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Abstract

Turbulence Modeling of Stably Stratified Wall-Bounded Flows

The subject of wall-bounded flows has been a matter of discussion and has received

considerable attention in the past few decades. This is mainly attributed to the fact that

the presence of the solid wall has profound effects on the turbulence and hence results in

anomalous mixing and transport of momentum, scalar and heat in environmental flows.

This is much more intense in the vicinity of the solid wall commonly known as the near-

wall region compared to regions away from the wall. This effect will be more complicated

in the presence of density stratification which has a strong influence on the development

of turbulence. Therefore, numerous field, laboratory, numerical and theoretical studies are

performed in a quest to gain a better understanding of wall-bounded flows especially in the

presence of stratification. However, there is still a lack of a clear picture on the near-wall

flow properties, the onset of turbulence and the resulting mixing in wall-bounded flows.

The aim of this dissertation is to employ both theory and numerical simulations to revisit

mixing in wall-bounded flows, especially in the near-wall region. The main objectives are:

• To investigate the unstratified near-wall turbulence and revisit the turbulent (eddy)

viscosity (νt) formulation in unstratified wall-bounded flows. This will be followed by

derivation of a novel proposition for the appropriate velocity, length and time scales in

unstratified wall-bounded flows.

• To revisit the fundamentals of common Reynolds-averaged Navier-Stokes (RANS) clo-

sure schemes such as the standard k-ǫ model and investigate their capability to model

near-wall turbulence.
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• To investigate the turbulent mixing in stably stratified wall-bounded flows. The mixing

of momentum, scalar and the efficiency of the mixing are evaluated.

• To study wall-bounded turbulent flows in the presence of stable stratification by per-

forming one-dimensional RANS simulations. In particular, this includes introduction of

a modified turbulent Prandtl number (Prt) for wall-bounded flows and calibration of

the standard k-ǫ model.

In this dissertation, a novel formulation for the turbulent (eddy) viscosity given by νt =

ǫ/S2 is derived by assuming equilibrium between the turbulent kinetic energy production

rate (P ) and the dissipation rate of the turbulent kinetic energy (ǫ), where S is the mean

shear rate. Also, the relevant scales of length and velocity are derived. The propositions

are tested with the direct numerical simulation (DNS) data of unstratified turbulent channel

flow of Hoyas & Jiménez (2006) and unstratified turbulent boundary layer flow of Sillero et

al. (2013). The comparisons of the propositions with the exact computations from the DNS

data are excellent.

Furthermore, the suitability of the equilibrium assumption (i.e. P ≈ ǫ) for modeling

near-wall turbulence is revisited. This is important as most widely used turbulent viscosities

such as the formulation of the standard k-ǫ model are developed by using the equilibrium

assumption. It is analytically shown that such νt formulations are not suitable for modeling

near-wall turbulence.

Also, the turbulent mixing in stably stratified wall-bounded flows is studied by employing

analytical arguments. ‘A priori’ tests are performed by using highly resolved stably stratified

channel flow DNS data of Garćıa-Villalba & del Álamo (2011). It is shown that in such flows

assuming P ≈ ǫ + ǫPE, where ǫPE is the dissipation rate of the turbulent potential energy,
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holds in a big fraction of the flow depth. Also, the results show that an irreversible flux

Richardson number as R∗
f = ǫPE/(ǫ+ ǫPE) can properly predict the flux Richardson number

(Rf = −B/P ), where B is the buoyancy flux. It is also shown that neglecting the transport

rate of ǫPE and assuming equilibrium as −B ≈ ǫPE is not a suitable assumption.

Furthermore, the ideas discussed are utilized to perform ‘a posteriori’ tests and to simu-

late stably stratified wall-bounded flows by using RANS numerical models. To do this, first

a simple one-dimensional zero-equation as well as two-equation k-ǫ RANS models are devel-

oped. It is shown that turbulent Prandtl numbers based on the homogeneous assumption

are not capable of providing a good estimation of the mixing and therefore an inhomogeneity

correction must be introduced. It is analytically shown that commonly used homogeneous

turbulent Prandtl numbers should be modified for a wall-bounded flow using a correction as

(1−z/D), where D is the total flow depth. This work is extended by revisiting the buoyancy

parameter (Cǫ3) in the standard k-ǫ closure scheme. Analytical arguments are used to show

that Cǫ3 ≈ 0. RANS results show the suitability of the propositions for modeling of stably

stratified turbulent channel flows.

The ultimate goal of this research is to enhance understanding of the fundamental aspects

of wall-bounded environmental flows and develop appropriate turbulence models that can

capture the physics of stably stratified wall-bounded turbulent flows.

iv



Acknowledgements

I would like to sincerely thank Dr. Karan Venayagamoorthy for all his support, encour-

agement, imparted knowledge, his guidance during my PhD studies and also giving me the

opportunity to come to CSU. Without his help, this dissertation would have never been

possible. I would like to thank Dr. Brian Bledsoe for his constructive suggestions. I am also

grateful to Dr. Pierre Julien for his helpful comments. Thanks, also to Dr. Thomas Birner

for his guidance.

I thank my former officemate Dr. Benjamin Mater for all his help, friendship and also

the scientific and philosophical discussions we had during lunch! I also thank Dr. Jordan

Wilson for all the fruitful discussions we had during my PhD. I wish to thank all my friends,

particularly Simon Schaad who has always kindly helped me.

Certainly, I thank my family for all their unconditional love, encouragement and support.

I will be always indebted to them, particularly to my late father and my mother. Without

them I would have never been the person I am today. Also, I will be always grateful to my

brothers Farshid and Arash who have always selflessly supported me in all stages of my life.

Also, funding from National Science Foundation under CAREER grant OCE-1151838 is

gratefully acknowledged.

v



Dedication

This dissertation is dedicated

to my mother, Elaheh

my brothers Farshid and Arash

and in memory of my beloved father, Faramarz Karimpour.

vi



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Chapter 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Background and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3. Dissertation Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 2. Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2. Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3. Turbulence Schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4. Wall-Bounded Turbulence Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5. Stratification in Wall-Bounded Flows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6. Instabilities and Breaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.7. Turbulent Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.8. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Chapter 3. Equilibrium Assumption for Unstratified Wall-Bounded Turbulence . . . . . . . 34

3.1. Unstratified Channel Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2. Revisit of Equilibrium Assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Chapter 4. Tubulent Mixing in Wall-Bounded Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

vii



4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2. Prediction of the Turbulent Viscosity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3. ‘A priori’ Tests Using DNS Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4. Prediction of Turbulent Diffusivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5. Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Chapter 5. Stratified Channel Flow Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.1. Revisit of the Turbulent Prandtl Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2. Improvement of the k-ǫ model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.3. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Chapter 6. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.1. Summary of the Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2. Main Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.3. Suggestions for Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Appendix A. Inference of the Dissipation Rate in Wall-Bounded Turbulence. . . . . . . . . . 126

A.1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

A.2. Parameterization of the Turbulent Viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

A.3. Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

viii



List of Tables

2.1 Values of constants in the standard k-ǫ model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.1 Values of constants in the standard k-ǫ model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

ix



List of Figures

1.1 Sketch (not to scale) showing some of the processes related to ocean turbulence.

(from Thorpe 2004). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Flow over a back-ward facing step (spanwise vorticity) obtained from: (a)

Direct Numerical Simulations (DNS), (b) Large-Eddy Simulations (LES), and

(c) Reynolds-averaged Navier-Stokes (RANS) Simulations (Wu, Homsy & Moin;

Gallery of Turbulent Flows, Center for Turbulence Research) . . . . . . . . . . . . . . . . . . . . . 10

3.1 Comparison of the exact turbulent viscosity and the k-ǫ prediction in a turbulent

channel flow at Reτ=2003, computed from the DNS data of Hoyas & Jiménez
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CHAPTER 1

Introduction

1.1. Motivation

Wall-bounded turbulent flows are common phenomena in engineered flows as well as in

nature such as rivers, estuaries and oceans. The existence of the solid wall has intricate ef-

fects on the turbulent flow, particularly in the vicinity of the wall which is commonly known

as the near-wall region. The thin layer of the near-wall region is subtle and important to

comprehend as about 50% of the maximum velocity in the free-stream occurs in this region

(Hanjalić & Launder 1976) and the anisotropy of the flow is remarkable. Furthermore, many

environmental flows are influenced strongly by density stratification. The simultaneous ef-

fect of the solid wall and stratification leads to presence of anisotropy and inhomogeneity

in the flow causing boundary layer instability and generation of turbulence which has pro-

found effect on momentum and scalar transport and associated mixing. Therefore, stratified

wall-bounded turbulent flows are considered as one of the most complicated but interest-

ing research topics in fluid mechanics. Although the wall effect on the flows has long been

recognized, it is only fairly recently that the detailed aspects of the wall-bounded flows

have become clearer mainly due to the numerical simulation studies of Kim et al. (1987),

Durbin (1991), Armenio & Sarkar (2002), Hoyas & Jiménez (2006), Wu & Moin (2008) and

Garćıa-Villalba & del Álamo (2011). However, despite such studies, there is still a lack of

robust understanding of the complexity associated with wall-bounded flows, especially in the

presence of density stratification. Hence, further investigation is warranted.

Unstratified wall-bounded turbulent flows widely exist such as air flow around the aero-

dynamic body surface of space shuttles or water flow in a shallow river. In such flows, it

is essential to correctly capture the near-wall velocity profile and the transition from lam-

inar to turbulent flow in the boundary layer. This is vital for correctly inferring the shear

stress on the solid body which plays a main role for designing, sustaining and operating

objects in direct contact to the turbulent fluid. The failure to do so might be fatal, such as
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the disaster of Columbia space shuttle in 2003. In recent years, numerical simulations such

as direct numerical simulation (DNS), large-eddy simulation (LES) and Reynolds-averaged

Navier-Stokes (RANS) simulations are widely used for modeling wall-bounded flows. DNS

and LES methods predict the flow with high accuracy but are prohibitively expensive and

not appropriate for modeling complex flows. On the other hand, while RANS models are

much faster, they suffer from lack of accuracy. Hence, in spite of great strides made to

introduce robust RANS models for simulating near-wall turbulence, there is still uncertainty

about the performance of such models for simulating flows with high Reynolds numbers and

complex geometries. Hence, further research is required to investigate RANS closure schemes

for modeling unstratified wall-bounded turbulent flows.

Besides unstratified flows, stratified wall-bounded turbulent flows are quite common es-

pecially in nature. Oceanic flows are a good example of such flows. Stable stratification is

ubiquitous in the ocean and its effect on the turbulence and mixing has long been recognized.

Stable stratification can be due to vertical temperature and/or salinity gradients (Staquet

& Sommeria 2002) leading to qualitative and quantitative changes in the small-scale mixing

of momentum and scalars, ultimately influencing large-scale processes (Armenio & Sarkar

2002). On the other hand, the presence of stable stratification resulting in buoyancy forces

along with existence of a perturbation smaller than buoyancy frequency are prerequisites

for internal waves generation (Aguilar & Sutherland 2006). Therefore, the ocean as a sta-

bly stratified environment which is constantly under the influence of external forces such as

tidal waves and wind stress fluctuations at the free-surface is a suitable environment for the

excitement, propagation and dissipation of internal waves. A major source of internal waves

generation in the ocean is through stratified fluid flow over bottom topographies such as

submarine ridges and seamounts (Legg & Adcroft 2003, Legg 2004). This interaction with

bottom features not only can result in generation of internal waves, but is also a major cause

of internal waves instability and breaking and hence generation of turbulence. The break-

ing of the internal waves resulting from interaction with the bottom boundary is usually

considered as a major source of energy required for turbulence and enhanced mixing in the
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Figure 1.1. Sketch (not to scale) showing some of the processes related to
ocean turbulence. (from Thorpe 2004).

ocean. A major hypothesis is that high turbulent (eddy) diffusivity (κt) in localized turbu-

lent patches is caused by breaking of internal waves due to their interaction with bottom

boundary (Gregg 1987, Munk & Wunsch 1998). Therefore, having a tangible understanding

of the bottom boundary layer in the presence of stratification, substantially improves the

comprehension of oceanic mixing processes.

Mixing is usually envisioned as a cascade that begins with energy transfer from surface

tides to internal tides and subsequent breaking internal waves resulting in turbulence (Rud-

nick et al. 2003). This has accentuated the study of the stratified bottom boundary layer in

order to better understand the turbulent mixing and transport processes of nutrients, pol-

lutants and salinity in the ocean. Figure (1.1) schematically depicts the small-scale oceanic

processes.

1.2. Background and Objectives

In this research, fundamental aspects of smooth wall-bounded flows and ensuing mixing

will be studied using theoretical analysis, ‘a priori’ testing by using published DNS data and
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numerical simulations. Studies on both unstratified and stratified wall-bounded turbulent

flows are carried out. The main objectives of this research are as follows

(1) To attain a detailed comprehension of wall effect on the mixing of momentum and

scalar in the near-wall region in fully developed unstratified and stratified wall-

bounded turbulent flows. In particular, fundamental characteristic scales of the

turbulence in the context of the turbulent-viscosity hypothesis (TVH) will be de-

termined in the near-wall region, where mean shear rate is dominant.

(2) To investigate the effect of the equilibrium assumption by considering formulations

of the turbulent viscosity (νt) developed based on the equilibrium assumption and

further study their capability for modeling near-wall turbulence.

(3) To develop an appropriate turbulent Prandtl number for modeling stably stratified

wall-bounded flows using Reynolds-averaged Navier-Stokes (RANS) schemes and

assess the efficacy of the standard k-ǫ closure scheme for modeling stably stratified

wall-bounded flows.

1.3. Dissertation Layout

The remainder of this dissertation is composed of four further chapters. The contents of

chapters 3, 4 and 5 have been written up as journal manuscripts, hence they are relatively

self-contained and as such some redundancy exists, especially with regard to the literature.

Chapter 2 consists of a literature review on the turbulence schemes, unstratified and

stratified wall-bounded flows and mixing. It expands on some of the issues mentioned in

section 1.1. Governing equations of flow dynamics and different turbulence schemes are also

discussed.

Chapter 3 presents the work done in this study to understand unstratified wall-bounded

flows from a fundamental point of view. In this chapter, the relevant characteristic scales

are derived by using the equilibrium assumption. Also, ‘a priori’ tests are performed to

examine their suitability for describing the turbulence, using DNS data of wall-bounded
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turbulent flows. Furthermore, shortcomings of turbulent viscosity formulations based on the

equilibrium assumption are elucidated.

In chapter 4, the turbulent mixing in stably stratified wall-bounded flows is studied. The

equilibrium assumption is made and the mixing of momentum, scalar and the efficiency of

the turbulent mixing are evaluated.

In chapter 5, the efficacy of present models for simulating stably stratified wall-bounded

turbulent flows is examined. Also, an appropriate Prt formulation for modeling such flows

is introduced. The proposed formulation is developed by using analytical discussions and its

efficacy is tested by performing numerical simulations. The performance of the standard k-ǫ

closure scheme and especially the buoyancy parameter (Cǫ3) is investigated, as well. To do

this, analytical arguments are presented and modeling of a stably stratified channel flow is

implemented.

1.4. Summary

This dissertation presents an investigation of wall-bounded turbulent flows with an eye

toward developing appropriate RANS models for simulating wall-bounded flows. This is done

by revisiting fundamental concepts of both unstratified and stratified near-wall turbulence

to predict momentum and active scalar mixing followed by implementation and testing of

proposed formulations in RANS simulations.
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CHAPTER 2

Literature Review

2.1. Introduction

The interaction of fluid flow with solid walls is common in nature and engineered flows.

The nonlinear behavior of turbulent flows, the inhomogeneity arising from the wall combined

with the anisotropy effects of stratification as well as the possible presence of internal waves,

have made wall-bounded flows one of the most complex but interesting problems to study.

Numerous studies using field experiments, laboratory experiments and numerical simulations

have focused on understanding this problem.

In this chapter, a review of the governing equations of fluid flows is provided first, followed

by an overview of the significant properties and modeling methods of wall-bounded turbulent

flows. Further, the effect of stratification on wall-bounded turbulence and turbulent mixing

are discussed.

More comprehensive reviews on the unstratified and/or stratified wall-bounded flows can

be found in the works of Kim et al. (1987), Durbin (1991), Pope (2000), Armenio & Sarkar

(2002), George (2007), Jones et al. (2008), Marusic et al. (2010) and Garćıa-Villalba &

del Álamo (2011). Detailed discussions on the turbulent mixing are provided in works of

Linden (1980), Barrett & Van Atta (1991), Smyth et al. (2001), Staquet & Bouruet-Aubertot

(2001), Venayagamoorthy & Stretch (2006) and Stretch et al. (2010).

2.2. Governing Equations

Any motion including fluid flow can be described by the principles of the momentum,

mass and energy conservation. The hard to solve fluid flow governing equations are derived

by using these three simple principles. In this section, the governing equations are presented

for an unsteady, three-dimensional, irrotational, incompressible and stratified flow.

2.2.1. Momentum Equations. The fluid flow is controlled by Newton’s second law of

motion, relating the imposed force with mass and acceleration. For a three dimensional,
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irrotational system with the Boussinesq approximation, the momentum equations (often

known as the Navier-Stokes equations) are given by

ρ
Dui

Dt
= ρ

∂ui

∂t
+ ρ

∂

∂xj

(uiuj) = −
∂p

∂xi

+ ρν
∂2ui

∂xj∂xj

− ρgδi3, (1)

where ν is the molecular (kinematic) viscosity (assumed as a constant). The Einstein sum-

mation convention is used with i, j = 1, 2, 3 where x3 represents the vertical coordinate. δij

is the Kronecker delta, equal to unity for i = j and zero for i 6= j.

In geophysical flows, Coriolis force (Ff ) and the gravitational force (Fg) are the external

forces acting on the fluid. The Coriolis force is an apparent force in a rotating coordinate

system which arises from the Earth’s rotation and only changes the direction of motion, not

the speed. This force is important for large scale systems, but in this study can be neglected

as we just focus on small-scale events in water bodies.

The fluid density can be decomposed into a constant density (ρ0), local mean value (ρ)

and fluctuation (ρ′) given by

ρ = ρ0 + ρ+ ρ′. (2)

By inserting the decomposed density in equation (1) and rearranging, the momentum equa-

tion can be recast as

(

1 +
ρ′

ρ0 + ρ

)(
Dui

Dt

)

= −

(
1

ρ0 + ρ

)
∂p

∂xi

+

(

1 +
ρ′

ρ0 + ρ

)

ν
∂2ui

∂xj∂xj

−

(
ρ0 + ρ+ ρ′

ρ0 + ρ

)

gδi3. (3)

In stratified water bodies the ratio
(

ρ′

ρ0+ρ

)

≪ 1 and can be neglected in the acceleration

(inertial) and viscosity terms, but should be retained in the gravity term as it is the primary

contributor to buoyancy. This assumption is known as the Boussinesq approximation. More-

over, as ρ ≪ ρ0 then the mean density is negligible compared with the background density.
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In addition, if ρr = ρ0 + ρ and pr = p0 + p are considered as reference density and pressure,

and the hydrostatic relation holds, then the reference pressure and density are related as

∂pr/∂x3 = −ρrg. This assumption helps in numerical simulations when starting from the

rest, as the pressure field is taken as the initial hydrostatic pressure field. However, for an

irrotational, incompressible and stratified fluid the Navier-Stokes equation (equation 3) can

be rewritten as

∂ui

∂t
+

∂

∂xj

(uiuj) = −
1

ρ0

∂p

∂xi

+ ν
∂2ui

∂xj∂xj

−

(
ρ

ρ0

)

gδi3. (4)

2.2.2. Continuity Equation. In fluid mechanics, mass is absolutely conserved and can

be described by a mass conservation equation. The continuity equation using an Eulerian

point of view is given by

∂ρ

∂t
+

∂(ρui)

∂xi

= 0, (5)

or from a Lagrangian point of view is as

Dρ

Dt
+ ρ

∂ui

∂xi

= 0, (6)

where D/Dt = ∂/∂t + ui(∂/∂xi) is the total or material derivative. For the flows under

Boussinesq approximation, ρ−1(Dρ)/(Dt) is negligible compared to ∂ui/∂xi, therefore the

continuity equation reduces to

∂ui

∂xi

= 0. (7)

This implies that the flow field is divergence free.

2.2.3. Density Transport Equation. In unstratified flows, the density is constant

and acts as a ‘passive’ quantity in the momentum equation, but in stratified flows the density

field evolves with the flow and is coupled with the momentum equation through the buoyancy

term in the vertical momentum equation. This highlights the importance of considering the

evolution of density transport as one of the flow governing equations. The density transport
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is depicted through an advection-diffusion equation based on the energy equation as

Dρ

Dt
=

∂ρ

∂t
+

∂

∂xj

(ρuj) = κm
∂2ρ

∂xj∂xj

, (8)

where κm is the molecular diffusivity.

2.3. Turbulence Schemes

The highly nonlinear Navier-Stokes equations are hard to solve analytically even for the

simplest turbulent flows. The mathematical solution of Navier-Stokes equations describing

the complete spatial and temporal behavior of turbulent flows can be obtained by solving

the fluid governing equations numerically. In general, there are three main approaches for

solving these equations numerically, namely: Direct Numerical Simulations (DNS), Large-

Eddy Simulations (LES) and Reynolds-averaged Navier-Stokes (RANS) simulations. DNS

resolves the whole spatial and temporal scales of the flow without employing any ‘turbulence

model’, while LES uses a spatial filter to simulate large scales explicitly and uses a turbulence

model for small scales. RANS simulations just model the mean field of the flow by using

turbulence closure schemes. Figure (2.1) compares these simulation models. Brief details of

these models will be provided later.

2.3.1. Reynolds-Averaged Navier-Stokes Simulations. Reynolds-averaged Navier-

Stokes (RANS) equations are derived by applying Reynolds decomposition and averaging to

the Navier-Stokes equations. Reynolds decomposition involves splitting any instantaneous

quantity into mean and fluctuating components by time-averaging, e.g. the velocity field can

be represented as

ui = Ui + u′
i, (9)

where () and ( ′) show the mean and fluctuation, respectively. Therefore, the momentum

equation in the RANS framework can be written as

∂Ui

∂t
+

∂

∂xj

(UiUj) = −
1

ρ0

∂p

∂xi

+ ν
∂2Ui

∂xj∂xj

−
ρ

ρ0
gδi3 −

∂

∂xj

(u′
iu

′
j), (10)
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Figure 2.1. Flow over a back-ward facing step (spanwise vorticity) obtained
from: (a) Direct Numerical Simulations (DNS), (b) Large-Eddy Simulations
(LES), and (c) Reynolds-averaged Navier-Stokes (RANS) Simulations (Wu,
Homsy & Moin; Gallery of Turbulent Flows, Center for Turbulence Research)

where u′
iu

′
j is called the Reynolds stress or the turbulent momentum flux. The mean conti-

nuity equation is similar to its instantaneous counterpart (i.e. divergence free) and is given

by

∂Ui

∂xi

= 0. (11)

The mean density transport evolves as

∂ρ

∂t
+

∂

∂xj

(ρUj) = κm
∂2ρ

∂xj∂xj

−
∂

∂xj

(ρ′u′
j), (12)

where ρ′u′
j is the turbulent density flux. As shown in equations (10)-(12), the RANS equa-

tions resemble the basic governing equations, except for the turbulent momentum and density
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fluxes which resulted from the Reynolds decomposition and averaging. Six unknown terms

of the Reynolds stress tensor and three unknown terms of the density flux term imply that

the number of unknowns exceeds the number of available equations. This leads to an unde-

termined system of equations commonly referred to as the ‘closure problem’. To resolve this

severe shortcoming, a number of hypotheses and methods are prescribed. The turbulent-

viscosity and gradient-diffusion hypotheses are the most widely used concepts to deal with

the closure problem. The turbulent-viscosity hypothesis (TVH) assumes that the deviatoric

Reynolds stress is proportional to the mean shear strain rate as

−(u′
iu

′
j) +

2

3
kδij = −νt(

∂Ui

∂xj

+
∂Uj

∂xi

) = 2νtSij, (13)

where k = (1/2)u′2
i = 0.5(u′2 + v′2 +w′2) is the turbulent kinetic energy and νt is the turbu-

lent (eddy) viscosity. The gradient-diffusion hypothesis (GDH) assumes that the turbulent

density (scalar) flux is aligned with the mean density (scalar) gradient as

−(ρ′u′
j) = κt

∂ρ

∂xj

, (14)

where κt is a positive scalar, named turbulent (eddy) diffusivity. Although these hypotheses

have known restrictions and shortcomings (e.g. see Pope 2000), they are widely accepted

and implemented in RANS turbulence simulations. These hypotheses resolve the closure

problem by decreasing the number of unknowns, but still require a correct proposition for

the turbulent viscosity and diffusivity. In spite of great efforts, suitable formulations for the

turbulent viscosity and diffusivity are still sought-after goals.

Different closure schemes are introduced widely to define the turbulent viscosity (νt).

Depending on the number of additional transport equations that are used to solve for νt,

these closure schemes are classified as zero-equation, one-equation or two-equation models.

Zero-equation or algebraic models do not require additional transport equations (PDE’s) and

provide a prediction of the turbulent viscosity (νt) directly from the mean flow variables.

One-equation models involve the use of one additional transport equation (usually turbulent

kinetic energy) and assess the turbulent viscosity (νt) based on the estimated turbulent
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quantity. Two-equation RANS closure schemes such as the standard k-ǫ model make use of

two additional transport equations for turbulence quantities to define the turbulent viscosity

(νt). On the other hand, in order to provide closure for the turbulent flux term in the density

transport equation, most turbulence schemes make use of a turbulent Prandtl number (Prt)

instead of defining the turbulent diffusivity (κt) explicitly. The turbulent Prandtl number is

defined as

Prt =
νt
κt

. (15)

A general parameterization for Prt is widely sought and over the last few decades, many

researchers have proposed formulations for Prt (e.g. Kays 1994, Schumann & Gerz 1995 and

Venayagamoorthy & Stretch 2010). However, the efficacy of these propositions for modeling

stratified flows has been a matter of doubt.

Extending the Reynolds decomposition and averaging process to the energy equations

results in the introduction of new turbulent quantities known as the turbulent kinetic energy

(k) and the turbulent potential energy (E ′
p). In what follows, these concepts are briefly

discussed.

• Turbulent kinetic energy

The turbulent kinetic energy is half the sum of the isotropic Reynolds stresses given by

k =
1

2
(u′

iu
′
i) =

1

2
(u′2 + v′2 + w′2). (16)

The evolution equation for the turbulent kinetic energy can be derived by splitting the total

kinetic energy equation into the mean and fluctuating (turbulent) components (see Pope

2000 for a detailed discussion). For an incompressible, stratified flow the turbulent kinetic
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energy is given by

∂k

∂t
+ Uj

∂k

∂xj

= −(u′
iu

′
j)
∂Ui

∂xj
︸ ︷︷ ︸

I

−ν

(

∂u′
i

∂xj

∂u′
i

∂xj

+
∂u′

i

∂xj

∂u′
j

∂xi

)

︸ ︷︷ ︸

II

−
g

ρ0
ρ′u′

jδi3
︸ ︷︷ ︸

III

+ν
∂2k

∂x2
j

︸ ︷︷ ︸

IV

−
1

2

∂(u′
iu

′
iu

′
j)

∂xj
︸ ︷︷ ︸

V

−
1

ρ0

∂(u′
ip

′)

∂xj
︸ ︷︷ ︸

V I

, (17)

To summarize, the terms in equation (17) are as follows:

I) Production rate of the turbulent kinetic energy (P ).

