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ABSTRACT 

LAYERE D BEAM S YS T EMS 

WITH lNTERLA YER SLIP 

This report de scr ib es a por t ion of a s tudy on wood joi st floor 

systems. The objec tiv e of th is p o r t ion o f th e study i s to develop a 

general theo r y fo r the a na ly s i s of th e layered beams within the 

system including the effects of inter layer slip. 

The development leads to the governing equations for beams 

having a single axis of symmetry and an arbitrary number of layers 

and fastened together with mechanical connectors. Solutions to the 

governing equations are presented in closed form and in finite di£-

ference approximation. These solutions show the effect of inter-

layer connection on the deflection. In all cases, consideration is 

given to variation of properties along the beam length. 

The results of some tests a r e presented. The proposed 

theory is shown to agree favorab ly w i th the results obtained in the 

tests. 
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CHAPTER 1 

INTRODUCTION AND LITERA T URE REVIEW 

1. 1 Introduction 

Layered systems have become an important structural com-

ponent in modern engineering construction. Well known examples 

of this construction system include "sandwich" structures, which 

combine high-strength facings with a light weight core, constructed 

of various materials and composi tes. An important application of 

this concept in wood constructions is where laminated beams and 

wood joists are commonly used. These layered structures are 

fastened together by nailing, gluing or by the combination of these 

two. Layered plate and shell sys t ems have also been constructed 

by these techniques. 

The procedures presently used to analyze this type of con-

struction are generally based on the assumption of rigid connections 

between layers or on neglecting the composite action. If the layers 

are fastened together with very stiff adhesives, the rigid inter-

connection assumption is reasonable. This fact was borne out by 

such diverse studies as Calcote ( 3),:, , Abel ( 4), Hoff and Mautner ( 5), 

~' Numbers in the parentheses correspond to references listed 
in Appendix I. 
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Raville, Ueng and Lei (6) and Ross, Ungar and Kerwin (7). But for 

some widely used systems such as nailed wood construction, the 

assumption of either rigid connections or no connections is not 

reasonable. Interlayer movements have been shown to produce sig-

n ificant effects on the overall deflection of structures using nails for 

connection of the layers (1), (2), (13), (14), (15), (16), (17). 

The objective of this study is to develop a general theory for 

the analysis of layered beam systems including the effect of inter-

layer slip . The governing equations are developed for various 

cases of interest. A numerical solution technique is presented to 

give approximate answers which include the effect of variation of 

beam and connec tor properties along the beam length. Closed 

form solutions for beams with constant properties along their length 

are also presented. 

Experimental verification of the theo r etical developments 

was sought to confirm the proposed methods of analysis. Res ults 

of tests on several beam systems are presented and show satis-

factory agreement between experiments and theory. This work is 

particularly applicable to wood systems but is also applicable to 

other types of layered o r composit e construction utilizing mechani-

cal connections . 
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1. 2 Literature Review 

In this section a brief review of the previous developments 

related to this study is presented. Additional c omment s c oncerning 

some of these works are treated in more detail in later sections. 

The behavior of layered beam systems has been treated by 

several authors. These works were developed separately but have 

been shown to be generally equivalent. 

Granholm (8) developed a theory for layered beam systems 

including the effect of interlayer slip. His theory is based on the 

following assumptions: 

1. The connector spacing is constant . 

2. The effect of the connectors can be uniformly distri-

buted along the length of the beam. 

3. Linear variation exists between the force on a connector 

and its deformation. 

The second assumption implies a smoothing out of the dis-

crete connection effects along the entire length of the beam. These 

assumptions lead to the following governing equations for a two-

layered system shown in Figure 1. 1 where each layer has the same 

cross- sectional properties. 

2bk" -- <I> EA = ( 1. 1) 
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( a) Side view 

A • - -+----,.--

r h 

A 

(b) Cross-section 

Figure 1. 1. Layered Beam with Interlayer Slip According to 
Granholm 



where 

5 

EAr d<I> 
2EI dx 

s 
= 

M 
EI 

s 

¢ = relative longitudinal displacement between the 

1 aye r s ( in. ) , 

b = the width of each layer (in.), 

k' displacement modulus 
. 2 related to ¢ = (lb. /m. ), 

relation k' = ,/¢, 

; = shear flow between the layers ( lb. /in.), 

( 1. 2) 

by the 

r = distance between the centroids of the two layers (in.) 

E = the modulus of elasticity of the material of the layers 

(lb. /in. 
2

), 

I = moment of inertia of an equivalent rigidly connected 
s 

. . 4) section ( 1n. , 

A = cross section area of each layer (in. 2), and 

M = external moment at the section ( in. -lb.). 

Equations ( 1. 1) and ( 1. 2) can be solved simultaneously for the 

system deflection y. The theory can be extended to include the 

case of n layers. 

Pleshkov (9) also developed a theory for layered beam systems 

with interlayer slip. Again the assumptions of continuous shear 

connection, constant connector spacing and a linear connector force 
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versus connector displacement relationship were made. Generali-

zation was also made to a system of n layers. Ple shkov' s theory 

led to the following governing equation: 

where 

n 4 
L E\i_y 

k = l dx
4 

4 d 2 
G (EI .'.::....Y.

2 
+ M) = 

En s dx 
( 1. 3) 

n = number of layers in the system, 

E = the modulus of elasti city of the material ( lb. / in. 
2

), 

\ = the moment of inertia of the k
th 

layer about its own 

1 . . 4) neutra axis ( 1n. , 

I = the moment of inertia of the rig idly connected section 
s 

. 4) (1n. , 

M = the external moment (lb. -in.), 

G = average connector modulus = (Gl + G2 +. . . 
+ G ) In, n 

Gk = connector modulus for the joint between the k 
th 

and 

st 
(k+ 1) layers (lb./in.), 

y = deflection (in.), 

4 
A 

1
2

1 Al Zl + A2Z2 A 1 2 1 + ' +A 
n ( 

n = + + . . + n rl r r 
2 n 

rk = the distance from centroid of the k 
th 

layer to that of 

st 
the (k+ 1) layer, 

z 
n) ' 
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the distance from the centroid of the k
th 

element to the 

centroid of the entire section, and 

Ak = area of the k
th 

element (in. 
2

) . 

Examples of the application of this governing equation to 

several types of problems are given in (9). 

Newmark, Seiss and Vie st ( 10), ( 11) ave studied the problem 

of incomplete interaction between the steel girder and concrete slab 

of a composite T-beam . Interaction between girder and slab is 

essentially the same as the slip between beam layers. Again the 

assumptions of continuous shear connection and linear connector 

load versus conne ctor deflection were used. For a beam constructed 

of two equal layers, shown in Figure 1. 2 , a final form of the govern-

ing equation derived by Newmark, Seiss and Viest is 

where 

h = 

n = 

I = 

F = 

k = 

M = 

depth of each layer, 

number of nails per row, 

moment of inertia for each 

axial force in each layer, 

= 
kn Mh 
S 2EI 

layer, 

connector modulus per connector, 

the external moment, 

( 1. 4) 
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y 

( a) Longitudinal view and c ross - section 

V 

/ 

X 

R 

(b) Element and internal forces 

Figure 1. 2 . Two Equal Laye r ed Systems 
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E = the modulus of elasticity, 

A = area of each lay er, and 

S = the spacing of connectors. 

Solution of this equation gives the variation m axial force along the 

beam length. 

Deflection of the beam may be obtained by solving for y from 

the expression: 

£y = 
dx2 

( 1. 5) 

Another approach to the problem of layered beams was de-

veloped by Norris, Ericksen and Kommers ( 18) and extended by 

Kuenzi and Wilkinson ( 19). This method assumes that a layer of 

low shear rigidity exists between the layers. In this method inter-

layer slip is assumed to be approximated by the action of the layer 

of low shear rigidity and thus the approach is not the same as that 

by most other authors. 

The governing equation for a two layered simply supported 

beam subjected to a c oncentrated load, as reported by Kuenzi and 

Wilkinson ( 19), is: 

( 1. 6) 
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where 

tl = defl ection at midspan, 

P = applied load, 

L = beam span , 

EI = stiffness of c omposite beam as s ummg a rigid adhesive, 

and 

Jti. = modific ation constant related to beam geometry and 

adh esive propertie s . 

For a simply supported beam with midspan load: 

= 

where 

1 + 3 ( EI 
EI 

u 

aL tanh-
2 ) 

aL 
2 

( 1. 7) 

EI = s tiffness of composite beam assuming an adhes ive 
u 

with zero rigidity, 

2 
a. = 

h
2

S EI 
( EI) - ( EI ) ( EI ) ' 

u u 

h = distance b etween centroids of laminations, and 

S = shear load per unit span to cause unit slip between 

laminations. 

Clark ( 12) has developed a theory for layered systems fastened 

by rigid connectors such as rivets or spot welds. In his work, he 
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assumed that slip occurred between connectors but that the con-

nectors themselves were perfectly rigid. Clark's method con-

sidered the connectors to be discrete instead of assuming a uni-

formly distributed connector effect. Clark ' s theory actually 

provides an upper bound for beam stiffness. 

A general treatment of the interlayer slip problem was made 

by Goodman (1), (2). He developed a comprehensive theory for 

beam, plate and shell systems consisting of three equal layers. 

Experimental results for wooden beam and plate systems showed 

excellent agreement with the predicted values. Nonlinearities in the 

connector force versus connector deflection relationship were 

treated using a step-wise linear numerical procedure. Again, this 

study assumed continuous shear connection. The close agreement 

between theory and experiments indicates that frictional effects are 

neg lig ib le for static bending. 

For a beam with three equal layers, Goodman reported the 

following governing equation: 

M) = ( 1. 8) 

where 

S = the spacing between connector rows along the beam 

length, 
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n = the number of connectors per row, and 

k, I, I , M, A and E are the same definitions as 
s 

before. 

For a system of two equal layers, Goodman was also able to 

show that the theories of Granholm ( 8), Pleshkov (9) and Newmark, 

Seiss and Vie st ( 10) all provided identical governing equations as 

follows: 

a) Granholm' s final equations are given previously as ( 1. 1) 

and ( 1. 2). The variable ¢ c an be eliminated from the two equa-

tions. After additional algebraic manipulation the following equa-

tion is obtained: 

2 4 
L EI.:!.__y 

dx
4 

1 

2k 1 b d 2 
(EI :!_:I..+ M) = 

EA s 2 
dx 

( 1. 9) 

b) Pleshkov' s final equation, ( 1. 3), is reduced to the follow-

ing form: 

( 1. 10) 

c) The final equations of Newmark, Seiss and Viest were 

given as ( 1. 4) and ( 1. 5). Again, the variable F is eliminated and 

after algebraic manipulation the following equation is obtained: 



2 

L 
1 

1 3 

kn 1 2---(EI 
S EA s 

2 
d y + M) = 
dx

2 
(1. 11) 

Comparing ( 1. 9), ( 1. 10) and ( 1. 11) it is noted that except for the 

constants, k'b, G and kn/S, the three equations are identical. These 

three forms for the constants are equivalent as may b e seen by 

reference to each author's definitions for the constants. 

