MatlabTM.

In subsequent chapters, this constructed system is then used as the ‘plant’ while many of

the control elements are implemented as ‘distributed controls’ for a case-study analysis of

networked distributed control mechanism in a simulated microgrid.

A one-line diagram of the constructed system is shown in Figure 3.1. The voltage source

S1 provides a three-phase AC constant voltage of 25 kV to the microgrid. The PV systems

are connected to the AC microgid transmission system through inverters Inv(1-4) and step-

up transformers T1 and T2. A three-phase overcurrent fault is placed between Bus 2 and 3

for the four-bus feeder system. Control of the peak power of the PV systems is achieved via

two of the most widely used MPPT control algorithms:

1It is to be noted that the ‘Microgrid’ system constructed in this study is based on assumptions and pa-
rameters so as to simplify the power system operation (but not its dynamics) and hence does not represent
real-world scenarios or current industry standards. This is done so as to keep the focus of the study on devel-
oping the communication framework (explained in later chapters), rather than the power system operation
accuracy.

16

• Perturb and Observe Method (P&O)

• Incremental Conductance Method (IC)

Bus 1 Bus 2 Bus 3 Bus 4

OC Relay1 OC Relay2 OC Relay3 OC Relay4

PV1

PV2

PV3

PV4

T1 T2

L1
L2 L3

S1
S2

CB1 (NC) CB2 (NC) CB3 (NC) CB4 (NO)

Fault

Inv1
(P&O)

Inv2
(P&O)

Inv3
(IC)

Inv4
(IC)

Figure 3.1. One-line diagram of a 25 kV Microgrid System

The simulated protection equipment involves autorecloser circuit breakers CB(1-4) and

overcurrent relays OC Relay(1-4). Both balanced and unbalanced resistive loads of various

power ratings are placed within the microgrid feeder line. A three-phase balanced fault, be-

tween buses 2 and 3, is simulated for analysis of the protection system. A back-up generation

source S2 is also provided for fault isolation study in Chapter 7.

17

Table 3.1. Simulation Specifications

Parameter Value

Nominal Voltage 25 kV

Nominal Grid Frequency 60 Hz

Sample Time 50 µsec

Simulation Type Discrete (Tustin)

Solver Type Fixed Step ode3 (Bogacki-Shampine Formula)

The simulation parameters are as given in Table 3.1. Fixed step-size is used so as to

make the simulation compatible with the real-time simulation environment (Opal-RT) [16]

used in the subsequent chapters. A detailed description of the modeling of various individual

components in the microgrid is as follows:

3.1. Photovoltaic Systems

Figure 3.2 represents a typical block-diagram configuration of a three-phase grid-connected

PV system [62].

MPPT
Control

PV Array
Boost

Converter
DC/AC

Inverter

Voltage
Regulator

LC Filter
Step-up

Transformer
DC AC

Filtered
AC

Vabc

Voltage,
Current

DC

PWM

PWM

Duty

Control
Pulses

Vref

Control
Pulses

Grid
60 Hz
 AC

Irradiance
Profile

Irr

Figure 3.2. Block diagram of a Grid-connected PV System

The PV system shown consists of the following main components:

• A PV array with solar irradiance profile as an input and DC supply as output.

18

• A DC-DC converter which delivers the maximum power DC supply with MPPT

control signal and PV DC supply as an input.

• A DC-AC voltage source inverter which converts the DC supply to three-phase AC

with the help of a voltage regulator.

• An LC filter to remove undesired harmonics from the fundamental frequency.

• A step-up transformer with a breaker so the PV system can be connected to the

main grid.

Each of the subsystems is modeled and analyzed in SimPowerSystems and explained in

some detail in the following sections.

Note: The only difference between the four PV arrays shown in Figure 3.1 is the use of

different MPPT algorithms (and/or its parameters) for individual arrays.

3.1.1. PV Array. A PV array is composed of many series and parallel connected PV

modules, whereas a single module consists of a number of series connected solar cells. The

basic equation from the theory of semiconductors [63] that mathematically describes the I-V

characteristics of an ideal cell is:

(1) Id = Isat[e
Vd/VT − 1]

where:

(2) VT = k
T

qQdNcells

19

where Id is the diode current, Isat is the diode saturation current, Vd is the diode voltage,

VT is the temperature voltage, k is the Boltzmann’s constant (1.3806503 × 10−23J/K), q

is the electron charge (1.6022e−19C), Qd is the diode quality factor, Ncell is the number of

series connected cells per module. The light-generated photo-current of the a single module

is represented by Iph. This value increases as the number of parallel module strings increase

and is directly proportional to the solar irradiance on the module’s surface.

For a PV array with 66 parallel strings (Npar) consisting of 5 modules (Nser) each, the

Equation (1) is altered to:

(3) Idarray = Isatarray [eVd/VTarray − 1]

where Idarray is the aggregated diode current for the PV array, Isatarray is the aggregated

diode saturation current and VTarray is the aggregated temperature voltage. These values,

along with the increased photo-current value Ipharray are calculated as:

(4) Ipharray = Iph ×Npar

(5) Isatarray = Isat ×Npar

(6) VTarray = VT ×Nser

20

The specific PV panel used in this study is SunPower SPR-305-WHT PV Panel [64].

The model parameters used for calculations in Equations (1) - (6) are given in Table A.1 in

Appendix A. Figure 3.3 shows the I-V and P-V curves of the panel, derived and simulated

from equations (1) and (2). The circle marker on the plots indicate the maximum power

point and the dotted plots are shown for different values of input irradiances. The irradiance

value used for the analysis done in this chapter is 1 kW/m2.

0 50 100 150 200 250 300 350
0

100

200

300

400
1 kW/m2

C
ur

re
nt

 (
A

)

Voltage (V)

Array type: SunPower SPR−305−WHT; 5 series modules; 66 parallel strings

0.75 kW/m2

0.5 kW/m2

0.25 kW/m2

0 50 100 150 200 250 300 350
0

2

4

6

8

10

12
x 10

4

1 kW/m2

P
ow

er
 (

W
)

Voltage (V)

0.75 kW/m2

0.5 kW/m2

0.25 kW/m2

Figure 3.3. I-V and P-V curves for SunPower SPR-305-WHT PV Array

3.1.2. DC Link. The DC link for the modeled PV system consists of an initial low-

pass filter, a DC-DC boost converter with MPPT control, and another capacitive low-pass

filter. Referring to Figure 3.2, the primary function of the IGBT-based boost converter is

21

to raise the output DC voltage as corresponding to the maximum power delivered by the

PV array (knee of the I-V curve in Figure 3.3). It achieves this with the help of pulse-width

modulated control signals (PWM switching frequency = 2 kHz) from the MPPT controller.

The unmodulated control signal from MPPT is called duty cycle of the PV system [65]. The

two “hill-climbing” MPPT algorithms used in this study are explained briefly [66] and their

flowcharts/implementation diagrams are given in Appendix A in Figures A.1 and A.2.

• Perturb and Observe Method (P&O) [67, 68] The P&O method ensures maximum

power output from the photovoltaic panel by modifying its output operating voltage

or current. For instance, if increasing the voltage to a cell increases the power

output of a cell, the control signal (duty cycle) increases the operating voltage until

the power output decreases. Then, the voltage is decreased in small decremental

steps to return to the maximum power output value. This process continues until

the maximum power point is reached. Thus, the power output value of the solar

panel oscillates around a specific maximum power value until it stabilizes. P&O is

the most commonly used MPPT method due to its ease of implementation. One

of the major drawbacks of the P&O method is that the power obtained oscillates

around the maximum power point in steady state operation (as seen in Figure 3.8).

Also, this algorithm has the tendency to track in the wrong direction under rapidly

varying irradiance levels or temperature variations. A Matlab function is written

to implement this algorithm, the flowchart for which is shown in Figure A.1 in

Appendix A.

• Incremental Conductance Method (IC) [69, 68] The concept behind the Incremental

Conductance MPPT algorithm is that the slope of the power-volatge (P-V) curve

22

is zero at the maximum power point, is positive at the left of the MPP and nega-

tive at the right of the MPP (Figure 3.3). The MPP for this method is calculated

by comparing the instantaneous conductance (I/V) to the incremental conductance

(∆I/∆V). Once MPP is obtained, the solar module maintains this power point un-

less a change in the current value occurs. This happens when there is a change

in the MPP due varying ambient conditions. The algorithm then modifies the op-

erating voltage until the new MPP is reached. This technique has an advantage

over the P&O method that it can determine when MPP is reached without oscil-

lating around this value. It can also perform MPPT under rapidly increasing and

decreasing irradiance conditions with higher accuracy than the P&O method. The

disadvantage of this method is that because of increased computational complexity,

the MPP computation slows down the sampling frequency of the operating voltage

and current. A Simulink Stateflow chart is constructed to implement this algorithm,

the flowchart for which is shown in Figure A.2 in Appendix A.

3.1.3. PV Inverter. A 3-arm bridge, with IGBT/Diodes as the power electronic de-

vices, is used to convert the DC output of the Boost to three-phase AC. The Phase Locked

Loop (PLL) within the voltage regulator (see Figure 3.2) tracks the grid voltage (1 pu) to

ensure synchronization. A discrete PWM generator (2kHz) provides control pulses to the

inverter IGBTs.

There are two sources of high-frequency noise on the inverter output voltages and currents

[70] which have to be attenuated before connection to the grid (See Figure 3.4).

(1) The first one is the inverter PWM modulation frequency which is primarily atten-

uated by the LC filter and the transformer.

23

(2) The second source originates from the switching transients of the power electronic

devices (IGBTs). Shunt capacitors are added to attenuate this high frequency noise

component.

Circuit
Breaker

To Grid

Figure 3.4. PV Inverter Filtering Configuration

A two-winding 3-phase ∆/Y step-up transformer is used with an external control circuit

breaker before connection to the grid. The breaker is closed after some amount of delay

(1.75 secs for PV1 and PV2, 2 secs for PV3 and PV4) so as to analyze different penetration

start-times for the PV systems.