II) Dissipation rate of the turbulent kinetic energy (ǫ).

III) Buoyancy flux (B).

IV) Viscous transport of the turbulent kinetic energy (Dν).

V) Turbulent velocity transport of the turbulent kinetic energy (T ).

VI) Pressure transport of the turbulent kinetic energy (Π).

The exact value for the dissipation rate of the turbulent kinetic energy is

ǫ = ν
∂u′

i

∂xj

∂u′
i

∂xj

+ ν
∂2(u′

iu
′
j)

∂xixj

. (18)

The last term in equation (18) is very small compared to other terms (Pope 2000) and is

usually neglected.

•Turbulent potential energy

The turbulent potential energy is defined as

E ′
p = −

g

ρ0

∫

ρ′dz. (19)

By assuming that ρ′/z′ = ∂ρ/∂z, where z′ is the displacement from a stable position along

the background density gradient and replacing dz = dz′ = (∂ρ/∂z)−1dρ′, equation (19) can

be rewritten as

E ′
p = −

g

ρ0

(
∂ρ

∂z

)−1 ∫

ρ′dρ′ = N2

(
∂ρ

∂z

)−2(
1

2
ρ′2
)

, (20)
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where the transport equation for the scalar (density) variance ((1/2)ρ′2) is

∂(1
2
ρ′2)

∂t
+ Uj

∂(1
2
ρ′2)

∂xj

= −(ρ′u′
j)

∂ρ

∂xj
︸ ︷︷ ︸

I

−κmρ′
∂2ρ′

∂xj∂xj
︸ ︷︷ ︸

II

+
∂
(

1
2
ρ′2u′

j

)

∂xj
︸ ︷︷ ︸

III

. (21)

The terms in equation (21) are

I) Production rate of density variance (Pρ).

II) Dissipation rate of density variance (ǫρ).

III) Transport rate of density variance (Tρ).

The transport equation of the turbulent potential energy can be simply obtained by multi-

plying both sides of equation (21) by N2 (∂ρ/∂z)−2.

As previously discussed, RANS modeling relies on employment of turbulence closure

schemes to model turbulent flows. The k-ǫ closure scheme is the most widely used scheme for

modeling turbulence (Durbin & Pettersson Reif 2011). Hence, in the following we introduce

and revisit the k-ǫ model.

2.3.1.1. The k-ǫ Model. The k-ǫ model is a two-equation complete turbulence model

which is widely used in engineering and incorporated in commercial CFD codes. Launder

& Spalding (1972) and Jones & Launder (1973) are widely credited as the developers of

the standard k-ǫ model. This turbulence closure scheme solves two transport equations to

obtain the turbulent kinetic energy (k) and its dissipation rate (ǫ). In the standard k-ǫmodel,

the turbulent viscosity (νt) for regions away from the wall is derived assuming equilibrium

between the turbulent kinetic energy production rate (P ) and the dissipation rate of the

turbulent kinetic energy (ǫ) for an unstratified flow (i.e. P ≈ ǫ). Hence, we can write

νtP = (−u′w′)2 ≈ νtǫ. Using the proposition of Kolmogorov (1942) as −u′w′ = ck1/2, the

turbulent viscosity (νt) for an unstratified flow is given by

νt = c4
k2

ǫ
= Cµ

k2

ǫ
, (22)

where Cµ = (|u′w′|/k)2 is the turbulent viscosity parameter, shown by experiments and DNS

data (e.g. Kim et al. 1987) to be approximately equal to 0.09 in the log-law region (i.e.
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away from the near-wall region). It is well known that the standard k-ǫ model is not suitable

for modeling the near-wall turbulence, as the formulation for the turbulent viscosity (νt)

overpredicts the exact νt in this region. An in-depth study of near-wall modeling using the

k-ǫ model will be presented in chapter 3.

In order to calculate the turbulent viscosity (νt), the standard k-ǫmodel requires solutions

for k and ǫ. To do this, the k-ǫ model uses an almost exact equation to solve for the turbulent

kinetic energy as

∂k

∂t
+ Uj

∂k

∂xj

= P − ǫ+ B +
∂

∂xj

(
νt
σk

∂k

∂xj

)

. (23)

The last term is the only empirical term and is the modeled transport of the turbulent kinetic

energy by using the gradient-diffusion hypothesis.

It is hard to define ǫ explicitly as the velocity fluctuations are required. Therefore, the

k-ǫ model solves an empirical transport equation for ǫ that is analogous to the transport

equation of k (equation 23) given by

∂ǫ

∂t
+ Uj

∂ǫ

∂xj

= Cǫ1
Pǫ

k
− Cǫ2

ǫ2

k
+ Cǫ3

Bǫ

k
+

∂

∂xj

(
νt
σǫ

∂k

∂xj

)

. (24)

In this equation, Cǫ1, Cǫ2 and Cǫ3 are empirical constants for production, dissipation and

buoyancy terms. The last term in equation (24) is a modeled transport term by using the

gradient-diffusion hypothesis. The empirical coefficients are given in table (2.1).

Cµ Cǫ1 Cǫ2 σk σǫ

0.09 1.44 1.92 1.0 1.3

Table 2.1. Values of constants in the standard k-ǫ model

There is no consensus on the value of Cǫ3 and is still a source of controversy in stratified

turbulence modeling. Durbin & Pettersson Reif (2011) assumed Cǫ3 = Cǫ1 = 1.44 as this

results in −B ≤ P , Baum & Caponi (1992) suggested Cǫ3 = 1.14 while Burchard & Baumert

(1995) proposed negative values for Cǫ3.

2.3.2. Large-Eddy Simulation. The accuracy of RANS models is always a matter of

discussion in turbulence modeling, therefore numerical methods with better accuracy, but
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still feasible for industrial applications are desired. Large-eddy simulation (LES) has gained

attention in the past few decades especially with increase of the computational power. At

present, LES is widely used as a powerful tool in research and industry with reasonable

computational cost and accuracy. LES captures the unsteady and energy-containing motions

of large eddies, but still relies on turbulence models to model the effect of small scales. A

spatial decomposition called ‘filtering’ is applied to the governing equations, splitting the

velocity field into a filtered or mean value (〈U〉) and a residual or a sub-grid scale (〈u′〉).

The filter size can either be determined implicitly by the numerical domain grid size or by

introducing filter functions (Gullbrand & Chow 2003). The filtered governing equations for

unsteady, three-dimensional, stratified flows with Boussinesq approximation in LES are

∂〈Ui〉

∂t
+

∂〈UiUj〉

∂xj

= −
1

ρ0

∂〈p〉

∂xi

+ ν
∂2〈Ui〉

∂xj∂xj

− g
〈ρ〉

ρ0
δi3 −

∂τSGS
ij

∂xj

, (25)

subject to continuity equation as

∂〈Ui〉

∂xi

= 0. (26)

Also, the filtered density transport equation is

∂〈ρ〉

∂t
+

∂〈ρUj〉

∂xj

= κm
∂2〈ρ〉

∂xj∂xj

−
∂χSGS

j

∂xj

. (27)

In equations (26) and (27), τSGS
ij and χSGS

j are the sub-grid scale (SGS) tensor and sub-grid

scale flux vector respectively and are defined as

τSGS
ij = 〈UiUj〉 − 〈Ui〉〈Uj〉, (28)

χSGS
j = 〈ρUj〉 − 〈ρ〉〈Uj〉. (29)

With the existence of residuals, like RANS models, LES suffers from the closure problem,

and requires SGS models to resolve closure. The accuracy of LES highly depends on the

efficiency of SGS models used to define the sub-grid scale (SGS) motions. The simplest and

most well-known closure method is introduced by Smagorinsky (1963). This model uses a
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linear turbulent viscosity (νt) to model the residual motions as

τSGS
ij = −2νt〈Sij〉, (30)

where the turbulent (eddy) viscosity is defined as

νt = l2s〈S〉 = (CS∆)2〈S〉. (31)

In this equation, ∆ is usually taken as the grid size, CS is the Smagorinsky constant and

〈S〉 =
√

2〈Sij〉〈Sij〉 is the characteristic rate of strain. The main drawback of Smagorinsky’s

model is that it uses a predetermined empirical constant, which is not universal and shows

large variations depending on the flow type, geometry, domain resolution and the local

characteristics of the flow (Germano et al. 1991, Park et al. 2006). Lilly (1966) defined

CS ≃ 0.23 for a homogeneous isotropic turbulence. Deardorff (1970) ran a three-dimensional

turbulent channel flow and observed that a large value of CS results in damping of large-scale

fluctuations and proposed CS = 0.1. However, the commonly used value is CS ≃ 0.1 − 0.2.

Germano et al. (1991) introduced a modification to Smagorinsky’s model by using a dynamic

sub-grid scale model which allows Smagorinsky constant (CS) to change with time and

space. The proposed method employs a two-level filtering of the flow variables to establish

an algebraic relation between the resolved turbulent stresses and the sub-grid scale stresses.

On the other hand, the other deficiency of Smagorinsky’s model is that the SGS turbulent

viscosity does not vanish at regions where the sub-grid scale dissipation is expected to be zero

and therefore even the dynamic sub-grid scale models show large variations in time and space

(Park et al. 2006). Vreman (2004) has proposed a model based on the mean shear rate and

grid size that ensures the SGS turbulent viscosity goes to zero when SGS dissipation vanishes.

The model is tested for channel flows and transitional flows and showed good agreement with

experiments and DNS data. Park et al. (2006) proposed modification to Vreman’s model

and introduced a dynamic coefficient by assuming general equilibrium between the sub-grid

scale dissipation and viscous dissipation through a two-level filtering. You & Moin (2007)
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further modified Vreman’s model and simplified Park et al. (2006) model by introducing a

single-level filtering model.

2.3.3. Direct Numerical Simulation. Direct numerical simulation (DNS) is used

to solve for the velocity and scalar field of turbulent flows without resort to a ‘turbulence

model’. DNS fully resolves the temporal and spatial scales of the flow from the Kolmogorov

length scale (η), asserted to be the smallest scale in the turbulent flow where the molecular

viscosity (ν) dominates, to the largest energy-containing length scales. Solving a very finely

resolved flow domain is an extremely hard task that was not possible until only a few decades

ago. Despite the increase in computational power, DNS is still restricted to simple flows with

regular geometries. Furthermore, at higher Reynolds numbers, the number of the grid points

required to resolve the flow field down to the Kolmogorov length scale increases exponentially,

therefore DNS is also limited to low to moderate Reynolds number flows. These shortcomings

have made DNS to be more of a valuable technique employed to understand the fundamental

physics of turbulent flows rather than a tool for industrial applications.

2.4. Wall-Bounded Turbulence Basics

Wall-bounded turbulent flows are ubiquitous in most natural and engineered flows. The

presence of the solid wall has profound effects on the transport of momentum, mass and

heat. As such, it is not surprising that the subject of wall-bounded flows has received much

attention in the last few decades. Wall-bounded flows can be generally classified into three

canonical categories of channel flow, pipe flow and boundary layer flow. Fully developed

channel flow with simple geometry has been the subject of research with the goal of un-

derstanding the complex structure of turbulent wall-bounded flows. Nikuradse (1929) and

Reichardt (1938) are among the first investigators to study fully developed channel flows,

while Laufer (1948) has provided the first details of the fully developed channel flow statis-

tics. Eckelmann (1974) performed experiments to investigate the turbulence statistics in the

near-wall region by using an oil channel with a thick viscous sublayer in order to measure

very close to the wall. These early experiments provided valuable insights on the complex
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turbulence interactions in wall-bounded flows, but there was still poor agreement in the re-

ported measurements (Kim et al. 1987). This accentuated the need for performing highly

resolved numerical simulations for a detailed investigation of wall-bounded flows. Deardorff

(1970) and Schumann (1973) are among the first to perform three-dimensional simulations

to study wall-bounded flows. However, they did not resolve the near-wall region due to

computational costs. Kim et al. (1987) performed the first (seminal) DNS of fully devel-

oped channel flow. Emergence of DNS opened a new path in turbulence studies, enabling

researchers to measure exact turbulence statistics such as Reynolds stresses. The early nu-

merical works were restricted to low-Reynolds-number flows due to limited computational

facilities, but over the years a number of DNS works with higher Reynolds numbers have

been implemented such as works of Moser et al. (1999), del Álamo et al. (2004), Hoyas &

Jiménez (2006). Higher Reynolds numbers simulations enable researchers to have a better

understanding of wall-bounded flows especially in the near-wall region.

Experimental and DNS observations have shown that wall-bounded turbulent flows can

usually be subdivided into two-main regions: an inner region for z/D < 0.1 and an outer

region for z/D > 0.1, where z is the local flow depth from the wall and D is the total

depth. The inner region can be further subdivided into three different layers namely: viscous

sublayer for z+ < 5, buffer layer for 5 < z+ < 30 and log-law region which overlaps both the

inner region and outer region with z+ > 30 and z/D < 0.3. The wall unit (z+) is defined as

z+ = uτz/ν, (32)

where uτ is the friction velocity and ν is the molecular (kinematic) viscosity. The viscous

sublayer and the buffer layer together are defined as the near-wall region or viscous region

since the viscosity is important and the energetic and the dissipative scales overlap (Jiménez

& Moser 2007). Although the thickness of the near-wall region is two or more orders of

magnitude smaller than the total flow depth, its effect extends throughout all the flow

region as almost 50% of the flow velocity from the wall to the free-surface occurs in this thin

region (Hanjalić & Launder 1976). The remaining velocity difference is mostly obtained in
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the logarithmic layer. Near the wall the mean shear rate is high with the highest mean shear

rate occurring right at the wall leading to considerable inhomogeneity and the viscosity effect

is noticeable resulting in low-Reynolds-number flow. However, Durbin (1991) has discussed

that it is the inviscid wall blocking effect resulting from the impermeability condition at

solid boundary (i.e. zero normal velocity) that suppresses the turbulent transport in the

wall region, not the viscous effects.

It is widely shown that in the near-wall region there is an imbalance between the pro-

duction rate of the turbulent kinetic energy (P ) and the dissipation rate of the turbulent

kinetic energy (ǫ), which leads to a noticeable transport of k in this region. However, obser-

vations show that in the log-law region which starts at z+ ≈ 30, the transport of k becomes

negligible and it is legitimate to assume equilibrium between P and ǫ (i.e. P/ǫ ≈ 1). Hence,

the logarithmic region is also named as the equilibrium layer (Townsend 1961). Due to the

non-linear behavior of the near-wall region which can also be physically attributed to the

rapid decrease of the turbulent eddy sizes as approaching the wall, most turbulence models

have difficulties modeling this region. Therefore, most of the existing formulations for the

turbulent viscosity such as the formulation of νt in the standard k-ǫ model are developed

assuming the existence of a logarithmic layer and hence the balance between the produc-

tion and the dissipation rates of k. Such turbulence closure schemes avoid modeling the

near-wall region turbulence by employing wall-functions. A wall-function helps model the

wall-bounded flows from the logarithmic layer by assuming the existence of a logarithmic

velocity profile and constant stress region. However, the DNS data show that these models

are qualitatively wrong to be used for modeling the near-wall region, requiring new develop-

ments (Pope 2000). For example, Durbin (1991) has discussed that the standard k-ǫ model

overpredicts the near-wall turbulent viscosity (νt). To handle this drawback, special treat-

ment called damping functions (fµ) are introduced to reduce the turbulent viscosity in the

near-wall region. A damping function is the ratio of the exact turbulent viscosity to the
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predicted turbulent viscosity given by

fµ =
νt

Cµk2/ǫ
. (33)

Such ideas were first introduced by van Driest (1956). Other popular damping functions have

been introduced by Jones & Launder (1973), Launder & Sharma (1974), Lam & Bremhorst

(1981), Patel et al. (1985) and Rodi & Mansour (1993). Most of these models fall back

on the employment of the friction velocity (uτ ) and/or the wall unit (z+). The major

drawback of these models is that they are mostly tuned for low-Reynolds-number DNS data

and are not universal. To resolve this shortcoming, Durbin (1991) has introduced a more

universal model that avoids the use of a damping function. He concludes that the vertical

(cross-stream) velocity fluctuation is responsible for the transport of the turbulence in a

wall-bounded flow and introduces a fourth-order turbulence scheme called k-ǫ-v2 as

νt = c′µw
′2
k

ǫ
, (34)

where c′µ ≃ 0.2 is a constant and w′ is the cross-stream velocity fluctuation. Although this

model performs well near the wall, it is a more sophisticated model compared to the standard

k-ǫ model, solving for two extra transport terms. Also, it still employs a constant (c′µ) which

is sensitive to the Reynolds number. Hence, a simpler model is still a sought-after goal.

2.5. Stratification in Wall-Bounded Flows

Stably stratified channel flows are inevitable in nature such as in the atmosphere, estuar-

ies and oceans, where temperature and/or salinity gradients are large enough that buoyancy

effects become dynamically important. The atmospheric boundary layer is typically stable

at nights due to stable temperature gradients, while oceanic flows are often stable. Buoyancy

effects arising from the density stratification add another term of complexity to any turbulent

flow through coupling of the momentum and the density transport equations. The buoyancy

force arising from the stable stratification impedes turbulent motions converting a portion

of the turbulent kinetic energy into turbulent potential energy through mixing (Briggs et
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al. 1998). To date there has been a great deal of work on homogeneous stratified flows and

unstratified inhomogeneous flows but it is only recently that research works on inhomoge-

neous stratified flows are emerging. Most experiments on wall-bounded flows are performed

on open-channel flows or boundary layers. Webster (1964) studied grid-generated turbulent

flows with vertical temperature and velocity gradients in outer layers in wind tunnels. One

of the first experiments on stratified wall-bounded flows was done by Arya (1975) on a flat

plate. He made observations in a well-developed, thermally stratified, horizontal, flat-plate

boundary layer and the effects of buoyancy on the mean flow and turbulence structure are

studied. He observed that the mean velocity and temperature profiles are dependent on the

thermal stratification in both the inner and outer layers. Komori et al. (1983) experimen-

tally studied stably stratified open-channel flow. They investigated the outer layer, where

the wall effect is small and observed that the turbulence quantities are correlated with the

local gradient Richardson number (Rig). The gradient Richardson number (Rig) is a relative

measure of the strength of the buoyancy and mechanical forces in a fluid flow and is defined

as

Rig =
N2

S2
. (35)

Here, N = −
√

g/ρ0(∂ρ/∂z) is the buoyancy or Brunt-Väisälä frequency and S = dU/dz

is the mean shear rate with z defined as the vertical distance from the wall. N shows

the oscillating frequency of a fluid particle when displaced from its stable position in a

stratified fluid and is a measure of the strength of the density stratification. Ohya et al.

(1997) studied the turbulence structure in a thermally stratified wind tunnel and observed

suppression of velocity fluctuations in both streamwise and vertical directions. However,

stratified channel flows are hard to realize in laboratory experiments because of technical

difficulties to keep the walls at constant temperature, the influence of the side walls, etc. As

a result, the existing laboratory experiments are few and at fairly low Reynolds numbers.

These experiments mostly show the final fate of the mean flow profiles and the suppression of

turbulent statistics due to stable stratification, without providing the small-scale turbulence

statistics in stably stratified wall-bounded flows.
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On the other hand, with the emergence of highly resolved numerical simulations, the

numerical study of wall-bounded flows are becoming feasible and is fairly straightforward

compared to laboratory experiments. Garg et al. (2000) performed numerical simulation

of stably stratified channel flows. They used LES and DNS to delineate the stratified flow

regimes and transition between them based on the gradient Richardson and Reynolds num-

bers. For a better understanding of the buoyancy effect, a Dirichlet boundary condition was

used and the density was kept constant at both upper and lower boundaries. They also

studied mean flow quantities and observed the suppression of the log-law region. Armenio

& Sarkar (2002) studied stably stratified channel flows behavior for various stratifications

with the same density boundary condition as Garg et al. (2000). They used LES technique

for very low friction Reynolds number of Reτ ≈ 180 and with friction Richardson numbers

up to Riτ = 480. The friction Richardson number is defined as

Riτ =
g/ρ0

|∆ρ|
D

(uτ/D)2
=

|∆ρ|gD

ρ0u2
τ

, (36)

where ∆ρ is the maximum density difference in the channel at the initialization of the

simulation. They concluded that the gradient Richardson number (Rig) is a very good local

buoyancy determinant. The turbulent motion was observed to be two-dimensional with

increasing stratification, while for the highest stratification the buoyancy-affected region

encroaches into the inner layer, suppressing the low speed streaks in the near-wall region.

Also, in the core of the channel where the mean shear rate (S) relaxes, internal wave motions

were seen. Taylor et al. (2005) employed LES to investigate stably stratified open channel

flow. They imposed a constant heat flux at the top and an adiabatic bottom wall (i.e. no

heat transfer at the wall), different from previous works. They showed that this different

boundary condition leads to an untouched near-wall turbulence production and consequently

the buoyancy flux, the turbulent Prandtl number (Prt) and a generalized flux Richardson

number (Rf = −B/(−B + ǫ)) are seen to be different from free shear layers and channels

with constant temperature walls, highlighting the major effect of the near-wall on the entire

behavior of the stratified channel flow. Interestingly, unlike Armenio & Sarkar (2002), they
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did not see the collapse of quantities as a function of the gradient Richardson number (Rig).

They observed that the vertical turbulent Froude number (Frv) defined in equation (37)

is a better measure of the turbulence in the upper portion of the channel where buoyancy

is dominant and affects the turbulent patches generated at the bottom wall. The vertical

turbulent Froude number is

Frv =

(

w′2
)1/2

NLE

, (37)

where LE is the Ellison length scale introduced by Ellison (1957) which provides a measure of

the vertical distance traveled by particles before either returning to their equilibrium position

or mixing in the density field (Venayagamoorthy & Stretch 2010). LE is defined as

LE =

(

ρ′2
)1/2

| (dρ/dz) |
, (38)

where ρ′ denotes the density fluctuation. The latest work is the DNS by Garćıa-Villalba

& del Álamo (2011) which has so far the highest Reynolds number with Reτ = 550. They

have used similar configuration as Armenio & Sarkar (2002) and arrived at almost similar

conclusions to those suggested by them.

It should be noted that although these numerical simulations have provided valuable

information about turbulence quantities that are not easy to obtain from field or laboratory

experiments, they suffer from the low-Reynolds-number issue. This shortcoming causes the

flow not to be sufficiently turbulent especially for higher stratifications.

However, like unstratified flows, DNS and LES methods are not appropriate for modeling

large-scale stratified wall-bounded flows and RANS turbulence models remain popular. For

such flows, it is required to capture buoyancy fluxes (or the turbulent diffusivity) additional

to momentum fluxes. The standard k-ǫ model remains a popular method for modeling

stratified flows, commonly using a turbulent Prandtl number (Prt) to link the momentum

and density (scalar) fluxes. This highlights the importance of revisiting this model as well as

Prt for modeling stably stratified wall-bounded flows. A complete discussion will be provided

in chapter 5.
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2.6. Instabilities and Breaking

Most of the studied processes in geophysical fluid dynamics have been for cases where

the rotation is dominant, implying small Rossby numbers defined as

Ro = U/fL, (39)

where f is the Coriolis frequency and U and L are characteristic velocity and length scales,

respectively. These large-scale phenomena depend on and lead to very small-scale processes

and finally turbulent motions, where rotation is not important. The chaotic and churning

nature of turbulent flows usually arise from onset of instabilities in the fluid. Therefore,

in the context of geophysical systems it is essential to fully comprehend the small-scale

phenomena, such as instability and breaking processes in order to investigate and model

geophysical flows.

Instabilities and breaking are in general defined and regarded as a short-term, transient

and active process ensuing irreversible dissipation of the fluid flow energy (Imberger 1998,

Michallet & Ivey 1999) which lead to turbulent motions with small length scales. The

complex instability and consequently breaking result in distortion of isopycnals leading to

‘irreversible’ transfer of turbulent kinetic energy into potential energy through rearrangement

of the density profile. This process is known as ‘turbulent mixing’. The turbulent mixing

is at the bottom end of a set of obscure and intricate processes leading to very small-scale

motions in the ocean and plays an important role in determining distribution of stratification

and biogeochemical matter in water columns (Wüest et al. 2000).

However, there are various types of instabilities with distinct mechanisms occurring in

stratified flows (Sonmor & Klaassen 1997). These instabilities are usually a function of the

flow characteristics such as the amplitude of the internal wave and the interaction with the

surrounding. Primarily breaking is considered to occur from two types of instabilities: ‘static

(convective) instability’ and ‘dynamic (shear) instability’. These are discussed in more detail

next.
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2.6.1. Static Instability or Convective Overturn. In general, a convective in-

stability is considered to occur when a heavier fluid is superposed over a lighter fluid (i.e.

∂ρ
∂z

> 0 or N2 < 0) in a gravitational field (Daly 1967). Any perturbation of this interface

tends to grow with time, resulting in the well-known Rayleigh-Taylor instability. Rayleigh-

Taylor instability is driven by the conversion of the potential energy in the originally inverted

stratification to kinetic energy (Sharp 1984). Rayleigh (1894) and Taylor (1950) are the first

who have analytically predicted the rate of growth of such an instability. Their prediction

is extensively confirmed by different researchers such as Lewis (1950) who experimentally

showed that for an air-liquid interface, the theoretical prediction agrees well with experiments

in the initial phase of the instability.

Atmospheric instabilities are usually associated with density overturns and convective

instabilities. In the atmosphere, as the wave propagates upward, the amplitude increases

as the ambient density is decreasing. If this propagation continues, the amplitude becomes

large enough for overturning to occur and the heavier fluid is lifted over the lighter fluid,

resulting in a convective instability. However, it is not straightforward to discern internal

waves breaking in the ocean.

Such an instability is common in the ocean too especially when internal wave field in-

teracts with the bottom topography. Kao et al. (1985), Helfrich (1992), Michallet & Ivey

(1999) are among the first researchers to study progressive shoaling waves of large ampli-

tudes interacting with slopes. They have visualized the breaking process in their experiments

and have found that convective instabilities are initial instabilities leading to the breaking

of internal solitary waves on slopes. Hult et al. (2009) experimentally investigated periodic

progressive two-layer interfacial waves interaction with a submerged ridge. They concluded

from their results that a noticeable portion of the breaking on a ridge in a two-layer system

is convective.

Numerical simulations are also used to study convective instabilities (e.g. Bouruet-

Aubertot et al. 2001, Sutherland 2001, Koudella & Staquet 2006, Fritts et al. 2009a,b).
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Venayagamoorthy & Fringer (2012) discussed the breaking of progressive internal waves, in-

teracting with a shelf break in a linearly stratified fluid by employing highly resolved LES.

