DISSERTATION

PROGRESS TOWARD THE TOTAL SYNTHESIS OF CITRINADINS A AND B

Submitted by
Genessa M. Smith
Department of Chemistry

In partial fulfillment of the requirements For the Degree of Doctor of Philosophy

Colorado State University Fort Collins, Colorado

Spring 2012

Doctoral Committee:
Advisor: John L. Wood

Robert M. Williams
Eric M. Ferreira
Eugene Y. Chen
Garrett J. O'Keefe

Copyright by Genessa Marie Smith 2012
All Rights Reserved

ABSTRACT
 PROGRESS TOWARD THE TOTAL SYNTHESIS OF CITRINADINS A AND B

In 2005 Kobayashi reported the isolation and absolute stereochemistry of Citrinadin A (1) and Citrinadin B (2), novel secondary metabolites of the marine fungus Penicillium citrinum. In addition to their interesting molecular architecture, the citrinadins are biologically active. Both exhibit cytotoxicity against murine leukemia L 1210 ($\mathrm{IC}_{50} 6.2$ and $10 \mu \mathrm{~g} / \mathrm{mL}$ respectively), and $\mathbf{1}$ has shown activity against human epidermoid carcinoma KB cells $\left(\mathrm{IC}_{50} 6.2 \mu \mathrm{~g} / \mathrm{mL}\right)$. Synthesis of $\mathbf{1}$ and $\mathbf{2}$ would allow for further testing of their biological activity and remains the best way to confirm their assigned structures. While, no total synthesis of either natural product has been reported to date, two synthetic approaches toward the citrinadins have been disclosed by Martin and Sorensen.

Efforts to synthesize $\mathbf{1}$ and $\mathbf{2}$ in the Wood laboratory are based upon a convergent (3+2) dipolar cycloaddition reaction between a spiro-oxindole dipolarophile and a nitrone, where two diastereomeric isoxazolidine cycloadducts are formed. Using the undesired cycloadduct, exploratory studies toward a synthesis of $\mathbf{2}$ were conducted, resulting in the synthesis of the C3-epi-Citrinadin Core (\pm)-96. Elaboration of the desired cycloadduct then led to a synthesis of the ent-Citrinadin Core (+)-100.

In order gain to access 2, a C7-functionalized spiro-oxindole dipolarophile was employed in the cycloaddition; however, elaboration of the desired C7-functionalized cycloadduct to ent-2 may result in a structural reassignment of 2. Preliminary results suggest that spectral data for the C21-epi-ent diastereomer of 2 (175) match the data reported by Kobayashi for Citrinadin B (2) itself.

In an effort to gain access to $\mathbf{1}$, a (3+2) cycloaddition strategy utilizing a C14-functionalized nitrone was explored. Following the synthesis of three nitrone precursors, a one-pot nitrone formation / $(3+2)$ cycloaddition reaction was developed and one of the cycloadducts was successfully advanced to a key ring-fusion epoxide. Elaboration of this advanced intermediate is expected to eventually provide a total synthesis of Citrinadin A (1).

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor, John Wood, for giving me the opportunity to join the Wood group; it has been an honor to work for you. In particular, I will remain forever grateful for your skill and insight in preparing presentations and for your job-winning letters of recommendation.

To my professors at Fort Lewis College, and especially Cindy Browder, thank you for inspiring me to major in Chemistry and do undergraduate research. I would not have made it this far without you. I hope to one day inspire students in the same way that you have inspired me.

To my many industry friends and colleagues, thank you for contributing to my growth as a researcher prior to graduate school. My graduate experience has been better because of you. To Lalitha Sista, thank you for demonstrating to me that work-life balance is possible. And to Scott Moe, thank you for encouraging me to keep my eye on the goal.

I am tremendously indebted to many past and present Wood group members: Barry, thanks for giving me your stir-plate and making a newbie feel welcome. Elnaz, thank you for laying the groundwork for the work presented in this document. Josh and Matt, thank you for your leadership in helping the CSU chapter of W6 get off the ground. Brett, you are without a doubt the most optimistic person I've ever met; Sarah, you remain the ultimate Group-Mom; and Dave, thank you for always giving me a reason to smile. Ping, sorry I never took you up on the offer to learn how to make Chinese Buns. Jenn, I will always think of you like a sister; thank you for always believing in me and helping me come out of my shell. Travis, I admire your relaxed confidence; Sam, thanks for continuing the D301 baking tradition; and Jenny, I give you the credit for our best group photo yet. Aaron, thanks for keeping me supplied with stress-relieving confections. Monica, I couldn't be happier to leave my project in your capable hands.

To the many postdocs that I have had the pleasure of working with during my tenure in the Wood lab-Rishi, Ke, Graham, Chris, Matt, John, Naoto, Taka, and Jonas-thank you for your support, guidance, and patience in answering my questions. I would not have been able to do this without you. Ke, your creativity and steadfast dedication are inspiring. I hope that I have done your work justice. To John, thank you for your willingness to discuss the complexities of the project with me and read my rough drafts. Your attention to detail is truly commendable.

To my future colleagues at the University of Tennessee at Martin, thank you for giving me something to hope for at the end of this long and difficult journey.

Tanya, you are a most faithful friend. I will always cherish our coffee walks and sincerely hope to come visit you in Germany. Aaron, Jamie, Joey, Becca, Dan, and Deidre: thanks for the rejuvenating dinner parties and copious amounts of laughter. Maybe one day we'll actually get Ryan to film that barefoot Elk Hunting documentary. To my church family at Lifepointe, thank you for your constant encouragement and understanding. You have played a vital role in keeping me grounded.

To all of my incredible family-both immediate and extended-thank you for your love that has never been contingent upon my ability to do chemistry. Thank you Mom, for supplying me with quick meals and a listening ear. Thank you Dad, for the open invitation to visit your office and your willingness to whisk me to the airport at a moments notice. To Jeff and Betsy, you are gifted in the art of encouragement and celebration! To Katie and Doug, thanks for waiting anxiously with me in the job application and interview process. Derrick, Tina, Stephen, and Jackie, thank you for being the kind, compassionate, and understanding siblings that you are. To my niece Samara, your smile has brought a new dimension of joy to my life. I'm sorry for missing your 1-year-old birthday party and promise to make it up to you.

Last but not least, to my husband Ryan, for being the most extraordinary life-partner that I could ever ask for. Your support has meant more to me than I can possibly express in words. If we can make it through this, I am convinced that we can make it through anything.

BIOGRAPHY

The oldest of three children, Genessa was born in March of 1981 to Colorado natives George and Dianne Wood in Longmont, Colorado. While she was in elementary school, her family moved to Berthoud, Colorado where she later graduated from High School as one of five Valedictorians in her class.

Upon enrolling at Fort Lewis College (Durango, Colorado) in the fall of 1999, Genessa declared English as her major. However, she was later encouraged by her professors to consider changing her major to Chemistry. She followed their advice, and later discovered a strong inclination toward organic chemistry. Genessa did undergraduate research with Assistant Professor Cindy C. Browder in 2002 as well as an industrial internship at Boulder Scientific Company (Mead, CO) in 2003. She graduated Summa Cum Laude in 2004 with a BS in Chemistry and a minor in Writing.

Genessa married her college sweetheart, Ryan Smith, shortly after graduation, and the couple moved to Boston, Massachusetts where Ryan began working for IBM. During that time Genessa explored her interest in the pharmaceutical industry, first working for Momenta Pharmaceuticals, and later for Cetek Pharmaceuticals, functioning as an integral part of a small medicinal chemistry group. When Cetek went out of business in 2006, she was hired by Absolute Science, where she remained until returning to school in Colorado in 2007.

Genessa was a Roche Excellence in Chemistry awardee in May 2011 and was also invited to participate in the ACS Organic Division Graduate Research Symposium (Santa Barbara, CA) in July of the same year. In March 2012, she received her PhD for her contributions to the total synthesis of Citrinadins A and B. She has accepted a position as an Assistant Professor at the University of Tennessee at Martin and is expected to start teaching in August 2012.

TABLE OF CONTENTS

ABSTRACT ii
ACKNOWLEDGEMENTS iv
BIOGRAPHY vi
TABLE OF CONTENTS vii
LIST OF FIGURES x
LIST OF SCHEMES xix
LIST OF ABBREVIATIONS xxiii
CHAPTER 11
Introduction To the Citrinadins and Related Natural Products 1
1.1 Isolation, Structural Characterization, and Biological Activity 1
1.1.1 The Citrinadins and PF1270s 1
1.1.2 Citrinadin Biological Activity4
1.1.3 Other Structurally Relevant Natural Products 5
1.1.4 Biosynthesis of the Citrinadins 6
1.2 Previous Synthetic Efforts. 6
1.2.1 Martin Group Spiro-oxindole Synthesis 6
1.2.2 Sorensen Group Synthesis of the Citrinadin Core. 7
1.2.3 Previous Wood Group Efforts. 9
1.3 Conclusions 12
1.4 Notes and References 13
CHAPTER 2 15
Accessing the C3-epi-Citrinadin B Core 15
2.1 Developing a Retrosynthetic Strategy 15
2.2 Spiro-oxindole Synthesis 16
2.2.1 Cascade Heck Cyclization Strategy 16
2.2.2 Stepwise Cyclization Strategy 18
2.3 The (3+2) Cycloaddition Reaction 22
2.3.1 Using Model Nitrone 80 22
2.3.2 Using Methyl-Substituted Nitrone 57 24
2.4 Synthesis of the C3-epi-Citrinadin Core 27
2.4.1 The Challenge of Wittig Olefination 27
2.4.2 Unsuccessful Aziridination Strategy 28
2.4.3 Successful Epoxide Opening Strategy 29
2.5 Conclusions 31
2.6 Experimental 32
2.6.1 Materials and Methods 32
2.6.2 Preparative Procedures 33
2.7 Notes and References 71
CHAPTER 3 74
Accessing ent-Citrinadin B 74
3.1 Synthesis of the ent-Citrinadin Core 74
3.1.1 Revising the C3-epi-Citrinadin B Approach 74
3.1.2 Synthesis of the ent-Citrinadin Tetrasubstituted Epoxide 76
3.1.3 Advancing to the Benzyl Protected ent-Citrinadin Core. 78
3.1.4 Overcoming A Problematic Debenzylation 80
3.2 Attempts at Late-Stage Side Chain Homologation 82
3.2.1 An Attempted Fries Rearrangement. 82
3.2.2 Investigating A Possible Lithium Halogen Exchange 83
3.2.3 Toward a Metal Catalyzed Cross Coupling 84
3.3 Synthesis of a C7 Pre-Functionalized Enone 84
3.5.1 Synthesis of a Racemic C7-Bromo-oxindole 85
3.5.2 Attempted Asymmetric Synthesis of a C7-Bromo-oxindole 86
3.5.2 Synthesis of the Bromoenone 88
3.4 Synthesis of ent-Citrinadin B 89
3.4.1 The (3+2) Cycloaddition Reaction 89
3.4.2 Advancing to the Tetrasubstituted Epoxide 90
3.4.3 Attaching the Side Chain 91
3.4.4 Synthesis of ent-Citrinadin B and the C21 Epimer 95
3.4.5 A Possible Structural Revision 96
3.5 Conclusions 98
3.6 Experimental 99
3.6.1 Materials and Methods 99
3.6.2 Preparative Procedures 100
3.7 Notes and References 147
CHAPTER 4 149
Progress Toward Citrinadin A 149
4.1 Developing a Synthetic Approach Toward Citrinadin A 149
4.1.1 Retrosynthetic Strategies Toward a C14-functionalized Nitrone 149
4.1.2 Synthesis of a C14-O-TBDPS Nitrone Precursor 152
4.1.4 Synthesis of Alternate Nitrone Precursors 154
4.2 Citrinadin A Cycloadditions 156
4.2.1 Employing the C14-Ketal Nitrone Precursor 156
4.2.2 Employing the C14-O-TBDPS Nitrone Precursors 159
4.2.3 Synthesis of an Enantioenriched Anti-Nitrone 161
4.3 Beyond the Cycloaddition 162
4.4 Conclusions 164
4.5 Experimental 165
4.5.1 Materials and Methods 165
4.5.2 Preparative Procedures 166
4.6 Notes and References 188
APPENDIX I: SPECTRA RELEVANT TO CHAPTER 2 189
APPENDIX II: SPECTRA RELEVANT TO CHAPTER 3 245
APPENDIX III: SPECTRA RELEVANT TO CHAPTER 4 340
NOTEBOOK CROSS-REFERENCE 393
INDEX OF EXPERIMENTAL PROCEDURES 398

LIST OF FIGURES

CHAPTER 1

Figure 1.1 Published Structures of Citrinadin A and B 1
Figure 1.2 Published Structures of PF1270A-C 2
Figure 1.3 VCD Spectra of Kobayashi's Model Epoxides 2
Figure 1.4 ROESY Assignment of the C14 Stereocenter of Citrinadin A 3
Figure 1.5 CD Spectra for the Assignment of the C3 Stereocenter 3
Figure 1.6 CD Spectral Data for the Rhynchophylline Alkaloids 4
Figure 1.7 Oxindole Alkaloids Similar to the Citrinadins 5
Figure 1.8 Natural Products with Citrinadin-like Side Chains 5
Figure 1.9 Proposed Biosynthetic Origin of the Citrinadins 6
CHAPTER 3
Figure 3.1 CD Spectra Comparison for 2, ent-2, and C21-epi-ent-Citrinadin B (175) 152
Figure 3.2 Comparison of C21-epi-ent-Citrinadin B (175) and PF1270A (3) 153
Figure 3.3 Nankakurine Partial TFA Salt 154
APPENDICES
APPENDIX I: SPECTRA RELEVANT TO CHAPTER 2
Figure A.1.1a ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 6}$ 190
Figure A.1.1b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{5 6}$ 191
Figure A.1.1c IR spectrum (thin film $/ \mathrm{NaCl}$) of compound 56 191
Figure A.1.2a ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 8}$ 192
Figure A.1.2b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{5 8}$ 193
Figure A.1.2c IR spectrum (thin film $/ \mathrm{NaCl}$) of compound $\mathbf{5 8}$ 193
Figure A.1.3a ${ }^{1} \mathrm{H}$ NMR spectrum ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 59 194
Figure A.1.4a ${ }^{1} \mathrm{H}$ NMR spectrum ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{6 1}$ 195
Figure A.1.4b ${ }^{13} \mathrm{C}$ NMR spectrum ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 61 196
Figure A.1.4c IR spectrum (thin film/ NaCl) of compound $\mathbf{6 1}$ 196
Figure A.1.5a ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 62 197
Figure A.1.5b ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 62 198
Figure A.1.5c IR spectrum (thin film $/ \mathrm{NaCl}$) of compound $\mathbf{6 2}$ 198
Figure A.1.6a ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{6 3}$ 199
Figure A.1.6b ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{6 3}$ 200
Figure A.1.6c IR spectrum (thin film $/ \mathrm{NaCl}$) of compound $\mathbf{6 3}$ 200
Figure A.1.7a ${ }^{1} \mathrm{H}$ NMR spectrum ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 67 201
Figure A.1.7b ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{6 7}$ 202
Figure A.1.7c IR spectrum (thin film/ NaCl) of compound 67 202
Figure A.1.8a ${ }^{1} \mathrm{H}$ NMR spectrum ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{6 8 a}$ 203
Figure A.1.8b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{6 8 a}$ 204
Figure A.1.8c IR spectrum (thin film/ NaCl) of compound $\mathbf{6 8 a}$. 204
Figure A.1.9a ${ }^{1} \mathrm{H}$ NMR spectrum ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{6 8 b}$ 205
Figure A.1.9b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{6 8 b}$ 206
Figure A.1.9c IR spectrum (thin film/NaCl) of compound 68b 206
Figure A.1.10a ${ }^{1} \mathrm{H}$ NMR spectrum $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{6 9 a}$. 207
Figure A.1.10b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{6 9 a}$ 208
Figure A.1.10c IR spectrum (thin film $/ \mathrm{NaCl}$) of compound $\mathbf{6 9 a}$ 208
Figure A.1.11a ${ }^{1} \mathrm{H}$ NMR spectrum $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{6 9 b}$. 209
Figure A.1.11b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{6 9 b}$ 210
Figure A.1.11c IR spectrum (thin film/ NaCl) of compound $\mathbf{6 9 b}$ 210
Figure A.1.12a ${ }^{1} \mathrm{H}$ NMR spectrum ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 70 211
Figure A.1.12b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 70 212
Figure A.1.12c IR spectrum (thin film/ NaCl) of compound 70 212
Figure A.1.13a ${ }^{1} \mathrm{H}$ NMR spectrum ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 72 213
Figure A.1.13b ${ }^{13} \mathrm{C}$ NMR spectrum ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 72 214
Figure A.1.13c IR spectrum (thin film/ NaCl) of compound 72 214
Figure A.1.14a ${ }^{1} \mathrm{H}$ NMR spectrum ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 73 215
Figure A.1.14b ${ }^{13} \mathrm{C}$ NMR spectrum ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 73 216
Figure A.1.14c IR spectrum (thin film $/ \mathrm{NaCl}$) of compound 73 216
Figure A.1.15a ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 74 217
Figure A.1.15b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 74 218
Figure A.1.15c IR spectrum (thin film/ NaCl) of compound 74 218
Figure A.1.16a ${ }^{1} \mathrm{H}$ NMR spectrum ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 78a 219
Figure A.1.16b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 78a 220
Figure A.1.16c IR spectrum (thin film/ NaCl) of compound 78a. 220
Figure A.1.17a ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 79 221
Figure A.1.17b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 79 222
Figure A.1.17c IR spectrum (thin film/ NaCl) of compound 79 222
Figure A.1.18a ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{8 2 a}$. 223
Figure A.1.18b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{8 2 a}$ 224
Figure A.1.18c IR spectrum (thin film/ NaCl) of compound 82a 224
Figure A.1.19a ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{8 2 b}$ 225
Figure A.1.19b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{8 2 b}$ 226
Figure A.1.19c IR spectrum (thin film/ NaCl) of compound $\mathbf{8 2 b}$ 226
Figure A.1.20a ${ }^{1} \mathrm{H}$ NMR spectrum ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{8 3}$ 227
Figure A.1.20b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{8 3}$ 228
Figure A.1.20c IR spectrum (thin film/ NaCl) of compound $\mathbf{8 3}$ 228
Figure A.1.21a ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{8 7}$ 229
Figure A.1.21b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{8 7}$ 230
Figure A.1.21c IR spectrum (thin film/ NaCl) of compound $\mathbf{8 7}$ 230
Figure A.1.22a ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 90 231
Figure A.1.23a ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{9 0 b}$. 232
Figure A.1.23b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{9 0 b}$ 233
Figure A.1.23c IR spectrum (thin film/ NaCl) of compound $\mathbf{9 0 b}$ 233
Figure A.1.24a ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 91 234
Figure A.1.24b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) of compound 91 235
Figure A.1.24c IR spectrum (thin film/ NaCl) of compound 91 235
Figure A.1.25a ${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 55^{\circ} \mathrm{C}$) of compound 94 236
Figure A.1.25b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 94 237
Figure A.1.26a ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{9 5}$ 238
Figure A.1.26b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 95 239
Figure A.1.26c IR spectrum (thin film/ NaCl) of compound $\mathbf{9 5}$ 239
Figure A.1.27a ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 97 240
Figure A.1.28a ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 98 241
Figure A.1.28b ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 98 242
Figure A.1.28c IR spectrum (thin film $/ \mathrm{NaCl}$) of compound $\mathbf{9 8}$ 242
Figure A.1.29a ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 99 243
Figure A.1.29b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 99 244
Figure A.1.29c IR spectrum (thin film/ NaCl) of compound 99 244

APPENDIX II: SPECTRA RELEVANT TO CHAPTER 3

Figure A.2.1a ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 37 246
Figure A.2.1b. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 37 247
Figure A.2.1c. IR spectrum (thin film $/ \mathrm{NaCl}$) of compound $\mathbf{3 7}$ 247
Figure A.2.2a ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 48. 248
Figure A.2.2b. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 48 249
Figure A.2.2c. IR spectrum (thin film $/ \mathrm{NaCl}$) of compound 48 249
Figure A.2.3a ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) of compound $\mathbf{1 0 0}$ (TFA Salt) 250
Figure A.2.3b. ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 0 0}$ (Free Base) 251
Figure A.2.3c. IR spectrum (thin film $/ \mathrm{NaCl}$) of compound $\mathbf{1 0 0}$ (TFA salt) 251
Figure A.2.3d ${ }^{1} \mathrm{H}$ NMR overlay of compound $\mathbf{1 0 0}$ (Free Base \& TFA Salt) 252
Figure A.2.4a ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 101 253
Figure A.2.4b. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 101 254
Figure A.2.4c. IR spectrum (thin film/ NaCl) of compound 101 254
Figure A.2.5a ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 0 2}$ 255
Figure A.2.5b. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 102 256
Figure A.2.5c. IR spectrum (thin film/ NaCl) of compound 102 256
Figure A.2.6a ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 0 3}$ 257
Figure A.2.6b. ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 103 258
Figure A.2.6c. IR spectrum (thin film/ NaCl) of compound $\mathbf{1 0 3}$ 258
Figure A.2.7a ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 107 259
Figure A.2.7b. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 107 260
Figure A.2.7c. IR spectrum (thin film/ NaCl) of compound 107 260
Figure A.2.8a ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 108 261
Figure A.2.8b. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 108 262
Figure A.2.8c. IR spectrum (thin film $/ \mathrm{NaCl}$) of compound 108 262
Figure A.2.9a ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 1 0}$ 263
Figure A.2.9b. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 110 264
Figure A.2.9c. IR spectrum (thin film/ NaCl) of compound $\mathbf{1 1 0}$ 264
Figure A.2.10a ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 113 265
Figure A.2.10b. ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 1 3}$ 266
Figure A.2.10c. IR spectrum (thin film/ NaCl) of compound 113 266
Figure A.2.11a ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 114 267
Figure A.2.11b. ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 114 268
Figure A.2.11c. IR spectrum (thin film $/ \mathrm{NaCl}$) of compound 114 268
Figure A.2.12a ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 115 269
Figure A.2.12b. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 115 270
Figure A.2.12c. IR spectrum (thin film $/ \mathrm{NaCl}$) of compound 115 270
Figure A.2.13a ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 121 271
Figure A.2.13b. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 121 272
Figure A.2.13c. IR spectrum (thin film $/ \mathrm{NaCl}$) of compound 121 272
Figure A.2.14a ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 2 2}$ 273
Figure A.2.14b. ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 122 274
Figure A.2.14c. IR spectrum (thin film $/ \mathrm{NaCl}$) of compound $\mathbf{1 2 2}$ 274
Figure A.2.15a ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 2 5}$ 275
Figure A.2.15b. ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 2 5}$ 276
Figure A.2.15c. IR spectrum (thin film/ NaCl) of compound $\mathbf{1 2 5}$ 276
Figure A.2.16a ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 3 0}$ 277
Figure A.2.16b. ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 3 0}$ 278
Figure A.2.16c. IR spectrum (thin film $/ \mathrm{NaCl}$) of compound $\mathbf{1 3 0}$ 278
Figure A.2.17a ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 3 1 b}$ 279
Figure A.2.17b. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{1 3 1 b}$ 280
Figure A.2.17c. IR spectrum (thin film/ NaCl) of compound $\mathbf{1 3 1 b}$ 280
Figure A.2.18a ${ }^{1} \mathrm{H}$ NMR spectrum ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 132 281
Figure A.2.18b. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 132 282
Figure A.2.18c. IR spectrum (thin film/ NaCl) of compound 132 282
Figure A.2.19a ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 133 283
Figure A.2.19b. ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 3 3}$ 284
Figure A.2.19c. IR spectrum (thin film $/ \mathrm{NaCl}$) of compound $\mathbf{1 3 3}$ 284
Figure A.2.20a ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 137 285
Figure A.2.20b. ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 137 286
Figure A.2.20c. IR spectrum (thin film $/ \mathrm{NaCl}$) of compound 137 286
Figure A.2.21a ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 138 287
Figure A.2.21b. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 138 288
Figure A.2.21c. IR spectrum (thin film $/ \mathrm{NaCl}$) of compound $\mathbf{1 3 8}$ 288
Figure A.2.22a ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 139 289
Figure A.2.22b. ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 139 290
Figure A.2.22c. IR spectrum (thin film/ NaCl) of compound 139 290
Figure A.2.23a ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 140 291
Figure A.2.23b. ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 140 292
Figure A.2.23c. IR spectrum (thin film $/ \mathrm{NaCl}$) of compound 140 292
Figure A.2.24a ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 141 293
Figure A.2.24b. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 141 294
Figure A.2.24c. IR spectrum (thin film/ NaCl) of compound 141 294
Figure A.2.25a ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 142 295
Figure A.2.25b. ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 142 296
Figure A.2.25c. IR spectrum (thin film $/ \mathrm{NaCl}$) of compound 142 296
Figure A.2.26a ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 4 3 a}$ 297
Figure A.2.26b. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{1 4 3 a}$ 298
Figure A.2.26c. IR spectrum (thin film/ NaCl) of compound 143 a 298
Figure A.2.27a ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 4 3 b}$. 299
Figure A.2.27b. ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 4 3 b}$ 300
Figure A.2.27c. IR spectrum (thin film/ NaCl) of compound $\mathbf{1 4 3 b}$ 300
Figure A.2.28a ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 4 4 a}$ 301
Figure A.2.28b. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{1 4 4 a}$ 302
Figure A.2.28c. IR spectrum (thin film/ NaCl) of compound $\mathbf{1 4 4 a}$ 302
Figure A.2.29a ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 4 4 b}$ 303
Figure A.2.29b. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{1 4 4 b}$ 304
Figure A.2.29c. IR spectrum (thin film/ NaCl) of compound $\mathbf{1 4 4 b}$ 304
Figure A.2.30a ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 4 6 a}$ 305
Figure A.2.30b. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{1 4 6 a}$ 306
Figure A.2.30c. IR spectrum (thin film/ NaCl) of compound $146 \mathbf{a}$ 306
Figure A.2.31a ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 4 6} \mathbf{b}$ 307
Figure A.2.31b. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{1 4 6 b}$ 308
Figure A.2.31c. IR spectrum (thin film/ NaCl) of compound $\mathbf{1 4 6 b}$ 308
Figure A.2.32a ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 147 309
Figure A.2.32b. ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 147 310
Figure A.2.32c. IR spectrum (thin film $/ \mathrm{NaCl}$) of compound 147 310
Figure A.2.33a ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 148 311
Figure A.2.33b. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 148 312
Figure A.2.33c. IR spectrum (thin film/ NaCl) of compound 148 312
Figure A.2.34a ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 149 313
Figure A.2.34b. ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 149 314
Figure A.2.34c. IR spectrum (thin film $/ \mathrm{NaCl}$) of compound 149 314
Figure A.2.35a ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 5 0}$ 315
Figure A.2.35b. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{1 5 0}$ 316
Figure A.2.35c. IR spectrum (thin film $/ \mathrm{NaCl}$) of compound $\mathbf{1 5 0}$ 316
Figure A.2.36a ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 151 317
Figure A.2.36b. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 151 318
Figure A.2.36c. IR spectrum (thin film/ NaCl) of compound 151 318
Figure A.2.37a ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 152 319
Figure A.2.37b. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 152 320
Figure A.2.37c. IR spectrum (thin film/ NaCl) of compound 152 320
Figure A.2.38a ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 158 321
Figure A.2.38b. ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 158 322
Figure A.2.38c. IR spectrum (thin film $/ \mathrm{NaCl}$) of compound 158 322
Figure A.2.39a ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 159 323
Figure A.2.39b. ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 159 324
Figure A.2.39c. IR spectrum (thin film $/ \mathrm{NaCl}$) of compound $\mathbf{1 5 9}$ 324
Figure A.2.40a ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{1 6 0}$ 325
Figure A.2.40b. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 160 326
Figure A.2.40c. IR spectrum (thin film/ NaCl) of compound $\mathbf{1 6 0}$ 326
Figure A.2.41a ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 163 327
Figure A.2.41b. ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 163 328
Figure A.2.41c. IR spectrum (thin film $/ \mathrm{NaCl}$) of compound 163 328
Figure A.2.42a ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 171 329
Figure A.2.42b. ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 171 330
Figure A.2.42c. IR spectrum (thin film $/ \mathrm{NaCl}$) of compound 171 330
Figure A.2.43a ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 173 331
Figure A.2.43b. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 173 332
Figure A.2.43c. IR spectrum (thin film $/ \mathrm{NaCl}$) of compound 173 332
Figure A.2.44a ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 174 333
Figure A.2.44b. ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 174 334
Figure A.2.45a ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 7 5}$ (Free Base) 335
Figure A.2.45b. ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 175 (Free Base) 336
Figure A.2.45c ${ }^{1} \mathrm{H}$ NMR overlay of compound 175 (Free Base \& TFA Salt). 337
Figure A.2.46a ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound ent-2 338
Figure A.2.47 CD Spectra for compounds 175 and ent-2 in MeOH 339
APPENDIX III: SPECTRA RELEVANT TO CHAPTER 4
Figure A.3.1a ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 8 2}$ 341
Figure A.3.1b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 182 342
Figure A.3.1c IR spectrum (thin film $/ \mathrm{NaCl}$) of compound $\mathbf{1 8 2}$ 342
Figure A.3.2a ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 8 3}$ 343
Figure A.3.2b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 183 344
Figure A.3.2c IR spectrum (thin film/ NaCl) of compound $\mathbf{1 8 3}$ 344
Figure A.3.3a ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{1 8 4}$ 345
Figure A.3.3b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{1 8 4}$ 346
Figure A.3.3c IR spectrum (thin film/ NaCl) of compound $\mathbf{1 8 4}$ 346
Figure A.3.4a ${ }^{1} \mathrm{H}$ NMR spectrum ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 191 347
Figure A.3.4b ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 191 348
Figure A.3.4c IR spectrum (thin film/ NaCl) of compound 191 348
Figure A.3.5a ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 194 349
Figure A.3.5b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 194 350
Figure A.3.5c IR spectrum (thin film/ NaCl) of compound 194 350
Figure A.3.6a ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 195 351
Figure A.3.6b ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 195 352
Figure A.3.6c IR spectrum (thin film/ NaCl) of compound 195 352
Figure A.3.7a ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 197 353
Figure A.3.7b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 197 354
Figure A.3.7c IR spectrum (thin film/ NaCl) of compound 197 354
Figure A.3.8a ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 198 355
Figure A.3.8b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 198 356
Figure A.3.8c IR spectrum (thin film $/ \mathrm{NaCl}$) of compound 198 356
Figure A.3.9a ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 200 357
Figure A.3.9b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 200 358
Figure A.3.9c IR spectrum (thin film/ NaCl) of compound 200 358
Figure A.3.10a ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 201 359
Figure A.3.10b ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 201 360
Figure A.3.10c IR spectrum (thin film/ NaCl) of compound 201 360
Figure A.3.11a ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 202 361
Figure A.3.11b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 202 362
Figure A.3.11c IR spectrum (thin film/ NaCl) of compound 202 362
Figure A.3.12a ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 203 363
Figure A.3.12b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 203 364
Figure A.3.12c IR spectrum (thin film $/ \mathrm{NaCl}$) of compound 203 364
Figure A.3.13a ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 204 365
Figure A.3.13b ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 204 366
Figure A.3.13c IR spectrum (thin film/ NaCl) of compound 204 366
Figure A.3.14a ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 205 367
Figure A.3.14b ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 205 368
Figure A.3.14c IR spectrum (thin film/ NaCl) of compound 205 368
Figure A.3.15a ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 206. 369
Figure A.3.15b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 206 370
Figure A.3.15c IR spectrum (thin film/ NaCl) of compound 206 370
Figure A.3.16a ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 211 371
Figure A.3.16b ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 211 372
Figure A.3.16c IR spectrum (thin film $/ \mathrm{NaCl}$) of compound 211 372
Figure A.3.17a ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 212 373
Figure A.3.17b ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 212 374
Figure A.3.17c IR spectrum (thin film $/ \mathrm{NaCl}$) of compound 212 374
Figure A.3.18a ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 213 375
Figure A.3.18b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 213 376
Figure A.3.18c IR spectrum (thin film/ NaCl) of compound 213. 376
Figure A.3.19a ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 214 377
Figure A.3.19b ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 214 378
Figure A.3.19c IR spectrum (thin film/ NaCl) of compound 214. 378
Figure A.3.20a ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 215. 379
Figure A.3.20b ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 215 380
Figure A.3.20c IR spectrum (thin film $/ \mathrm{NaCl}$) of compound 215 380
Figure A.3.21a ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 217 381
Figure A.3.21b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 217 382
Figure A.3.21c IR spectrum (thin film/ NaCl) of compound 217 382
Figure A.3.22a ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 218 383
Figure A.3.22b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 218 384
Figure A.3.22c IR spectrum (thin film/ NaCl) of compound 218. 384
Figure A.3.23a ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 219 385
Figure A.3.23b ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 219 386
Figure A.3.23c IR spectrum (thin film $/ \mathrm{NaCl}$) of compound 219 386
Figure A.3.24a ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2 2 0}$. 387
Figure A.3.24b ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 220 388
Figure A.3.25a ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 221 389
Figure A.3.25b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 221 390
Figure A.3.25c IR spectrum (thin film/ NaCl) of compound 221. 390
Figure A.3.26a ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 222 391
Figure A.3.26b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 222 392
Figure A.3.26c IR spectrum (thin film/ NaCl) of compound $\mathbf{2 2 2}$. 392

LIST OF SCHEMES

CHAPTER 1

Scheme 1.1. Martin Group Retrosynthetic Strategy 6
Scheme 1.2. Martin Group Oxidative Rearrangement. 7
Scheme 1.3. Sorensen Group Retrosynthetic Strategy 8
Scheme 1.4. Sorensen Group Oxidative Rearrangement Precursor 8
Scheme 1.5. Sorensen Group Oxidative Rearrangement 9
Scheme 1.6. Previous Wood Group Retrosynthetic Strategies 9
Scheme 1.7. Rhodium-Mediated C-H Insertion 10
Scheme 1.8. Palladium-Catalyzed α-Amide Arylation 10
Scheme 1.9. Radical Cascade Substrate Synthesis 11
Scheme 1.10. Radical Cascade Cyclization 11
Scheme 1.11. Reductive Heck Cascade Cyclization 11
CHAPTER 2
Scheme 2.1. Citrinadin B Retrosynthetic Strategy 15
Scheme 2.2. Synthesis of Heck Cascade Cyclization Substrate 59 16
Scheme 2.3. Heck Cascade Cyclization Reaction 17
Scheme 2.4. Stepwise Retrosynthetic Strategy to Access 69 18
Scheme 2.5. Heck Cyclization of Iodoanilide 62 18
Scheme 2.6. Synthesis of Asymmetric Heck Substrate 73 19
Scheme 2.7. Asymmetric Heck Cyclization of Triflate 73 19
Scheme 2.8. Synthesis of Enyne Cyclization Substrates 68a and 68b 20
Scheme 2.9. Enyne Cyclization Mechanism 20
Scheme 2.10. Enyne Cyclization of 68a 21
Scheme 2.11. Enyne Cyclization of $\mathbf{6 8 b}$ 21
Scheme 2.12. (3+2) Dipolar Cycloaddition Reaction of $\mathbf{6 9 b}$ and $\mathbf{8 0}$ 22
Scheme 2.13. (3+2) Dipolar Cycloaddition Reaction of 82b and $\mathbf{8 0}$. 22
Scheme 2.14. (3+2) Dipolar Cycloaddition Reaction of 82a and 80 23
Scheme 2.15. Synthesis of Racemic Nitrone 57 24
Scheme 2.16. (3+2) Dipolar Cycloaddition Reaction of 82a/b and (\pm)-57 24
Scheme 2.17. Synthesis of Enone 58 24
Scheme 2.18. (3+2) Dipolar Cycloaddition Reaction of (\pm)-58 and (\pm)-57 25
Scheme 2.19. X-ray Crystal Structure of Isoxazolidine (\pm)-87 25
Scheme 2.20. Synthesis of Nonracemic Nitrone 57 26
Scheme 2.21. (3+2) Dipolar Cycloaddition Reaction of Nonracemic 58 and (-)-57 26
Scheme 2.22. Retrosynthetic Strategy to Access Olefin 90 27
Scheme 2.23. Wittig Olefination of (\pm)-87 28
Scheme 2.24. Failed Aziridination of (\pm)-91 28
Scheme 2.25. Reductive N-O Cleavage and Failed Aziridination of (\pm)-91 29
Scheme 2.26. Revised Retrosynthetic Strategy to Access Aziridine 93. 29
Scheme 2.27. Unexpected Synthesis of Diol (\pm)-95 30
Scheme 2.28. Revised Retrosynthetic Strategy to Access Amino-Alcohol 97 30
Scheme 2.29. Synthesis of Ring-Fusion Epoxide (\pm)-99 31
Scheme 2.30. Synthesis of C3-epi-Citrinadin B (\pm)-96 31
CHAPTER 3
Scheme 3.1. Chapter 2 Summary Scheme 74
Scheme 3.2. ent-Citrinadin B Retrosynthetic Strategy 75
Scheme 3.3. Corey-Chaykovsky Epoxidation Strategy 76
Scheme 3.4. Corey-Chaykovsky Epoxidation of (\pm)-56 76
Scheme 3.5. Synthesis of Isoxazolidinium Salt (\pm)-107 77
Scheme 3.6. Synthesis of Ring-Fusion Epoxide (+)-101 77
Scheme 3.7. Attempted Methylamine Opening of Epoxide (\pm)-101 78
Scheme 3.8. Benzylamine Opening of Epoxide (\pm)-101 79
Scheme 3.9. Sodium Azide Opening of Epoxide (\pm)-101 79
Scheme 3.10. \quad Synthesis of the N-Benzyl Citrinadin B Core (\pm)-108 80
Scheme 3.11. Failed N-Benzyl Deprotection of (\pm)-108 80
Scheme 3.12. Williams t-BuLi/ O_{2} Conditions for Benzyl Group Removal 81
Scheme 3.13. Benzyl Deprotection of Epoxide (+)-101 81
Scheme 3.14. Unexpected Synthesis of Imidate 124 81
Scheme 3.15. Synthesis of the ent-Citrinadin B Core (+)-100 82
Scheme 3.16. Attempted Fries Rearrangement. 82
Scheme 3.17. Attempted Ortho-Thallation 83
Scheme 3.18. Attempted Double Aromatic Substitution and Deiodination 84
Scheme 3.19. Attempted Iridium-Catalyzed Borylation 84
Scheme 3.20. Retrosynthetic Strategy for the Synthesis of Bromoenone 37 84
Scheme 3.21. Synthesis of Dibromoanilide 132 85
Scheme 3.22. Synthesis of Oxindole (\pm)- $\mathbf{1 3 0}$ 85
Scheme 3.23. Retrosynthetic Strategy for Nonracemic 130 86
Scheme 3.24. Synthesis of 2-Bromo-6-Methoxyaniline 134 86
Scheme 3.25. Synthesis of Differentiated Anilide 131b 87
Scheme 3.26. Heck Cyclization of Anilide 131b 87
Scheme 3.27. Synthesis of Enyne Cyclization Precursors 144a/b 88
Scheme 3.28. Synthesis of Bromoenone (\pm)-37 89
Scheme 3.29. (3+2) Dipolar Cycloaddition Reaction of (\pm)-37 and (-)-57 90
Scheme 3.30. Synthesis of Tetrasubstituted Epoxide (+)-152 90
Scheme 3.31. Gold-Mediated Oxidation of Alkynes 91
Scheme 3.32. Retrosynthetic Strategy to Access ent-2 via Alkyne 160 92
Scheme 3.33. Synthesis of Alkyne (+)-159 92
Scheme 3.34. Oxidation of Alkyne (+)-159 93
Scheme 3.35. Benzyl Deprotection of Alkyne (+)-160 93
Scheme 3.36. Asymmetric Epoxidation Mechanism 94
Scheme 3.37. Asymmetric Epoxidation of Enone (+)-158. 95
Scheme 3.38. Synthesis of ent-2 and C21-epi-ent-Citrinadin B (+)-175 96
CHAPTER 4
Scheme 4.1. Retrosynthetic Strategy Toward Citrinadin A 149
Scheme 4.2. Retrosynthetic Analysis of Nitrone (\pm)-57 Synthesis 150
Scheme 4.3. Retrosynthetic Analysis of Nitrone (-)-57 Synthesis 151
Scheme 4.4. Desilylative Cyclization Strategy Toward Nitrone 178 151
Scheme 4.5. Retrosynthetic Plan to Access Lactol 183 151
Scheme 4.6. Synthesis of Diols (\pm)-191a/b 152
Scheme 4.7. Attempted Benzyl Protection of $(\pm)-191 \mathbf{a} / \mathbf{b}$ 152
Scheme 4.8. O-TBDPS Protection of $(\pm)-191 \mathbf{a} / \mathbf{b}$ 153
Scheme 4.9. Synthesis of Lactol (\pm)-183 153
Scheme 4.10. \quad Synthesis of Syn-O-TBDPS Nitrone Precursor (\pm)-182 154
Scheme 4.11. Retrosynthetic Strategy for Alternate Nitrones 199 and 201 154
Scheme 4.12. Synthesis of Anti-O-TBDPS Nitrone Precursor (\pm)-200 155
Scheme 4.13. Synthesis of Ketal Nitrone Precursor (\pm)-202 155
Scheme 4.14. Desilylative Cyclization of (\pm)-202. 156
Scheme 4.15. Optimization of One-Pot Nitrone Formation / (3+2) Cycloaddition. 157
Scheme 4.16. Attempted Isomerization of (Z)-211 158
Scheme 4.17. Nonracemic (3+2) Cycloaddition with Ketal Nitrone. 158
Scheme 4.18. $(3+2)$ Cycloaddition With O-TBDPS Nitrones 159
Scheme 4.19. Conformational Analysis of Syn-O-TBDPS Nitrone 178 160
Scheme 4.20. Conformational Analysis of Anti-O-TBDPS Nitrone 199 160
Scheme 4.21. Retrosynthetic Strategy to Access Enantioenriched Diol 219 161
Scheme 4.22. \quad Synthesis of Enantioenriched Anti-O-TBDPS Nitrone Precursor 200 162
Scheme 4.23. Nonracemic (3+2) Cycloaddition with Anti-O-TBDPS Nitrone 162
Scheme 4.24. Attempted Elaboration of Ketal-Isoxazolidines 214 and 215 162
Scheme 4.25. Synthesis of Ring-Fusion Epoxide (\pm)-222 163