Henghold ( 13), ( 16 ) developed a theory for dyn amics problems 

for two and three layered systems. His work, though for the vibra-

tion problem, is based on the same basic concepts of interlayer slip 

behavior. Important generalizations of the theory of layered sys -

tems were made in his work including the extension of the theory to 

n layered systems. 

Rassam ( 14), ( 15), ( 17) studied the behavior of layered 

columns with interlayer slip. His study included columns with 

cross-sections having both single and double symmetry and his 

theory allowed for variation in column properties along the column 

length. Experimental verification of the developed theory was 

sought and in general showed good agreement between experiment 

an d theo ry. 

1. 3 Notation 

Symbols used in the development of the governing theory for 

two and three l ayered systems are des cribe d first introduced and in 

add ition are summarized in Appendix II. 



CHAPTER 2 

THEORETICAL DEVELOPMENT 

2. 1 Introduction 

The theories described in Chapter 1 are generally inadequate 

to handle all the various problems posed in the current investigation. 

Extension to the case of several unequal layers was necessary. 

Special boundary conditions had to be satisfied to handle the variety 

of situations which arose during the testing program of the overall 

study of which this investigation was a part. These requirements 

lead to the theoretical developments of the study presented in the 

following sections. 

2. 2 Theoretical Development 

General and basic theoretical developments are made in the 

following sections and are then extended to the special problem of 

the study. A typical m layered system with one axis of symmetry 

is considered. Layers with different material properties may 

be treated by using the principle of transformed cross- section. 

Figure 2. 1 depicts a five layered system which serves as an aid in 

generalizing to m layers. The nomenclature for Figure 2. 1 is 



1 5 

- X 

~/ //// :1//4-

y 

( a) Beam with sign convention 

(b) C ross- section (c) Strain distribution 

Figure 2. 1. Five Layered Example of m Layered System 
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q 

! i l J 

dM
1 M

1 
+ -- dx 

dx dF 
- · ·- + F 1 +~dx 

r 

-· 

1 

r m dF 
- - --· -

m 
F +- dx m dx 

I I 
dV 

._ ____ dx ___ ._., V + dx dx 

( d) Beam element 

M \ T q. . _ l dx dM . 
. . 1, 1 1 

1 1 ~====:::::::::.:=.:=.:=:.... M i + dx dx 

Fi +11 ,~ + Fi+ d;; dx 
dV . 

V .+ __id dx 
1 X q , .dx 

Hl, 1 

. th 1 1 ( e) 1 aye r e ement 

Figure 2. 1. - -Continued 
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h = the distance from the top of the beam to the centroid 

of the transformed cross-section (in.), 

r. = the distance from the centroid of the transformed cross -
1 

th 
section to the centroid of the i layer. 

For the analysis of this m layered system, the following as sump-

tions are introduced: 

1. The shear connection between layers is continuous along 

the length; i.e., discrete deformable connections are as-

sumed to be replaced by a cont inu ous shear connection. 

2. The amount of slip at a connector is directly proportional 

to the load. 

3. The distribution of strain through the depth of a given in-

dividual layer is linear. 

4. At every section of a beam, each layer deflects the same 

amount and no buckling of the layers occurs. 

5. Friction between the layers is negligible. 

Applying the static equilibrium law to the free body diagram 

in Figu re 2. l(d) yields 

m dF . 
from LFx = 0 L 

1 

1 

dx = 0 ( 2. 1) 
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m 
from LF = 0 I: dV. = - qd.x for uniform loading 

y l 
1 

(2.2) 
m 
I: dV . = 0 for concentrated loading l 

1 

mdM . m dF. 
from L M I:-l+L l 

( 2. 3) = 0 V = r --
1 dx 1 i d.x 

The assumption that each layer deflects the same amount and 

has the same curvature requires 

and 

2 
d y . 

l 

M. = 
l 

d2 
EI. ~2. 

l d.x 

( 2. 4) 

( 2. 5) 

For a uniformly loaded beam, ( 2. 2) through ( 2. 5) may now be com-

bined t o yield 

m d4y 
LEI. 4 
1 

1 
dx 

m 
I: 

1 
r. 

l dx2 
= q. ( 2. 6) 

Fo r an m layered system there are mt 1 unknowns (m F 

values and one value of y) and therefore mt 1 equations are needed 

to find these unknown quantities. Equations (2 . 1) and (2. 6) provide 

two of these equations. The additional m-1 equations must come 
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from slip relationships. Applying assumption 2, the slip permitted 

by a connector is directly proportional to the load transmitted by 

the connector. Thus, 

where 

Thus, 

Q 6S = k 
( 2. 7) 

6 S = the relative interlayer slip d ifference between layers (in.), 

k = the connector modulus per connector (lb. /in.), 

Sq .. 
Q = -2i.J. = n shear force transmitted by a row of con-

nectars/number of connectors per row (lb.), 

q .. 
1 , J 

th f . db th ·th d "th l f = e orce transm1tte etween e 1 an J ayers o 

the beam per unit length of the beam ( lb. /in.) and is 

comparable to shear flow, 

n = number of connectors per row, and 

S = the spacing of c onnectors ( in.). 

s 
= kn qi, j ' ( 2. 8) 

or for any two adjacent laye rs 

A S . . 
1, 1+ l 

s 
= (-) q 

kn. ·+l 1, 1 i, it 1 
= 

S dFi 
(-) -. 
kn. . dx 

1, 1+ 1 
( 2. 9) 

By differentiating with respect to x, (2. 9) becomes 
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d 
-d (~S. ·+1) X 1, 1 

S d = (-k ) .. 1 -d (q . . 1) = n 1, 1+ X 1, 1+ 

2 
S d Fi 

(-) --
kn i, i+ 1 dx 2 . 

( 2. 10) 

Equations (2. 9) and (2. 10) are general and allow fo r variation of S, 

k and n between layers. 

.th . th 
The displacement difference between the 1 and ( 1+ 1) layers 

may also be found by integrating the strains as 

X 

S .. 
1, 1+ 1 

= l 
where 

u 
€ . dx -

1+ 1 

X 

L 
€. dx 

1 
(2. 11) 

u 
€. 1 1+ 

= the strain in the (i+l)
th 

layer evaluated at its upper 

L 
€. 

1 

boundary, and 

= the strain in the i 
th 

layer evaluated at its lower 

boundary. 

Equation (2. 11) is differentiated to change the form to a differential 

equation. This yields 

d 
e = dx(~S .. 1) 

S 1, 1+ 

u L = € . €. 
1+ 1 1 

u L 
er. 1 1+ er . 1 = E E 



where 

where 

e = 
s 

A~' = 
l 
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F. M. h. F . M. h 
1+ 1 it 1 -2±_!_) l l l ) 

= (EA'!' - (--+--
EI. 1 2 EA'!' EI. 2 

1+ 1 1+ l l 

F. F. 2 
Hl l 

+ ½(hitl h ) i__y = + . 2 EA';' EA'!' l dx 1+ 1 l 

relative strain between layers, and 

.th transformed area of the 1 layer. 

Finally, combining ( 2. 10) and ( 2. 12) gives 

2 
F £y d F. F. 1 s l 1+ i 

C .. 1 (-) = _ ,, _, _ + dx2 kn . ·+l 2 EA':- EA':' 1, 1+ 
l, l dx 1+ 1 l 

( 2. 12) 

( 2. 13) 

Equation ( 2. 13) provides the needed m-1 slip relationships since in 

an m layered system there are m-1 sets of adjacent layers. 

Equations (2. 1), (2. 6) and (2. 13) provide a system of m+l 

equations for the m+ 1 unknowns and represent the governing set of 

equations for an m layered system. The horizontal equilibrium 

equation may be used immediately to eliminate one of the F. terms , 
l 

say F . This gives m 
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where 
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m d4y m-1 d
2

F . 

L L r . ) 
1 

EI. + ( r = q 
1 

dx4 m 1 2 
1 1 dx 

s d2F 1 F2 Fl 
C l 2 

d2y 
(-) = --+ 
kn 

2 dx2 EA':' EA':' dx 
2 

1' 2 1 

s d 2F F3 F2 d2 2 (-) = --,,, + c23 kn 2 3 2 EA':' EA''' dx 
2 

' dx 3 2 

m-1 

d 2F L F . F 1 s m 1 m-1 
= C (kn) + 2 EA':' EA':' m-1,m dx 2 

m-1,m dx m-1 

2 
m-1 d F . L l = 

1 dx
2 

m-1 

L 
1 

F . = 
l 

dx 

F . m 

m and 2 ' 

m 

(2. 14) 

( 2. 1 5) 

Equations ( 2. 14) and ( 2. 15) provide a system of m equations 

with m unknowns, y, F 1 , ... Fm-l. From an inspection of 

Figure 2. l(d), the total moment at any section may be expressed as 
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m m m h . 

L L L h . 
1 

MT = M . ( + 2) F i 
1 

1 
i= 1 j= i+ 1 J 

( 2 . 16 ) 

which may be rewritten as 

m d2y m-1 h m-1 h . dF . 
MT -[ EI. I: (_!!l + L h -2) 1 

= + 
1 dx2 2 J 2 dx 

1 i= 1 j= i+ 1 
( 2. 1 7) 

similarly 

m m-1 h m-1 h . dF . 
V T I: EI. L m [ h -2) 1 

= (- + + --
1 3 2 j 2 dx 1 dx i= 1 j = i+ 1 

( 2 . 18 ) 

Boundary conditions are needed to obtain a complete solution 

to the equations developed. Consider firs t the conditions associated 

with a simply supported end. The deflection and total mome nt at 

the end of the beam must be zero. In the absence of applie d axial 

force and support friction the axial forces must go to zero at the 

end. The boundary c onditions at a simply supported end thus 

b ecome 

y = 0, 

= 0 
dx 2 

( 2 . 19 ) 

and 

F . = o. 
1 
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At a free end, there can be no axial force and the total moment 

and shearing force must be zero. The boundary conditions become 

and 

F . = 0 
1 

o. 