3.2. Protection System

The protection system constructed in this study consists of four overcurrent relays, with

autorecloser logic, for each of the four buses as shown in Figure 3.1. Since the power system

constructed is radial in nature, definite-time overcurrent relays can be used to protect the

network [71]. Autorecloser logic is also built into the relays for automatic reclose mech-

anism of the breakers. The operation and application (modeling) of the two mechanisms

(overcurrent and autorecloser) is explained briefly as follows:

24

• Overcurrent Relaying : An overcurrent relay operates or picks up when its current

exceeds a predetermined value. These types of relays protects the electrical power

system against excessive currents (in any of the three phases) which may arise due

to any of the various types of faults or short-circuits [72]. The types of relays used

in this study are definite time overcurrent relays which operate only when the fault

exceeds a predetermined value as well as when it is persistent for a predetermined

amount of time (delay). In this study, four definite-time overcurrent relays are used.

The downstream coordination of the relays according to the time-delay settings is

shown in Figure 3.5.

Bus 1 Bus 2 Bus 3 Bus 4

OC Relay1 OC Relay2 OC Relay3 OC Relay4

S1
CB1 (NC) CB2 (NC) CB3 (NC) CB4 (NO)

Distance
(from Source)

Time
(secs)

1

0.5

0.25

0.1

T1

T2

T3

T4

Figure 3.5. Time Co-ordination for Feeder Relays

Figure 3.5 shows that the delay time for operating each relay (T1−4) has been de-

creased as we move away from the primary source. This is a required characteristics

of relay coordination so that the relay farthest from the fault can act as back-up

protection and will only operate if the primary relay fails [72, 73].

25

• Autorecloser : In physical systems, the autoreclose circuit breaker is equipped with

the mechanism to automatically close the breaker after it has been opened due to

a momentary fault. The control system for a recloser will allow a selected number

of attempts to restore service before locking out (opening the breakers), requiring

a manual reset [72]. In our study, this control logic is built into the relays itself.

Figure 3.6 shows the configuration of the built relay in SimPowerSystems.

Figure 3.6. Relay Configuration

3.3. Simulation and Fault Analysis

The microgrid system is simulated in Simulink environment and relay fault protection is

analyzed. As shown in Figure 3.1, circuit breakers for Buses(1-3) are normally closed while

that of Bus 4 is normally open. Simulation is carried out for 5 secs and the following results

are analyzed:

(1) Bus Currents : RMS current values are plotted in Figure 3.7 and it is seen that

for a fault duration of 2 − 4secs, relays R1 and R2 start their reclose mechanism

after detecting the overcurrent fault. Since the lockout time for R2 is 0.5secs (See

Figure 3.5) and it is the closest downstream bus to the fault, it locks out after

26

2.5secs and hence current in Bus 2 goes to zero permanently. R1 also sees the fault

at 2secs but since it is acting as a back-up protection to R2, it closes its breaker

(resumes normal operation) after R2 locks out.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.005

0.01

0.015

0.02

R4

0

1

2

3

4

5

6

R3

0

50

100

150

200

250

300

350

R2

0

50

100

150

200

250

300

350

400

R1

Time offset: 0

Figure 3.7. RMS Bus Currents for Relay Operation, showing time incerment (secs)
on the x-axis and RMS Current values (Amperes) on y-axis

It is also seen that the current goes to zero permanently for Bus 3 after R3 locks

out, even though the fault is not present in the region between Buses 2 and 3. This

means that the loads L3 (Figure 3.1) become non-serviceable even though it is a

27

non-fault area. Hence there is a need for a supervisory control which is addressed

in Chapter 7 of this thesis. The currents in Bus 4 remain zero throughout as CB4

is normally open and no control command is given for its operation.

(2) PV Duty Cycles : Figure 3.8 shows the duty cycle control signals for the four PV

systems.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.45

0.5

0.55

0.6

0.65

0.7

0.75

PV4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

PV3

0.5

0.55

0.6

0.65

0.7

0.75

PV2

0.5

0.55

0.6

0.65

0.7

0.75

PV1

Time offset: 0

Figure 3.8. Duty Cycles for Microgrid PV Systems, showing time increment (secs)
on the x-axis and the control signal ‘duty cycle’ value on the y-axis

28

PV1 and PV2 use the Perturb & Observe algorithm for duty cycle control while PV3

and PV4 use the Incremental Conductance algorithm. This is seen in Figure 3.8

where duty cycle plots for PV1 and PV2 are similar, same is the case for PV3 and

PV4. As seen, duty cycles for both the algorithms oscillate at around 0.7 i.e. the

maximum power point. A 1.5secs delay is introduced so that the grid is stabilized

before introducing renewable integration.

29

CHAPTER 4

System Architecture

The interconnection of different subsystems via a communication network for the pro-

posed system is as shown in Figure 4.1. It consists of various distributed nodes with inter-

communication via Ethernet-LAN as shown. The real-time simulator Opal-RT acts as the

server node and the rest are client nodes with either control, monitoring or data sourcing

functionality. Programming and data source platforms (i.e. Simulink, C# and Excel spread-

sheets), along with physical hardware equipment, have been networked as client nodes.

TCP/IP

TCP/IP

TCP/IP TCP/IP TCP/IP TCP/IP

TCP/IP

Ethernet LAN
(csu-net)

OrionLX
HIL Client

OrionLX Monitoring
Web Interface

Opal-RT
Real-Time Server

Opal-RT Monitoring
Interface: RT Lab

Simulink Platform
Client

Software (C#) Platform
Client

Spreadsheet Data Source
Client

Distributed Control Nodes

Figure 4.1. Interconnected System Architecture

30

Hardware-In-Loop (HIL) simulation is a technique where parts of the simulation are re-

placed by their corresponding physical components. Generally, a physical controller is placed

in a feedback loop with a simulated plant so as to test the hardware under various simulated

conditions without dealing directly with various issues, for instance time consumption, cost

and safety, that would result if the controller was to be tested in the field directly. The plant

is generally represented by a mathematical model of its dynamic systems [74].

With reference to Figure 4.1, in this study, the server runs the microgrid simulation in

real-time, synchronized with the external nodes, even though the system on the whole has an

asynchronous communication architecture. HIL simulation is achieved with the integration

of commercial power equipment OrionLX into the system. The two COTS devices used

in this architecture, Opal-RT and OrionLX, are accompanied by their respective Human-

Machine Interface (HMI). A client-server communication model is used for the control devices

polling simulated power devices on the real-time server. A multi-level software and network

architecture model for the system is explained in detail in the subsequent chapters. The

purpose and functionality of individual nodes is explained in the following sections:

4.1. Real-Time Server: Opal-RT

Opal-RTTM (model OP5600) is a discrete real-time simulator with 12, 3.3-GHz processor

cores. The single target system uses the Red Hat Linux real-time operating system. The

Opal-RT system is capable of simulating slow and fast transients of a large power system

effectively. The real-time capability of the simulator makes it ideal for HIL prototype testing

[75]. It separates the original Simulink model into subsystems to deploy on its various

processors. Each portion of the model is coded in C language and ‘built’ for execution among

its processors. After compilation, the code is loaded into the target hardware and executed

31

via parallel processing (the full compilation-loading-execution process is described in detail

in [76]). Opal-RT has an HMI called RT-Lab, a real-time simulation software environment

which provides the user tools to develop and execute models written in the Matlab/Simulink

environment on the Opal-RT hardware. Communication between the target hardware and

the HMI console is achieved through a TCP/IP connection.

In our study, the Simulink microgrid model (constructed and analyzed in Chapter 3)

is first configured into subsystems for compilation by RT-Lab. It is then converted to C

code by Simulink Coder and loaded into the Opal-RT hardware. The display blocks can be

viewed in a console window when the model is executed. The relevant software (written in

C) is also loaded onto the target before compilation. These codes are used to send/receive

data packets to/from the external distributed controllers with the help of TCP/IP protocols

in our application (discussed in subsequent chapters). The internal communication of the

simulated model and software is done via shared memory.

The simulator acts as a master server for the distributed control clients, communicating

with a request-response methodology. It receives Modbus packets requesting to either send

simulation data to respective clients or to write control data from them. The software

managing this communication is written in C and uses multiplexing of signals (through

UNIX socket programming) from different clients to handle all data via the same TCP port

(for Modbus communication, port 502 is used). Synchronization with the clients is achieved

by calculating and introducing appropriate delays while modeling clients, also discussed in

subsequent chapters.

32

4.2. HIL Client: OrionLX

OrionLXTM is a substation automation platform designed and manufactured by NovaT-

ech LLC to perform a range of automation applications in electrical substations. Some

of its functions when used in the field include: behaving as a smart remote terminal unit

(RTU) for SCADA, as a controller for Intelligent Electronic Devices (IEDs) and as a relay

communication processor for protective relays, recorders and monitoring equipment [77].

For our study, the COTS device OrionLX is used as a programmable controller for fault

isolation in the simulated microgrid. It uses data received from autorecloser-enabled over-

current protection relays in the grid. The dynamic grid simulation is done on the real-time

platform Opal-RT as described in the previous section. The Ethernet interface setup for

OrionLX is done via a Windows-based configuration software NovaTech Communications

Director (NCD). From the variety of IED protocols supported by OrionLX, Modbus TCP/IP

is used for relay data communication to/from the grid.

The logic engine for OrionLX is called Advanced Math & Logic and uses the Lua pro-

gramming language [78] for configuring OrionLX control features. Simple logic for fault

isolation is written in Lua and programmed into OrionLX. OrionLX regularly polls the sim-

ulated relays in the grid for their status and as soon as it detects an overcurrent fault, the

relay logic programmed in it is activated and issues control commands to the relays for fault

isolation. While this study shows only one case for its use, the HIL methodology can be

used to test the physical hardware OrionLX under various simulated conditions.

The OrionLX Webpage [77], a web-based HMI specially designed for OrionLX, can be

used for viewing data values, port communications and other controller related information

when connected through a LAN network. It also allows users to configure its settings and

33

perform diagnostics. OrionLX also logs and archives all events (user initiated and internal)

which can be viewed through the OrionLX Web-page.