LIST OF ABBREVIATIONS

Ac	acetyl
AIBN	azoisobutyronitrile
Ar	aryl
aq	aqueous
BHT	butylated hydroxytoluene
BINAP	2,2'-bis(diphenylphosphino)-1,1'-binaphthyl
Bn	benzyl
Boc	tert-butoxycarbonyl
bp	boiling point
Bu	butyl
Bz	benzoyl
CAN	cerium(IV) ammonium nitrate
Cbz	benzyloxycarbonyl
CE	Cotton effect
CSA	camphorsulfonic acid
cy	cyclohexyl
d.e. (de)	diastereomeric excess
d.r. (dr)	diastereomeric ratio
DABCO	1,4-diazabicyclo[2.2.2]-octane
dba	dibenzylidene acetone
DBU	1,8-diazabicyclo[5.4.0-undec-7ene
DCE	1,2-dichloroethane
DCM	dichloromethane
DDQ	2,3-dichloro-5,6-dicyano benzoquinone
DEAD	diethyl azodicarboxylate
DET	diethyl tartrate
DIBAL	diisobutylaluminum hydride

DIPA	diisopropylamine
DIPEA	diisopropylethylamine
DMAP	4-(dimethylamino)pyridine
DMDO	dimethyldioxirane
DME	dimethoxyethane, glyme
DMF	N, N-dimethylformamide
DMI	1,3-dimethylimidazolidin-2-one
DMP	Dess-Martin periodinane
DMS	dimethylsulfide
DMSO	dimethylsulfoxide
DPPA	diphenylphosphoryl azide
dppf	diphenylphosphinoferrocene
e.e. (ee)	enantiomeric excess
e.r. (er)	enantiomeric ratio
Et	ethyl
$\mathrm{h} \nu$	irradiation with light
HMDS	1,1,1,3,3,3-hexamethyldisilazane
HMPA	hexamethylphosphoramide
IBX	o-iodoxybenzoic acid
Imid	imidazole
IR	infrared spectroscopy
KHMDS	potassium bis(trimethylsilyl)amide
LAH	lithium aluminum hydride
LDA	lithium diisopropylamine
LiHMDS	lithium hexamethyldisilazide
M.S.	mass spectrometry
m-CPBA	m-chloroperbenzoic acid
Me	methyl
Mes	mesityl
Ms	methanesulfonyl
MS	molecular sieves
MTBE	methyl-tert-butylether
MVK	methyl vinyl ketone
mw ($\mu \mathrm{w}$)	microwave
NaHMDS	sodium bis(trimethylsilyl)amide
NBS	N -bromosuccinimide
NMO	N -methylmorpholine oxide

NMP (MPD)	N -methyl-2-pyrrolidinone
PCC	pyridinium chlorochromate
PDC	pyridinium dichromate
Ph	phenyl
piv	pivaloyl
PMB	p-methoxybenzyl
PPTS	pyridinium toluenesulfonate
Pr	propyl
PTSA	(p-TSA, TsOH) p-toluenesulfonic acid
Py	pyridine
Rf	retention factor
RT	room temperature
TBAF	tetra-n-butylammonium fluoride
TBAT	tetra- n-butylammonium difluorotriphenylsilicate
TBDPS	tert-butyl-diphenyl silyl
TBHP	tert-butyl hydroperoxide
TBS	tert-butyl-dimethyl silyl
TEA	triethylamine
Tf	trifluoromethanesulfonyl
TFA	trifluoroacetic acid
TFAA	trifluoroacetic anhydride
Th	2-thienyl
THF	tetrahydrofuran
TIPS	triisopropyl silyl
TMS	trimethyl silyl
Tr	trityl
Ts	p-toluenesulfonyl

CHAPTER 1

Introduction To the Citrinadins and Related Natural Products

1.1 Isolation, Structural Characterization, and Biological Activity

1.1 .1

The Citrinadins and PF1270s

In 2004, Kobayashi and coworkers reported the isolation of Citrinadin A (1), a novel secondary metabolite of the marine fungus Penicillium citrinum (Figure 1.1). ${ }^{1}$ The fungus was cultured from the marine red alga Actinotrichia fragilis, which was collected from the Hedo Cape of Okinawa Island

Figure 1.1
in Japan. Extensive NMR analysis of naturally isolated material revealed that $\mathbf{1}$ contains a highly functionalized cyclopenta[b]quinolizidine moiety and a spiro-fused oxindole. It is capped on one end with a rare N, N-dimethylvaline ester, and on the other, with a unique epoxycarbonyl side chain. Similar to $\mathbf{1}$, Citrinadin B (2), was isolated by Kobayashi in 2005 and shares the same basic structure but lacks the C14
ester. ${ }^{2}$ PF1270A (3), PF1270B (4), and PF1270C (5)—three alkaloids recently isolated by Kushida et al. from the fungus, Penicillium waksmanii (strain PF1270)—also bear a strong resemblance to the citrinadins (Figure 1.2). ${ }^{3}$

Figure 1.2

The relative stereochemistry of the citrinadin pentacyclic core was determined using standard NOE correlation data and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ coupling constants. ${ }^{2}$ The absolute configuration of the $\mathrm{N}, \mathrm{N}-$ dimethylvaline ester was unambiguously established via comparison of the hydrolysate of $\mathbf{1}$ with authentic D- and L-N,N-dimethylvaline chiral HPLC traces. The absolute configuration of the epoxycarbonyl side chain was determined using comparative VCD spectroscopy. Model epoxides 6 and 7 were synthesized and found to display mirror image, weak Cotton effects at $c .1230 \mathrm{~cm}^{-1}$ (Figure 1.3). Analogous to model epoxide 7, VCD analysis of 1 revealed a Cotton curve of negative sign at $1245 \mathrm{~cm}^{-1}$, suggesting the corresponding (S)-configuration at C 21 .
VCD Spectra
Model Epoxides:

VCD Spectra
Citrinadin A:

Figure 1.3
The absolute stereochemistry of $\mathbf{1}$ was extrapolated from ROESY and ECD spectra. ${ }^{2}$ ROESY correlations between the (S)- N, N-dimethylvaline side chain and the quinolizidine ring system of a chlorohydrin derivative (8) of $\mathbf{1}$ were used to assign the (S)-configuration to C14 (Figure 1.4). ${ }^{4}$ Analysis of

ECD spectra for the uncarine spiro-oxindole alkaloids resulted in a conclusion that like Undecarine E and D (11 and 12), the negative first Cotton curve seen at $\lambda_{\text {ext }} 340 \mathrm{~nm}$ for $\mathbf{1}$ was consistent with an (S)configuration at the oxindole spirocenter (Figure 1.5). ${ }^{5}$

Figure 1.4

Undecarine C (9)

Undecarine E (11)

Undecarine F (10)

Undecarine D (12)

Figure 1.5

It is significant to note that alternate orientations of the flexible (S)- N, N-dimethylvaline side chain might support a different stereochemical assignment of C14. Furthermore, it has been demonstrated that not all spiro-oxindoles conform to the usual Cotton Effect (CE) trends. In one example, Hemmingway et al. have demonstrated that CD spectra for the rhynchophylline oxindole alkaloids Corynoxine and Corynoxine B and their 9-phenolic counterparts, Mitrafoline and Isomitrafoline display CEs of opposite sign for spiro-oxindoles of the same configuration (Figure 1.6). ${ }^{6}$

Figure 1.6

Unlike the citrinadins, the relative stereochemistry of PF1270A (3) was established not only by standard spectroscopic analysis but also by using X-ray crystallographic data. ${ }^{3}$ PF1270A-C (3-5) each display a simple alkyl ester side chain instead of the N, N-dimethylvaline ester of citrinadin A, and the degree of oxidation at C18 and C28 also differs from the citrinadins. Particularly intriguing, however, is the fact that the relative stereochemistry of the epoxyketone side chain in PF1270A-C (as arbitrarily depicted in the isolation paper by Kushida) is opposite that assigned to $\mathbf{1}$ and $\mathbf{2}$ by Kobayashi. ${ }^{7}$ Because Kushida does not establish absolute stereochemistry, an alternate interpretation of the data would imply that the epoxide configuration seen in the PF1270s is the same as the citrinadins while the PF1270 core is enantiomeric to the citrinadins (Figure 1.2).

1.1.2 Citrinadin Biological Activity

In addition to their interesting molecular architecture, the citrinadin natural products possess noteworthy biological activity. Both $\mathbf{1}$ and $\mathbf{2}$ have demonstrated cytotoxicity against murine leukemia L1210 cells ($\mathrm{IC}_{50} 6.2 \mu \mathrm{~g} / \mathrm{mL}$ and $10 \mu \mathrm{~g} / \mathrm{mL}$ respectively), and $\mathbf{1}$ has demonstrated activity against human epidermoid carcinoma KB cells $\left(\mathrm{IC}_{50} 10 \mu \mathrm{~g} / \mathrm{mL}\right) .{ }^{1,2}$

PF1270A-C (3-5) have shown high affinity for both rat and human histamine H 3 receptor (H3R) ligands and function as potent agonists therein $\left(\mathrm{EC}_{50} 0.12 \mu \mathrm{M}, 0.15 \mu \mathrm{M}\right.$, and $0.20 \mu \mathrm{M}$ respectively). ${ }^{3}$ Because H3Rs play a role in the release of neurotransmitters such as serotonin, noradrenalin and dopamine, it is believed that H3R ligands may hold potential for the treatment of diabetes, obesity and central nervous system (CNS) disorders. Although structurally similar to $\mathbf{3}-\mathbf{5}$, the citrinadins ($\mathbf{1}$ and $\mathbf{2}$) have not been tested for analogous H3R biological activity. Indeed, in the absence of a total synthesis of $\mathbf{1}$ or 2, lack of any remaining authentic samples precludes further analysis of citrinadin biological activity.

Many alkaloids which contain spiroindolinone moieties similar to $\mathbf{1}$ and $\mathbf{2}$ have been isolated from Penicillium and Aspergillus fungi. Some of these include the brevianamides ${ }^{8}$ (13), paraherquamides ${ }^{9}$ (14), marcfortines ${ }^{10}(\mathbf{1 5})$, asperparalines ${ }^{11}(\mathbf{1 6})$, and sclerotiamide ${ }^{12}(\mathbf{1 7})$ (Figure 1.7).

Marcfortine C (15)

Asperparaline A (16)

Sclerotiamide (17)
Figure 1.7

However, reports of natural products which contain the N, N-dimethylvaline residue are limited to 14-(N,N-dimethyl-L-valyloxy)paspaline (18), isolated ${ }^{13}$ from Aspergillus nominus, and dolastatin 10 (19), isolated ${ }^{14}$ from the sea hare Dolabella auricularia (Figure 1.8).

Figure 1.8

Likewise, examples of the epoxyketone unit are rare. C7-prenylated indoles have been isolated from Aspergillus fungi ${ }^{15}$ as well as some containing a more oxidized epoxy isoprene substitution at C4. ${ }^{16}$ But, other than $\mathbf{1 - 5}$, the only other structure containing an epoxyketone moiety is hopeyhopin (20), a coumarin isolated from the Amris madrensis shrub in northeast Mexico (Figure 1.8). ${ }^{17}$

Kobayashi and coworkers have suggested two plausible biosynthetic pathways for the citrinadin core. ${ }^{2}$ One possibility is that the citrinadin skeleton arose from modifications to a marcfortine-type structure, including loss of the bridging amide carbonyl, oxidation of C14 and C18, and methylation of C12. (Figure 1.9, Path A). Alternatively, the citrinadins may have derived from a dipeptide intermediate requiring the oxidation of C 18 and C 14 as well as the reduction of C 27 . (Figure 1.9 , Path B). In either case, it appears that the natural building blocks of the citrinadins are L-pipecolic acid, L-tryptophan, and isoprene. ${ }^{18}$

Figure 1.9

1.2 Previous Synthetic Efforts

1.2.1 Martin Group Spiro-oxindole Synthesis

Martin and coworkers were the first to publish progress toward the synthesis of $\mathbf{1} .{ }^{19}$ Their approach highlights the oxidative rearrangement of an indole (24) to provide a spiro-oxindole (23) in stereoselective fashion (Scheme 1.1).

Scheme 1.1

Exploration of the oxidative rearrangement revealed that treatment of a chiral, nonracemic N-acyl indole 24 with DMDO produced 2,3-epoxyindole 26, which spontaneously rearranged to the desired spiro-oxindole 27 (78% yield, $d r$ 94:6) in the presence of silica gel (Scheme 1.2). The newly generated quaternary center was found to possess the correct (S)-stereochemistry for the synthesis of $\mathbf{1}$. The ABC-tricycle 27 was further elaborated to the ABC-triflate 23. Subsequent cross-coupling of $\mathbf{2 3}$ with allyltribulylstannane served as a model reaction for an anticipated coupling to a piperidine fragment. While research in the Martin group is ongoing, details regarding their recent progress toward $\mathbf{1}$ have not yet been published.

1.2.2 Sorensen Group Synthesis of the Citrinadin Core.

Reminiscent of Kobayashi's proposed citrinadin biosyntheses, Sorensen and Guerrero strategized that coupling a tryptophan-type fragment (32) and a piperdine fragment (33) might result in an intermediate that could be elaborated to tethered lactam $\mathbf{3 1}$ following a ring-to-chain tautomerization reaction (Scheme 1.3). ${ }^{20}$ Elaboration of $\mathbf{3 1}$ to the pentacyclic indole $\mathbf{3 0}$ would provide an advanced substrate amenable to oxidative rearrangement, thus installing the C 3 spiro-oxindole stereocenter similar to Martin et al.

Indeed, exposure of coupled product 34 to in situ generated hydrochloric acid facilitated Bocremoval (Scheme 1.4). Subsequent treatment with phosphorus oxychloride at elevated temperatures

Scheme 1.4

induced lactamization, and ring-to-chain tautomerisation of the pyrroloindoline moiety was accomplished using trifluoroacetic acid. Addition of iso-propenylmagnesium bromide to the ketocarbonyl of lactam 31 could be accomplished at low temperature (55% yield, $d r \quad 10: 1$ at $-78{ }^{\circ} \mathrm{C}$) to provide $\mathbf{3 5}$ diastereoselectively. Subsequent reductive deprotection of 35, followed by mercury-assisted cyclization and reductive demercuration, gave the desired pentacyclic indole 36. To avoid unwanted azetidine or cyclic imidate products during the key oxidative rearrangement, the angular nitrogen was masked as the
azide. Thus, removal of the carbamate was followed by reduction of the lactam and aziridination to provide azido alcohol 30.

Successful oxidative rearrangement of the boc-protected substrate $\mathbf{3 0}$ was accomplished using a three-step protocol involving protonation of the tertiary amine with trifluoroacetic acid, oxidation of the indole with trifluoroperacetic acid, and addition of dimethyl sulfide to quench remaining unreacted oxidant (Scheme 1.5). Neutralization, workup, and purification of the reaction mixture provided the desired oxindole 29 as the major product.

In addition to converting the azide to the corresponding methyl amine, elaboration of 29 to 2 would require a non-trivial functionalization of the oxindole at C 7 . Nevertheless, the published synthesis of $\mathbf{2 9}$ constitutes a significant step toward the total synthesis of $\mathbf{1}$ and $\mathbf{2}$.

Scheme 1.5

1.2.3 Previous Wood Group Efforts.

Pursuit of the total synthesis of $\mathbf{1}$ and $\mathbf{2}$ in the Wood group was the result of a longstanding interest in the preparation of oxygenated indoles such as Welwitindolinones A and C and Diazonamide A. ${ }^{21,22}$ Initial retrosynthetic analysis of 1 suggested a division of the molecule into two fragments: a lactam (38) and a spiro-oxindole (37) (Scheme 1.6). This led to the exploration of four synthetic strategies to access the more complex spiro-oxindole: rhodium-mediated $\mathrm{C}-\mathrm{H}$ insertion, palladium-catalyzed α-amide arylation, radical cascade cyclization, and a reductive Heck cascade

Scheme 1.6

cyclization. ${ }^{23}$
Previously developed group chemistry revealed that exposure of $\mathbf{4 0}$ to rhodium-mediated C-H insertion conditions resulted in the formation of spiro-oxindole 41 as one of two products (Scheme 1.7). Further exploration of reaction conditions revealed that the use of catalytic rhodium pentafluoroborate dimer could provide 41 as the sole product. Unfortunately, the C-H insertion strategy was abandoned owing to the difficulty of preparing more elaborated substrates.

Scheme 1.7

A revised strategy suggested that spiro-oxindole $\mathbf{4 5}$ could be formed using a palladium catalyzed α-amide arylation (Scheme 1.8). Dibromoanilide 43, synthesized in three steps from known ester 42, was used as a substrate to explore potential arylation conditions. Classic α-amide arylation conditions resulted exclusively in the recovery of starting material, and an increase in catalyst loading merely provided the bridged pentacycle 44. This side product was speculated to be the result of both an undesired Heck coupling and a biaryl coupling to the benzyl protecting group. In an effort to overcome this undesired Heck pathway, the reactive olefin of $\mathbf{4 3}$ was first oxidized to the diol, then protected as the acetonide and subjected to α-amide arylation conditions. However, none of the desired arylation product was obtained.

Scheme 1.8

Hypothesizing that the desired spiro-oxindole might be accessible via a radical cascade cyclization, propargyl ketone 51 was synthesized in eight steps from dibromoanaline 46 (Scheme 1.9). Gratifyingly, when treated with the radical initiator, $1,1^{\prime}$-azobis-1-cyclohexanenitrile (ACHN) in the
presence of tributyltin hydride, $\mathbf{5 1}$ successfully underwent the desired cyclization to provide spiro-oxindole
Scheme 1.9

Scheme 1.10

37 (Scheme 1.10). Unfortunately, attempts to increase the yield of this reaction using other radical initiators, hydride sources, or solvent combinations were not effective. Thus, a modified strategy incorporating a reductive Heck reaction was investigated.

Reductive Heck cyclization substrate $\mathbf{5 3}$ was synthesized in eight steps from 2-bromo-4iodoaniline (Scheme 1.11). Because, aniline 52 was initially misassigned as its 2-bromo-6-iodoaniline counterpart, the reductive cyclization of anilide $\mathbf{5 3}$ was expected to yield a C7-brominated spiro-oxindole. In practice, anilide 53 underwent reductive deiodination first, followed by reductive cyclization, to yield spiro-oxindole 54. Utilization of microwave-mediated conditions provided $\mathbf{5 4}$ in high yield.

Scheme 1.11

1.3

Conclusions

Marine derived fungi continue to act as a primary source for structurally intriguing and biologically relevant secondary metabolites including $\mathbf{1}$ and $\mathbf{2}$. Synthesis of the citrinadins would allow for further testing of their biological activity, in particular as H3R ligands, which are known to play an important role in the release of neurotransmitters. Additionally, the synthesis of complex natural products remains the best way to confirm their assigned structures.

While, no total synthesis of $\mathbf{1}$ or $\mathbf{2}$ has been reported to date, two synthetic approaches toward the citrinadins have been disclosed. Martin et al. have detailed the ability to use an oxidative rearrangement of an N-acyl indole to stereoselectively provide the spiro-oxindole moiety of the citrinadins. Sorensen and Guerrero have outlined an efficient, stereoselective route for the construction of the pentacyclic skeleton of 1 and 2.

In the Wood group, a number of synthetic strategies targeting the formation of the citrinadin spirooxindole have been explored including: rhodium-mediated C-H insertion, palladium-catalyzed α-amide arylation, radical cascade cyclization, and reductive Heck cascade cyclization. Of these, the most promising approach proved to be a reductive cyclization strategy.

Notes and References

${ }^{1}$ Tsuda, M.; Kasai, Y.; Komatsu, K.; Sone, T.; Tanaka, M.; Mikami, Y.; Kobayashi, J. Org. Lett. 2004 6, 3087-3089.
${ }^{2}$ Mugishima, T.; Tsuda, M.; Kasai, Y.; Ishiyama, H.; Fukushi, E.; Kawabata, J; Watanabe, M.; Akao, K.; Kobashi, J. J. Org. Chem. 2005 70, 9430-9435.
${ }^{3}$ Kushida, N.; Watanabe, N.; Okuda, T.; Yokoyama, F.; Gyobu, Y.; Yaguchi, T. J. Antibiot. 2007 60, 667673.
${ }^{4}$ The text of the characterization paper (see ref. 2) states, "the absolute stereochemistry at C-14 was elucidated to be R ". In contrast to this, the ROESY correlation figure and other depictions of Citrinadin A clearly depict the (S)-stereochemistry for C14. Despite this confusion; we have chosen to view the text as a typo in the context of Kobayashi's other data.
${ }^{5}$ Beecham, A. F.; Hart, N. K.; Johns, S. R.; Lamberton, J. A. Aust. J. Chem. 1968 21, 491-504.
${ }^{6}$ Hemingway, S. R.; Houghton, P. J.; Phillipson, J. D.; Shellard, E. Phytochemistry 1975 14, 557-563.
${ }^{7}$ Kushida et al. assert that the "[Citrinadin A and B] stereochemistry at the spiro carbon (C-3) is opposite to that of the PF1270s." This contradicts the depicted figures and x-ray crystal structure where it appears that the relative stereochemistry of the citrinadin core is preserved in the PF1270s.
${ }^{8}$ Birch, A. J.; Russell, R. A. Tetrahedron 1972 28, 2999-3008.
${ }^{9}$ a) Blanchflower, S. E.; Banks, R. M.; Everet, J. R.; Manger, B. R.; Reading, C. J. Antibiot. 1991 44, 492497. b) Ondeyka, J. G.; Goegelman, R. T.; Schaeffer, J. M.; Kelemen, L.; Zitano, L. J. Antibiot. 1990 43, 1375-1379. c) Blanchflower, S. E.; Banks, R. M.; Everet, J. R.; Reading, C. J. Antibiot. 1993 46, 13551363. d) Yamazaki, M.; Okuyama, E.; Kobayashi, M.; Inoue, H. Tetrahedron Lett. 1981 22, 135-136.
${ }^{10}$ Prangé, T.; Billon, M.; Vuilhorgne, M.; Pascard, C.; Polonsky, J. Tetrahedron Lett. 1981 22, 1977-1980.
${ }^{11}$ Hayashi, H.; Nishimoto, Y.; Nozaki, H. Tetrahedron Lett. 1997 38, 5655-5658.
${ }^{12}$ Whyte, A. C.; Gloer, J. B.; Wicklow, D. T.; Dowd, P. F. J. Nat. Prod. 1996 59, 1093-1095.
${ }^{13}$ Gloer, J. B.; Staub, G. M.; Gloer, K. B. Tetrahedron Lett. 1993 34, 2569-2572.
${ }^{14}$ a) Pettit, G. R.; Kamano, Y.; Herald, C. L.; Tuinman, A. A.; Boettner, F. E.; Kizu, H.; Schmidt, J. M.; Baczynskyj, L.; Tomer, K. B.; Bontems, R. J. J. Am. Chem. Soc. 1987 109, 6883-6885. b) Pettit, G. R.; Singh, S. B.; Hogan, F.; Lloyd-Williams, P.; Herald, D. L.; Burkett, D. D.; Clewlow, P. J. J. Am. Chem. Soc. 1989 111, 5463-5465.
${ }^{15}$ Quilico, A. and Panizzi, L. Chem Ber 1943 76, 348.
${ }^{16}$ a) Dalsgaard, P. W.; Blunt, J. W.; Munro, M. H.; Frisvad, J. C.; Christophersen, C. J. Nat. Prod. 2005 68, 258-261. b) Jadulco, R.; Edrada, R. A.; Ebel, R.; Berg, A.; Schaumann, K.; Wray, V.; Steube, K.; Proksch, P. J Nat Prod 2004 67, 78-81.
${ }^{17}$ Dominguez, X. A.; Cano, G.; Luna, I.; Dieck, A. Phytochemistry 1977 16, 1096.
${ }^{18}$ Williams, R. M.; Cox, R. J. Acc. Chem. Res. 2003 36, 127-139.
${ }^{19}$ Pettersson, M.; Knueppel, D.; Martin, S. F. Org. Lett. 2007 9, 4623-4626.
${ }^{20}$ Guerrero, C. A.; Sorensen, E. J. Org. Lett. 2011 13, 5164-5167.
${ }^{21}$ a) Reisman, S. E.; Ready, J. M.; Weiss, M. M.; Hasuoka, A.; Hirata, M.; Tamaki, K.; Ovaska, T. V.; Smith, C. J.; Wood, J. L. J Am Chem Soc 2008 130, 2087-2100.
${ }^{22}$ Fuerst, D. E.; Stoltz, B. M.; Wood, J. L. Org. Lett. 2000 2, 3521-3523.
${ }^{23}$ Menhaji, E. Progress Toward the Total Synthesis of Citrinadin A. Yale University, New Haven, 2008.

CHAPTER 2

Accessing the C3-epi-Citrinadin B Core

2.1 Developing a Retrosynthetic Strategy

In developing a synthesis of the citrinadin natural products ($\mathbf{1}$ and $\mathbf{2}$), we chose to focus on strategies that would provide access to either natural product congener; however initial efforts were devoted to a route leading to the simpler of the two, Citrinadin B (2).

In a retrosynthetic sense, removal of the epoxyketone-containing side-chain and rupture of the central ring produced the tethered piperdine 55 as a potential synthetic precursor to $\mathbf{2}$. In the forward sense, aziridination of the exocyclic olefin of $\mathbf{5 5}$ would set the stage for an intramolecular nucleophilic opening. This would directly provide the requisite amine and alcohol moieties at the angular positions while

Scheme 2.1

55

simultaneously establishing the core quinolizidine ring-system (Scheme 2.1). Late stage incorporation of the C7-epoxycarbonyl side chain was envisioned to occur intramolecularly via a Fries-type rearrangement of an N -acylated intermediate or through a $\mathrm{C}-\mathrm{H}$ activation process.

Tethered piperdine 55 was envisioned to arise from the reductive opening of an isoxazolidine scaffold 56, itself the product of a key $(3+2)$ dipolar cycloaddition reaction ${ }^{1}$ between a spiro-oxindole dipolarophile (58) and a nitrone ${ }^{2}(\mathbf{5 7})$. Although the number of possible regio- and stereo- chemical outcomes of the proposed cycloaddition was daunting, the convergency of this approach was nevertheless attractive. The possibility of nitrone $\mathbf{5 7}$ approaching dipolarophile $\mathbf{5 8}$ from the opposite face of the C12 methyl group bolstered our confidence in regard to achieving the desired diastereoselectivity, and it was further recognized that reduction of $\mathbf{5 8}$ to the corresponding allylic alcohol might allow for the use of beneficial steric or directing effects in the reaction. Spiro-oxindole dipolarophile $\mathbf{5 8}$ was expected to arise from a stereoselective cascade Heck cyclization of anilide 59.

2.2 Spiro-oxindole Synthesis

The successful cascade Heck cyclization of aryl bromide 53 to form spiro-oxindole (\pm)-54 (See Chapter 1) inspired initial efforts to synthesize spiro-oxindole 58 from aryl iodide 59. To that end, 2-

Scheme 2.2

iodoaniline 60 was smoothly coupled with lactone ${ }^{3} 47$ in the presence of trimethylaluminum to furnish alcohol 61 (Scheme 2.2). Routine functional group manipulations were employed to provide aldehyde 63, where addition of vinylmagnesium bromide and subsequent Dess-Martin oxidation resulted in the formation of enone ${ }^{4} \mathbf{5 9}$, which was carried directly into the next step.

Multiple conditions for the projected tandem cyclization of $\mathbf{5 9}$ to form $\mathbf{5 8}$ were explored (Scheme 2.3). Ideally, oxidative addition of palladium to aryl iodide $\mathbf{5 9}$ followed by olefin insertion would furnish oxindole-containing intermediate $\mathbf{6 5}$, poised for a second migratory insertion that would deliver spirocycle 66, an intermediate from which β-hydride elimination was expected to furnish 58. In practice, under cationic Heck conditions using silver phosphate, none of the desired spiro-oxindole product $\mathbf{5 8}$ was formed. Neutral conditions resulted in the formation of oxindole 67, an interrupted product arising from facile β-hydride elimination of $\mathbf{6 5}$. Reasoning that lower reaction temperatures might suppress the unwanted

Scheme 2.3

β-hydride elimination, Jeffery's conditions were employed at room temperature. ${ }^{5}$ Although these conditions successfully promoted Heck cyclization, oxindole 67 remained as the only isolable product. Indeed, premature β-hydride elimination resulting in the formation of 67 could not be suppressed even in the presence of a stoichiometric amount of palladium acetate $\left(\mathrm{Pd}(\mathrm{OAc})_{2}\right)$ and the exclusion of exogenous base.

2.2.2
 Stepwise Cyclization Strategy

Although the undesired β-hydride elimination proved insurmountable, we were mindful that the informative synthesis of $\mathbf{6 7}$ could yet be applied to a synthesis of $\mathbf{5 8}$; thus, a revised strategy was devised. An asymmetric Heck cyclization ${ }^{6}$ of $\mathbf{6 2}$ would be followed by a deprotection/oxidation/alkylation sequence that would furnish enyne 68 and set the stage for a second palladium-mediated cyclization to give allylic alcohol 69 (Scheme 2.4). ${ }^{7}$

Scheme 2.4

Using standard Heck conditions $\left(\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{PPh}_{3}, \mathrm{PhMe}\right), 62$ was found to undergo smooth transformation to oxindole (\pm)-70 in quantitative yield (Scheme 2.5). Disappointingly, attempts to effect this transformation with asymmetric catalysts were met with low yields. Nevertheless, these latter efforts provided some insight in that both palladium dibenzylideneacetone $\left(\mathrm{Pd}_{2}(\mathrm{dba})_{3}\right)$ and $\mathrm{Pd}(\mathrm{OAc})_{2}$ were acceptable precatalysts in the presence of (+)-BINAP, although $\mathrm{Pd}(\mathrm{OAc})_{2}$ provided oxindole 70 with

Scheme 2.5

Heck
Cyclization
Conditions

Yield
slightly improved enantioexcess. Furthermore, a screen of various solvents revealed that polar solvents had a beneficial effect on the enantioenrichment of $\mathbf{7 0}$ (toluene: 43% yield, 0% ee; $\mathrm{CH}_{3} \mathrm{CN}: 15 \%$ yield, 8% ee; THF: 37% yield, 1% ee; NMP: 35% yield, 15% ee $)$. Upon switching to cationic conditions $\left(\mathrm{Pd}_{2} \mathrm{dba}_{3}\right.$, $\mathrm{Ag}_{3} \mathrm{PO}_{4}, \mathrm{DMA}$), yields of $\mathbf{7 0}$ increased but the enantioselectivity was worse. These results suggested that an increase in the lability of the $\mathrm{Pd}-\mathrm{X}$ bond might facilitate better bidentate coordination of the chiral ligand, and thus result in better enantioenrichment. ${ }^{8}$ To that end, a pursuit of aryl triflate $\mathbf{7 3}$ ensued.

Similar to $\mathbf{6 0}$, synthesis of $\mathbf{7 3}$ began with the trimethylaluminum-mediated coupling of lactone $\mathbf{4 7}$ and tert-butyldimethylsilyloxy aniline 71, followed by protection of the primary alcohol and amide (Scheme 2.6). Selective cleavage of the phenolic silyl ether required treatment with one equivalent of TBAF, ${ }^{9}$ whereupon conversion to the corresponding triflate $\mathbf{7 3}$ provided the desired substrate for investigation of an asymmetric Heck cyclization.

Scheme 2.6

Gratifyingly, aryl triflate $\mathbf{7 3}$ proved to be superior to aryl iodide $\mathbf{6 2}$ in the asymmetric Heck cyclization (Scheme 2.7). The choice of solvent once again proved integral to enantioenrichment, and among the solvents screened, DMA was found to be optimal. Unlike the cyclization of aryl iodide 62, however, the use of $\operatorname{Pd}(\mathrm{OAc})_{2}$ proved inferior to $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$. The use of $(+)-$ or $(-)$ - . preparation of both antipodes of 70. ${ }^{10,11}$

Scheme 2.7

With an eye toward the proposed reductive enyne cyclization of $\mathbf{6 8}$, silyl ether $(\pm)-\mathbf{7 0}$ was treated with TBAF and oxidized to provide aldehyde (\pm)-74 (Scheme 2.2.8). This was subjected to ethynylmagnesium bromide resulting in two diasteromeric propargylic alcohols ($d r$ 1.5:1), which were masked as the corresponding silyl ethers $(\pm)-\mathbf{6 8 a} / \mathbf{b} .{ }^{12}$

Scheme 2.8

The subsequent palladium-catalyzed reductive cyclization of $(\pm)-68$ a was expected to occur via hydropalladation of the akyne (i.e., $(\pm$)-75a) followed by carbo-palladation (i.e., $(\pm)-76 a)$ to form the desired carbon-carbon bond (Scheme 2.9). Exogenous reduction of palladium (i.e., (\pm)-77a) and reductive elimination would generate the desired carbocycle $(\pm)-69$ a and regenerate the palladium catalyst.

Scheme 2.9

In practice, Trost's conditions ${ }^{13}\left(\mathrm{Pd}_{2}(\mathrm{dba})_{3},(o-\text { tol })_{3} \mathrm{P}, \mathrm{PMHS}, \mathrm{AcOH}, \mathrm{PhMe}\right)$ only resulted in the formation of an uncyclized allylic alcohol (\pm) - 78a, the product of a direct, premature reduction of the hydropalladation intermediate $(\pm)-\mathbf{7 5 a}$ (Scheme 2.10). Our understanding of the mechanism suggested that the use of a less potent reducing reagent at higher dilution would discourage the unwanted formation of (\pm) -

Scheme 2.10

Conditions	Result
$\mathrm{Pd}_{2}(\mathrm{dba})_{3},(\mathrm{o}-\mathrm{Tol})_{3} \mathrm{P}, \mathrm{AcOH}$,	
$\mathrm{PMHS}, \mathrm{PhMe}(0.02 \mathrm{M})$	63% yield $(\pm)-78 \mathrm{a}$
$\mathrm{Pd}_{2}(\mathrm{dba})_{3}, \mathrm{AcOH}$,	
$\mathrm{Et}_{3} \mathrm{SiH}, \mathrm{PhMe}(0.005 \mathrm{M})$	$\sim 60 \%$ yield $(\pm)-69 \mathrm{a}$

78a, and this indeed proved to be the case. ${ }^{14}$ Modified conditions $\left(\mathrm{Pd}_{2}(\mathrm{dba})_{3}, \mathrm{Et}_{3} \mathrm{SiH}, \mathrm{AcOH}, 0.005 \mathrm{M}\right.$ PhMe)—where the omission of the phosphine ligand also proved beneficial ${ }^{15}$-resulted in isolation of the desired cyclic alylic alcohol $(\pm)-69$ a as the major product, the relative stereochemistry of which was assigned based on NOE correlations.