( 2. 20) 

Next, consider a fixed end. The displacement and slope of the 

end must be zero by the definition of fixed. However, the axial 

force will not necessarily be zero if the end of the beam is fixed 

against slip displacement. From (2. 9) this condition on slip dis-

placement indicates that 

q .. = 0. 
1, J 

Horizontal equilibrium and ( 2. 9) in turn imply 

dF. 
1 

dx 
= o. 

The boundary conditions may be summarized as 
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y = 0 , 

= 0 
dx 

( 2. 21) 

and 

dF. 
1 0 . = dx 

When the above conditions are expanded the boundary c ondi-

tions may be written 

at a pinned end: 

y = 0 

d2y 
= 0 

dx
2 

Fl = 0 (2.22) 

F = 0 
m-1 

at a free end: 

£y = 0 l dx2 



and at a fixed end: 

F m-1 

VT 

y 

dx 

dF 1 
dx 

dF m-1 
dx 

26 

= 0 

(2 . 23) 

= 0 

= 0 

= 0 

= 0 

= 0 

( 2. 24 ) 

= 0. 

Equations ( 2. 22) through ( 2. 24) indicate that for any end con-

ditions there are mt 1 boundary conditions. 



27 

2. 3 The General Equations for m Layered Systems with Uniform 
Load 

The governing equations (2. 14) and (2. 15) form a set of m 

coupled linear differential equations with constant c oefficients. The 

equations may be expressed in linear operator form as 

[ L] 

y 

F m-1 

= 

q 

0 

0 

0 

where [ L] is as shown in Figure 2. 2 where 

( 2. 25) 

The closed form solutions depend on the assumption that the 

section properties , connector modulus and spacing remain constant 

along the length of the beam. Once these restrictions are lifted, 

the resulting equations are best solved numerically. 

Many approximation techniques, each with strong and weak 

points, abound in the literature. In this study, the finite difference 

method is used. Several examples of the applic ation of the 
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finite difference technique applied to two and three layered systems 

are included in later chapters of this thesis. 



CHAPTER 3 

TWO LAYERED SYSTEMS 

3. 1 Introduction 

In this chapter the general equations are developed for the 

particular case of a two layered beam system. The equations for a 

two layered system is directly applicable to a T-beam. The case 

where the two laye rs have different moduli of elasticity can be 

handled by using the transformed cross-section where a single 

modulus of elasticity is used with transformed widths. 

3. 2 Closed Form Solution for Beam with Uniform Load 

Figure 3. 1 shows a T-beam with a transformed cross-section 

which is representative of a general two layered system. 

For the two layered system, the axia l force of the top and 

bottom layers must be equal in magnitude but opposite in direction. 

Thus 

F = -F = F 1 2 ( 3. 1) 

as shown in Figure 3. 1 ( e). 

The equilibrium equations for the m layered case simplify to 

dV 
dx = - q . ( 3. 2) 
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(a) Beam with sign convention 

u Ht1 

(b) Cross-section (c) Strain distribution 

V q 
dM

1 
Ml + dx dx + dF1 Fl+ dx dx 

dMz 
M2 M 2 + dx 

dFz F2+ dx dx 

I-
V + dV dx dx 

dx 

( d) Beam element 

Figure 3. 1. Two Layered System 

X 
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dM 1 
M 1 + - - dx 

dx 

q 

-}-
dF 

F + d x dx 

dM 2 
M 2 + dx 

7F + dF dx 
dx 

V + dV dx 

~ _dx ______.~ dx 

(e) B eame lement 

dM
1 

F + ~I II;· F: ~tdx 
'-========= 

V ql 2dx 2~==========- dM2 

11 I 
M2 + :; 

F-f- 7F+ dxdx 

~2 ~------- dV - V +--2 dx 

1. dx -1 2 dx 

(£) Layer e lements 

Figure 3. 1. - -Continue d 
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After substitution of the equation for shear and integration, ( 3. 2) 

becomes 

2 dM. dF . ( dx) 
2 

I::(-1+ l 
V = r . T) + q 2 

1 dx l X 

2 dM . hl+h2 dF I::-1+ - 2 dx 
1 

dx 

2 dM. 
dF . L-1 + Cl2 dx 

1 dx 

dMT 
( 3. 3) or = dx 

where 

h +h 

Cl2 
1 2 = 2 

If it is now assumed that each layer deflects the same amount 

and therefore has the same curvature, then 

M . = 
l 

d2 
EI. ~2. 

1 
dx 

( 3. 4) 

With this substitution ( 3. 3) will yield, for properties constant along 

the beam length, 

( 3. 5) 

It is now necessary to relate the F . terms to y. Proceeding as 
l 

with them-layer case, the displacement difference between the first 
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and second layers is 

S dF 
kn dx 

( 3. 6) 

which can be related to the layer strains shown in Figure 3. 1 ( c ) as 

6S 
12 

= 

X 

f 
0 

X 

f 
0 

L 
e dx 

1 

where assuming tension taken as positive, 

or 

and 

or 

u 
e 

2 
= the strain at the upper surface of the second layer , 

= 

L 
e 

1 
= the strain at the lower surface of the first layer, 

L 
€ 1 = 

F _,_ 

EA;·-

where 

* A
1 

= the transformed area of the first layer. 

( 3. 7) 

( 3. ?a) 

( 3. 7b) 
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Equations ( 3. 6) and ( 3 . 7) are now combined and differentiated 

once to give 

kn dx2 

( 3. 8) 

Equations ( 3. 5) and ( 3. 8 ) represent a system of two equations in 

two unkn owns, F and y, and they are the governing equations for the 

general two layered system. 

By substituting ( 3. 5) into ( 3. 8) the g overning equation for F 

can be rewritten as 

( 3. 9) 

where 

Cl 
kn 1 1 = -(-+-)(TC) SE ,:< .. ,:~ • .. ' 

Al A2 

c2 
kn Cl2 = ---SE 2 

LL 
1 l 

h l+h2 
Cl2 = 

2 



T.C. 
I 

s 
= = 

2 
~L 1 
1 
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( ) qx ( L ) d MT x = 2 - x , an 

c2 
12 

L = the span length of the beam. 

The parameter, T. C., is introduced to generalize the solution for 

all types of cross-sections. This parameter allows an easy evalua-

tion of the effect of section properties on the behavior of the 

system. 

The solution of ( 3. 9) for a beam with uniform load can be 

stated as 

F = Acosh (-VC.x) + Bi sinh (....Jc:x) 
1 1 

C2 qL +-- X-
C 2 

1 
( 3. 10) 

where A and B are unknown constants. The boundary conditions 

at the supports for the nailed beams if the ends are simply sup-

ported is 

F(O) = 0 

F(L) = 0 
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A matrix form for the determination of constants A and B may be 

expressed as 

1 0 

c os h (VC l L) 

The solution of the above for A and B yields 

A = 

B = 
q[ 1- cosh(~L)] 

i sinh (~L) 

The function for axial force F then becomes 

F = 

(3.11) 

From ( 3. 5) and ( 3. 9), the deflection equation may be re-

written as 
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Integrating (3. 12) twice, yields 

1 

dx
2 

EI. 
1 

1 Cl2 
F. y = ys + c 2 

lL EI. 
1 

1 

(3.12) 

( 3. 13) 

This is the final deflection equation for the two layered system. 

3. 3 Finite Difference Approach for Beam with Uniform Load 

For the reasons stated in Section 2. 3, the finite difference 

method will be used for the numerical solution of the two layered 

system with uniformly distributed load. The solution starts from 

( 3. 9) rewrite below 

( 3. 9) 

Now the boundary conditions for the simply supported condition are 

imposed, namely the moments and axial forces at the ends are 

zero. Thus, from (3 . 9) the second derivatives of axial forces are 

also zero. 
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d
2

F 
FO = __ o 

= 
dx2 

0 at X = 0 

( 3. 14) 

d
2

F 
F 

n at L = = 0 X = n dx2 

Based on a three-term expansion for the second derivative in finite 

difference form, the first boundary condition of ( 3. 14) implies ( see 

Figure 3. 2 in which the beam is divided into n equal divi sions) 

and since F
0 

is zero, 

F = - F 
- 1 1 

The second boundary condition implies 

= 

from which 

1 
( F l - 2F + F ) = 0 h 2 n- n n+l 

F n+l = - F 1' n-

(3. 15) 

(3.16) 
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F(x) 
J 

~Fnn+l 
- ---x . . n-1 n c::::-,1--

y 

F ' 
n+l 

Figure 3. 2. Boundary Conditions 

For convenience, a symbol z is used as follows: 

d 
dx = 

z = 
X 

L' 

1 d 
L dz 

The boundary conditions in terms of 

FO = 0 at z = 

F = 0 at z = n 

z become 

0, (x = 0) 

1, (x = L) 

( 3. 1 7) 

(3. 18) 

I ( 3. 19) 

d
2

F Then, using a five point control operator for 
2 

, the following 
dx 

operators are obtained ( see Appendix III-1) 

= --- = _1_[ 
12h2 



41 

where the error of the finite difference operator is of order h 
4

. 

Substituting (3. 18) into (3. 9) for the i th nodal point yields 

where 

M = 1x (L - x) q(zL) (L- zL) 
2 

qL2 
= 

2 
( 1 - z) z 

and the derivatives are now taken with respect to z. 

( 3. 21) 

(3. 22) 

Substituting ( 3. 20) into ( 3. 21) after some algebraic manipula-

tion the final form of ( 3. 21) will be 

L2 
- F. 2 + 16F . l - 30F . + 16F . - F. 2 - 12C 1 - 2 F

1
. 

1- 1- 1 1+1 1+ 

= 
4 

6C qL ( 1 - z) z 
2 4 

n 

or in the operator form as 

i- 2 i-1 i i+ 1 

4 
= - 6C .9l:_ ( 1 - z)z 2 2 

n 

n 

i+2 

(3. 23) 

( 3. 24) 
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J = - 30 - 12C 
1 

Writing ( 3. 24) (n-1) times for F through F 
1 

and using 
1 n-

( 3. 15) and ( 3. 16) gives (n-1) simultaneous linear equations which can 

be written in matrix form as 

( 3. 25) 

The expanded form of this equation is shown in Figure 3. 3. 

The next step is to solve for the deflections of a rigidly con-

nected beam by the same procedure. 

2 
1 d. y s 

= --- = 

= 

= 0 at the supports 

Thus, 

ys = -ys and ys 
- 1 1 

ys = -ys and ys 
n+l n-1 

= 
-2 

= 
n+2 

] 

2 ( error order h ) 

4 ( error order h ) 

( 3. 26) 

-ys 
2 

( 3. 27) 
-y s 

n-2. 