4.3. Multi-Platform Distributed Clients

As shown in Figure 4.1, aside from the HIL client OrionLX, there are various other

distributed clients with their own unique platforms for control algorithms. These are also a

part of the client-server architecture, with Opal-RT as the server. The clients are individual

processes running on external PCs and communicating with the server through Modbus

TCP/IP protocols. The network and software architecture for these clients is explained in

detail in the subsequent chapters. The clients are divided into two major categories and are

explained as follows:

4.3.1. Feedback Control Clients. As the name suggests, the feedback control clients

use feedback signals from the server to process their programmed algorithms and send con-

trol signals back to the server. In our study, two MPPT algorithms are used to control four

different PV systems in the simulated grid. The algorithms are executed on two different

platforms:

• C# programming language with built-in and custom .NET libraries on Microsoft

Visual Studio IDE is used to write the P&O MPPT algorithm. The algorithm is

used to control two of the four PV system on the server.

• A graphical programming language Simulink with Incremental Conductance MPPT

algorithm written with the help of a control logic tool Stateflow. It is used to control

the remainder two PV systems on the server.

34

4.3.2. Data Source Client. The data source client performs unidirectional communi-

cation (from client to server only) and is used to send the irradiance profile data values to the

four PV systems. A C# code extracts the data values from a time-stamped Microsoft Excel

spreadsheet on the machine and sends them to the server via a Modbus TCP/IP network

using the same libraries written for the feedback control clients. A one-second resolution is

used for the irradiance values and hence data is sent once every second.

35

CHAPTER 5

Software Architecture

The high-level software design of the proposed system, known as the Software Architec-

ture [79], has been explained in this chapter. The ideology behind software design decisions

and implementation of various abstraction layers for the object-oriented programmed client

software is explained. Since synchronized and robust communication is the core of this study,

and communication inherently depends on the software-level design, the layered communi-

cation network and the protocols used are explained in detail.

The layered communication network architecture takes its basis from the International

Standard Organization’s Open System Interconnection (OSI) reference conceptual model

[80] and the TCP/IP model [81], as shown in Figure 5.1. The figure shows layered software

architecture diagram of the system for both client and server, with the bottom three layers

(Physical/Data Link, Network and Transport) representing the network architecture of the

system and the rest top-most (Application) layers representing the software architecture. A

brief functional description of each layer is also given.

The network architecture layers are explained briefly as follows:

• Physical/Data Link Layer : Ethernet networking technology is used because of its

widespread and convenient use in Local Area Networks (LANs) and it provides func-

tionality for both Physical and Data Link layers, as referenced to the OSI model. It

specifies the physical and electrical specifications of the data connection and ensures

reliable point-to-point communication between nodes. The IEEE 802.3 standard

Ethernet with 100Base-TX support (known as Fast Ethernet) [82] is used in this

study.

36

• Network Layer : The fourth revision of the Internet Protocol (IP), IPv4 is used as the

network layer. The connection-less protocol, used for packet-switched networks, is

responsible for packet routing and network addressing [83]. As shown in Figure 1.1,

the distributed networked clients are provided with unique IP addresses to connect

to the static-IP server in our study.

• Transport Layer : Transmission Control Protocol (TCP) is used as the transport

layer, built on the IP protocol. It provides the reliable sending of data packets over

a network (error handling, sequencing and acknowledgment) [84]. It can also be

integrated easily into the Modbus protocol frame.

Matlab Interface

Class Libraries

.NET Base Library

Modbus

IPv4

TCP

Ethernet

Client Layered Model

Interfaces lower .NET libraries
to Matlab & Matlab to

Simulink (simulink client only)

Sends/receives object data
points and implements control

algorithms

Implements packet formatting
and transaction management

(client only)

Provides client-server
communication between

devices

Handles delivery of data,
sequencing and

acknowledgement

Handles packet routing,
network addressing

Responsible for reliable point-
to-point data connection

Layer Functionality

C Application Library

Modbus

IPv4

TCP

Ethernet

Server Layered Model

Application
Layer

Transport
Layer

Network
Layer

Physical/
Data Link

Layer

Application
Layer

Transport
Layer

Network
Layer

Physical/
Data Link

Layer

Matlab 2011b 32-bit

RT-Lab

Executes server simulation

Allows server simulation to be
interfaced with real-time

server Opal-RT

Figure 5.1. Layered Network Architecture for Client-Server Model

37

The highest layer in the OSI architecture, the Application Layer is an abstraction layer

which consists of communication protocols serving the end-user with information regarding

management and servicing of applications [80]. As shown in Figure 5.1, the application layer

for client and server differ by the type and number of protocols (and programming layers)

used in the application. With respect to the client-server model of Figure 5.1, this layer is

explained for both as follows:

• Server Application Layer : The application layer on the server side consists of a

Modbus protocol layer embedded in the C programming application libraries. Both

of these are explained in much detail in subsequent sections of this chapter. These

layers facilitate master-slave communication with the clients, with the server behav-

ing as a slave device. Multiple clients are connected to the server which provides

seamless communication when clients are added/removed to/from the system.

• Client Application Layer : The application layer on the clients is a bit more compli-

cated due to the variable nature of multi-platform clients. Hence the programming

layers differ slightly for every type of client to conform to its specifications and

architecture. While the Modbus layer is the same as on the server side, it has

been implemented in C# using the .NET Base Libraries., provided by InGreenium

LLC and Mr. Sai Pradeep. The Base Library is capable of handling a number of

protocols; Modbus/TCP has been used for our study. Class libraries are built on

top of the Base Library which allow for multiple client communications from a sin-

gle platform. Algorithms for controlling server devices are also implemented there.

A Matlab interface is provided to access the lower level libraries for the Simulink

platform client interface.

38

5.1. Modbus Protocol

Modbus is an application layer messaging protocol (Figure 5.1) which allows for client-

server communication between several devices connected to the same network. Modbus is

especially popular with industrial automation devices and has become the industry’s de facto

standard. It can be implemented using three types of network architectures [85], namely:

• Ethernet over TCP/IP

• Asynchronous Serial Transmission

• Modbus Plus (a high speed token passing network)

Since with Internet, the prevalence of TCP/IP networks have increased over time for

COTS devices connected to control networks, and because of its ease of implementation,

Ethernet TCP/IP is used with Modbus for distributed control communication in this study.

With the embedding of Modbus frame into a TCP frame, the Modbus/TCP is formed [39].

The client-server protocol uses a request-response message passing mechanism to read plant

data from the server and write control signals to it. This is shown in Figure 5.2.

MODBUS/TCP
Client

(Distributed Control)

MODBUS/TCP
Server

(Opal-RT)

Request Indication

Confirmation Response

Figure 5.2. Modbus Client-Server Model

39

The above figure shows the four types of Modbus transaction types, listed below chrono-

logically:

(1) Request : Request message packet sent by the client over the TCP/IP network to

start an event.

(2) Indication: Request message packet received by the server.

(3) Response: Response message packet sent by the server back to the client.

(4) Confirmation: Response message packet received by the client, completing a single

Modbus transaction.

The above methodology is further explained, with an emphasis on distributed control

clients, in the next section. Port number 502 is used for Modbus client-server communication.

5.1.1. Modbus Frame. The Modbus request/response frame format over TCP/IP is as

shown in Figure 5.3. The full message frame is known as the Application Data Unit (ADU),

which contains the Protocol Data Unit (PDU) and the Modbus Application Protocol (MBAP)

Header [86]. All fields are encoded in Big-Endian byte ordering notation [87].

MBAP Header
(7 bytes)

Function Code
(1 byte)

Data
(N bytes)

Transaction
Identifier
(2 bytes)

Protocol
Identifier
(2 bytes)

Length
(2 bytes)

Unit
Identifier
(1 byte)

PDU

ADU

MBAP Header

Figure 5.3. Modbus/TCP Frame Format

40

The seven bytes long MBAP header is added to the start of the messaging frame. It

mainly contains ID tags for device and transaction management purposes. The four fields

in this header are briefly explained (with their particular usage in this study) as below:

• Transaction Identifier : This field identifies the Modbus request/response messaging

by keeping track and pairing of the transactions in clients and servers. The ID is

assigned by the client initiating request and is recopied by the server in its response

packet. In our software architecture, the transaction IDs of multiple clients on the

same platform is managed byDictionary type in the .NET Base Libraries.

• Protocol Identifier : This field is always zero when implementing Modbus protocol

and has been reserved for future protocol extensions. It is also assigned by the

initiating client and is recopied by the server in response.

• Length: It includes a byte count of all the following fields in the ADU. Since the

length of all the other fields in the ADU is known beforehand, this field is especially

helpful in determining the number of bytes in the Data field, or in other words, the

number of data points. It is assigned separately by both client and the server where

they indicate their respective number of following bytes in this field.

• Unit Identifier : For a multi-server and/or a multi-client system (like in our study),

it is necessary for the initiating client to identify its unique server (unit) on the

other end of the communication network. For this purpose, the Unit ID field is used

for the unique client-server pairing for information exchange and hence the server

should recopy this field while responding to a client request. Since the Unit ID is

only 1 byte long, the maximum number of clients that can be connected to a single

server, without modifying the protocol format, is 255.

41

The actual data and the type of request issued by the client (function code) is contained

in the PDU. Since it is solely concerned with the data being communicated, the PDU is

independent of underlying networking layers. The two fields in PDU, with emphasis on our

study, are as explained briefly below [85]:

• Function Code: The one-byte field tells the server as to what kind of function to

perform with respect to a request from the client (Figure 5.4). The range of function

codes is 1-255, where the codes 128-255 are reserved for exception handling. Only a

few of the function codes have been used in our application and they are explained

as follows:

(1) 03: Read Holding Registers : This function code is used by the client to

indicate to the server that it wants to read registers from the indicated

device. ‘Holding Registers’ are the registers in which addressing starts from

the value 40000 (old PLC terminology). All the distributed multi-platform

clients in our application use this function code to read double data values

from the corresponding simulated device on the real-time server.

(2) 06: Write Single Register : This function code is used to write a single

holding register in the remote device. In our study, the HIL client OrionLX

uses this function code to write to simulated IEDs in the grid. The control

signals for all IEDs are embedded in this single 16-bit register.

(3) 16: Write Multiple Registers : This function code is used to write to a block

of contiguous holding registers in the remote device. All the distributed

clients (except OrionLX) use this function code to write double data values

to the server.