Analagously, $(\pm) \mathbf{- 6 8 b}$ could be advanced to the cyclic alylic alcohol (\pm)-69b (Scheme 2.11). Interestingly, a cyclopropane by-product $((\pm)-79)$ was also observed in the reaction mixture and presumed to be the result two consecutive carbopalladations. ${ }^{16}$

Scheme 2.11

Eager to investigate the postulated (3+2) cycloaddition reaction, our initial investigations began with the newly formed dipolarophiles (\pm)-69a/b and model nitrone $\mathbf{8 0}$-readily synthesized ${ }^{17}$ by the selenium oxide catalyzed oxidation of piperidine. Unfortunately, heating a mixture of silyl ether (\pm)-69b and nitrone $\mathbf{8 0}$ in a variety of solvents did not provide the desired cycloaddition product $O-$ TBS- $\pm \mathbf{~} \mathbf{- 8 1}$ (Scheme 2.12).

Scheme 2.12

Suspecting that the bulky silyl group on dipolarophile (\pm)-69b might be the cause of the sluggish reactivity, it was removed with TBAF (Scheme 2.13). Gratifyingly, under the cycloaddition reaction conditions, allylic alcohol $(\pm) \mathbf{8 2 b}$ proved much more reactive and provided isoxazolidine $(\pm)-\mathbf{8 3}$ in good yield. Unfortunately, extensive NMR analysis of isoxazolidine (\pm) $\mathbf{8 3}$ indicated the opposite stereochemistry at C16 and C18 relative to Citrinadin B (2). It was reasoned that during the dipolar cycloaddition reaction, nitrone $\mathbf{8 0}$ was approaching olefin $(\pm) \mathbf{8 2 b}$ from the same face as the free hydroxyl

Scheme 2.13

group, implying that intramolecular hydrogen bonding might be directing the process. ${ }^{18}$ The possibility of a hydrogen bond in the cycloaddition was further supported by the observation that the methyl ether of allylic alcohol (\pm)-82b was nonreactive under identical conditions, presumably due to the removal of its hydrogen bonding capability.

The implications of hydrogen bonding during the cycloaddition reaction prompted us to employ dipolarophile $(\pm)-69$ a in the hope that the opposite alcohol stereochemistry would direct the incoming nitrone to the desired olefin face (Scheme 2.14). Surprisingly however, allylic alcohol (\pm)-82a was reluctant to participate in the cycloaddition at all under thermal conditions. Lewis acid $\left(\mathrm{MgBr}_{2} \bullet \mathrm{Et}_{2} \mathrm{O}\right)$, Brönsted acid (TFA), and the combination of $\mathrm{EtMgBr} / \mathrm{PrOH}$ were each explored as additives to promote the cycloaddition reaction. Unfortunately, only recovered starting material was obtained. A plausible explanation for the marked difference in reactivity between allylic alcohols $(\pm)-\mathbf{8 2 a}$ and $(\pm)-\mathbf{8 2 b}$ was the presence of an intramolecular hydrogen bond between the hydroxyl group of (\pm)-82a and the neighboring oxindole carbonyl (i.e., Scheme 2.14). This hypothesis was supported by the relatively low IR stretch of the oxindole carbonyl $\left(1687 \mathrm{~cm}^{\mathbf{- 1}}\right)$ of (\pm)-82a compared with that of $(\pm) \mathbf{8 2} \mathbf{b}\left(1701 \mathrm{~cm}^{\mathbf{- 1}}\right)$, as well as a downfield OH shift in the ${ }^{1} \mathrm{H}$ NMR of (\pm)-82a (4.51 ppm). Such hydrogen bonding might serve to disrupt any pre-association of the hydroxyl group of (\pm) - 82a with the incoming nitrone $\mathbf{8 0}$, thereby disabling the reaction.

Scheme 2.14

At this stage, preliminary studies using the model nitrone $\mathbf{8 0}$ had inspired confidence in the feasibility of the dipolar cycloaddition reaction, but issues of stereochemical control remained unsolved. The synthesis of a more functionalized and stereogenic nitrone (i.e., 57 in Scheme 2.15) that would be better suited for the synthesis of $\mathbf{2}$ became the next objective. Of particular importance was the ability of the stereocenter resident in $\mathbf{5 7}$ to impart some stereocontrol into the (3+2) process.

The synthesis of nitrone (\pm)-57 was achieved in 4 steps. Alkylation of oxime $\mathbf{8 4}$, derived from acetone, was followed by a sodium cyanoborohydride reduction to give $\mathbf{8 5}$ (Scheme 2.15). ${ }^{19}$ Exposure to acidic conditions unmasked the aldehyde allowing intramolecular condensation to furnish nitrone (\pm)-57. Not surprisingly, nitrone (\pm)-57 displayed reactivity similar to nitrone $\mathbf{8 0}$ in the (3+2) cycloaddition reaction (Scheme 2.16). Heating a mixture of $(\pm)-57$ and racemic allylic alcohol (\pm)-82b provided an inseparable mixture of diastereomeric isoxazolidines, whereas no reaction was observed between (\pm)-57 and (\pm)-82a.

Scheme 2.15

At this stage an alternate dipolarophile was explored as a potential substrate for the cycloaddition.
Enone (\pm) - $\mathbf{5 8}$ was readily prepared from $(\pm)-\mathbf{8 2 a}$ or $(\pm)-\mathbf{8 2 b}$ upon Dess-Martin oxidation (Scheme 2.17).
To our delight, enone $(\pm)-58$ participated readily in a cycloaddition with nitrone $(\pm)-57$ at ambient

Scheme 2.16

Scheme 2.17

temperature, giving rise to two isoxazolidine adducts (Scheme 2.18). A Comparison of the NOE correlations for both products confirmed that the minor diastereomer (\pm)-56 possessed the requisite stereochemistry for a synthesis of Citrinadin B (2), and the stereochemistry of the major isoxazolidine diastereomer (\pm)-87 was unambiguously established through X-ray crystallographic analysis (Scheme 2.19).

Scheme 2.18

Scheme 2.19

In contrast to the cycloadditions employing allylic alcohol $(\pm) \mathbf{- 8 2 b}$ as the dipolarophile, the stereochemical outcome of the racemic cycloaddition reaction of enone $(\pm)-\mathbf{5 8}$ and nitrone $(\pm)-\mathbf{5 7}$ demonstrated that the chiral center in the nitrone was now the dominant stereocontrolling element of the reaction. Specifically, the stereochemistry of C16 and C18 in both isoxazolidine diastereomers (\pm)-56 and (\pm)-87 derived from the enone approaching the nitrone from the face opposite to the methyl substituent.

It was recognized that a cycloaddition of nonracemic enone $\mathbf{5 8}$ and nitrone $\mathbf{5 7}$ should provide the desired isoxazolidine 56 as the major product. The nonracemic enones $(3 S)-(+)-\mathbf{5 8}$ and ($3 R$)-(-)-58 were accessible by advancing the enantioenriched oxindoles, (+)-70 and (-)-70 respectively. ${ }^{10}$ Enantioenriched nitrone (12S)-(-)-57, on the other hand, had to be prepared following a known procedure ${ }^{20}$ starting from L-

Scheme 2.20

alanine (>98\% ee) (Scheme 2.20). ${ }^{21}$ In the event, Cbz-L-alanine methyl ester was carefully reduced to the aldehyde, which was then subjected to a Wittig olefination to provide the (Z)-alkene (S)-88. Reduction of the double bond, as well as cleavage of the Cbz group, was achieved in a single operation. The derived primary amine was oxidized with benzyl peroxide to afford O-hydroxyl amine ester (S)-89. Generation of the chiral nitrone (12S)-(-)-57 occurred following saponification of the ester and treatment with aq. HCl . Using chiral HPLC analysis of an N-acylated hydroxylamine derivative of (12S)-(-)-57, the ee of the nitrone was determined to be 80%. Unfortunately, partial racemization, most likely occurring during the DIBAL reduction or Wittig olefination step, prevented isolation of enantiopure nitrone.

Cycloadditions between nitrone (12S)-(-)-57 and either antipode of enone $\mathbf{5 8}$ were subsequently explored (Scheme 2.21). ${ }^{10}$ The reaction between enone (-)-58 (67\% ee) and nitrone (12S)-(-)-57 (76\% ee) expediently provided two isoxazolidine products with $(3 S, 12 S)-(+)-\mathbf{8 7}$ being the predominant stereoisomer. In accord with observations using racemic substrates, the cycloaddition between enone (+)-58 and nitrone

Scheme 2.21

$(12 S)-(-)-57$ was more sluggish but nevertheless furnished a predominant product, $(3 R, 12 S)-(+)-56$, that was diastereomeric to 87 at C3.

Taken together, the cycloaddition between (3R)-(-)-58 and (12S)-(-)-57 to form (+)-87 in 80% yield reflects the matched nature of the cycloaddition substrates. On the other hand, the cycloaddition of $(3 S)-(+)-58$ and $(12 S)-(-)-57$ to form $(3 R, 12 S)-(+)-56$ in 58% yield, appears to be mismatched. ${ }^{22}$ Quite remarkably, even in the mismatched case, 56 and 87 were the only products formed in the reaction.

2.4 Synthesis of the C3-epi-Citrinadin Core

2.4.1 The Challenge of Wittig Olefination

Having successfully coupled spiro-oxindole 58 and nitrone 57 together through a dipolar cycloaddition that furnished pentacyclic 56, the next task was to rupture the superfluous $\mathrm{N}-\mathrm{O}$ bond (Scheme 2.22). For the purpose of exploratory studies, the readily available isoxazolidine diastereomer $(\pm)-87$ was used as a model substrate in the subsequent reactions. Initially a reductive cleavage of the $\mathrm{N}-\mathrm{O}$ bond of isoxazolidine (\pm) - $\mathbf{8 7}$ followed by olefination of the C9 carbonyl was explored. Unfortunately this approach was not successful, resulting in attempts to access $\mathbf{9 0}$ by inducing olefination prior to $\mathrm{N}-\mathrm{O}$ bond cleavage.

Scheme 2.22

Olefination of ketone $(\pm)-\mathbf{8 7}$ proved to be extremely difficult. Wittig and Peterson olefination ${ }^{23}$ conditions only returned starting material. The low reactivity of ketone (\pm)-87 was attributed to the highly enolizable nature of the carbonyl moiety under basic conditions. This hypothesis was supported by the result of an experiment where $\mathrm{D}_{2} \mathrm{O}$ quench of a Wittig olefination resulted in significant deuterium incorporation at the α position.

Other attempts to accomplish the desired olefination were also met with difficulty. For example, the use of Takai and Utimoto's olefination protocol $\left(\mathrm{CH}_{2} \mathrm{I}_{2}, \mathrm{Zn}, \mathrm{TiCl}_{4}, \mathrm{PbBr}_{2}\right)^{24}$, known to be effective for highly enolizable ketones, only resulted in an intractable mixture. Tebbe olefination ${ }^{25}$ afforded no reaction, and Petasis conditions regrettably facilitated retro-dipolar cycloaddition (\pm)-87. ${ }^{26}$

Continued investigation of the Wittig conditions eventually revealed that isoxazolidine (\pm)-87 could be successfully homologated using a methylenephosphorane solution free of salt (Scheme 2.23). ${ }^{27}$ Further optimization demonstrated that mild heating $\left(40^{\circ} \mathrm{C}\right)$ functioned to accelerate the reaction without encouraging the retro $(3+2)$ cycloaddition. Under these conditions, the desired olefin was finally isolated in 41% yield along with 35% of recovered starting material.

Scheme 2.23

2.4.2 Unsuccessful Aziridination Strategy

With the alkene in hand, our next goal was to stereoselectively aziridinate the exocyclic olefin of (\pm)-91 in preparation for subsequent quinolizidine ring formation (Scheme 2.1). ${ }^{28} \mathrm{~A}$ wide variety of conditions were employed to attempt the conversion of $(\pm)-91$ to $(\pm)-\mathbf{9 2}$, but to no avail (Scheme 2.24). In one case, attempted aziridination of $(\pm)-91$ focused on the use of popular N - p-toluenesulfonylimine phenyliodinane $(\mathrm{PhI}=\mathrm{NTs})^{29}$ as the nitrene source in the presence of various copper catalysts such as

Scheme 2.24

$\mathrm{Cu}(\mathrm{OTf})_{2},{ }^{30} \mathrm{CuOTf}$, and $\mathrm{IPrCuCl}^{31}$. Regrettably, none of these conditions yielded fruitful results. Even DuBois' conditions $\left(\mathrm{Rh}_{2}(\mathrm{pfm})_{4}, \mathrm{H}_{2} \mathrm{NSO}_{3} \mathrm{CH}_{2} \mathrm{CCl}_{3}, \mathrm{PhI}(\mathrm{OAc})_{2}, \mathrm{MgO}\right)^{32}$ only led to decomposition of the starting material. The instability of the isoxazolidine ring to Lewis acidic conditions appears to be at least partially responsible for the failure of these aziridination attempts.

In an attempt to obviate the difficulty of aziridination, cleavage of the $\mathrm{N}-\mathrm{O}$ bond was attempted prior to aziridination. Reduction of the isoxazolidine (\pm)-91 took place smoothly in the presence of SmI_{2} to provide an amino alcohol, which was then capped as the carbamate ${ }^{33}$ (Cbz- \pm)-90) (Scheme 2.25). Unfortunately, even though this substrate proved to be more stable than isoxazolidine (\pm)-91, a brief exploration of aziridination conditions still failed to provide any positive results.

Scheme 2.25

(土)-91

$(\pm)-90$

$(\pm)-93$

2.4.3 Successful Epoxide Opening Strategy

After concluding that direct aziridination might not be viable, we reasoned that an indirect approach to the incorporation of the angular nitrogen would garner more success. A logical choice was to proceed through the intermediacy of an epoxide, with the intention of employing a method for epoxide to aziridine conversion (Scheme 2.26).

Scheme 2.26

Scheme 2.27

$(\pm)-87$

$(\pm)-94$

$(\pm)-95$

(\pm)-96
Not Observed

In the event, epoxidation of the allylic alcohol (\pm) - $\mathbf{9 0 b}$ with m-CPBA provided the hydroxy epoxide N-TFA- $(\pm)-94$ in good yield (Scheme 2.27). However attempted ring opening of the epoxide with sodium azide under slightly acidic conditions $\left(\mathrm{NaN}_{3}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{EtOH}\right)^{34}$ did not provide azido alcohol (\pm)-96. Instead, under the influence of NaN_{3}, the trifluoroacetamide group was cleaved and the newly released amine intramolecularly opened the epoxide to provide diol $(\pm)-\mathbf{9 5}$.

Serendipitous formation of (\pm) - 95 from (\pm)-94 inspired us to investigate an alternate approach to the construction of the desired amino alcohol moiety. To this end we reasoned that $\mathbf{9 0}$ could serve as precursor to a ring-fusion epoxide (98), capable of participating in an intermolecular opening to provide the antiperiplanar 1,2-amino alcohol 97 (Scheme 2.28).

Scheme 2.28

Towards that goal, (\pm)-90b was subjected to a halo-etherification ${ }^{35}$ with bis (symcollidine)bromine(I) hexafluorophosphate $\left(\mathrm{Br}^{+}(\text {sym-collidine })_{2} \mathrm{PF}_{6}{ }^{-}\right)^{36}$ to provide the desired bromide ${ }^{37}$ (\pm)-98 (Scheme 2.29). The reaction was plagued with a significant amount of electrophilic aromatic bromination, even with careful control of the reaction stoichiometry. Fortunately, lowering the reaction temperature to $-30^{\circ} \mathrm{C}$ enhanced the selectivity and yield. Cleavage of the trifluoroacetamide (TFA) group

Scheme 2.29

was carried out under standard conditions $\left(\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, 84{ }^{\circ} \mathrm{C}\right)$ and followed by spontaneous displacement of the bromide by the newly released secondary amine to give (\pm)-99. Conducting the reaction at lower temperatures $\left(60^{\circ} \mathrm{C}\right)$ minimized the formation of other reaction byproducts.

With epoxide (\pm)-99 in hand, we faced a difficult epoxide opening reaction. From the outset, this transformation presented numerous challenges, many of which we related to the substrate's steric congestion. Amazingly however, epoxide $(\pm)-99$ was found to undergo ring opening in the presence of methylamine, directly providing the desired amino alcohol ($\mathbf{\pm}$)-97, albeit in rather low yield (Scheme 2.30). The structure of $(\pm)-97$ was confirmed by X-ray analysis and represents the synthesis of the core structure of C3-epi citrinadin B (2). Although optimization of this reaction was attempted, using different Lewis acids $\left(\mathrm{LiClO}_{4}, \mathrm{Yb}(\mathrm{OTf})_{3}, \quad \mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}\right)$, and/or other nucleophiles $\left(\mathrm{BnNH}_{2}, \mathrm{H}_{2} \mathrm{NNH}_{2}, \quad \mathrm{BnONH}_{2}\right.$, BnNHAlMe 2), failed to provide any improvement.

Scheme 2.30

2.5

Conclusions

This chapter describes efforts toward the total synthesis of Citrinadin B (2) based upon a $(3+2)$ dipolar cycloaddition strategy. In order to explore the cycloaddition reaction, spiro-oxindole dipolarophile (\pm)-58, was synthesized in 10 steps from aryl iodide 62, via sequential Heck and reductive
enyne cyclization. Similarly, both $(3 R)-(-)$ - and (3S)-(+)-58 could be accessed starting from aryl triflate 73.

Impressively, only two isoxazolidine cycloadducts were formed in a (3+2) cycloaddition reaction between 57 and 58. The minor, mismatched, cycloadduct 56 was found to possess all of the requisite stereochemistry for a synthesis of Citrinadin B (2). The major, matched, cycloadduct (\pm)-87 was epimeric to $(\pm)-\mathbf{5 6}$ at the C 3 spirocenter. Importantly, cycloadduct $\mathbf{5 6}$ could be isolated as the major product when nonracemeic nitrone $(12 S)-(-)-\mathbf{5 7}$ and spiro-oxindole $(3 S)-(+)-\mathbf{5 8}$ were employed.

Using the isoxazolidine cycloadduct (\pm) - $\mathbf{8 7}$, exploratory studies toward the synthesis of Citrinadin B (2) were conducted. A challenging Wittig olefination and reduction of the $\mathrm{N}-\mathrm{O}$ bond provided tethered piperdine $(\pm)-90$ which was successfully elaborated to the ring fusion epoxide $(\pm)-\mathbf{9 9}$. Direct nucleophilic opening of $(\pm)-99$ with methylamine provided the C3-epi-Citrinadin B core $((\pm)-97)$.

2.6 Experimental

Materials and Methods

General. Unless otherwise stated, reactions were magnetically stirred in flame- or oven-dried glassware under an atmosphere of nitrogen. Triethylamine, diisopropylamine, and methanol were dried over calcium hydride and freshly distilled. Benzene, tetrahydrofuran, dichloromethane, toluene, and diethyl ether were dried using a solvent purification system manufactured by SG Water U.S.A., LLC. Anhydrous $\mathrm{CH}_{3} \mathrm{CN}$, DMF, DMSO, acetone, and 1,2-dichloroethane were supplied by Fischer Scientific and purchased from the Colorado State Chemistry Stockroom and kept under a nitrogen atmosphere. All other commercially available reagents were used as received.

Unless otherwise stated, all reactions were monitored by thin-layer chromatography (TLC) using Silicycle glass-backed extra hard layer, $60 \AA$ plates (indicator F-254, $250 \mu \mathrm{~m}$). Column or flash chromatography was performed with the indicated solvents using Silicycle SiliaFlash. P60 (230-400 mesh) silica gel as the stationary phase. All melting points were obtained on a Gallenkamp capillary melting point apparatus (model: MPD350.BM2.1) and are uncorrected. Infrared spectra were obtained using a Nicolet

Avatar 320 FTIR or Bruker Tensor 27 FTIR. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian Inova 500, Varian Inova 400, Varian Inova 400 autosampler, or Varian Inova 300 spectrometer. Chemical shifts (δ) are reported in parts per million (ppm) relative to internal residual solvent peaks from indicated deuterated solvents. Coupling constants (J) are reported in Hertz (Hz) and are rounded to the nearest 0.1 Hz. Multiplicities are defined as: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, quint. $=$ quintuplet, $\mathrm{m}=$ multiplet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{dt}=$ doublet of triplets, $\mathrm{ddd}=$ doublet of doublet of doublets, dddd $=$ doublet of doublet of doublet of doublets, $\mathrm{br}=$ broad, $\mathrm{app}=$ apparent, $\mathrm{par}=$ partial. High resolution mass spectra were performed at the Central Instrument Facility by Donald L. Dick of Colorado State University. Single-crystal X-ray analyses were performed by Susie Miller, Brian Newell, and Stephanie Fielder of Colorado State University.

Preparative Procedures

Preparation of Butyrolactone 47

A mixture of α-bromo- γ-butyrolactone ($180 \mathrm{ml}, 1.95 \mathrm{~mol}$) and triethylphosphite ($386 \mathrm{ml}, 2.15$ mol) was heated to $140^{\circ} \mathrm{C}$ for 3 days, concentrated, and placed under vacuum to provide the crude product ($416 \mathrm{~g}, 96 \%$ yield) which was used directly in the next step.

To a solution of the β-phosphonate ester ($416 \mathrm{~g}, 1.87 \mathrm{~mol}$) in THF (1500 ml) at $0{ }^{\circ} \mathrm{C}$ was added sodium hydride (60% dispersion in mineral oil, $74 \mathrm{~g}, 1.85 \mathrm{~mol}$) in portions. After stirring for 30 minutes, acetone ($275 \mathrm{~mL}, 3.74 \mathrm{~mol}$) was added to the orange mixture. The reaction was stirred at room temperature for 44 hours, quenched with water (250 ml), extracted with EtOAc ($250 \mathrm{ml} \times 5$), washed with water (150 ml) and brine (150 ml), concentrated and purified by distillation (0.6 mmHg ; first fraction $60{ }^{\circ} \mathrm{C}$ (impurities), second fraction $75 \sim 80^{\circ} \mathrm{C}$ (the desired) to provide butyrolactone 47 as a light yellow oil (100 $\mathrm{g}, 41 \%$ yield).

Known compound; CAS 24186-31-0. Characterization data matched literature reports.

Preparation of Iodoanilide 61

To a solution of 2-iodoaniline $\mathbf{6 0}(8.73 \mathrm{~g}, 39.9 \mathrm{mmol})$ in toluene $(100 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ was slowly added $\mathrm{AlMe}_{3}(2.0 \mathrm{M}$ in heptanes, 30 ml$)$. The reaction mixture was stirred at room temperature for 20 min , cooled to $0^{\circ} \mathrm{C}$ and γ-butyrolactone $(7.54 \mathrm{~g}, 59.8 \mathrm{mmol})$ was added in one portion. The reaction mixture was stirred at room temperature for $20 \mathrm{~min}, 110^{\circ} \mathrm{C}$ for 2.5 h , re-cooled to $0^{\circ} \mathrm{C}$ and quenched carefully with 1 N HCl solution (60 ml). The mixture was stirred at room temperature for 30 min , and the aqueous layer was extracted with EtOAc ($60 \mathrm{ml} \times 3$), and the combined organic layers were washed with water, brine, concentrated and purified by flash chromatography ($30 \rightarrow 40 \% \rightarrow 50 \% \mathrm{EtOAc} / \mathrm{hexanes}$) to provide alcohol 61 as a yellowish solid ($12.3 \mathrm{~g}, 89 \%$ yield).
$\mathrm{R}_{f}=0.33$ ($60 \% \mathrm{EtOAc} /$ hexanes); m.p. $95-97{ }^{\circ} \mathrm{C}$ (heptanes); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.28$ (br s, $1 \mathrm{H}, \mathrm{NH}$), $8.02(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 7.73(\mathrm{dd}, J=1.2 \mathrm{~Hz}, 8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 7.27(\mathrm{dd}, J=7.2 \mathrm{~Hz}$, $7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 6.80(\mathrm{ddd}, J=1.2 \mathrm{~Hz}, 7.2 \mathrm{~Hz}, 8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 4.03(\operatorname{app} \mathrm{t}, 1 \mathrm{H}, \mathrm{OH}), 3.71(\mathrm{dd}, J=5.7 \mathrm{~Hz}$, $5.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$), $2.52\left(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right.$), $1.91\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}=\mathrm{CCH}_{3}\right), 1.52(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{C}=\mathrm{CCH}_{3}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.7,138.8,138.2,137.1,129.4,128.8,126.2,123.2,91.0,61.2$, 32.9, 22.8, 20.2; IR (thin film): 3370 (br m), 3227 (br m), 1657 (s), 1581 (s), 1513 (s), 1431 (s), 1302 (s), 748 (s) cm^{-1}; HRMS (ESI) Calcd. for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{INO}_{2}[\mathrm{M}+\mathrm{H}]: 346.0304$. Found: 346.0301.

Preparation of Bis-Protected Anilide 62

TBS Protection:
To a solution of alcohol $\mathbf{6 1}(12.3 \mathrm{~g}, 35.6 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$ was added imidazole ($3.6 \mathrm{~g}, 53.5 \mathrm{mmol}$), DMAP $(436 \mathrm{mg}, 0.356 \mathrm{mmol})$ and $\mathrm{TBSCl}(5.4 \mathrm{~g}, 35.6 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 1.5 h and quenched by saturated NaHCO_{3} solution (40 ml). The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml} \times 2)$, and the combined organic layers were washed with water $(30 \mathrm{ml})$, brine $(30 \mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated to provide 16.7 g of the crude silyl ether as a yellowish oil. For characterization purposes, the oil could be purified by flash chromatography $(5 \rightarrow 10 \% \rightarrow 15 \% \mathrm{EtOAc} /$ hexanes $)$ to provide the silyl alcohol as a colorless oil.
$\mathrm{R}_{f}=0.40(20 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.13(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 8.02$ (br s, 1H, NH), 7.77 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 7.33(\mathrm{dd}, J=7.5 \mathrm{~Hz}, 7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 6.83(\mathrm{dd}, J=7.5 \mathrm{~Hz}$, $7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 3.80\left(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OTBS}\right), 2.64\left(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OTBS}\right), 1.97(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{C}=\mathrm{CCH}_{3}\right), 1.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}=\mathrm{CCH}_{3}\right), 0.85\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.03\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 169.7,138.8,138.4,136.9,129.4,128.9,126.0,123.1,91.0,62.1,33.4,25.8,22.7,20.5,18.2,-$ 5.4; IR (thin film): 3380 (m), 3273 (br m), 1682 (s), 1584 (s), 1504 (s), 1471 (s), 1428 (s), 1297 (s), 1255 (s), 1088 (s), 836 (s), 777 (s), 749 (s) cm^{-1}; HRMS (ESI) Calcd. for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{INO}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]: 460.1169$. Found: 460.1168.

Benzyl Protection:

The crude silyl alcohol (16.7 g) was dissolved in THF (150 ml), cooled to $0^{\circ} \mathrm{C}$, and treated with $\mathrm{NaH}\left(60 \%\right.$ in mineral oil, 2.18 g) in portions. After stirring at $0^{\circ} \mathrm{C}$ for $5 \mathrm{~min}, \mathrm{BnBr}(6.5 \mathrm{ml}, 54.5 \mathrm{mmol})$ was added. The reaction mixture was stirred at room temperature for 40 min and another 2 ml of BnBr was added. After stirring for 20 min , the orange/red colored solution was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$
solution (50 ml). The aqueous layer was extracted with EtOAc ($50 \mathrm{ml} \times 2$), and the combined organic layers were concentrated and purified by flash chromatography ($5 \rightarrow 10 \% \rightarrow 15 \% \mathrm{EtOAc} / \mathrm{hexanes}$) to provide the protected amide 62 as a pale yellowish oil, which solidified upon standing at ambient temperature ($16.2 \mathrm{~g}, 83 \%$ yield, two steps).
$\mathrm{R}_{f}=0.22$ ($10 \% \mathrm{EtOAc} /$ hexanes); m.p. $54-56{ }^{\circ} \mathrm{C}$ (heptanes); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ (two rotamers in $2.3: 1$ ratio For major rotamer: $\delta 7.94(\mathrm{dd}, J=2.0 \mathrm{~Hz}, 10.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 7.27(\mathrm{~m}, 5 \mathrm{H}$, $\mathrm{CH}_{2} \mathbf{P h}$), 7.13 (ddd, $\left.J=1.6 \mathrm{~Hz}, 10.4 \mathrm{~Hz}, 10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}\right), 7.00(\mathrm{ddd}, J=2.0 \mathrm{~Hz}, 10.0 \mathrm{~Hz}, 10.4 \mathrm{~Hz}, 1 \mathrm{H}$, Ar), $6.60(\mathrm{dd}, J=2.0 \mathrm{~Hz}, 10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 5.82\left(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.07(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{Ph}$), 3.73 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OTBS}$), 3.58 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OTBS}$), 2.15 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OTBS}$), 1.71 (br s, 3 H, $\mathrm{C}=\mathrm{CCH}_{3}$), $1.52\left(\mathrm{br} \mathrm{s}, 3 \mathrm{H}, \mathrm{C}=\mathrm{CCH}_{3}\right), 0.94\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.10(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCCH} 3) ;$ ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 60^{\circ} \mathrm{C}$) $\delta 7.61(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 7.24\left(\mathrm{br} \mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathbf{P h}\right), 7.04(\mathrm{br} \mathrm{m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathbf{P h}\right), 6.61(\mathrm{~m}, 2 \mathrm{H}, \mathbf{A r}), 6.43(\mathrm{dd}, J=6.6 \mathrm{~Hz}, 7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 6.00\left(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.12$ (d, $J=13.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), $3.95\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OTBS}\right), 3.82\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OTBS}\right.$), 2.29 (br s, 2 H , $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OTBS}\right), 1.72\left(\mathrm{br} \mathrm{s}, 3 \mathrm{H}, \mathrm{C}=\mathrm{CCH}_{3}\right), 1.34\left(\mathrm{br} \mathrm{s}, 3 \mathrm{H}, \mathrm{C}=\mathrm{CCH}_{3}\right), 1.00\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.14(\mathrm{~s}, 6 \mathrm{H}$, $\left.\operatorname{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 60{ }^{\circ} \mathrm{C}\right) \delta 171.6,144.7,140.8,138.5,134.0,132.5,130.4,129.6$, $129.1,128.88,128.81,128.5,100.0,62.7,51.9,34.3,26.6,23.6,19.6,18.8,-4.7$; IR (thin film): 1646 (s), 1469 (s), 1089 (m) cm ${ }^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{INO}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]$: 550.1638. Found: 550.1626.

Preparation of Aldehyde 63

1. TBAF

THF, $0^{\circ} \mathrm{C}$ to RT
2. Dess-Martin periodinane

62

63

Alcohol Deprotection:

To a solution of silyl ether $\mathbf{6 2}(1.15 \mathrm{~g}, 2.09 \mathrm{mmol})$ in THF $(20 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ was added TBAF (1.0 M in THF, $3.14 \mathrm{ml}, 3.14 \mathrm{mmol}$). The reaction mixture was stirred at room temperature for 2 h and quenched by saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The aqueous layer was extracted with EtOAc and the combined
organic layers were concentrated and purified by flash chromatography $(40 \rightarrow 60 \% \rightarrow 100 \% \mathrm{EtOAc} / \mathrm{hexanes})$ to provide the alcohol as a colorless gum ($788 \mathrm{mg}, 87 \%$ yield $)$.

$$
\left.\mathrm{R}_{f}=0.43 \text { (} 80 \% \mathrm{EtOAc} / \text { hexanes }\right) .
$$

Dess-Martin Oxidation:

To a solution of the alcohol $(788 \mathrm{mg}, 1.81 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(24 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$ was added DessMartin periodinane $(950 \mathrm{mg}, 2.24 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 3 h and quenched by saturated NaHCO_{3} solution. The aqueous layer was extracted with EtOAc and the combined organic layers were concentrated and purified by flash chromatography ($20 \rightarrow 40 \% \rightarrow 60 \% \mathrm{EtOAc} / \mathrm{hexanes}$) to provide aldehyde $\mathbf{6 3}$ as a colorless oil ($710 \mathrm{mg}, 73 \%$ yield), which solidified after storing at $-15^{\circ} \mathrm{C}$.
$\mathrm{R}_{f}=0.48(50 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.86(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO})$, $7.86(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 7.22\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{2} \mathbf{P h}\right), 7.09(\mathrm{dd}, J=7.2 \mathrm{~Hz}, 8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 6.95(\mathrm{dd}, J=7.2$ $\mathrm{Hz}, 8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 6.55(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 5.76\left(\mathrm{dd}, J=2.0 \mathrm{~Hz}, 14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.03(\mathrm{~d}, J=$ $\left.2.0 \mathrm{~Hz}, 14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.05\left(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHO}\right), 2.92\left(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHO}\right)$, $1.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}=\mathrm{CCH}_{3}\right), 1.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}=\mathrm{CCH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 198.7,170.9,142.6,140.3$, $138.9,136.6,131.6,129.9,129.3,128.6,128.3,127.6,122.3,99.2,51.4,44.0,23.1,19.9$; IR (thin film): 1721 (s), 1642 (s), 1469 (s) cm^{-1}; HRMS (ESI) Calcd. for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{INO}_{2}[\mathrm{M}+\mathrm{H}]$: 434.0617. Found: 434.0612.

Preparation of Enone 59

Grignard Addition:

To a solution of aldehyde $\mathbf{6 3}$ ($723 \mathrm{mg}, 1.67 \mathrm{mmol}$, azeotropically dried with toluene) in THF (24 ml) at $0^{\circ} \mathrm{C}$ was added vinylmagnesium bromide (1.0 M in $\mathrm{THF}, 2.0 \mathrm{ml}$). The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 min and quenched by saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The aqueous layer was extracted with EtOAc
and the combined organic layers were concentrated and purified by flash chromatography $(30 \rightarrow 40 \%$ $\rightarrow 50 \% \mathrm{EtOAc} /$ hexanes) to provide the allylic alcohol as a colorless oil ($540 \mathrm{mg}, 70 \%$ yield).
$\mathrm{R}_{f}=0.43(50 \% \mathrm{EtOAc} /$ hexanes $) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 8.13(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~s}$, $1 \mathrm{H}), 7.77(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H})$, $2.64(\mathrm{td}, J=6.4,0.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 169.82,138.92,138.57,137.04,129.50,129.05,126.18,123.29,91.20,62.23,33.58,26.01$, 22.90, 20.65, 18.37, -5.23; IR (thin film): 3370 (br, m), 3227 (br, m), 1657 (s), 1581 (s), 1513 (s), 1431 (s), 1302 (s), 748 (s) cm^{-1}. HRMS (ESI) Calcd. for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{INO}_{2}[\mathrm{M}+\mathrm{H}]: 346.0301$. Found: 346.0304.

Dess-Martin Oxidation:

To a solution of the allylic alcohol ($494 \mathrm{mg}, 1.07 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(24 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$ was added Dess-Martin periodinane ($545 \mathrm{mg}, 1.28 \mathrm{mmol}$). The reaction mixture was stirred at room temperature for 1 h and quenched with saturated NaHCO_{3} solution. The aqueous layer was extracted with EtOAc and the combined organic layers were concentrated and purified by flash chromatography $(30 \% \rightarrow 40 \%$ EtOAc/hexanes) to provide enone $\mathbf{5 9}$ as a pale yellowish oil ($340 \mathrm{mg}, \mathbf{6 9 \%}$ yield).
$\mathrm{R}_{f}=0.52(50 \% \mathrm{EtOAc} /$ hexanes $) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.9(\mathrm{~d}, 1 \mathrm{H}), 7.4 \sim 6.8(\mathrm{~m}, 7 \mathrm{H}), 6.8$ $(\mathrm{d}, 1 \mathrm{H}), 6.56(\mathrm{dd}, 1 \mathrm{H}), 6.47(\mathrm{~d}, 1 \mathrm{H}), 6.23(\mathrm{dd}, 1 \mathrm{H}), 5.80(\mathrm{~d}, 1 \mathrm{H}), 5.73(\mathrm{dd}, 1 \mathrm{H}), 4.07(\mathrm{~d}, 1 \mathrm{H}), 3.27(\mathrm{~d}, 1 \mathrm{H})$, $3.02(\mathrm{~d}, 1 \mathrm{H}), 1.8(\mathrm{~s}, 3 \mathrm{H}), 1.4(\mathrm{~s}, 3 \mathrm{H})$; HRMS (ESI) Calcd. for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{INO}_{2}[\mathrm{M}+\mathrm{H}]: 460.0773$. Found: 460.0767.

Preparation of Enone 67

To a solution of iodo anilide 59 (21 mg , azeotropically dried with toluene) in DMF (2 ml , degassed through freeze-pump-thaw processes) was added $\operatorname{Pd}(\mathrm{OAc})_{2}(3.1 \mathrm{mg}, 0.0137 \mathrm{mmol})$, anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(15.8 \mathrm{mg}, 0.114 \mathrm{mmol})$ and $n \mathrm{Bu}_{4} \mathrm{NCl}(12.7 \mathrm{mg}, 0.0457 \mathrm{mmol})$. The reaction mixture was stirred at
room temperature for 16 h , quenched with water and extracted with EtOAc. The combined organic layers were washed with water, brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated and purified by flash chromatography $(20 \% \rightarrow 30 \% \rightarrow 40 \%$ EtOAc/hexanes) to provide enone $\mathbf{6 7}$ as a colorless oil ($5 \mathrm{mg}, 33 \%$ yield).
$\mathrm{R}_{f}=0.54(40 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{2} \mathbf{P h}\right), 7.15$ (ddd, $J=1.2 \mathrm{~Hz}, 7.5 \mathrm{~Hz}, 7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{P h}), 7.09(\mathrm{dd}, J=1.2 \mathrm{~Hz}, 7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{P h}), 6.97(\mathrm{ddd}, J=0.9 \mathrm{~Hz}, 7.5 \mathrm{~Hz}$, $7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{P h}), 6.73(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{P h}), 6.23\left(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}=\mathbf{C H}\right), 6.20(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CH}=\mathbf{C H}_{2}\right), 5.77\left(\mathrm{dd}, J=2.1 \mathrm{~Hz}, 9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathbf{C H}_{2}\right), 5.15\left(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{C H}_{2} \mathrm{Ph}\right), 5.02(\mathrm{~d}, J=0.9$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{C}=\mathbf{C H}_{2}\right), 4.97\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{C}=\mathbf{C H}_{2}\right), 4.85\left(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{C H}_{2} \mathrm{Ph}\right), 3.54\left(\mathrm{~s}, 1 \mathrm{H}, \mathbf{C H}_{\mathbf{2}} \mathrm{CO}\right), 3.53(\mathrm{~s}$, $1 \mathrm{H}, \mathbf{C H}_{2} \mathrm{CO}$), $1.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.1,177.8,143.9,143.3,136.2$, $135.9,131.0,128.7,128.6,128.1,127.4,127.3,123.1,122.3,113.3,109.2,77.2,54.5,44.3,19.3$; IR (thin film): 1713 (s), 1612 (m), 1489 (m), 1357 (m) cm ${ }^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NNaO}_{2}$ [M+Na]: 354.1470. Found: 354.1464.