.. 
(-29-UC ) 16 - 1 Fl VC

2
(I-z

1
)z 1 1 

16 ( - 30- UC ) 16 -1 F2 vc
2
(I-z 2)z 2 1 

-1 16 ( - 30- UC ) 16 - 1 F3 vc
2
(I-z

3
)z 3 1 

= 

- 1 16 ( - 30- UC ) 16 - 1 F VC2(1-zn-3)zn-3 
1 n-3 

- 1 16 ( - 30- UC ) 16 F VC2( l-zn-2)zn-2 1 n-2 

- 1 16 (-29-UC ) F VC2(1-zn-l)zn-l .IS,. 1 n-1 vJ 

where L2 qL4 
u = 122, V = - 6 C 

1 
and c

2 
can vary along the beam length. 

4 , 
n n 

Figure 3. 3. Matrix Formulation for Finite Difference Solution for F 
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Governing equation (3.4) for ys b ec om es 

2 d y 
2 M s 

( 3. 28 ) -:c LEI 
dz

2 s 

Substituting ( 3. 22) and ( 3. 2(; ) into ( 3. 28) and c ollec ting terms gives 

where 

L
4 

6 q - ~--
2 

n EI 
s 

C
3

(1-z.)z . (3.29 ) 
1 1 

The simultaneous equations for y written in matrix form is 
s 

( 3. 30) 

The expanded form of these equations is shown in Figure 3. 4. 

Once F and y are solved by ( 3. 25) and ( 3. 30), the de-
s 

flection y of this two layered system including interlayer slip c an 

be easily solved by (3. 13). 

3. 4 Example Problem for Beam with Uniform Load 

Consider a simply supported beam as a 12 ft. span and loaded 

by a uniformly distributed vertical load q as shown in Fig ure 3. 5 . 

Before testing the equations developed in the previous se c tion, the 



11 

-29 16 - 1 Ys 1 

1 
C (1-z )z 

3 1 1 

16 -30 16 - 1 Ys 2 
C

3
(1-z

2
)z

2 

- 1 16 -30 16 - 1 Ys3 
I C

3
(1-z

3
)z

3 I 

= 

-1 16 - 30 16 - 1 Ysn-3 C3( l-zn-3)zn-3 

- 1 16 -30 16 Ysn-2 C3(l-zn-2)zn-2 

- 1 16 -29 Ysn-1 C3(l-zn-l)zn-l 

where C 
3 

may vary along the beam length 

Figure 3. 4. Matrix Formulation for Finite Difference Solution for y 
s 

,j::. 
\JI 
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q - 10 lb. / in . 

----- x 
L - I 2' 

y 

(a) Beam with sign convention and applied loading 

0. ?S 11 

7.2S" 

w l = 16 II t r ·I 6 
El = 2 X 10 p si 

6 
E = 2 X 10 ps i 2 • 

H w = l . 5 11 

2 

(b) Cross section with one axis of symmetry 

number of nails per 
row = 1 

co nne c tor s pacing 
S = 8 in . 

( c ) Connector spac rng and number of nails 

Figu re 3 . S . Two Lay ered System with Un iform Load 
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(d ) Rigid ly co nn ec ted beam c ross section 

t } 12 2 2 2 Z 2 2 2 2 2 2 2 2 I 

q 

(e) Two separate b e ams 

Figur e 3. S . --Continued 
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upper and lower bounds can be calculated. The upper bound cor-

responds to a solution for an equivalent r igidly connected beam as 

shown in Figure 3. 5(d) and the lower bound is the solution for a 

beam with no connector between the layers. 

where 

( 1) Upper bound on beam stiffness: 

For rigidly connected beam, no slip occurs and the con-

nector modulus k will be considered as infinite. Thus at 

_5_ qL4 
midspan, deflection y s = 384 EI 

s 

= _5_ ( 10) ( 144) 
4 

384 (2xl0
6

)(139.48) 

= 0. 20070 in. 

( 2) Lower bound on beam stiffness: 

Consider two separate beams with a connector modulus k 

of zero. Thus, 

q
1 

= the load applied to the top layer, and 

q = the load applied to the bottom layer. 
2 

(3.31) 

The load applied to each layer will be proportional to the 

moment of inertia of that layer. Thus, 
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= I I ' 
1 2 

therefore 

With this substitution, ( 3. 31) yields 

q 

Thus, at midspan 

deflection y = 

= 

= 

5 
384 

10 
(1 + o. 5625 ) 

47.6348 

= 9 . 8 8 3 2 9 3 1 b. /in. 

( 9 . 8 8 3 2 9 3) (144) 
4 

(2xl0 6 )(47. 6348) 

= 0. 58082 m. 

The axial force F and deflection y of the theoretical re-

sults at every node along the beam can be calculated. The com-

puted deflection at the center point of the beam versus a series of 

different connector modulus are listed in Table 3. 1 and Figure 3. 6. 

The axial force values and the deflection shape for a k value of 
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Table 3. 1. Deflections with Uniform Load vs Connector Modulus 

connector deflection y (in.) at midspan 
y/ys modulus k by closed form 

(lb. /in.) by closed form by finite di££. 

(upper bound) 

( CX)) (0.20070) ( 1. 0000) 
10,000,000 0.20127 o.20127 1.0028 

1, 000 ,000 0.20619 0.20619 1. 0274 

100,000 0. 24969 0.24969 1. 2441 

50,000 0.28776 0.28776 1. 4338 

20,000 o. 36305 o. 36305 1. 8090 
15,000 o. 39026 0. 39027 1. 9446 
12,000 0.41143 o. 41144 2.0501 
10,000 0.42836 0.42837 2. 1344 
9,000 0.43789 0.43790 2.1819 
8,000 0.44824 0.44825 2.2334 
6,000 0.47192 0.47193 2. 3514 
3,000 0. 51730 0.51731 2.5776 
1,000 0.55700 0 .55701 2.7754 

100 0.57829 o. 57830 2.8815 
10 0. 580 56 0.58057 2.8928 

1 o. 58079 0.58080 2. 89 39 
(lower bound) 

(0) (0. 58082) (2.8940) 

I 



Connector Modulus k 

Figure 3. 6. Deflection Ratio vs Connector Modulus 
with Uniform Load 

U1 ...... 



52 

12,000 lb. /in. I connector are shown in Figure 3. 7 for eac h foot 

interval along the beam. 

3. 5 Closed Form Solution for B e am with Conc entrated Load 

The two layered system shown in Figure 3. 8 is discussed in 

th i s section. Using the same procedure stated in ( 3. 1) through 

( 3 . 9) the final governing equation for F can be written as 

where Cl and c2 

M = ML X 

M = MR X 

The general 

and 

- CM 2 X 

are the same as ( 3. 9 ) , but 

= P( 1 - a / L)x = 

= Pa( 1-x/ L) 

solution of ( 3. 32) is 

c2 
+ C Pa( 1-x/L) 

1 

Pbx/L, 

stated as 

( 3. 32) 

O<x<a 

a< x < L 

O<x<a 

( 3. 33) 
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p 

a b 

I 

I -x 

JI\ 
'//,01/// r - ---- --- --- L 

y 
( a) Beam s 1gn concention and applied load P 

(b) Cross-section 

M V 
1 ,------------

F + 
dM 1 

M++~dx 
dF 

F+dxdx 

dx 

dMz 
Mz +-- dx 

dx 
---Y----- F + dF dx 

dx 
dV 

V +-dx 
dx 

( c) Beam element 

Figure 3. 8. Two Layered System with Concentrated Load 
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where A
1

, A
2

, B 
1 

and B
2 

are unknown and can be determined 

from the following boundary conditions: 

F L(O) = 0 

FR(L) = 0 

( 3. 34) 
F ( a) = F R(a) L 

dF L(a) = dF ( a) 
R 

dx dx 

The first boundary condition in ( 3. 34) requires A
1 

to be 

zero. Equations for the remaining coefficients are on the following 

page . 

Solving these unknown coefficients by Cramer's method or any 

other simultaneous equations technique gives 

B = 
2 

s inh[ vC ( L - a)] 
1 p 

s inh(vC l L) ' 

C 2 s inh( v<\ a ) 

Cl vCl p 

C 2 i s inh(VC 
1 

a) 

Cl vC l tanh(v'c
1 

L) p. 

Thus, the final results for F and F are L R 
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sinh [v<:
1 

( L - a)] 
x) 

sinh(~ L} 1 

O < x < a 

c2 P 
- . a) cosh (v'c.1x) 
cl V cl 

c2 p sinh(~ a) 
+ - -- ----- sinh(~

1
x) 

Cl ~l tanh( L ) 

c2 
+ - Pa( 1 - x/ L} 

Cl 

Equations similar to ( 3. 13) c an now be written as 

1 
+ 2 CFL' 

L El. 1 
1 1 

(y s) 
Cl2 1 

FR. YR = + 2 Cl R L EI. 
1 

1 

Or, using the alterative forms 

= (y) + P(d) -
1
- ( T.C. - l)A 

s L l EIS 3 

( 3. 3 5) 

(3. 36) 

( 3. 37) 

( 3. 38) 

( 3. 39) 
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where 

57 

1 1 
YR = (y ) + P (-) - ( T. C. - 1) B 

s R C EI 3 1 s 

a 
1 

s inh[VC
1 

( L - a)] s inh(~ x) 

= ( l - L) x - i/(:l l L) 

= a( 1 - x / L) - s inh(~ a) a) 
v CI I l 

r. C. = 
I 

s 
2 
LI 

1 

and with other notation corresponding to that given in ( 3. 9). 

( 3. 40) 

3. 6 Finite Difference Approac h for Beam with Concentrated Load 

Following the same procedure used in Section 3. 3, ( 3. 32) 

may be changed to 

( 3. 41) 



0 cosh(VC
1 

L) i sinh(VC 
1 

L) A2 0 

i s inh(VC
1 

a) - a) -i sinh(~a) Bl = 0 

iVC1 cosh(~ a) - VC1 s inh(~ a) -i~ c osh(VC1 a) B2 
Cz 
--p 

Cl 

u, 
00 
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where 

M = ML = Pbz O.:s_z.:s_a /L 

M = MR = Pa( 1 - z) a/L .:s_ z .:s_ 1 

and the der ivatives of this equation are t aken with respect to z. 