42

• Data: The data field of messages sent from a client to server devices contains ad-

ditional information that the server uses to take the action defined by the function

code. This can include items like starting addresses of registers, the quantity of

items (data points) to be handled, and the count of actual data bytes in the field.

Since in our application, the server Opal-RT uses Simulink to simulate device ob-

jects, all the data points to be read or written have to be in double (64-bit float)

format. The problem lies in the fact that the Modbus protocol defines one short (16-

bit float) as one data point. To circumvent this issue, four shorts for each double data

point have been used while reading/writing data points to/from the server. This

is achieved programmatically through byte-manipulation while formatting Modbus

packets in the server code.

Figure 5.4. Modbus Client-Server Transaction

The choice of Modbus as the application layer protocol in our study has been influenced

by various factors like ease of implementation and wide-spread use in automation industry.

From subsequent chapters it can also be seen that because Modbus has very small overhead

(as compared to more complex protocols like DNP3), response time remains low even for

a large number of clients. Real-time synchronization of client-server communication is also

achieved easily as seen in the next chapter.

43

5.2. Multi-Client Single-Server Model

Figure 5.5 shows the complete software architecture for the proposed multi-client, single-

server system. The system configuration is as described in Chapter 4, with distributed

controls implemented on multi-platform clients connected to a single master server for real-

time grid simulation. The client-server communication takes place via Modbus TCP/IP

protocols as described in the last section. This and the following sections of the current

chapter explains in detail the various software layers constructed and implemented on the

master server and individual distributed clients to form the complete software architecture

of the system.

Shared
Memory

M
O
D
B
U
S

Opal-RT Real-Time Master Server

Simulink

PV
Device

 Objects

Relay
Device

 Objects

M
O
D
B
U
S

Server Code (C)

Base
Library

(C#)

Class
Libraries

(C#)

MATLAB
Interface

Control Object
(Simulink)

M
O
D
B
U
S

Base
Library

(C#)

Class
Libraries

(C#)

Simulink Platform Client

Control Object
(Simulink)

Control Object
(C# Algorithm)

Control Object
(C# Algorithm)

Software Platform Client

M
O
D
B
U
S

Base
Library

(C#)

Class
Libraries

(C#)

Time-Stamped
Data Spreadsheet

(MS Excel)

Data Source Spreadsheet Platform Client

M
O
D
B
U
S

OrionLX
Internal

Processing
(hidden)

Control Logic
(Lua Code)

COTS HIL Client

TCP/IP

TCP/IP

TCP/IP

TCP/IP

Figure 5.5. Software Architecture for Multi-Client Single-Server Model

44

5.3. Server Software Development

This section explains in detail the various components and software layers constructed

on the server side of the system. A block diagram for the implemented server software

architecture is as shown in Figure 5.6. Since the real-time server Opal-RT only supports

additional software development in C/C++ programming languages, the coding for network

programming and Modbus application layer implementation has been done in C. The main

components of the block diagram in Figure 5.6 are as follows:

• Network Socket : The block provides an interface for client-server communication

by implementing socket programming with GNU C libraries for UNIX operating

systems (OS) since the server Opal-RT uses RedHat OS which is UNIX-based.

• Opal-RT Interface: The interface provides Simulink blocks and shared memory

access for interfacing custom networking libraries with the simulation objects in

Simulink. These objects are a part of the system being executed in real-time.

• Simulated Device Objects : These are the simulated power system devices which are

being controlled via distributed controllers.

Server
Network
 Socket

Modbus
Shared

Memory

Opal-RT
Asynchronous

Communication
Blocks

Device
ID 1

Device
ID n

GNU C Libraries for
UNIX

Opal-RT
Custom Libraries

To Client
Network Socket

Simulated Devices

Device
ID 2

Figure 5.6. Server Software Architecture

45

5.3.1. Server Network Socket. The two blocks (server network socket and GNU C

libraries for UNIX) in Figure 5.6 corresponds to the layers: Physical, Data Link, Network

and Transport as were shown in Figure 5.1. The C code for server socket programming has

been built from scratch and a state-chart showing event flows for blocking I/O sockets is as

shown in Figure 5.7.

socket ()

bind ()

listen ()

select ()

accept () recv ()

close () send ()

close ()

process
state

timeout

listen
 socket

active
connection

eof
recv
data

Program
end

close all
sockets

serve next
ready socket

Figure 5.7. Server Socket Flow of Events

46

The GNU C libraries facilitate inter-process communication on UNIX or UNIX-like OSs

using sockets (communication channels). The software as depicted by a flowchart in Fig-

ure 5.7 first constructs a socket on the server, waits for incoming client connections and

finally sends/receives data as required to/from the specific client and goes back to waiting

for more connections. Multiple client-handling capability is also implemented. The numer-

ous API (Application Programming Interface) calls used in Figure 5.7 are described briefly

in sequential order as follows:

(1) The socket() call returns a socket descriptor which represents an endpoint. Usage

of IP and TCP protocols is also specified with this call.

(2) The bind() call binds an address and port number to the created socket, on which

the server will run (Opal-RT in our case).

(3) The listen() call allows the server to accept incoming client connections.

(4) The select() call is used for synchronous I/O multiplexing of clients and enables

the server to listen for incoming connections as well as read/write data to other

clients.

(5) The accept() call causes the process to block until a client connects to a server. It

wakes up the process when a connection has been established and assigns a new file

descriptor for communication with connected client.

(6) The recv() and send() calls are used to read and write data from/to the connected

client. Non-blocking reads have a timeout of few seconds. After each send() call

the process state is ascertained with a call to the shared libraries of Opal-RT. If a

model reset has been executed, the close() call is then initiated to end the process.

(7) The close() call closes any open socket descriptors.

47

5.3.2. Opal-RT Interface. As shown in Figure 5.6, the following three blocks consti-

tute the Opal-RT interface:

• Shared Memory : The shared memory access for Opal-RT system facilitates the in-

terface between the server simulation and the application server code. It is mainly

used to channelize incoming or outgoing data (in double precision) to the SimPow-

erSystems grid simulation from the distributed control clients.

• Opal-RT Custom Libraries : The Opal-RT custom libraries are included as header

files to the application server code and provide functionality such as facilitating

print commands in RT-Lab console for debugging purposes, checking process state

and access to the shared memory.

• Opal-RT Asynchronous Communication Blocks : An asynchronous process is started

by the socket controller block (OplSocketCtrl), where the port number and IP ad-

dress of the remote host is also provided. As shown in Figure 5.8, the asynchronous

communication (Opal-RT exclusive) blocks allow the simulation to send/receive data

from the asynchronous process started by the associated socket controller [76].

Figure 5.8. Opal-RT Interface

48

5.3.3. Simulated Device Objects. As explained in Chapter 4, the power output

of the four PV systems and overcurrent relay control for fault isolation is being done by

the distributed control clients. Also the irradiance profile for the four PV systems is being

generated by an external networked data source client. To identify all of these device ‘objects’

to their respective client controllers, the following two-step procedure is implemented:

(1) Step 1: Each server device instance is given a unique ID via the ‘unit ID’ field of

the constructed client Modbus packet. This is done regardless of the nature of the

platform on which a client is being executed. In our study, the assigned IDs are as

given in Table 5.1.

Table 5.1. Unit ID Assignation for Slave Devices

Server Simulated Device Modbus Unit ID

PV System 1 (P&O) 1

PV System 2 (P&O) 2

PV System 3 (IC) 3

PV System 4 (IC) 4

Irradiance Data Source 5

Relay Control with HIL Client 9

(2) Step 2: When initiating communication with a simulated device, a client specifies

its device ID by the use of ‘unit ID’ field in the constructed Modbus packet (see

Section 5.1.1 for an overview of Modbus fields). Multiple clients on the same plat-

form are also given unique IDs since they are communicating with different device

objects on the server. The server software can then recognize the corresponding

device request from the client when multiplexing I/Os.

49

5.4. Client Software Development

The software architecture for various multiple-platform clients, with their classification

and numeric labels, is as shown in Figure 5.9. This sections details the multi-layered software

development process for each of these four distributed networked clients. The classification

of these clients, with regards to their unique properties, is as follows:

(1) Software-In-Loop (SIL) Clients : The SIL clients (clients 1-3) are software codes

on a networked distributed client node i.e. an external PC. The software is fully

written in C# using .NET and custom-made Base Libraries. Many of the same

Base Libraries are used in all the clients. They are further divided into:

(a) Control Clients : The clients function as distributed control devices for var-

ious simulated devices on the server.

(b) Data Source Client : The client function as an external spreadsheet data

source for server devices (no feedback loop).

M
O
D
B
U
S

Base
Library

(C#)

Class
Libraries

(C#)

MATLAB
Interface

Control Object
(Simulink)

M
O
D
B
U
S

Base
Library

(C#)

Class
Libraries

(C#)

Simulink Platform Client

Control Object
(Simulink)

Control Object
(C# Algorithm)

Control Object
(C# Algorithm)

Software Platform Client

M
O
D
B
U
S

Base
Library

(C#)

Class
Libraries

(C#)

Time-Stamped
Data Spreadsheet

(MS Excel)

Data Source Spreadsheet Platform
Client

M
O
D
B
U
S

OrionLX
Internal

Processing
(hidden)

Control Logic
(Lua Code)

COTS HIL Client

TCP/IP

TCP/IP

TCP/IP

TCP/IP

To
Server

SIL
Clients

HIL
Client

Control
Clients

Data
Source
Client

1

2

3

4

Figure 5.9. Client Software Architecture with Classification

50

(2) Hardware-In-Loop (HIL) Client : The HIL client (client 4) is a real physical system

controlling simulated devices on the server. The control algorithm is being written

in Lua programming language and internal processing is done by the COTS client

for formatting of network packets.