Preparation of Oxindole 70

To a solution of the iodo anilide $\mathbf{6 2}(3.19 \mathrm{~g}, 5.80 \mathrm{mmol})$ in toluene (84 ml , degassed through freeze-pump-thaw processes, three times) at room temperature was added $\operatorname{Pd}(\mathrm{OAc})_{2}(130 \mathrm{mg}, 0.58 \mathrm{mmol})$, $\mathrm{PPh}_{3}(457 \mathrm{mg}, 1.74 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(4.05 \mathrm{ml}, 29.0 \mathrm{mmol})$ successively. The reaction mixture was stirred at room temperature for $20 \mathrm{~min}, 110{ }^{\circ} \mathrm{C}$ for 4 h , directly concentrated in vacuo and purified by flash chromatography ($5 \% \rightarrow 10 \% \mathrm{EtOAc} /$ hexanes) to provide oxindole 70 as a colorless oil ($2.35 \mathrm{~g}, 96 \%$ yield). $\mathrm{R}_{f}=0.37$ (10% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{2} \mathbf{P h}\right), 7.17(\mathrm{~m}$, $2 \mathrm{H}, \mathbf{A r}), 7.06(\mathrm{dd}, J=7.5 \mathrm{~Hz}, 7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 6.77(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 5.09(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH} 2), 5.06$ (br s, 1H, C=CH2 $), 5.01\left(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.90\left(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.48$ (ddd, $J=6.6$ $\left.\mathrm{Hz}, 9.3 \mathrm{~Hz}, 9.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OTBS}\right), 3.30$ (ddd, $J=4.8 \mathrm{~Hz}, 9.0 \mathrm{~Hz}, 9.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OTBS}$), 2.55 (ddd, $J=$ 6.6 Hz, $\left.9.3 \mathrm{~Hz}, 13.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OTBS}\right), 2.30\left(\mathrm{ddd}, J=4.8 \mathrm{~Hz}, 9.0 \mathrm{~Hz}, 13.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OTBS}\right)$,
$1.61\left(\mathrm{~s}, 3 \mathrm{H}, \mathbf{C C H}_{3}\right), 0.90\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathbf{C H}_{3}\right)_{3}\right),-0.93\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right),-0.96\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.4,143.3,142.6,135.7,130.9,128.4,127.6,127.2,127.0,123.5,122.1,112.7,108.6$, $59.2,55.6,43.5,37.1,25.5,19.1,17.9,-5.82,-5.87$; IR (thin film): 1713 (s), 1466 (s) $\mathrm{cm}^{-1} ;$ HRMS (ESI) Calcd. for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{NNaO}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]$: 444.2335. Found: 444.2335.

Phenol-alcohol 69

To a solution of the aniline $71(2.82 \mathrm{~g}, 12.6 \mathrm{mmol})$ in toluene $(50 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$ was added AlMe_{3} (2.0 M in toluene, $12.6 \mathrm{ml}, 25.2 \mathrm{mmol}$). After stirring at room temperature for 20 min , the solution was cooled to $0^{\circ} \mathrm{C}$ and treated with the γ-lactone $(2.4 \mathrm{~g}, 18.9 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 3.5 h , cooled to $0{ }^{\circ} \mathrm{C}$, and slowly quenched with saturated NaHCO_{3} solution (40 ml) and saturated Rochelle solution (40 ml). The mixture was stirred for 1 h , extracted with EtOAc, and the combined organic layers were washed with brine, and concentrated in vacuo. The crude material was triturated with $20 \% \mathrm{EtOAc} /$ hexanes $(40 \mathrm{ml})$. The white precipitate was collected on a fritted funnel to provide the first crop of the product. The mother liquid was concentrated and purified by flash chromatography $(20 \rightarrow 30 \% \rightarrow 40 \% \mathrm{EtOAc} /$ hexanes $)$ to provide the second crop of $\mathbf{7 2}$. ($4.3 \mathrm{~g}, 97 \%$ yield).
$\mathrm{R}_{f}=0.14\left(30 \%\right.$ EtOAc/hexanes); mp $82-87{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.40(\mathrm{~m}$, $1 \mathrm{H}, \mathbf{A r}), 7.94(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 6.89(\mathrm{~m}, 2 \mathrm{H}, \mathbf{A r}), 6.84(\mathrm{~m}, 1 \mathrm{H}, \mathbf{A r}), 3.77(\mathrm{dt}, J=5.7 \mathrm{~Hz}, 5.7 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 3.44(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 2.56\left(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CCH}_{2}\right), 1.92\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}=\mathrm{CCH}_{3}\right), 1.81(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{C}=\mathrm{CCH}_{3}\right), 1.01\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.28\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.2,143.9$, $135.1,130.3,129.2,123.6,121.5,120.0,117.3,61.4,33.2,25.6,22.6,19.8,18.1,-4.3$; IR (thin film): 3411 (s), 3273 (br s), 1649 (s), 1596 (s), 1521 (s), 1451 (s) cm ${ }^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{NO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]$: 350.2152. Found: 350.2151 .

Preparation of Aryl Triflate 73

TBS Protection:
To a solution of alcohol $72(14.4 \mathrm{~g}, 41.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{ml})$ at room temperature was added imidazole ($4.21 \mathrm{~g}, 61.8 \mathrm{mmol}$), DMAP ($252 \mathrm{mg}, 2.06 \mathrm{mmol}$) and TBSCl ($6.21 \mathrm{~g}, 41.2 \mathrm{mmol}$). The reaction mixture was stirred at room temperature for 45 min and quenched with saturated NaHCO_{3} solution $(80 \mathrm{ml})$. The mixture was extracted with EtOAc ($60 \mathrm{ml} \times 2$), concentrated in vacuo and purified by flash chromatography $(5 \% \rightarrow 7.5 \% \mathrm{EtOAc} /$ hexanes $)$ to provide the desired product as a colorless oil $(17.7 \mathrm{~g}, 93 \%$ yield).
$\mathrm{R}_{f}=0.37(10 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.41(\mathrm{~m}, 1 \mathrm{H}, \mathbf{A r}), 7.84(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, $\mathrm{NH}), 6.96(\mathrm{~m}, 2 \mathrm{H}, \mathbf{A r}), 6.83(\mathrm{~m}, 1 \mathrm{H}, \mathbf{A r}), 3.73\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 2.59(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CCH}_{2}\right), 1.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}=\mathrm{CCH}_{3}\right), 1.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}=\mathrm{CCH}_{3}\right), 1.02\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.87\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $0.28\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.04\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right),{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.4,143.8,134.5,130.1$, $129.6,123.2,121.5,120.0,117.2,61.9,33.9,25.7,25.5,22.4,19.9,18.1,17.9,-4.5,-5.5$; IR (thin film): 3426 (s), 1678 (s), 1596 (s), 1514 (s), 1448 (s), 1257 (s) cm ${ }^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{25} \mathrm{H}_{46} \mathrm{NO}_{3} \mathrm{Si}_{2}$ $[\mathrm{M}+\mathrm{H}]: 464.3016$. Found: 464.3024 .

Benzyl Protection:

To a solution of the anilide $(2.3 \mathrm{~g}, 4.96 \mathrm{mmol})$ in THF $(50 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{NaH}(60 \%$ in mineral oil, $375 \mathrm{mg}, 9.38 \mathrm{mmol}$). After stirring at $0^{\circ} \mathrm{C}$ for 10 min , benzyl bromide ($1.18 \mathrm{ml}, 9.92 \mathrm{mmol}$) was added. The reaction mixture was stirred at $65^{\circ} \mathrm{C}$ for 40 min , cooled to $0^{\circ} \mathrm{C}$, and carefully quenched with saturated NaHCO_{3} solution. The mixture was extracted with EtOAc, and the combined organic layers were concentrated in vacuo and purified by flash chromatography $(5 \% \rightarrow 10 \% \rightarrow 15 \% \rightarrow 20 \%$ EtOAc/hexanes) to provide the benzyl amide as a pale yellow oil ($1.7 \mathrm{~g}, 62 \%$ yield $)$.
$\mathrm{R}_{f}=0.32\left(10 \%\right.$ EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.42\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathbf{P h}\right), 7.08(\mathrm{~m}, 3 \mathrm{H}$, $\mathrm{CH}_{2} \mathbf{P h}$), $6.86(\mathrm{ddd}, J=1.8 \mathrm{~Hz}, 7.5 \mathrm{~Hz}, 7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 6.75(\mathrm{~m}, 2 \mathrm{H}, \mathbf{A r}), 6.51(\mathrm{ddd}, J=1.2 \mathrm{~Hz}, 7.5 \mathrm{~Hz}$, $7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 6.22\left(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.17\left(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.00(\operatorname{app~q}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OTBS}$), $3.80\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OTBS}\right), 2.31\left(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{OTBS}\right), 1.76$ (br s, $\left.3 \mathrm{H}, \mathrm{C}=\mathrm{CCH}_{3}\right), 1.35\left(\mathrm{br} \mathrm{s}, 3 \mathrm{H}, \mathrm{C}=\mathrm{CCH}_{3}\right), 1.09\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.00\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.31(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta$ $172.2,151.8,139.3,133.0,132.8,132.1,130.0,129.3,128.9,127.9,120.9,119.0$, (one aromatic carbon overlapping with $\mathrm{C}_{6} \mathrm{D}_{6}$), 62.6, 51.3, 34.1, 26.6, 26.3, 23.1, 19.3, 18.8, 18.7, -3.5, -4.0, -4.8; IR (thin film): 1644 (s), 1498 (s) cm ${ }^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{32} \mathrm{H}_{52} \mathrm{NO}_{3} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]: 554.3485$. Found: 554.3487.

Phenol Deprotection:

To a solution of the silylated phenol $(2.7 \mathrm{~g}, 4.88 \mathrm{mmol})$ in THF $(60 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ was added TBAF (1.0 M in THF, 4.88 ml). The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 3 min and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The mixture was extracted with EtOAc and the combined organic layers were concentrated in vacuo and purified by flash chromatography $(10 \% \rightarrow 20 \% \rightarrow 30 \% \mathrm{EtOAc} / \mathrm{hexanes})$ to provide the desired product as a slightly yellowish oil ($1.7 \mathrm{~g}, 79 \%$ yield).
$\mathrm{R}_{f}=0.32$ ($10 \% \mathrm{EtOAc} /$ hexanes $) ; \mathrm{mp} 149-152$ ($20 \% \mathrm{EtOAc} / \mathrm{Hexanes}$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ (two rotamers in $3: 1$ ratio) For major rotamer: $\delta 8.30(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 7.38(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 7.07$ (m, 5H, CH2Ph), $6.92(\mathrm{dd}, J=7.2 \mathrm{~Hz}, 7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 6.61(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathbf{A r}), 6.45(\mathrm{ddd}, J=1.2 \mathrm{~Hz}$, $7.8 \mathrm{~Hz}, 7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 5.96\left(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.18$ (br s, 1H, CH2Ph), 3.94 (m, 2H, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OTBS}$), $2.32\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OTBS}\right.$), $1.79\left(\mathrm{br} \mathrm{s}, 3 \mathrm{H}, \mathrm{C}=\mathrm{CCH}_{3}\right.$), $1.29\left(\mathrm{br} \mathrm{s}, 3 \mathrm{H}, \mathrm{C}=\mathrm{CCH}_{3}\right), 1.03$ (br s, $\left.9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.22$ (br s, $\left.6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ (two rotamers in $3: 1$ ratio) For major rotamer: $\delta 173.6,153.8,138.9,133.2,131.0,130.1,129.9,129.4,129.0,128.3,128.0,119.8$, $118.0,63.4,51.7,33.3,26.7,23.3,19.5,19.2,-4.6,-4.9$; IR (thin film): 3165 (br s), 1614 (s), 1584 (s), 1460 (s), 1089 (s) cm ${ }^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{NO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]: 440.2621$. Found: 440.2623.

Phenol Triflation:

To a solution of the phenol $(2.1 \mathrm{~g}, 4.78 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(45 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$ was added pyridine $(1.16$ $\mathrm{ml}, 14.3 \mathrm{mmol})$ and triflic anhydride ($1.21 \mathrm{ml}, 7.16 \mathrm{mmol}$). The dark reaction mixture was stirred at room temperature for 25 min and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The mixture was extracted with EtOAc, the combined organic layers were concentrated in vacuo and purified by flash chromatography $(10 \% \rightarrow 15 \% \mathrm{EtOAc} / \mathrm{hexanes})$ to provide 73 as a pale yellow oil ($2.4 \mathrm{~g}, 88 \%$ yield).
$\mathrm{R}_{f}=0.37\left(20 \%\right.$ EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.31\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathbf{P h}\right), 7.12 \sim 6.95$ $\left(\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathbf{P h}\right), 6.68(\mathrm{~m}, 1 \mathrm{H}, \mathbf{A r}), 6.57(\mathrm{~m}, 2 \mathrm{H}, \mathbf{A r}), 6.46(\mathrm{~m}, 1 \mathrm{H}, \mathbf{A r}), 6.12\left(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right)$, 4.05 (d, $\left.J=14.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.92\left(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OTBS}\right), 2.37\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OTBS}\right)$, $1.65\left(\mathrm{br} \mathrm{s}, 3 \mathrm{H}, \mathrm{C}=\mathrm{CCH}_{3}\right), 1.29\left(\mathrm{br} \mathrm{s}, 3 \mathrm{H}, \mathrm{C}=\mathrm{CCH}_{3}\right), 1.02\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.15\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) (two rotamers in 2.3:1 ratio) For major rotamer: $\delta 171.6,145.5,138.3,135.1,131.6$, $129.5,129.1,128.8,128.6,128.2,127.9,125.28\left(C \mathrm{~F}_{3}\right), 121.03\left(C \mathrm{~F}_{3}\right), 116.80\left(C \mathrm{~F}_{3}\right), 112.55\left(C \mathrm{~F}_{3}, J=319\right.$ Hz), 121.9, 121.2, 62.4, 52.0, 34.4, 26.1, 22.9, 19.3, 18.4, -5.2; IR (thin film): 1652 (s), 1414 (s), 1249 (s), 1217 (s), 1140 (s) cm^{-1}; HRMS (ESI) Calcd. for $\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{~F}_{3} \mathrm{NO}_{5} \mathrm{SSi}[\mathrm{M}+\mathrm{H}]$: 572.2114. Found: 572.2120.

Preparation of Asymmetric Oxindoles (+)- and (-)-70

Conditions	Yield	ee
$\mathrm{Pd}_{2}(\mathrm{dba})_{3},(+)$-BINAP, PMP	$85 \%(-)-70$	65%
$\mathrm{DMA}, 110^{\circ} \mathrm{C}, 20 \mathrm{~h}$		
$\mathrm{Pd}(\mathrm{dba})_{3},(-)-$-BINAP, PMP	$96 \%(+)-70$	80%
$\mathrm{DMA}, 110^{\circ} \mathrm{C}, 20 \mathrm{~h}$		

(-)-70 From (+)-BINAP:
To a solution of the aryl triflate $73(81 \mathrm{mg}, 0.142 \mathrm{mmol})$ in DMA (4 ml , degassed through freeze-pump-thaw processes, three times) was added $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(7.3 \mathrm{mg}, 0.00708 \mathrm{mmol}),(+)$-BINAP $(13.2$ $\mathrm{mg}, 0.0213 \mathrm{mmol}$) and $1,2,2,5,5$-pentamethylpiperidine ($120 \mu 1,0.708 \mathrm{mmol}$). The orange mixture was stirred at room temperature for 40 minutes, $110^{\circ} \mathrm{C}$ for 19 h , cooled to room temperature and quenched with water. The mixture was extracted with EtOAc, the combined organic layers were washed with brine, concentrated in vacuo and purified by flash chromatography ($5 \% \rightarrow 7.5 \% \mathrm{EtOAc} /$ hexanes) to provide (-)-70 as a colorless oil ($51 \mathrm{mg}, 85 \%$ yield).
${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ NMR data matched the racemic sample. $[\alpha]_{\mathrm{D}}=$ not determined. 67% ee by HPLC.
(+)-70 From (-)-BINAP:
To a solution of the aryl triflate $73(425 \mathrm{mg}, 0.743 \mathrm{mmol})$ in DMA (12 ml , degassed through freeze-pump-thaw processes, three times) was added $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(34 \mathrm{mg}, 0.0372 \mathrm{mmol}),(-)$-BINAP $(51 \mathrm{mg}$, 0.0818 mmol) and $1,2,2,5,5$-pentamethylpiperidine ($672 \mu \mathrm{l}, 3.72 \mathrm{mmol}$). The reaction flask was evacuated and refilled with N_{2} for three times. The dark reaction mixture was stirred at room temperature for 40 min , $110{ }^{\circ} \mathrm{C}$ for 20 h , cooled to room temperature and quenched with water. The mixture was extracted with EtOAc, the combined organic layers were washed with brine, concentrated in vacuo and purified by flash chromatography $(5 \% \rightarrow 7.5 \% \mathrm{EtOAc} /$ hexanes $)$ to provide (+)-70 as a colorless oil ($300 \mathrm{mg}, 96 \%$ yield).
${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ NMR data matched the racemic sample. $[\alpha]_{\mathrm{D}}{ }^{23}=+9.0\left(\mathrm{c} 2.2, \mathrm{CHCl}_{3}\right) .80 \%$ ee by HPLC.

Preparation of Aldehyde 74

Alcohol Deprotection:

To a solution of the silyl ether $70(2.35 \mathrm{~g}, 5.57 \mathrm{mmol})$ in THF $(40 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ was added TBAF (1.0 M in $\mathrm{THF}, 8.4 \mathrm{ml}$). The reaction mixture was stirred at room temperature for 75 min and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (15 ml). The volatile was evaporated in vacuo and the residue was extracted with $\mathrm{EtOAc}(25 \mathrm{ml} \times 3)$, washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to provide the alcohol as a yellowish oil (3.07 g), which was used in the next step without further purification. For characterization purpose, the crude mixture was purified by flash chromatography $(30 \% \rightarrow 50 \% \mathrm{EtOAc} / \mathrm{hexanes})$ to provide the pure alcohol as a colorless oil, which solidifies to colorless crystals upon standing at ambient temperature.
$\mathrm{R}_{f}=0.20\left(40 \%\right.$ EtOAc/hexanes); mp 89-91 ${ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexanes $) .{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.29\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{2} \mathbf{P h}\right), 7.14(\mathrm{dd}, J=7.6 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{P h}), 7.09(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{P h}), 7.00(\mathrm{dd}, J=7.6$ $\mathrm{Hz}, 7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{P h}), 6.72(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{P h}), 5.04\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{C}=\mathbf{C H}_{2}\right), 5.02\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{C}=\mathbf{C H}_{2}\right), 4.96(\mathrm{~d}$, $\left.J=15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{C H}_{2} \mathrm{Ph}\right), 4.81\left(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{C H}_{2} \mathrm{Ph}\right), 3.41\left(\mathrm{~m}, 2 \mathrm{H}, \mathbf{C H}_{2} \mathbf{O T B S}\right), 2.50(\mathrm{ddd}, J=7.2$ $\mathrm{Hz}, 7.2 \mathrm{~Hz}, 14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{CH}_{2}$), 2.33 (br s, $1 \mathrm{H}, \mathbf{O H}$), $2.20(\mathrm{ddd}, J=6.4 \mathrm{~Hz}, 6.4 \mathrm{~Hz}, 14.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CCH}_{2} \mathrm{CH}_{2}\right), 1.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 178.7, 143.0, 142.8, 135.8, 131.2, 128.7, $128.1,127.5,127.3,123.6,122.6,113.4,109.2,59.1,56.3,43.9,37.2,19.5$; IR (thin film): 3421 (br, s), 1707 (s), 1610 (s), 1487 (s), 1466 (s) cm ${ }^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{2}$ [M+H]: 308.1651. Found: 308.1649. $(+)-70 \rightarrow(+)$-Alcohol : $[\alpha]_{\mathrm{D}}{ }^{23}=+25.9$ (c 1.8, CHCl_{3}); $\sim 80 \%$ ee.

Swern Oxidation:

To a solution of DMSO ($2.51 \mathrm{ml}, 35.4 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{ml})$ at $-78{ }^{\circ} \mathrm{C}$ was added oxalyl chloride ($1.50 \mathrm{ml}, 17.7 \mathrm{mmol}$) dropwise. After stirring at $-78^{\circ} \mathrm{C}$ for 20 min , a solution of the crude alcohol $(2.72 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ was added (plus 20 ml of rinse) followed by the addition of $\mathrm{Et}_{3} \mathrm{~N}(6.2 \mathrm{ml}, 44.2$ mmol). The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h , warmed to room temperature over 40 min and quenched with saturated NaHCO_{3} solution $(40 \mathrm{ml})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{ml} \times$ 2), and the combined organic layers were washed with water $(20 \mathrm{ml})$, brine $(20 \mathrm{ml})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to give the crude aldehyde as a yellowish oil (2.4 g). This crude mixture was used in the next step without further purification. For characterization purpose, the crude mixture was purified by flash chromatography ($20 \% \rightarrow 30 \% \mathrm{EtOAc} /$ hexanes) to provide pure aldehyde 74 as a pale yellow oil.
$\mathrm{R}_{f}=0.50$ (20\% EtOAc/benzene); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.56(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHO}), 7.35-7.22$ (m, 5H, CH2 CH_{2}), 7.16 (ddd, $J=1.2 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{P h}$), 7.09 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{P h}$), 7.00 (ddd, J $=1.2 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{P h}), 6.75(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{P h}), 5.06\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right), 5.03(\mathrm{AB}$ system, $\left.\mathrm{d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.99\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right), 4.86\left(\mathrm{AB}\right.$ system, d, $\left.J=16.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathbf{2}} \mathrm{Ph}\right), 3.22$ (dd, $J=1.2 \mathrm{~Hz}, 16.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHO}$), 3.12 (dd, $J=1.2 \mathrm{~Hz}, 16.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHO}$), 1.62 ($\mathrm{s}, 3 \mathrm{H}$, $\left.\mathrm{CCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 198.8,177.1,143.0,142.4,135.7,130.4,128.7,128.5,127.6$, 127.3, 123.5, 122.8, 113.9, 109.4, 54.2, 47.7, 44.1, 19.2; IR (thin film): 1715 (s), 1705 (s), 1609 (s), 1488
(s), 1466 (s), 1359 (s) cm^{-1}; HRMS (ESI) Calcd. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]$: 306.1494. Found: 306.1489.
$(+)$-Alcohol $\rightarrow(+)-74:[\alpha]_{\mathrm{D}}^{23}=+4.0\left(\mathrm{c} 2.3, \mathrm{CHCl}_{3}\right), \sim 80 \%$ ee.

Preparation of Enynes 68a/b

Grignard Addition:

To a solution of the crude aldehyde (\pm)-74 (2.4 g , azeotropically dried with toluene) in THF (50 ml) at $0^{\circ} \mathrm{C}$ was added ethynylmagnesium bromide $(0.5 \mathrm{M}$ in $\mathrm{THF}, 31 \mathrm{ml})$. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min and quenched by saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (30 ml). The aqueous layer was extracted with $\operatorname{EtOAc}(30 \mathrm{ml} \times 2)$, and the combined organic layers were washed with brine (20 ml), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to provide the crude propargylic alcohol $(2.0 \mathrm{~g})$ as a mixture of diastereomers $(\mathrm{dr}=1.5: 1)$, which was used in the next step without further purification. For characterization purposes, the crude mixture was purified by flash chromatography $(20 \% \rightarrow 25 \% \rightarrow 30 \% \mathrm{EtOAc} /$ hexanes $)$ to provide the $\beta-\mathrm{OH}$ diastereomer (a) as a colorless solid and $\alpha-\mathrm{OH}$ diastereomer (b) as a colorless oil.
β-OH diastereomer (a): $\mathrm{R}_{f}=0.40(20 \% \mathrm{EtOAc} / \mathrm{benzene}) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34(\mathrm{~m}$, $5 \mathrm{H}, \mathrm{CH}_{2} \mathbf{P h}$), 7.19 (ddd, $J=1.5 \mathrm{~Hz}, 7.5 \mathrm{~Hz}, 7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{P h}$), 7.12 (dd, $J=1.5 \mathrm{~Hz}, 7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{P h}$), 7.04 (ddd, $J=0.9 \mathrm{~Hz}, 7.2 \mathrm{~Hz}, 7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{P h}), 6.74(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{P h}), 5.03\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right), 5.01$ (br s, $\left.1 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right), 5.00\left(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.82\left(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.99(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOH})$, $2.84\left(\mathrm{dd}, J=11.1 \mathrm{~Hz}, 14.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{CH}\right), 2.47\left(\mathrm{dd}, J=3.0 \mathrm{~Hz}, 14.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{CH}\right), 2.40(\mathrm{~d}, J=$ $2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \equiv \mathrm{CH}), 1.80(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 1.67\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $178.4,143.64,143.60,135.9,129.8,128.6,128.3,127.4,127.3,123.9,122.4,113.2,109.4,84.5,72.7$, 59.5, 55.9, 44.1, 42.3, 19.4; IR (thin film): 3406 (s), 1701 (s), 1610 (s), 1488 (s), 1466 (s) cm^{-1}; HRMS (ESI) Calcd. for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]$: 332.1651. Found: 332.1652 .
$\alpha-\mathrm{OH}$ diastereomer (b): $\mathrm{R}_{f}=0.33$ ($20 \% \mathrm{EtOAc} /$ benzene); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.25$ $\left(\mathrm{m}, 6 \mathrm{H}, \mathbf{P h}, \mathrm{CH}_{2} \mathbf{P h}\right), 7.20(\mathrm{dd}, J=6.8 \mathrm{~Hz}, 6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{P h}), 7.06(\mathrm{dd}, J=7.6 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{P h}), 6.77(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{P h}), 5.12\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right), 5.08\left(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.80(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.62(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOH}), 3.62(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 2.72\left(\mathrm{dd}, J=3.6 \mathrm{~Hz}, 14.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{CH}\right)$, $2.41(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \equiv \mathrm{CH}), 2.29\left(\mathrm{dd}, J=8.4 \mathrm{~Hz}, 14.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{CH}\right), 1.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 178.8,142.2,141.9,135.4,131.4,128.8,128.4,127.7,127.3,123.7,122.9$, $114.4,109.5,84.3,72.8,59.7,56.7,44.0,42.3,19.7$; IR (thin film): 3406 (br m), 3293 (br m), 1705 (s), 1610 (s). HRMS (ESI) not obtained.

TBS Protection:

A mixture of the crude propargylic alcohol (2.0 g), imidazole ($822 \mathrm{mg}, 12.1 \mathrm{mmol}$) and DMAP ($369 \mathrm{mg}, 3.02 \mathrm{mmol}$) was azeotropically dried with toluene (3 ml), dissolved in DMF (50 ml) and treated with $\mathrm{TBSCl}(1.09 \mathrm{~g}, 7.24 \mathrm{mmol})$. The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 15 h and quenched with water $(20 \mathrm{ml})$. The mixture was extracted with $\operatorname{EtOAc}(50 \mathrm{ml} \times 3)$ and the combined organic layers were washed with water, brine, concentrated in vacuo and purified by flash chromatography (hexanes $\rightarrow 2.5 \% \rightarrow 5 \% \rightarrow 10 \%$ EtOAc/hexanes) to provide the β-OTBS diastereomer 68a (1.12 g) as a colorless oil and α - OH diastereomer $\mathbf{6 8 b}(748 \mathrm{mg})$ as a colorless oil (85% combined yield, four steps).
β-OTBS diastereomer (68a): $\mathrm{R}_{f}=0.38\left(10 \%\right.$ EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.32~7.18 (m, 7H, CH2 $\mathbf{P h}, \mathbf{P h}$), 7.01 (ddd, $J=0.9 \mathrm{~Hz}, 7.5 \mathrm{~Hz}, 7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{P h}), 6.71(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$, Ph), $5.20\left(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{C H}_{2} \mathrm{Ph}\right), 4.97\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{C}=\mathbf{C H}_{2}\right), 4.93\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{C}=\mathbf{C H}_{2}\right), 4.61(\mathrm{~d}, J=15.6$ $\mathrm{Hz}, 1 \mathrm{H}, \mathbf{C H}_{2} \mathrm{Ph}$), 4.24 (ddd, $\left.J=2.1 \mathrm{~Hz}, 6.3 \mathrm{~Hz}, 7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{C H O T B S}\right), 2.79$ (dd, $J=7.5 \mathrm{~Hz}, 13.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathbf{C C H}_{2} \mathrm{CH}\right), 2.45\left(\mathrm{dd}, J=6.3 \mathrm{~Hz}, 13.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{C C H}_{2} \mathrm{CH}\right), 2.11(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \equiv \mathbf{C H}), 1.70(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathbf{C C H}_{3}\right), 0.84\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathbf{C H}_{3}\right)_{3}\right), 0.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right),-0.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{\mathbf{3}}\right) ;{ }^{13} \mathbf{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $176.9,144.1,143.3,135.9,130.3,128.5,127.9,127.3,127.2,124.6,122.0,112.9,108.9,84.6,73.2,60.1$, $55.8,43.8,42.7,25.9,19.5,18.2,-4.4,-4.7$; IR (thin film): 1716 (s), 1488 (s), 1466 (s) cm^{-1}; HRMS (ESI) Calcd. for $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{NO}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]: 446.2515$. Found: 446.2567. (+)-74 $\rightarrow(-)-68 \mathrm{a}:[\alpha]_{\mathrm{D}}{ }^{23}=-2.2(\mathrm{c} 1.8$, $\left.\mathrm{CHCl}_{3}\right), \sim 80 \%$ ee.
α-OTBS diastereomer (68b): $\mathrm{R}_{f}=0.29(10 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33$ (m, 5H, CH2Ph), 7.18 (ddd, $J=1.2 \mathrm{~Hz}, 7.5 \mathrm{~Hz}, 7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{P h}), 7.13(\mathrm{dd}, J=1.2 \mathrm{~Hz}, 7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{P h})$, 7.03 (ddd, $J=1.5 \mathrm{~Hz}, 7.5 \mathrm{~Hz}, 7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{P h}), 6.75(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{P h}), 5.15(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathbf{C H}_{2} \mathrm{Ph}$), $5.00\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{C}=\mathbf{C H}_{2}\right), 4.97\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{C}=\mathbf{C H}_{2}\right), 4.61\left(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{C H}_{2} \mathrm{Ph}\right), 4.04(\mathrm{ddd}, J=$ $2.1 \mathrm{~Hz}, 5.4 \mathrm{~Hz}, 7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOTBS}), 2.74\left(\mathrm{dd}, J=7.8 \mathrm{~Hz}, 13.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{CH}\right), 2.48(\mathrm{dd}, J=5.4 \mathrm{~Hz}$, $\left.13.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{CH}\right), 2.27(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \equiv \mathbf{C H}), 1.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right), 0.80\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathbf{C H}_{3}\right)_{3}\right),-$ $0.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right),-0.13\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 177.0, 143.9, 143.2, 136.0, 130.6, 128.6, 128.1, 127.51, 127.48, 124.2, 122.3, 113.0, 109.1, 84.6, 73.4, 60.0, 55.8, 43.9, 42.9, 25.7, 19.5, 18.0, -4.7, -5.2; IR (thin film): 2105 (w), 1715 (s), 1611 (s), 1488 (s), 1466 (s), 1080 (s) cm^{-1}. HRMS (ESI) Not Obtained. (+)-74 $\rightarrow(-)-\mathbf{6 8 b}:[\alpha]_{\mathrm{D}}{ }^{23}=-12.4\left(\mathrm{c} 2.2, \mathrm{CHCl}_{3}\right), \sim 80 \%$ ee

Preparation of Silyl-Allylic Alcohol 78a

A mixture of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4.5 \mathrm{mg}, 0.005 \mathrm{mmol})$ and tri(o-tolyl)phosphine $(3 \mathrm{mg}, 0.010$ mmol) was dissolved in toluene (1 ml , degassed through freeze-pump-thaw process). After stirring at ambient temperature for 2 minutes, PMHS $(\sim 15 \mu \mathrm{l})$ and acetic acid $(2.8 \mu \mathrm{l})$ was added. After 2 minutes, a solution of enyne $\mathbf{6 8 a}(11 \mathrm{mg}, 0.0247 \mathrm{mmol}$, azeotroped in PhMe$)$ in $\mathrm{PhMe}(1 \mathrm{ml})$ was added. The reaction mixture was stirred at ambient temperature for 80 minutes, concentrated, and purified by flash chromatography ($5 \% 7.5 \% 10 \% \mathrm{EtOAc} /$ hexanes $)$. Only the reduced alkyne 78a was obtained ($7 \mathrm{mg}, 63 \%$ yield).
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 7.35-7.24(\mathrm{~m}, 6 \mathrm{H}), 7.14(\mathrm{td}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{ddd}, J=$ $7.4,1.4,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{td}, J=7.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{ddd}, J=17.2,10.0,7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~m}, 2 \mathrm{H}), 4.64(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{ddd}, J=12.2,1.7,0.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.51(\mathrm{ddd}, J=5.3,1.7,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~m}, 1 \mathrm{H}), 2.63(\mathrm{dd}, J=13.6,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{dd}, J=$
13.6, $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}),-0.08(\mathrm{~s}, 3 \mathrm{H}),-0.09(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $177.60,144.72,143.48,141.08,136.41,131.39,128.81,127.98,127.81,127.72,124.62,122.22,113.79$, $112.90,108.94,72.18,55.99,43.96,43.09,26.05,19.54,18.26,-4.07,-4.49$; IR (thin film): 1713 (s), 1487 (s), 1466 (s), $835(\mathrm{~s}) \mathrm{cm}^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{NNaO}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]: 470.2491$. Found: 470.2481.

Preparation of Spiro-oxindole 69a

To a solution of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(220 \mathrm{mg}, 0.240 \mathrm{mmol})$ in toluene $(200 \mathrm{ml})$ at room temperature was added $\mathrm{Et}_{3} \mathrm{SiH}(319 \mu \mathrm{l}, 1.99 \mathrm{mmol})$ and acetic acid $(228 \mu \mathrm{l}, 3.99 \mathrm{mmol})$. After stirring at room temperature for 4 min , a solution of enyne $\mathbf{6 8 a}(889 \mathrm{mg}, 1.99 \mathrm{mmol})$ in toluene $(100 \mathrm{ml})$ was added plus 200 ml of rinse, resulting in a final substrate concentration of 0.005 M . The reaction mixture was stirred for 70 min , concentrated and purified by flash chromatography ($5 \% \rightarrow 7.5 \% \mathrm{EtOAc} /$ hexanes) to provide 956 mg of semi-pure product as a pale yellow oil, which was used in the next step without further purification. For characterization purpose, the semi-pure product was further purified by flash chromatography $\left(0 \% \rightarrow 0.25 \% \rightarrow 0.5 \%\right.$ acetone $/ \mathrm{CHCl}_{3}$) to provide spiro-oxindole 69a as a colorless oil, which solidified upon standing at ambient temperature.
$\mathrm{R}_{f}=0.40(10 \% \mathrm{EtOAc} /$ hexanes $), 0.17\left(\mathrm{CHCl}_{3}\right) ;$ m.p. $97-100{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.31\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{2} \mathbf{P h}\right), 7.13(\mathrm{ddd}, J=0.9 \mathrm{~Hz}, 7.5 \mathrm{~Hz}, 7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{P h}), 7.05(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{P h}), 6.94$ $(\mathrm{dd}, J=7.5 \mathrm{~Hz}, 7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{P h}), 6.71(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{P h}), 5.24\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{C}=\mathbf{C H}_{2}\right), 5.11(\mathrm{~d}, J=15.6$ $\mathrm{Hz}, 1 \mathrm{H}, \mathbf{C H}_{2} \mathrm{Ph}$), 5.03 (br s, 1H, C=CH2), $5.00(\mathrm{~m}, 1 \mathrm{H}, \mathbf{C H O T B S}), 4.73\left(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{C H}_{2} \mathrm{Ph}\right), 2.47$ $\left(\mathrm{dd}, J=7.2 \mathrm{~Hz}, 13.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{C C H}_{2} \mathrm{CH}\right), 2.26\left(\mathrm{dd}, J=8.4 \mathrm{~Hz}, 13.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{CH}\right), 1.39(\mathrm{~s}, 3 \mathrm{H}$, $\left.\left.\mathbf{C C H}_{3}\right), 0.95\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathbf{C H}_{\mathbf{3}}\right)_{3}\right), 0.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{\mathbf{3}}\right), 0.16\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{\mathbf{3}}\right), 0.12(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH})_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 177.6,161.4,142.3,136.2,132.9,128.7,127.52,127.47,127.2,123.9,121.9,108.7$, $108.0,73.3,58.3,48.4,43.8,42.6,26.3,25.8,23.8,18.1,-4.4,-4.6$; IR (thin film): $1713(\mathrm{~s}), 1610(\mathrm{~m})$,

1488 (s), 1466 (s) cm^{-1}; HRMS (ESI) Calcd. for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{NO}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]$: 448.2672. Found: 448.2662. (-)-68a $\rightarrow(-)-69 \mathrm{a}:[\alpha]_{\mathrm{D}}^{23}=-11.4\left(\mathrm{c} 1.6, \mathrm{CHCl}_{3}\right) ; \sim 80 \%$ ee.