A final matrix form fo r the a xial forces is similar to ( 3. 25) and is 

( 3. 42) 

where ML and MR are given in ( 3. 41 ) . The expanded form of 

( 3. 42) is shown in Figure 3. 9 . The load is applied at the /h nodal 

point and the following notation is used: 

and 

u = 

kn 1 1 
= ES [ A ':' + A ':' ] ( T. C. } ' 

1 2 

kn Cl2 
= ---

ES 2 
I:r 
1 

I 
T. C. = s 

2 
I:r 
1 
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16 

- 1 

16 - 1 

( -30-UC ) 
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16 - 1 F 

- C U Pbz 
2 1 

- c
2
u Pbz 2 

- C U Pb z 2 3 

= 

n-3 
- C U Pa( 1 - z 3) 2 n-

- 1 16 ( - 30- UC ) 16 F l-C U Pa( 1-z ) 1 n-2 2 n-2 

- 1 16 ( -29 - U C ) F - C 2 U Pa( 1 - z n _ 1) 
1 n-1 

Matrix Form of F for Finite Difference Solution by 
Concentrated Load P Applied. at i th Nodal Point 

a--
0 
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c
1 

and c
2 

may vary along the beam length. 

The deflection of rigidly connected beam, however, will still 

be the same as ( 3. 26) through / 3. 30) except the moment will change 

to correspond to the concentrated loading. The final matrix form 

for the rigidly connected beam deflection may be written as 

(3. 43) 

or = { c 3 MR} a< x < L 

or as shown in Figure 3. 10, 

where 

12 
L2 

EI n 
s 

2 
, and may vary along the beam length. 

Once F and y are solved, ( 3. 37) and ( 3. 38) will be used to 
s 

solve for the actual deflectior.. y including the effects of interlayer 

slip. 

3. 7 Example Problem for Beam with Concentrated Load 

The same example used in Section 3. 4 but with concentrated 

load, P, of 100 lbs. will be examined. Upper and lower bounds c a n 
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3 
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1 
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c

3 
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= 
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- 1 16 -2 9 Ysn-1 C Pa( 1-z ) 

3 n-1 

Matrix Form of y for Finite Difference Solution by 
Concentrated Loal P Applied at i th odal Point 
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be established by computing the deflection c orresponding lo the 

rigid ly connec ted beam and the unconne c ted beams. 

( 1) Upper bound on beam stiffness: 

a) load at rnidspan, 

deflection y at midspan 
s 

= = 
( 100)( 144) 

3 
PL

3 

48EI 
s 48(2xl0 6)( 139. 48) 

= 0. 0224 59 m. 

b) load at L / 3 from l eft support, 

deflection y at point of load 
s 

= 

= 

2b2 Pa 
3EI L 

s 

3( 2xl0 6 }( 139. 48)( 144) 

= 0 . 0 1 7 7 6 2 in. 

(2) Lower bound on beam stiffness: 

From c alculations in Section 3. 4 ( 2), 

1. 16707 lb. 

P
2 

= 98. 83293 lb. 
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a) load at midspan, 

deflection y at midspan 

= = 
(1. 16707)( 144) 3 

( 4 8) ( 2x 10 
6

) ( 0 . 5 6 2 5) 

= 0.064534 1n. 

b) load at L/3 from left support, 

deflection y at point of load 

= 

= O. 050990 m. 

The final results for this example are listed in Tables 3. 2 

and 3. 3. The axial force value and the deflection shape for 

k = 15,000 lb. /in . /connector are shown in Figure 3. 12. The de-

flection ratio for both loading conditions are almost the same 

and the continuous curve is plotted in Figure 3. 11. For the design 

purpose, a plot of y / y versus k for various value of T. C. , a 
s 

tr ansfer cons tant relating I and LL, is very useful and is shown 
S 1 

in Figure 3. 13. 
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Table 3. 2. Deflections with a Load at M idspan vs Connector Modulus 

connector 
load at midspan 

modulus k 
deflection at midspan (in.) ylys 

(lb. / in.) 
by closed form I 

by closed form 
by finite di££. 

(upper bound) 

(Cl)) (0. 022459) ( 1. 000000) 

1,000,000 0.023011 0.023185 1. 0234 78 

100,000 0.02810 9 0.028340 1. 251569 

50,000 0.032375 0. 032637 1. 441515 

15 , 000 0.043678 0.044012 1. 944 788 

10,000 0.047857 0.048216 2. 1308 60 

9,000 0.048901 0.049266 2. 177345 

I 
6, 000 0.052627 0.053015 2.343247 

3,000 0.057591 0 .058009 2.564272 

1,000 0.0 61932 0.062375 2.757558 

100 0.064259 0.064716 2.861169 

10 0.064507 0.0 64966 2.872211 

1 0.064532 2.873324 

I 
(0) (0. 064534) (2. 873413) 

(lower bound) 
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Table 3. 3. Deflections with a Load at L/ 3 vs Connector Modulus 

load at L / 3 
connector deflection at point of load y/ys modulus k 
(lb. /in.) 

I 
by closed form 

by closed fo rm by finite diff. 

(upper bound) 

(co) (0.017763) ( 1. 000000) 

1,000,000 0.01824 5 0.018402 1.027192 

100,000 0.022580 0. 022793 1. 271253 

50,000 0 . 0260 67 o. 026310 1.467571 

15 , 000 o. 034989 0. 035296 1. 969879 

10 , 000 0.03822 5 0.038554 2 . 1520 66 

9, 000 0.039030 0. 0 39 364 2. 197387 

6, 000 0.0418 96 0.042248 2.358743 

3 , 000 0.045697 0.046073 2. 572739 

1,000 0.04900 8 0.049 405 2.759148 

100 0.050781 0.05 1188 2.858968 

10 o. 0509 69 0.051378 2.869552 

1 0.05098 8 0.051378 2.870 622 

(0) (0. 0 50990) (2. 870735) 

(lower bound) 



Connector Modulus k 

Figure 3. 11. Deflection Ratio Curve for Varying k Values 
with Concentrated Load Applied at Any Point 
Along the Beam Length 
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CHAPTER 4 

THREE LAYERED SYSTEMS 

4. 1 Introduction 

The development of the governing equations for general 

I 
three layered systems directly parallels that for the two layered 

systems and also uses the same assumptions listed in Section 2. 2. 

Again, transformed widths are used to compensate for modulus of 

elasticity differences. Figure 4. 1 depicts the layered system and 

the associated beam forces and strain distribution. 

4.2 Closed Form Solution for Beam with Uniform Load 

Referring to the beam element in Figure 4. 1 ( d), the 

equilibrium laws are applied to obtain the following three equations: 

3 dF. 
from [Fx 0 I 1 = = 0 ( 4. 1) dx 

1 

from [F 0 dV 
( 4. 2) = = -q 

y dx 

and 

3 dM. 3 dF . 
from LM 0 V L 1 L 1 = = --+ ri dx ( 4. 3) 

1 dx 1 
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--- --l-- --- -- X 

y 

( a) B e am with sign c onvention 

h 

(b) Cross-section with one 
axis of symmetry 

( c ) Strain distribution 

Figure 4. 1. Three Layered System 
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q 

! i ! ! dM 1 M 1 + -- dx 
dx 

dF F 1 + Txdx 

dM 2 M2 + d dx 
x dF 

F 2 + Txdx 

dM 3 M 3 +cbcdx 

dF3 F3+ dx dx 
V + dV dx 

--dx- - ,1 dx 

( e ) Laye r elements 

Figu r e 4 . 1. - -C ontinued 
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The assumption that the layers deflect the same amount re-

quires that 

M . = 
1 EI. 2 

1 dx 

This can be substituted into (4 . 3) which, when c omb ined with (4. 2), 

gives 

3 
I: 
1 

d4y 
EI . 

i dx4 

3 
Lr. 

1 
1 

= q (4. 4) 

The F . terms are now related to y using the slip equations. 
1 

Since the slip permitted by a connector i s assumed to be propor-

tional to the connector force and using the horizontal equilibrium 

of the layer elements as shown in Figure 4. 1 ( e), the interlayer 

slip values may be written as 

dF
1 

X X 

s s f u f L 
6S12 = (kn) ql2 = (-) + €

2 
dx €1 dx kn 

12 
dx 

12 0 0 

and ( 4. 5) 

X X 

s s dF 
3 f u f L 

~ 5 23 = (kn) 
23 

q23 = (-) = € 3 dx €
2 

dx 
kn 23 dx 

0 0 
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The interlayer slip strain may also b e written a s 

u L 
d6S

12 
C = C € = 

sl2 2 1 dx 

and ( 4. 6) 

u L 
d6S 

23 
€ = c 3 E: = 

sl2 2 dx 

Equations (4. 5) and (4. 6) are combined and differenti ated once 

to yield 

d
2

F F2 Fl hl + h2 £y (~) 1 = + ( 2 ) ( 4. 7) 
kn 12 dx

2 EA':' EA':' dx
2 

2 1 

and 

s d
2

F F3 F2 h 2 + h d2y 3 ( 3) (4. 8) (kn) = _,_ - _,_ + 2 EA-3 EA-1 2 2 
23 dx dx 

Equations (4. 1), (4. 4), (4. 7) and (4. 8) form a set of four 

equations with four unknowns and are the governing equations of the 

general three layered system. The set may be reduced to three 

equations with three unknowns by using (4 . 1) to eliminate one of the 

Fi terms. If F 
3 

is eliminated the governing equations may be 

written as 
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3 4 2 d 2F 
L EI. d + L ( r 3 - r i) 1 = q 
1 

1 
dx 1 dx 2 

s (-) 
kn 23 dx2 

Fl 
--J, + 
EA''' 1 

or in matrix form as 

3 L EI.D4 (Cl2+C23)D 
1 1 

Cl2D 
2 2 T 

Gl2D - 1 

2 2 

2 
C23D 

T2 

2 

( 1 _1_) F 
EA':' + EA':< 2 

2 3 

2 y 

Fl = 

C23D G23D - T3 G23D -Tl-T3 F2 

where 

DP 
dp 

= 
dxp 

h . + h. 
C . . 