5.4.1. Base Libraries and Class Libraries. The Base Libraries (called InGree-

nium.dll and TransactionManager.dll) for client processes are first developed in C# using

.NET libraries. These libraries, implemented as abstraction layers in the application, perform

the following functions:

• Marshalling and UnMarshalling : Marshalling is the process where internally rep-

resented data are converted to a format suitable for transmission over a network

[88, 89, 90]. The reverse process is called UnMarshalling. This is done so that the

remote server can easily interpret the possibly different argument data representa-

tions in distributed client’s memory. This is a necessary functionality for a flexible

client-server architecture since an SIL client can use any one of the large number

of application layer protocols available in use for network communication with the

master server. In our experimental case study (Chapter 6), only the Modbus/TCP

protocol is used for all the clients.

• Transaction Management : The transaction management library keeps track of the

local network traffic by logging all incoming and outgoing transactions to/from the

clients. This is necessary for correct client-server packet deliveries in the case of

multi-client objects on the same distributed client platform. It achieves this with

the use of .NET Dictionary class [91].

51

• Endpoint Connections : A communication endpoint is an interface created and ex-

posed by both the client and server applications to facilitate communication [92]. Its

management is also required since a distributed client can use any of the available

endpoint connections for communication, for instance network or serial endpoint

connections. In our study only network endpoint (with addressing done by port

number and IP address) is used for all clients.

The Class Library is more or less the same and common to all the SIL clients. Its

architecture, with the use of Base Libraries, is as shown in Figure 5.10. The Domain Objects

are the SIL client memory representations of data values that are to be communicated

through the network to the server. For marshalling, these are first marshalled into Modbus

packet formatting and the particular transaction is logged. The values are then converted to

a byte stream buffer specific to the protocol being used and communicated over the network

via an endpoint connection. For unmarshalling, the reverse process is followed where the

received network data bytes are converted to domain objects with unmarshalling. Both

marshalling and unmarshalling have read and write capabilities from/to the server.

Domain
Objects

Protocol
(Modbus)
Marshaller

Endpoint
(Network)

Transaction
Descriptor

Marshalling

UnMarshalling

Protocol
Buffer

Figure 5.10. Class Library Architecture with Base Libraries

52

5.4.2. Matlab Interface. For the Simulink platform client (Client No.1 in Figure 5.9),

there is an additional Matlab layer after the Class Library for interfacing .NET libraries to

Simulink/Matlab environments. The architecture for this (along with various environment

extensions) is shown in Figure 5.11.

Simulink
Environment

(.slx)

MATLAB
Environment

(.m)

Class Libraries
(.dll)

Base Libraries
(.dll)

Interpreted
MATLAB

Function Block

NET.addAssembly()
MATLAB
 Function

.NET Link

To
Master
Server

Figure 5.11. Matlab Interface Layer Architecture

The functionality of the added blocks in Figure 5.11 is described below:

• Simulink Environment : The control algorithms for controlling server device objects

are implemented using Simulink graphical programming language. In our study,

the IC MPPT controls of two of the four simulated PV devices is implemented

using Stateflow charts in Simulink. Matlab environment access is provided using

the Interpreted Matlab Function Block from the Simulink library. This block calls

a specific Matlab function with Simulink input and output arguments with double

precision.

• Matlab Environment : The Matlab environment then makes pre-compiled custom

external .NET assemblies visible to Matlab with the use of NET.addAssemly()

method. Classes, methods and properties can be accessed easily from the loaded

assemblies using Matlab language. The procedure also loads the .NET System.dll

library automatically into the Matlab environment. In our case study, it is used

to load the base and class libraries developed for client-server communication (See

53

Section 5.4.1). Model Callbacks in Simulink is used to include Class Library methods

which are to be used only once and not on every step of the simulation, for instance

connection to the server.

5.4.3. User Interfaces. The Base Libraries as well as the Class Library for a particular

SIL client have been written as abstraction layers so that the end-user only has to deal with

updating domain objects, modifying control algorithms and provide server addressing (port

number and IP address of the remote server). The HIL client OrionLX uses the NCD as its

user interface for providing remote server addressing and modification of the control logic

built in Lua programming language.

54

CHAPTER 6

Case Study: Multi-Process Microgrid Simulation

A case study involving a simulated microgrid system with distributed networked controls

is explained in this chapter. Figure 6.1 shows the same microgrid system constructed in

Chapter 3, but now simulated with networked devices such as distributed MPPT control

for PV systems, supervisory relay control and irradiance profile external data source. These

networked devices function as either SIL or HIL simulations as explained in Chapters 4

and 5. This chapter also discusses the synchronization of these devices with the microgrid

simulation, the results of the multi-process simulation and finally the response-time analysis

for networked systems.

Bus 1 Bus 2 Bus 3 Bus 4

OC Relay1 OC Relay2 OC Relay3 OC Relay4

PV1

PV2

PV3

PV4

T1 T2

L1
L2 L3

S1
S2

CB1 (NC) CB2 (NC) CB3 (NC) CB4 (NO)

Fault

Inv1
(P&O)

Inv2
(P&O)

Inv3
(IC)

Inv4
(IC)

MPPT

MPPT MPPT

MPPT

Irr
Irr

IrrIrr

Supervisory
Control

LEGEND

: Networked Device

: Network Connection

Figure 6.1. Microgrid One-Line Diagram with Distributed Networked Control

55

6.1. Timing and Synchronization

The case study simulation, when executed on the server Opal-RT is found to be approx-

imately 2.6 times slower than real-time. This issue has not been rectified in this study so

that the synchronization1 implementation for the proposed framework can be shown. Hence,

since the case-study simulation is not hard real-time, synchronization is needed between the

client and server.

Figure 6.2 shows the timing synchronization diagram for the proposed system. The

upper horizontal time-axis is for the plant simulation on the server, while the lower time-

axis represent the client controller (real) time. Three message transactions are shown in

the figure with T1−3 being the time-stamp values obtained from the server. The time-stamp

values t1−6 represent the client time and time-stamps T1−3 represent the server time. The

first transaction is initiated by the control client at time t1 which reaches the server at

time T1 and the acknowledgement, with the server time-stamp, is received at time t2. After

executing the necessary processing, the control client will then wait a certain amount of time

τ1 (calculation/control of which is as explained below) before the next client transaction is

initiated. It is to be noted that the request period of any client cannot be less than the

response time of the same client over the given network. This limitation on client request

period is given by:

(7) ti+1 − ti < τi

1It is to be noted that the term ‘Synchronization’ used in this thesis represents synchronized communication
for the client-server architecture and is not related to the synchronization of energy sources with the electric
grid, as is used in the power system studies context

56

where i is the transaction index.

Equation (7) is further explained in Section 6.3. The computation time on the server

side is found to be negligible and hence not included in the discussion.

Opal-RT (Server)
Time

Real (Client)
Time

T1 T2 T3time-stamps

t1 t2 t3 t4 t5 t6

(T2-T1)

τ2τ1

(T3-T2)

Figure 6.2. Timing Diagram for Client-Server Communication

With reference to the timing diagram in Figure 8, the synchronization objective is given

by:

(8) T2 − T1 = T3 − T2 = ... = Tn − Tn−1

where n is the number of client-server transactions.

The objective in (8) is achieved by controlling the wait-delay τ on the controller simu-

lation. Bang-Bang Control strategy [93] is used to synchronize the feedback controller time

with the server time. An intelligent guess is made for initial value of τ as 2600msec and it is

updated every k transactions to switch to the correct synchronization value. The value of k

can be chosen as required by the application and is chosen to be k = 3 for this study. This

strategy is implemented in all the control clients.

57

6.2. Simulation Results

The results of the case study for the distributed controlled microgrid simulation are

provided in this section. After starting the simulation, the Opal-RT server continuously

monitors the port 502 for a client connection request while running the microgrid simulation

with default control signal values. Any number of clients can connect/disconnect at any time

during the simulation. If a client disconnects while the simulation is running, the simulation

object will retain the last control signal it received and continue executing. Control actions

of one client can affect results from another. As shown in Figure 6.1, the two main categories

in which the distributed control for this case study can be divided are:

• Fault isolation with Supervisory Control

• MPPT Control for PV Systems

All the control clients on their respective platforms have been executed simultaneously

and the results of the simulation are as described:

6.2.1. Fault Isolation with Supervisory Control. The supervisory control writ-

ten inside the COTS client OrionLX monitors the OC Relays (1-4) and facilitates fault

isolation in case of a three-phase overcurrent fault between bus 2 and 3. The control logic

written in the supervisory controller is specific to the described fault for the purpose of

demonstrating a test case scenario. The series of events occurring during the fault isolation

process are outlined below:

(1) An overcurrent three-phase fault occurs at t = 2secs between bus 2 and 3, as shown

by the red lightning bolt in Figure 6.1.

(2) Buses 1 and 2 pick up the fault and start their reclosers, as explained and analyzed

in Chapter 3, Section 3.3.

58

(3) Since the OrionLX supervisory control is continually polling the relays for fault

detection, the status of relays 1 and 2, as provided to the supervisory control,

change from ‘No Fault’ to ‘Fault’.

(4) On buses 1 and 2, there is no action taken by the supervisory control and hence

relay 2 locks-out, opening CB2 and relay 1 resumes normal operation, closing CB1.

(5) The supervisory control signals relays 3 and 4 so as to open CB3 and close CB4.

This control action overrides the autorecloser logic built into the relays.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

R4

0

1

2

3

4

5

6

R3

0

50

100

150

R2

0

50

100

150

200

250

300

R1

Time offset: 0

Figure 6.3. Current values for Feeder Fault Isolation with Supervisor Control,
showing time increment on the x-axis and current (amperes) on the y-axis

59

Following the above sequence of actions, the fault is isolated between bus 2 and 3 and

hence the loads represented by L3 are now serviced by the back-up source S2. Comparing

these results with the simulation carried out in Chapter 3, it is observed that the relay

communication through the supervisory control provided by OrionLX prevents the loads

on L3 from losing service by isolating the fault. It is to be noted that for the purpose of

emphasizing communication and not the power system study itself, the supervisory logic built

into OrionLX is programmed for fault isolation between Bus 2 and Bus 3 only. Automatically

detecting a fault and then isolating it is a part of future work of this study. The RMS current

analysis diagram of this simulation is shown in Figure 6.3.

6.2.2. MPPT Control for PV Systems. The four PV systems of the microgrid

simulation have their MPPT controls as well as the irradiation data source on distributed

platforms acting as clients. As described in Chapter 3, the Perturb & Observe method is

used for PV1 and PV2 while the Incremental Conductance method is used for PV3 and PV4.