Preparation of Allylic Alcohol 82a

(\pm-69a

(\pm)-82a

To a solution of the semi-pure silyl ether 69a (956 mg) in THF (25 ml) at $0^{\circ} \mathrm{C}$ was added TBAF (1.0 M in THF, 5 ml). The reaction mixture was stirred at room temperature for 1 h and quenched by saturated NaHCO_{3} solution. The aqueous layer was extracted with EtOAc and the combined organic layers were concentrated and purified by flash chromatography $(10 \% \rightarrow 20 \%$ acetone/hexanes) to provide the allylic alcohol 82a as a colorless oil ($390 \mathrm{mg}, 59 \%$ yield over two steps).
$\mathrm{R}_{f}=0.18$ (20\% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathbf{P h}, \mathbf{P h}\right), 7.21$ $(\mathrm{dd}, J=7.2 \mathrm{~Hz}, 7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{P h}), 7.05(\mathrm{dd}, J=7.2 \mathrm{~Hz}, 8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{P h}), 6.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{P h}), 5.53$ $\left(\mathrm{d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathbf{C H}_{2}\right), 5.14\left(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathbf{C H}_{2}\right), 5.05\left(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{C H}_{2} \mathrm{Ph}\right), 4.82(\mathrm{~m}$, $1 \mathrm{H}, \mathbf{C H O H}), 4.74\left(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{C H}_{2} \mathrm{Ph}\right), 4.52(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{O H}), 2.66(\mathrm{dd}, J=8.0 \mathrm{~Hz}, 14.8$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{CH}\right), 2.06\left(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{C C H}_{2} \mathrm{CH}\right), 1.18\left(\mathrm{~s}, 3 \mathrm{H}, \mathbf{C C H}_{3}\right), 0.96\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 181.7,163.0,143.5,135.6,128.7,128.6,128.2,127.6,127.3,125.2,122.2$, 109.8, 109.2, 72.3, 60.6, 50.1, 43.8, 41.2, 27.8, 21.8; IR (thin film): 3432 (br, s), 1687 (s), 1611 (s), 1466 (s), 1367 (s) cm^{-1}; HRMS (ESI) Calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]$: 334.1807. Found: 334.1812. (-)-69a $\rightarrow(-)-$ 82a: $[\alpha]_{D}=-13.3\left(\right.$ c 2.7, $\left.\mathrm{CHCl}_{3}\right), \sim 80 \%$ ee $\}$

Preparation of Spiro-oxindole 69b and Cyclopropane 79

To a solution of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(143 \mathrm{mg}, 0.156 \mathrm{mmol})$ in toluene $(100 \mathrm{ml})$ at room temperature was added $\mathrm{Et}_{3} \mathrm{SiH}(166 \mu \mathrm{l}, 1.04 \mathrm{mmol})$ and acetic acid $(119 \mu \mathrm{l}, 2.08 \mathrm{mmol})$. After stirring at room temperature for 4 min , a solution of the enyne $\mathbf{6 8 b}(463 \mathrm{mg}, 1.04 \mathrm{mmol})$ in toluene $(50 \mathrm{ml})$ was added plus 50 ml of rinse, resulting in a final substrate concentration of 0.005 M . The reaction mixture was stirred for 70 min , concentrated and purified by flash chromatography $\left(30 \% \rightarrow 50 \% \rightarrow 70 \% \mathrm{CHCl}_{3} /\right.$ hexanes $)$ to provide spirooxindole 69b as a pale yellow oil ($297 \mathrm{mg}, 64 \%$ yield) and byproduct cyclopropane $79(25 \mathrm{mg}, 5 \%)$ as a colorless oil.

Spiro-oxindole 69b: $\mathrm{R}_{f}=0.42(10 \% \mathrm{EtOAc} /$ hexanes $), 0.50\left(\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.36 \sim 7.24\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathbf{P h}, \mathbf{P h}\right), 7.16(\operatorname{app} \mathrm{dd}, J=7.5 \mathrm{~Hz}, 7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{P h}), 6.99(\operatorname{app} \mathrm{dd}, J=7.5 \mathrm{~Hz}, 7.5$ $\mathrm{Hz}, 1 \mathrm{H}, \mathbf{P h}), 6.71(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{P h}), 5.24\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{C}=\mathbf{C H}_{2}\right), 5.21(\mathrm{~m}, 1 \mathrm{H}, \mathbf{C H O T B S}), 5.12(\mathrm{~d}, J=$ $\left.15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{C H}_{2} \mathrm{Ph}\right), 5.00\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{C}=\mathbf{C H}_{2}\right), 4.64\left(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{C H}_{2} \mathrm{Ph}\right), 2.59(\mathrm{dd}, J=8.1 \mathrm{~Hz}$, $\left.13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{CH}\right), 2.05\left(\mathrm{dd}, J=5.7 \mathrm{~Hz}, 13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{CH}\right), 1.07\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}\left(\mathbf{C H}_{3}\right)_{2}\right), 0.95(\mathrm{~s}, 9 \mathrm{H}$, $\left.\operatorname{SiC}\left(\mathbf{C H}_{3}\right)_{3}\right), 0.17\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 179.4,161.8,143.0$, $136.2,130.8,128.7,127.7,127.5,127.4,125.5,121.9,108.5,107.3,72.3,59.0,48.5,43.7,42.1,26.2,25.9$, 24.1, 18.1, $-4.5,-4.7$; IR (thin film): 1711 (s), 1611 (m), 1488 (m), 1466 (m) cm^{-1}. HRMS (ESI) not obtained. $(-)-\mathbf{6 8 b} \rightarrow(+)-69 b:[\alpha]_{\mathrm{D}}=+37.4\left(\mathrm{c} 2.2, \mathrm{CHCl}_{3}\right), \sim 80 \%$ ee.

Cyclopropane 79: $\mathrm{R}_{f}=0.35$ (10% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77$ (dd, $J=$ $1.2 \mathrm{~Hz}, 7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{P h}), 7.28\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathbf{P h}\right), 7.22\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathbf{P h}\right), 7.08(\mathrm{ddd}, J=1.2 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 7.6$ $\mathrm{Hz}, 1 \mathrm{H}, \mathbf{P h}), 6.95(\mathrm{ddd}, J=1.2 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{P h}), 6.68(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{P h}), 5.02(\mathrm{~d}, J=15.6$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathbf{C H}_{2} \mathrm{Ph}\right), 4.75\left(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{C H}_{2} \mathrm{Ph}\right), 4.39(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{C H O T B S}), 2.25(\mathrm{dd}, J=5.6$ $\left.\mathrm{Hz}, 14.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{CH}\right), 1.64\left(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{CH}\right), 1.32\left(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{C}\right), 1.20$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CHCCH}_{3}$), $0.92\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathbf{C H}_{3}\right)_{3}\right), 0.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CHCCCH}_{3}\right), 0.11\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{SiCH}, \mathbf{C C H}_{2} \mathrm{C}\right), 0.00$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 180.4,142.0,136.4,133.3,128.7,127.5,127.3,127.2$,
126.7, 122.1, 108.4, 78.7, 57.4, 43.8, 43.1, 37.2, 33.3, 25.9, 18.3, 18.2, 14.4, 14.0, $-4.6,-4.9$; IR (thin film): 1712 (s), 1611 (m), 1487 (s), 1466 (s) cm^{-1}; HRMS (ESI) Calcd. for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{NO}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]: 448.2672$. Found: 448.2668.

Preparation of Allylic Alcohol 82b

(\pm)-69b

(\pm)-82b

To a solution of silyl ether $\mathbf{6 9 b}(207 \mathrm{mg}, 0.462 \mathrm{mmol})$ in THF $(5 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ was added TBAF $(1.0$ M in THF, $925 \mu \mathrm{l}$). The reaction mixture was stirred at room temperature for 2.5 h and another $100 \mu \mathrm{l}$ of TBAF was added. After stirring for 30 min , the reaction was quenched by saturated NaHCO_{3} solution. The aqueous layer was extracted with EtOAc and the combined organic layers were concentrated and purified by flash chromatography ($30 \% \rightarrow 40 \% \rightarrow 50 \% \mathrm{EtOAc} / \mathrm{hexanes}$) to provide the allylic alcohol $\mathbf{8 2 b}$ as a white solid (142 mg, 92\% yield).
$\mathrm{R}_{f}=0.07$ (20\% EtOAc/hexanes); m.p. $113-119{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28(\mathrm{~m}, 6 \mathrm{H}$, $\mathrm{CH}_{2} \mathbf{P h}, \mathbf{P h}$), $7.15(\mathrm{ddd}, J=0.8 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{P h}), 6.99(\mathrm{dd}, J=7.6 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{P h}), 6.70(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{P h}), 5.33\left(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathbf{C H}_{2}\right), 5.26(\mathrm{br} \mathrm{dd}, J=7.2 \mathrm{~Hz}, 8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{C H O H}), 5.08$ $\left(\mathrm{d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathbf{C H}_{2}\right), 5.04\left(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{C H}_{2} \mathrm{Ph}\right), 4.62\left(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{C H}_{2} \mathrm{Ph}\right), 2.52(\mathrm{dd}$, $\left.J=8.4 \mathrm{~Hz}, 13.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{CH}\right), 2.15\left(\mathrm{dd}, J=6.8 \mathrm{~Hz}, 13.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{CH}\right), 1.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right)$, $0.96\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 180.0,162.1,143.2,135.9,129.3,128.6,127.9,127.4$, $127.3,125.4,121.8,108.6,108.0,72.1,59.4,48.1,43.5,41.0,27.7,23.1$; IR (thin film): 3432 (br, s), 1701 (s), 1610 (s), 1488 (s), 1466 (s) cm^{-1}; HRMS (ESI) Calcd. for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NNaO}_{2}$ [M+Na]: 356.1627. Found: 356.1635 .

Preparation of Unsubstituted Nitrone 80

To a solution of piperdine $(2.26 \mathrm{~g}, 26.5 \mathrm{mmol})$ in acetone $(51 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{SeO}_{2}(147$ $\mathrm{mg}, 1.33 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}_{2}\left(30 \%\right.$ by wt in $\left.\mathrm{H}_{2} \mathrm{O}, 5.6 \mathrm{ml}, 58.4 \mathrm{mmol}\right)$ dropwise. The reaction mixure was
stirred at rt for 3 h . Acetone was removed in vacuo and the resulting residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(100 \mathrm{ml})$, concentrated, and purified by flash chromatography (basic $\mathrm{Al}_{2} \mathrm{O}_{3}, 2.5 \% \rightarrow 5 \% \rightarrow 7.5 \%$ $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to provide nitrone $\mathbf{8 0}$ as a yellow oil ($1.1 \mathrm{~g}, 42 \%$ yield)

Known compound; CAS 34418-91-2. Characterization data matched literature reports.

Preparation of Acetone Oxime 84

To a solution of hydroxylamine hydrochloride ($5.0 \mathrm{~g}, 72.0 \mathrm{mmol}$) in $\mathrm{H}_{2} \mathrm{O}(55 \mathrm{ml})$ at room temperature was added solid $\mathrm{NaHCO}_{3}(7.25 \mathrm{~g}, 86.3 \mathrm{mmol})$. Following the evolution of gas, acetone (5.28 $\mathrm{ml}, 72.0 \mathrm{mmol}$) was added. The reaction was stirred at room temperature for 2 h , extracted with $\mathrm{Et}_{2} \mathrm{O}$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated to provide the desired oxime $\mathbf{8 4}$ as a white powder ($4.5 \mathrm{~g}, 86 \%$ yield $)$.
$\mathrm{R}_{f}=0.41\left(50 \% \mathrm{EtOAc} / \mathrm{Hexanes}, \mathrm{KMnO}_{4}\right)$. Known compound; CAS 127-06-0. Characterization data matched literature reports.

Preparation of Oxime 85

Alkylation:

To a solution of the oxime $84(1.55 \mathrm{~g}, 21.2 \mathrm{mmol})$ in THF $(75 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ was added n-butyl lithium (1.6 M in hexanes, $26.6 \mathrm{ml}, 42.4 \mathrm{mmol}$) dropwise. The reaction mixture turned cloudy before turning clear again. This mixture was stirred at room temperature for 30 min and then was cooled to -78 ${ }^{\circ} \mathrm{C}$. A solution of 2-(2-bromoethyl)-1,3-dioxolane ($2 \mathrm{ml}, 17 \mathrm{mmol}$) in THF (75 ml) was added slowly via
cannula. The reaction was allowed to stir at $-78^{\circ} \mathrm{C}$ for 1 h , then at room temperature for 3 h . This was quenched with water, extracted with EtOAc, concentrated, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and purified by flash chromatography ($10 \% \rightarrow 20 \% \rightarrow 30 \% \rightarrow 40 \% \rightarrow 50 \% \mathrm{EtOAc} / \mathrm{Hexanes}$) to provide the desired oxime as a pale yellow oil ($2.56 \mathrm{~g}, 85 \%$ yield).

$$
\mathrm{R}_{f}=0.29\left(50 \% \mathrm{EtOAc} / \mathrm{Hexanes}, \mathrm{KMnO}_{4}\right)
$$

Oxime Reduction:
To a solution of the oxime $(831 \mathrm{mg}, 4.8 \mathrm{mmol})$ in methanol $(32 \mathrm{ml})$, cooled to $0{ }^{\circ} \mathrm{C}$ in an ice bath, were added glacial acetic acid ($2.8 \mathrm{ml}, 48 \mathrm{mmol}$) and sodium cyanoborohydride (a freshly opened bottle, $1.5 \mathrm{~g}, 24 \mathrm{mmol}$). The ice bath was removed and the clear solution stirred for 6 h at room temperature. At that time, the reaction mixture was basified with aqueous sodium hydroxide solution (2 M, $25 \mathrm{ml})$. The reaction was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was purified by flash chromatography $\left(0.5 \% \rightarrow 1 \% \rightarrow 2 \% \rightarrow 3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to provide the hydroxylamine $\mathbf{8 5}$ as a white solid ($689 \mathrm{mg}, 82 \%$ yield).
$\mathrm{R}_{f}=0.23\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{KMnO}_{4}\right)$. Known compound; CAS $(S)-(-)$ 900780-42-9 / (R)-(+)
900780-55-4. Characterization data matched literature reports.

Preparation of Nitrone ($\mathbf{\pm}$)-57

To a flask containing the hydroxylamine $\mathbf{8 5}(100 \mathrm{mg}, 0.57 \mathrm{mmol})$ was added aqueous HCl solution ($2 \mathrm{M}, 1 \mathrm{ml}$). The reaction was stirred at room temperature for 25 minutes, diluted with water (3 ml), and basified to pH 11 with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (approx. $150 \mathrm{mg} \mathrm{Na} 2_{2} \mathrm{CO}_{3}$). This was extracted with CHCl_{3}, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated. The residue was purified by flash chromatography (basic $\mathrm{Al}_{2} \mathrm{O}_{3}, 5 \% \rightarrow 10 \% \mathrm{MeOH}$ $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to provide the nitrone 57 as a yellow-greenish oil ($40 \mathrm{mg}, 62 \%$).
$\mathrm{R}_{f}=0.37\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, TLC pre-treated with $\left.\mathrm{NH}_{3}, \mathrm{UV} \& \mathrm{KMnO}_{4}\right)$. Known compound;
CAS (\pm) 106130-14-7. Characterization data matched literature reports.

Preparation of Olefin 88

CBz Protection:

L-alanine ($4 \mathrm{~g}, 44.9 \mathrm{mmol}$) and anhydrous $\mathrm{Na}_{2} \mathrm{CO}_{3}(14.3 \mathrm{~g}, 135 \mathrm{mmol})$ were dissolved in water $(150 \mathrm{ml})$. At $0{ }^{\circ} \mathrm{C}$ a solution of benzyl chloroformate $(7.05 \mathrm{ml}, 49.4 \mathrm{mmol})$ in dioxane $(40 \mathrm{ml})$ was added slowly. The milky mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min , then at room temperature for 20 h . The reaction mixture was washed with $\mathrm{Et}_{2} \mathrm{O}$, and the aqueous layer was acidified to pH 2 using concentrated $\mathrm{HCl}(\sim 10$ $\mathrm{ml})$. This was extracted with EtOAc , dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated to provide the desired product as a white gummy solid (7.3 g, 73\% yield).

$$
\mathrm{R}_{f}=0.22(40 \% \mathrm{EtOAc} / \mathrm{Hexanes}, \mathrm{CAM}) .
$$

Esterification:

A solution of N -CBz-L-alanine $(3.7 \mathrm{~g}, 16.6 \mathrm{mmol})$ in methanol $(40 \mathrm{ml})$ was cooled to $0^{\circ} \mathrm{C}$ in an ice bath. To this was added dropwise acetyl chloride ($2.4 \mathrm{ml}, 33.1 \mathrm{mmol}$). The reaction mixture was stirred at room temperature for 1 h , then quenched slowly with saturated NaHCO_{3} solution (10 ml) and solid NaHCO_{3}. The mixture was extracted with EtOAc, washed with water and brine, and dried $\left(\mathrm{MgSO}_{4}\right)$ to provide the desired ester as a pale yellow oil ($3.7 \mathrm{~g}, 94 \%$ yield $)$.

$$
\mathrm{R}_{f}=0.52(40 \% \text { EtOAc/Hexanes, CAM }) . \quad \text { Known compound; CAS }(S)-(-) \text { 28819-05-8. }
$$

Characterization data matched literature reports.

DIBAl-H Reduction:

A solution of the ester $(4.06 \mathrm{~g}, 17.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(120 \mathrm{ml})$ was cooled to $-78{ }^{\circ} \mathrm{C}$. To this was added a solution of diisobutylaluminum hydride $(6.1 \mathrm{ml}, 34.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml})$ by syringe pump over 3 hours. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 6 h . The reaction was quenched with aqueous HCl solution ($1 \mathrm{~N}, 40 \mathrm{ml}$) and saturated Rochelle's salt solution (50 ml) at which point it was stirred for another 1.5 h . The layers were separated, and the organic layer was washed with $1 \mathrm{~N} \mathrm{HCl}(40 \mathrm{ml})$ and water (40 ml), concentrated and purified by flash chromatography ($20 \% \rightarrow 30 \% \rightarrow 40 \% \mathrm{EtOAc} / \mathrm{Hexanes}$) to provide the aldehyde as a colorless oil ($2.85 \mathrm{~g}, 80 \%$ yield).
$\mathrm{R}_{f}=0.29$ (40% EtOAc/Hexanes, CAM). Known compound; CAS (S)-(-) 111955-03-4. Characterization data matched literature reports.

Wittig Reagent:

A solution of 2-(2-bromoethyl)-1,3-dioxane $(8.8 \mathrm{~g}, 45.1 \mathrm{mmol})$ and triphenylphosphine $(18.7 \mathrm{~g}$, 71.3 mmol) in cyclohexane (23 ml) was heated to $87^{\circ} \mathrm{C}$ for 24 h , cooled to room temperature, then filtered. The solid was washed with $\mathrm{Et}_{2} \mathrm{O}(90 \mathrm{ml})$ and pentane $(90 \mathrm{ml})$, collected, then dried under vacuum to provide the desired product as a white powder ($9 \mathrm{~g}, 44 \%$ yield).

Known compound; CAS 69891-57-2. Characterization data matched literature reports.

Wittig Reaction

To a slurry of phosphonium bromide $(14.3 \mathrm{~g}, 31.3 \mathrm{mmol})$ in THF $(150 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{KOt} \mathrm{Bu}(3.51 \mathrm{~g}, 31.3 \mathrm{mmol})$. The orange mixture was stirred at room temperature for 1 h before a solution of the aldehyde ($5.4 \mathrm{~g}, 26.1 \mathrm{mmol}$) in THF (50 ml) was added followed by 40 ml of rinse. The reaction mixure was stirred at room temperatre for 14 h , quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, extracted with EtOAc, concentrated and purified by flash chromatography $(5 \% \rightarrow 10 \% \rightarrow 15 \% \rightarrow 20 \%$ acetone/hexanes, then $40 \% \mathrm{EtOAc} / \mathrm{Hexanes})$ to provide the olefin $(S) \mathbf{- 8 8}$ as a colorless oil ($7.1 \mathrm{~g}, 89 \%$ yield).
$\mathrm{R}_{f}=0.29(25 \%$ acetone/hexanes, CAM). Known compound; CAS (S)-(+) 195372-68-0. Characterization data matched literature reports.

Preparation of Benzyloxyamine 89

Hydrogenation:

A solution of the alkene $(S) \mathbf{- 8 8}(7.1 \mathrm{~g}, 23.3 \mathrm{mmol})$ in ethyl acetate $/$ ethanol $(2: 1,108 \mathrm{ml})$ containing $10 \mathrm{wt} \%$ palladium on carbon ($866 \mathrm{mg}, 0.814 \mathrm{mmol}$) was bubbled with H_{2} for 1 minute and stirred under H_{2} (balloon pressure) for 6 days, filtered through a pad of celite, washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and concentrated to provide the amine as a pale yellow oil ($4 \mathrm{~g}, 99 \%$ yield).
$\mathrm{R}_{f}=$ baseline (30% EtOAc/hexanes, CAM). Known compound; CAS (S)-(+) 195372-69-1. Characterization data matched literature reports.

Oxidation:

Solid $\mathrm{NaHCO}_{3}(5.95 \mathrm{~g}, 71 \mathrm{mmol})$ was dissolved in $\mathrm{H}_{2} \mathrm{O}(94 \mathrm{ml})$ and mixed with NaOH solution (1.5 M in $\left.\mathrm{H}_{2} \mathrm{O}, 10 \mathrm{ml}, 15 \mathrm{mmol}\right)$. This solution was added to a flask containing the amine $(3.2 \mathrm{~g}, 18.5$ $\mathrm{mmol})$ followed by the addition of a solution of benzoyl peroxide $(6.7 \mathrm{~g}, 27.7 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(94 \mathrm{ml})$. The mixture was vigorously stirred at room temperature for 25 hours, the layers separated, and the aqueous portion extracted with EtOAc. Following concentration of the organic layers, the residue was triturated with 10% EtOAc/hexanes. The resulting organic solution was concentrated and purified by flash chromatography $(10 \% \rightarrow 20 \% \rightarrow 30 \% \rightarrow 40 \% \mathrm{EtOAc} / \mathrm{Hexanes})$ to provide the desired benzyloxyamine $(S)-\mathbf{8 9}$ as a colorless oil ($3.3 \mathrm{~g}, 61 \%$ yield).

$$
\mathrm{R}_{f}=0.27(30 \% \text { EtOAc/hexanes, CAM). Known compound; CAS (S)-(-) 195372-70-4. }
$$

Characterization data matched literature reports.

Preparation of Nitrone (S)-(-)-57

Saponification:

To a solution of the benzyloxyamine $(S) \mathbf{- 8 9}(15.2 \mathrm{~g}, 51.8 \mathrm{mmol})$ in THF/MeOH 1:1 $(160 \mathrm{ml})$ at room temperature was added LiOH solution $(2 \mathrm{M}, 160 \mathrm{ml})$. After stirring at room temperature for 4 minutes, the mixture was extracted with EtOAc, concentrated, and purified by flash chromatography $\left(60 \% \rightarrow 80 \% \rightarrow 100 \% \mathrm{EtOAc} /\right.$ hexanes to $\left.10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to provide the desired hydroxylamine $(6.6 \mathrm{~g}$, 67% yield).
$\mathrm{R}_{f}=0.43\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, TLC pre-treated with $\left.\mathrm{NH}_{3}\right)$. Known compound; CAS (S)-(+) 195372-71-5. Characterization data matched literature reports.

Determination of the ee:

To determine the ee of the hydroxylamine: A solution of the hydroxylamine ($23 \mathrm{mg}, 0.122 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{NEt}_{3}(34 \mu \mathrm{~L}, 0.243 \mathrm{mmol})$ and benzoyl chloride $(13 \mu \mathrm{~L}, 0.109 \mathrm{mmol})$. The reaction was stirred at room temperature for 30 minutes, quenched with saturated NaHCO_{3} solution, extracted with EtOAc, concentrated, and purified by flash chromatography $(30 \% \rightarrow 40 \% \rightarrow 50 \% \rightarrow 60 \%$ EtOAc/hexanes) to provide the N-acylated product ($23 \mathrm{mg}, 65 \%$ yield) for HPLC assay.
$\mathrm{R}_{f}=0.52\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{KMnO}_{4}\right)$; Racemic HPLC conditions: 90:10 hexanes/i-PrOH, rate $=1 \mathrm{ml} /$ minute, Chiralpak AD-H, $\mathrm{t}=12.58 \mathrm{~min}(45.174 \%), 14.5 \mathrm{~min}(54.826 \%)$; Enantioenriched HPLC conditions: 90:10 hexanes $/ i-\mathrm{PrOH}$, rate $=0.8 \mathrm{ml} /$ minute, Chiralpak $\mathrm{AD}-\mathrm{H}, 254 \mathrm{~nm}, \mathrm{t}=16.07 \mathrm{~min}$ $(9.469 \%), 18.36 \min (90.531 \%)$. ee $=81 \%$.

Acid-Mediated Nitrone Condensation:

The hydroxylamine ($53 \mathrm{mg}, 0.280 \mathrm{mmol}$) was treated with aqueous HCl solution ($2 \mathrm{M}, 2 \mathrm{ml}$). After 15 minutes, the reaction was diluted with water (3 ml) and basified to pH 11 with solid $\mathrm{Na}_{2} \mathrm{SO}_{3}$. The solution was extracted with $\mathrm{CHCl}_{3}(5 \times 8 \mathrm{ml})$ and concentrated to provide $(S)-(-)-57$ which was used directly in the cycloaddition reaction.

Known compound; CAS (S)-(-) 195372-72-6. Characterization data matched literature reports.

Preparation of Isoxazolidine 83

(\pm)-82b

(\pm - 83
75% yield

A mixture of the allylic alcohol $\mathbf{8 2 b}(36 \mathrm{mg}, 0.108 \mathrm{mmol})$ and nitrone $\mathbf{8 0}(21 \mathrm{mg}, 0.216 \mathrm{mmol})$ in toluene (1 mL) was heated to $110{ }^{\circ} \mathrm{C}$ for 1.5 days. At that time a second portion of nitrone $\mathbf{8 0}(21 \mathrm{mg}$, 0.216 mmol) was added. The reaction mixture was stirred for another 2.5 days, and directly purified by flash chromatography ($10 \% \rightarrow 20 \% \rightarrow 30 \%$ acetone/hexanes) to afford the isoxazolidine cycloadduct $\mathbf{8 3}$ as a white foam ($35 \mathrm{mg}, 75 \%$ yield).
$\mathrm{R}_{f}=0.35\left(60 \%\right.$ EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78(\mathrm{~d}, 1 \mathrm{H}, \mathbf{P h}), 7.19 \sim 6.89(\mathrm{~m}$, $\left.7 \mathrm{H}, \mathrm{CH}_{2} \mathbf{P h}, \mathbf{P h}\right), 6.43(\mathrm{~d}, 1 \mathrm{H}, \mathbf{P h}), 5.03\left(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{C H}_{2} \mathrm{Ph}\right), 4.79(\mathrm{brt}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOH})$, $4.25\left(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{C H}_{2} \mathrm{Ph}\right), 3.15\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{R}_{2} \mathrm{NCH}_{2}\right), 2.91\left(\mathrm{dd}, J=7.6 \mathrm{~Hz}, 13.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{C H}_{2} \mathrm{CHOH}\right)$, $2.53\left(\mathrm{dd}, J=9.1 \mathrm{~Hz}, 13.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{C H}_{2} \mathrm{CHOH}\right), 2.09\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{R}_{2} \mathrm{NCH}_{2}\right), 1.91\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{R}_{2} \mathrm{NCHCH}_{2}\right), 1.76$ $(\mathrm{m}, 1 \mathrm{H}, \mathrm{NCH}), 1.46\left(\mathrm{br} \mathrm{d}, J=12.4,1 \mathrm{H}, \mathrm{R}_{2} \mathrm{NCHCH} 2\right), 1.39 \sim 1.12\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{R}_{2} \mathrm{NCH}_{2} \mathbf{C H}_{2}, \mathrm{CCH}_{3}\right) 0.77(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 181.0,143.9,137.6,134.7,129.3,128.9,127.9,127.7,127.6$, $122.2,108.8,92.0,79.5,68.4,58.9,55.1,47.3,44.1,43.4,38.9,29.6,27.4,25.1,24.2,22.4$; IR (thin film): 3396 (br, s), 2938 (s), 2274 (s), 1709 (s), 1609 (s), 1487 (s), 1466 (s), 1349 (s) cm ${ }^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]: 433.2491$. Found: 433.2485 .

Preparation of Enone 58

To a solution of the alcohol $\mathbf{8 2 a} / \mathbf{b}(830 \mathrm{mg}, 2.49 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$ was added Dess-Martin periodinane ($1.58 \mathrm{~g}, 3.73 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 1.5 h and was quenched with saturated NaHCO_{3} solution. The aqueous layer was extracted with EtOAc and the combined organic layers were concentrated and purified by flash chromatography $(10 \% \rightarrow 20 \% \rightarrow 30 \%$ EtOAc/hexanes) to provide enone 58 as a white powder ($734 \mathrm{mg}, 89 \%$ yield).
$\mathrm{R}_{f}=0.37$ (30% EtOAc/hexanes); m.p. $99-102{ }^{\circ} \mathrm{C}$ (EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30 \sim 7.15\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{CH}_{2} \mathbf{P h}, \mathbf{P h}\right), 6.99(\mathrm{ddd}, J=0.8 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{P h}), 6.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, Ph), $6.16\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}=\mathbf{C H}_{2}\right), 5.25\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}=\mathbf{C H}_{2}\right), 5.04\left(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{C H}_{2} \mathrm{Ph}\right), 4.66(\mathrm{~d}, J=15.2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathbf{C H}_{2} \mathrm{Ph}$), $2.74\left(\mathrm{~s}, 2 \mathrm{H}, \mathbf{C C H}_{2} \mathrm{C}=\mathrm{O}\right), 1.18\left(\mathrm{~s}, 3 \mathrm{H}, \mathbf{C C H}_{3}\right), 1.13\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 202.9,178.4,152.7,143.4,135.7,128.7,128.5,128.2,127.6,127.3,124.7,122.2,116.2,109.2$, 55.1, 47.2, 44.2, 43.7, 26.7, 23.1; IR (thin film): 1730 (s), 1708 (s), 1611 (s), 1466 (s), $1365 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]: 332.1651$. Found: 332.1642.

Prepared from $(-)-70:[\alpha]_{\mathrm{D}}=-1.5\left(\mathrm{c} 1.4, \mathrm{CHCl}_{3}\right) ; \sim 67 \%$ ee.
Prepared from (+)-70: $[\alpha]_{D}=+3.1\left(c 1.5, \mathrm{CHCl}_{3}\right) ; 76 \%$ ee by HPLC.

Preparation of Isoxazolidines $(\pm)-87$ and (\pm)-56

A solution of the racemic enone $(\pm)-58(1.02 \mathrm{~g}, 3.07 \mathrm{mmol})$ and the racemic nitrone $(\pm)-57(173$ $\mathrm{mg}, 1.53 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{ml})$ was stirred at room temperature for 41 h . More nitrone $(\pm)-57(173 \mathrm{mg}$, $1.53 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ was added. After stirring for an additional 48 h , the reaction mixture was concentrated in vacuo and purified by flash chromatography $(10 \% \rightarrow 20 \% \rightarrow 30 \% \rightarrow 40 \% \rightarrow 50 \%$ EtOAc/hexanes) to provide the minor cycloadduct (\pm)-56 as a colorless oil ($165 \mathrm{mg}, 12 \%$ yield), the major cycloadduct $(\pm) \mathbf{- 8 7}$ as a colorless solid ($803 \mathrm{mg}, \mathbf{5 9 \%}$ yield) and recovered enone $(\pm) \mathbf{5 8}(284 \mathrm{mg}, \mathbf{2 8 \%})$.

Isoxazolidine (\pm)-87: $\mathrm{R}_{f}=0.48$ ($40 \% \mathrm{EtOAc} /$ hexanes); m.p. $177-179{ }^{\circ} \mathrm{C}(\mathrm{THF} /$ pentane $) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 7.28 \sim 7.18\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{2} \mathbf{P h}\right), 7.11(\mathrm{dd}, J=7.6 \mathrm{~Hz}, 8.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathbf{A r}), 6.96(\mathrm{dd}, J=7.6 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 6.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 5.06(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.54\left(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.46\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{CHN}\right), 3.18\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHCH}_{3}\right), 2.81(\mathrm{~d}, J=$ $\left.18.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{C}=\mathrm{O}\right), 2.70\left(\mathrm{~d}, J=18.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{C}=\mathrm{O}\right), 2.59(\mathrm{dd}, J=13.2 \mathrm{~Hz}, 13.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CCH}_{2} \mathrm{CHN}$), $.2 .42\left(\mathrm{dd}, J=5.6 \mathrm{~Hz}, 13.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{CHN}\right), 1.88\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCHCH}_{2} \mathrm{CH}_{2}\right), 1.59(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{NCHCH}_{2} \mathrm{CH}_{2}\right), 1.42\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCHCH}_{2} \mathrm{CH}_{2}, \mathrm{NCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}\right), 1.14\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}\right), 1.10(\mathrm{~d}, J=$ $\left.6.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 1.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right), 0.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 215.2$, $180.0,143.5,135.8,129.6,128.8,128.4,127.7,127.2,126.6,122.3,108.8,93.3,61.9,55.3,55.2,48.1$, 44.0, 43.2, 37.5, 32.9, 25.4, 20.9, 20.8, 20.4, 18.8; IR (thin film): 1748 (s), 1708 (s), 1610 (s), 1466 (s), $1365 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]: 445.2491$. Found: 445.2468 . X-ray quality crystals were obtained by slow diffusion of pentane into a THF solution of the substrate.

Isoxazolidine ($\mathbf{\pm}$)-56: $\mathrm{R}_{f}=0.27(40 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32(\mathrm{~m}$, $5 \mathrm{H}, \mathrm{CH}_{2} \mathbf{P h}$), $7.19(\mathrm{dd}, J=7.6 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 7.04(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 6.98(\mathrm{dd}, J=7.6 \mathrm{~Hz}, 7.6$ $\mathrm{Hz}, 1 \mathrm{H}, \mathbf{A r}), 6.75(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 5.25\left(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.54(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 3.51\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{CHN}\right), 3.26\left(\mathrm{~d}, J=18.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{C}=\mathrm{O}\right), 3.25\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHCH}_{3}\right), 2.56$ $\left(\mathrm{dd}, J=12.0 \mathrm{~Hz}, 12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{CHN}\right), 2.55\left(\mathrm{~d}, J=18.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{C}=\mathrm{O}\right), 2.25(\mathrm{dd}, J=6.0 \mathrm{~Hz}$, $\left.12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{CHN}\right), 2.00\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHCH}_{2} \mathrm{CH}_{2}\right), 1.91\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHCH}_{2} \mathrm{CH}_{2}\right), 1.72(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{NCHCH}_{2} \mathrm{CH}_{2}, \mathrm{NCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}\right), 1.50\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCHCH}_{2} \mathrm{CH}_{2}, \mathrm{NCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}\right), 1.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right), 1.20(\mathrm{~d}$, $\left.J=5.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 0.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 216.8,178.0,143.5,136.0$, $131.4,128.8,128.5,127.7,127.4,124.2,121.5,108.9,92.8,61.7,55.7,54.6,48.8,44.3,42.9,39.0,32.8$, 25.3, 20.7, 20.6, 20.2, 18.9; IR (thin film): 1745 (s), 1716 (s), 1610 (s), 1466 (s), $1349 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]$: 445.2491 . Found: 445.2468.

Preparation of Enantioenriched Isoxazolidine 87

To a vial containing the enone $(3 R)-(-)-58(77 \mathrm{mg}, 0.232 \mathrm{mmol})$ was added a solution of the freshly prepared nitrone (12S)-(-)-57(~26 mg, 0.232 mmol$)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$. The reaction mixture was stirred at ambient temperature for 44 hours. At that time, another aliquot of the nitrone $(\sim 26 \mathrm{mg}, 0.232$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{ml})$ was added. The reaction was stirred or 36 hours, concentrated, and purified by flash chromatography $\left(100 \% \mathrm{CHCl}_{3} \rightarrow 2.5 \% \rightarrow 50 \%\right.$ acetone $/ \mathrm{CHCl}_{3}$) to provide $(3 S, 12 S)-(+)-87(83 \mathrm{mg}$, 80% yield) and 56 (13 mg, 13\% yield).

Isoxazolidine (3S,12S)-(+)-87: $[\alpha]_{D}{ }^{23}=+27.1$ (c $\left.0.93, \mathrm{CHCl}_{3}\right)$; Other characterization data matched that of $(\pm)-87$.

Preparation of Enantioenriched Isoxazolidine 56

To a solution of the enone (3S)-(+)-58 (78 mg, 0.235 mmol$)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{ml})$ at ambient temperature was added a solution of freshly prepared nitrone (12S)-(-)-57 ($\sim 27 \mathrm{mg}, 0.235$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5$ $\mathrm{ml})$. The reaction stirred for a total of 9 days, with the addition of fresh nitrone ($\sim 27 \mathrm{mg}, 0.235$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(0.5 \mathrm{ml})$ every 36 hours. After that time, the reaction mixture was concentrated and purified by flash chromatography ($100 \% \mathrm{CHCl}_{3} \rightarrow 2.5 \% \rightarrow 50 \%$ acetone/ CHCl_{3}). Only partial separation was realized. The mixture was further purified by flash chromatography ($10 \% \rightarrow 15 \% \rightarrow 20 \% \rightarrow 30 \% \mathrm{EtOAc} /$ benzene $)$ to provide (3R,12S)-(+)-56 (40 mg, 38\% yield) and $\mathbf{8 7}(61 \mathrm{mg}, 58 \%$ yield).

Isoxazolidine (3R,12S)-(+)-56: $[\alpha]_{\mathrm{D}}{ }^{22}=+145\left(\mathrm{c} 1.1, \mathrm{CHCl}_{3}\right)$. Other characterization data matched that of (\pm)-56.

Preparation of Exomethylene 91

(\pm)-87
$\mathrm{Ph}_{3} \mathrm{P}^{+} \mathrm{MeBr}-$ (free of salt) KOt -Bu/t-BuOH THF, $40^{\circ} \mathrm{C}$ 41\% yield
a slurry of methyltriphenylphosphonium bromide ($300 \mathrm{mg}, 0.840 \mathrm{mmol}$) in toluene (9 ml) was added $\mathrm{KO} t \mathrm{Bu}(1.0 \mathrm{M}$ in $t-\mathrm{BuOH}, 0.84 \mathrm{ml})$. The resulting orange mixture was stirred for 1.5 h and allowed to settle for 3 h before use.