1 J = 
lJ 2 

( 4. 9) 

q 

0 ( 4. 10) 

0 
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G .. = (~) 
lJ kn .. 

lJ 

T . 
1 = 

1 EA':' 
1 

U se the method stated in Section 2. 3, and after some algebraic 

operations, the final governing equation for the deflection y of 

general three layered systems is 

8 [ T 1 ( C 2 ) T 3 ( C 3 ) ( G 1 2 + G 2 3) ] 6 
D y - G lt 3 + G l + 3 + T2 G G D y 

12 T , EI. 23 T LEI. 12 23 
I L 1 3 1 

1 1 

(4. 11) 

The second and fourth order derivatives of the uniform load 

q are zero . Therefore (4. 10) may be re duced to the form 

( 4. 12) 

where 
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_T_1_ ( I + __ c_~_2 __ l + _r_3_ ( I + 
Gl2 Tl t E\· G23 I 

1 

Tl T2 + T2T3 + T3Tl 

3 

; EliG12G23 

To check the above general governing equation the system 

is reduced to three equal layers which results in the following 

values for the constants 

= T 

3 
L EI. = 3EI 

1 
1 

A . = A':' = A 
1 1 

Equation (4. 11) may now be factored into the form 

2 T 6 T4 1 2 T 2 T 
(D - 3G)(D - 9 GD)y = 3E 1 (D -3G)(D -G)q 

or 
6 kn 1 4 

( D - 9 S EA D ) y = 
l 2 kn 1 

3EI (D -SEA)q. (4 . 13) 
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The governing equation of three equal layers derived by 

Goodman ( 1), (2) is stated as below 

kn 1 2 
S EA ( EIS D y + M) = 

2 
D M. (4. 14) 

2 
After differentiating (4. 14) twice and using q = - D M, (4. 14) reduces 

to 
6 kn 1 4 

3EID y - S EA(27EI) Dy = 

or 

kn 1 4 
9 SEA D ) y 

1 2 kn 1 
= 3EI ( D - S EA ) q . ( 4. 15) 

A comparison of ( 4. 13) with ( 4. 15) shows that the results ob-

tained when the general equation is reduced to a system with three 

equal layered system are the same as these previously reported 

by Goodman ( 1), ( 2). 

For the general governing equation (4. 12), the solution 

in exponential form is 

m
1

x m
2

x m
3

x m
4

x 
y = A

1 
e + A

2
e + A

3
e + A

4
e 

c3 ..9..... 4 3 2 + - x + A x + A 6 x + A x + A c 2 24 5 7 s (4. 16) 

where 
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1 

(Cl 
+ vc12 - 4C

2
),: 

ml = 2 

1 

(Cl 
-Vc12 - 4C 2 r 

m2 = 2 

1 

-( Cl 
+ vc12 - 4C 2 r 

m3 = 2 

and 

1 

m4 = _ ( C 1 - 1/c/ -4C z r 
A

1 
through A

8 
are unknown constants and will be determined 

by eight boundary conditions. For a simply supported beam system 

four boundary conditions are 

y(O) = O 

y(L) = 0 

( 4. l 7) 

The other four boundary conditions are obtained as follows. The 

first of (4. 9) includes the requirement that the second derivatives 

of F . terms are equal to zero at the supports, thus 
1 
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D
4

y(O) q = 3 

L EI. 
1 

1 
( 4. 18) 

D
4

y(L) q = 3 

L EI. 
1 

1 

Differentiating the second and third of (4. 9) twice and using (4. 18) 

yields 

Cl2 4 
= ---Dy= 

Gl2 

1 
3 ( 
LEI. 
1 1 

q 
3 L El. 
1 1 

( 4. 19) 

Again, differentiating the first of (4. 9 ) twice and with the sub-

stitutions of D
4

F 
1 

and D
4

F 
2

, the following requirement on n6y 

is obtained 

6 
Dy = 

q 
3 2 ( L EI.) 
1 1 

at x = 0 and L (4. 20) 

Equations (4. 17), (4. 18) and (4. 19) provide the eight boundary 

conditions which are needed. A matrix form for the closed form 

solution is given in ( 4. 21). 



1 1 1 1 0 0 0 1 Al 0 

m
1

L m
2

L m
3

L m
4

L 
L3 L2 

C3 L 4 
e e e e L 1 A2 -c 24 q 

2 

2 2 2 2 
ml m2 m m4 0 2 0 0 A3 0 

3 

2 mlL 2 m2L 2 m3L 2 m4L 6L 2 0 0 A4 
C3 L2 

---q 

m
1

e m
2

e m
3

e m
4

e c2 2. 

4 4 4 = ( 4. 21) 
4 00 

ml m2 m3 m4 0 0 0 0 A v2 
N 

5 

4 mlL 4 
m

2
L 4 

rn
3

L 4 m4L 
0 0 0 A6 me ~e m

3
e m

4
e 0 v2 1 

6 6 6 6 
0 A ml m2 m3 m4 0 0 0 Vl 7 

6 mlL 6 m2L 6 m3L 6 m4L 
m

1
e m

2
e m

3
e m 4 e 0 0 0 0 A8 V 

1 

where Vl = 9. [ 1cd2l2 + ICz3l2] and v2 [ - C3 + ~~r} 2: Eli) 2 
= 

12 G23 c2 
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Equation (4. 21) provides the solution for eight constants , A 1 

through A
8

. By substituting these consta ts back into (4. 16), the 

final deflection for various distance from support can be obtained. 

4. 3 Finite Difference Approach for Beam with Uniform Load 

The same procedures as developed in Section 3. 3 may be 

use d to obtain th e solution of (4. 12) in numerical form. From 

Appendix III, the fourth, sixth and eighth order derivatives can be 

expressed as on the following page. Equation (4. 12) becomes 

( 4. 22) 

or written in operator form 

u[ 

+w[ 

where 

TJ 
4 

( L/h) 4 = n = 

V = 2C L2 
n 1 

w = C L
4 

2 



1 d
4 

= -- = 
L 

4 dz4 ] 

] 

= -- ] 
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The boundary conditions for the operator form are listed in 

Appendix III-2. A final matrix form of the governing equation is 

then written as 

f H] { y} = { Q'} ( 4. 23) 

where 

Y1 vw
1 

Yz vw
2 

{ y} { Q'} C L 8 
= = q 3 

4 
n 

yn-2 

yn-1 

I 4 
n 

vwn-2 

vwn-1 

where 



vw 1 = 

vw
2 

= 

VW n-2 = 

2L 
4 

3 
LEI. 
1 1 

4 
3L + C h 4 L 4 
LEI. 3 
1 1 

vw 
2 

VW n- l = VW 1 

86 

and [ H] is shown in Figure 4. 2. The symbols used in Figure 4. 2 

are 

U l = 70 U + 20 V + 6 W 

u2 = 42U + 14V + SW 

Vl = - 56U - 15V - 4W 

v2 = - 48U - 14V - 4W 

w = 28U t 6V + W 
1 

and 

R = - 8U - V 



uz vz W -U R u 
1 

vz U -U Vl Wl R u 
1 

W -U V Ul Vl Wl R u 
1 1 

R w 
1 Vl Ul Vl Wl R u 

u R Wl Vl Ul V Wl R u 
1 

u R w Vl Ul Vl Wl R u 
1 

00 
---J 

u R Wl Vl Ul Vl Wl R u 

u R Wl Vl Ul Vl Wl R 

u R Wl Vl Ul Vl W -U 1 

u R w 
1 Vl U -U 

1 vz 

u R W -U 1 vz uz 

Figure 4. 2. H Matrix 
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Equation (4. 23) can be applied to any three layered beam 

system with various beam or connection properties between layers 

or along the beam length. 

4. 4 Example Problem for Beam with Uniform Load 

Figure 4. 3 shows a simply supported beam of 12 feet span 

loaded with a uniformly distributed load. If the layers of beam are 

rigidly connected , then the midspan defle c tion of 0. 229456 inches 

will be the upper bound for the stiffness of the system. If no con-

nection exists between lay er s, then the midspan deflection is 

0. 9909 24 inches and is the lower bound. Table 4. 1 lists the de-

flection values obtained for a sequence of different connector moduli 

and Figure 4. 4 is the plot of Table 4. 1. It is evident that every 

deflection value for various k values, between zero and infinity, 

lies between these two limits. From Table 4. 1, it is seen that the 

finite difference deflections are a little larger than the closed form 

deflections but the percentage difference is very small. 

4. 5 Closed Form Solution for Beam w i th Concentrated Load 

The three layered system shown in Figure 4. 1 but with a con-

centrated load P applied at any point along the beam length is dis -

cussed herein. The derivation is the same as that in Section 4. 2 

except that 
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q = 1 0 1 b . /in. 

------x 

L = 1 2' _ ___ _____ __, ... 

y 
(a) Beam with sign convention and applied loading 

h3 = 3" 

(b) 

El' 

wH" 
Cross section with one 

6 
E2' E3 = 1. 5 X 10 psi 

axis of symmetry 

number of nails per 
row, n = 1 

connector spacing 
s = 8 in. 

( c) Connector spacing and number of nai l s 

Figure 4. 3. Three Layered System with Uniform Load 
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Table 4. 1. Deflections (in.) with Uniform Load vs Connector Modulus 

closed finite 
y /ys connecto r 

form difference 
modulus k solution 

by closed 
(lb. /in.) solution form 

y( in. ) y(in.) 

(upper bound) 

(a)) (0 . 229456) ( 1. 00000) 

10, 000 ,000 0.230473 0.231748 1. 00443 

1,000,000 0. 2 39 512 0.240787 1. 04383 

100,000 0. 3189 50 0.320259 1. 3900 3 

30,000 0.46077 6 0. 462 39 7 2.00812 

10, 000 0.656899 0.659461 2 . 86286 

3,000 0.844248 0.848247 3. 679 35 

1,000 0.934457 0. 9 39 343 4.07250 

100 0.984852 0.990288 4. 29212 

10 0.990312 0. 9 95810 4. 31592 

1 0.990863 0. 9 96367 4. 31832 

(0) (0.990924) (4. 31858) 

(lower bound) 
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V 
Pb = L 

for O <x< a 

and 

V = Pa - for a < x < L 
L 

Finally, three governing equations for deflection and slip are 

obtained as 

where 

and 

(r -
3 

-M 

h2 + h3 d2 S d2F 1 F 1 S d2F 2 
(--) + (-) -- - --J, + (-) 

2 dx kn 23 dx2 EA3 kn 23 dx2 

1 1 
(EA':' + EA~' ) F 2 = 0 

2 3 

M = Pb -x 
L 

for 0 < X < a 

X 
for M = Pa ( 1 - L) a< X < L 

(4. 24) 

(4.25) 

(4. 26) 
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2 
h th d Fl 

2 3) --+ 
2 dx2 

Equations ( 4. 24) through (4. 26) in matrix form are: 

!EI.D
2 

(Cl2+ Cl2) c23 y -M 
1 

C D
2 2 

T2 Fl 0 (4 .27) Gl2D - Tl = 12 

2 2 2 
F2 0 C23D G23D - T3 GD -T -T 

23 2 3 

where 

h . + h. 
1 ] C .. = lJ 2 

s 
G .. = (-) lJ kn .. 