They observed significant overturning and distortion of isopycnals leading to convective in-

stabilities in the slope region highlighting the importance of convective instabilities in shallow

regions.

2.6.2. Dynamic or Shear Instability. Dynamic or shear instabilities occur due to

the high mean shear rate of the flow relative to the buoyancy frequency, where small-scale

instabilities draw energy from the mean flow. Kelvin-Helmholtz billows are a classical exam-

ple of shear instabilities introduced by Helmholtz (1868) and Kelvin (1871). They devised

a theory to describe the stability of infinitesimal, spatially periodic disturbances to the in-

terface between two layers of differing density in relative motion. However, in literature the

term is used for a growing instability in any stably stratified shear flow, with density and ve-

locity varying in depth. The most accessible example of a Kelvin-Helmholtz instability is the

surface gravity waves, where at the air-water interface the density difference is about three

orders of magnitude. As Smyth & Moum (2012) have pointed out, the Kelvin-Helmholtz

instability is a critical link in the chain of the oceanic events leading to mixing from internal

waves. Defining useful parameterization and prevalence conditions of the Kelvin-Helmholtz

instability and its contribution to mixing is a first-order priority. Reynolds (1883) made

the first experiments on the shear instabilities in a two-layer flow composed of two immis-

cible fluids, which was part of his attempt to study the onset of turbulence in a pipe. The

most important results on the Kelvin-Helmholtz instability are attributed to the seminal

works of Miles (1961), Howard (1961), Klebanoff et al. (1962) and Thorpe (1971). Miles

(1961) and Howard (1961) have provided a theoretical stability criterion for a parallel shear

flow in an inviscid, incompressible fluid with variable density ρ(z) under static stability (i.e.

∂ρ(z)/∂z < 0). By employing theoretical arguments they showed that in a heterogeneous

(stratified) shear flow the sufficient conditions for stability are a non-zero mean shear rate

(S = dU/dz 6= 0) and Rig > 0.25. Klebanoff et al. (1962) ran experiments to reveal the

nature of motions in the non-linear range of boundary layer instability and the onset of
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turbulence. They have shown that the three-dimensional effect should be taken into account

while investigating the non-linear wave motions and the instability phenomenon in a shear

boundary layer flow. Thorpe (1971) used miscible two-layer fluid of water and brine to ex-

perimentally investigate the instability for small-amplitude disturbances in an accelerating

stratified shear layer and characterized the instability and transition to turbulence. Also,

numerous examinations are performed to classify the breaking events as a result of internal

waves interacting with bottom topographic features. Eriksen (1985) and Garrett & Gilbert

(1988) studied the internal wave reflection from sloping boundaries and discussed that this

reflection can cause the enhancement of the mean shear leading to shear instabilities.

One of the first published works discussing observed values for critical gradient Richard-

son number (Rigc) in oceanic flows appears to be that of Woods (1968). Eriksen (1978) used

the critical gradient Richardson number as a local indicator of fine structure instabilities in

the ocean. His measurements of mooring off a sloping bed in Bermuda showed a reduction of

density below lines of N2 = 0.25S2. However, whether a flow will transition into turbulence

and the shear instability will occur or not, when the wave breaking criterion (Rigc = 0.25)

is satisfied for development of a Kelvin-Helmholtz instability, does not only depend on the

value of the gradient Richardson number being below the critical value, but is also a func-

tion of time. There are circumstances when Rig is trespassing the critical value, but before

overturning can occur, the mean shear relaxes. Fringer & Street (2003) numerically stud-

ied a progressive wave. For some flow regimes, they have observed a much lower critical

Richardson number as Rigc = 0.13 compared with 0.25, indicating that waves might still

travel without breaking with gradient Richardson numbers less than the critical value 0.25.

Sveen et al. (2002) studied an internal wave interacting with a submerged ridge and showed

that as long as Rig ≥ 0.25 no shear instability occurs, however in the strong breaking or the

initial phase of wave-ridge encounter, shear instabilities were created. Also the numerical

work of Barad & Fringer (2010) which simulated shear instabilities in internal solitary-like

waves showed that a much lower critical value of Rig = 0.1 is required for the onset of shear

instabilities.

28



Shear instabilities are not easy to observe in field since fine-scale turbulent structure is

difficult to measure. Sandstrom & Oakey (1995) associated high turbulence with a highly

sheared subsurface interface, although the details of the gradient Richardson number were

not clear. Several researchers such as Woods (1968), Armi & Farmer (1988), Gossard (1990)

have measured field shear instabilities but it was Moum et al. (2003) that clearly measured

Kelvin-Helmholtz instabilities. They studied the structure within the shear-induced decaying

solitary waves propagating over Oregon’s continental shelf. The measurements depict trains

of near-surface, solitary-like waves of depression that propagate in the absence of significant

shoaling effects, with clear signatures of shear instabilities that are the primary source of

turbulence and dissipation. Their observations show that the shear is sufficiently high to

create explosively growing, small wavelength shear instabilities and have conjectured that

they are the possible source of Kelvin-Helmholtz billows.

The aim of understanding the breaking and instability event in stratified flows is to be

able to infer turbulent mixing. In the next section, a review of the turbulent mixing is

discussed.

2.7. Turbulent Mixing

The ability of turbulent flows to effectively mix mass and momentum in the environment

is vital to the dynamics of such flows with wide-span consequences in nature and engineered

applications. Eckart (1948) considered turbulent mixing to be a three-stage process of en-

trainment, dispersion (stirring) and diffusion. Three levels of turbulent mixing are known to

occur in nature namely: passive mixing, mixing coupled with the dynamics of the fluid and

mixing that causes changes to the fluid (Dimotakis 2005). For the first and simplest case,

mixing is passive as is the case between passive scalars. Mixing of matched-density gases,

ink or low-concentration dyes in a liquid, small particle smoke/clouds are examples of this

type of mixing. Such a simple mixing does not feed back on the flow dynamics, therefore

a correct prediction of the mixing is not required to describe flow dynamics, although the

mixing is driven by the turbulent flow. The second level of mixing is coupled with the flow

29



dynamics, such as mixing between fluids of different densities, mixing of temperature and

density fields in large oceanic currents (Adkins et al. 2002, Wunsch & Ferrari 2004). Hence,

prediction of flow dynamics and mixing are coupled. The third and most complex mixing is

also coupled to the fluid dynamics and happens when as a result of mixing of fluids, changes

are produced to fluids properties such as in density, composition, etc. Examples are most of

combustion phenomena or processes taking place in stellar bodies resulting to the production

of light elements from heavy ones.

The second level mixing can be regarded as the most important one influencing the life

and climate on the Earth. A great example of this type of mixing is mixing in stratified

flows (stable or unstable). Due to misalignment between the density and pressure gradients, a

baroclinic vorticity field is generated and represented as an independent term in the vorticity

equation (Petersen et al. 2007). The baroclinic vorticity drives internal instability that

can increase scalar- or density-isosurfaces (surfaces of constant density) generation which

ensues mixing. The mixing along isopycnals can be approximated by using two-dimensional

turbulence models (Pasquero et al. 2001), but mixing across the isopycnals (i.e. diapycnal

or vertical mixing) presents a special modeling challenge and requires additional time and

space scales introduction (Riley & Lelong 2000).

In the ocean, the turbulent mixing is a ubiquitous phenomenon and is commonly con-

jectured as a direct consequence of internal waves breaking. Without turbulent mixing, in

a few thousand years the ocean would be a cold, salty pool (Munk & Wunsch 1998). The

average turbulent diffusivity (κt) based on the balance between mixing and the deep-water

upwelling is predicted to be roughly 10−4m2s−1, but Munk & Wunsch (1998) showed that

the turbulent diffusivity (κt) in the ocean far from the boundaries is about 10−5m2s−1. A

plausible source for the mixing energy required to maintain the oceanic structure could be

from internal waves interacting with undersea topography (Munk & Wunsch 1998). There-

fore a great deal of work focuses on induced mixing by internal waves such as Ivey & Nokes

(1989), Helfrich (1992), Michallet & Ivey (1999), Slinn & Riley (1996), Wunsch & Ferrari

(2004), Chen (2008) and Hult et al. (2011).
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It is essential to quantify the absolute amount of mixing but its efficiency is of more

importance, which is usually quantified by using the definition of the flux Richardson number

(Rf ) or mixing efficiency. The mixing efficiency is defined as the ratio of the increase in the

potential energy due to mixing to the loss of the kinetic energy as

Rf =
∆PE

∆KE
. (40)

The common formulation for the flux Richardson number (Rf ) is defined as the ratio of

the buoyancy flux B = −g/ρ0(ρ′w′) and the turbulent kinetic energy production rate P =

−u′w′(dU/dz) as

Rf =
−B

P
. (41)

The major drawback is that this definition of Rf can be negative in non-stationary flows

(Venayagamoorthy & Stretch 2010) or highly stratified channel flows where countergradi-

ent buoyancy fluxes are observed (Armenio & Sarkar 2002) and exceed 1 for high gradient

Richardson numbers (e.g. Garćıa-Villalba & del Álamo 2011). Peltier & Caulfield (2003)

discussed that the mixing efficiency should be calculated based on irreversible mixing and

viscous dissipation of the turbulent kinetic energy (ǫ) as

R∗
f =

ǫPE

ǫ+ ǫPE

, (42)

where ǫPE = N2ǫρ(dρ/dz)
−2 is the dissipation rate of the turbulent potential energy, with

ǫρ = κ∇ρ′.∇ρ′ defined as the scalar variance dissipation rate. As the dissipation rate of the

turbulent kinetic energy (ǫ) and the turbulent potential energy dissipation rate (ǫPE) are

positive-definite, then the irreversible definition requires that 0 ≤ R∗
f ≤ 1.

The correct prediction of Rf is a sought-after demand and still an open question. In

numerical modeling of stratified flows, Rf is directly required for proper calculation of the

turbulent (eddy) viscosity and diffusivity. Hence, it is a key parameter for modeling geo-

physical flows (Pardyjak et al. 2002). Experimental and numerical works are carried out to

infer Rf . For example, Ivey & Nokes (1989) used laboratory experiments to examine the

mixing due to the breaking of internal waves in a continuously stratified fluid on a sloping
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boundary by confining the attention to critical waves when the slope of the group velocity

of incident waves is equal to the bottom slope. They measured the mixing efficiency in the

breaking process with the upper limit of approximately 20%. Linden & Redondo (1991) cre-

ated a pure Rayleigh-Taylor instability by overlying brine over fresh water, which resulted

in overturning. This method could provide a convenient way to see how much of the initial

potential energy was used to mix the fluid and what portion was dissipated by viscosity. The

mixing efficiency for such an experiment can be 0 ≤ Rf ≤ 0.5. Surprisingly, the results show

that for different Atwood numbers (At = (ρ2 − ρ1)/(ρ2 + ρ1), where ρ2 is the density of the

heavier fluid) even the maximum value is attainable. Also, for high Atwood numbers it was

observed that Rf ≃ 0.35. Helfrich (1992) ran experiments on the solitary depression wave

interacting with a uniform slope in a two-layer system and observed breaking and production

of turbulent surges traveling upslope. His measurements revealed that about 15± 5% of the

first mode wave breaking energy goes into irreversible vertical mixing. Stretch et al. (2010)

used data from towed grid experiments and DNS data of decaying turbulence for different

stratifications. Both experimental and DNS results showed an increasing trend for low strat-

ifications and constant values for high stratifications. However, while the DNS data suggest

a maximum flux Richardson number of 30%, the experimental results give about 6%.

As it is evident from different investigations, to date there is no general consensus on a

universal parameterization for Rf . This is due to lack of evidence on what the behavior of

Rf should be under very strong stratifications in high Reynolds number flows (Karimpour &

Venayagamoorthy 2014). Laboratory experiments and direct numerical simulations remain

inconclusive about this issue due to Reynolds number limitations. Field experiments tend

to show quite a bit of scatter due to difficulties to measure Rf as well as contamination from

other processes such as internal waves. It is typical to use a constant flux Richardson number

to infer mixing, but there is a lack of consensus on its value, e.g. Rf ≤ 0.17 is introduced

by Osborn (1980) or Oakey (1982) introduced a highly variable value of Rf ≃ 0.206± 0.174

and Lilly et al. (1974) estimated Rf ≃ 0.25.

32



On the other hand, evidences suggest that the flux Richardson number (Rf ) has to be

a function of forcing and stratification (Ivey et al. 2008). Therefore a dynamic expression

for Rf is required. Mellor & Yamada (1982) proposed a flux Richardson number (Rf ) as a

function of the gradient Richardson number (Rig) as

Rf = 0.725[Rig + 0.186− (Ri2g − 0.316Rig + 0.0346)0.5], (43)

which suggests Rf . 0.25. Nakanishi (2001) has used LES simulations to slightly improve

Mellor & Yamada (1982) formulation with a maximum flux Richardson number of 0.3.

2.8. Summary

This chapter has provided a brief overview on some fundamental aspects of turbulence

modeling methods, wall-bounded flows, the breaking and mixing. Also, a brief review of

investigations (field, laboratory experiments and numerical simulation results) focusing on

these subjects was provided. In the next chapter, we focus on unstratified near-wall turbu-

lence by using analytical arguments.
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CHAPTER 3

Equilibrium Assumption for Unstratified

Wall-Bounded Turbulence

In this chapter a discussion and description of near-wall turbulence is presented. In

section 3.1 the near-wall turbulence in an unstratified turbulent channel flow is revisited using

the equilibrium assumption and the relevant length, velocity and time scales are derived. The

propositions are examined using DNS data of unstratified channel and boundary layer flows.

In section 3.2, the proposition of the standard k-ǫ model for the turbulent viscosity which

is developed based on the equilibrium assumption is analytically revisited and its suitability

for modeling near-wall turbulence is investigated.

3.1. Unstratified Channel Flow1

3.1.1. Introduction. Unstratified wall-bounded turbulent flows are prevalent in many

engineered and natural flows such as turbulent flow in channels, pipelines and rivers. The

presence of the solid wall has profound effects on the transport of momentum, mass and

heat. As such, it is not surprising that the subject of near-wall modeling has received much

attention in the last few decades. However, modeling the near-wall effects is not trivial due to

the highly inhomogeneous and anisotropic nature of the flow in the ‘near-wall’ region, which

can be considered to be the most volatile region of the turbulent boundary layer where most

of the turbulence is produced. Turbulence closure schemes such as the k-ǫ model (Launder

& Spalding 1972) are often used in Reynolds-averaged Navier-Stokes (RANS) numerical

simulations to model turbulence in wall-bounded flows. Such models use the turbulent-

viscosity hypothesis to link the turbulent momentum flux (Reynolds stresses) with the mean

shear rate (S) through a turbulent (eddy) viscosity (νt). For example, in a uni-directional

shear flow (such as in a turbulent channel flow) with a mean streamwise velocity
(
U
)
, and

1The results presented in this section have been published in substantial part as “Some insights for the

prediction of near-wall turbulence” by F. Karimpour and S. K. Venayagamoorthy, in the Journal of Fluid

Mechanics, Vol. 723, pp 126-139, 2013. This chapter is written in a collective “we” tense to acknowledge

collaborative work with the co-author.
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taking z as the wall-normal coordinate, the turbulent momentum flux is given by

u′w′ = −νt
dU

dz
= −νtS, (44)

where the mean shear rate S = dU/dz. There are a number of different closure schemes

that have been developed to model νt, but two-equation models such as the k-ǫ model,

have emerged to be the most widely used complete closure schemes (Pope 2000, Durbin &

Pettersson Reif 2011).

Wall-bounded flow (specifically channel flow) can be categorized into two main regions:

an inner region and an outer region. The inner region can be further subdivided into three

different layers namely: the viscous sublayer for z+ < 5, buffer layer for 5 < z+ < 30

and the log-law region (constant-stress region that overlaps the inner and outer regions) for

z+ > 30, where z+ is the wall unit defined as z+ = uτz/ν with uτ , z and ν defined as the

friction velocity, distance from the wall and the molecular (kinematic) viscosity, respectively

(Pope 2000). The viscous sublayer and buffer layer together are classified as the near-wall

(or viscous wall) region since viscosity is important and the energetic and dissipative scales

overlap (Jiménez & Moser 2007). There have been numerous discussions on the appropriate

velocity scale for both the inner and outer flow regions. The velocity scale that is assumed to

be common to both regions of the flow is the friction velocity (uτ ). However, the length scales

are different; in the inner region, it is the viscous length scale (ν/uτ ) that is relevant while

in the outer region, the boundary layer thickness is considered to be the appropriate length

scale. Such arguments (in the limit of infinite Reynolds number) give rise to the logarithmic

law for the mean velocity profile and are now commonly referred to as the “classical” scaling

(Jones et al. 2008). Some recent review papers by Marusic et al. (2010), Smits et al. (2011),

George (2007) and Gad-el-Hak & Bandyopadhyay (1994) provide comprehensive reviews on

wall-bounded turbulent flows that highlight the issue of inner and outer scales of the flow

and their universality.

In this study, the focus is on the near-wall predictability of turbulence. Although the

thickness of the near-wall region is two or more orders of magnitude smaller than the total
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flow depth, its effect extends throughout the whole flow as almost 50% of the total flow ve-

locity from the wall to the free surface occurs in this thin region (Hanjalić & Launder 1976).

The remaining velocity differences mostly occur in the logarithmic layer. Therefore under-

standing the flow behavior in the near-wall region is essential for modeling the turbulence.

To this end, direct numerical simulations (DNS) have been used extensively to study the

kinematics and dynamics of wall-bounded flows (for a recent in-depth review, see Jiménez

2012). Near the wall, the mean shear rate is very high and the local Reynolds number is

low due to viscous effects. However, Durbin (1991) argued that the low-Reynolds-number

effect is not as important as the wall blocking effect which results from the impermeability

condition at the wall (i.e. zero normal velocity). All of the above conditions make this thin

layer very interesting to study and highlight the complexity involved in modeling the flow in

the near-wall region compared to free shear flows.

The difficult and costly problem of resolving the very thin near-wall layer at high Reynolds

number can be avoided by using wall functions which requires the existence of a log-law region

where production and dissipation of turbulence are nearly in balance. For example, in the

standard k-ǫ model, νt is then calculated as

νt = Cµ
k2

ǫ
, (45)

where k is the turbulent kinetic energy, ǫ is the dissipation rate of the turbulent kinetic energy,

and Cµ = (|u′w′|/k)2 is the turbulent viscosity parameter (constant) and usually assumed

to be 0.09 in the constant-stress (log-law) region. This result for the turbulent viscosity

can be derived through a number of ways but it can be simply inferred from dimensional

analysis by assuming that the characteristic velocity scale is k1/2 and the characteristic time

scale is TL = k/ǫ. The turbulent viscosity formulation with a constant Cµ works well above

the near-wall region, but as discussed by Durbin (1991) and indicated in Figure (3.1), it

overpredicts the turbulent viscosity (νt) in the near-wall region even when Cµ is almost half

of the commonly assumed value of 0.09. The results shown in Figure (3.1) are computed

from the channel flow DNS data of Hoyas & Jiménez (2006) at a friction Reynolds number
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Figure 3.1. Comparison of the exact turbulent viscosity and the k-ǫ predic-
tion in a turbulent channel flow at Reτ=2003, computed from the DNS data
of Hoyas & Jiménez (2006).

Reτ=2003. The turbulent viscosities have been computed using both the exact definition

obtained from equation (44) and the k-ǫ formulation given in equation (45) with the exact

k and ǫ values from the DNS. Durbin & Pettersson Reif (2011) denote such comparisons as

‘a priori’ tests.

This severe shortcoming has made it essential to make modifications to the k-ǫ model to

correctly capture the near-wall behavior. Attempts to model the near-wall effects date back

to van Driest (1956) who used a damping function to reduce the turbulent viscosity near

the wall. A damping function is the ratio of the exact turbulent viscosity to the turbulent

viscosity predicted by the turbulence model given by

fµ =
νt

Cµ
k2

ǫ

. (46)

Since then numerous proposals have been made to reduce the turbulent viscosity in the near-

wall region. Some of the commonly cited formulations include those by Jones & Launder

(1973), Lam & Bremhorst (1981), Patel et al. (1985), and Rodi & Mansour (1993). Most

of these formulations use damping functions (sometimes loosely referred to as low-Reynolds-

number models) that are based on z+ and/or uτ , and tend to be generally ineffective. Durbin
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(1991) rejected the notion of using arbitrary damping functions to overcome the deficiency

of the k-ǫ model. He pointed out that the k-ǫ formulation is isotropic while the near-wall

turbulence is anisotropic, and argued that it is the wall-normal turbulent velocity which

is responsible for transport. He proposed the so-called k-ǫ-v2 model which is essentially

an elliptic relaxation model that allows for a representation of the wall blocking effect.

It involves the solution of a fourth-order (i.e. a four-equation model) coupled system of

differential equations in order to calculate the turbulent viscosity as

νt = c′µw
′2
k

ǫ
, (47)

where c′µ is a constant with a suggested value of 0.20 (Durbin 1991). It is important to

note that in the k-ǫ-v2 model, the velocity scale is chosen as v2 (a model for the variance

of the wall-normal component of turbulent velocity w′2), while the time scale is still chosen

to be TL, like in the standard k-ǫ formulations given in equation (45) or equation (46)

with a lower bound set by the Kolomogorov time scale (Tη = (ν/ǫ)1/2). This model agrees

well with the DNS data especially in the near-wall region, but is sensitive to the choice

of c′µ away from the near-wall region as shown in Figure (3.2). It must be noted that

this model has been shown to successfully predict different complex flows (for more details,

see Pope 2000 and Durbin & Pettersson Reif 2011). A lot of the more recent works have

focused on developing wall conditions for large-eddy simulations (LES) (see e.g. Kawai &

Larsson 2012). In the RANS context, some recent work includes that of Kalitzin et al.

(2005) where implications for the development of wall functions are discussed. Other recent

RANS turbulence modeling efforts include near-wall corrections to account for low-Reynolds-

number effects near the wall (Rahman & Siikonen 2005) and turbulent viscosity formulations

proposed for the atmospheric boundary layer by Wilson (2012).

Our main goal is to highlight some insights that may be useful for modeling near-wall

turbulence in closure schemes. We do this by revisiting the turbulent kinetic energy equation

for a turbulent channel flow in order to propose a revised formulation for the turbulent

viscosity, and hence derive more appropriate velocity, length and time scales. In section 3.1.2,
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Figure 3.2. Comparison of the exact turbulent viscosity and the k-ǫ-v2 model
prediction in a turbulent channel flow at Reτ=2003, computed from the DNS
data of Hoyas & Jiménez (2006). Curves for different c′µ values are shown.

we present the evolution equation of the turbulent kinetic energy, followed by a proposal for

the turbulent viscosity by extending the equilibrium assumption to the near-wall region.

This is followed by a discussion on relevant velocity, length and time scales. In section

3.1.3, ‘a priori’ tests using DNS data are presented to highlight the validity of the revised

formulation. Conclusions are given in section 3.1.4.

3.1.2. Parameterization of the Turbulent Viscosity.

3.1.2.1. Turbulent Kinetic Energy Equation. The evolution equation for the turbulent

kinetic energy (k) for an inhomogeneous constant density shear flow can be written as (using

the Einstein summation convention)

∂k

∂t
+ Uj

∂k

∂xj

= P − ǫ+Dν + T +Π, (48)

where P = −u′
iu

′
j∂Ui/∂xj is the production rate of the turbulent kinetic energy (k), ǫ =

ν(∂u′
i/∂xj)(∂u′

i/∂xj) + ν∂2(u′
iu

′
j)/∂xj∂xj is the dissipation rate of k, Dν = ν∂2k/(∂xj∂xj)

is the viscous transport of the turbulent kinetic energy, T = −(1/2)∂(u′
ju

′
iu

′
i)/∂xj is the

turbulent velocity transport of k and Π = −(1/ρ0)∂(p′u′
j)/∂xj is the pressure transport
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of k, respectively. It is worth noting that all the three transport terms arise due to the

inhomogeneity in the flow.

3.1.2.2. Turbulent Viscosity and Appropriate Velocity Scale. For steady fully developed

turbulent channel flow, equation (48) simplifies to

−u′w′
dU

dz
= ǫ−Dν − T − Π, (49)

where now the transport terms are also simpler (for details see e.g. Pope 2000). Equation

(49) implies that the production of k is balanced by the dissipation and transport of k in the

flow. Using the turbulent-viscosity hypothesis, P can be replaced with νtS
2 and rearranging

gives an expression for the turbulent viscosity as

νt = (ǫ−Dν − T − Π)/S2. (50)

Evidence from DNS data (dating back to the seminal DNS of channel flow by Kim et al.

1987) shows that in the near-wall region (especially in the buffer region), the dominant

terms are P and ǫ, while the transport of k is substantially impeded. Suppose we make the

assumption to neglect all the transport terms in the near-wall region (i.e. assume equilibrium

in the near-wall region), then equation (50) simplifies to

νt ≈ ǫ/S2. (51)

The turbulent viscosity given by equation (51) can be defined as an irreversible momentum

diffusivity since it is based on ǫ, which is an irreversible quantity in the turbulent kinetic

energy budget (Venayagamoorthy & Stretch 2010). Equation (51) also directly follows from

the turbulent-viscosity hypothesis (equation 44), once the equilibrium assumption is made.

However, let us also take a slightly long-winded path using the turbulent viscosity formulation

from a dimensional point of view, to illustrate how equation (51) is also equivalent to equation

(45). Dimensional reasoning suggests that the turbulent viscosity should be given by

νt = UTV HLTV H = U2
TV HTTV H = L2

TV H/TTV H , (52)
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where UTV H is a characteristic velocity scale, LTV H is a characteristic mixing length scale

(which will be discussed later), and TTV H is a characteristic time scale in the context of

the turbulent-viscosity hypothesis (TVH). Pope (2000) suggested that a favorably disposed

specification for the velocity scale is

UTV H = |u′w′|1/2. (53)

In the context of two-equation models, a good choice as also suggested by Kolmogorov (1942)

is to base the velocity scale on k as

UTV H = ck1/2, (54)

where c is usually assumed to be a constant. However, it is easy (and important) to note

from equation (53) and equation (54) that c is given as the square root of the stress-intensity

ratio

c =

(
|u′w′|

k

)1/2

. (55)

In the constant-stress region (i.e. in the log-law region in wall-bounded flows), c ≈ 0.55,

based on empirical evidence that the stress intensity −u′w′/k ≈ 0.3 in this region. However,

elsewhere it should hold as a dynamic ‘constant’. Using the turbulent-viscosity hypothesis

given in equation (44), c can be expressed as

c =

(
νtS

k

)1/2

=

(
P

Sk

)1/2

, (56)

where the production P = -u′w′S = νtS
2. The quantity P/(Sk) is the ratio of the mean

shear time scale (1/S) to the turbulence production time scale (k/P ). Hence, for equilibrium

flows (when P ≈ ǫ), this simplifies to

c ≈
( ǫ

Sk

)1/2

=
1

(STL)1/2
. (57)
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2 in a turbulent channel flow at
Reτ=2003, computed from the DNS data of Hoyas & Jiménez (2006). Cµ=0.09
is also shown for comparison.