To a solution of the ketone $\mathbf{8 7}(120 \mathrm{mg}, 0.270 \mathrm{mmol})$ in THF (2 ml) was added the ylide solution (the supernatant layer, 4 ml). The reaction was stirred at $40^{\circ} \mathrm{C}$ for 24 h and treated with another 4 ml of the ylide solution (the supernatant layer). After stirring at $40{ }^{\circ} \mathrm{C}$ for an additional 24 h , the reaction was
quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The aqueous layer was extracted with EtOAc and the combined organic layers were concentrated and purified by flash chromatography $(10 \% \rightarrow 20 \% \rightarrow 30 \% \rightarrow 40 \% \mathrm{EtOAc} / \mathrm{hexanes})$ to provide exomethylene 91 as a colorless oil ($49 \mathrm{mg}, 41 \%$ yield) and recovered starting material (55 mg).
$\mathrm{R}_{f}=0.41(40 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.30 \sim 7.22(\mathrm{~m}, 5 \mathrm{H}), 7.07(\mathrm{dd}, J=7.6 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{dd}, J=7.6 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.20(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~m}, 1 \mathrm{H})$, $3.01(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~m}, 1 \mathrm{H}), 2.91(\mathrm{dd}, J=2.0 \mathrm{~Hz}, 13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.71$ $(\mathrm{dd}, J=13.2 \mathrm{~Hz}, 13.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{~m}, 2 \mathrm{H}), 1.63(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~m}, 2 \mathrm{H}), 1.23(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.19(\mathrm{~m}$, $1 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 181.2,154.4,142.9,136.2$, 133.3, 128.7 (2 carbons), 127.5, 127.2, 126.7, 122.0, 108.2, 105.6, 95.1, 61.1, 56.6, 55.4, 49.9, 43.9, 40.3, 36.3, 32.9, 25.7, 23.0, 22.0, 20.7, 18.8; IR (thin film): 1708 (s), 1609 (s), 1466 (s), 1360 (s) cm^{-1}; HRMS (ESI) Calcd. for $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]: 443.2699$. Found: 443.2698.

Preparation of Cbz-Protected Piperdine 90 and TFA-Protected Piperdine 90b

$(\pm)-91$

1. Sml_{2}

THF, $60^{\circ} \mathrm{C}$
2. $\mathrm{CBzCl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$

64\% yield
2 steps
電

$(\pm)-90$

Samarium Iodide-Mediated Ring Opening:

To a solution of the isoxazolidine $91(41 \mathrm{mg}, 0.0926 \mathrm{mmol}$, azeotropically dried with toluene) in THF (3 ml , degassed by purging with N_{2} for 10 min) was added $\mathrm{SmI}_{2}(0.1 \mathrm{M}$ in $\mathrm{THF}, 3 \mathrm{ml}$). The reaction was heated at $60^{\circ} \mathrm{C}$ for 3 h and quenched with half sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution. The aqueous layer was extracted with EtOAc and the combined organic layers were concentrated and purified by flash chromatography $\left(40 \% \mathrm{EtOAc} /\right.$ hexanes $\left.\rightarrow 5 \% \rightarrow 10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to provide the desired product as a white solid $(40 \mathrm{mg}$, 98% yield).
$\mathrm{R}_{f}=0.30\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.18(\mathrm{br} \mathrm{s}, 1 \mathrm{H},-\mathrm{NH}), 7.95$ (br s, $1 \mathrm{H},-\mathrm{OH}), 7.29 \sim 7.20(\mathrm{~m}, 6 \mathrm{H}), 7.08(\mathrm{dd}, J=7.6 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{dd}, J=7.6 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}$,
$J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.23(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.92$ $(\mathrm{m}, 1 \mathrm{H}), 3.85(\mathrm{~m}, 1 \mathrm{H}), 3.05(\mathrm{dt}, J=2.8 \mathrm{~Hz}, 17.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{dd}, J=10.4 \mathrm{~Hz}, 16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{~d}, J=$ $17.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{dd}, J=2.0 \mathrm{~Hz}, 16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{~m}, 2 \mathrm{H}), 1.90(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{~m}, 3 \mathrm{H}), 1.45(\mathrm{~d}, J=6.4$ $\mathrm{Hz}, 3 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 180.6,154.4,142.7,135.7,132.2$, $128.7,127.9,127.5,127.1,126.4,122.1,110.0,108.6,83.7,57.8,51.7,50.3,48.5,43.9,39.2,36.5,28.5$, 28.3, 24.0, 21.4, 17.7, 17.3; IR (thin film): 3375 (br s), 1697 (s), 1609 (s), 1466 (s), 1366 (s) cm^{-1}; HRMS (ESI) Calcd. for $\mathrm{C}_{29} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]: 445.2850$. Found: 445.2855 .

Cbz-Protection:

To a solution of the piperdine ($14 \mathrm{mg}, 0.0315 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.7 \mathrm{ml})$ was added $\mathrm{H}_{2} \mathrm{O}(0.7 \mathrm{ml})$, $\mathrm{Na}_{2} \mathrm{CO}_{3}(21 \mathrm{mg}, \mathrm{X} \mathrm{mmol})$ and benzyl chloroformate $(9 \mu \mathrm{l}, 0.0630 \mathrm{mmol})$. The mixture was vigorously stirred for 12 h , diluted with sat. NaHCO_{3} solution, extracted with EtOAc, concentrated and purified by flash chromatography ($10 \% \rightarrow 20 \% \rightarrow 30 \%$ EtOAc/Hexanes) to provide the Cbz-protected piperdine 90 (12 $\mathrm{mg}, 65 \%$ yield).

Cbz-Protected Piperdine 90: $\mathrm{R}_{f}=0.37\left(30 \%\right.$ EtOAc/Hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.8(\mathrm{~d}, 1 \mathrm{H}), 7.4 \sim 7.2(\mathrm{~m}, 10 \mathrm{H}), 7.1(\mathrm{t}, 1 \mathrm{H}), 7.0(\mathrm{t}, 1 \mathrm{H}), 6.6(\mathrm{~d}, 1 \mathrm{H}), 5.18(\mathrm{~d}, 1 \mathrm{H}), 5.17(\mathrm{~d}, 1 \mathrm{H}), 5.1(\mathrm{~d}, 1 \mathrm{H})$, $4.85(\mathrm{~d}, 2 \mathrm{H}), 4.71(\mathrm{~d}, 1 \mathrm{H}), 4.54(\mathrm{~d}, 1 \mathrm{H}), 4.38(\mathrm{~m}, 1 \mathrm{H}), 4.03(\mathrm{~m}, 1 \mathrm{H}), 2.8(\mathrm{~s}, 2 \mathrm{H}), 2.4(\mathrm{dd}, 1 \mathrm{H}), 2.1(\mathrm{~m}, 2 \mathrm{H})$, $1.8 \sim 1.7(\mathrm{~m}, 5 \mathrm{H}), 1.3(\mathrm{~d}, 3 \mathrm{H}), 1.0(\mathrm{~s}, 3 \mathrm{H}), 0.7(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR not obtained. IR not obtained. HRMS not obtained.

TFA-Protection:

$(\pm)-87$

To a solution of the piperdine $(40 \mathrm{mg}, 0.0900 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{3} \mathrm{~N}(25$ $\mu \mathrm{l}, 0.180 \mathrm{mmol})$ and trifluoroacetic anhydride ($15 \mu \mathrm{l}, 0.108 \mathrm{mmol}$). After stirring at $0^{\circ} \mathrm{C}$ for 10 minutes, another portion of $\mathrm{Et}_{3} \mathrm{~N}(25 \mu \mathrm{l}, 0.180 \mathrm{mmol})$ and TFAA ($15 \mu \mathrm{l}, 0.108 \mathrm{mmol}$) were added. After stirring for

10 minutes longer, the reaction was quenched with sat. NaHCO_{3} solution, extracted with EtOAc, concentrated and purified by flash chromatography ($10 \% \rightarrow 20 \% \rightarrow 30 \% \mathrm{EtOAc} / \mathrm{Hexanes}$) to provide the TFA-protected piperdine $\mathbf{9 0 b}$ as a colorless oil ($37 \mathrm{mg}, 76 \%$ yield).

TFA-Protected Piperdine 90b: $\mathrm{R}_{f}=0.28\left(20 \%\right.$ EtOAc/Hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.71(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.24(\mathrm{~m}, 5 \mathrm{H}), 7.11(\mathrm{dt}, J=7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{dt}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 5.34(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=15.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.72(\mathrm{~m}, 2 \mathrm{H}), 3.11(\mathrm{dt}, J=17.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{dt}, J=17.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{dd}, J=15.8,11.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.11-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.63(\mathrm{~m}, 5 \mathrm{H}), 1.33(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl3): $\delta 180.02,156.50,154.17,142.86,136.38,133.53,128.91,127.76,127.69$, $127.41,127.32,122.17,109.90,108.36,83.25,59.04,52.04,49.52,47.85,44.14,40.10,38.10,30.17$, $27.83,23.65,22.53,17.60,16.15$; IR (thin film): 3503 (br s), 1694 (s), 1609 (s), 1487 (s), 1466 (s), 1348 (s), 1194 (s), 1142 (s) cm^{-1}; HRMS (ESI) Calcd. for $\mathrm{C}_{31} \mathrm{H}_{35} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]: 541.2678$. Found: 541.2666.

Preparation of Spiro-epoxide 94

To a solution of the allylic alcohol $\mathbf{9 0 b}(37 \mathrm{mg}, 0.0684 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$ was added m CPBA $(70 \%, 34 \mathrm{mg}, 0.137 \mathrm{mmol})$. The reaction was stirred at room temperature for 10 hours and quenched with sat. NaHCO_{3} solution and sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution, extracted with EtOAc, concentrated, and purified by flash chromatography $(10 \% \rightarrow 20 \% \rightarrow 30 \%$ EtOAc/Hexanes) to provide the desired epoxide 94 ($32 \mathrm{mg}, 84 \%$ yield).
$\mathrm{R}_{f}=0.52\left(30 \%\right.$ EtOAc/Hexanes); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 55^{\circ} \mathrm{C}\right) \delta 7.45(\mathrm{~d}, J=7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.32 \sim 7.25(\mathrm{~m}, 5 \mathrm{H}), 7.10(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.15(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.14(\mathrm{~m}, 1 \mathrm{H}), 3.13(\mathrm{~d}, J=15 \mathrm{~Hz}, 1 \mathrm{H})$, $3.09(\mathrm{~s}, 2 \mathrm{H}), 2.73(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 1 \mathrm{H}), 2.19(\mathrm{~m}, 2 \mathrm{H}), 1.92 \sim 1.7(\mathrm{~m}, 6 \mathrm{H}), 1.43(\mathrm{~d}, J=6 \mathrm{~Hz}, 3 \mathrm{H})$,
$1.05(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 55{ }^{\circ} \mathrm{C}\right) \delta 180.6,157.3\left(\mathrm{COCF}_{3}\right), 157.0\left(\mathrm{COCF}_{3}\right)$, $156.7\left(\mathrm{COCF}_{3}\right), 156.4\left(\mathrm{COCF}_{3}, J=35 \mathrm{~Hz}\right), 143.0,136.3,133.7,128.7,127.7,127.5,127.3,127.1,121.9$, $120.3\left(C \mathrm{~F}_{3}\right), 118.0\left(C \mathrm{~F}_{3}\right), 115.7\left(C \mathrm{~F}_{3}\right), 113.4\left(C \mathrm{~F}_{3}, J=287 \mathrm{~Hz}\right), 108.5,79.8,67.2,57.2,51.8,50.0(\mathrm{br} \mathrm{s})$, 49.4 (br s), 48.3 (br s), 44.2, 39.2, 35.6 (br s), 27.6 (br s), 25.3 (br s), 24.6, 21.8, 21.2, 14.18 (br s). IR (thin film): not obtained. HRMS (ESI): not obtained.

Preparation of Diol 95

To a solution of the epoxide $94(3 \mathrm{mg}, \mathrm{X} \mathrm{mmol})$ in $\mathrm{EtOH}(0.5 \mathrm{ml})$ was added solid $\mathrm{NH}_{4} \mathrm{Cl}(\sim 3 \mathrm{mg})$ and $\mathrm{NaN}_{3}(\sim 3 \mathrm{mg})$. The mixture was stirred at room temperature for 12 hours, heated to $40{ }^{\circ} \mathrm{C}$ for 23 hours, then concentrated. The residue was purified by flash chromatography $(40 \% \rightarrow 80 \%$ $\mathrm{EtOAc} / \mathrm{Hexanes} \rightarrow 10 \% \rightarrow 15 \% \rightarrow 20 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to provide the diol $\mathbf{9 5}$ as the major product (yield not determined).
$\mathrm{R}_{f}=0.39\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, TLC plate pre-treated with $\left.\mathrm{NH}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.60(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~m}, 5 \mathrm{H}), 7.11(\mathrm{dd}, J=7.6 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{dd}, J=7.6 \mathrm{~Hz}, 7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{~d}, J=14.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.03(\mathrm{~m}, 1 \mathrm{H}), 2.55(\mathrm{~m}, 4 \mathrm{H}), 1.87(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{~m}, 1 \mathrm{H}), 1.65 \sim 1.57(\mathrm{~m}, 3 \mathrm{H}), 1.52(\mathrm{~m}, 2 \mathrm{H})$, $1.34(\mathrm{~m}, 1 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 181.3$, $142.6,136.3,134.6,128.7,127.7,127.45,127.38,127.2,121.8,108.2,80.6,80.3,58.2,57.6,53.5,50.9$, 48.8, 43.9, 43.7, 40.4, 33.3, 32.2, 27.5, 22.2, 18.4, 9.7; IR (thin film): 3453 (br, s), 1704 (s), 1608 (s), 1486 (s), 1466 (s), 1367 (s) cm ${ }^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{29} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]$: 461.2801. Found: 461.2804.

Preparation of Epoxybromide 98

To a solution of the allylic alcohol 90 b $(73 \mathrm{mg}, 0.135 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ at $-30{ }^{\circ} \mathrm{C}$ was added a solution of bis (sym-collidine)bromine(I) hexafluorophosphate ($70 \mathrm{mg}, 0.135 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1.5 \mathrm{ml})$. After 10 min , another equivalent of bis (sym-collidine)bromine(I) hexafluorophosphate in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1.5 \mathrm{ml})$ was added. After 10 min , a third equivalent of bis (sym-collidine)bromine(I) hexafluorophosphate in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{ml})$ was added. The reaction was stirred for an additional 5 min and quenched with sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution. The aqueous solution was extracted with EtOAc and the combined organic layers were concentrated and purified by flash chromatography ($5 \% \rightarrow 10 \% \rightarrow 15 \% \rightarrow 20 \% \mathrm{EtOAc} /$ hexanes $)$ to provide the epoxybromide 98 as a white solid ($54 \mathrm{mg}, 65 \%$ yield).
$\mathrm{R}_{f}=0.38(20 \% \mathrm{EtOAc} / \mathrm{hexanes}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~m}$, $5 \mathrm{H}), 7.12(\mathrm{ddd}, J=1.2 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{dd}, J=6.8 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.14(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~m}, 2 \mathrm{H}), 4.03(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.78(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.12 \sim 1.70(\mathrm{~m}, 7 \mathrm{H}), 1.41(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 0.67(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 178.5,157.7\left(\mathrm{COCF}_{3}\right), 157.4$ $\left(\mathrm{COCF}_{3}\right), 157.0\left(\mathrm{COCF}_{3}\right), 156.7\left(\mathrm{COCF}_{3}, J=35 \mathrm{~Hz}\right), 143.3,136.5,133.7,129.1,128.8,127.9,127.8$, 127.4, 122.5, $121.2\left(C \mathrm{~F}_{3}\right), 118.3\left(C \mathrm{~F}_{3}\right), 115.4\left(C \mathrm{~F}_{3}\right), 112.6\left(C \mathrm{~F}_{3}, J=287 \mathrm{~Hz}\right), 108.7,75.1,68.7,57.0,50.4$, $49.8,49.1,44.3,39.1,31.5,26.8,26.2,23.5,22.4,22.0,20.6,13.4$; IR (thin film): 1709 (s), 1671 (s), 1466 (m), 1204 (s), 1146 (s) cm^{-1}; HRMS (ESI) Calcd. for $\mathrm{C}_{32} \mathrm{H}_{35} \mathrm{BrF}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]: 619.1783$. Found: 619.1781.

Preparation of Ring-Fusion Epoxide 99

(\pm-98

(\pm)-99

To a slurry of the trifluoroacetamide $\mathbf{9 8}(54 \mathrm{mg}, 0.0872 \mathrm{mmol})$ in $\mathrm{MeOH}(6 \mathrm{ml})$ was added solid $\mathrm{K}_{2} \mathrm{CO}_{3}(44 \mathrm{mg}, 0.318 \mathrm{mmol})$. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 3 d , concentrated and purified by flash chromatography ($40 \% \mathrm{EtOAc} /$ hexane $\rightarrow 5 \% \rightarrow 10 \% \rightarrow 15 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to provide epoxide $\mathbf{9 9}$ as a pale yellow oil ($31 \mathrm{mg}, 80 \%$ yield).

$\mathrm{R}_{f}=0.23\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.88(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 10)$, $7.34-7.24(\mathrm{~m}, 5 \mathrm{H}, \mathbf{P h}), 7.09$ (ddd, $J=0.8 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 12), 6.97$ (ddd, $J=0.8 \mathrm{~Hz}, 7.2 \mathrm{~Hz}, 8.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H} 11), 6.64(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 13), 5.17(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 14 \mathrm{a}), 4.59(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}$, H14b), 3.39 (d, $J=14.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 23 a), 3.22(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 23 \mathrm{~b}), 2.98(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 21), 2.82(\mathrm{~m}, 1 \mathrm{H}$, H17), $2.66(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2 \mathbf{a}), 2.30(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2 \mathrm{~b}), 2.02(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 16 \mathrm{a}), 1.76(\mathrm{~m}, 3 \mathrm{H}$, H16b, H18a, H20a), 1.58 (m, 2H, H19), 1.46 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H} 20 \mathrm{~b}$), 1.34 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H} 18 b), 1.29$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H} 5$), 1.10 (d, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H} 22$), $0.69(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H} 6) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 178.7,143.0,136.2,134.0$, $128.8,128.6,127.5,127.2,127.0,122.0,108.1,70.7,65.4,58.2,50.4,49.4,48.3,46.8,43.9,41.3,33.5$, $32.1,27.2,24.6,21.3,18.8,14.5$; IR (thin film): 1710 (s), 1608 (s), 1484 (s), 1466 (s), 1360 (s) cm^{-1}; HRMS (ESI) Calcd. for $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]: 443.2699$. Found: 443.2693.

Preparation of C3-Epi-Citrinadin B Core 97

$(\pm)-99$

$(\pm)-97$

To a solution of epoxide $\mathbf{9 9}(4 \mathrm{mg}, 0.009 \mathrm{mmol})$ in 2-methoxyethanol $(1 \mathrm{ml})$ was added MeNH_{2} ($40 \mathrm{wt} \%$ in $\mathrm{H}_{2} \mathrm{O}, 4$ drops). The mixture was stirred at $170{ }^{\circ} \mathrm{C}$ for 8 hours, $180^{\circ} \mathrm{C}$ for 12 hours, concentrated and purified by flash chromatography ($5 \% 10 \% 15 \% 20 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to provide a trace amount of the desired amino alcohol 97 .

$$
\mathrm{R}_{f}=0.28\left(15 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{KMnO}_{4} / \mathrm{CAM}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.4(\mathrm{~d}, 1 \mathrm{H}), 7.3
$$

$(\mathrm{m}, 5 \mathrm{H}), 7.2(\mathrm{t}, 1 \mathrm{H}), 7.13(\mathrm{t}, 1 \mathrm{H}), 6.68(\mathrm{~d}, 1 \mathrm{H}), 5.25(\mathrm{~d}, 1 \mathrm{H}), 4.6(\mathrm{~d}, 1 \mathrm{H}), 3.8(\mathrm{~s}, 2 \mathrm{H}), 3.5(\mathrm{~m}, 2 \mathrm{H}), 3.2(\mathrm{~m}$, $2 \mathrm{H}), \sim 3-1.5(\mathrm{~m}, 12 \mathrm{H}), 1.3(\mathrm{~s}, 3 \mathrm{H}), 1.2(\mathrm{~s}, 3 \mathrm{H}), 0.9(\mathrm{~s}, 3 \mathrm{H})$. An X-ray crystal structure was obtained:

2.7 Notes and References

${ }^{1}$ For a review of (1,3)-dipolar cycloaddition reactions, see: Gothelf, K. V.; Jørgensen, K. A. Chem. Rev. 1998, 98, 863-909.
${ }^{2}$ For a review of enantiopure cyclic nitrones in asymmetric synthesis, see: Revuelta, J.; Cicchi, S.; Goti, A.; Brandi, A. Synthesis 2007, 4, 485-504.
${ }^{3}$ Murphy, J. A.; Rasheed, F.; Roome, S. J.; Scott, K. A.; Lewis, N. J. Chem. Soc., Perkin. Trans. 1, 1998, 2331-2339.
${ }^{4}$ This compound was not subjected to complete characterization.
${ }^{5}$ Jeffery, T. Tetrahedron 1996, 52, 10113-10130.
${ }^{6}$ For a review of the asymmetric Heck cyclization, see: Dounay, A. B.; Overman, L. E. Chem. Rev. 2003, 103, 2945-2963.
${ }^{7}$ For a review of metal-catalyzed enyne cyclization, see: Michelet, V.; Toullec, P. Y.; Genêt, J-P. Angew. Chem. Int. Ed. 2008, 47, 4268-4315.
${ }^{8}$ For a related example, see: Maddaford, S. P.; Andersen, N. G.; Cristofoli, W. A.; Keay, B. A. J. Am. Chem. Soc. 1996, 118, 10766-10773.
${ }^{9}$ Collington, E. W.; Finch, H.; Smith, I. J. Tetrahedron Lett. 1985, 26, 681-684.
${ }^{10}$ The absolute stereochemical assignments of the oxindoles (-)-70 and (+)-70 were not made until later in the synthesis. A dipolar cycloaddition between (-)-58 (derived from (-)-70, the product of an asymmetric Heck reaction using (+)-BINAP as the chiral ligand) and $(S)-(-)-57$ results predominantly in the formation of $(3 S, 12 S)-(+)-87$, the same diastereomer for which an x-ray crystal structure was obtained in the racemic series.
$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$,
(+)-BINAP, PMP

73

$(-)-70$

(-)-58 DMA, $110^{\circ} \mathrm{C}, 20 \mathrm{~h}$
96% yield, 65% ee
 (12S)-(-)-57 $(80 \%$ ee)
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$, RT

$(-)-58$

${ }^{11}$ Differences in the enantioenrichment of the two oxindoles (-)-70 and (+)-70 are believed to be the result of batch-variation in the $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ catalyst and BINAP ligand.
${ }^{12}$ The relative stereochemistry of propargyl alcohols (\pm)-68a and (\pm)-68b was based on NOE data obtained from (\pm)-69a and (\pm)-69b following reductive enyne cyclization.
${ }^{13}$ a) Trost, B. M.; Rise, F. J. Am. Chem. Soc. 1987, 109, 3161-3163; b) Trost, B. M. Acc. Chem. Res. 1990, 23, 34-42.
${ }^{14}$ For a scale of reducing ability of silane reagents, see: Hayashi, K.; Iyoda, J.; Shiihara, I. J. Organomet. Chem. 1967, 10, 81-94.
${ }^{15}$ For a similar finding, see: Wender, P. A.; D'Angelo, N.; Elitzin, V. I.; Ernst, M.; Jackson-Ugueto, E. E.; Kowalski, J. A.; Mckendry, S.; Rehfeuter, M.; Sun, R.; Voigtlaender, D. Org. Lett. 2007, 9, 1829-1832.
${ }^{16}$ For a related reaction: Oh, C. H.; Kang, J. H.; Rhim, C. Y.; Kim, J. H. Chem. Lett. 1998, 375-376.
${ }^{17}$ Murahashi, S-I.; Shiota, T. Tetrahedron Lett. 1987, 28, 2383-2386.
${ }^{18}$ For hydroxyl group directed nitrile oxide-olefin cycloadditions, see: a) Kanemasa, S.; Nishiuchi, M.; Kamimura, A.; Hori, K. J. Am. Chem. Soc. 1994, 116, 2324-2339; b) Bode, J. W.; Fraefel, N.; Muri, D.; Carreira, E. M. Angew. Chem. Int. Ed. 2001, 40, 2082-2085.
${ }^{19}$ Adams, D. R.; Carruthers, W.; Williams, M. J.; Crowley, P. J. J. Chem. Soc., Perkin Trans, 1 1989, 1507-1513.
${ }^{20}$ Chackalamannil, S.; Wang, Y. Tetrahedron 1997, 53, 11203.
${ }^{21}$ The use of the less expensive L-alanine enantiomer was expected to provide a total synthesis of entCitrinadin B (ent-2).
${ }^{22}$ Particularly in the mismatched case, erosion in the diastereoselectivity of the reaction may be the result of using a super-stoichiometric excess of the enantioenriched (but not enantiopure) nitrone. The resulting rapid cycloaddition of the $(3 R)-(+)-58$ enone with the minor $(12 R)-(-)-57$ nitrone enantiomer could result in substantial amounts of the undesired $(3 R, 12 R)-(-)-\mathbf{8 7}$ isoxazolidine diastereomer being formed.
${ }^{23}$ Peterson, D. J. J. Org. Chem. 1968, 33, 780-784.
${ }^{24}$ Takai, K.; Kakiuchi, T.; Kataoka, Y.; Utimoto, K. J. Org. Chem. 1994, 59, 2668-2670.
${ }^{25}$ (a) Tebbe, F. N.; Parshall, G. W.; Reddy, G. S. J. Am. Chem. Soc. 1978, 100, 3611-3613. (b) Pine, S. H.; Zahler, R.; Evans, D. A.; Grubbs, R. H. J. Am. Chem. Soc. 1980, 102, 3270-3272.
${ }^{26}$ Petasis, N. A.; Bzowej, E. I. J. Am. Chem. Soc. 1990, 112, 6392-6394.
${ }^{27}$ The term "salt free" generally refers to a Wittig reagent wherein the counteranion derived from base is not lithium. To avoid confusion, the term "free of salt" is used to refer to a Wittig reagent in which the inorganic salt has been deliberately removed.
${ }^{28}$ Li, A.-H.; Dai, L.-X.; Aggarwal, V. K. Chem. Rev. 1997, 97, 2341-2372.
${ }^{29}$ Yamada, Y.; Yamamoto, T.; Okawara, M. Chem. Lett. 1975, 361-362.
${ }^{30}$ Evans, D. A.; Faul, M. M.; Bilodeau, M. T. J. Am. Chem. Chem. 1994, 116, 2742-2753.
${ }^{31}$ Trost, B. M.; Dong, G. J. Am. Chem. Soc. 2006, 128, 6054-6055.
${ }^{32}$ (a) Guthikonda, K.; Du Bois, J. J. Am. Chem. Soc. 2002, 124, 13672-13673. (b) Keaney, G. F.; Wood, J. L. Tetrahedron Lett. 2005, 46, 4031-4034.
${ }^{33}$ This compound was not subjected to complete characterization.
${ }^{34}$ Behrens, C. H.; Sharpless. K. B. J. Org. Chem. 1985, 50. 5696-5704.
${ }^{35}$ Evans, R. D.; Magee, J. W.; Schauble, J. H. Synthesis 1988, 862-868.
${ }^{36}$ Org. Syn. 2000, 77, 206.
${ }^{37}$ This compound was not subjected to complete characterization.

CHAPTER 3

Accessing ent-Citrinadin B

3.1 Synthesis of the ent-Citrinadin Core

3.1.1 Revising the C3-epi-Citrinadin B Approach

Having identified a method to access the C3-epi Citrinadin B core (97) from isoxazolidine 87, it was strategized that a similar sequence of transformations might be utilized to synthesize Citrinadin B (2) from the diastereomeric $(3+2)$ cycloaddition product (56)—the C3-epimer of $\mathbf{8 7}$ —which shares the correct relative stereochemistry at C3, C16, and C12 with respect to 2, as proposed by Kobayashi (Scheme 3.1). ${ }^{1}$

Scheme 3.1

Given that $\mathbf{8 7}$ had previously been established to be the predominant diastereomer formed in the cycloaddition of racemic substrates, enantioenriched substrates $\mathbf{5 8}$ and 57 would be required to obtain sufficient amounts of the mismatched (3+2) adduct (56). Based on the absolute stereochemistry assigned to Citrinadin B (2) by Kobayashi, access to the natural product would be expected to result from using nitrone $(R)-(+)-57-$ derived from D-alanine-however, initial studies began with the less expensive Lstereoisomer, and were expected to provide the enantiomer of Citrinadin B (ent-2) (Scheme 3.2). Akin to the synthesis of the C3-epi-Citrinadin Core 97, a Wittig olefination and $\mathrm{N}-\mathrm{O}$ cleavage were proposed to provide 55, setting the stage for subsequent quinolizidine formation and epoxide opening to furnish the entCitrinadin Core (100). A late stage functionalization of the aromatic ring, possibly via a Fries rearrangement or C-H activation, was envisioned for the incorporation of the epoxyketone moiety.

Scheme 3.2

ent-Citrinadin $\mathrm{B}($ ent-2) $\mathrm{R}=\mathrm{H}$

ent-Citrinadin B Core (100)

56

58

Unfortunately, from the outset the pronounced instability of isoxazolidine 56-compared with its diastereomeric counterpart 87—made attempts at a Wittig olefination futile. Thus, an alternative approach was proposed wherein installation of the C10 carbon would be achieved via an epoxidation to provide $\mathbf{1 0 3}$ (Scheme 3.3). Importantly, the spiro-epoxide was expected to not only provide the requisite carbon atom-C10-but also enable subsequent ring closure upon unmasking of the nucleophilic nitrogen by reductive

Scheme 3.3

cleavage of the isoxazolidine $\mathrm{N}-\mathrm{O}$ bond. The diol (102) derived from this latter event would serve as a precursor to the desired ring-fusion epoxide 101.

3.1.2 Synthesis of the ent-Citrinadin Tetrasubstituted Epoxide

To implement the spiro-epoxidation strategy, $(\pm)-\mathbf{5 6}$ was exposed to the Corey-Chaykovsky conditions ${ }^{2}\left(\mathrm{NaH},\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~S}=\mathrm{O}\right]^{+} \mathrm{I}^{-}\right)$to provide the desired epoxide $(\pm) \mathbf{- 1 0 3}$ as a single diastereomer, the structure and relative stereochemistry of which were secured by X-ray crystallographic analysis (Scheme 3.4). Although the stereochemical outcome of this reaction was not necessarily critical to the success of subsequent chemistry, the observed diastereomer correlates to addition to the least encumbered face of ketone 56. Upon ring opening, $\mathbf{1 0 3}$ was expected to lead to an antiperiplaner relationship of the alcohol moieties (e.g., $\mathbf{1 0 2}$ in Scheme 3.3), potentially facilitating the installation of a ring-fused epoxide $\mathbf{1 0 1}$. Unfortunately, reductive cleavage of the $\mathrm{N}-\mathrm{O}$ bond in $(\pm)-\mathbf{1 0 3}$ to provide $(\pm) \mathbf{- 1 0 4}$ proved problematic, resulting in either over-reduction $\left(\mathrm{H}_{2} / \mathrm{Raney} \mathrm{Ni}\right)$ or a complex mixture $\left(\mathrm{SmI}_{2}\right)$.

Scheme 3.4

Scheme 3.5

Given our previous success with $\mathrm{N}-\mathrm{O}$ cleavage on an exomethylene-containing substrate (e.g. 87, Scheme 2.27) it was clear that further manipulation of $\mathbf{1 0 3}$ would be required prior to reduction. To this end a report from Caputo and coworkers, which described the deoxygenation of spiro-epoxides to furnish the corresponding exomethylenes, was intriguing (Scheme 3.5 , intermolecular pathway). ${ }^{3}$ Conveniently, this two-step reaction sequence to access $\mathbf{1 0 6}$ from $\mathbf{1 0 3}$ would intercept the original retrosynthetic plan to synthesize the Citrinadin B core (100). In practice however, when epoxide (+)-103 was treated with TMSCl/NaI under the conditions described by Caputo and coworkers, ${ }^{3}$ a new adduct was isolated in high yield that was subsequently identified as the isoxazolidinium salt (+)-107 (Scheme 3.5, intramolecular pathway). Although unexpected, it was recognized that ammonium salt (+)-107 not only possessed the requisite $\mathrm{C}-\mathrm{N}$ bond and desired diol but also an $\mathrm{N}-\mathrm{O}$ bond that was activated toward reductive cleavage. Indeed, when (+)-107 was treated with activated zinc in acetic acid, ${ }^{4}$ it underwent a smooth reduction to provide diol 102, the direct precursor to tetrasubstituted epoxide 101 (Scheme 3.6).

Ensuing attempts at forming the epoxide (101) were initially thwarted by a lack of reactivity of the sterically hindered diol 102. Under Mitsunobu's conditions $\left(\mathrm{PPh}_{3} / \mathrm{DEAD}\right),{ }^{5}$ Mukaiyama's conditions (2-

Scheme 3.6

fluoro-1-methylpyridium p-toluenesulfonate $/ \mathrm{Et}_{3} \mathrm{~N}$), ${ }^{6}$ or Vorbrüggen's conditions (perfluorobutanesulfonyl fluoride/DBU), ${ }^{7}$ only recovered starting material was found. Eventually, it was discovered that treatment of diol $\mathbf{1 0 2}$ with Martin's sulfurane ${ }^{8}$ produced the desired epoxide (+)-101 as did exposure of $\mathbf{1 0 2}$ to $\mathrm{MsCl} / \mathrm{Et}_{3} \mathrm{~N}$ followed by $\mathrm{K}_{2} \mathrm{CO}_{3}$; the latter furnishing more synthetically useful yields and some recoverable starting material (Scheme 3.6).

3.1.3 Advancing to the Benzyl Protected ent-Citrinadin Core

Preparation of epoxide $\mathbf{1 0 1}$ set the stage for installation of the angular methyl amine moiety Unfortunately, attempts to employ reaction conditions developed for the C3-epimer (i.e., $99 \rightarrow \mathbf{9 7}$, Scheme 2.30) proved unsuccessful for (\pm) $\mathbf{- 1 0 1}$ and only decomposition was observed under these forcing conditions (Scheme 3.7). Attempts to promote the reaction by the addition of Lewis acids, including $\mathrm{LiClO}_{4},{ }^{9}$ $\operatorname{Mg}(\mathrm{OTf})_{2},{ }^{9} \mathrm{Yb}(\mathrm{OTf})_{3},{ }^{10}$ and neutral $\mathrm{Al}_{2} \mathrm{O}_{3},{ }^{11}$ also failed to produce even a trace amount of the desired amino alcohol $((\pm)-\mathbf{1 0 8})$. Screening of other N -based nucleophiles including allylamine $/ \mathrm{LiClO}_{4},{ }^{12}$ $\mathrm{BnNHMe} / \mathrm{Mg}(\mathrm{OTf})_{2},{ }^{9}$ BocNHMe/ $\mathrm{Mg}(\mathrm{OTf})_{2},{ }^{9}$ and $\mathrm{Me}_{2} \mathrm{AlNHMe}{ }^{13}$ proved fruitless with no sign of the ring opened product.

Scheme 3.7

MeNH_{2}

$(\pm)-101$

(\pm)-108

Eventually, epoxide $(\pm) \mathbf{- 1 0 1}$ would undergo reaction when benzylamine was employed as the nucleophile in the presence of magnesium triflate (Scheme 3.8); however, spectroscopic analysis of the derived product revealed that the ring opening reaction under these conditions was the result of intramoleuclar attack by the resident nitrogen and subsequent attack of benzyl amine onto an intermediate aziridinium (\pm)-109 to furnish the skeletally rearranged indolizidine (\pm) $\mathbf{- 1 1 0}$. Also isolated from the reaction was significant amount of the pyridinium ion $(\pm) \mathbf{- 1 1 3}$, which likely arises from an elimination of allylic alcohol $(\pm) \mathbf{- 1 1 1}$ and subsequent oxidative aromatization of $(\pm) \mathbf{- 1 1 2}$.

Scheme 3.8

Screening of other potential nucleophiles and various Lewis acids revealed that sodium azide in the presence of LiClO_{4} in $\mathrm{CH}_{3} \mathrm{CN}$ at elevated temperature, conditions reported by Crotti, ${ }^{9}$ delivered a small amount of azido alcohol (\pm)- $\mathbf{1 1 4}$ without the concomitant skeleton rearrangement (Scheme 3.9). Other Lewis Acids, such as $\mathrm{Ti}(\mathrm{Oi} \operatorname{Pr})_{2} \mathrm{~N}_{3},{ }^{14} \mathrm{Et}_{2} \mathrm{AlCl},{ }^{15}$ and $\mathrm{CeCl}_{3}{ }^{16}$ failed to promote the ring opening; however, switching to $\mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}{ }^{9}$ allowed for reaction at much lower temperatures $\left(80^{\circ} \mathrm{C}\right)$ —but the yields under these conditions were variable. Other magnesium-based Lewis acids such as $\mathrm{MgCl}_{2}, \mathrm{MgBr}_{2}$, and $\mathrm{Mg}(\mathrm{OTf})_{2}$ proved more effective and eventually, MgCl_{2} was deemed the best overall Lewis acid based on both reproducibility and yield.

Scheme 3.9

With the azido alcohol $\mathbf{1 1 4}$ in hand, only four obstacles stood in the way of accessing Citrinadin B (2): azide reduction, N-methylation, debenzylation, and introduction of the epoxyketone side-chain. The first task was readily accomplished by hetereogeneous hydrogenation that provided amino alcohol (\pm)-115 (Scheme 3.10). ${ }^{17}$ Reductive alkylation of $(\pm)-\mathbf{1 1 5}$ under standard conditions failed $\left(\mathrm{NaCNBH}_{3}, \mathrm{HCHO}\right.$, $\mathrm{AcOH})$. Nevertheless, switching to a more electrophilic methylating reagent $\left(\mathrm{Me}_{2} \mathrm{SO}_{4}\right)$, in the presence of
excess potassium carbonate and at slightly elevated temperature, provided N-methylamine (\pm)- $\mathbf{1 0 8}$ in reasonable yield with no sign of over-methylation.

Scheme 3.10

3.1.4

Overcoming A Problematic Debenzylation

The final hurdle to overcome in obtaining the core structure of Citrinadin B was a projected debenzylation of oxindole 108. In spite of the moderate risk associated with using the N - Bn protecting group, the initial choice was guided by the known stability of N - Bn oxindoles under the most common synthetic manipulations. Additionally, the lability of this protecting group, particularly under dissolving metal reduction conditions, had been routinely exploited for its late stage removal in other successful total syntheses (e.g., strychnofoline). ${ }^{18}$ Quite disappointingly, however, subjecting N-Bn oxindole (\pm)- $\mathbf{1 0 8}$ to dissolving metal conditions only provided a trace amount of the free oxindole $(\pm) \mathbf{- 1 0 0}$ at best (Scheme 3.11). It was of further dissapointment to find that exposure of $(\pm) \mathbf{- 1 0 8}$ to either oxidative conditions (DDQ ${ }^{19}$ and NBS/N-methylacetamide ${ }^{20}$) or conc. HBr resulted only in decomposition of the starting material or aromatic bromination products, respectively.