A request period of 1 sec (Opal-RT time) is used by all MPPT control clients for polling

of data and sending of control signals. The simulation results for duty cycle analysis (for

PV1 and PV3) is as shown in Figure 6.4. Because of slow polling rate of the controllers, the

control signal is visible as discrete steps.

The irradiance profile in this case is also not constant and is provided by National Re-

newable Energy Laboratory (NREL) as one-second resolution solar irradiance data for noon,

1st March, 2011 as measured at Oahu Solar Measurement Grid, Hawaii, US. The irradiance

profile, as seen by the Opal-RT server simulation, is as shown in Figure 6.5. The duty cycle

control signals are seen to follow the curvature of irradiance profile, verifying its correct

functioning.

60

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
PV3_duty

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
PV1_duty

Time offset: 0

Figure 6.4. Duty Cycles for Networked Control Microgrid PV Systems, showing
time increment on the x-axis and duty cycle value on the y-axis

0 10 20 30 40 50 60 70
0

200

400

600

800

1000

1200

1400

Irradiance

Time offset: 0

Figure 6.5. Irradiance Profile for PV Systems (Source:NREL), showing time in-
crement on the x-axis and irradiance value (W/m2) on the y-axis

61

6.3. Response-Time Analysis

In the context of the client-server model, Response-Time is defined as the time difference

between the moment (event) the client sends a request out to a server and the moment it gets

back an acknowledgment. Read/Write (R/W) Response-Time is then defined as the response

time of a client when it completes a read (acquiring control inputs from the simulation)

and write (providing control signals to the simulation) cycle. The R/W Response-Time is

calculated with the use of System.Diagnostics.Stopwatch .NET class, and implemented in

C# on the client code. The total number of ‘ticks’ per R/W cycle are calculated and then

divided by the frequency of these timer ticks. This number, when multiplied by 10×e6 gives

the result in microseconds for the amount of time passed. This information for our study

is important as it sets a limit on the type of power devices that can be simulated in this

‘networked control’ configuration.

6.3.1. Response-Time Performance. For performance analysis in terms of response-

times of clients, 10, 000 iterations of R/W polls are done on the server in study and the

response-times for each iteration is noted and analyzed. Because all of the clients are executed

on the same host PC, it is observed that a small fraction of the data packets give much worse

response-times than the others. This is most probably due to the host PC’s time-shared

execution of multiple processes (each client is executed as a different process, in addition to

the default processes executing on the machine). The two types of R/W data packets with

respect to their response-times are then defined as:

• Good data packets : The data packets with very low R/W response-times in the

range of 0 − 4msecs. They have a high probability of occurrence and represent the

response-times when the limitations on the host machine are not considered.

62

• Bad data packets : The data packets with high R/W response-times in the range of

200 − 250msecs. They have a very low probability of occurrence (approximately

1:1000 for one additional client) and occur probably due to the time-shared process-

ing nature of the host machine.

Figure 6.6 shows the cumulative distribution function (CDF) plot for ‘good data packet’

response-times with increasing number of clients. The CDF plots are color-coded with respect

to the number of clients executed parallely, as shown in the figure. As seen, the mean

response-time for number of clients ranging from 1-5 is between 1.2 − 1.6msecs, while the

minimum and maximum response-times range from 0.35− 3.5msecs. The CDF curves gives

more high-latency packets (decreasing performance) as the number of clients are increased.

0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Response Time (msecs) --->

F
(x

)

CDF plot of good data packet hits

1 Client

2 Clients

3 Clients

4 Clients

5 Clients

Figure 6.6. CDF Plot for Response-Time Analysis for Increasing Number of Clients)

63

Figure 6.7 shows the frequency of ‘bad data packet’ hits with increasing number of client

connections for 10,000 iterations. As seen from the figure, the frequency occurrence of these

packets is low, but it does increase as the number of clients are increased. These data packets

are important and can adversely affect the performance of the networked control system by

placing a much lower limit on the system-tolerable network delay. Further analysis is required

to accurately predict and possibly eliminate the occurrence of these packets.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

0 hits 0 hits

10 hits 10 hits

24 hits 24 hits

number of clients -->

n
u
m

b
e
r

o
f
b
a
d
 d

a
ta

 h
it
s
 -

->

Plot of "Bad Data" packet hits with increase in number of Clients

Figure 6.7. Plot showing Number of Bad Data Packets for Increasing Number of Clients

6.3.2. Networked PID Control. A simple PID controller is constructed with the

proposed network communication between the reference and the control signals, and its

performance for various induced time-delays is analyzed. Figure 6.8 shows the performance

degradation of the PID controller step-response with increased forced network delays. The

proportional, integral and derivative gains used (without any tuning) for the purpose of this

analysis are KP = 20, KI = 5 and KD = 5 respectively.

64

Forced Network Delay = 0 msecs
Overshoot = 6 pu reference

Settling Time = 15 secs

Forced Network Delay = 5 msecs
Overshoot = 18 pu reference

Settling Time = 17 secs

Forced Network Delay = 10 msecs
Overshoot = 145 pu reference

Settling Time = 30 secs

time (secs) -

time (secs) -

time (secs)-

Reference & Control
Signals

Reference & Control
Signals

Reference & Control
Signals

Figure 6.8. Step-Responses of PID Controller with Various Network Delay Times

65

CHAPTER 7

Conclusion and Future Work

The multi-disciplinary experimental set-up of this study shows that power system dy-

namic simulations can be improved by using a combination of parallel and distributed pro-

cessing. Algebraic control algorithms on various platforms and/or external data sources

can be successfully interfaced with real-time simulation in a client-server configuration us-

ing Modbus TCP/IP networking protocols. HIL and SIL, both types of simulations can

be used to get various simulation advantages such as testing of commercial equipment, less

dependency on modeling platforms and modeling environmental characteristics for accurate

modeling.

Under the current setup with both ‘good’ and ‘bad’ types of data packets potentially

affecting the performance and stability of the networked distributed system, the minimum

and maximum response times for multiple connected clients are 0.35msecs and 250msecs

respectively. Hence, the distributed networked control framework proposed in this study

can be successfully used to network relatively slow algebraic control algorithms, for instance

MPPT control for PV systems and supervisory relay control, from the primary simulation.

The limitations on networked control will include fast acting dynamic simulations like full-

switched bridge inverters, very fast governor controls on synchronous machines etc. There

is a trade-off between the number of networked devices connected, their polling frequencies

and the performance needed from the distributed system.

With the experimental set-up, it is seen that due to low latency in communication (be-

cause of small overhead and frame size), the easily implemented Modbus/TCP protocol can

be a good choice for networked controls. It is also a very widely used protocol in automation

66

industry and hence is widely supported by industrial equipment that may need to be tested

under the set-up provided in this study.

7.1. Future Work

This study provides a basic framework for NCS and CPS as related to power systems

dynamic HIL & SIL simulations, especially for power system simulations. It can be expanded

further in following ways:

• Synchronization: A better control mechanism, for instance PID control, can be used

for the timing synchronization between client-server communication.

• Time-Response Analysis : A more thorough time-response and bandwidth analy-

sis is required for complete understanding of the observed ‘bad data packets’. As

observed, if these packets can be eliminated from the communication set-up, the

performance and list of potential control clients can be significantly improved.

• Increasing HIL Integration: The networked controls can be interfaced with the

SCADA system supervising a real microgrid, for instance the InteGrid Lab at

Colorado State University. This will enable the capability to implement control

strategies from external software platforms, like Simulink and C# programming

languages, and to be tested on real physical systems.

• NCS Framework Improvement : Stability and performance improvements can be

made in the network architecture of this study by utilizing Networked Control Sys-

tem theoretical studies. The Base Library for networked client devices, provided by

InGreenium LLC, is flexible enough to incorporate a large number of networking

protocols and thus protocols other than Modbus can be used for specific studies.

67

• More Complex Control Schemes : More complex control schemes can be utilized in

the current framework, keeping in mind the limitations on network response-times

affecting performance and stability.

• Network Security for CPS : If incorporated into a complete cyber-physical system

architecture, the issue of network security should be addressed.

68

Bibliography

[1] J. D. Glover, M. S. Sarma, and T. J. Overbye, Power system analysis and design.

CengageBrain. com, 2011.

[2] D. M. Falcão, “Parallel and distributed processing applications in power system simu-

lation and control,” Revista SBA: Controle & Automação, vol. 5, pp. 125–143, 1994.

[3] D. J. Tylavsky, A. Bose, F. Alvarado, R. Betancourt, K. Clements, G. Heydt, G. Huang,

M. Ilic, M. La Scala, and M. Pai, “Parallel processing in power systems computa-

tion,” IEEE Transactions on Power Systems (Institute of Electrical and Electronics

Engineers);(United States), vol. 7, no. 2, 1992.

[4] D. P. Bertsekas and J. N. Tsitsiklis, “Parallel and distributed computation,” IEEE,

1989.

[5] X. Wu, H. Figueroa, and A. Monti, “Testing of digital controllers using real-time hard-

ware in the loop simulation,” in Power Electronics Specialists Conference, 2004. PESC

04. 2004 IEEE 35th Annual, vol. 5, pp. 3622–3627, IEEE, 2004.

[6] MathWorks, Simulink User Guide, r2013b ed., 2013.

[7] G. Karsai and J. Sztipanovits, “Model-integrated development of cyber-physical sys-

tems,” in Software Technologies for Embedded and Ubiquitous Systems, pp. 46–54,

Springer, 2008.

[8] A. Umar and C. Fraser, Distributed computing: a practical synthesis of networks, client-

server systems, distributed applications, and open systems. Prentice-Hall, Inc., 1993.

[9] T. G. Lewis and H. El-Rewini, Introduction to parallel computing. Prentice-Hall, Inc.,

1992.

69

[10] B. Stott, O. Alsac, and A. J. Monticelli, “Security analysis and optimization,” Proceed-

ings of the IEEE, vol. 75, no. 12, pp. 1623–1644, 1987.