At this point, it follows that the turbulent viscosity constant (Cµ) in equation (45) is given

by

Cµ = c4 ≈
1

(STL)2
. (58)

We note that equation (45) is therefore equivalent to equation (51) if Cµ is given by equation

(58). The assertion in equation (58) can be tested using DNS data. Figure (3.3) shows

the behavior of Cµ = (1/STL)
2 (computed from the DNS data) and Cµ = 0.09. The exact

value νtǫ/k
2 computed from the DNS data is also shown. First, it is remarkable to see the

excellent agreement between the curves given by equation (58) and the exact computation,

especially in the near-wall region, indicating that the assumption made in neglecting the

transport terms to arrive at equation (51) seems to be valid. Second, as already shown in

Figure (3.1), it is not surprising that the exact quantity is very disparate from the usually

assumed constant value of 0.09 for Cµ, especially close to the wall.
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Furthermore, substitution of the expression for c given by equation (57) in equation (54)

indicates that the appropriate velocity scale should be prescribed as

UTV H ≈ US =

(
1

STL

k

)1/2

=
( ǫ

S

)1/2

, (59)

where STL is the ratio of the turbulence decay time scale (TL) to mean shear time scale

(1/S). As a side note, it is worth noting that when STL → ∞, the turbulence (fluctuations)

in homogeneous shear flows can be described by rapid-distortion theory (see e.g. Pope 2000

for a detailed discussion), while for STL → 0, turbulence production and turbulent viscosity

vanish. This limit is nicely discussed in Pope (2000) using the so-called return-to-isotropy

models. The behavior of STL obtained from channel flow DNS data at Reτ=2003 (Hoyas &

Jiménez 2006) is shown in Figure (3.4). It is clear that STL increases rapidly in the buffer

layer in the near-wall region with a maximum value just greater than 18 at a distance of

z+ ≈ 8. In essence, STL serves as the anisotropic correction scale in the near-wall region

to the original velocity scale based on k that is used in the k-ǫ model. We also note that

further away from the wall (in the far outer region, z+ ∼ 1000), the agreement between the

exact curve and (1/STL)
2 shown in Figure (3.3) diverges. This is clearly expected as the

mean shear rapidly drops to zero beyond the log-law region.

3.1.2.3. Relevant Length and Time Scales. Here we extend our discussion to the relevant

length scale and time scale that are inherent in the turbulent viscosity formulation that

was presented in the previous section. From equation (52) in section 3.1.2.2, it is clear

that a number of different length, time and velocity scales can be combined to obtain a

dimensionally consistent turbulent viscosity. However, the critical issue in the context of

near-wall modeling is that the classical scales (i.e. L = k3/2/ǫ, TL = k/ǫ and U = k1/2)

that two-equation models are based on do not seem to capture the near-wall behavior of

the turbulent viscosity in a wall-bounded shear flow. Using the appropriate velocity scale

obtained in equation (59), the corresponding length scale (LTV H) can be back calculated
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from equation (51) as follows

LTV H =
νt

UTV H

≈
ǫ/S2

(k/STL)1/2
=
( ǫ

S3

)1/2

. (60)

This is indeed the shear length scale (LS), sometimes referred to as the Corrsin scale as

he was the first to allude to this scale in his discussion on local isotropy in turbulent shear

flows (Corrsin 1958). It is considered as the relevant scale that marks the start of the inertial

subrange in turbulent shear flows (e.g. see Pope 2000). Conceptually, it can be thought of as

the smallest scale at which eddies are strongly deformed by mean shear. The corresponding

time scale is given by

TTV H =
νt

U2
TV H

=
1

S
. (61)

We shall denote this time scale as TS. This might perhaps appear as a surprising result since

it implies that the relevant time scale is governed by the mean shear rate (S) and not TL as

used in the formulations for the models given in equation (45) and equation (47). However, it

is not at all surprising once we recognize that if k1/2 is the wrong velocity scale (as suggested
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by Durbin 1991), then it must also mean that TL will be the wrong time scale. Furthermore,

this is obvious once we recall that S is implicit in the turbulent-viscosity hypothesis. In

other words, TL needs a similar anisotropic correction as the velocity scale, i.e. in this case

by a factor of (STL)
−1.

It is constructive here to revisit the turbulent viscosity formulation proposed by Durbin

(1991) as shown in equation (47). We will assume that equation (51) is valid for now and

test this validity later (in section 3.1.3.1) using DNS data. Using equation (51) and assuming

(for the purpose of this exercise) that TL is the appropriate time scale (noting that this is

the time scale assumed in the k-ǫ model), the corresponding velocity scale can be backed

out as follows

νt =
ǫ

S2
= U2

MTL = U2
M

k

ǫ
, (62)

which can be rearranged to get the expression for velocity as

UM =
1

STL

k1/2. (63)

The corresponding length scale can also be obtained in a similar manner as

LM =
k1/2

S
=

1

STL

k3/2

ǫ
. (64)

Venayagamoorthy & Stretch (2010) indicated that LM can be considered as a rough measure

of the active turbulent fluctuations in momentum and can be interpreted as the approximate

measure of the average eddy size. Note, using LM and TL, equation (51) can also be expressed

as νt = L2
M/TL. Now if equation (51) is indeed a good approximation to the actual turbulent

viscosity, then it should also be approximately equal to the turbulent viscosity obtained from

equation (47). Equating these two equations reveals the following relationships

UM ≈ (c′µw
′2)1/2, (65)

LM ≈ (c′µw
′2T 2

L)
1/2. (66)
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Essentially, the terms on the right hand side of equation (65) and equation (66) can be

considered as the pertinent (effective) velocity and length scales in the k-ǫ-v2 model of

Durbin (1991). We test the validity of these relationships in the next section.

3.1.3. ‘A priori’ tests using DNS data. In this section we test the validity of the

proposed model for the turbulent viscosity given by equation (51). We then compare the

velocity scale (US) and length scale (LS) with the exact velocity scale (UTV H), and the exact

mixing length scale (LTV H = |u′w′|1/2/S) using DNS data of turbulent channel flow. We also

compare the relationships proposed in equation (65) and equation (66). Comparisons with

DNS data of turbulent boundary layer flows are also presented to highlight the applicability

of the proposed model to other canonical wall-bounded turbulent flows.

3.1.3.1. Turbulent Viscosity Comparisons in Turbulent Channel Flow. Figure (3.5) shows

the ‘a priori’ comparison between the exact turbulent viscosity obtained from equation (44)

and the proposed approximation given in equation (51). The excellent agreement in the near-

wall region is remarkable, especially given the fact that all the transport terms were neglected

in arriving at equation (51). This implies that the transport terms are not as important as

the production and dissipation terms in the near-wall region, at least as far as modeling

the mixing in the near-wall region is concerned. We note that the turbulent viscosity given

by equation (51) can be expressed in non-dimensional form as a shear Reynolds number

(ReS = ǫ/(νS2)). Therefore, ReS provides a very good measure of the intensity of turbulent

mixing in unstratified shear flows.

3.1.3.2. Comparisons of Velocity and Length Scales in Turbulent Channel Flow. Figure

(3.6) shows the comparison of velocity scales and length scales discussed in section 3.1.2.

First, the comparison between the exact velocity scale (UTV H) and the proposed velocity

scale (US) given by equation (59) is very good in the near-wall region (see Figure 3.6a).

The corresponding comparisons between LTV H and LS given by equation (60) as shown in

Figure (3.6b) is almost perfect in the near-wall region. In essence, these results clearly show

that LS, TS and US are the appropriate turbulent scales that capture the behavior of the

near-wall turbulence.
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Figure 3.6. Comparison of (a) velocity scales; and (b) length scales in a
turbulent channel flow at Reτ=2003, computed from the DNS data of Hoyas
& Jiménez (2006). Note c′µ=0.18 was used in equation (65) & equation (66),
respectively.

Figures (3.6a) and (3.6b) also show the comparisons between UM given by equation (63)

with the right hand side term in equation (65) and between LM given by equation (64)
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Figure 3.7. Comparison of (a) the exact turbulent viscosity and the pre-
diction given by equation (51); (b) velocity scales; and (c) length scales in a
turbulent boundary layer flow at Reθ ≈6500, computed from the DNS data of
Sillero et al. (2013).

with the right hand side term in equation (66), respectively. Note, we have used c′µ=0.18,

since this value gave the best agreement with the DNS results shown in Figure (3.2). The

close agreement between these scales indicate that LM and UM may be considered to be the

pertinent length and velocity scales embedded in the k-ǫ-v2 model. However, if a comparison

is done between (w′2)1/2 and UTV H (shown in section 3.2), it becomes evident that (w′2)1/2 is

a good choice for the velocity scale in the near-wall region but it deviates faster from UTV H

than US does. This means that the constant c′µ in the k-ǫ-v2 model is equivalent to a time

scale correction factor such that c′µTL is by construction designed to mimic the behavior of

the appropriate time scale TS = 1/S, in order to predict the correct turbulent viscosity in

the near-wall region.

3.1.3.3. Comparisons in Turbulent Boundary Layer Flow. Figure (3.7a) shows the ‘a

priori’ comparison between the exact turbulent viscosity obtained from equation (44) and

the proposed approximation given in equation (51) using DNS data of turbulent boundary

layer flow (Sillero et al. 2013) at a Reynolds number based on the momentum thickness

of Reθ ≈ 6500. Similar to the channel flow comparison shown in Figure (3.5), there is

excellent agreement in the near-wall region. Furthermore, the agreement between the exact

velocity scale (UTV H) and the proposed velocity scale (US) is very good as shown in Figure
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(3.7b). The corresponding comparisons between the length scales (LTV H) and (LS) shown

in Figure (3.7c) are in excellent agreement in the near-wall region similar to the channel

flow comparisons shown in Figure (3.6b). We note that comparisons (not shown) with DNS

data of pipe flow at relatively low-Reynolds-number of Reτ=190 based on the pipe radius

show good agreement (Loulou et al. 1997). The highest Reynolds number DNS of pipe flows

to date were done by Wu & Moin (2008) but unfortunately, the dissipation rate of k was

not sampled and hence we were unable to verify the proposed scaling at higher Reynolds

numbers that are comparable to the channel and boundary layer flows discussed in this study.

Regardless, these results indicate that the proposed scaling is widely applicable to turbulent

wall-bounded flows.

3.1.3.4. Implications at Higher Reynolds Numbers. The turbulent channel and boundary

layer flow DNS data that have been used to test the proposed scaling have (to our knowledge)

the highest Reynolds numbers to date. However, they are still well below the Reynolds

numbers of most practical flows. There are higher Reynolds number pipe flow experiments

(see e.g. the Princeton Superpipe experiments by Zagarola & Smits 1998 and McKeon et al.

2004) that have a significant logarithmic region but due to constraints of measurements very

close to the wall do not have turbulence fluctuation statistics near the wall. However, we

performed comparisons (not shown here in order to avoid repetition) of the proposed scaling

with DNS of channel flow data at lower Reynolds numbers (Kim et al. 1987, Moser et al.

1999 and del Álamo et al. 2004). The agreement gets consistently better with increasing

Reτ , which is a promising trend, suggesting that the proposed prediction should hold true

at even higher Reynolds numbers that typifies relevant practical flows.

3.1.4. Concluding Remarks. In this study, we have made the equilibrium assump-

tion (i.e. P ≈ ǫ) to propose that the turbulent viscosity νt ≈ ǫ/S2. We have then ar-

gued by revisiting the turbulent viscosity formulation that the appropriate velocity scale

is US = (STL)
−1/2k1/2 = (ǫ/S)1/2 as opposed to the classical scale of k1/2. We then ex-

tended our analysis to show that the corresponding appropriate length and time scales are

LS = (ǫ/S3)1/2 and TS = 1/S, respectively. The comparisons between the proposed scales
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and the exact scales computed from the most highly resolved turbulent channel flow DNS

dataset to date show remarkable agreement. The agreement with DNS data of turbulent

boundary layer flow is also very good. To our knowledge, this appears to be the first time

such results have been reported for describing the behavior of near-wall turbulence. We

have also provided some insights on the pertinent velocity, length and time scales that are

inherent in the k-ǫ-v2 model proposed by Durbin (1991).

In essence, these results highlight how well the equilibrium assumption holds in the

near-wall region. We evaluate the effect of equilibrium assumption on developing near-wall

turbulence models in next section. Another obvious extension to this work is to study

the effects of density stratification in wall-bounded shear flows. This adds another level of

complexity through the coupling between the equations for the turbulent kinetic energy and

density fluctuations via the buoyancy flux term. This aspect is what forms the subject of

chapter 4 of this dissertation.

3.2. Revisit of Equilibrium Assumption2

3.2.1. Introduction. Reynolds-averaged Navier Stokes (RANS) turbulence models such

as the k-ǫ closure scheme (Launder & Spalding 1972) commonly use the turbulent-viscosity

hypothesis (hereafter TVH) to simulate wall-bounded flows. In these models, the Reynolds

stresses are linked with the mean shear rate (S) through the turbulent (eddy) viscosity (νt).

For a one-dimensional shear flow, νt is given by

νt =
−u′w′

dU/dz
, (67)

where U is the mean streamwise velocity and z is the vertical distance from the wall. Within

the context of the TVH, dimensional reasoning can be used to recast νt in terms of charac-

teristic scales of velocity (UTV H), length (LTV H) and time (TTV H) as

νt = UTV H .LTV H = U2
TV H .TTV H = L2

TV H/TTV H . (68)

2The results presented in this section can be found in a paper entitled “A revisit of the equilibrium

assumption for predicting near-wall turbulence” by F. Karimpour and S. K. Venayagamoorthy, that is

currently in press for publication in the Journal of Fluid Mechanics.
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Pope (2000) suggested that a favorable velocity scale for turbulent flows is UTV H = (−u′w′)1/2

which consequently results in the characteristic length scale as LTV H = (−u′w′)1/2/S and

the characteristic time scale as TTV H = TS = 1/S. It should be noted that these derived

scales are only the relevant scales of the flow within the framework of the TVH and should

not be interpreted as the scales of turbulence.

In some turbulence closure schemes such as the standard k-ǫ model which is the most

commonly used two-equation closure scheme (Pope 2000, Durbin & Pettersson Reif 2011), the

turbulent viscosity (νt) is derived by assuming local and approximate equilibrium between the

production rate of the turbulent kinetic energy (P ) and the dissipation rate of the turbulent

kinetic energy (ǫ) in a fully developed wall-bounded turbulent flow. This assumption implies

that the transport terms which result due to the presence of the solid wall are negligible and

hence simplifies analysis of the wall-bounded turbulence.

In addition to assuming equilibrium (i.e. P ≈ ǫ), the turbulent viscosity of the k-ǫ model

(νt(k−ǫ)) is developed by using the proposition of Kolmogorov (1942) to base the characteristic

velocity scale on the turbulent kinetic energy (k) such that UTV H = (−u′w′)1/2 = ck1/2.

Hence, νt(k−ǫ) is given by

νt ≈ νt(k−ǫ) = c4
k2

ǫ
= Cµ

k2

ǫ
. (69)

Here, c is the square root of the stress-intensity ratio (i.e. c = (|u′w′|/k)1/2) and is usually

assumed to be constant in the log-law region. In the standard k-ǫ model, c ≈ 0.55 or c2 ≈ 0.3

is employed on the basis of empirical measurements which implies that Cµ ≈ 0.09.

For the k-ǫ model to work properly in the near-wall region, the turbulent (eddy) viscosity

shown in equation (69) needs to be the same as the turbulent viscosity defined in equation

(67). However, it is well known that this formulation (equation 69) breaks down in the near-

wall region of canonical wall-bounded flows and overpredicts the exact turbulent viscosity

(νt). This failure is normally attributed to the fact that the stress-intensity ratio (c2) is not a

constant in the near-wall region. Efforts to overcome this severe shortcoming have focused on

modifications to the transport equations for k and ǫ in conjunction with empirical damping
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functions to reduce νt(k−ǫ) in the near-wall region (e.g., see Jones & Launder 1973, Launder

& Sharma 1974, Lam & Bremhorst 1981 and Rodi & Mansour 1993). These functions are

not universal and tend to be ineffective when tested with different sets of DNS data.

Attempts have been made to model the near-wall turbulence without employing such

damping functions. Durbin (1991) proposed a model that solves for wall-bounded turbulence

without recourse to a damping function. He argued that the wall-normal velocity fluctuation

(w′2) is responsible for transport from the wall and not the total turbulent kinetic energy

(k), as is assumed in the k-ǫ model. Hence, he developed a fourth-order turbulence closure

scheme, namely k-ǫ-v2 model where v2 represents w′2. Considering the model time scale as

TL = k/ǫ, the turbulent viscosity (νt) in Durbin’s model is computed as

νt = c′µw
′2
k

ǫ
, (70)

where c′µ is a constant taken as 0.20 by Durbin (1991). Recently, Karimpour & Venayag-

amoorthy (2013) have shown that the νt formulation of Durbin’s model is insensitive to c′µ in

the near-wall region. This is also in agreement with the experimental observations of Schultz

& Flack (2013) where they concluded that −u′w′ and w′2 are Reynolds-number-independent

in the near-wall region. Durbin’s model has been extensively verified with both ‘a priori’

and ‘a posteriori’ tests with remarkably good results.

Our main aim is to highlight the drawbacks of using the equilibrium assumption in

conjunction with the use of the turbulent kinetic energy (k) to infer the pertinent velocity

scale in formulating a suitable turbulent viscosity. We also derive the appropriate scales

within the framework of the TVH by analyzing the turbulent viscosity formulation of Durbin

(1991). In section 3.2.2, a dimensional analysis of the turbulent viscosity formulation of

the standard k-ǫ model (νt(k−ǫ)) is presented to derive the relevant scales inherent in this

formulation and highlight the consequence of assuming equilibrium for inferring νt(k−ǫ). The

correlation of the turbulent kinetic energy (k) with the anisotropic Reynolds stress (u′w′) is

revisited in section 3.2.2.2, followed by a discussion on the appropriate scales for predicting

near-wall turbulence. Finally, conclusions are given in section 3.2.3. In this study, different
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channel flow DNS datasets of Kim, Moin & Moser (1987) for Reτ ≈ 180, Moser, Kim &

Mansour (1999) for Reτ ≈ 395 and 590, del Álamo et al. (2004) for Reτ ≈ 934 and Hoyas

& Jiménez (2006) for Reτ ≈ 2003 are used together with the boundary layer experimental

data of Marusic & Perry (1995), for performing ‘a priori’ tests.

3.2.2. Assessment of the k-ǫ model turbulent viscosity. In this section, we

derive the inherent scales in the turbulent viscosity formulation of the standard k-ǫ closure

scheme and also discuss the possibility of introducing a universal c. We use ‘a priori’ tests

to reinforce our discussion.

3.2.2.1. Revisit of relevant characteristic scales and stress intensity. Using equation (69)

and the proposition of Kolmogorov (1942) for the velocity scale (i.e. Uk−ǫ = ck1/2), the

relevant length scale inherent in νt(k−ǫ) can be derived as

Lk−ǫ =
νt(k−ǫ)

Uk−ǫ

= c4
k2/ǫ

ck1/2
= c3

k3/2

ǫ
. (71)

Using c = (−u′w′/k)1/2 and P = −u′w′S, equation (71) can be rewritten as

Lk−ǫ = c3
k3/2

ǫ
=

(
−u′w′

k

)3/2
k3/2

ǫ
=

(
−u′w′S

ǫ

)3/2 ( ǫ

S3

)1/2

=

(
P

ǫ

)3/2 ( ǫ

S3

)1/2

=

(
P

ǫ

)3/2

Lc, (72)

where Lc = (ǫ/S3)1/2 is the Corrsin scale, introduced for the first time by Corrsin (1958).

Lc shows the smallest eddy size which is deformed by the mean shear rate. The ratio P/ǫ

can be expressed in terms of length scales as

P

ǫ
=

−u′w′S

ǫ
=

−u′w′/S2

ǫ/S3
=

(
LTV H

Lc

)2

. (73)

Using equation (73), we can rewrite equation (71) as

Lk−ǫ =

(
P

ǫ

)3/2 ( ǫ

S3

)1/2

=

(
P

ǫ

)
LTV H

Lc

( ǫ

S3

)1/2

=

(
P

ǫ

)

LTV H . (74)
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Figure 3.8. Comparison of a) Uk−ǫ with UTV H ; b) Lk−ǫ with LTV H and c)
Tk−ǫ with TTV H ; in a turbulent channel flow, computed from the DNS data of
Hoyas & Jiménez (2006) for Reτ = 2003.

Equation (74) highlights the fact that while in the log-law region where P ≈ ǫ, Lk−ǫ is equal

to LTV H and consequently Lc, in the near-wall region both the length scale and therefore

the turbulent viscosity (νt(k−ǫ)) are incorrect. Put another way, the turbulent viscosity from

the standard k-ǫ model can be expressed in terms of the characteristic scales and the exact

turbulent viscosity as

νt(k−ǫ) = c4
k2

ǫ
=
(
ck1/2

)
(

c3
k3/2

ǫ

)

=

(
P

ǫ

)

UTV HLTV H =

(
P

ǫ

)

νt. (75)

Equation (75) clearly shows that in the near-wall region this formulation breaks down as it is

a function of P/ǫ. This implies that the failure of νt(k−ǫ) is independent of the fact that the

exact value of c is ambiguous and hence damping c is not sufficient to make νt(k−ǫ) suitable

for modeling the near-wall turbulence.

Furthermore, using Uk−ǫ = ck1/2 and Lk−ǫ the relevant time scale can be deduced as

Tk−ǫ =
Lk−ǫ

Uk−ǫ

= c2
k

ǫ
, (76)

which can also be rewritten as

Tk−ǫ = c2
k

ǫ
=

−u′w′

k

k

ǫ
=

(
−u′w′S

ǫ

)
1

S
=

(
P

ǫ

)
1

S
, (77)
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Figure 3.9. Comparison of c2 = −u′w′/k for different Reynolds numbers
using (a) the DNS data of turbulent channel flows for Reτ = 2003, 934, 590, 395
and 180; and (b) the experimental data of boundary layer flow of Marusic &
Perry (1995).

which again shows that the time scale is only correct where equilibrium holds. This finding

also shows that the traditionally assumed time scale TL = k/ǫ in the standard k-ǫ model

should be modified with c2.

The comparisons of the standard k-ǫ model scales with the TVH scales are shown in

Figure (3.8) using c ≈ 0.55. It is obvious that (even in the log-law region) the standard

k-ǫ model scales highly overpredict the corresponding characteristic scales which raises the

doubt about the suitability of assuming a constant c ≈ 0.55 in the log-law region. To assess

this issue further, Figure (3.9) shows profiles of c2 = −u′w′/k obtained from direct numeri-

cal simulations (DNS) data of channel flows as well as high-Reynolds-number experimental

boundary layer data. In Figure (3.9), Reτ = uτh/ν is the friction Reynolds number where

h is half of the channel depth. Also, Reθ = Ueθ/ν is the momentum thickness Reynolds

number with θ defined as the momentum thickness, Ue as 99% of the maximum velocity

and δ is the boundary layer thickness. The profiles clearly show that assuming c ≈ 0.55 or

c2 ≈ 0.3 is wrong. In fact, the profiles suggest that c decreases with increasing Reynolds

number in the log-law region at least for this range of Reynolds numbers.
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Figure 3.10. Comparison of Reynolds stresses and the turbulent kinetic en-
ergy (k) computed from (a) the DNS data of Hoyas & Jiménez (2006) for
Reτ = 2003; and (b) the experimental boundary layer data of Marusic &
Perry (1995) for Reθ = 19133.

Now, we revisit the behavior of c. In a preliminary attempt, Karimpour & Venayag-

amoorthy (2013) have shown that by using the equilibrium assumption all the way to the

wall, a turbulent viscosity formulation can be derived as νt ≈ ǫ/S2 which implies that

c ≈ 1/(STL)
1/2. The comparison of their propositions with exact DNS computations showed

small differences. However, it is clear that their formulation is not appropriate for modeling.

Here, we reassess the possibility of independently describing c by relaxing the equilibrium

assumption that Karimpour & Venayagamoorthy (2013) made. The square root of the stress-

intensity ratio (c = (−u′w′/k)1/2) can be recast as follows

c =

(
−u′w′

k

)1/2

=

(
−u′w′S/ǫ

Sk/ǫ

)1/2

=

(
P

ǫ

)1/2(
1

STL

)1/2

=
LTV H

Lc

(
1

STL

)1/2

. (78)

STL is the ratio of the turbulence (decay) time scale (TL) to the mean shear time scale

(1/S) and can be considered to be a measure of the linearization of the turbulent flow

(Jiménez 2013). Equation (78) clearly shows that c and therefore the proposed velocity scale

of Kolmogorov (1942) inherently depend on the behavior of P/ǫ and hence LTV H . It can be

inferred from Figure (3.9) and equation (78) that k cannot be an appropriate parameter of
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choice to describe u′w′. This highlights the reason for the lack of success in formulating a

universal damping function to appropriately decrease c in the near-wall region.

3.2.2.2. Correlation of the Reynolds stresses. In this section, we assess the correlation

of the anisotropic Reynolds stress (u′w′) with isotropic Reynolds stresses. In his valuable

work, Lumley (1978) has discussed that the wall-normal velocity fluctuation (w′2) is a more

appropriate velocity scale since it mimics the behavior of (−u′w′) better compared to k.

Figure (3.10) confirms his assertion, and it can be seen that k behaves similarly to the

streamwise velocity fluctuation (u′2) while w′2 closely matches −u′w′. As discussed in §1,

Durbin (1991) made a similar argument and introduced the turbulent viscosity as νt =

c′µw
′2(k/ǫ).

Durbin’s proposition for νt is widely used and its good comparison with exact νt is already

shown in several works. Here, we test its efficacy for predicting P/ǫ in the near-wall region.

Figure (3.11) presents the comparison of P/ǫ using Durbin’s formulation with the exact

value from DNS data. While there is a slight mismatch, the comparison is still favorable and

confirms the suitability of the turbulent viscosity formulation proposed by Durbin (1991) for

predicting the near-wall turbulence. This implies that the appropriate relevant scales in the
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context of the TVH are inherent in Durbin’s model. Therefore, it is instructive to derive the

scales inherent in his model within the context of the TVH framework.

Durbin (1991) considered TL = k/ǫ as the relevant time scale for his model with a lower

bound set by a factor of the Kolmogorov time scale (ν/ǫ)1/2 where ν is the kinematic viscosity,

but as discussed earlier, the characteristic time scale in the context of the turbulent-viscosity

hypothesis is TTV H = TS = 1/S. Using −u′w′ = νtS, the relevant velocity and length scales

inherent in his model can be derived respectively, as follows

UTV H =
(
−u′w′

)1/2
≈ Uk−ǫ−v2 = c′

1/2
µ (STL)

1/2
(

w′2
)1/2

, (79)

LTV H =

(
−u′w′

)1/2

S
≈ Lk−ǫ−v2 =

(
c′µ
STL

)1/2 (

w′2
)1/2 k

ǫ
. (80)

Comparisons of these scales with the corresponding characteristic scales of length (LTV H)

and velocity (UTV H) are excellent as shown in Figure (3.12). Also, in this figure, w′2 is shown

for comparison. Moreover, it is clear that Tk−ǫ−v2 = Lk−ǫ−v2/Uk−ǫ−v2 = 1/S which is equal to

TTV H = 1/S and hence no comparison between the time scales is required. In Figures (3.11)

and (3.12), c′µ ≈ 0.18 is used since it provides a better prediction of the overall turbulent

viscosity across the channel depth for this set of DNS data.