Scheme 3.11

The failure of traditional benzyl deprotection conditions, prompted an attempt to use the oxidative conditions developed by Williams and coworkers. ${ }^{21}$ In this reaction, treatment of N-benzyl amide $\mathbf{1 1 6}$ with t-BuLi is believed to form a dipole stabilized carbanion 117, which can undergo peroxide formation and
subsequent reduction, to arrive at a hemi-aminal intermediate 118, which then collapses to release the free amide $\mathbf{1 1 9}$ and benzaldehyde (120) as a side product (Scheme 3.12).

Scheme 3.12

Not surprisingly, amino alcohol 108 was not compatible with the strongly basic conditions of the reaction. However, treating N - Bn substrate (+)-101 with a slight excess of t-BuLi at low temperature, followed by oxidation with O_{2} and reduction with dimethylsulfide, provided the desired debenzylated oxindole (+)-121 in excellent yield (Scheme 3.13). Epoxide (+)-101 represents the most advanced intermediate that could be deprotected using the Williams' protocol.

Scheme 3.13

Thankfully, epoxide (+)-121 could be opened intermolecularly, using the previously optimized conditions $\left(\mathrm{MgCl}_{2}, \mathrm{NaN}_{3}\right)$, to arrive at the azido alcohol (+)-122 (Scheme 3.14); however, the subseqeunt hydrogenation/methylation sequence did not provide the desired methylamine $\mathbf{1 2 3}$. In addition to methylation of the amine, it appeared that an unwanted methylation of the electron-rich oxindole was also

Scheme 3.14

occurring to form the corresponding imidate $\mathbf{1 2 4}^{\mathbf{2 2}}$, which to our chagrin, failed to undergo hydrolysis to furnish 123.

Unable to overcome the undesired methylation, protection of the oxindole prior to N-methylation was required. To this end, (+)-122 was converted to the corresponding the N-tertbutylcarbonyl (+)-125. Hydrogenation of $\mathbf{1 2 5}$, followed by methylation of the resulting amine $\left(\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{Me}_{2} \mathrm{SO}_{4}\right)$, and hydrolysis of the N-tertbutylcarbonyl group using acidic conditions, finally delivered (+)-100, structurally consistent with the core of ent-Citrinadin B (Scheme 3.15).

Scheme 3.15

3.2 Attempts at Late-Stage Side Chain Homologation

3.2.1 An Attempted Fries Rearrangement

With the core of ent-Citrinadin B (100) assembled, the final obstacle-installation of the epoxyketone side-chain-became the focus. Based upon the inherent tendency of the aromatic ring to undergo electrophilic aromatic substitution para to the electron-donating oxindole amide, a Fries rearrangement was viewed as a convenient way to enforce ortho-acylation selectivity. Taddei and coworkers have reported the Fries rearrangement of aromatic amides to form ortho-substituted anilines via photochemical homolysis of the nitrogen-carbon bond. ${ }^{23}$ Unfortunately, N-acylation of the citrinadin core

Scheme 3.16

(+)-100, followed by exposure to ultraviolet light (450 W Hanovia lamp, equipped with either a quartz or pyrex filter) in a variety of solvents $\left(\mathrm{CH}_{3} \mathrm{CN}, \mathrm{PhH}\right.$, and i - PrOH$)$ did not result in the formation of any of the desired ortho-acylated oxindole product 126 (Scheme 3.16); only deacylated oxindole was recovered. Although attempts were made to promote the reaction using Lewis acids $\left(\mathrm{TiC}_{4}, \mathrm{AlCl}_{3}\right.$, or $\left.\mathrm{Sc}(\mathrm{OTf})_{3}\right)$, these also proved ineffective at promoting the rearrangement.

3.2.2 Investigating A Possible Lithium Halogen Exchange

Unable to induce a Fries rearrangement, an alternate strategy was explored wherein halogenation at C7 would be followed by either a cross-coupling or a lithium-halogen exchange reaction to provide access to ent-Citrinadin B (2). Regiocontrol in the former was expected based on a known procedure involving electrophilic aromatic thallation followed by treatment with aqueous potassium iodide. ${ }^{24}$ Aromatic substrates which furnish the products of ortho-thallation are believed to do so via precomplexation of the $\mathrm{Tl}(\mathrm{TFA})_{3}$ electrophile to a directing group (e.g. the carboxylic acid of benzoic acid). Regrettably, however, attempts to synthesize aryl iodide $\mathbf{1 2 7}$ through the intermediacy of an ortho-thallated oxindole did not result in the formation of any desired product (Scheme 3.17). Only starting material was recovered.

Scheme 3.17

1. $\mathrm{AcCl}, \mathrm{NEt}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$
(+)-100

Returning to the idea that electrophilic aromatic substitution of the oxindole should be favored para to the amide, a two-step bis-substitution was performed where a proposed deiodination might provide aryl bromide 128. In the event, oxindole $\mathbf{1 0 0}$ was first treated with N -iodosuccinimide, and then with N bromosuccinimide, to provide the p-iodo-o-bromo oxindole (Scheme 3.18). Unfortunately, attempts to selectively cleave the superfluous carbon-iodine bond using radical chemistry (AIBN, $\left.(n-\mathrm{Bu})_{3} \mathrm{SnH}\right)$ or
palladium-catalyzed reductive dehalogenation conditions $\left(\mathrm{Pd}(\mathrm{OAc})_{2}\right.$ or $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ with $\left.(n-\mathrm{Bu})_{3} \mathrm{SnH}\right)$ only resulted in decomposition of the starting material.

Scheme 3.18

3.2.3 Toward a Metal Catalyzed Cross Coupling

Aware that C7-selective borylations of indoles had been reported by Maleczka and Smith using iridium catalysis, one final attempt was made to introduce C 7 -functionalization to oxindole (+)-121 (Scheme 3.19). ${ }^{25}$ Unfortunately, this too only resulted in the decomposition of starting material.

Scheme 3.19

3.3 Synthesis of a C7 Pre-Functionalized Enone

Given the considerable challenge associated with the late stage functionalization of oxindole 100, incorporation of a C7 functional handle at an earlier stage of the synthesis was considered essential. To that end, a synthesis of bromoenone 37 via oxindole 130 ensued (Scheme 3.20). It was

Scheme 3.20

recognized that Heck cyclization of 2,6-dibromoanilide 131a would allow for the construction of $\mathbf{1 3 0}$. Although previous studies suggested that preparing $\mathbf{1 3 0}$ from 131a would be effective for the preparation of racemic material, a substrate containing a triflate (e.g., 131b) would likely be required to access enantioenriched 130. Given the commercial availability of dibromoanaline, initial studies began in the racemic series.

In a manner analogous to our previous efforts we turned to a trimethylaluminum-mediated coupling of 2,6-dibromoaniline 49 with lactone 47 (Scheme 3.21). Although this reaction was initially performed at reflux in toluene, optimization efforts revealed that $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as a solvent and ambient reaction temperature resulted in higher yields and allowed for the use of fewer equivalents of lactone 47. Protection of the primary alcohol 48 as its tertbutyldimethylsilyl ether proceeded smoothly, as did a subsequent benzyl protection. ${ }^{26}$

Scheme 3.21

AlMe_{3}, then

48

1. TBSCl, Imid

C to RT
2. $\mathrm{NaH}, \mathrm{BnBr}$

132

Unfortunately, Heck cyclization of anilide $132\left(\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{PPh}_{3}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{PhMe}, 110{ }^{\circ} \mathrm{C}\right)$ was remarkably poor yielding in comparison with previous substrates (i.e., 62 and 73, Schemes 2.5 and 2.7). Attempts to improve the yield by using other pre-catalysts $\left(\mathrm{Pd}(\mathrm{dba})_{3}\right)$, bases $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$, additives (n $\mathrm{Bu}_{4} \mathrm{NCl}$), and solvents (DMF, THF, NMP) were ineffective. What proved more beneficial was to perform

Scheme 3.22

the Heck reaction prior to benzyl protection. Apparently the added steric bulk of the bis-substituted anilide 132 was prohibitively affecting the cyclization. The addition of a small amount of water ($1 \% \mathrm{v} / \mathrm{v}$) to the reaction proved crucial both in terms of yield and reproducibility. Benzyl protection of the resulting oxindole $(\pm) \mathbf{- 1 3 3}$ conveniently provided the desired N-Bn oxindole (\pm)-130.
3.5.2

Attempted Asymmetric Synthesis of a C7-Bromo-oxindole

In a similar sense, it was envisioned that nonracemic oxindole $\mathbf{1 3 0}$ could arise from the asymmetric Heck cyclization of aryl triflate 131b (Scheme 3.23). Although 2-bromo-6-methoxyaniline 134 was not commercially available, it was accessible from a directed bromination of the corresponding 2methoxyaniline 135.

Scheme 3.23

Following a modified literature procedure ${ }^{27}$, conversion of the aniline (135) to its N-Boc carbamate (136) was followed by treatment with t-butyllithium resulting in a directed lithiation of the aromatic ring (Scheme 3.24). Exposure to electrophilic bromine (1,2-dibromoethane) subsequently provided the desired aryl bromide, whereupon a final trifluoroacetic acid-mediated removal of the carbamate yielded 2-bromo-6-methoxyaniline 134.

Scheme 3.24

Coupling of the aniline $\mathbf{1 3 4}$ to lactone $\mathbf{4 7}$ via the corresponding magnesium amide was found to proceed smoothly, and de-methylation of the derived anisole to the phenol (138) was then
accomplished via treatment with a solution of boron tribromide in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Scheme 3.25). Although, bissilyl protection of the primary alcohol and phenol was problematic under standard silylation conditions (TBSCl , imidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{RT}$), selective protection of primary alcohol $\mathbf{1 3 8}$ could be realized via portionwise addition of the silyl chloride to a cold solution of the alcohol in DMF. Subsequent conversion of phenol 139 to its triflic ester 131b under standard conditions provided the desired substrate for the asymmetric Heck cyclization.

Scheme 3.25

Unfortunately, when triflate 131b was exposed to asymmetric Heck conditions previously optimized for triflate $73\left(\mathrm{Pd}_{2}(\mathrm{dba})_{3},(+)\right.$-BINAP, PMP, DMA), no reaction took place (Scheme 3.26). Aware that the unprotected amide might be incompatible with the asymmetric conditions, attempts were also made to induce the cyclization of $N-\mathrm{Bn}$ and N-Boc variants of 131b. However, these reactions were also ineffective. Surprisingly, when the substrate was tested under the racemic conditions used for dibromoanilide 131a, the desired aryl bromide (\pm)- $\mathbf{1 3 0}$ was not produced. Instead, aryl triflate (\pm)- $\mathbf{1 4 0}$ was the only isolated product, albeit in low yield. This stands in contrast to conventional trends, which predict that oxidative insertion of palladium into the $\mathrm{C}-\mathrm{O}$ triflate bond should be preferable to insertion into the

Scheme 3.26

$\mathrm{C}-\mathrm{Br}$ bond. ${ }^{28}$ Faced with these unexpected complications, and eager to test the ability of a brominated enone 37 to participate in the $(3+2)$ cycloaddition reaction, development of the asymmetric reaction was discontinued.

3.5.2
 Synthesis of the Bromoenone

In anticipation of the ensuing enyne cyclization, the silyl ether $(\pm)-\mathbf{1 3 0}$ was cleaved and the alcohol (\pm)-141 was oxidized using Swern oxidation conditions (Scheme 3.27). The resulting aldehyde $(\pm)-\mathbf{1 4 2}$ was used without purification in the subsequent Grignard addition, where optimization of the reaction revealed that a nearly quantitative yield of the propargyl alcohols $(\pm) \mathbf{- 1 4 3 a} / \mathbf{b}$ could be achieved via addition of the aldehyde to a solution of the Grignard reagent. Yields of $(\pm) \mathbf{- 1 4 3 a} / \mathbf{b}$ resulting from the reverse order of addition were inferior, and undesirable homo-Aldol side products and recovered starting material were prevalent in the reaction mixture. Silyl protection of the propargyl alcohols $(\pm)-\mathbf{1 4 3} \mathbf{a} / \mathbf{b}$ provided the substrates $(\pm) \mathbf{- 1 4 4 a} / \mathbf{b}$ necessary for enyne cyclization.

Scheme 3.27

TBSCI, Im

(\pm)-143a
$a: R^{1}=O H, R^{2}=H$
$b: R^{1}=H, R^{2}=O H$
(\pm)-144a 95\% Yield
(\pm)-144b 86\% Yield

Initial attempts at inducing the palladium-catalyzed reductive enyne cyclization of (\pm)-
144a to (\pm)-145a (followed by removal of the silyl protecting group) resulted in poor yields of the desired tricycle (\pm)-146a. As this appeared to be the result of a particularly facile alkyne reduction-precluding cyclization of the substrate-slow syringe pump addition of the triethysilane reducing agent was conducted
and found to provide nearly double the amount of subsequent tricycle (\pm)-146a (Scheme 3.28). Interestingly, enyne diastereomer ($\mathbf{\pm}$)-144b proved to be a slightly superior substrate for the cyclization and was amenable to decreased catalyst loadings and more concentrated reaction mixtures. Regrettably, access to $(\pm) \mathbf{- 1 4 4 b}$ was limited by the more favorable formation of $(\pm) \mathbf{- 1 4 3 a}$ in the preceding Grignard reaction. Nevertheless, oxidation of the combined allylic alcohols (\pm)-146a/b was accomplished via Swern oxidation to yield the desired C7-functionalized bromoenone (\pm)-37.

Scheme 3.28

3.4 Synthesis of ent-Citrinadin B

3.4. \quad The $(3+2)$ Cycloaddition Reaction

With bromoenone (\pm) - $\mathbf{3 7}$ in hand, the ability of the newly synthesized dienophile to undergo the desired (3+2) cycloaddition reaction was explored. Similar to the synthesis of $\mathbf{5 6}$, it was found the reaction of nitrone (-)-57 with bromoenone (\pm)-37 resulted in the formation of two diastereomeric isoxazolidines $(3 R, 12 S)-(+)-\mathbf{1 4 7}$ and $(3 S, 12 S)-\mathbf{1 4 8}$ (Scheme 3.29). Importantly, the use of excess nitrone in the cyclization enabled the isolation of synthetically useful amounts of the desired diastereomer $((3 R, 12 S)$ -$(+)-147)$, the mismatched of the two diastereomeric products. Interestingly, the addition of proline to the
reaction resulted in highly enantioenriched isoxazolidine $\mathbf{1 4 7}$; however at this stage, the factors leading to this improved stereoselectivity have yet to be fully delineated.

Scheme 3.29

Advancing to the Tetrasubstituted Epoxide

With the desired isoxazolidine $(3 R, 12 S)-(+)-147$ in hand, efforts construct a tetrasubstituted epoxide (analogous to 101) began with Corey-Chaykovsky epoxidation of the ketone followed by intramolecular opening of the derived epoxide $((+)-\mathbf{1 4 9})$ to give the ammonium salt $(+)-\mathbf{1 5 0}$ (Scheme 3.30). Reductive cleavage of the $\mathrm{N}-\mathrm{O}$ bond in (+)-150 set the stage for mesylation, and treatment with base to furnish the ring-fusion epoxide (+)-152.

Scheme 3.30

At this stage, efforts to advance $\mathbf{1 5 2}$ via a route mirroring that employed for $\mathbf{1 0 1}$ became complicated by the unusually harsh conditions that proved necessary for removal of the benzyl protecting group ($t-\mathrm{BuLi}, \mathrm{O}_{2}$). Clearly, these conditions would not be compatible with the aryl bromide due to the well known ability of such functionality to undergo metal halogen exchange. Likewise, installation of the fully functionalized and somewhat labile epoxyketone side chain prior to opening of the tetrasubstituted epoxide with sodium azide did not seem prudent. The only perceived way forward was to advance $\mathbf{1 5 2}$ to an intermediate that could withstand the harsh benzyl deprotection conditions, be advanced through the azide opening of the epoxide, and remain poised for introduction of the epoxyketone.

Attaching the Side Chain

Governed by the above constraints, a recent publication by Zhang and coworkers describing the gold-catalyzed regioselective oxidation of alkynes (e.g., 153) to α, β-unsaturated ketones (e.g., 157) was quite intriguing (Scheme 3.31). ${ }^{29}$ In this reaction, an alkyne is activated by exposure to a gold catalyst (e.g., $\left(\mathrm{Ph}_{3} \mathrm{P}\right)$ AuNTf F_{2}) which facilitates reaction of the intermediate complex (154) with pyridine N-oxide at the least hindered position. Subsequent expulsion of pyridine from he derived intermediate (155) provides an α-oxo gold carbene (156) which is proposed to undergo formal $1,2-\mathrm{C}-\mathrm{H}$ insertion to deliver an enone (157).

Based on this method, a plan was developed wherein alkyne $\mathbf{1 6 0}$ would derive from $\mathbf{1 5 2}$ and serve as a masked α, β-unsaturated ketone capable of withstanding the conditions required for both benzyl

Scheme 3.31

deprotection and epoxidation. Finally, conversion of the alkyne 159 to the enone (158) in accord with Zhang's protocol would set the stage for the epoxidation, reduction, and methylation reactions that would provide ent-Citrinadin B (ent-2) (Scheme 3.32).

Scheme 3.32

159

Implementation of the plan began with exploration of the Sonogashira coupling of aryl bromide (+)-152 with alkyne $\mathbf{1 6 2}$ (Scheme 3.33). After considerable experimentation it was determined that $\mathrm{Pd}(\mathrm{II})$ catalysis employing $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ at elevated temperatures and long reaction times $\left(80{ }^{\circ} \mathrm{C}\right.$ for 7 days) were required to obtain high yields of (+)-160.

Scheme 3.33

(+)-152

$(+)-160$

With this alkyne in hand, the critical benzyl deprotection and epoxide opening reactions were at hand. Thankfully, exposure of $(+) \mathbf{- 1 6 0}$ with $\mathrm{t}-\mathrm{BuLi} / \mathrm{O}_{2}$ proceeded smoothly to deliver the free amide $(+)-\mathbf{1 6 3}$ which, in turn, proved to be and excellent substrate for the regioselective opening of the ring-fusion epoxide with azide. (Scheme 3.34).

Scheme 3.34

(+)-159
Eager to attempt the conversion of alkyne (+)-159 to enone $\mathbf{1 5 8}$, Zhang's oxidation protocol ${ }^{29}$ (($\left.\mathrm{PPh}_{3}\right) \mathrm{AuNTf}_{2}, N$-oxide, THF, RT) was employed (Scheme 3.35). Unfortunately, initial results were disappointing. Only recovered starting material was obtained and attempts to heat the reaction were not beneficial. Questions arose concerning the compatibility of the tertiary amine with the reaction conditions. Examples of amines-including pyridine—acting as gold ligands have been noted in the literature. ${ }^{30}$ This suggested that an attempt to mask the tertiary amine in situ as the methanesulfonic acid or trifluoroacetic acid salt might be helpful. However, these attempts were equally ineffective. On the other hand, increasing the amount of $\left(\mathrm{PPh}_{3}\right) \mathrm{AuNTf}_{2}$ in the reaction solution was quite beneficial. This provided the desired enone (+)-158 in excellent yield and suggested that one equivalent of the gold species may indeed be occupied in an unproductive ligation during the reaction.

Scheme 3.35

Having successfully traversed the benzyl deprotection and introduced the enone, it was time to begin considering methods for introducing the epoxide. In 1989, K. Yamamoto and N. Yamamoto published the susceptibility of α, β-unsaturated ketones to undergo epoxidation in the presence of

Scheme 3.36

dialkylzinc and oxygen. ${ }^{31}$ Enders and coworkers later demonstrated that this epoxidation could be rendered highly stereoselective via the addition of a chiral methylpseudophedrine ligand. ${ }^{32}$ Mechanistically, addition of the chiral alcohol $(R, R)-\mathbf{1 6 4}$ to diethylzinc is believed to form a chiral zinc alkoxide $(R, R)-\mathbf{1 6 5}$. Exposure of this species to molecular oxygen results in the insertion of O_{2} into the remaining $\mathrm{Zn}-\mathrm{C}$ bond to form an alkoxy(ethylperoxy)zinc species $(R, R)-(\mathbf{1 6 6})$ (Scheme 3.36). When $(R, R)-\mathbf{1 6 6}$ reacts with an $\alpha, \beta-$ unsaturated ketone such as $\mathbf{1 6 7}$, the minimization of negative steric interactions between the phenyl group of 167 and the phenyl group of the ligand on $(R, R)-166$ is proposed to result in a highly diastereoselective and enantioselective epoxidation via the intermediacy of transition state $\mathbf{1 6 8 A}$ or 168B. Selective formation of the epoxide (R, S) - $\mathbf{1 7 0}$ via $\mathbf{1 6 9}$ results.

The use of Enders' zinc-mediated epoxidation conditions for the synthesis of the epoxide of ent-2 was attractive based on the reported chemoselectivity and enantioselectivity of the transformation. Review of the transition state models suggested that ligand (R, R) - $\mathbf{1 6 4}$ should provide the desired R-epoxide.

In practice, the ability of the α, β-unsaturated ketone $\mathbf{1 5 8}$ to participate in the epoxidation was first evaluated using racemic conditions $\left(\mathrm{Et}_{2} \mathrm{Zn}, \mathrm{O}_{2}\right)$. This resulted in a $1: 1$ mixture of two epoxide diastereomers (Scheme 3.37, entry 1). Next, an experiment using the commercially available chiral ligand $(S, S)-\mathbf{1 6 4}$ was conducted. As expected, this resulted in a mixture of diastereomers ($d r 4: 1$) where the major diastereomer ((+)-171) was tentatively assigned the S-configuration based on the Enders model. In order to conduct the analogous non-racemic reaction, the ligand $(R, R)-\mathbf{1 6 4}$ was synthesized from (R, R) pseudoephedrine according to a literature procedure. ${ }^{33}$ The subsequent Enders' epoxidation with $(R, R)-164$

resulted in another mixture of diastereomers; however, it appeared that the major diastereomeric product was the same as that isolated using the opposite antipode of the chiral ligand. Investigation of the reaction revealed that pre-incubation of the ligand $(R, R) \mathbf{- 1 6 4}$ and diethylzinc with O_{2} had some effect on the diastereomeric ratio, but only to the benefit of the same major diastereomer $((+)-\mathbf{1 7 1})$, resulting in an average diastereomeric ratio of $2.5: 1$ (171/172). Attempts to obtain significant amounts of the minor epoxide diastereomer (172)—tentatively assigned the R-configuration-from reactions containing the chiral ligand were plagued by low yields and difficult chromatographic separation, and it appeared that these conditions were actually facilitating a decomposition of the minor diastereomer. Consequently, the best yields of $\mathbf{1 7 2}$ were obtained from the racemic epoxidation. Elaboration of the epoxyketone diastereomeric mixtures to the corresponding Boc-protected products (-)-173 and (+)-174 prior to separation provided more optimal overall yields.

Synthesis of ent-Citrinadin B and the C21 Epimer

Ever advancing toward the natural product, both epoxide diastereomers (-)-173 and (+)174 were subjected to the remaining reaction conditions, expected to result in the synthesis of entCitrinadin B (ent-2) and C21-epi-ent-Citrinadin B (175). For each substrate, reduction to the amine was followed by N-methylation with $\mathrm{Me}_{3} \mathrm{O}^{+} \mathrm{BF}_{4}^{-}$(Scheme 3.38). Unlike des-epoxyketone substrate (+)-125, methylation of the epoxyketone substrates with $\mathrm{Me}_{2} \mathrm{SO}_{4}$ provided poor yields of the desired methylamine, possibly the result of the insufficient stability of the intermediate amine combined with extended reaction
times. A final Boc-deprotection using magnesium perchlorate at elevated temperatures provided two products believed to be ent-2 and C21-epi-ent-Citrinadin B (175).

Scheme 3.38

3.4.5

A Possible Structural Revision

Unfortunately, comparison of the ${ }^{1} \mathrm{H}$ spectra for the two products (+)-175 and ent-2 to natural Citrinadin B (2) did not reveal an immediate match. As an alternate means of comparison, the CD spectra of (+)-175 and ent-2 were obtained. Surprisingly, the CD spectrum of ent-2-originating from the

Figure 3.1
minor epoxide diastereomer and believed to be ent-Citrinadin B-did not match the CD spectra for 2 (Figure 3.1). But even more unexpected, the CD spectrum of (+)-175—originating from the major epoxide diastereomer and believed to be C21-epi-ent-Citrinadin B—was a nearly exact match to $\mathbf{2}$, even in terms of sign. By definition, the CD spectrum for ent-2 should match that of 2 but be opposite in terms of sign. One interpretation of these results suggests that $(+)-\mathbf{1 7 5}$ is an identical match to the natural product, and suggests that a structural revision of 2 may be in order. Additional data to support this assertion was obtained in the optical rotation for $175(+36.7(c 0.03, \mathrm{MeOH}))$, which is a match in terms of sign to the natural product $(+8(c 1.0, \mathrm{MeOH}))$.

The possibility of a structural reassignment of Citrinadin B raised questions regarding the certainty of Kobayashi's stereochemical assignments to begin with. The assignment of the (S)-configuration to the epoxyketone appeared reasonable, being based on the comparison of VCD curves obtained for synthetic model epoxides of known absolute configuration (See Chapter 1). However, the assignment of the absolute stereochemistry of the core inspired less confidence. Although the assignment of the C 3 oxindole center aligned with literature trends that correlate negative cotton curves to the (S)-configuration, it is known that some oxindoles do not conform to these trends. Of even greater concern was the fact that the absolute stereochemistry of C14 in Citrinadin A (1) was assigned via ROESY correlations between the core and the flexibly appended ester side chain. Additional evidence to support a structural reassignment of $\mathbf{2}$ to (+)-175 is provided by way of the PF compounds ${ }^{34}(\mathbf{3 - 5})$. For 3, the relative stereochemical relationship between the epoxide and the core-assigned via X-ray crystallography-is the same as the relative stereostructure suggested in the proposed structural revision (i.e., (+)-175, Figure 3.2).

Although the matching CD data was encouraging and interpretable via stereochemical revision, the lack of agreement between the published NMR data of the natural product and that obtained

(2)
natural Citrinadin B

((+)-175)
synthetic C21-epi-ent-Citrinadin B

PF1270s (Kushida)

(3)

PF1270A $(\mathrm{R}=\mathrm{O}(\mathrm{C}=\mathrm{O}) n \mathrm{Pr})$

Figure 3.2
via synthesis was troubling. ${ }^{1} \mathrm{H}$ NMR spectra derived from both the free base of $(+)-\mathbf{1 7 5}$ (obtained by passing the sample through a plug of basic alumina) or the TFA salt of (+)-175 (obtained by brief exposure to TFA) did not precisely match the data published for the natural product; although, in the latter case the spectra did become more like that reported for the natural product.

In this regard, it is worth noting that similar difficulties in matching experimental NMR data to isolation NMR data have been reported previously in the literature. In one instance, the Overman group demonstrated that the ${ }^{1} \mathrm{H}$ NMR of Nankakurine A (176)—also isolated by Kobayashi in 2004—is highly pH dependent (Figure 3.3). ${ }^{35}$ More significantly, the published isolation ${ }^{1} \mathrm{H}$ NMR spectrum for $\mathbf{1 7 6}$ does not reflect either the free base or the TFA salt of $\mathbf{1 7 6}$ but instead, something halfway between the two. In order to obtain a matching ${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 7 6}$, Overman et al. found it necessary to obtain multiple ${ }^{1} \mathrm{H}$ NMR spectra corresponding to the incremental addition of TFA to the synthetic 176. Similar systematic evaluation of $\mathbf{1 7 5}$ may eventually provide a spectrum that more closely mirrors that of the natural product.

Figure 3.3

3.5

Conclusions

This chapter describes a synthesis of (+)-100-the core of ent-Citrinadin B (ent-2)—and outlines late stage attempts to functionalize the aromatic ring in order to access the enantiomer of the natural product (ent-2). The synthesis of (+)-100 capitalized on a Corey-Chaykovsky spiro-epoxidation reaction as an alternative to Wittig olefination. Also key to the synthesis was the identification of an effective means of debenzylation. Unfortunately, attempts at a Fries rearrangement, thallium assisted iodination, stepwise bromination, or borylation of the aromatic ring were unproductive.

This prompted the development of a pre-functionalized C7-bromo-oxindole 37 for use in the key (3+2) cycloaddition reaction. Starting from 2,6-dibromoaniline (46), a racemic synthesis of
oxindole ($\pm \mathbf{)} \mathbf{- 1 3 0}$ was developed. By analogy, an asymmetric synthesis of $\mathbf{1 3 0}$ was also attempted, starting from 2-bromo-6-methoxyaniline (134) and arriving at the Heck cyclization precursor 131b. However, Heck cyclizations of 131b were prohibitively low yielding and unexpectedly resulted in the C7trifluorosulfonate oxindole $(\pm) \mathbf{- 1 4 0}$ rather than the desired C7-bromo-oxindole. Nevertheless subsequent transformations of oxindole (\pm)- $\mathbf{1 3 0}$ provided the desired C7-bromoenone (\pm) - $\mathbf{3 7}$ for use in the cycloaddition.

Reaction of the pre-functionalized bromoenone dipolarophile (\pm)-37 with nitrone (S)-(-)$\mathbf{5 7}$ effectively provided the desired isoxazolidine ($3 R, 12 S$)-(+)-147 and its C3-epimer ($3 S, 12 S$)-148 in $\mathbf{3 6 \%}$ and 51% yields respectively. Elaboration of $\mathbf{1 4 7}$ to the tetrasubstituted epoxide was followed by the installation of a side chain surrogate, which proved stable to the debenzylation conditions and could be advanced to the epoxyketones (+)-171 and $\mathbf{1 7 2}$ via a gold-mediated oxidation and an Enders' asymmetric epoxidation.

Advancement of both epoxide diastereomers-whose configurations were tentatively assigned using Enders' models—resulted in a synthesis of two products believed to be ent-Citrinadin B (ent-2) and C21-epi-ent-Citrinadin B (176). Surprisingly, the characterization data obtained from ent-2 and $\mathbf{1 7 6}$ do not align with the characterization data provided by Kobayashi for 2. Current evidence suggests that a structural reassignment of 2 (to 176) may be forthcoming provided the requisite matching ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra—or an X-ray crystal structure-of $\mathbf{1 7 6}$ can be obtained. The reassignment of $\mathbf{2}$ would serve to bring the Citrinadin natural products (1 and 2) into better alignment with PF1270A-C (3-5), for which definitive X-ray crystal data has already been obtained.

3.6 Experimental

3.6.1

Materials and Methods

General. Unless otherwise stated, reactions were magnetically stirred in flame- or oven-dried glassware under an atmosphere of nitrogen. Triethylamine, diisopropylamine, and methanol were dried over calcium hydride and freshly distilled. Benzene, tetrahydrofuran, dichloromethane, toluene, and diethyl ether were
dried using a solvent purification system manufactured by SG Water U.S.A., LLC. Anhydrous $\mathrm{CH}_{3} \mathrm{CN}$, DMF, DMSO, acetone, and 1,2-dichloroethane were supplied by Fischer Scientific and purchased from the Colorado State Chemistry Stockroom and kept under a nitrogen atmosphere. All other commercially available reagents were used as received.

Unless otherwise stated, all reactions were monitored by thin-layer chromatography (TLC) using Silicycle glass-backed extra hard layer, $60 \AA$ plates (indicator F-254, $250 \mu \mathrm{~m}$). Column or flash chromatography was performed with the indicated solvents using Silicycle SiliaFlash. P60 (230-400 mesh) silica gel as the stationary phase. All melting points were obtained on a Gallenkamp capillary melting point apparatus (model: MPD350.BM2.1) and are uncorrected. Infrared spectra were obtained using a Nicolet Avatar 320 FTIR or Bruker Tensor 27 FTIR. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian Inova 500, Varian Inova 400, Varian Inova 400 autosampler, or Varian Inova 300 spectrometer. Chemical shifts (δ) are reported in parts per million (ppm) relative to internal residual solvent peaks from indicated deuterated solvents. Coupling constants (J) are reported in Hertz (Hz) and are rounded to the nearest 0.1 Hz. Multiplicities are defined as: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{dt}=$ doublet of triplets, ddd $=$ doublet of doublet of doublets, dddd $=$ doublet of doublet of doublet of doublets, $\mathrm{br}=$ broad, $\mathrm{app}=$ apparent, $\mathrm{par}=$ partial. High resolution mass spectra were performed at the Central Instrument Facility by Donald L. Dick of Colorado State University. Singlecrystal X-ray analyses were performed by Susie Miller, Brian Newell, and Stephanie Fielder of Colorado State University. CD Spectra were obtained using an Aviv model 202 circular dichroism spectrometer.

Preparation of Spiro-epoxide 103

$(\pm)-56$

(\pm)-103

To a mixture of trimethylsulfoxonium iodide ($1.05 \mathrm{~g}, 4.77 \mathrm{mmol}$) and $\mathrm{NaH}(60 \%$ in mineral oil, $188 \mathrm{mg}, 4.70 \mathrm{mmol}$) was added DMSO (8 ml). After stirring for 30 min , to the resulting homogenous solution was added a solution of ketone $\mathbf{5 6}(696 \mathrm{mg}, 1.57 \mathrm{mmol}$, azeotropically dried with toluene) in THF $(10 \mathrm{ml})$ followed by 5 ml of rinse. The reaction mixture was stirred at ambient temperature for 23 h , cooled to $0{ }^{\circ} \mathrm{C}$, and quenched with saturated NaHCO_{3} solution $(10 \mathrm{ml})$. The mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{ml})$ and the aqueous layer was extracted with EtOAc ($25 \mathrm{ml}, 4$ times). The combined organic layers were concentrated in vacuo and purified by flash chromatography ($10 \% \rightarrow 20 \% \rightarrow 30 \% \rightarrow 40 \% \mathrm{EtOAc} /$ hexanes $)$ to provide spiro-epoxide $\mathbf{1 0 3}$ as a white solid ($586 \mathrm{mg}, 82 \%$ yield). Slow evaporation of the white solid from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes (1:1) provided colorless crystals suitable X-ray analysis.
$\mathrm{R}_{f}=0.46(50 \% \mathrm{EtOAc} /$ hexanes $) ;$ m.p. $177-179{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39 \sim 7.27(\mathrm{~m}$, $6 \mathrm{H}), 7.15(\mathrm{dd}, J=7.6 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{dd}, J=7.6 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}$, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~m}, 1 \mathrm{H}), 3.27(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{~d}, J=5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.75(\mathrm{~m}, 1 \mathrm{H}), 2.57(\mathrm{dd}, J=12.0 \mathrm{~Hz}, 12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~m}, 2 \mathrm{H}), 2.29(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.91(\mathrm{~m}$, $2 \mathrm{H}), 1.64(\mathrm{~m}, 1 \mathrm{H}), 1.47(\mathrm{~m}, 2 \mathrm{H}), 1.29(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.25(\mathrm{~m}, 1 \mathrm{H}), 1.13(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.71(\mathrm{br} \mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 180.1,143.5,136.1,133.1,128.8,128.0,127.6,127.2,124.5,121.5,108.7$, $91.6,65.6,60.1,55.9,55.7,55.6,49.3,44.1,36.0,35.5,32.9,25.7,23.7,21.4,20.8,18.6$; IR (thin film): 1717 (s), 1610 (m), 1487 (m), 1466 (m) cm ${ }^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]: 459.2648$. Found: 459.2649. From (+)-56 (91\% ee): $[\alpha]_{D}^{23}=+171$ (c 1.3, $\left.\mathrm{CHCl}_{3}\right) ; \sim 91 \%$ ee.

Preparation of Ammonium Salt 107

To a solution of epoxide $103(566 \mathrm{mg}, 1.23 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{THF}(5: 1,30 \mathrm{ml})$ at ambient temperature was added $\mathrm{NaI}(900 \mathrm{mg}, 6.00 \mathrm{mmol})$ and $\mathrm{TMSCl}(0.39 \mathrm{ml}, 3.07 \mathrm{mmol})$. After stirring for 1.5 h , to the yellowish mixture was added another 900 mg of NaI and 0.39 ml of TMSCl . After stirring for 1 h , the reaction was quenched with saturated NaHCO_{3} solution $(10 \mathrm{ml})$ and saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution $(10 \mathrm{ml})$. The aqueous layer was extracted with $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(9: 1,20 \mathrm{ml}, 4$ times). The combined organic layers were concentrated in vacuo and purified by flash chromatography $(50 \% \mathrm{EtOAc} / \mathrm{hexanes} \rightarrow 5 \% \rightarrow$ $7.5 \% \rightarrow 10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to provide 418 mg of the ammonium salt 107 as a pale yellow solid. The recovered starting material (contaminated with an unidentified product) was placed under vacuum overnight, dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{ml})$, and washed with NaHCO_{3} solution $(10 \mathrm{ml})$ and saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution (10 ml). The aqueous layer was extracted with $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(9: 1,20 \mathrm{ml}, 3$ times $)$ and the combined organic layers were concentrated in vacuo and purified by flash chromatography (50% $\mathrm{EtOAc} /$ hexanes $\rightarrow 5 \% \rightarrow 7.5 \% \rightarrow 10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to provide another crop of 180 mg of $\mathbf{1 7 0}$. $(598 \mathrm{mg}$, ~100\% yield)
$\mathrm{R}_{f}=0.15\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.33 \sim 7.25(\mathrm{~m}, 5 \mathrm{H}), 7.12(\mathrm{dd}, J=7.6 \mathrm{~Hz}, 8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{dd}, J=7.2 \mathrm{~Hz}, 8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.94(\mathrm{br} \mathrm{s}, 1 \mathrm{H},-\mathrm{OH}), 5.34(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.18(\mathrm{~m}, 1 \mathrm{H}), 4.09(\mathrm{~m}, 1 \mathrm{H}), 4.04(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.80(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{~m}, 2 \mathrm{H}), 2.12(\mathrm{~m}, 1 \mathrm{H}), 1.91(\mathrm{~m}, 2 \mathrm{H}), 1.85(\mathrm{~m}, 1 \mathrm{H}), 1.63(\mathrm{~d}, J$ $=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 179.3,142.5,135.8,131.1,128.8$, $128.2,127.8,127.6,127.2,122.4,108.6,107.7,86.1,73.9,69.5,66.3,62.0,50.9,45.7,44.0,27.3,26.5$, 26.3 (2 carbons), 20.6, 17.5, 12.6; IR (thin film): 3260 (br, s), 2194 (w), 1711 (s), 1609 (m), 1487 (m), 1466 (s) cm^{-1}; HRMS (ESI) Calcd. for $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{3}\left[\mathrm{M}^{+}\right]: 459.2648$. Found: 459.2645. From (+)-103 ($\sim 91 \%$ ee): $[\alpha]_{\mathrm{D}}{ }^{23}=+74.7\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) ; \sim 91 \%$ ee.