lJ 

1 
T. = EA,!' ' 1 

1 

Befo re solving these three simultaneous differential equations 

seve r a l separate functions for y, F 
1 

and F 
2 

in terms of x only 

sho u ld be expressed. Applying Cramer's method to (4. 27) gives 
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6 4 2 
( I) D y - Cl D y + C 2 D y = - C 3M 

so, the solution to this equation will be 

m
1

x m
2

x m
3

x m
4

x 
y L = A 1 e + A

2
e + A 3e + A 4 e 

4 
(II) D F

1 

C 3 
+ A5x + A6 - __]_(Pb)~ c

2 
L 6 

let the solution to this equation be 

FIL 

FIR 

m X 
1 

C4 Pb 
+--x c

2 
L 

C4 X + - Pa (1 - -) c
2 

L 

(4. 28) 

( 4. 29) 

( 4. 30) 

(4. 31) 
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4 2 
( III) D F 2 - C l D F 2 + C 2 F 

2 
= C 

5 
M 

let the solution to this equation be 
m

1
x 

F 2L = A21 e + A22e 

F2R 

CS Pb 
+-(-)x c 2 L 

C 
+ -2 Pa ( 1 - ~) c 2 L 

m x m x 
2 A 3 

m X 
2 

+ 23e 

( 4. 32) 

(4. 33) 

where subscript L and R represent the left and right side of load 

point. c
1

, c
2

, c
3

, m
1

, m
2

, m
3

, and m
4 

are the same as (4. 12) 

and (4. 16 ) and 

(Cl2 + c23) T 2 + cl2 T3 
3 

(Gl2G2} ~Eli 

A
1 

through A
28 

are unknown and tw enty-eight equations are 

required to determine these constants. Sixteen equations of them 

come from the relations between constants themselves and the re-

maining twelve come from boundary conditions of y, F 
1 

and F 
2

. 
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To obtain the sixteen equations, it is necessary to substitute 

(4. 28) through (4. 33 ) into (4. 27). 

has five terms that correspond to 

After collecting terms each case 

m 1x m 2x m 3x m 4 x 
e , e , e , e and 

x, respectively. For example, the first of (4. 27) for the left side 

(y L' F L F ) becomes 1 , 2 L 

m X 

[I:E\m~Al + (Cl2 + C23)Al3 + C23A21]e l 

m X 

+[2'.Elim~A2 + (Cl2 + C23)Al4 + C23A22]e 
2 

+ [ -
c3 c4 cs ] Pb 

I:EI.c+( Cl2+c23)C+c23C+l L X = O 1 
2 2 2 

Set the coefficients of 
m3x m4x 

e and e equal to 

zero which yields four equations, 

2 
c23)Al4 + c23A22 I::E\m2A2 + (Cl2 + = 0 

(4. 34) 
2 

c23)Al5 + c23A23 I:E\m3A3 + (Cl2 + = 0 

I:E\m!A4 + (C 12 + c23)Al6 + c23A24 = 0 . 
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The fifth equation 

will be satisfied automatically. 

Similarly, the coefficients of the x terms in the first of 

(4 . 27) for the right side section of load yields 

(4. 35) 

The second of (4 . 27) for the left and right sides of the applied 

load point will also yield 
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(4. 36) 

In addition, the twelve required boundary conditions may be stated 

as 

y L(O) = 0 yR(L) = 0 

y (a) = y R(a) Dy L(a) = DyR(a) 
L 

FlL(O) = 0 F 2L(O) = 0 

( 4. 37) 

F lR(L) = 0 F 2R(L) = 0 

F lL(a) = F lR(a) F 
2

L(a) = F 2R(a) 

DF l L(a) = DF lR(a) DF 2 L(a) = DF ZR(a) 
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Equations (4. 34), (4. 35), (4. 36) and (4. 37) provide the twenty-

eight independent equations that are requir e d. Once A 1 through 

A
28 

are obtained, then the final solutions of y, F 
1 

and F 
2 

can be 

easily obtained. 

4. 6 Example Problem for Beam with Concentrated Load 

A beam with the same cross- section and properties as that 

examined in Section 4. 4 and Figure 4. 3 will be loaded with a con-

centrated load at any point along the beam length. The technique of 

solving the simultaneous ordinary differential equations is applied 

to solve this problem. The results for the special case, loading at 

midspan, for seven different slip moduli values are listed in Table 

4. 2. In three layered problem, the a xial forces of top and bottom 

layers, F
1 

and F
3

, will always be compression and tens io n re-

spectively. The sign of the force in the middle layer depends on 

the dimensions of each layer of the system. Figure 4. 4 shows a 

deflection ratio curve of this example problem. 
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Table 4. 2. Deflections, Axial Forces and Deflection Ratio vs Con-
nector Modulus for Load Applied at Midspan 

connector deflection 
axial force (lbs) 

modulus k y 
Fl F2 y/ys 

(lb. /in.) (in . ) 
( -) * ( - ) 

(upper bound) 

(CD) (0. 254951) (1.00000) 

1,000,000 0.267988 3973. 1300 2214.4800 1.05114 

100, 000 0.361336 2999. 0 200 2212. 1900 1.41728 

10,000 o. 735503 1012.7500 1569. 1700 2.88488 

1,000 1.039310 132.96 70 310.0080 4.07650 

100 1. 094390 13. 7150 34. 0370 4. 29 255 

10 1. 100 360 1. 3758 3. 4370 4. 31596 

1 1. 100960 0.1376 0.3440 4.31833 

(0) (1. 101100) (4. 31887) 

(lower bound) 

,:, Negative sign indicates compression force. 
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CHAPTER 5 

RESULTS OF BEAM TESTS 

5, 1 Introduction 

To provide an examination of the validity of the proposed 

theory, several tests were performed. The tests were limited to 

simply supported beam systems consisting of two layers. The 

test equipment and procedures used are detailed by Penner ( 20). 

In this chapter results obtained during testing are presented and 

compared with the developed theory. The variation in section 

properties along the beam length was considered by utilizing the 

finite difference method. 

5. 2 Connector Modulus 

As mentioned before, an accurate determination of the con-

nector modulus is necessary if a reasonable prediction of system 

behavior is to be made. Eight-penny cement coated nails and 

common nails were used as connectors in the experiments. Three 

slip tests for use of cement coated nails were made by using a 

double-shear test procedure as described by Patterson (21). A 

combined curve of applied nail force versus slip is shown in 

Figure 5, 1 (a). A linear approximation for the connector modulus, 
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k, can be obtained using a tangent or secant definition at any point 

along this curve. For the use of the theory, two approximations 

to the connector modulus are taken as shown in Figure 5. 1 (a). 

These values are considered to be the upper and lower bounds, 

respectively. Twenty-one tests were conducted for common nails 

and a combined slip curve for these connectors is shown in Figure 

5. 1 (b). Two selected bounds for the connector modulus are shown 

therein. In a later section, the theoretical deflection is assumed 

to be that obtained by averaging the defle ction computed using both 

the upper and lower bounds of the connec tor modulus. 

5. 3 Test Results 

a) Test Results T-Beam No. Tl-8Dl6-l 

The beam used in this test had a Douglas fir plywood top 

layer and Douglas fir joists as shown in Figure 5. 2 . The support 

system consisted of two sill plates spaced 12 feet apart. Joists 

had 2 in. wide by 8 in. deep nominal dimensions, however the 

average true dimensions were as shown in Figure 5. 2 (d). The 

plywood was 3/4 in. thick by 32 in. wide. Three pieces of plywood 

with face grain parallel to the span of the beam, labeled as A, B 

and C, were used as the top layer of this two layered beam system. 

This beam was connected by eight-penny cement coated nails at 8 

in. spacings along the beam length and one nail per row for each 
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joist. The beam was divided into 12 equal sections for analysis 

and for variation of properties. 

Two joists were used in this test to insure beam stability. 

The moduli of elasticity values along the length are listed in Table 

1 , Appendix IV. A sequence of vertical point loads were applied at 

different locations of the beam. It was assumed that each single 

joist was loaded with one-half the applied load. The plots compar-

ing the test and theoretical values are shown in Figure 5. 3. 

b) Test Results T-Beam No. T2-8D48- l 

In this test, T-beam containing a single joist with a 48 in. 

wide flange and shown in Figure 5. 4 was used. The moduli of 

elasticity along the length of the joist are listed in Table 2, Appen-

dix IV. In this test, eight-penny cement coated nails with 8 in. 

spacing along the beam length and one nail per row were used. 

Figure 5. 5 shows the results the measured and theoretical values 

of deflection. 

c) Test Results T-Beam No. T4-8Dl6- l 

The beam used in this test is shown in Figure 5 . 6. 

Three sheathing pieces were cut from the same Douglas fir ply-

w ood sheet and their face grain directions were placed perpendicu-

lar to the joist direction. The moduli of elasticity of this beam 

are listed in Table 3, Appendix IV. Eight-penny common nails with 
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8 in. spacing along the beam length and one nail per row for each 

joist were used as connectors. Thus the connector properties 

were used as shown in Figure 5. 1 (b). Figure 5. 7 shows the re-

sults of measured and theoretical value s of deflection. 

d) Test Results T-Beam No. T5-8Dl6- l 

A double-joist T-beam used in this test is shown in Figure 

5. 8. The moduli of elasticity were listed in Table 4, Appendix IV. 

The connector condition was the same as that of T-beam test 

T4-8Dl 6-1. Plywood face grain direction was perpendicular to the 

joist direction. Figure 5. 9 shows the resu lts of measured and 

theoretical values of deflection. 
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CHAPTER 6 

CONCLUSIONS 

In this study, a small deflection theory was developed for the 

transverse load ing of l ayered beams with the effects of interlayer 

slip and variable material properties along the length of the beam 

included . The basic theory was developed for the deflection of an 

m layered system, then spe cialized to two and three layered systems 

with one a x is of symmetry in the cross s ec tion. It was shown that 

the m l ayered system with uniform load yields a single differential 

equation b ut for a c on c entrated load the results are a set of simul-

taneous differential e q u a tions in m unknowns, y , F
1

, F
2 

. .. and 

F 
m-1 

The boundary c ond itions necess a ry to solve each pr oblem 

were presented. 