In equations (79) and (80), STL serves as an anisotropic correction to w′2 (which can also

be considered to be a non-equilibrium correction in the near-wall region), while it is absent

in the νt formulation given in equation (70). The reason for this is simply because w′2 is less

than −u′w′ in the near-wall region (see Figure 3.10) while TL = k/ǫ is greater than 1/S in

the near wall regions (see Figure 3.8c). These effects cancel out identically when computing

the turbulent viscosity (i.e. νt = Uk−ǫ−v2 × Lk−ǫ−v2).

3.2.3. Concluding Remarks. In this study, the validity of the equilibrium assumption

in the near-wall region was revisited. Using dimensional reasoning, we have shown that the

equilibrium assumption leads to incorrect prediction of the characteristic scales in the near-

wall region and highlighted some of the shortcomings of using damping functions to model
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Figure 3.12. Comparison of (a) Uk−ǫ−v2 and w′2 with UTV H ; and (b) Lk−ǫ−v2

with LTV H computed from the DNS data of Hoyas & Jiménez (2006) for Reτ =
2003.

the near-wall turbulence. This is followed by a detailed discussion on the importance of

introducing an appropriate velocity scale than the traditionally assumed scale ck1/2. To this

end, the successful model of Durbin (1991) which makes use of w′2 instead of k is analyzed

and the relevant length and velocity scales are derived. Our analysis shows that inherently

there is an anisotropic correction of STL to Durbin’s model constant (c′µ) which is not explicit

in the original turbulent viscosity formulation in his model. ‘A priori’ comparisons of these

relevant scales using DNS data are excellent and indicate their relevance in capturing the

characteristic scales. Furthermore, the predicted behavior of P/ǫ using Durbin’s turbulent

viscosity formulation shows favorable comparison with the exact profile obtained from DNS

data. Overall, this study highlights the fidelity of Durbin’s model in capturing the charac-

teristic scales of turbulence (within the framework of the turbulent-viscosity hypothesis) in

the near-wall region.

3.3. Summary

In this chapter, a study of turbulent wall-bounded flows was provided. The equilibrium

assumption was used to study the turbulent quantities of inhomogeneous flows. The results
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show that the irreversibility assumption can be used for predicting turbulence for unstratified

flows. However, assuming equilibrium between P and ǫ is not appropriate for employment

in RANS closure schemes. We have further analyzed the turbulent viscosity introduced by

Durbin (1991) developed for unstratified wall-bounded flows without assuming equilibrium.

Our analyses show that (w′2)1/2 is a suitable quantity to model u′w′. Chapter 4 presents the

work to further understand turbulent mixing in a stably stratified wall-bounded turbulent

flow.
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CHAPTER 4

Tubulent Mixing in Wall-Bounded Flows1

In this chapter, we provide an analysis of turbulent mixing in stably stratified wall-

bounded flows. For a fully developed stratified channel flow, we invoke the equilibrium

assumption between the production rate of the turbulent kinetic energy (P ), the dissipation

rate of the turbulent kinetic energy (ǫ) and the dissipation rate of the turbulent potential en-

ergy (ǫPE) to highlight a number of pertinent issues that have implications for predicting the

turbulent mixing. DNS data of stably stratified channel flow is used to test the propositions.

4.1. Introduction

Most geophysical flows such as those in estuaries, lakes, oceans and the atmosphere are

influenced by both the density stratification and the bottom boundary. In such flows, the

simultaneous existence of the density stratification and the solid wall results in anomalous

mixing of momentum and active scalar (density) compared to other turbulent flows. Hence,

it is not surprising that stratified wall-bounded flows are usually considered as one of the most

complex turbulent flows and have been the subject of several studies such as the works of

Arya (1975), Komori et al. (1983), Garg et al. (2000), Armenio & Sarkar (2002), Nieuwstadt

(2005), Taylor, Sarkar & Armenio (2005) and Garćıa-Villalba & del Álamo (2011).

Quantifying the mixing of the momentum as well as the diapycnal mixing of density is

imperative as they directly impact the state of the geophysical flows in both the ocean and

the atmosphere. The turbulent (eddy) viscosity (νt) and the turbulent (eddy) diffusivity are

the two parameters which are widely used for assessment of the state of the flow (such as

turbulent mixing) in physical oceanography or atmospheric sciences and are also employed

for simulating stratified turbulent flows in numerical models. For a uni-directional shear

1The results presented in this chapter is submitted in substantial part as a paper entitled “On turbulent

mixing in stably stratified wall-bounded flows” by F. Karimpour and S. K. Venayagamoorthy, to Physics

of Fluids. This chapter is written in a collective “we” tense to acknowledge collaborative work with the

co-author.
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flow, using the turbulent-viscosity hypothesis, the turbulent viscosity (νt) is defined as

νt =
−u′w′

dU/dz
, (81)

and using the gradient-diffusion hypothesis, the turbulent diffusivity (κt) is given by

κt =
−ρ′w′

dρ/dz
, (82)

where U is the mean streamwise velocity, z is the normal distance from the wall and ρ is the

fluid mean density.

The turbulent viscosity and diffusivity have to be specified (computed) using turbulence

closure schemes. As a result, several parameterizations have been proposed that make use

of mean and/or other turbulent quantities. A common approach for parameterization of νt

and κt is to assume stationarity (i.e. statistics are invariant due to change in time) and

homogeneity (i.e. statistics are invariant under translations) in the flow. For example, the

formulation of νt in the k-ǫ model is developed by assuming the equilibrium between the

production rate of the turbulent kinetic energy (P ), the dissipation rate of the turbulent

kinetic energy (ǫ) and the buoyancy flux (B) which is given by (Rodi 1993)

νt = (1−Rf )Cµ
k2

ǫ
. (83)

Here, k = 1
2
(u′2 + v′2 + w′2) is the turbulent kinetic energy, ǫ is the dissipation rate of the

turbulent kinetic energy, Cµ = (−u′w′/k)2 is the turbulent viscosity parameter usually taken

as Cµ ≈ 0.09. Rf is the flux Richardson number that for a shear flow is usually defined as

(Peltier & Caulfield 2003)

Rf =
−B

P
, (84)

where B = −g/ρ0(ρ′w′) is the buoyancy flux and P = −u′w′(dU/dz) is the rate of production

of k. Similarly, a formulation for κt was proposed by Osborn (1980) by assuming equilibrium

between the buoyancy flux (B) and the dissipation rate of the turbulent potential energy
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(ǫPE) and is given by κt = ǫPE/N
2. Here, N =

√

(−g/ρ0)(dρ/dz) is the Brunt-Väisälä or

buoyancy frequency.

Besides νt and κt, the efficiency of mixing is another key parameter in geophysical flows.

The flux Richardson number Rf given by equation (84), is commonly used to characterize

the efficiency of mixing in stably stratified turbulent flows. A drawback of this formulation

is that it is defined in flux form and could therefore be negative for non-stationary strongly

stable flows where countergradient fluxes are noticeable (Venayagamoorthy & Stretch 2010,

Armenio & Sarkar 2002).

Peltier & Caulfield (2003) discussed that Rf may be taken to be a cumulative mixing

efficiency that is calculated by integrating the instantaneous mixing efficiency over a sufficient

time interval. They have defined the instantaneous mixing efficiency (i.e. an irreversible flux

Richardson number R∗
f ) based on the irreversible transfer of the turbulent kinetic energy (k)

into the turbulent potential energy (E ′
PE) given by

R∗
f =

ǫPE

ǫ+ ǫPE

, (85)

where ǫPE is the dissipation rate of the turbulent potential energy which is defined as

ǫPE = N2

(
∂ρ

∂z

)−2

ǫρ. (86)

Here, ǫρ = κm∇ρ′.∇ρ′ is the scalar variance dissipation rate with κm defined as the molecular

diffusivity. Both ǫ and ǫPE are positive-definite quantities, ensuring that R∗
f will be limited

to 0 ≤ R∗
f ≤ 1. Their proposed definition for Rf which is the time-integration of R∗

f ,

eliminates the stirring effects (reversible contributions). However, the common definition

of Rf = −B/P incorporates the stirring effects as both B and P inherently consist of the

reversible fluxes. Therefore, sometimes the instantaneous mixing efficiency (R∗
f ) is used

instead of Rf = −B/P due to its bounded nature. This substitution is still a matter of

doubt and needs more investigation in order to ascertain the conditions under which these

two quantities may be used interchangeably.
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In this chapter, we evaluate the suitability of assuming equilibrium for inference of Rf ,

νt and κt in stably stratified wall-bounded flows. In section 4.2, we present the evolution

equations of the turbulent kinetic energy and scalar variance. We derive a revised formulation

for the turbulent viscosity (νt) for a stably stratified turbulent channel flow by using the

equilibrium assumption (i.e. P ≈ ǫ + ǫPE) all the way to the wall. Dimensional arguments

are then used to propose appropriate (relevant) velocity and length scales. In section 4.3,

the validity of the propositions are evaluated by performing ‘a priori’ tests using channel

flow DNS data. First, the behavior of Rf is compared with R∗
f . Second, the validity of

the proposed νt and relevant scales are evaluated. In section 4.4, the equilibrium between

the buoyancy flux and the dissipation rate of the turbulent potential energy is invoked

(i.e. −B ≈ ǫPE) which leads to Osborn’s (1980) formulation for κt. The suitability of

this formulation for estimating κt in stably stratified wall-bounded flows is evaluated by

performing ‘a priori’ tests. Conclusions are given in section 4.5. In this study, we use the

stably stratified turbulent channel flow DNS dataset of Garćıa-Villalba & del Álamo (2011)

with a friction Reynolds number of Reτ = uτδ/ν = 550 for different initial stratifications

given by friction Richardson numbers of Riτ = |∆ρ|gδ/ρ0u
2
τ = 0, 60 & 120 to perform ‘a

priori’ tests. Here, uτ is the friction velocity, δ is half of the channel depth and ν is the

kinematic (molecular) viscosity and |∆ρ| is the initial density difference between the bottom

of the channel (z = 0) and the free-stream (z = δ).

4.2. Prediction of the Turbulent Viscosity

4.2.1. Evolution Equations. The evolution equations for the turbulent kinetic energy

(k) and the density (scalar) variance (ρ′2) for an inhomogeneous stratified shear flow with

the Boussinesq approximation can be respectively written as

∂k

∂t
+ Uj

∂k

∂xj

= P − ǫ+ B +Dν + T +Π, (87)

∂
(

1
2
ρ′2
)

∂t
+ Uj

∂
(

1
2
ρ′2
)

∂xj

= Pρ − ǫρ + Tρ, (88)
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where P = (−u′
iu

′
j)∂Ui/∂xj is the production rate of the turbulent kinetic energy (k), ǫ =

ν(∂u′
i/∂xj)(∂u′

i/∂xj)+ν(∂u′
i/∂xj)(∂u′

j/∂xi) is the dissipation rate of k, B = (−g/ρ0)(ρ′u′
i)δi3

is the buoyancy flux with δij as the Kronecker delta, Dν = ν(∂2k/∂x2
j) is the viscous

transport of k, T = −(1/2)∂(u′
ju

′
iu

′
i)/∂xj is the turbulent velocity transport of k and

Π = −(1/ρ0)∂(p′u′
j)/∂xj is the pressure transport of k, respectively. Pρ = (−ρ′u′

j)∂ρ/∂xj

is the production rate of the density variance, ǫρ = κm(∂ρ′/∂xj)(∂ρ′/∂xj) is the dissipation

rate of the density variance and Tρ = −(1/2)∂(ρ′2u′
j)/∂xj is the transport term of the density

variance. The transport terms in the turbulent kinetic energy and density variance equations

arise due to the inhomogeneity in the flow.

4.2.2. Equilibrium assumption. For steady, fully developed stratified wall-bounded

turbulent flows, equations (87) and (88) simplify to

−u′w′
dU

dz
= ǫ−B −Dν − T − Π, (89)

−ρ′w′
dρ

dz
= ǫρ − Tρ. (90)

Equations (89) and (90) imply that the production of k is balanced by the buoyancy flux,

the dissipation and transport rates of k. Similarly, the production of ρ′2 is balanced by the

dissipation and transport rates of the density variance, when the flow is stationary. Using

the turbulent-viscosity hypothesis (TVH), equation (89) can be rewritten as

νt =
ǫ−B −Dν − T − Π

S2
, (91)

which (by using B = −PRf ) can be recast as

νt =

(
1

1−Rf

)
ǫ−Dν − T − Π

S2
. (92)
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Similarly, using the gradient-diffusion hypothesis (GDH), equation (90) can be recast in

terms of the turbulent diffusivity (κt) as follows

κt =
ǫρ − Tρ

(dρ/dz)2
. (93)

It also follows from the GDH that the buoyancy flux B = −κtN
2. Hence, using κt introduced

in equation (93), (B) can be rewritten as

B = −κtN
2 = −

ǫρ − Tρ

(dρ/dz)2
N2 = TPE − ǫPE, (94)

where ǫPE = N2(dρ/dz)−2ǫρ is the dissipation rate of the turbulent potential energy and

TPE = N2(dρ/dz)−2Tρ is the transport rate of the turbulent potential energy. We can now

express the flux Richardson number (Rf ) as

Rf =
−B

P
=

ǫPE − TPE

ǫ+ ǫPE −Dν − T − Π− TPE

. (95)

By subtituting Rf given by equation (95) into equation (92), νt can be rewritten as

νt =
(ǫ+ ǫPE)− (Dν + T +Π+ TPE)

S2
, (96)

which can be further simplified to yield

νt =

(

1

1− ǫPE

ǫ+ǫPE

)

ǫ

S2
−

Dν + T +Π+ TPE

S2

=

(

1

1−R∗
f

)

ǫ

S2
−

Dν + T +Π+ TPE

S2
. (97)

Here, R∗
f = ǫPE/(ǫ+ ǫPE) is the irreversible flux Richardson number discussed earlier.

Using the equilibrium assumption (i.e. assuming P ≈ ǫ+ ǫPE), Rf can be approximated

with R∗
f as shown in equation (98).

Rf =
−B

P
≈ R∗

f =
ǫPE

ǫ+ ǫPE

, (98)
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which consequently implies that νt given in equations (92) and (97) simplifies to

νt ≈
ǫ+ ǫPE

S2
=

(

1

1−R∗
f

)

ǫ

S2
. (99)

The implication of the equilibrium assumption is that the flux Richardson number (Rf ) and

the irreversible flux Richardson number (R∗
f ) should be approximately equal (i.e. Rf ≈ R∗

f ).

We test the validity of these propositions in section 4.3.

4.2.3. Relevant Velocity and Length Scales. Here, we discuss the relevant ve-

locity and length scales in the context of the turbulent-viscosity hypothesis (TVH) that

define the turbulent viscosity (νt) in stably stratified wall-bounded turbulent flows. Using

dimensional analysis, the turbulent viscosity (νt) can be recast in terms of velocity, length

and time scales as

νt = UTV HLTV H = U2
TV HTTV H = L2

TV H/TTV H , (100)

where UTV H is the characteristic velocity scale proposed by Pope (2000) as (−u′w′)1/2, LTV H

is the characteristic length scale, and TTV H is the characteristic time scale. From the TVH,

it is clear that

−u′w′ = U2
TV H = νtS. (101)

Now, by invoking the equilibrium assumption (i.e. P ≈ ǫ + ǫPE) and therefore using νt ≈

1/(1−R∗
f )ǫ/S

2, equation (101) can be rewritten as

U2
TV H ≈ U2

S =

(

1

1−R∗
f

)
( ǫ

S2

)

S, (102)

where US is an approximation for UTV H . Hence, the velocity scale (US) can be defined as

UTV H ≈ US =

(
ǫ+ ǫPE

S

)1/2

=

(

1

1−R∗
f

)1/2
( ǫ

S

)1/2

. (103)
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Now, using equations (99), (100) and (103), the length scale (LTV H) can be approximated

as

LTV H =
νt

UTV H

=

(
−u′w′

)1/2

S

≈ LS =
νt
Us

=
(ǫ+ ǫPE) /S

2

((ǫ+ ǫPE)/S)
1/2

=

(
ǫ+ ǫPE

S3

)1/2

=

(

1

1−R∗
f

)1/2
( ǫ

S3

)1/2

, (104)

where LS is an approximation for LTV H . It should be noted that for an unstratified flow

(i.e. Rf = 0), LS = (ǫ/S3)1/2 is the classical Corrsin length scale, Lc introduced by Corrsin

(1958). The Corrsin length scale is usually taken to denote the upper limit of the inertial

subrange and is the smallest eddy size which is deformed by the mean shear rate (S). Thus,

in unstratified flows, Lc may be interpreted as an equilibrium length scale where P ≈ ǫ.

Extending this argument to the present context, LS can be considered as a modified Corrsin

length scale for stably stratified flows, which implies that it is the pertinent length scale of

the flow when equilibrium holds (i.e. P ≈ ǫ+ ǫPE).

4.3. ‘A priori’ Tests Using DNS Data

In this section, we first compare the behavior of Rf with R∗
f in order to evaluate the

conditions and extent of the flow regime where Rf ≈ R∗
f holds. We also assess the validity

of the proposed formulation for νt shown in equation (99). This is followed by an assessment

of the validity of the proposed velocity and length scales.

4.3.1. Prediction of the Flux Richardson Number. In section 4.2.2, we have

analytically shown that in a stratified channel flow Rf = −B/P could be approximated with

an irreversible form given by R∗
f = ǫPE/(ǫ+ ǫPE), if the reversible transport terms could be

assumed negligible. The comparison between these two quantities are shown as a function

of Rig in Figure (4.1). Interestingly, for Rig . 0.25, both quantities closely follow each other

and grow almost linearly with Rig. For stably stratified flows, it is common to consider

Rig = 0.25 as a critical Richardson number for the onset of instabilities. The critical gradient
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Figure 4.1. Profiles of the reversible and the irreversible flux Richardson
number versus Rig for a turbulent channel flow at Reτ = 550 and (a) Riτ = 60;
and (b) Riτ = 120 computed from the DNS data of Garćıa-Villalba & del

Álamo (2011).

Richardson number of Rigc = 0.25 was derived for the first time by Miles (1961) and Howard

(1961) and denotes the threshold of linear stability for a stably, stratified, two-dimensional

flow. While there is still no consensus on the exact value of Rigc for high Reynolds number

stably stratified flows, values in the range of 0.1-1 have been proposed (Galperin, Sukoriansky

& Anderson 2007). It is commonly hypothesized that for Rig < Rigc the mean shear rate

dominates the restoring buoyancy forces due to density stratification, triggering the onset of

Kelvin-Helmholtz instabilities and consequently generation of turbulence. In regions of low

Rig, irreversible turbulent mixing results in an increase of the background potential energy.

For Rig > Rigc, linear internal waves and countergradient fluxes persist causing reversible

exchanges between turbulent kinetic energy (k) and available potential energy.

It is clear from Figure (4.1) that Rf ≈ R∗
f for Rig . 0.25. However, an important follow-

up question is to determine for what fraction of the flow depth does this approximation

hold? To answer this question, Rig is plotted as function of flow depth in Figure (4.2). It is

clear that for the bulk of the flow depth (almost 85%), the gradient Richardson number falls

below the critical value of 0.25. This implies that the irreversible flux Richardson number
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Figure 4.2. Profiles of Rig in depth for a turbulent channel flow at Reτ = 550

& Riτ = 60, 120 computed from the DNS data of Garćıa-Villalba & del Álamo
(2011).

(R∗
f ) mimics the behavior of Rf in stably stratified turbulent channel flows. It is only in the

outer (wake) region that Rig increases without bound as a result of the relaxation of the

mean shear rate. This stably stratified region supports the presence of linear internal wave

motions leading to the generation of strong countergradient fluxes. Furthermore, it should

be noted that the production and dissipation terms are very small in this far-wall region. As

a result, the transport terms become relatively dominant causing Rf to deviate from R∗
f as

shown in Figure (4.1).

In Figure (4.3), the behavior of exact Rf versus Rig for two different initial stratifications

is shown. It is interesting to observe from Figure (4.3) that the exact flux Richardson

number (Rf ) shows a universal behavior for Rig . 0.25 for different stratifications. This

is in contrast to the behavior of Rf and R∗
f for high gradient Richardson numbers which

indicate dependence on the strength of the density stratification. The key insight from this

observation is that Rf may have a universal behavior as long as turbulence is sustained in

stably stratified flows.
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Figure 4.3. Profiles of Rf versus Rig for a turbulent channel flow at Reτ =
550 & Riτ = 60, 120 computed from the DNS data of Garćıa-Villalba & del
Álamo (2011).
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Figure 4.4. Comparison of the exact turbulent viscosity and the prediction
given by equation (99) in a turbulent channel flow at Reτ = 550 and (a)
Riτ = 0; (b) Riτ = 60; and c) Riτ = 120 computed from the DNS data of

Garćıa-Villalba & del Álamo (2011).

4.3.2. Turbulent Viscosity Comparisons. The comparison between the proposed

turbulent viscosity from equation (99) and the exact turbulent viscosity given by equation

(81) is shown in Figure (4.4) for initial stratifications of Riτ = 0, 60 & 120. There is an

excellent agreement in the near-wall region and beyond. This is a remarkably interesting

result, especially given the fact that all the transport terms are neglected in deriving equation
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Figure 4.5. Comparison of P/(ǫ + ǫPE) for different initial stratifications
with Riτ = 0, 60 & 120 in a turbulent channel flow at Reτ = 550, computed
from the DNS data of Garćıa-Villalba & del Álamo (2011).

(99). This result highlights the suitability of neglecting the reversible transport terms in the

transport equation of k in wall-bounded flows. Moreover, it is interesting to note that while

the turbulent viscosity (νt) of unstratified flow is predicted well for up to almost half of the

flow depth (here up to z+ ≈ 275), the prediction substantially improves for most of the

channel depth for the stably stratified cases. This implies that the presence of the buoyancy

fluxes in stably stratified flows appears to keep the flow in equilibrium over a greater portion

of the flow depth. This can be readily seen by comparing P/(ǫ+ǫPE) for the unstratified and

stratified cases as shown in Figure (4.5) for Riτ = 0, 60 & 120. This confirms the assertion

that P ≈ ǫ + ǫPE holds over a larger fraction of the flow depth compared to unstratified

channel flow.

4.3.3. Comparisons of Velocity and Length Scales. Figure (4.6) shows the com-

parison of velocity scales and length scales discussed in section 4.2.3. First, the comparison

between the exact velocity scale (UTV H) and the proposed velocity scale (US) given by equa-

tion (103) is very good (Figure 4.6a-c). The corresponding comparison between LTV H and
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Figure 4.6. Comparison of velocity scales (upper panel) and length scales
(lower panel) in a turbulent channel flow at Reτ = 550 and (a,d) Riτ = 0; (b,e)
Riτ = 60; and (c,f) Riτ = 120 computed from the DNS data of Garćıa-Villalba

& del Álamo (2011).

LS given by equation (104) is almost perfect in the near-wall region and beyond (Figure

4.6d-f). Similar to the νt comparison, the agreement improves with increase in stratification.

4.4. Prediction of Turbulent Diffusivity

The correct prediction of the turbulent diffusivity (κt) is important for quantifying scalar

mixing and consequently the flow dynamics. As shown in section 4.3.2, the equilibrium

assumption results in a good estimation for νt. Here, we test the suitability of employing the

equilibrium assumption for predicting the turbulent diffusivity in a stably stratified channel

flow.

4.4.1. Equilibrium assumption. Using the transport equation of the scalar variance

introduced in equation (88), the evolution equation of the turbulent potential energy (E ′
PE)
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can be derived as

∂E ′
PE

∂t
+ Uj

∂E ′
PE

∂xj

= −B − ǫPE + TPE. (105)

As it can be seen in this equation and equation (87), the buoyancy flux is present in both the

turbulent kinetic energy and the turbulent potential energy evolution equations with opposite

signs. This indicates that for stable density gradients, turbulent kinetic energy is transferred

via buoyancy flux into available potential energy. For unstable (convective) density gradients,

available potential energy can be transferred as buoyancy flux into turbulent kinetic energy.

It must be noted that the presence of internal wave motions can cause countergradient fluxes

that transfer energy back and forth between turbulent kinetic energy and available potential

energy.

As shown in equation (94), for a fully developed flow equation (105) can be rearranged

as

−B = ǫPE − TPE. (106)

By replacing −B = κtN
2, the turbulent diffusivity can be derived as

κt =
ǫPE − TPE

N2
. (107)

Now, by assuming the equilibrium between the buoyancy flux (B) and the dissipation rate

of the turbulent potential energy (ǫPE) as −B ≈ ǫPE, κt simplifies to

κt ≈
ǫPE

N2
. (108)

This is the well-known formulation of Osborn (1980) which is widely used to infer κt in

geophysical flows.

4.4.2. ‘A priori’ testing of derived formulations using DNS data. Figure

(4.7) shows the comparison between the equilibrium based formulation for κt given by equa-

tion (108) and the exact κt given by equation (82). The overall prediction of the turbulent
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Figure 4.7. Comparison of the exact turbulent diffusivity and the prediction
given in equation (108) in a turbulent channel flow with a) Riτ = 60 and b)
Riτ = 120 & at Reτ = 550, computed from the DNS data of Garćıa-Villaba &
del Álamo (2011).

diffusivity based on equilibrium between −B and ǫPE is good in the near-wall region. In

this region the mean shear rate is strong and thus turbulence is vigorously sustained which

results in irreversible transfer of kinetic energy to background potential energy. However,

this agreement starts to break down away from the wall. This is in contrast to the predic-

tions shown earlier for the turbulent viscosity where remarkable agreement was seen even in

the far-wall region. This breakdown can be mainly attributed to the presence of linear in-

ternal waves in the far-wall region of the channel flow. This result highlights the complexity

associated with the co-existence of internal waves and turbulence in stably stratified flows.

Separating wave and turbulence in such flows remains an important challenge.

In order to better investigate the validity of assuming equilibrium between ǫPE and −B, it

will be instructive to revisit −B/ǫPE which shows the ratio of the production to dissipation

rates of the turbulent potential energy. This ratio can be considered to be equivalent to

P/(ǫ + ǫPE) in the evolution equation of k. −B/ǫPE behavior is shown in Figure (4.8)

which clearly shows that unlike P/(ǫ+ ǫPE) ≈ 1 which holds over a big fraction of the flow
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depth (Figure 4.5), an equilibrium region where −B ≈ ǫPE, can be barely observed in stably

stratified wall-bounded flows.