[11] N. Balu, T. Bertram, A. Bose, V. Brandwajn, G. Cauley, D. Curtice, A. Fouad, L. Fink,

M. G. Lauby, B. F. Wollenberg, et al., “On-line power system security analysis,” Pro-

ceedings of the IEEE, vol. 80, no. 2, pp. 262–282, 1992.

[12] Y. Sekine, K. Takahashi, and T. Sakaguchi, “Real-time simulation of power system

dynamics,” International Journal of Electrical Power & Energy Systems, vol. 16, no. 3,

pp. 145–156, 1994.

[13] H. Taoka, I. Iyoda, H. Noguchi, N. Sato, and T. Nakazawa, “Real-time digital simulator

for power system analysis on a hypercube computer,” Power Systems, IEEE Transac-

tions on, vol. 7, no. 1, pp. 1–10, 1992.

[14] D. Brandt, R. Wachal, R. Valiquette, and R. Wierckx, “Closed loop testing of a joint

var controller using a digital real-time simulator,” Power Systems, IEEE Transactions

on, vol. 6, no. 3, pp. 1140–1146, 1991.

[15] R. Fujimoto, “Parallel and distributed simulation,” in Simulation Conference Proceed-

ings, 1999 Winter, vol. 1, pp. 122–131 vol.1, 1999.

[16] P. Venne, J.-N. Paquin, and J. Blanger, “The what, where and why of real-time simu-

lation,” in Power and Energy Society (PES), pp. 37–49, 2010.

[17] A. Monti, S. D’Arco, and A. Deshmukh, “A new architecture for low cost power hard-

ware in the loop testing of power electronics equipments,” in Industrial Electronics,

2008. ISIE 2008. IEEE International Symposium on, pp. 2183–2188, IEEE, 2008.

70

[18] C. Dufour, S. Abourida, and J. Belanger, “Hardware-in-the-loop simulation of power

drives with rt-lab,” in Power Electronics and Drives Systems, 2005. PEDS 2005. Inter-

national Conference on, vol. 2, pp. 1646–1651, 2005.

[19] J. Wu, Y. Cheng, A. Srivastava, N. Schulz, and H. Ginn, “Hardware in the loop test for

power system modeling and simulation,” in Power Systems Conference and Exposition,

2006. PSCE ’06. 2006 IEEE PES, pp. 1892–1897, 2006.

[20] S. Ayasun, S. Vallieu, R. Fischl, and T. Chmielewski, “Electric machinery diagnos-

tic/testing system and power hardware-in-the-loop studies,” in Diagnostics for Electric

Machines, Power Electronics and Drives, 2003. SDEMPED 2003. 4th IEEE Interna-

tional Symposium on, pp. 361–366, IEEE, 2003.

[21] M. Steurer, R. Meeker, K. Schoder, and P. McLaren, “Power hardware-in-the-loop:

A value proposition for early stage prototype testing,” in IECON 2011-37th Annual

Conference on IEEE Industrial Electronics Society, pp. 3731–3735, IEEE, 2011.

[22] W. Ren, M. Steurer, and S. Woodruff, “Accuracy evaluation in power hardware-in-

the-loop (phil) simulation center for advanced power systems,” in Proceedings of the

2007 Summer Computer Simulation Conference, pp. 489–493, Society for Computer

Simulation International, 2007.

[23] M. Steurer, F. Bogdan, W. Ren, M. Sloderbeck, and S. Woodruff, “Controller and power

hardware-in-loop methods for accelerating renewable energy integration,” in Power En-

gineering Society General Meeting, 2007. IEEE, pp. 1–4, IEEE, 2007.

[24] H. D. R. M. López, “Fault location techniques for electrical distribution networks: A

literature survey,” IEEE.

71

[25] R. Yinger, S. Venkata, V. Centeno, et al., “Fault locating, prediction and protection

(flpps),” tech. rep., Southern California Edison Company, Rosemead, CA, 2010.

[26] R. Yinger, S. Venkata, and V. Centeno, “Southern california edison’s advanced distri-

bution protection demonstrations,” Smart Grid, IEEE Transactions on, vol. 3, no. 2,

pp. 1012–1019, 2012.

[27] W. Zhang, M. S. Branicky, and S. M. Phillips, “Stability of networked control systems,”

Control Systems, IEEE, vol. 21, no. 1, pp. 84–99, 2001.

[28] Y. Tipsuwan and M.-Y. Chow, “Control methodologies in networked control systems,”

Control engineering practice, vol. 11, no. 10, pp. 1099–1111, 2003.

[29] M.-Y. Chow and Y. Tipsuwan, “Network-based control systems: a tutorial,” in Indus-

trial Electronics Society, 2001. IECON’01. The 27th Annual Conference of the IEEE,

vol. 3, pp. 1593–1602, IEEE, 2001.

[30] Z. Yu and M. Yang, “Mfc-based control methodology in network control system,” in

Intelligent Control and Automation, 2004. WCICA 2004. Fifth World Congress on,

vol. 2, pp. 1361–1365, IEEE, 2004.

[31] C. Wang and Y. Wang, “Design networked control systems via time-varying delay com-

pensation approach,” in Intelligent Control and Automation, 2004. WCICA 2004. Fifth

World Congress on, vol. 2, pp. 1371–1375, IEEE, 2004.

[32] A. T. Al-Hammouri, M. S. Branicky, V. Liberatore, and S. M. Phillips, “Decentralized

and dynamic bandwidth allocation in networked control systems,” in Parallel and Dis-

tributed Processing Symposium, 2006. IPDPS 2006. 20th International, pp. 8–pp, IEEE,

2006.

72

[33] M. Velasco, J. M. Fuertes, C. Lin, P. Marti, and S. Brandt, “A control approach to

bandwidth management in networked control systems,” in Industrial Electronics Society,

2004. IECON 2004. 30th Annual Conference of IEEE, vol. 3, pp. 2343–2348, IEEE, 2004.

[34] Z. Li and M.-Y. Chow, “Adaptive multiple sampling rate scheduling of real-time net-

worked supervisory control system-part ii,” in IEEE Industrial Electronics, IECON

2006-32nd Annual Conference on, pp. 4615–4620, IEEE, 2006.

[35] N. Borisov, I. Goldberg, and D. Wagner, “Intercepting mobile communications: the

insecurity of 802.11,” in Proceedings of the 7th annual international conference on Mobile

computing and networking, pp. 180–189, ACM, 2001.

[36] T. Karygiannis and L. Owens, “Wireless network security,” NIST special publication,

vol. 800, p. 48, 2002.

[37] W.-L. Leung, R. Vanijjirattikhan, Z. Li, L. Xu, T. Richards, B. Ayhan, and M.-Y. Chow,

“Intelligent space with time sensitive applications,” in Advanced Intelligent Mechatron-

ics. Proceedings, 2005 IEEE/ASME International Conference on, pp. 1413–1418, IEEE,

2005.

[38] A. Casavola and G. Franze, “Coordination strategies for networked control systems:

A power system application,” in Control, Automation, Robotics and Vision, 2008.

ICARCV 2008. 10th International Conference on, pp. 503–508, IEEE, 2008.

[39] Q. Liu and Y. Li, “Modbus/tcp based network control system for water process in the

firepower plant,” in Intelligent Control and Automation, 2006. WCICA 2006. The Sixth

World Congress on, vol. 1, pp. 432–435, IEEE, 2006.

[40] C. A. Macana, N. Quijano, and E. Mojica-Nava, “A survey on cyber physical energy

systems and their applications on smart grids,” in Innovative Smart Grid Technologies

73

(ISGT Latin America), 2011 IEEE PES Conference on, pp. 1–7, IEEE, 2011.

[41] A. L. Dimeas and N. D. Hatziargyriou, “Operation of a multiagent system for microgrid

control,” Power Systems, IEEE Transactions on, vol. 20, no. 3, pp. 1447–1455, 2005.

[42] N. Cai and J. Mitra, “A decentralized control architecture for a microgrid with power

electronic interfaces,” in North American Power Symposium (NAPS), 2010, pp. 1–8,

IEEE, 2010.

[43] S. D. McArthur, E. M. Davidson, V. M. Catterson, A. L. Dimeas, N. D. Hatziargyriou,

F. Ponci, and T. Funabashi, “Multi-agent systems for power engineering application-

spart i: concepts, approaches, and technical challenges,” Power Systems, IEEE Trans-

actions on, vol. 22, no. 4, pp. 1743–1752, 2007.

[44] A. Dimeas and N. Hatziargyriou, “A multi-agent system for microgrids,” in Methods

and applications of artificial intelligence, pp. 447–455, Springer, 2004.

[45] M. Wooldridge, An introduction to multiagent systems. Wiley. com, 2008.

[46] J. Ferber, Multi-agent systems: an introduction to distributed artificial intelligence,

vol. 1. Addison-Wesley Reading, 1999.

[47] T. Hiyama, M. Kawakita, and H. Ono, “Multiagent based wide area stabilization control

of power systems using power system stabilizer,” in Power System Technology, 2004.

PowerCon 2004. 2004 International Conference on, vol. 2, pp. 1239–1244, IEEE, 2004.

[48] T. Nagata and H. Sasaki, “A multi-agent approach to power system restoration,” Power

Systems, IEEE Transactions on, vol. 17, no. 2, pp. 457–462, 2002.

[49] J. A. Hossack, J. Menal, S. D. McArthur, and J. R. McDonald, “A multiagent architec-

ture for protection engineering diagnostic assistance,” Power Systems, IEEE Transac-

tions on, vol. 18, no. 2, pp. 639–647, 2003.

74

[50] Z. Ming, R. Jianwen, L. Gengyin, and X. Xianghai, “A multi-agent based dispatching

operation instructing system in electric power systems,” in Power Engineering Society

General Meeting, 2003, IEEE, vol. 1, pp. 436–440, IEEE, 2003.

[51] C. Y. I. Chung and S. Oh, “Distributed intelligent microgrid control using multi-agent

systems,” Engineering, vol. 5, no. 1B, pp. 1–6, 2013.

[52] S. Rahman, M. Pipattanasomporn, and Y. Teklu, “Intelligent distributed autonomous

power systems (idaps),” in Power Engineering Society General Meeting, 2007. IEEE,

pp. 1–8, IEEE, 2007.