The governing equations of two and three layered systems 

w e re reduced to the equal layered beam system and showed agree-

m e n t with tho se previously developed by Goodman ( 1), (2 ). In all 

c ase s the limiting s o lutions were shown to give bounds for the ex-

p ecte d r e sults , that is, beams with very stiff connectors behaved 

as the equivalent r igidly connected beam and those with no con-

n ecto rs c a us e the sys t e m t o act as separate beams. 
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In the tests, all readings were taken immediately after ap-

plying a given load. In general, good theoretical agreement with 

experimental results was achieved except at higher loads. It is felt 

that there are two main effects that could cause this deviation. The 

theory presented shows that the system behavior is greatly depend-

ent upon the moduli of elasticity of the layers and the stiffness of 

the interlayer connectors. -i:'he moduli of elasticity of the joists 

used in theory were measured flatwise whereas the joists were 

loaded edgewise in the tests. This variation should produce pri-

marily a random effect. The presence of a local defect in the joist 

such as an edge knot under the load could cause a significant effect 

m the actual joist behavior. 

Results obtained show that a proper knowledge of connector 

modulus is of prime importance. The connector modulus, k, 

varies in a non-linear manner as shown by the force-slip curves. 

In the T-beam tests, the k value is smaller for higher applied 

loads than that at lower loads. If the exact connector modulus for 

each connector would be used then the theoretical values should 

approximate the measured values with very little deviation. 

In T- beams with double joists, a mismatch in the stiffness 

of the joists may cause a larger deflection in one joist than the 

other. This difference m deflection introduces some torsional and 

other interaction effects. No simple method of evaluating these 
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effects are available, but it is not expected that this behavior m-

tr oduces la rge errors in the prediction of deflection values. 

Some other secondary effects, such as transverse joists and 

g aps of sheathing, restraints of end supports, effective flange width, 

cycling of applied loads and time dependency of slip tests, also exist 

and may affect the theoretical and test results somewhat. 

Although the theory developed in this study is applicable only 

to static bending problems, it is evident that problems of vibration 

and buckling may also be considered by similar methods. While 

the procedures developed were applied to layered systems of wood, 

any glued or mechanically-connected layered beam system can be 

analyzed in the same manner. 

Results of this study can be used for more efficient designs 

of structural con1ponents, resulting in a reduction in the amount of 

materials needed. 
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APPENDIX II 

LIST OF SYMBOLS 

Area of the /h layer 

Transformed area of the /h layer 

Constant relating y and F solutions 

b 
. th th 

Centroidal distance etween 1 and j layers 

th 
Operator indicating the p der ivative with respect to the 
space variable 

E = Modulus of elasticity 

F . = Axial force in the i
th 

layer 
1 

G = Average connector modulus 

G .. 
lJ 

h 

h. 
1 

h 

I. 
1 

I 
s 

k 

L 

M. 
1 

= Flexibility per unit length between /h and j 
th 

layers 

= H eight in equal layer system 

.th 
= Height of the 1 layer 

= Height from top of beam to centroid of cross-section 

= ::--.,foment of inertia of the /h layer 

= Mom ent of inertia of equivalent rigidly connected beam 

= Connector modulus 

= Beam length 

= Bending moment in the i
th 

layer 

= Total moment on a cross - section 



n 

p 

Q 

q 

q .. 
lJ 

r . 
1 

~S. 

s 

T. 
1 

1 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

122 

Integer number 

Point load (positive while downward) 

Load transmitted by a connector 

Uniformly distributed load (positive while downward) 

Load transmitted between two layers per unit length of a 
beam 

th th 
Load transmitted between the i and j layers 

Distance from centroid of beam to centroid of /h layer 
(negative while above centroid line) 

Slip of /h layer 

Connector spacing 

1 / (EA':' ) 
1 

Axia l stiffness per unit length for the /h layer 

T. C. = A transfer constant relating I and the summation of I 
s 

V = Shear force on beam e lement 

V . = Shear force on the i 
th 

layer element 
1 

X 

y 

z 

~S . . 
lJ 

L 
€ . 

1 

= Total shear 

= Space variable 

= Beam deflection 

= Solid beam deflection 

= Dimens ionles s spac e variable 

= [ t 1 1. b .th d th . n er ayer s 1p etween 1 an j layers 

= Strain in the i 
th 

layer at the lower edge 

= Strain in the i 
th 

laye r at the upper edge 



APPENDIX III-1 

EXPRESSION OF HIGH ORDER DIFFERENTIAL TERM DERIVED 

FROM TAY LOR SERIES EXPANSION 

T aylor Series E xpansion: 

This method allows judgement of order of error involved in 

various approximations. 

T aylor Ser ies 

y(x. + mh) 
n mPhP (p) 

= L I y + error term 
1 0 p. p = 

mh I m2h2 11 m3h3 111 

= Yo +- y . + y. + y. 1 ! 1 2! 1 3' 1 

m Ph p ( ) 
+ ... + --- y P + error term 

p ! i 

where m = 1, 2, 3 etc. 

For a five-term expansion: 

y . 2 1-
y . 

1 

h ----- h---- h ----h 

y(x) 

--L---------'----~----~----~ X 
i- 2 i- 1 i ::.+ 1 i+2 



then 

= y( x . - 2h) 
1 

y. 1 1-
= y(x. - h) 

1 
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I 4h 2 I I 8h 3 I I I 

= Yo - 2hy. + -2 ' Y. - -3 ' Y. 1 , 1 , 1 

16h4 (4) + --y - ... + ... 4! i 

I h2 II h3 Ill 

= y . - hy. + -2 1 y. - -3 t y. 
1 1 , 1 , 1 

h4 
+-4, y!4)_ ... + ... 

. 1 

y. = y(x . ) = y . 
1 1 1 

= y(x . +h) 
1 

Eq. 2 plus Eq . 4 implies 

Eq. 1 plus Eq. 5 implies 

, h 2 , , 8h 3 , , , 
= y i + hy i + 2! y i + 3! y i 

h4 
+ -4 ' y1_4) + ... + ... 

• 1 

4 
16h (4) +-4, y . - ... + ... 

• 1 

1. 

2. 

3. 

4. 

5. 

6. 
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yi-2+yi+2 
4h2 

11 16h 
4 

(4)) 
= 2(y. + -2 t y . + -4-,- y. 1 , 1 , 1 

Eq. 7 - 16 times Eq. 6, yields 

11 

y. 
1 

1 
= --2 ( - y. 2 + l 6y. l - 30y. + 16y. l - y . 2) 

12h 1- 1- 1 i+ 1+ 

error order e = 
h 6 

Eq. 7 - 4 times Eq. 6, yields 

/4) = 
1 

1 
4 (y. 2 - 4y. 1 + 6y . - 4y.+l + Y·+2) h 1- 1- 1 1 1 

error order e = 

By the simi~ar method, for a seven-term expansion 

7. 

8. 

9. 

(6) 
y . 

1 

1 
= -6 (yl. -3 - 6y. 2 + 15y . 1 - 20y. + 15y. 1 - 6y. 2 + y. 3) h 1- 1- 1 i+ 1+ 1+ 

For a nine- term expansion 

( 8) 
y. 

1 
= 

1 
8 

(y. 4 - 8y . 3 + 28y . 2 - 56y. l + 70y . 
h 1- 1- 1- 1- 1 

- 56y. l + 28y . 2 - 8y. 3 + y. 4) 1+ H 1+ 1+ 



APPENDIX III-2 

BOUNDARY CONDITIONS FOR THREE LAYERED 

BEAM WITH UNIFORM LOAD 

F r om the closed form equation of Chapter 4, 

From Eq. 

because 

thus 

3 

4 
Dy 

1 
4(Y_z - 4Y_1 + 6 Yo 
h 

Yo 

y 
- 1 

- 4Y 1 + y 2) 

= 0 

= yl 

9. = 3 
I: EI 
1 

1 

2 

3 

4 



From Eq. 4 

this implies 

= 

= - y + 3 
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y -2 = - y 2 + 
h

4 
q 



APPENDIX IV 

MODULI OF ELASTICITY OF T-BEAM TESTS 

Table 1. T-Beam Test No. Tl-8Dl6- l 

Joist0l Joist 02 plywood 
Node 

E
2

(10 6 psi) E
1
(lo

6 psi) 

01 2. 29 5 1. 509 1. 330 piece A 

02 2. 345 1. 473 1. 39 3 transverse 
joint 

03 1. 743 l. 946 1. 456 

04 l. 672 2. 11 9 1. 456 

05 1. 837 1. 9 50 1. 456 

06 1. 881 1. 774 1. 456 piece B 

07 1. 90 8 1. 755 1. 456 

08 2. 024 1.866 1. 456 

09 2. 377 1. 70 3 1.456 

10 2.345 1.580 1. 39 3 transverse 
joint 

11 1. 848 1. 732 1. 330 piece C 



Node 

01 

02 

03 

04 

05 

0 6 

07 

08 

09 

10 

11 
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Table 2. T-Beam Test No. T2-8D48- l 

Joist 

1. 29 5 

1. 473 

1. 521 

1. 487 

1. 534 

1. 485 

1. 424 

1. 448 

1. 362 

1. 459 

1. 410 

1. 505 

1. 506 

1. 50 7 

1. 50 7 

1. 507 

1. 507 

1. 507 

1. 507 

1. 507 

1. 506 

plywood 

E
1
(lo

6 psi) 

piece A 

transverse 
joint 

p iece B 

transverse 
joint 

1. 505 - piece C 
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Table 3. T-Beam Test No. T4-8Dl6- l 

Joist 01 Joist 02 plywood 
Node 

E 2(10 6 psi) E
1 

( 10 5 psi) 

01 1. 509 1.684 5. 500 

02 1. 473 1. 618 5. 500 piece A 

03 1. 946 1. 624 5. 500 

04 2. 119 1. 867 5. 500 - joint 

05 1. 9 50 1. 703 5. 500 

06 1.774 1. 536 5.500 piece B 

07 1. 755 1. 749 5. 500 

08 1. 866 1. 733 5.500 joint 

09 1. 70 3 1. 677 5.500 

10 1. 580 1. 657 5. 500 piece C 

11 1. 732 1. 737 5. 500 
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Table 4. T-Beam Test No. T5-8Dl6-l 

Joist 01 Joist 02 plywood 
Node 

E
2

( 10 6 psi) E 1 ( 10 5 psi) 

01 1. 406 1. 577 5. 390 

02 1.265 1. 351 5. 390 piece A 

03 1. 0 67 1. 229 5. 390 

04 1. 18 3 1. 485 5. 390 - joint 

05 1.344 1. 589 5. 390 

06 1. 463 1. 413 5. 390 piece B 

07 1. 864 1.254 5. 390 

08 1.86 1 1. 420 5. 390 joint 

09 1. 507 1.561 5. 390 

10 1. 477 1. 550 5. 390 piece C 

11 1. 696 1. 476 5. 390 
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Mary K. Guin 
500 Cornell 
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