4.5. Concluding Remarks

In this study, we have revisited the suitability of the equilibrium (irreversibility) assump-

tion (i.e. P ≈ ǫ + ǫPE and −B ≈ ǫPE) for estimating the flux Richardson number (Rf ),

turbulent viscosity (νt) and turbulent diffusivity (κt) in a stably stratified channel flow. We

have first shown by using DNS data that the flux Richardson number defined as Rf = −B/P

and the irreversible flux Richardson number R∗
f = ǫPE/(ǫ + ǫPE) which is derived from Rf

by assuming equilibrium, show excellent comparison for Rig . 0.25,

We then invoked the equilibrium assumption between P , ǫ and ǫPE to propose that

νt ≈ 1/(1 − R∗
f )(ǫ/S

2). We then used dimensional arguments to show that the appropriate

velocity scale is US = (1 − R∗
f )

−1/2(ǫ/S)1/2 and the appropriate length scale is LS = (1 −

R∗
f )

−1/2(ǫ/S3)1/2, respectively. The comparisons of the proposed turbulent viscosity and the

relevant scales with the exact turbulent viscosity and scales computed from the DNS data

of stably stratified turbulent channel flow are remarkably good. Interestingly, it is observed
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that the comparisons become better when the stratification strength increases which implies

that in stratified wall-bounded flows, equilibrium (P ≈ ǫ + ǫPE) holds for a bigger fraction

of the flow depth compared to the unstratified counterpart.

Finally, we have tested the suitability of assuming equilibrium for predicting κt. This

is done by invoking the equilibrium assumption between the buoyancy flux (B) and the

dissipation rate of the turbulent potential energy (ǫPE) (i.e. −B ≈ ǫPE) to propose that

κt ≈ ǫPE/N
2. The comparison of the proposed turbulent diffusivity with the exact turbulent

diffusivity computed form the DNS data is good in the near-wall region. However, unlike

the prediction of the turbulent viscosity, the results show that the agreement deteriorates

far from the wall. This can be attributed to the presence of linear internal waves in the

far-wall region that cause advective fluxes that do not contribute to irreversible turbulent

mixing. Future DNS studies of stably stratified channel flows at higher Reynolds numbers

are required in order to test the sensitivity of the predictions presented in this study. It is

expected that the predictions should improve at higher Reynolds numbers based on trends

observed with increasing Reynolds numbers for unstratified channel flow.

The next chapter presents numerical modeling of stably stratified wall-bounded flows.

One-dimensional RANS codes are developed in the context of zero-equation and k-ǫ turbu-

lence closure schemes to model stably stratified channel flows.
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CHAPTER 5

Stratified Channel Flow Modeling

In this chapter, we investigate modeling of stably stratified wall-bounded turbulent flows

using RANS turbulence closure schemes. In section 5.1, we propose a parameterization

for the turbulent Prandtl number (Prt) for stably stratified flows under the influence of a

smooth solid wall. The turbulent Prandtl number is the linking bridge between the turbulent

momentum and scalar fluxes in the context of Reynolds-averaged Navier-Stokes (RANS)

simulations. Therefore, it is important to use appropriate parameterizations for (Prt) in

order to define the right level of momentum and scalar mixing in stably stratified flows. In

section 5.2, we revisit the capability of the standard k-ǫ model for simulating stratified flows.

We use analytical arguments to assess the buoyancy parameter (Cǫ3). In this chapter, RANS

simulations are performed to model a one-dimensional stably stratified channel flow and the

results are compared with channel flow DNS data.

5.1. Revisit of the Turbulent Prandtl Number1

5.1.1. Introduction. The majority of geophysical flows (e.g. in the oceans, lakes,

estuaries and the atmosphere) are substantially influenced by stable density stratification.

The density stratification causes buoyancy forces that can significantly influence the mixing

of both momentum and scalars (Rodi 1987). Hence, it is important to develop turbulence

models with the ability to predict mixing in such flows. However, many geophysical flows

are also influenced by wall (solid) boundaries such as in the coastal ocean, lakes and the

atmospheric boundary layer (ABL). The presence of the wall introduces inhomogeneities in

the flow which causes complex turbulent structures close to the wall (i.e. in the so-called

inner wall region, see for example Pope (2000) for more details). This is in contrast to free-

shear flows which are able to develop without the confining influence of the wall. Hence, it is

1The results presented in this section are published in substantial part as a paper entitled “A simple

turbulence model for stably stratified wall-bounded flows” by F. Karimpour and S. K. Venayagamoorthy,

in the Journal of Geophysical Research: Oceans, Vol. 119, pp 870-880, 2014. This section is written in a

collective “we” tense to acknowledge collaborative work with the co-author.
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expected that the mixing dynamics in a stably stratified wall-bounded flow should be different

than the simpler homogeneous stably stratified flow, where the fluctuating quantities (such as

the velocity and density fluctuations) are statistically homogeneous. Statistical homogeneity

implies that the statistics are invariant under translation (Pope 2000).

Numerical simulations of turbulent flows range from direct numerical simulations (DNS)

where the highly nonlinear Navier-Stokes equations together with the continuity and den-

sity transport equations are solved directly to yield the instantaneous flow fields without

recourse to a turbulence model; to Reynolds-averaged Navier-Stokes (RANS) simulations

where an averaged (statistical) flow solution is obtained. DNS is one of the commonly used

simulation techniques to gain better fundamental understanding of turbulence. On the other

hand, RANS simulations are used for practical applications where the emphasis is on better

understanding of complex phenomena such as bottom boundary layer mixing in the coastal

ocean and internal wave-driven mixing in the ocean (Burchard 2002). It is important to

note that DNS is prohibitively expensive for most practical flow problems and therefore only

suitable to very idealized flows (Pope 2000). However, there have been a number of DNS

and large-eddy simulation (LES) studies that have focused on stably stratified wall-bounded

flows (see e.g. Armenio and Sarkar 2002, Nieuwstadt 2005 and Garćıa-Villalba & del Álamo

2011). In the RANS formulation, the averaging process (using Reynolds decomposition) re-

sults in additional terms known as the Reynolds stresses (turbulent momentum fluxes) and

turbulent scalar fluxes in the mean momentum and scalar transport equations, respectively.

These extra terms imply that the number of unknowns is greater than the number of avail-

able (mean flow) equations leading to an undetermined system commonly referred to as the

turbulence closure problem.

A common and widely employed approach to close the RANS equations is through the use

of the turbulent-viscosity hypothesis together with the gradient-diffusion hypothesis. The

turbulent-viscosity hypothesis is analogous to the stress-rate-of-strain relation for a New-

tonian fluid. Similarly, the gradient-diffusion hypothesis is analogous to Fourier’s law of

heat conduction and Fick’s law of molecular diffusion (Pope 2000). The basic assumption
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in these hypotheses is that the turbulent momentum flux (or turbulent scalar flux) is trans-

ported down (i.e. aligned with) the mean gradient of the respective averaged flow variable.

Essentially, using these hypotheses, the turbulence closure problem reduces to the predic-

tion of a turbulent (eddy) viscosity (νt) and a corresponding turbulent (eddy) diffusivity

(κt). Although the assumptions in these hypotheses are seldom valid in many flows, they

are nevertheless widely used to close the RANS equations due to their simplicity. There are

numerous approaches for modeling νt and κt ranging from simple zero-equation (algebraic)

models to more sophisticated two-equation turbulence models (e.g. the k-ǫ model by Jones

& Launder 1972). For stably stratified flows, parameterizing both νt and κt in such a way

as to yield the right levels of both momentum and scalar (density) mixing has proved to be

challenging. Therefore, it is essential to develop robust RANS models that have the benefit

of fast calculation speeds along with accuracy. This continues to remain an open research

problem for the turbulence modeling community.

Many RANS models use the turbulent Prandtl (or Schmidt) number (Prt = νt/κt) to

link the turbulent momentum and scalar fluxes (Venayagamoorthy & Stretch 2010). In a

uni-directional planar shear flow (e.g. a turbulent channel flow), νt is defined as

νt =
−u′w′

dU/dz
, (109)

and κt is given by

κt =
−ρ′w′

dρ/dz
, (110)

where u′w′ is the Reynolds stress (turbulent momentum flux), ρ′w′ is the turbulent density

flux, z is the normal distance from the wall, dU/dz is the mean shear rate (often denoted

as S) and dρ/dz is the vertical mean density gradient. It is easy to see from the definition

of the turbulent Prandtl number, the importance of parameterizing it to correctly capture

the turbulent momentum and scalar fluxes. This is even more important when the scalar is

active such as in stably stratified flows. There are a number of parameterizations for Prt

for stably stratified flows such as those proposed many decades ago by Munk & Anderson
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(1948) (hereafter MA) and more recently by Venayagamoorthy & Stretch (2010) (hereafter

VS), to mention a couple. The two main factors that tend to influence the turbulent mixing

in stably stratified wall-bounded flows are the density stratification and the solid boundary

(MA). However, in many flow conditions such as in the mixed layer, the effect of the boundary

is very limited and can thus be neglected. Based on such arguments, most turbulent Prandtl

number parameterizations only consider the effect of the density stratification and hence by

default are only applicable to homogeneous (free) shear flows. But in a wall-bounded flow,

the presence of the solid wall introduces inhomogeneities in the flow that causes anomalous

transport of momentum and scalar close to the wall (Launder & Spalding 1972, Crimaldi et

al. 2006).

In this study, we discuss the behavior of the turbulent Prandtl number in the presence

of a solid wall and introduce a new parameterization for Prt that accounts for the presence

of the wall along with stratification. In order to test the new parameterization for Prt, a

zero-equation (algebraic) RANS model that makes use of the modified turbulent viscosity

(νt) proposed by MA as well as the two-equation standard k-ǫ turbulence closure scheme, are

developed in MATLAB and the results are compared with the DNS data of stably stratified

channel flow of Garćıa-Villalba & del Álamo (2011). We also compare the Prt parameteriza-

tion of MA for homogeneous flows to highlight the shortcomings of homogeneous formulation

for Prt in predicting both momentum and scalar mixing correctly in wall-bounded flows.

5.1.2. Parameterization of the Turbulent Prandtl Number. It has been shown

(e.g. Schumann & Gerz 1995, VS) that in a stably stratified homogeneous flow, Prt can be

defined as

Prt =
Rig
Rf

+ Prt0, (111)

where Prt0 is the neutral Prandtl number in the limit of zero stratification in a homogeneous

shear flow. Prt0 has been shown to be close to unity (Kays et al. 1993, Kays 1994). In

equation (111), Rig is the gradient Richardson number and is defined as

Rig =
N2

S2
, (112)
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where N =
√

−(g/ρ0)(dρ/dz) is the Brunt-Väisälä or buoyancy frequency, g is the gravita-

tional acceleration and ρ0 is the background density of the fluid. N represents the frequency

of a fluid particle oscillating in a flow when displaced from its stable position and provides

a measure of the strength of the density stratification. Rf is the flux Richardson number

which in shear flows is conventionally defined as (Peltier & Caulfield 2003)

Rf =
−B

P
, (113)

where B = −g/ρ0(ρ′w′) is the buoyancy flux and P = −u′w′(dU/dz) is the rate of production

of the turbulent kinetic energy (k = 0.5u′2
i , using Einstein summation). Direct measurement

of the buoyancy flux in stratified flows is not trivial due to technical difficulties as well as

complex physical processes such as contamination from internal waves. To circumvent this

problem, indirect approaches are used to infer B from the scalar dissipation rate (χ), the

turbulent kinetic energy dissipation rate (ǫ), N and the Thorpe overturning length scale

(LT ). Osborn & Cox (1972) have defined the buoyancy flux indirectly by assuming that

the advective terms are negligible. To date, there is no general consensus on a universal

parameterization for Rf even though a number of parameterizations exist for Rf . This

is mainly due to the lack of evidence on what the behavior of Rf should be under very

strong stable stratification in high-Reynolds-number flows. Laboratory experiments and

direct numerical simulations remain inconclusive about this issue due to Reynolds number

limitations. Field experiments tend to show quite a bit of scatter. However, recent DNS

studies, in particular those of Mashayek & Peltier (2013) and Mashayek et al. (2013),

have sought to increase the Reynolds number limit of numerical simulations to realistic

geophysical flows. These recent results indicate that Rf might be highly variable and difficult

to parameterize in free shear layers, especially at strong stratification. Regardless, there

have been some formulations that have gained acceptance. For example, Osborn (1980) has

proposed that Rf ≤ 0.17 based on a few laboratory experiments of shear flows. It should

be noted however, that there is growing evidence that the assumptions of fully developed

turbulence, stationarity and homogeneity, inherent in Osborn’s formulation as well as a
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Figure 5.1. The flux Richardson number (Rf ) as a function of the gradient
Richardson number (Rig).

constant value of Rf are highly debatable (see e.g. Mashayek & Peltier 2013, Mashayek et

al. 2013 and Ivey et al. 2008). Mellor & Yamada (1982) (hereafter MY) have proposed a

parameterization where Rf ≤ 0.25, given by

Rf = 0.725
[

Rig + 0.186−
(
Ri2g − 0.316Rig + 0.0346

)1/2
]

. (114)

Recently, Canuto et al. (2001) using the dataset of Maderich et al. (1995), have shown that

the flux Richardson number is directly related to Rig. They showed that Rf increases with

Rig from zero for neutral (zero) stratification and asymptotes to a value Rf∞ ≈ 0.25 around

Rig ≈ 1. The measured flux Richardson numbers show an exponential behavior as a function

of the gradient Richardson number. Here, we propose a simple exponential relationship for

Rf as a function of Rig

Rf = Rf∞ [1− exp (−γRig)] , (115)

where Rf∞ = 0.25 and γ is a constant that is set equal to 7.5. The behavior of Rf as a

function of Rig given by equations (114) and (115) are shown in Figure (5.1). It is clear that

the proposed formulation is very similar to the formulation of MY given in equation (114).

As shown in equation (111), the homogeneous Prt increases linearly without bound with the
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gradient Richardson number (Rig). Some studies have been carried out to highlight the effect

of the wall on Prt such as Kawamura et al. (1998), Crimaldi et al. (2006) and Srinivasan &

Papavassiliou (2010). Crimaldi et al. (2006) have measured Prt in an unstratified boundary

layer flow in the laboratory. They have observed that Prt is much higher than unity near

the bed (i.e. for z+ = zuτ/ν < 30, where z+ is the wall unit, uτ is the friction or turbulent

velocity and ν is the kinematic or molecular viscosity) and decreases almost linearly to about

unity in the free-stream. This implies that at the wall, Prt is a maximum and decreases to

the value of the homogeneous shear flow case in the outer flow region. Coincidentally, this

behavior is in agreement with the linear shear stress distribution in a channel flow given by

τ = τw

(

1−
z

D

)

, (116)

where τ is the shear stress at a level z from the wall, τw is the (maximum) shear stress at the

wall, D is the flow depth and z is bounded in the range 0 ≤ z ≤ D. We note that the linear

shear stress distribution given in equation (116) holds strictly only for channel and pipe

flows. However, the shear stress distribution from DNS of boundary-layer flow (Jiménez et

al. 2010) indicates that assuming a linear distribution is reasonable in the logarithmic region.

Kawamura et al. (1998) performed a DNS study of heat transfer in a channel flow. Their

results show that beginning in the log-law region where z+ ≈ 30, Prt starts to decrease to

about unity in the outer free-stream. Srinivasan & Papavassiliou (2010) showed that for an

unstratified wall-bounded flow for fluids with molecular Prandtl number of Pr = ν/κm > 0.7

with κm defined as the molecular diffusivity, the neutral turbulent Prandtl number starts

from values above unity at the wall and decreases to almost the molecular Prandtl number

(Pr) at the free-surface. It is also worth noting in passing that Launder & Spalding (1972)

indicate that Prt ought to follow a linear distribution with a higher value at the wall that

decreases as the free-stream is approached. Therefore, the following formulation for the

unstratified (neutral) Prt in a wall-bounded flow can be proposed

Prtw0 =
(

1−
z

D

)

Prtwd0 + Prt0, (117)
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where Prtwd0 is the difference between the neutral turbulent Prandtl number at the wall

(Prtw0) and the neutral turbulent Prandtl number for a homogeneous shear flow (Prt0).

DNS data in the near-wall region (z+ ≈ 30) indicate that Prtw0 varies in the range 1–

1.5 for different molecular Prandtl numbers (Pr) (e.g. see the discussion in McEligot &

Taylor 1996). Crimaldi et al. (2006) showed that Prtw0 is around 2 in the log-law region

and tapers off almost linearly to close to unity as the free-stream is approached. Most

RANS simulations make use of the logarithmic law of the wall to model wall-bounded flows,

therefore here, we use Prtw0 ≈ 1.1. Different values for the neutral turbulent Prandtl number

(Prt0) in homogeneous shear flows have been suggested but there is consensus that its value

is very close to unity (VS). However, VS have argued that Prt0 = 0.7 using DNS data of

homogeneous shear flows, in agreement with several other studies (e.g. Schumann & Gerz

1995). We use this value for the purpose of this study. For the unstratified case, equation

(117) provides a linear correction to the Prt0, with the value at the beginning of logarithmic

region equal to Prtw0. This linear formulation is in agreement with the observed DNS data,

experiment of Crimaldi et al. (2006) and also proposition of Launder & Spalding (1972).

It is also worth noting that if the wall effect is removed, the formulation given by equation

(117) reverts back to neutral value in homogeneous unstratified shear flows.

Let us now consider how to extend this discussion to stably stratified wall-bounded flows.

Using equation (116) and evoking the turbulent-viscosity hypothesis, it is straightforward to

show that the turbulent viscosity (for the log-law region) is given by

νt =
u2
τ

S

(

1−
z

D

)

, (118)

where uτ = (τw/ρ)
1/2 is the friction velocity. Furthermore, using the formulation by Osborn

(1980), the turbulent diffusivity (κt) is commonly assumed to be given by

κt = Γ
ǫ

N2
, (119)
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where ǫ is the dissipation rate of the turbulent kinetic energy (k) and Γ is the mixing efficiency

and is related to Rf as

Γ =
Rf

1−Rf

. (120)

It is worth noting here that Osborn’s formulation for the turbulent diffusivity assumes

stationarity and has been shown to be an oversimplification of the mixing problem by Smyth

et al. (2001) and a number of other more recent studies (e.g. Mashayek et al. 2013).

However, it is a widely used formulation for quantifying mixing in oceanic flows. With

this caveat in mind, we retain this formulation and proceed by dividing equation (118) by

equation (119) to get an expression for the stratified component of the turbulent Prandtl

number (Prt) as follows

Prt =
u2
τ/S

(
1− z

D

)

Γ(ǫ/N2)
. (121)

Durbin & Pettersson Reif (2011) discuss that in the constant-stress (log-law) region, the

equilibrium assumption holds between the production rate of the turbulent kinetic energy

(P ) and the dissipation rate of the turbulent kinetic energy (ǫ), i.e. P = ǫ. This implies

that for unstratified channel flow, ǫ can be expressed as

ǫ =
u3
τ

κz
, (122)

where κ is the von Kármán constant (assumed to be ≈ 0.40 in this study). Similarly, evoking

the equilibrium assumption between the production rate of the turbulent kinetic energy (P ),

the dissipation rate of the turbulent kinetic energy (ǫ) and the buoyancy flux (B) in the

logarithmic region of a stably stratified wall-bounded flow yields

P + B = P (1−Rf ) = ǫ, (123)

which can be rearranged to get the dissipation rate (ǫ) as

ǫ = (1−Rf )
u3
τ

κz
. (124)
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Substituting equation (124) into equation (121), gives Prt as

Prt =
N2

Rf

(
κz

uτ

)
1

S

(

1−
z

D

)

. (125)

From the classical log-law, the mean velocity gradient is given by

S =
∂U

∂z
=

uτ

κz
. (126)

This can now be substituted into equation (125) to get

Prt =
N2

S2

1

Rf

(

1−
z

D

)

=
Rig
Rf

(

1−
z

D

)

. (127)

Analogous to homogeneous Prt (equation 111) which is a combination (algebraic sum) of

the stratified Prt (i.e. Rig/Rf ) and neutral turbulent Prandtl number (Prt0) in conjunction

with the discussion above, we propose a Prt for stably stratified wall-bounded flows, by

combining the wall-bounded stratified Prt (equation 127) and unstratified wall-bounded Prt

(i.e. Prtw0 in equation 117) as follows

Prt =
(

1−
z

D

) Rig
Rf

+
(

1−
z

D

)

Prtwd0 + Prt0. (128)

In equation (128), the effect of the buoyancy is considered through Rig/Rf term and the wall

effect is taken into account by using (1− z/D). In this paper, we show that it is important

to take this behavior of Prt into account when modeling stably stratified wall-bounded flows

in order to simultaneously predict the mean velocity and density profiles correctly.

With any given parameterization for Prt, we need to make use of either νt or κt to calcu-

late one from the other. It is common for the turbulent viscosity (νt) to be parameterized.

Hence, accurate parameterization of the turbulent viscosity (νt) in a RANS model is very

important. For an unstratified fully developed turbulent channel flow with a hydrostatic

pressure distribution and a logarithmic velocity profile, it can be mathematically shown that

the turbulent viscosity (νt) is simply a parabolic function of depth given by (Rodi 1993)

νt0 = κuτz(1− z/D). (129)
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This equation only takes into account the effect of boundaries in generating the turbulence

and is appropriate for a zero-equation RANS model. Equation (129) is the turbulent vis-

cosity (νt) for a neutrally stable flow and thus does not incorporate the effect of density

stratification. MA argued that as Rig → 0, νt → νt0 and when Rig → ∞, νt → 0. Based on

these arguments, they provided a simple modification to account for density stratification

as a function of Rig. Here, we adopt their formulation to modify the parabolic turbulent

viscosity (νt) to equation (130) for a stably stratified flow as a function of Rig given by

νt = κuτz(1− z/D) (1 + βRig)
α , (130)

where β and α are empirical constants with values of 10 and −1/2, respectively (MA).

In more sophisticated turbulence closure models such as the standard k-ǫ model, addi-

tional transport equations are solved to evaluate νt. In the standard k-ǫ model, the turbulent

viscosity is given by

νt = (1−Rf )Cµ
k2

ǫ
, (131)

where Cµ = (|u′w′|/k)2 is the turbulent viscosity parameter and is usually considered to

be roughly 0.09 (Karimpour & Venayagamoorthy 2013). The transport equation of k for a

stratified inhomogeneous flow in the standard k-ǫ closure scheme is given by

∂k

∂t
+ Uj

∂k

∂xj

= P − ǫ+ B +
∂

∂xj

(
νt
σk

∂k

∂xj

)

, (132)

where the last term is the transport of k due to existence of solid wall which is modeled

using the gradient-diffusion hypothesis with σk as the turbulent Prandtl number for k. Fur-

thermore, in the standard k-ǫ model the dissipation rate of the turbulent kinetic energy

(ǫ) is obtained through an empirical transport equation. This equation is a dimensionally

consistent analogy to the transport equation of k (Durbin & Pettersson Reif 2011) and for

high-Reynolds-number flows is given by

∂ǫ

∂t
+ Uj

∂ǫ

∂xj

= Cǫ1P
ǫ

k
− Cǫ2ǫ

ǫ

k
+ Cǫ3B

ǫ

k
+

∂

∂xj

(
νt
σǫ

∂ǫ

∂xj

)

. (133)
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In equation (133), Cǫ1, Cǫ2 and Cǫ3 are empirical constants for the ‘production of dissi-

pation’, ‘dissipation of dissipation’ and ‘buoyancy flux of dissipation’, respectively. Also, σǫ

is an empirical dissipation turbulent Prandtl number. All of the constants in the k-ǫ model

except for Cǫ3 have standard values as follows: Cǫ1=1.44; Cǫ2=1.92; σk=1.0 and σǫ=1.3. In

contrast to the other constants that have more or less universal values as shown above, there

is still no consensus on the value of the buoyancy parameter (Cǫ3). However, Rodi (1987)

has shown that Cǫ3 ≈ 0 is a reasonable value based on some successful numerical simulations

of stratified flows. Following his work, we have also used Cǫ3 = 0 in our k-ǫ based RANS

simulations. We discuss this more in section 5.2.

In this study, we employ the MA formulation for the turbulent viscosity (νt) as well

as the standard k-ǫ closure scheme and use the proposed formulation for Prt in equation

(128) to highlight the importance of considering the effect of the wall in modeling the scalar

transport. We do this by comparing numerical simulations results for a one-dimensional

fully developed channel flow case with results from three-dimensional DNS of channel flow

of Garćıa-Villalba & del Álamo (2011).

5.1.3. Numerical Model. A one-dimensional fully developed smooth-wall channel flow

similar to DNS channel flow of Garćıa-Villalba & del Álamo (2011) at a friction Reynolds

number of Reτ = uτD/ν = 550 is simulated in this study using both turbulent viscosity (νt)

proposed by MA as well as the standard k-ǫ model. Two different stratifications with friction

Richardson numbers of Riτ = ∆ρgD/ρ0u
2
τ = 60 and 120 are used, where ∆ρ is the density

difference between the top and bottom of the channel. The RANS results are compared with

the DNS data of Garćıa-Villalba & del Álamo (2011). To our knowledge this is the only

available highly resolved DNS database of stably stratified turbulent channel flow.

We do this by solving the 1-D RANS momentum and scalar transport equations. The

1-D RANS momentum equation with the Boussinesq approximation is given by

∂U

∂t
= −

1

ρ0

∂p

∂x
+ ν

∂2U

∂z2
−

∂

∂z

(
u′w′

)
, (134)
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which using the turbulent-viscosity hypothesis can be rewritten as

∂U

∂t
= −

1

ρ0

∂p

∂x
+ ν

∂2U

∂z2
+

∂

∂z

(

νt
∂U

∂z

)

. (135)

For simplicity, a pressure-driven flow (i.e. constant pressure gradient) is assumed so that

the pressure can be decoupled from the velocity. Using the hydrostatic pressure distribution,

the pressure term is then given by

−
1

ρ0

∂p

∂x
= −

1

ρ0

∂(ρ0gh)

∂x
= −g

∂h

∂x
= −gS, (136)

where S = −u2
τ/gD is the slope of the free-stream. The one-dimensional RANS scalar

transport equation is given by

∂ρ

∂t
= κm

∂2ρ

∂z2
−

∂

∂z

(
ρ′w′

)
, (137)

and can be simplified using the gradient-diffusion hypothesis as

∂ρ

∂z
= κm

∂2ρ

∂z2
+

∂

∂z

(

κt
∂ρ

∂z

)

. (138)

The above RANS equations cannot be solved analytically and require a numerical solu-

tion methodology. To perform a numerical simulation, the governing equations have to be

discretized in space and in time in order to convert the partial differential equations into a

set of algebraic equations. In this study, a second-order accurate central difference scheme

using the finite volume method is employed for spatial discretization. The temporal terms

are discretized using a semi-implicit θ-method, where θ is the implicitness parameter that

can range from 0–1. The θ-method can be represented as

∂T

∂t
= θf

(
T n+1

)
+ (1− θ) f (T n) , (139)

where T is an arbitrary variable (e.g. U), dependent on time and space and f shows a spatial

function. The θ-method improves the stability and/or accuracy of the method through the

weighting of the explicit and implicit terms, using the implicitness parameter θ (Casulli
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& Cattani 1994). For example, when θ = 0 the method is first-order accurate and fully

explicit while for θ = 1 the method is fully implicit, with first-order accuracy. When θ =

0.5, the scheme is usually known as Crank-Nicolson method (Moin 2010), and is a semi-

implicit, second-order accurate scheme that evenly distributes the weighting of the explicit

and implicit terms. The channel flow governing equations are stable for 0.5 ≤ θ ≤ 1. For

this study, θ ≈ 0.7 is used since it yielded stable solutions with no oscillations.