[53] M. Pipattanasomporn, H. Feroze, and S. Rahman, “Multi-agent systems in a distributed

smart grid: Design and implementation,” in Power Systems Conference and Exposition,

2009. PSCE’09. IEEE/PES, pp. 1–8, IEEE, 2009.

[54] R. J. Best, D. Morrow, D. M. Laverty, and P. A. Crossley, “Synchrophasor broadcast

over internet protocol for distributed generator synchronization,” Power Delivery, IEEE

Transactions on, vol. 25, no. 4, pp. 2835–2841, 2010.

[55] B. Denis, S. Ruel, J.-M. Faure, G. Marsal, and G. Frey, “Measuring the impact of

vertical integration on response times in ethernet fieldbuses,” in Emerging Technologies

and Factory Automation, 2007. ETFA. IEEE Conference on, pp. 532–539, IEEE, 2007.

[56] J. Northcote-Green and R. G. Wilson, Control and automation of electrical power dis-

tribution systems. CRC Press, 2006.

[57] M. Mallouhi, Y. Al-Nashif, D. Cox, T. Chadaga, and S. Hariri, “A testbed for analyz-

ing security of scada control systems (tasscs),” in Innovative Smart Grid Technologies

(ISGT), 2011 IEEE PES, pp. 1–7, IEEE, 2011.

75

[58] B. K. Duncan and B. G. Bailey, “Protection, metering, monitoring and control of

medium voltage power systems,” in Industrial and Commercial Power Systems, 2003.

2003 IEEE Technical Conference, pp. 121–128, IEEE, 2003.

[59] P. Neumann, “Communication in industrial automationwhat is going on?,” Control

Engineering Practice, vol. 15, no. 11, pp. 1332–1347, 2007.

[60] M. O. Faruque, M. Sloderbeck, M. Steurer, and V. Dinavahi, “Thermo-electric co-

simulation on geographically distributed real-time simulators,” in Power & Energy So-

ciety General Meeting, 2009. PES’09. IEEE, pp. 1–7, IEEE, 2009.

[61] P. Piagi and R. H. Lasseter, “Autonomous control of microgrids,” in Power Engineering

Society General Meeting, 2006. IEEE, pp. 8–pp, IEEE, 2006.

[62] R. Carnieletto, D. I. Brandao, F. A. Farret, M. G. Simoes, and S. Suryanarayanan,

“Smart grid initiative,” Industry Applications Magazine, IEEE, vol. 17, no. 5, pp. 27–

35, 2011.

[63] H. S. Rauschenbach, “Solar cell array design handbook-the principles and technology of

photovoltaic energy conversion,” 1980.

[64] SunPower Corporation, SunPower 305 Solar Panel, 2009.

[65] M. Godoy Simoes, N. Franceschetti, and J. Adamowski, “Drive system control and

energy management of a solar powered electric vehicle,” in Applied Power Electronics

Conference and Exposition, 1998. APEC’98. Conference Proceedings 1998., Thirteenth

Annual, vol. 1, pp. 49–55, IEEE, 1998.

[66] D. Hohm and M. Ropp, “Comparative study of maximum power point tracking algo-

rithms using an experimental, programmable, maximum power point tracking test bed,”

in Photovoltaic Specialists Conference, 2000. Conference Record of the Twenty-Eighth

76

IEEE, pp. 1699–1702, IEEE, 2000.

[67] J. J. Nedumgatt, K. Jayakrishnan, S. Umashankar, D. Vijayakumar, and D. Kothari,

“Perturb and observe mppt algorithm for solar pv systems-modeling and simulation,”

in India Conference (INDICON), 2011 Annual IEEE, pp. 1–6, IEEE, 2011.

[68] N. Instruments, “Maximum power point tracking,” tech. rep., National Instruments,

2009.

[69] A. Safari and S. Mekhilef, “Simulation and hardware implementation of incremental con-

ductance mppt with direct control method using cuk converter,” Industrial Electronics,

IEEE Transactions on, vol. 58, no. 4, pp. 1154–1161, 2011.

[70] S. Hong, “Harmonics and noise in photovoltaic (pv) inverter and the mitigation strate-

gies,” tech. rep., Solectria Renewables, 2010.

[71] M. Geidl, Protection of power systems with distributed generation: state of the art. ETH,

Eidgenössische Technische Hochschule Zürich, EEH Power Systems Laboratory, 2005.

[72] G. Electricals, “Distribution system feeder overcurrent protection,” 2010.

[73] P. P. Bedekar, S. R. Bhide, and V. S. Kale, “Optimum coordination of overcurrent relays

in distribution system using genetic algorithm,” in Power Systems, 2009. ICPS’09.

International Conference on, pp. 1–6, IEEE, 2009.

[74] M. Bacic, “On hardware-in-the-loop simulation,” in Decision and Control, 2005 and

2005 European Control Conference. CDC-ECC’05. 44th IEEE Conference on, pp. 3194–

3198, IEEE, 2005.

[75] J. Bélanger, L. A. Snider, J.-N. Paquin, C. Pirolli, and W. Li, “A modern and open

real-time digital simulator of contemporary power systems,” in Proceedings of the Inter-

national Conference on Power Systems Transients (IPST 2009), Kyoto, Japan, pp. 2–6,

77

2009.

[76] Opal-RT Technologies Inc., RT-LAB User Guide, ver.10.4 ed., 2007.

[77] NovaTech LLC, OrionLX User Manual, revision j ed., 2013.

[78] R. Ierusalimschy, L. H. De Figueiredo, and W. Celes Filho, “Lua-an extensible extension

language,” Softw., Pract. Exper., vol. 26, no. 6, pp. 635–652, 1996.

[79] D. E. Perry and A. L. Wolf, “Foundations for the study of software architecture,” ACM

SIGSOFT Software Engineering Notes, vol. 17, no. 4, pp. 40–52, 1992.

[80] H. Zimmermann, “Osi reference model–the iso model of architecture for open systems

interconnection,” Communications, IEEE Transactions on, vol. 28, no. 4, pp. 425–432,

1980.

[81] B. A. Forouzan, TCP/IP protocol suite. McGraw-Hill, Inc., 2002.

[82] “Ieee standards for local and metropolitan area networks: Supplement to carrier sense

multiple access with collision detection (csma/cd) access method and physical layer

specifications media access control (mac) parameters, physical layer, medium attach-

ment units, and repeater for 100 mb/s operation, type 100base-t (clauses 21-30),” IEEE

Std 802.3u-1995 (Supplement to ISO/IEC 8802-3: 1993; ANSI/IEEE Std 802.3, 1993

Edition), pp. 1–398, 1995.

[83] J. Postel, “Internet protocol,” 1981.

[84] J. Postel, “Transmission control protocol,” 1981.

[85] I. Modbus, “Modbus application protocol specification v1. 1b3,” North Grafton, Mas-

sachusetts (www. modbus. org/specs. php), 2012.

[86] I. Modbus, “Modbus messaging on tcp/ip implementation guide v1. 0b,” North Grafton,

Massachusetts (www. modbus. org/specs. php), 2006.

78

[87] L. Null and J. Lobur, The essentials of computer organization and architecture. Jones

& Bartlett Publishers, 2010.

[88] S. Kundu, Fundamentals of Computer Networks. PHI Learning Pvt. Ltd., 2005.

[89] K. P. Birman, Reliable distributed systems: technologies, web services, and applications.

Springer, 2005.

[90] P. Hoschka and C. Huitema, “Automatic generation of optimized code for marshalling

routines.,” in ULPAA, pp. 135–150, 1994.

[91] P. Sestoft and H. I. Hensen, C [Precisely. The MIT Press, 2004.

[92] J. C. Foster, Sockets, Shellcode, Porting, and Coding: Reverse Engineering Exploits and

Tool Coding for Security Professionals: Reverse Engineering Exploits and Tool Coding

for Security Professionals. Syngress, 2005.

[93] R. Bellman, I. Glicksberg, and O. Gross, “On the’bang-bang’control problem,” tech.

rep., DTIC Document, 1955.

79

APPENDIX A

MPPT Algorithms & PV Array Specifications

The flowcharts for the two MPPT algorithms implemented in this study are given in

Figure A.1 and A.2.

A.1. Perturb & Observe Method

Start

Measure V(k), I(k)

P(k) - P(k-1) > 0

I(k) - I(k-1) > 0 I(k) - I(k-1) < 0

V(k+1) = V(k) - Duty

Return

V(k+1) = V(k) + Duty V(k+1) = V(k) - Duty V(k+1) = V(k) + Duty

NO YES

NO

YES

NO

YES

Figure A.1. Flowchart for Perturb & Observe Algorithm

80

A.2. Incremental Conductance Method

Start

∆I/∆V > -I/V ∆I > 0

V(k+1) = V(k) + Duty

Return

V(k+1) = V(k) - Duty V(k+1) = V(k) + Duty V(k+1) = V(k) - Duty

YES

NO

NO

YES

∆I/∆V = -I/V ∆I = 0

∆V > 0

NO YES

NO NO

YES YES

Figure A.2. Flowchart for Incremental Conductance Algorithm

81

A.3. PV Array Specifications

PV Array specifications for the SunPower SPR-305-WHT PV Panel [64] are given in

Table A.1.

Table A.1. SunPower SPR-305-WHT PV Array Specifications

Parameter Variable (Units) Value

Number of cells in series Ncell 96

Number of series connected modules per string Nser 5

Number of parallel strings Npar 66

Maximum Power Pmp(W) 305.2

Maximum Power Voltage Vmp(V) 54.70

Maximum Power Current Imp(A) 5.58

Open-circuit Voltage Voc(V) 64.20

Short-circuit Current Isc(A) 5.96

Series Resistance Rs(Ω) 0.0380

Parallel Resistance Rp(Ω) 993.5

Diode Saturation Current Isat(A) 3.1949e−8

Light Generated Photo-Current Iph(A) 5.9602

Diode Quality Factor Qd 1.3

Maximum power for a single PV array (Watts) is thus given by:

(9) Parray = Npar ×Nser × Pmp

From Equation (9), Parray = 100.7 kW.

82