A no-slip boundary condition at the solid wall (i.e. U = 0) and free-slip boundary

condition at the free-surface (i.e. ∂U/∂z = 0) are imposed. The no-slip boundary condition

requires modeling the very thin boundary layer region (the so-called near-wall region where

z+ < 30). A commonly used technique is to apply the velocity boundary condition at

some distance away from the wall, where the logarithmic velocity profile begins (i.e. z+ >

30). Assuming the existence of a logarithmic velocity profile and using a linear shear stress

distribution, the solid wall boundary condition can be represented as

∂U1

∂z
=

CD

νt
|U1|U1, (140)

where U1 is the velocity at the first grid point of the flow domain and CD can be interpreted

as a drag coefficient as

CD =

[
1

κ
ln

(
z1
z0

)]−2

, (141)

where z0 is the roughness height such that the logarithmic velocity profile goes to zero, while

z1 is the physical distance of the first grid point from the wall, located in the log-law region.

Similarly, the standard k-ǫ model is incapable of modeling the near-wall region due to

excessive overprediction of turbulent viscosity (νt) in this intricate near-wall region (Karim-

pour & Venayagamoorthy 2013). In the standard k-ǫ closure scheme, modeling the near-wall

region is avoided by employing wall-functions. The wall-functions impose the boundary con-

ditions at some distance away from the wall in the log-law region. Assuming the existence

of a logarithmic velocity profile, the boundary condition for the mean velocity at the first
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Figure 5.2. (a) Fully developed unstratified velocity profile; and (b) initial
density profile.

grid point is given by

U1 =
uτ

κ
ln

(
z1
z0

)

. (142)

Consequently, the boundary conditions for the turbulent kinetic energy (k) and ǫ (i.e. at

the first point (z1)) are given by

k1 =
u2
τ

√
Cµ

, (143)

and

ǫ1 =
u3
τ

κz1
. (144)

The natural boundary condition for the density would be a Neumann boundary condition

at both or at least one of the boundaries (i.e. ∂ρ/∂z = 0). However, applying a Neumann

boundary condition results in a fully mixed density field (∂ρ/∂z = 0) across the whole water

column. In order to be able to evaluate the effect of the stable stratification and also the

efficacy of the proposed Prt’s, the density profile is kept constant at both boundaries (i.e.

Dirichlet boundary conditions) and the density field is allowed to evolve in the interior of

the channel. We note that Dirichlet boundary conditions were also used in the simulations

of Garćıa-Villalba & del Álamo (2011).
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The flow is initialized first from rest and allowed to spin up until a fully developed tur-

bulent velocity profile is obtained before the linear density stratification is imposed. Figure

(5.2) shows the comparison of the unstratified velocity profile from the zero-equation RANS

simulation to the unstratified DNS channel flow velocity profile of Garćıa-Villalba & del

Álamo (2011) along with the initial density stratification. The velocity is normalized as

U+ = U/uτ and the density is normalized as ρ+ = (ρm − ρt)/(ρb − ρt), where ρm = ρ0 + ρ.

Also, ρt and ρb represent the density at the top and bottom boundaries of the channel, re-

spectively. As it can be seen, the agreement between the RANS simulation and the DNS

results are excellent.

5.1.4. Results and Discussion. In this section, the results of the RANS numerical

simulations using different turbulent Prandtl number formulations are presented and dis-

cussed. We note that for the zero-equation model, the simulations use the modified turbulent

viscosity (νt) proposed by MA as discussed in section 5.1.2. The results obtained from using

the homogeneous Prt’s given in equation (111) as well as the MA formulation for Prt given

by equation (145) are compared with the modified Prt given by equation (128). The MA

proposition is given by

Prt = Prt0
(1 + βRig)

α

(1 + βρRig)
αρ
, (145)

where β = 10, α = −1/2, βρ = 10/3 and αρ = −3/2 are empirical constants.

First, the fully developed velocity and density profiles using the zero-equation closure

scheme and the homogeneous Prt formulations given by equations (111) and also (145)

for Riτ = 60 are shown in Figure (5.3a) and (b). Superimposed on these plots are the

profiles obtained from the DNS of Garćıa-Villalba & del Álamo (2011). It is evident that the

homogeneous Prt formulations permit excessive mixing of the density and consequently a

velocity profile similar to the unstratified case is obtained. On the other hand, the results of

the RANS simulation using the modified Prt given by equation (128) show a much improved

prediction of both momentum and scalar, especially a much closer agreement with the DNS

density profile, thus highlighting the effect of the (1−z/D) correction that has been proposed.
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Figure 5.3. Left panel: velocity profiles; right panel: density profiles; for
Riτ = 60 and Reτ = 550 obtained from the zero-equation closure scheme
using: (a,b) the Prt formulations given by equations (111) and (145); (c,d)
the modified Prt formulation (equation 128) compared with the channel flow

DNS data of Garćıa-Villalba & del Álamo (2011).

Furthermore, to better assess the robustness of the proposed correction, we make use of

the modified Prt given by equation (128) to simulate a flow with a stronger stratification of

Riτ = 120. The results are shown in Figure (5.4) and compared with the channel flow DNS

data. The formulation shows good prediction of the density and velocity profiles.

In order to assess the applicability of the modified Prt in more sophisticated RANS

closure schemes, the channel flow simulation is performed using the standard k-ǫ model.
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Figure 5.4. Comparisons of (a) velocity profiles; and density profiles for
Riτ = 120 and Reτ = 550 obtained from the zero-equation closure scheme us-
ing the modified proposition for Prt shown in equation (128) with the channel

flow DNS data of Garćıa-Villalba & del Álamo (2011).

Figure (5.5) shows the prediction of velocity and density profiles for Riτ = 60 compared

to the DNS profiles using the standard k-ǫ model for both the homogeneous Prt’s given

in equations (111) and (145) and the modified parameterization given by equation (128).

Similar to the prediction shown in Figure (5.3), the homogeneous Prt formulations show

overmixing of density and different velocity profiles compared to the DNS profile as shown in

Figure (5.5a) and (b), respectively. Interestingly (but as expected), the modified proposition

substantially improves the prediction of the density profile and consequently the velocity

profile as can be seen in Figure (5.5c) and (5.5d), respectively. This highlights the need

for the proposed (1 − z/D) correction and the applicability of the modified Prt in more

sophisticated turbulence models.

5.1.5. Concluding Remarks. In this study, we have investigated the use of homoge-

neous turbulent Prandtl number (Prt) parameterizations to predict the mixing of momentum

and density in a stably stratified channel flow. We have made use of the stratified parabolic

turbulent viscosity formulation proposed by MA as well as the standard k-ǫ model and
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Figure 5.5. Left panel: velocity profiles; right panel: density profiles; for
Riτ = 60 and Reτ = 550 obtained from the standard k-ǫ closure scheme
using: (a,b) the Prt formulations given by equations (111) and (145); (c,d)
the modified Prt formulation (equation 128) compared with the channel flow

DNS data of Garćıa-Villalba & del Álamo (2011).

tested the efficacy of the homogeneous Prt’s in the context of one-dimensional RANS clo-

sure schemes. The comparison of the RANS results with data from DNS of stratified channel

flow clearly shows the inadequacy of the homogeneous Prt formulations for correctly simu-

lating a stratified channel flow. In order to account for the effect of the wall boundary, we

have proposed a reasonable modification to the homogeneous Prt formulation by introduc-

ing a linear correction based on the distance from the wall (1− z/D). This proposition was

96



motivated in part by observed trends of the turbulent Prandtl number in unstratified wall-

bounded flows from a number of studies such as those of Kawamura et al. (1998), Crimaldi

et al. (2006) and Srinavasan & Papavassiliou (2010) as well as some modeling reasoning. The

RANS results using the modified formulations compare well with the DNS data, highlighting

the utility of the proposed modification.

In essence, these results highlight the need to modify the homogeneous turbulent Prandtl

number formulations for wall-bounded flows. To this end, the simple correction presented

in this study has shown remarkable improvement in predicting both momentum and scalar

mixing. We believe these findings will be useful in numerical modeling of many geophysical

flows influenced by wall effects.

In the following section, we extend our discussion to the standard k-ǫ closure scheme and

specifically investigate the buoyancy parameter (Cǫ3).

5.2. Improvement of the k-ǫ model2

5.2.1. Introduction. Stably stratified wall-bounded turbulent flows are common in

nature such as in estuaries, lakes, oceans and the atmosphere. Hence, development of nu-

merical models with the ability to correctly predict such flows is of great importance. With

the increase of the computational power in recent decades, different numerical methods have

been developed and used for modeling turbulent flows. Direct numerical simulation (DNS)

and large-eddy simulation (LES) are two methods which have been used to fundamentally

study stratified wall-bounded flows. DNS directly solves the highly non-linear Navier-Stokes

equations together with the continuity and scalar (density) transport equations without re-

course to any turbulence models. DNS is capable of resolving the temporal and spatial scales

2The results presented in this section will be submitted in substantial part as a paper entitled “Eval-

uation of the standard k-ǫ closure scheme for modeling stably stratied wall-bounded turbulent flows” by

F. Karimpour, A. Garanaik and S. K. Venayagamoorthy, to Ocean Modelling. This chapter is written in a

collective “we” tense to acknowledge collaborative work with the co-authors. Amrapalli Garanaik performed

some RANS simulations to confirm some of the results.
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of the flow from the Kolmogorov scale (η) assumed as the smallest scale where the molecular

viscosity (ν) dominates, to the energy-containing scales. LES can resolve the large scales of

the flow but relies on turbulence models to predict small scales of the fluid flow. However,

both DNS and LES are very expensive for most practical problems and are still limited to

the low- to moderate-Reynolds-number flows with idealized geometries.

Reynolds-averaged Navier-Stokes (RANS) simulation is another numerical method which

is widely used for modeling turbulent flows. RANS applies Reynolds decomposition and av-

eraging to the governing equations of the fluid flow. This process results in additional terms

known as turbulent momentum fluxes (Reynolds stresses) and turbulent scalar fluxes in

momentum and scalar transport equations, respectively. These extra terms imply that the

number of the unknowns is greater than the number of equations leading to an undetermined

system of equations commonly referred to as the closure problem. To resolve this severe short-

coming, the turbulent-viscosity and gradient-diffusion hypotheses are used to model these

extra terms. The turbulent-viscosity hypothesis links the Reynolds stresses with the mean

shear rate (dU/dz) through the turbulent viscosity (νt). Similarly, the gradient-diffusion

hypothesis links the turbulent scalar fluxes with the mean scalar gradient (dρ/dz) using the

turbulent diffusivity (κt). In a uni-directional shear flow, the turbulent viscosity (νt) is given

by

νt =
−u′w′

∂U/∂z
, (146)

and the turbulent diffusivity (κt) is defined as

−ρ′w′ = κt
∂ρ

∂z
, (147)

where u′w′ is the Reynolds stress, U is the mean (time-averaged) velocity along the main

axis, z is the vertical distance from the wall, ρ′w′ is the turbulent scalar flux and ρ is the

mean scalar (density).

The turbulent viscosity (νt) and the turbulent diffusivity (κt) cannot be defined explicitly

and need to be parameterized. For this reason, different turbulence closure schemes are
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introduced to model νt and κt. The standard k-ǫ closure scheme, first developed by Jones

& Launder (1972), is one of the most popular RANS models (Pope 2000). In this model, k

denotes the turbulent kinetic energy per unit mass and is defined as

k =
1

2
(u′2 + v′2 + w′2), (148)

and ǫ is the dissipation rate of the turbulent kinetic energy, given by

ǫ = ν

(

∂u′
i

∂xj

∂u′
i

∂xj

+
∂u′

i

∂xj

∂u′
j

∂xi

)

. (149)

In the standard k-ǫ closure scheme, the turbulent viscosity (νt) is given by

νt = (1−Rf )Cµ
k2

ǫ
, (150)

where Cµ = (|u′w′|/k)2 is the turbulent viscosity parameter commonly assumed to be 0.09

(Karimpour & Venayagamoorthy 2013). Also, Rf is the flux Richardson number which is

defined as

Rf =
−B

P
, (151)

where B = (−g/ρ0)ρ′w′ is the buoyancy flux.

The momentum equation is coupled with the density transport equation through the

buoyancy term. Hence, it is important to propose suitable parameterizations for the turbu-

lent diffusivity to correctly predict the mixing of density. Stability functions such as those

introduced by Galperin et al. (1988), Kantha & Clayson (1994) and Canuto et al. (2001)

describe the shear and stratification effects on the turbulent viscosity and diffusivity through

complex empirical functions. A common approach is to employ the turbulent Prandtl number

(Prt) which links the turbulent viscosity and diffusivity as

Prt =
νt
κt

. (152)
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In most turbulence models such as the standard k-ǫ model, the turbulent viscosity and

the turbulent Prandtl number (Prt) are calculated explicitly using appropriate parameteriza-

tions. The turbulent diffusivity (κt) is then computed subsequently. The turbulent Prandtl

number is parameterized using experiments and DNS data, usually in terms of the gradient

Richardson number (Rig) such as propositions of Munk & Anderson (1948), Webster (1964),

Baum & Caponi (1992), Schumann & Gerz (1995) and Venayagamoorthy & Stretch (2010).

Most parameterizations for the turbulent Prandtl number are developed for homogeneous

shear flows. Hence, the effect of the solid wall is neglected. Karimpour & Venayagamoorthy

(2014, see also section 5.1) proposed an appropriate Prt formulation for a turbulent channel

flow as

Prt =
(

1−
z

D

) Rig
Rf

+
(

1−
z

D

)

Prtwd0 + Prt0. (153)

Here, (Rig) is the gradient Richardson number which is a measure of the stratification

strength and is defined as

Rig =
N2

S2
, (154)

where N =
√

−(g/ρ0)(dρ/dz) is the Brunt-Väisälä or buoyancy frequency and S = ∂U/∂z

is the mean shear rate. In equation (153), the flux Richardson number Rf = Rf∞[1 −

exp(−7.5Rig)] and Prtwd0 ≈ 0.4 is the difference between the neutral turbulent Prandtl

number at the wall (Prtw) and that at the free-stream. The efficacy of the proposed Prt has

been verified via numerical simulations using different RANS closure schemes. The RANS

results using this formulation for Prt compared well with the DNS data of stably stratified

wall-bounded turbulent flow highlighting its suitability for modeling stably stratified wall-

bounded turbulent flows.

In this study, we assess the efficacy of the standard k-ǫ closure scheme for modeling

stably stratified channel flows by revisiting the buoyancy parameter (Cǫ3). Simulations are

performed in the same one-dimensional water column model that is used in section 5.1 and

the effect of the buoyancy parameter (Cǫ3) is tested. In these simulations, we make use of
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the Prt proposed by Karimpour & Venayagamoorthy (2014). In section 5.2.2 a review of

the standard k-ǫ model will be presented followed by a discussion on the parameterization

of Cǫ3. In section 5.2.3 the standard k-ǫ RANS simulation results of the stably stratified

channel flow are shown and compared with the stably stratified channel flow DNS data of

Garćıa-Villalba & del Álamo (2011). Finally, in section 5.2.4 the concluding remarks of the

study are presented.

5.2.2. Standard k-ǫ Model. The standard k-ǫ closure scheme solves the transport

equations of k and ǫ to estimate the turbulent viscosity (νt) as shown in equation (150). With

the Boussinesq approximation, the transport equation of k for a stratified inhomogeneous

flow is given by

∂k

∂t
+ Uj

∂k

∂xj

= P − ǫ+B + Tk, (155)

where P = −u′
iu

′
j(∂Ui/∂xj) is the production rate of k and B = (−g/ρ0)ρ′w′ is the buoyancy

flux. Tk represents the transport of k arising from inhomogeneity due to the existence of the

solid wall. In the standard k-ǫ model, the transport equation of the turbulent kinetic energy

for high-Reynolds-number flows is modeled as

∂k

∂t
+ Uj

∂k

∂xj

= P − ǫ+B +
∂

∂xj

(
νt
σk

∂k

∂xj

)

, (156)

where the transport term is modeled using the gradient-diffusion hypothesis and σk is the

turbulent Prandtl number for k. For a one-dimensional channel flow, the transport equation

of the turbulent kinetic energy can be recast as

∂k

∂t
= P − ǫ+ B +

∂

∂z

(
νt
σk

∂k

∂z

)

. (157)

Using the turbulent-viscosity and the gradient-diffusion hypotheses, P = νt(∂U/∂z)2 and

B = −κtN
2. In the standard k-ǫ model, ǫ is obtained through an empirical transport
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equation which for high-Reynolds-number flows is given by

∂ǫ

∂t
+ Uj

∂ǫ

∂xj

= Cǫ1P
ǫ

k
− Cǫ2ǫ

ǫ

k
+ Cǫ3B

ǫ

k
+

∂

∂xj

(
νt
σǫ

∂ǫ

∂xj

)

. (158)

This equation for a one-dimensional flow can be recast as

∂ǫ

∂t
= Cǫ1P

ǫ

k
− Cǫ2ǫ

ǫ

k
+ Cǫ3B

ǫ

k
+

∂

∂z

(
νt
σǫ

∂ǫ

∂z

)

. (159)

Cǫ1, Cǫ2 and Cǫ3 are empirical constants for the ‘production of dissipation’, ‘dissipation

of dissipation’ and ‘buoyancy flux of dissipation’, respectively. Also, σǫ is an empirical

dissipation turbulent Prandtl number.

As shown in equation (150), by assuming equilibrium between the production rate of k,

the dissipation rate of k and the buoyancy flux (B) as P ≈ ǫ − B, the turbulent viscosity

for the standard k-ǫ closure scheme can be calculated as νt = (1− Rf )Cµk
2/ǫ (Rodi 1987).

The empirical constants used in the standard k-ǫ model are represented in table 5.1.

Cµ Cǫ1 Cǫ2 σk σǫ

0.09 1.44 1.92 1.0 1.3

Table 5.1. Values of constants in the standard k-ǫ model

In contrast to other constants in the standard k-ǫ model, there is still no consensus on

the value of the buoyancy parameter (Cǫ3). In next section, Cǫ3 is investigated by using

analytical discussions.

5.2.2.1. Parameterization of Cǫ3. The modeled transport equation of ǫ shown in equation

(158) was first introduced by Jones & Launder (1972), while the buoyant dissipation term

was later added by Launder & Spalding (1972). In contrast to other empirical parameters in

the standard k-ǫ closure scheme, it is found that Cǫ3 depends on the flow condition. Hence,

different values are proposed for Cǫ3. Durbin & Pettersson Reif (2011) discussed that P and

B are linked as B = −PRf , which reduces the transport equation of the turbulent kinetic

energy (k) as Dk/Dt = P (1 − Rf ) − ǫ + Tk. Analogous to the transport equation of k,

they argued that equal weighting factor should be considered for the contribution from the

102



production and buoyancy terms in the transport equation of ǫ. This implies that Cǫ3 = Cǫ1

for both stable and unstable stratifications.

However, most of the proposed models describe Cǫ3 as a function of stratification. Under

unstable stratification where buoyancy is a source of production of k, Cǫ3 = 1 is usually cho-

sen (Rodi 1987), while for stable stratifications no universal value is defined yet. Numerous

studies have been carried out to parameterize Cǫ3 for stably stratified flows. For example,

Rodi (1987) suggests to choose Cǫ3 ≈ 0 considering some successful calculations but still

questions the universality of this proposition for all types of turbulence. To describe the be-

havior of Cǫ3, Burchard & Baumert (1995) have considered the idealized case of neglecting

the transport terms compared to P , ǫ and B (i.e. homogeneous flows or equilibrium layer of

wall-bounded flows). Hence, the transport equation of k can be rewritten as

∂k

∂t
= P − ǫ+B

= Cµ (1−Rf )
k2

ǫ
S2 − ǫ− C ′

µ (1−Rf )
k2

ǫ
N2, (160)

where C ′
µ = Cµ/Prt. Similarly, the transport equation of ǫ is

∂ǫ

∂t
= Cǫ1P

ǫ

k
− Cǫ2ǫ

ǫ

k
+ Cǫ3B

ǫ

k

= Cǫ1Cµ (1−Rf )
k2

ǫ
S2 ǫ

k
− Cǫ2ǫ

ǫ

k
− Cǫ3 (1−Rf )C

′
µ

k2

ǫ
N2 ǫ

k
. (161)
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They solved for d(ǫ/k)/dt using equations (160) and (161) as

d(ǫ/k)

dt
=

1

k

dǫ

dt
−

ǫ

k2

dk

dt

=
1

k

(

Cǫ1Cµ (1−Rf )
k2

ǫ
S2 ǫ

k
− Cǫ2ǫ

ǫ

k
− Cǫ3C

′
µ (1−Rf )

k2

ǫ
N2 ǫ

k

)

−
ǫ

k2

(

Cµ (1−Rf )
k2

ǫ
S2 − ǫ− C ′

µ (1−Rf )
k2

ǫ
N2

)

= (1−Rf )
(
Cǫ1CµS

2 − CµS
2 + C ′

µN
2 − Cǫ3C

′
µN

2
)

︸ ︷︷ ︸

a(t)

−
ǫ2

k2
(Cǫ2 − 1)

︸ ︷︷ ︸

b(t)

. (162)

They concluded that as b(t) is always negative, therefore negative values of a(t) can lead to

non-admissible negative values for k and ǫ. Therefore, the sufficient condition for k and ǫ to

be positive is a(t) ≥ 0. As the flux Richardson number is normally considered to be Rf ≤ 1,

it can be concluded that

CµS
2 (Cǫ1 − 1) + C ′

µN
2 (1− Cǫ3) ≥ 0. (163)

Using Prt = Rig/Rf for a homogeneous flow, equation (163) results in

Cǫ3 < 1 , Rf ≥ R−
f =

Cǫ1 − 1

Cǫ3 − 1
, (164)

where R−
f is a limiting flux Richardson number and sets a lower bound for Rf .

This discussion can be further extended by assuming local equilibrium (i.e. P = ǫ− B)

and also using stationarity for equation (161) (i.e. ∂ǫ/∂t = 0). Using such assumptions,

equation (161) will be simplified as

Cǫ1P − Cǫ2ǫ+ Cǫ3B = Cǫ1P − Cǫ2P − Cǫ2B + Cǫ3B = 0. (165)
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It follows from the turbulent-viscosity hypothesis that P = νtS
2. Also, from the gradient-

diffusion hypothesis we can write the buoyancy flux as B = −κtN
2. Using these two formu-

lations for P and B, equation (165) can be rearranged as

κtN
2(Cǫ2 − Cǫ3) = νtS

2(Cǫ2 − Cǫ1), (166)

which leads to

Ristg = Prt
Cǫ2 − Cǫ1

Cǫ2 − Cǫ3

, (167)

where Ristg is the stationary gradient Richardson number. Consequently, a stationary flux

Richardson number can be inferred as

Rst
f =

Cǫ2 − Cǫ1

Cǫ2 − Cǫ3

. (168)

By rearranging equation (168), Cǫ3 can be obtained as

Cǫ3 = Cǫ2 −
Cǫ2 − Cǫ1

Rst
f

. (169)

Investigators have used different values for Ristg such as Baum & Caponi (1992) that intro-

duced Cǫ3 = 1.14 which implies Ristg ≈ 0.6. However, there are evidences such as the work of

Rohr et al. (1988) which show Ristg ≈ 0.25 (Burchard & Bolding 2001). The corresponding

stationary flux Richardson number (Rst
f ) is required to determine Cǫ3. There are various

studies and parameterizations which estimate the flux Richardson number. For example,

for the value of Rig = 0.25, Mellor & Yamada (1982) empirical model suggests a value of

Rf ≈ 0.22, Nakanishi (2001) model returns a value of Rf ≈ 0.23 and a modified formula of

Townsend (1958) which is calibrated and validated with the experimental atmospheric data

gives Rf = 0.25 (Pardyjak et al. 2002). Burchard & Baumert (1995) have proposed that

Rst
f ≈ 0.25 can be a fair estimate when Rig ≈ 0.25.

Using the stationary gradient Richardson number (Ristg ) and consequently the stationary

flux Richardson number (Rst
f ), researchers such as Burchard & Baumert (1995), Burchard
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et al. (1998), Burchard & Petersen (1999) and Baumert & Peters (2000) proposed negative

values for Cǫ3. Burchard & Bolding (2001) evaluated the Cǫ3 using the stability functions of

Kantha & Clayson (1994), Rodi (1980), Hossain (1980), Canuto et al. (2001). They assumed

that Ristg can have different values other than 0.25 in a homogeneous flow and concluded

that negative values for Cǫ3 should be used for these models. In a more recent work, Warner

et al. (2005) discussed that in the k-ǫ model, the contribution of the buoyancy term in the

transport equation of ǫ is relatively low compared to the production and dissipation terms.

Therefore, models such as DELFT3D (1999) switch off Cǫ3 for stable stratifications (i.e.

Cǫ3 = 0). It can simply be shown from equation (169) that Cǫ3 = 0 when Ristg ≈ Rst
f ≈ 0.25.

In section 5.2.3, RANS simulations for Cǫ3 = 0 and also positive and negative values are

performed and results are compared with DNS data of stably stratified channel flow.

5.2.3. Results. In this section, the results of RANS simulations are presented and the

influence of Cǫ3 on simulating stably stratified wall-bounded flows is evaluated. As men-

tioned earlier, the turbulent Prandtl number (Prt) formulation proposed by Karimpour &

Venayagamoorthy (2014) is used in these simulations. The RANS simulation results are

compared with the DNS data of stably stratified channel flow.

5.2.3.1. Evaluation of Cǫ3. In this section, the effect of Cǫ3 is investigated. To do this, we

make use of three different values of Cǫ3 = −1.44, 0.0, 1.44. The RANS results are compared

with exact DNS data of Garćıa-Villalba & del Álamo (2011) for Riτ = 60 and Reτ = 550

and are represented in Figure (5.6).

It can be seen that for the velocity profile, Cǫ3 = −1.44 predicts a higher velocity com-

pared to DNS data, while Cǫ3 = 1.44 yields a velocity profile similar to an unstratified case.

It is evident that Cǫ3 = 0 results in a well-predicted velocity profile.

For Cǫ3 = ±1.44, the density profiles do not compare well with the DNS density. While

for Cǫ3 = −1.44 the density profile shows excessive mixing, Cǫ3 = 1.44 results in a less mixed

density profile compared to the DNS results. As it is expected, using Cǫ3 = 0 results in a

good prediction of the density profile.
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Figure 5.6. a) Comparisons of (a) the velocity profiles; and (b) the density
profiles for Riτ = 60 and Reτ = 550, obtained from the standard k-ǫ closure
scheme for Cǫ3 = −144, 0.0, 1.44, compared with the DNS data of Garćıa-
Villalba & del Álamo (2011).

These findings show that in the standard k-ǫ model, Cǫ3 = 0 is a suitable value for

modeling of stably stratified wall-bounded turbulent flows.

5.2.4. Concluding Remarks. In this study, we have evaluated the efficacy of Cǫ3 for

simulating the mixing of momentum and scalar in a stably stratified wall-bounded turbulent

flow using the standard k-ǫ model. We have used the model introduced in section 5.1.3

and the Prt parameterization of Karimpour & Venayagamoorthy (2014) for modeling stably

stratified wall-bounded flows. Using the concept of the stationary gradient and flux Richard-

son numbers (Ristg and Rst
f ) and neglecting the transport terms, we have proposed Cǫ3 = 0

for a stably stratified wall-bounded turbulent flow. We have tested this proposition as well as

negative and positive values for Cǫ3 by performing RANS simulations to evaluate the effect

of Cǫ3. The RANS simulation results are remarkably good for Cǫ3 = 0, while other values

for Cǫ3 result in poor prediction of the density and velocity. We believe these findings are

helpful for simulating stably stratified wall-bounded turbulent flows.
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5.3. Summary

In this chapter, analytical arguments were made and one-dimensional RANS simulations

were performed to investigate the mixing in a stably stratified turbulent channel flow. Sim-

ulations were implemented in a code developed in MATLAB. A new formulation for Prt

was proposed to model stably stratified wall-bounded flows. Also, Cǫ3 = 0 was suggested.

The results from numerical simulations were compared to the DNS data of stably stratified

channel flow and showed remarkably good comparisons. Additionally, homogeneous formu-

lations for Prt were used to examine their efficacy for modeling stratified wall-bounded flows.

Results from numerical simulations showed deficiency of these formulations.
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CHAPTER 6

Conclusions

6.1. Summary of the Study

There have been various studies for describing and modeling wall-bounded flows. How-

ever, there is a great deal of ambiguity about wall-bounded flows and the efficacy of available

RANS schemes especially in the presence of stratifications for modeling such flows. This

study focuses on how the solid wall affects the turbulence, particularly in the near-wall re-

gion and in the presence of stratification. Also, some models which can be appropriate for

simulating such flows are introduced.

In this dissertation, wall-bounded flow turbulence is studied using analytical arguments

as well as performing one-dimensional numerical simulations for both unstratified and stably

stratified wall-bounded turbulent flows. The results are presented in chapters 3, 4 and 5.

In chapter 3, we have used the equilibrium assumption (i.e. P ≈ ǫ) to study near-wall

turbulence of an unstratified flow. Using dimensional analysis, the relevant scales of the

flow in the context of the turbulent-viscosity hypothesis were derived. Also, the effect of

the equilibrium assumption which is widely used for deriving the turbulent viscosity (νt)

in RANS closure schemes was revisited by using theoretical discussions. It was shown that

assuming equilibrium results in failure of such models for simulating near-wall turbulence.

Different DNS and experimental datasets of unstratified wall-bounded turbulent flows were

used to perform ‘a priori’ tests to examine the validity of the propositions.

In chapter 4, the turbulent mixing in a stably stratified channel flow was studied. Again,

the equilibrium assumption was used to analyze the turbulent mixing in a stably stratified

turbulent channel flow. The turbulent viscosity and diffusivity were revisited and also the

efficiency of the turbulent mixing in stably stratified wall-bounded flows was investigated.

‘A priori’ tests were performed by using stably stratified channel flow DNS data.

Numerical modeling of stably stratified wall-bounded turbulent flows was performed in

chapter 5. The efficacy of commonly used homogeneous turbulent Prandtl numbers for
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modeling stratified flows was assessed. Analytical discussions were made to propose a suitable

Prt for wall-bounded flows and its efficacy was tested by implementing RANS simulations.

Also, the buoyancy parameter (Cǫ3) in the standard k-ǫ model was revisited.

6.2. Main Conclusions

The following is a brief description of the important results obtained from this study:

• Using the equilibrium assumption to analyze unstratified near-wall turbulence showed

that the relevant length scale of turbulent flow in the context of the turbulent-

viscosity hypothesis (TVH) is LS = Lc = (ǫ/S3)1/2. Also, it was shown that the

relevant time scale is TS = 1/S. This is in contrary to the common assumption in

most turbulence models which use TL = k/ǫ as the time scale.

• Analyzing the consequences of assuming equilibrium showed that turbulent viscosi-

ties which are based on the equilibrium assumption as well as the turbulent kinetic

energy (k) are not suitable for modeling near-wall turbulence. The νt formulation of

the standard k-ǫ closure scheme is a good example of such turbulent viscosities. The

analyses revealed that the characteristic scales embedded in the turbulent viscosity

of such models are only comparable with the exact scales of the flow in the context

of TVH, when equilibrium holds. The results also showed that the normal veloc-

ity fluctuation (w′2
1/2

) is a more appropriate velocity scale than k1/2 to describe

near-wall turbulence.

• Assessing the turbulent mixing in stably stratified wall-bounded flows showed that

it is suitable to assume P ≈ ǫ + ǫPE which implies that the transport terms are

substantially impeded by the presence of stable stratification. Using channel flow

DNS data, it is shown that the flux Richardson number (Rf ) is almost equal to an

irreversible flux Richardson number (R∗
f ), when the mean shear rate is dominant.

However, it is shown that assuming equilibrium between the buoyancy flux (B) and

the dissipation rate of the turbulent potential energy (ǫPE) as −B ≈ ǫPE is not as

valid as assuming P ≈ ǫ+ ǫPE in stably stratified wall-bounded flows.
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• Numerical simulations showed that homogeneous turbulent Prandtl numbers are not

suitable for modeling wall-bounded stratified flows. Theoretical analysis as well as

numerical simulations showed that a correction of (1− z/D) has to be made to ho-

mogeneous turbulent Prandtl number formulations in wall-bounded flows. Also, by

analyzing the transport equations of the standard k-ǫ in conjunction with numerical

modeling results of stably stratified channel flow, it is found that Cǫ3 ≈ 0.

6.3. Suggestions for Future Research

The results discussed in this dissertation are limited to smooth-wall turbulent flows. In

such flows, the drag is existing due to friction while the form drag is absent. Hence, the next

logical (but complicated) step is to extend the present study to rough-wall turbulent flows.

Also, modeling stratified near-wall flow could be a useful extension of this work. An

appropriate model can be sought in the context of the model of Durbin (1991) to simulate

stratified near-wall turbulence.

Moreover, all the results in this dissertation are constrained to stationary flows where the

flow is invariant with the change of time. However, most of the flows in nature are dynamic

in time. While seeking and analyzing some exact DNS channel flow data for time-varying

flows as well as introducing models that are capable of correctly changing with time might

look too ambitious, it is definitely a very valuable work which could change our perception

of wall-bounded turbulence.

Finally, there is much more to explore about the turbulent mixing by using the equi-

librium assumption. This study has built the foundation for investigating the equilibrium

assumption by focusing on a pressure-driven stratified flow over a smooth wall. More so-

phisticated LES and DNS works can be used to explore turbulent mixing in the vicinity of

solid wall such as investigating the turbulent mixing arising from breaking of internal waves

when interacting with undersea ridges. For such flows, near-wall turbulence and turbulent

mixing can be investigated and the validity of invoking the equilibrium assumption needs to

be verified.
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APPENDIX A

Inference of the Dissipation Rate in Wall-Bounded

Turbulence1

In this chapter, a novel formulation for νt will be proposed. In section A.2, the appropriate

scales of the wall-bounded turbulent flow are derived in the context of the turbulent-viscosity

hypothesis (TVH) and then the new turbulent viscosity is introduced. Also, ‘a priori’ tests

are performed to examine the efficacy of the proposed formulation. The results presented

in this chapter will be used in future for inference of the dissipation rate of the turbulent

kinetic energy.

A.1. Introduction

The turbulent viscosity (νt) is commonly used to link the turbulent momentum fluxes

(u′w′) with the mean shear rate as

νt =
−u′w′

dU/dz
, (170)

where U is the mean streamwise velocity and z is the normal distance from the wall. As

discussed in section 3.1, Karimpour & Venayagamoorthy (2013) assumed equilibrium be-

tween the rates of production (P ) and dissipation (ǫ) of the turbulent kinetic energy (k) for

a turbulent wall-bounded flow (i.e. P ≈ ǫ) and proposed the turbulent viscosity (νt) as

νt ≈ ǫ/S2. (171)

This proposed formulation for the turbulent viscosity (νt) has shown excellent agreement

with the exact turbulent viscosity (νt) calculated from DNS data for different types of wall-

bounded flows. Furthermore, as we previously discussed, by using the turbulent-viscosity

1The results presented in this chapter will be submitted in substantial part as “A methodology for

inference of the dissipation rate in wall-bounded turbulent flows” by F. Karimpour, J. M. Wilson and S. K.

Venayagamoorthy, to Physics of Fluids. This chapter is written in a collective “we” tense to acknowledge

collaborative work with the co-authors. Jordan M. Wilson contributed by providing some constructive

discussions.
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hypothesis (TVH), νt can be recast in terms of velocity (UTV H), length (LTV H) and time

(TTV H) scales as

νt = UTV HLTV H = U2
TV HTTV H = L2

TV H/TTV H . (172)

Pope (2000) suggested UTV H = (−u′w′)1/2, which implies LTV H = (−u′w′)1/2/S and UTV H =

1/S. Once again, using the equilibrium assumption, Karimpour & Venayagamoorthy (2013)

deduced the pertinent scales of velocity (US), length (LS) and time (TS), given by

UTV H ≈ Us =
( ǫ

S

)1/2

, (173)

LTV H ≈ Ls =
( ǫ

S3

)1/2

, (174)

TTV H = Ts =
1

S
. (175)

LS is the Corrsin scale introduced by Corrsin (1958) and is the smallest eddy deformed by

the mean shear rate (S). This scale is the upper end of the inertial subrange and could be

considered as a length scale for equilibrium (i.e. LS = LTV H where P = ǫ). As shown in Fig-

ure (A.1), the propositions by Karimpour & Venayagamoorthy (2013) compare remarkably

well with the exact DNS data. Note that ‘the plus sign’ ( “+”) denotes non-dimensionalized

quantities, where the non-dimensional turbulent viscosity is ν+
t = νt/ν, the non-dimensional

velocity scale is U+
TV H = UTV H/uτ and the normalized length scale is L+

TV H = LTV H/(ν/uτ ),

with uτ defined as the friction velocity. While the propositions of Karimpour & Venayag-

amoorthy (2013) compare well with DNS results using ‘a priori’ tests, it ignores the prevailing

transport terms in the near-wall region which implies that the nonlinear behavior of P/ǫ is

neglected.

In this chapter, our main goal is to introduce a novel proposition for νt which is able to

properly capture the P/ǫ behavior in the near-wall turbulence. In section A.2, we discuss
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Figure A.1. Comparison of (a) the turbulent viscosity from equation (171);
(b) US; and (c) LS with the exact νt, UTV H and LTV H in a turbulent channel
flow at Reτ=2003, computed from the DNS data of Hoyas & Jiménez (2006).

the near-wall region behavior and propose appropriate scales in the context of the turbulent-

viscosity hypothesis (TVH), using the insights provided by Karimpour & Venayagamoorthy

(2013). Furthermore, we develop an appropriate turbulent viscosity (νt) for the near-wall

region which captures the correct behavior of P/ǫ. ‘A priori’ tests are performed to verify

the propositions using channel flow DNS datasets of Moser et al. (1999) for Reτ ≈ 395 and

590, del Álamo et al. (2004) for Reτ ≈ 950 and Hoyas & Jiménez (2006) for Reτ ≈ 2003,

where Reτ = uτδ/ν is the friction Reynolds number and δ is half of the channel depth.

Finally, conclusions are given in section A.3.

A.2. Parameterization of the Turbulent Viscosity

In this section, we discuss the appropriate scales suitable for describing the wall-bounded

turbulent flows. We also introduce an appropriate turbulent viscosity (νt) for modeling near-

wall turbulence. Furthermore, ‘a priori’ tests using DNS data are performed to validate our

propositions.

A.2.1. Relevant Characteristic Scales. As discussed, Karimpour & Venayag-

amoorthy (2013) invoked the equilibrium assumption (i.e. P ≈ ǫ) to introduce the turbulent

viscosity as νt = ǫ/S2 and derive the relevant scales. Although their propositions provide

valuable insights for describing the turbulent near-wall region, it is clear that equilibrium
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does not hold between P and ǫ in the near-wall region. To this end, we need to modify the

velocity and the length scales to obtain an appropriate turbulent viscosity (νt) that captures

the correct behavior of P/ǫ in the near-wall region. Since modification of both scales is

difficult, we focus our efforts on recasting the most dominant scale in the turbulent viscosity

(νt). For this purpose, we evaluate the ratio of the non-dimensional (normalized) length

scale to velocity scale. The ratio of L+
TV H/U

+
TV H is given by

L+
TV H

U+
TV H

=
(−u′w′1/2/S)/(ν/uτ )

−u′w′1/2/uτ

=
L+
S

U+
S

=
(ǫ/S3)

1/2
/(ν/uτ )

(ǫ/S)1/2 /uτ

=
u2
τ

ν

1

S
=

1

S+
. (176)

S+ is the non-dimensional (normalized) mean shear rate and it can be shown that for a fully

developed channel flow it lies in the range of 0 ≤ S+ ≤ 1, with S+ = 1 at the wall (i.e. z = 0)

and S+ = 0 at the channel mid-depth (Pope 2000). It is obvious from equation (176) that the

length scale is the dominant scale and is much larger than the velocity scale. Consequently, it

is much more important to modify the proposed length scale (LS) introduced by Karimpour

& Venayagamoorthy (2013) than their velocity scale (US). This fact is also presented in

Figure (A.2) which shows that the ratio of these two scales (i.e. L+
TV H/U

+
TV H) rapidly grows

with distance from the wall. Here, z+ = zuτ/ν is the wall unit.

Now, in order to modify LS, we first start by considering the linear distribution of the

shear stress (τ). To infer the linear shear stress distribution, it is required to consider the

streamwise RANS momentum equation of the fully developed wall-bounded turbulent flow,

which is given by

0 = −
∂p

∂x
+ ρ

∂

∂z

(

ν
∂U

∂z

)

− ρ
∂(u′w′)

∂z
, (177)

where p is the mean pressure, x denotes the streamwise direction and ρ is the fluid density.

From the cross-stream RANS momentum equation, it can be shown that the mean pressure

(p) is independent of z (George 2007) and its streamwise gradient is uniform (invariant)

across the flow depth (i.e. ∂p/∂x = ∂pw/∂x = c, where c is a constant and ‘w’ denotes the

value of the variable at the wall). As the flow has no acceleration, the pressure forces are

balanced by the shear forces, which implies that ∂p/∂x = ∂τ/∂z with τ defined as the total
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Figure A.2. Ratio of L+
TV H/U

+
TV H in a turbulent channel flow at Reτ=2003,

computed from the DNS data of Hoyas & Jiménez (2006).

shear stress at a given level z. Hence, equation (177) can be recast as

∂τ

∂z
= ρ

∂

∂z

(

ν
∂U

∂z

)

− ρ
∂(u′w′)

∂z
. (178)

Integrating equation (178) with respect to z, the shear stress distribution can be derived as

τ = ρνS − ρu′w′. (179)

It can be deduced from equation (179) that τ = τw at the wall (z = 0) and τ = 0 in the free-

stream (z = δ). Therefore, knowing that the pressure gradient is linear in the streamwise

direction, this implies that ∂p/∂x = ∂pw/∂x = ∂τ/∂z = −τw/δ. Consequently, the linear

shear stress distribution can be inferred as

τ = τw

(

1−
z

δ

)

= ρu2
τ

(

1−
z

δ

)

. (180)

Now, let us first focus on recasting the length scale in the log-law region. In the log-

law region and beyond, the viscous effects are negligible and the shear stress distribution
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equation can be simplified as

−u′w′ ≈ u2
τ

(

1−
z

δ

)

. (181)

Using equation (181), LTV H = (−u′w′)1/2/S can be rearranged as

LTV H =
−u′w′1/2

S
≈ LP =

uτ

S

(

1−
z

δ

)0.5

. (182)

From the standard logarithmic velocity profile for a smooth-wall flow, we know that U+ =

(1/κ) ln(z+) + B, where U+ = U/uτ , κ is the von Kármán empirical constant normally

assumed to be universal and B is a constant independent of the Reynolds number (McKeon

et al. 2004). This logarithmic velocity profile is inferred from the asymptotic matching

of the inner and outer layers in a fully developed wall-bounded flow (Nagib & Chauhan

2008). In the logarithmic velocity profile formulation, it is conventionally assumed that

κ ≈ 0.40 − 0.41 for smooth-wall flows. However, the precise value of κ remains unsettled.

For example Österlund et al. (2000) suggested that κ = 0.38, Zagarola & Smits (1998)

indicated that κ = 0.436± 0.002, Zanoun et al. (2002) suggested κ = 0.379 and McKeon et

al. (2004) argued that κ = 0.421±0.002 (A complete list of different values for κ is provided

in the work of Marusic et al. 2010). However, using the logarithmic velocity profile, the

mean shear rate (S) is given by S = uτ/κz, which implies that κ is the slope of uτ/S when

plotted versus depth (z). Using this mean shear rate (S), equation (182) can be rewritten

as

LTV H ≈ LP ≈ Llog = κz
(

1−
z

δ

)0.5

. (183)

Exquisite attention has been paid to the logarithmic velocity profile and it is shown to

have minor quantitative difference from the exact mean streamwise velocity. However, it

appears that not much emphasis has been given to investigate the effects of the logarithmic

velocity formulation on the predictions of the mean shear rate as well as turbulence scales.

It is more insightful when we note that even a slight error in predicting mean shear rate (S)

could result in significant differences in the prediction of LTV H (i.e. LP ) and consequently νt.
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Figure A.3. (a) Comparison of 1/S from log-law with the exact 1/S; and (b)
estimation of κ = 1/(S+z+) = uτ/Sz in a turbulent channel flow at Reτ=2003,
950, 590 and 395, computed from the DNS data.

In order to assess the validity of the logarithmic mean shear rate (S = uτ/κz), 1/S
+ = κz+

which is inferred from log-law is compared with the inverse of the non-dimensional exact

mean shear rates (1/S+) using different channel flow DNS data. These mean shear rates

are plotted versus wall unit (z+) in Figure (A.3a). It is obvious from Figure (A.3a) that

assuming 1/S = κz/uτ only holds in the beginning of the log-law region (linear part of

Figure A.3a). This clearly shows that the logarithmic region exists in a very narrow region

of the flow depth, which is usually considered to extend up to 30% of the channel depth

from the wall. The comparison gets worse with distance from the wall which underscores

the doubt that the logarithmic velocity profile is not a fair estimation. This issue is often

overlooked by only comparing with the velocity profile instead of the mean shear rate (S).

Furthermore, it can be noticed that with the increase of the Reynolds number, the region of

agreement between the exact 1/S and κz/uτ shrinks, such that for Reτ = 590 it is almost

1/6 of the flow depth from z+ ≈ 35 to z+ ≈ 125, while for Reτ = 2003 the agreement holds

in almost 1/15 of the flow depth, only from z+ ≈ 35 to z+ ≈ 175.

Using the logarithmic velocity profile, the von Kármán constant can be inferred as κ =

uτ/Sz = 1/(S+z+). As shown by Hoyas & Jiménez (2006) and George (2007) and can also

be seen in Figure (A.3b), κ is not a constant value even in the so-called log-law region which
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Figure A.4. Comparison of LTV H with LP and Llog in a turbulent channel
flow at Reτ=2003, computed from the DNS data of Hoyas & Jiménez (2006).

significantly varies over the flow depth. Overall, Figures (A.3 a,b) question the existence of

a logarithmic region as well as a constant κ.

Furthermore, in order to elucidate the effect of the mean shear rate on predicting LTV H ,

Figure (A.4) compares LP introduced in equation (182) using the exact mean shear rate (S)

computed from the DNS data and Llog introduced in equation (183) with LTV H . Figure (A.4)

shows that Llog hugely overpredicts LTV H which is expected due to the incorrect estimation

of the mean shear rate (S) from the logarithmic velocity profile.

In order to resolve this shortcoming, the most straightforward solution is to empirically

modify (1− z/δ)α=0.5. To this end, we have modified the exponent α using different sets of

channel flow DNS data with Reτ = 590, 950 and 2003 as shown in Figure (A.5). It is seen

that using α ≈ 0.75-0.85 results in a good estimation of the modified length scale introduced

as Lκ∗ = κz(1− z/δ)α. In this study, we have used α = 0.85.

In the near wall-region where z → 0, the proposed length scale Lκ∗ → κz, which is

well-known as Prandtl’s mixing length (Pope 2000). In the near-wall region (z+ ≤ 30), this

length scale overpredicts the length scale LTV H . To overcome this shortcoming, van Driest

(1956) argued that the wall has damping effects and hence the diminished fluid motion can be
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Figure A.5. Comparison of LTV H with Lκ∗ in a turbulent channel flow at:
(a) Reτ = 2003; (b) Reτ = 950; and (c) Reτ = 590.

described with an exponential function as 1 − exp(−z+/A+). Therefore, van Driest (1956)

proposed modifying Prandtl’s mixing length (κz) in the near-wall region with a damping

function (fµ) given as

fµ = 1− exp(−z+/A+), (184)

where A+ ≈ 26. This function is zero at the wall and for z+ & 100 asymptotes to unity.

Figure (A.6) shows the efficacy of the van Driest damping function (fµ) in predicting LTV H

in the near-wall region for different friction Reynolds numbers of Reτ = 395, 590, 950 and

2003. It is clear that LTV H is Reynolds-number-independent in the near-wall region and

fµ performs very well in capturing the near-wall length scale. Consequently, Lκ∗ can be

modified as

Lκ = fµκz
(

1−
z

δ

)0.85

. (185)

Figure (A.7) compares Lκ with LTV H and LS. Although the difference between Lκ and LS

looks negligible, we shall later show that Lκ is the parameter of choice for modeling the

correct behavior of P/ǫ in the near-wall region.

A.2.2. Turbulent Viscosity. Here we extend our discussion and develop the turbu-

lent viscosity (νt) using the appropriate scales. As shown in equation (172), the turbulent
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Figure A.7. Comparison of Lκ with LTV H and LS in a turbulent channel
flow at Reτ=2003, computed from the DNS data of Hoyas & Jiménez (2006).

viscosity (νt) can be defined as a product of velocity and length scales. Using Lκ introduced

in equation (185) and US = (ǫ/S)1/2 shown in equation (173), the turbulent viscosity (νt)
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(2006).

can be introduced as

νt = LκUS = fµκz
(

1−
z

δ

)0.85 ( ǫ

S

)1/2

. (186)

Equation (186) can be rearranged in terms of Lκ and LS as

νt =

(
Lκ

LS

)

(LSUS) =

(
Lκ

LS

)
ǫ

S2
=

fµκz (1− z/δ)0.85

(ǫ/S3)1/2

( ǫ

S2

)

, (187)

where ǫ/S2 is the turbulent viscosity (νt) introduced by Karimpour & Venayagamoorthy

(2013) using the equilibrium assumption. It is obvious that the turbulent viscosity introduced

in equation (171) is modified using the ratio of (Lκ/LS). Figure (A.8) shows the comparison

of the proposed turbulent viscosity presented in equation (187) with the exact turbulent

viscosity computed from the channel flow DNS data of Hoyas & Jiménez (2006). Also, the

turbulent viscosity of Launder & Sharma (1974) (hereafter LS) and Lam & Bremhorst (1981)

(hereafter LB) are presented. It is clear that the proposed model compares remarkably well

with the exact νt especially in the near-wall region, while both models of LS and LB perform

poorly.
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As discussed previously, an appropriate turbulent viscosity (νt) for near-wall modeling

must be able to yield the correct behavior of P/ǫ in the near-wall region. In order to assess

the efficacy of our proposed turbulent viscosity (νt), the predicted P/ǫ using the turbulent

viscosity in equation (187) as well as formulations of LS and LB are compared with the

exact P/ǫ computed from the DNS data of Hoyas & Jiménez (2006). This comparison

is presented in Figure (A.9) and as expected the proposed model performs very well while

both formulations of LS and LB highly overpredict P/ǫ, especially the model of LS. As a side

note, it should be mentioned that the modeled P/ǫ is calculated using the turbulent-viscosity

hypothesis (TVH) as

P

ǫ
=

−u′w′S

ǫ
=

νtS
2

ǫ
=

(
Lκ

LS

)
(ǫ/S2)S2

ǫ
=

fµκz (1− z/δ)0.85

(ǫ/S3)1/2
=

Lκ

LS

. (188)

Equation (188) implies that the modeled P/ǫ is simply the ratio of Lκ/LS. Also, it should

be noted that the exact P/ǫ can be recast in terms of LTV H and LS as

P

ǫ
=

−u′w′S

ǫ
=

−u′w′/S2

ǫ/S3
=

(
LTV H

LS

)2

. (189)
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A.3. Concluding Remarks

The aim of this study is to propose a novel turbulent viscosity which can capture the

P/ǫ behavior in the near-wall region. To do this, we have employed a theoretical analysis

to introduce such a formulation. This is done by deriving the corresponding velocity scale

and length scale, using dimensional analysis following the work of Karimpour & Venayag-

amoorthy (2013). The proposed turbulent viscosity (νt) is a product of the proposed scales

as νt = Us.Lκ.

The length scale is derived by using the linear shear stress distribution and assuming a

logarithmic velocity profile. The analysis results in a theoretical length scale of fµκz(1 −

z/δ)0.5. However, our study revisits the existence of a logarithmic velocity profile and hence

a log-law region in a wall-bounded turbulent flow. Using different sets of DNS data as well

as analysis of the mean shear rate derived from log-law (i.e. S = ∂U/∂z = uτ/κz) reveals

that a log-law region hardly exists. Also, it is found that κ is not necessarily a universal

constant, which is in agreement with findings of Hoyas & Jiménez (2006) and George (2007).

However, this is a subject that needs more in-depth investigation and is beyond the scope

of this present study.

These shortcomings result in the failure of the derived length scale (fµκz(1 − z/δ)0.5)

compared to LTV H . Hence, in order to alleviate this failure, the length scale is empirically

modified and introduced as Lκ = fµκz(1 − z/δ)0.85, which agrees with available DNS data.

The velocity scale (US) is also derived based on the equilibrium assumption between P and

ǫ. We show that as the velocity scale carries a much lighter weight than Lκ in the turbulent

viscosity formulation, it is reasonable to use the equilibrium assumption for inferring US.

Also, ‘a priori’ tests are performed to assess the validity of our propositions by compar-

ing with the exact turbulent channel flow DNS data. The proposed formulations compare

remarkably well with the exact DNS data, highlighting their accuracy. Also, the behavior of

P/ǫ which is an important parameter in the near-wall region is revisited using the proposed

formulation for νt. The comparison of the estimated P/ǫ compares very well with the exact
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DNS data, as well. We believe the findings of this study can help promote a renewed interest

in understanding near-wall turbulence.
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