Preparation of Diol 102

To a solution of ammonia salt $107(418 \mathrm{mg}, 0.881 \mathrm{mmol})$ in $\mathrm{THF} / \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{AcOH}(6: 1: 5$: $6,18 \mathrm{ml})$ was added activated zinc powder ($358 \mathrm{mg}, 5.47 \mathrm{mmol}$). The reaction mixture was vigorously stirred for 22 h at ambient temperature, filtered through a pad of Celite, rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and concentrated in vacou. The resulting yellowish oil was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$, added saturated NaHCO_{3} solution and extracted with $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were concentrated and purified by flash chromatography (basic $\mathrm{Al}_{2} \mathrm{O}_{3}, 5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to provide diol $\mathbf{1 0 2}$ as a white solid ($420 \mathrm{mg}, 91 \%$ yield).

$$
\mathrm{R}_{f}=0.48\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{TLC} \text { plate pretreated with } \mathrm{NH}_{3}\right) ;{ }^{1} \mathrm{H} \text { NMR }\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)
$$

(Note: ${ }^{1} \mathrm{H}$ NMR of this compound is highly dependent on the acidity of purification media. To ensure reproducibility, it is recommended to pass through a pad of basic $\mathrm{Al}_{2} \mathrm{O}_{3}$ before taking ${ }^{1} \mathrm{H}$ NMR) $\delta 7.46(\mathrm{~d}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~m}, 5 \mathrm{H}), 7.19(\mathrm{dd}, J=7.6 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{dd}, J=7.6 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OH}), 5.09(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~m}$, $1 \mathrm{H}), 3.86(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{~m}, 1 \mathrm{H}), 2.57(\mathrm{~d}, J=14.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.36$ (ddd, $J=2.0 \mathrm{~Hz}, 13.6 \mathrm{~Hz}, 13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{~m}, 2 \mathrm{H}), 1.81(\mathrm{~m}, 3 \mathrm{H})$, $1.69(\mathrm{dd}, J=3.6 \mathrm{~Hz}, 13.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 183.7,142.4,135.1,131.4,128.9,128.2,127.9,127.5,127.4,123.4,109.3,81.5,81.2$, $61.1,57.7,55.3,52.9,51.1,47.1,44.4,32.8,31.5,29.9,26.4,21.2,17.2,11.5$; IR (thin film): 3307 (br, s), 1675 (s), 1609 (s), 1466 (m), $1380(\mathrm{~s}) \mathrm{cm}^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{29} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]: 461.2804$. Found: 461.2805. $[\alpha]_{\mathrm{D}}^{23}=$ not obtained.

Preparation of Ring-Fusion Epoxide 101

102

(37\% recovered SM)

(+)-101

To a solution of diol $\mathbf{1 0 2}(49 \mathrm{mg}, 0.106 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$ at room temperature was added triethylamine $(148 \mu \mathrm{l}, 1.06 \mathrm{mmol})$ and $\mathrm{MsCl}(25 \mu \mathrm{l}, 0.319 \mathrm{mmol})$. After stirring for 45 minutes, another portion of triethylamine $(148 \mu \mathrm{l}, 1.06 \mathrm{mmol})$ and $\mathrm{MsCl}(25 \mu \mathrm{l}, 0.319 \mathrm{mmol})$ were added. After 45 minutes, solid $\mathrm{K}_{2} \mathrm{CO}_{3}(50 \mathrm{mg})$ and $\mathrm{MeOH}(2 \mathrm{ml})$ were added. The reaction mixture was stirred at room temperature for 13 hours, quenched with saturated NaHCO 3 solution, extracted with $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, concentrated and purified by flash chromatography $\left(5 \% \rightarrow 7.5 \% \rightarrow 10 \% \rightarrow 15 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to provide epoxide 101 as a pale yellow oil ($28 \mathrm{mg}, 59 \%$ yield) with some recovered starting material ($18 \mathrm{mg}, 37 \%$ recovered).
$\mathrm{R}_{f}=0.41\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, TLC plate pretreated with $\left.\mathrm{NH}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (Note: ${ }^{1} \mathrm{H}$ NMR of this compound is highly dependent on the acidity of purification media. To ensure reproducibility, it is recommended to pass through a pad of basic $\mathrm{Al}_{2} \mathrm{O}_{3}$ before taking $\left.{ }^{1} \mathrm{H} N M R\right) \delta$ $7.33 \sim 7.24(\mathrm{~m}, 5 \mathrm{H}, \mathbf{P h}), 7.12(\mathrm{dd}, J=7.6 \mathrm{~Hz}, 8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 7.09(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 6.95(\mathrm{dd}, J=$ $7.6 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 6.65(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 5.10\left(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{C H}_{2} \mathrm{Ph}\right), 4.53(\mathrm{~d}, J=15.6$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathbf{C H}_{2} \mathrm{Ph}\right), 3.26\left(\mathrm{dd}\{\mathrm{AB}\right.$ system $\left.\}, J=14.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.02\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHCH}_{3}\right), 2.77(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{NCHCH}_{2}\right), 2.61\left(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{C H}_{2} \mathrm{CO}\right), 2.22\left(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{C H}_{2} \mathrm{CO}\right), 1.87\left(\mathrm{~m}, 2 \mathrm{H}, \mathbf{C H}_{2} \mathrm{CO}\right)$, 1.74 (m, 2H, $\mathbf{C H}_{2} \mathrm{CHN}$), $1.64 \sim 1.48\left(\mathrm{~m}, 3 \mathrm{H}, \mathbf{C H}_{2} \mathrm{CH}_{2}, \mathbf{C H}_{2} \mathrm{CHN}\right.$), 1.24 (m, 1H, $\mathbf{C H}_{2} \mathbf{C H N}$), 1.09 (s, 3 H , $\mathbf{C H}_{3}$), $1.07\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathbf{C H}_{3} \mathrm{CHN}\right), 1.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathbf{C H}_{3}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 179.9,143.2$, $136.5,130.7,128.6,127.9,127.7,127.4,126.2,121.2,108.3,70.0,64.6,58.9,51.4,49.8,47.5,45.9,44.0$, 40.5, 33.3, 29.7, 26.1, 20.1, 18.6, 12.4; IR (thin film): 1715 (s), 1609 (s), 1489 (s), 1466 (s), 1344 (s) $\mathrm{cm}^{=1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]:$ 443.2696. Found: 443.2699. From (+)-107 ($\sim 91 \%$ ee): $[\alpha]_{\mathrm{D}}{ }^{23}$ $=+92.2\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) ; \sim 91 \%$ ee.

Preparation of Benzylamine 110 and Pyridinium Salt 113

$(\pm)-101$

(\pm)-113
major byproduct

A mixture of epoxide $101(14 \mathrm{mg}, 0.0316 \mathrm{mmol})$ and benzylamine ($28 \mathrm{mg}, 0.254 \mathrm{mmol}$, azeotropically dried with toluene) were taken up in $\mathrm{CH}_{3} \mathrm{CN}(1.5 \mathrm{ml})$ and treated with $\mathrm{Mg}(\mathrm{OTf})_{2}(\sim 25 \mathrm{mg}$, $0.775 \mathrm{mmol})$. The reaction mixture was stirred at $120^{\circ} \mathrm{C}$ for 20 hours, concentrated, and purified by flash chromatography ($10 \% \rightarrow 20 \% \rightarrow 30 \%$ EtOAc/Hexanes $\rightarrow 5 \% \rightarrow 10 \% \rightarrow 15 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to provide the benzyl amine $\mathbf{1 1 0}$ as a colorless oil ($5 \mathrm{mg}, 29 \%$ yield) with the pyridinium salt $\mathbf{1 1 3}$ as a major byproduct.

Benzylamine: $\mathrm{R}_{f}=0.07$ ($10 \% \mathrm{EtOAc} /$ hexanes, TLC plate pretreated with NH_{3}) ; ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) (Note: ${ }^{1} \mathrm{H}$ NMR of this compound is highly dependent on the acidity of purification media. To ensure reproducibility, it is recommended to pass through a pad of basic $\mathrm{Al}_{2} \mathrm{O}_{3}$ before taking ${ }^{1} \mathrm{H} N M R$) $\delta 7.38 \sim 7.26(\mathrm{~m}, 10 \mathrm{H}, \mathbf{A r} \& \mathbf{P h}), 7.22(\mathrm{t}, J=7.25 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{P h}), 7.15(\mathrm{dt}, J=1.03 \mathrm{~Hz}, 7.68 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r})$, $7.04(\mathrm{dt}, J=0.90 \mathrm{~Hz}, 7.56 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 6.70(\mathrm{~d}, J=7.73 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 5.12\left(\mathrm{~d}, J=15.63 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{C H}_{2} \mathrm{Ph}\right)$, $4.64\left(\mathrm{~d}, J=15.63 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{C H}_{2} \mathrm{Ph}\right), 4.07(\mathrm{~m}, 1 \mathrm{H} \mathrm{NCH}), 3.75\left(\mathrm{~d}, J=13.14 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{C H}_{2} \mathrm{Ph}\right), 3.67(\mathrm{~d}, J=$ $\left.13.14 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{C H}_{2} \mathrm{Ph}\right), 3.41\left(\mathrm{~d}, J=12.51 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHCH}_{2}\right), 3.28\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHCH}_{3}\right), 2.73(\mathrm{~d}, J=12.51$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{NHCH}_{2}\right), 2.20\left(\mathrm{~d}, J=14.08 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHCH}_{2} \mathbf{C C H}_{2}\right), 1.97(\mathrm{dd}, J=5.55 \mathrm{~Hz}, 14.10 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{NCHCH}_{2}\right), 1.88\left(\mathrm{dd}, J=9.54 \mathrm{~Hz}, 14.10 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 1.79\left(\mathrm{~d}, J=14.08 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{CCH}_{2}\right)$, 1.72~1.55 (m, 4H, $\mathrm{NCHCH}_{2} \mathbf{C H}_{\mathbf{2}} \mathbf{C H}_{2}$), $1.45\left(\mathrm{~m}, 4 \mathrm{H}, \mathbf{C H}_{3} \& \mathrm{NCHCH}_{2}\right), 1.32\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 1.22(\mathrm{~d}$, $\left.J=6.42 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 0.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathbf{C H}_{3}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 183.8,142.6,141.5,135.5$, $131.0,128.8,128.1,128.0,127.9,127.7,127.3,126.8,126.4,122.3,109.0,94.6,77.3,65.1,56.8,54.8$, $53.5,51.7,45.9,44.8,43.9,41.2,34.5,31.9,28.0,20.1,19.6,13.9$; IR (thin film): 3323 (br s), 1675 (s), 1609 (s), 1489 (m), 1466 (m), 1374 (s) cm^{-1}; HRMS (ESI) Calcd. for $\mathrm{C}_{36} \mathrm{H}_{44} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]: 550.3434$. Found: 550.3429.

Pyridinium Salt: $\mathrm{R}_{f}=0.11\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{TLC}\right.$ plate pretreated with $\left.\mathrm{NH}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) (Note: ${ }^{1} \mathrm{H}$ NMR of this compound is highly dependent on the acidity of purification media. To ensure reproducibility, it is recommended to pass through a pad of basic $\mathrm{Al}_{2} \mathrm{O}_{3}$ before taking ${ }^{1} \mathrm{H}$ NMR)
$\delta 8.56(\mathrm{~s}, 1 \mathrm{H}, \mathbf{A r}), 7.41(\mathrm{~s}, 1 \mathrm{H}, \mathbf{A r}), 7.34 \sim 7.25(\mathrm{~m}, 7 \mathrm{H}, \mathbf{P h} \& \mathbf{A r}), 7.09(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 6.83(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 5.00(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}), 4.98\left(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{C H}_{2} \mathrm{Ph}\right), 4.69\left(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{C H}_{2} \mathrm{Ph}\right)$, $3.67\left(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCOCCH}_{2}\right), 3.40\left(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCOCCH}_{2}\right), 3.37\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCCH}_{2}\right), 3.28$ $\left(\mathrm{dt}, J=18.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCCH}_{2}\right), 2.37\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCCH}_{2} \mathbf{C H}_{2}\right), 2.05\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{NCCH}_{2} \mathbf{C H}_{\mathbf{2}} \mathbf{C H}_{2}\right), 1.71(\mathrm{~d}, \mathrm{~J}=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}$), $1.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathbf{C H}_{3}\right), 1.24\left(\mathrm{~s}, 3 \mathrm{H}, \mathbf{C H}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 178.6, 170.0, $155.0,143.3,139.9,138.6,135.3,129.4,128.9,127.9,127.3,126.1,125.8,123.1,122.2,109.6,61.5,61.0$, $51.6,43.8,37.1,29.0,27.5,26.8,22.4,20.9,14.3$; IR (thin film): 3059 (s), 2934 (s), 1706 (s), 1466 (s), 1289 (s), 1247 (s), 1161 (s), 1029 (s) cm^{-1}; HRMS (ESI) Calcd. for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}^{+}$[M+]: 423.2431. Found: 423.2438.

Preparation of Azide 114

(\pm)-101

To a solution of epoxide $\mathbf{1 0 1}\left(27 \mathrm{mg}, 0.0610 \mathrm{mmol}\right.$, azeotropically dried with toluene) in $\mathrm{CH}_{3} \mathrm{CN}$ (2.2 ml) was added $\mathrm{MgCl}_{2}(35 \mathrm{mg}, 0.368 \mathrm{mmol})$ and $\mathrm{NaN}_{3}(25 \mathrm{mg}, 0.385 \mathrm{mmol})$. The reaction mixture was stirred at $63{ }^{\circ} \mathrm{C}$ for 40 h and quenched with saturated NaHCO_{3} solution. The aqueous layer was extracted with $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (4:1) and the combined organic layers were concentrated and purified by flash chromatography $(30 \% \rightarrow 50 \% \rightarrow 70 \% \rightarrow 90 \%$ EtOAc/hexanes) to provide 20 mg (68% yield) of azide 114 as a pale yellow oil.
$\mathrm{R}_{f}=0.64\left(30 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, TLC plate pretreated with $\left.\mathrm{NH}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ (Note: ${ }^{1} \mathrm{H}$ NMR of this compound is highly dependent on the acidity of purification media. To ensure reproducibility, it is recommended to pass through a pad of basic $\mathrm{Al}_{2} \mathrm{O}_{3}$ before taking ${ }^{1} \mathrm{H}$ NMR) $\delta 7.50$ (d, J $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.17(\mathrm{ddd}, J=0.8 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{dd}, J=7.6 \mathrm{~Hz}, 7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.75(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OH}), 5.10(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=15.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.56(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{~m}, 1 \mathrm{H}), 3.01(\mathrm{~m}, 1 \mathrm{H}), 2.68(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{~d}, J=14.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.08(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.58(\mathrm{~m}, 4 \mathrm{H}), 1.57-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.29(\mathrm{~m}, 1 \mathrm{H}), 1.25$
$(\mathrm{s}, 3 \mathrm{H}), 1.07(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 183.6, 142.6, 135.4, 132.4, $128.8,127.8$ (two carbons), 127.4, 127.2, 122.9, 109.1, 83.2, 73.9, 61.0, 54.6, 54.5, 51.9, 46.8, 45.8, 44.3, 36.1, 33.9, 32.3, 26.6, 21.8, 18.9, 9.9; IR (thin film): 3349 (br, s), 2117 (s), 1682 (s), 1609 (s), 1487 (m), 1466 (s), 1373 (s) cm^{-1}; HRMS (ESI) Calcd. for $\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{~N}_{5} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]$: 485.2869. Found: 486.2876.

Preparation of Amine 115

$(\pm)-114$

(\pm)-115

To a solution of azide $114(27 \mathrm{mg}, 0.0556 \mathrm{mmol})$ in THF (2 ml) was added $\mathrm{Pd} / \mathrm{C}(10 \mathrm{wt} \%, 15$ mg). The mixture was purged with H_{2} for 1 min and stirred under H_{2} atmosphere (balloon) for 11 h . The mixture was filtered through a pad of Celite, washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and concentrated in vacuo to provide the crude amine (26 mg). For characterization purposes, the crude product was purified by flash chromatography $\left(5 \% \rightarrow 10 \% \rightarrow 15 \% \rightarrow 20 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give pure amine $\mathbf{1 1 5}$ as a colorless oil. $\mathrm{R}_{f}=0.43\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, TLC plate pretreated with $\left.\mathrm{NH}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ (Note: ${ }^{1} \mathrm{H}$ NMR of this compound is highly dependent on the acidity of purification media. To ensure reproducibility, it is recommended to pass through a pad of basic $\mathrm{Al}_{2} \mathrm{O}_{3}$ before taking $\left.{ }^{1} \mathrm{H} N \mathrm{NR}\right) \delta 7.62(\mathrm{~d}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.14(\mathrm{dd}, J=7.6 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{dd}, J=7.6 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.72$ $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OH}), 4.68(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.50(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~m}, 1 \mathrm{H}), 2.92(\mathrm{~m}, 1 \mathrm{H}), 2.53(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H})$, $1.86-1.74(\mathrm{~m}, 3 \mathrm{H}), 1.68-1.47(\mathrm{~m}, 6 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~m}, 1 \mathrm{H}), 1.08(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 184.1,142.7,135.7,133.5,128.8,127.7,127.4$ (two carbons), 127.3, 122.5, $108.8,83.6,63.9,61.6,60.7,55.1,52.3,48.5,47.2,44.2,35.8,34.7,32.7,28.2,22.3,19.0,10.3$; IR (thin film): 3351 (br, s), 1683 (s), 1609 (s), 1371 (s) cm^{-1}; HRMS (ESI) Calcd. for $\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]$: 460.2964. Found: 460.2960 .

Preparation of Methylamine 108

(\pm)-115

(\pm)-108

The crude amine (115) was dissolved in acetone (1.5 ml) and treated with $\mathrm{K}_{2} \mathrm{CO}_{3}(25 \mathrm{mg})$ and $\mathrm{Me}_{2} \mathrm{SO}_{4}(16 \mu \mathrm{l}, 0.167 \mathrm{mmol})$. The mixture was stirred at $50{ }^{\circ} \mathrm{C}$ for 28 h and quenched with saturated NaHCO_{3} solution. The aqueous layer was extracted with $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (4:1) and the combined organic layers were concentrated in vacuo and purified by flash chromatography $\left(5 \% \rightarrow 7.5 \% \rightarrow 10 \% \rightarrow 12.5 \% \rightarrow 15 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to provide $11 \mathrm{mg}(42 \%$ yield, two steps) of the methylamine (108) as a colorless oil.

$$
\mathrm{R}_{f}=0.54\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{TLC} \text { plate pretreated with } \mathrm{NH}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)
$$ (Note: ${ }^{1} \mathrm{H}$ NMR of this compound is highly dependent on the acidity of purification media. To ensure reproducibility, it is recommended to pass through a pad of basic $\mathrm{Al}_{2} \mathrm{O}_{3}$ before taking $\left.{ }^{1} \mathrm{H} N M R\right) ~ \delta 7.50(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~m}, 5 \mathrm{H}), 7.13(\mathrm{dd}, J=7.6 \mathrm{~Hz}, 8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{dd}, J=7.2 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OH}), 4.69(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{~d}$, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{~m}, 1 \mathrm{H}), 2.90(\mathrm{~m}, 1 \mathrm{H}), 2.53(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{br} \mathrm{s}, 1 \mathrm{H},-\mathrm{NH})$, $2.12(\mathrm{~s}, 2 \mathrm{H}), 1.76(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.47(\mathrm{~m}, 5 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~m}, 1 \mathrm{H}), 1.15(\mathrm{~m}, 1 \mathrm{H}), 1.08(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $3 \mathrm{H}), 0.98(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 184.1,142.7,135.8,133.6,128.8,127.8,127.6,127.4$, $127.2,122.5,108.8,84.0,68.6,61.8,55.2,51.7,50.5,46.9,44.2,41.2,35.5,34.8,32.8,29.8,28.2,22.3$, 19.0, 10.4; IR (thin film): 3384 (br, m), 1683 (s), 1609 (s), 1486 (m), 1466 (m), 1371 (s$) \mathrm{cm}^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]$: 474.3121. Found: 474.3106.

Preparation of des-Benzyl Oxindole (+)-121

(+)-101

$(+)-121$

To a solution of benzylamide $101(61 \mathrm{mg}, 0.138 \mathrm{mmol}$, azeotroped with toluene) in THF $(3 \mathrm{ml})$ at $-78{ }^{\circ} \mathrm{C}$ was added $t-\mathrm{BuLi}(1.5 \mathrm{M}$ in pentane, $140 \mu \mathrm{l}, 0.207 \mathrm{mmol})$. After stirring for 5 minutes, a stream of oxygen was passed through the dark reaction mixture for 10 minutes. The resulting pale yellow solution was quenched with $\mathrm{Me}_{2} \mathrm{~S}(2$ drops $)$ and $\mathrm{NH}_{4} \mathrm{Cl}(110 \mathrm{mg})$. The mixture was warmed to room temperature and stirred for 1 hour. The reaction mixture was washed with saturated NaHCO_{3} solution, extracted with $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, concentrated, and purified by flash chromatograpy $(5 \% \rightarrow 7.5 \% \rightarrow 10 \% \rightarrow$ $12.5 \% \rightarrow 15 \% \rightarrow 20 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to provide the des-Benzyl oxindole $\mathbf{1 2 1}(40 \mathrm{mg}, 82 \%$ yield) and recovered starting material ($6 \mathrm{mg}, 10 \%$ recovered).
$\mathrm{R}_{f}=0.25\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, TLC plate pretreated with $\left.\mathrm{NH}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ (Note: ${ }^{1} \mathrm{H}$ NMR of this compound is highly dependent on the acidity of purification media. To ensure reproducibility, it is recommended to pass through a pad of basic $\mathrm{Al}_{2} \mathrm{O}_{3}$ before taking ${ }^{1} \mathrm{H}$ NMR) $\delta 8.62$ (br $\mathrm{s}, 1 \mathrm{H}, \mathbf{N H}), 7.12(\mathrm{dd}, J=7.6 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 7.02(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 6.91(\mathrm{dd}, J=7.6 \mathrm{~Hz}, 7.6$ $\mathrm{Hz}, 1 \mathrm{H}, \mathbf{A r}), 6.83(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 3.24\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.01(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}), 2.74(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH})$, $2.57\left(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{C H}_{2} \mathrm{COC}\right), 2.19\left(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{C H}_{2} \mathbf{C O C}\right), 1.86\left(\mathrm{~m}, 2 \mathrm{H}, \mathbf{C H}_{2} \mathrm{COC}\right), 1.71$ (m, 2H, $\left.\mathbf{C H}_{\mathbf{2}} \mathbf{C H}_{2} \mathrm{CHN}\right), 1.60 \sim 1.44\left(\mathrm{~m}, 3 \mathrm{H}, \mathbf{C H}_{\mathbf{2}} \mathbf{C H}_{\mathbf{2}} \mathbf{C H N}\right), 1.22\left(\mathrm{~m}, 1 \mathrm{H}, \mathbf{C H}_{\mathbf{2}} \mathrm{CHN}\right), 1.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathbf{C H}_{3}\right)$, $1.04\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathbf{C H}_{3} \mathrm{CH}\right), 0.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathbf{C H}_{3}\right),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 181.8,141.2,131.1$, $127.9,126.3,121.0,109.2,70.0,64.5,59.4,51.4,49.6,47.3,46.0,39.8,33.0,29.7,25.9,19.7,18.4,12.3 ;$ IR (thin film): 3272 (br m), 1719 (s), 1472 (s) cm^{-1}; HRMS (ESI) Calcd. for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]: 353.2218$. Found: 353.2229. From (+)-101 ($\sim 91 \%$ ee $):[\alpha]_{D}{ }^{23}=+76.9\left(\mathrm{c} 0.75, \mathrm{CHCl}_{3}\right) ; \sim 91 \%$ ee.

Preparation of des-Benzyl Azide (+)-122

$(+)-121$

$(+)-122$

To a solution of epoxide $\mathbf{1 2 1}$ ($40 \mathrm{mg}, 0.113 \mathrm{mmol}$, azeotropically dried with toluene) in $\mathrm{CH}_{3} \mathrm{CN}$ (5 $\mathrm{ml})$ was added $\mathrm{MgCl}_{2}(44 \mathrm{mg}, 0.454 \mathrm{mmol})$ and $\mathrm{NaN}_{3}(50 \mathrm{mg}, 0.769 \mathrm{mmol})$. The mixture was stirred at 63 ${ }^{\circ} \mathrm{C}$ for 67 h and quenched with saturated NaHCO_{3} solution. The aqueous layer was extracted with $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(4: 1)$ and the combined organic layers were concentrated and purified by flash chromatography $(30 \% \rightarrow 50 \% \rightarrow 70 \% \mathrm{EtOAc} /$ hexanes $)$ to provide azide $\mathbf{1 2 2}$ as a white film ($41 \mathrm{mg}, \mathbf{9 1 \%}$ yield).
$\mathrm{R}_{f}=0.30\left(30 \% \mathrm{EtOAc} /\right.$ hexanes, TLC plate pretreated with $\left.\mathrm{NH}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ (Note: ${ }^{1} \mathrm{H}$ NMR of this compound is highly dependent on the acidity of purification media. To ensure reproducibility, it is recommended to pass through a pad of basic $\mathrm{Al}_{2} \mathrm{O}_{3}$ before taking ${ }^{1} \mathrm{H} N \mathrm{NRR}$) $\delta 9.22$ (br $\mathrm{s}, 1 \mathrm{H}, \mathbf{N H}), 7.44(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 7.22(\mathrm{dd}, J=7.6 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 7.09(\mathrm{dd}, J=7.6 \mathrm{~Hz}, 7.6$ $\mathrm{Hz}, 1 \mathrm{H}, \mathbf{A r}), 6.93(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 5.25(\mathrm{~s}, 1 \mathrm{H}, \mathbf{O H}), 3.53\left(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{C H}_{2} \mathrm{~N}\right), 3.13(\mathrm{~m}, 1 \mathrm{H}$, CHN), $3.00(\mathrm{~m}, 1 \mathrm{H}, \mathbf{C H N}), 2.69\left(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{C H}_{2} \mathrm{~N}\right), 2.49\left(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{C H}_{2} \mathrm{CN}_{3}\right), 2.06(\mathrm{~d}$, $\left.J=14.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{C H}_{2} \mathrm{CN}_{3}\right), 1.82\left(\mathrm{~m}, 1 \mathrm{H}, \mathbf{C H}_{2} \mathbf{C H N}\right), 1.68 \sim 1.48\left(\mathrm{~m}, 6 \mathrm{H}, \mathbf{C H}_{\mathbf{2}} \mathbf{C H}_{\mathbf{2}} \mathbf{C H N}\right), 1.30(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathbf{C H}_{\mathbf{2}} \mathrm{CHOH}\right), 1.24\left(\mathrm{~s}, 3 \mathrm{H}, \mathbf{C H}_{3}\right), 1.07\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathbf{C H}_{\mathbf{3}} \mathrm{CH}\right), 1.02\left(\mathrm{~s}, 3 \mathrm{H}, \mathbf{C H}_{\mathbf{3}}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 186.1,140.7,132.8,127.9,127.3,122.8,109.9,83.2,73.8,61.6,54.5,54.4,51.8,46.9,45.2$, 35.9, 33.9, 32.2, 26.5, 21.5, 18.8, 9.9; IR (thin film): 3211 (br m), 2111 (s), 1686 (s), 1472 (s), 1267 (s) cm^{-1}; HRMS (ESI) Calcd. for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{5} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]: 396.2398$. Found: 396.2400. From (+)-121 ($\sim 91 \%$ ee): $[\alpha]_{D}^{23}=+65.3\left(\mathrm{c} \mathrm{0.9}, \mathrm{CHCl}_{3}\right) ; \sim 91 \%$ ee.

Preparation of Boc-Protected Oxindole (+)-125

(+)-122

(+)-125

A solution of oxindole $122(62 \mathrm{mg}, 0.157 \mathrm{mmol})$ and $\mathrm{Boc}_{2} \mathrm{O}(51 \mathrm{mg}, 0.235 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{ml})$ was added DMAP ($19 \mathrm{mg}, 0.157 \mathrm{mmol}$) and triethylamine ($70 \mu \mathrm{l}, 0.502 \mathrm{mmol}$). The reaction was stirred at room temperature for 50 minutes, quenched with saturated NaHCO_{3} solution, extracted with $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, concentrated and purified by flash chromatography $(5 \% \rightarrow 10 \% \rightarrow 20 \% \rightarrow$ $30 \% \mathrm{EtOAc} /$ hexanes $)$ to provide the Boc-protected oxindole 125 as a white solid ($67 \mathrm{mg}, 86 \%$ yield).
$\mathrm{R}_{f}=0.67\left(30 \%\right.$ EtOAc/hexanes, TLC plate pretreated with $\left.\mathrm{NH}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, CDCl_{3}) (Note: ${ }^{1} \mathrm{H}$ NMR of this compound is highly dependent on the acidity of purification media. To ensure reproducibility, it is recommended to pass through a pad of basic $\mathrm{Al}_{2} \mathrm{O}_{3}$ before taking $\left.{ }^{1} \mathrm{H} N M R\right) \delta$ 7.77 (d, $8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 7.55$ (d, $7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}$), 7.30 (ddd, $1.2 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}$), 7.21 (dd, 7.6 $\mathrm{Hz}, 8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 4.53(\mathrm{~d}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{O H}), 3.52\left(\mathrm{~d}, 11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{C H}_{2} \mathrm{NH}\right), 3.08(\mathrm{~m}, 1 \mathrm{H}, \mathbf{C H N}), 2.98$ (m, 1H, CHN), 2.67 (d, 11.2 Hz, 1H, $\mathbf{C H}_{2} \mathrm{NH}$), $2.55\left(\mathrm{~d}, 14.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{C H}_{2} \mathrm{CN}_{3}\right.$), 2.07 (d, $14.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathbf{C H}_{2} \mathrm{CN}_{3}$), $1.80\left(\mathrm{~m}, 1 \mathrm{H}, \mathbf{C H}_{2} \mathrm{CHN}\right), 1.63(\mathrm{~s}, 9 \mathrm{H}, \mathbf{B o c}), 1.60 \sim 1.50\left(\mathrm{~m}, 6 \mathrm{H}, \mathbf{C H}_{2} \mathbf{C H}_{2} \mathbf{C H N}\right), 1.26(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathbf{C H}_{2} \mathrm{CHN}\right), 1.13\left(\mathrm{~s}, 3 \mathrm{H}, \mathbf{C H}_{3}\right), 1.05\left(\mathrm{~d}, 6.8 \mathrm{~Hz}, \mathbf{C H}_{3} \mathrm{CH}\right), 0.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathbf{C H}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $183.5,148.5,139.2,130.9,128.1,127.1,124.4,114.4,84.8,83.5,73.7,61.7,54.53,54.45,53.4,46.7,46.2$, 36.1, 33.9, 32.3, 28.0, 26.2, 21.4, 18.8, 9.8; IR (thin film): 3402 (br m), 2115 (s), 1736 (s), 1465 (m), 1370 (m), 1287 (m), 1149 (m) cm ${ }^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{~N}_{5} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]: 496.2919$. Found: 496.2924. From (+)-122 (~91\% ee): $[\alpha]_{\mathrm{D}}{ }^{23}=+97.9\left(\mathrm{c} 1.4, \mathrm{CHCl}_{3}\right) ; \sim 91 \%$ ee.

Preparation of the ent-Citrinadin Core (+)-100

Azide Reduction:
A solution of azide $\mathbf{1 2 5}(67 \mathrm{mg}, 0.135 \mathrm{mmol})$ in THF (5 ml) containing Pd/C ($10 \mathrm{wt} \%, 29$ $\mathrm{mg}, 0.0270 \mathrm{mmol}$) was purged with H_{2} for 1 minute and stirred under H_{2} atmosphere (balloon) for 24 hours. Another portion of Pd / C was added $(30 \mathrm{mg}, 0.0270 \mathrm{mmol})$. The reaction mixture was stirred for another 24 hours, filtered through a pad of celite, rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, concentrated, and purified by flash chromatography ($30 \% \mathrm{EtOAc} /$ hexanes $5 \% \rightarrow 7.5 \% \rightarrow 10 \% \rightarrow 15 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to provide the desired amine as a pale yellow oil ($62 \mathrm{mg}, 98 \%$ yield).

$$
\mathrm{R}_{f}=0.24\left(20 \% \mathrm{EtOAc} / \text { hexanes, TLC plate pretreated with } \mathrm{NH}_{3}\right) .
$$

Methylation:

To a solution of the amine ($60 \mathrm{mg}, 0.128 \mathrm{mmol}$) in acetone (2.5 ml) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(60 \mathrm{mg})$ and $\mathrm{Me}_{2} \mathrm{SO}_{4}(50 \mu \mathrm{l}, 0.528 \mathrm{mmol})$. The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 40 hours, quenched with saturated NaHCO_{3} solution, extracted with $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, concentrated, and purified by flash chromatography $(30 \% \rightarrow 50 \% \rightarrow 70 \%$ EtOAc/hexanes) to provide the methylamine as a white solid (48 mg , 78% yield).
$\mathrm{R}_{f}=0.56\left(20 \% \mathrm{EtOAc} /\right.$ hexanes, TLC plate pretreated with $\left.\mathrm{NH}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ (Note: ${ }^{1} \mathrm{H}$ NMR of this compound is highly dependent on the acidity of purification media. To ensure reproducibility, it is recommended to pass through a pad of basic $\mathrm{Al}_{2} \mathrm{O}_{3}$ before taking ${ }^{1} \mathrm{H}$ NMR) $\delta 7.76$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 7.54(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 7.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 7.17(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r})$, $4.26(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{O H}), 3.05\left(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHCCH}_{2}\right), 3.00(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}), 2.88(\mathrm{t}, J=10.8$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{NCH}), 2.53\left(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHCCH}_{2}\right), 2.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NHCH}_{3}\right), 2.12(\mathrm{q}, J=11.5 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{NHCCH}_{2}\right), 2.12\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 1.76\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 1.64(\mathrm{~s}, 9 \mathrm{H}, \mathbf{B o c}), 1.59 \sim 1.47(\mathrm{~m}, 4 \mathrm{H}$,
NCHCH_{2}), $1.4\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHCH}_{2} \mathbf{C H}_{2}\right.$), $1.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathbf{C H}_{3}\right), 1.13\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHCH}_{2} \mathbf{C H}_{2}\right), 1.06(\mathrm{~d}, J=6.7$ $\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}$), $0.96\left(\mathrm{~s}, 3 \mathrm{H}, \mathbf{C H}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 184.09,148.95,139.38,132.28$, $127.93,127.60,124.29,114.29,84.60,84.38,68.63,62.53,55.30,53.30,50.38,46.99,41.70,35.55,34.82$, 32.87, 29.79, 28.20, 27.87, 22.11, 19.11, 10.51; IR (thin film): not obtained; HRMS (ESI) not obtained. From (+)-125 ($\sim 91 \%$ ee $):[\alpha]_{D}{ }^{23}=+94.6\left(\mathrm{c} \mathrm{1.0}, \mathrm{CHCl}_{3}\right) ; \sim 91 \%$ ee.

Boc-Removal:

To a solution of the Boc amide ($12 \mathrm{mg}, 0.025 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{ml})$ at room temperature was added TFA $(100 \mu \mathrm{l})$. The reaction was stirred at room temperature for 30 minutes, carefully quenched with saturated NaHCO_{3} solution and solid NaHCO_{3}, extracted with $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, concentrated and purified by flash chromatography ($50 \% 80 \%$ EtOAc/hexanes $5 \% \rightarrow 10 \% \rightarrow 15 \%$ $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to provide $\mathbf{1 0 0}$ as a white foam ($11 \mathrm{mg}, 88 \%$ yield).
$\mathrm{R}_{f}=0.37$ (30\% EtOAc/hexanes, TLC plate pretreated with NH_{3}); IR (thin film): 3332 (br), 3203 (br), 1691 (s), 1672 (s), 1202 (s); HRMS (ESI) Calcd. for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]: 384.2651$. Found: 384.2651.

TFA salt: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.66(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathbf{N H}), 8.20(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathbf{N H}), 7.39(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 7.20(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 7.06(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 6.88(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r})$, $5.54(\mathrm{~s}, 1 \mathrm{H}, \mathbf{O H}), 3.79-3.63\left(\mathrm{~m}, 3 \mathrm{H}, \mathbf{C H}_{\mathbf{2}} \mathbf{N C H}\right), 3.27(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHCCH}), 2.53\left(\mathrm{~s}, 1 \mathrm{H}, \mathbf{N H C H}_{3}\right)$, $2.40\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 2.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NHCH}_{3}\right), 2.30\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 2.22(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{NHCCH}_{2}\right), 2.09\left(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHCCH}_{2}\right), 2.02\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 1.75-1.63(\mathrm{~m}, 4 \mathrm{H}$, $\mathbf{C H}_{\mathbf{2}} \mathrm{NCHCH}_{\mathbf{2}} \mathbf{C H}_{2}$), $1.40\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 1.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathbf{C H}_{\mathbf{3}}\right), 0.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathbf{C H}_{\mathbf{3}}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \quad 185.64,140.54,132.74,128.23,128.05,123.20,109.91,82.63,67.81,62.04,58.06$, $52.32,50.98,50.81,41.72,31.69,29.94,29.56,29.30,28.10,21.89,17.48,12.12 .[\alpha]_{\mathrm{D}}^{22}($ TFA salt $)=$ $+50.7\left(\mathrm{c} 0.9, \mathrm{CHCl}_{3}\right)$.

Freebase: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (Note: ${ }^{1} \mathrm{H}$ NMR of this compound is highly dependent on the acidity of purification media. To ensure reproducibility, it is recommended to pass through a pad of basic $\mathrm{Al}_{2} \mathrm{O}_{3}$ before taking $\left.{ }^{1} \mathrm{H} N \mathrm{NR}\right) \delta 8.32(\mathrm{~s}, 1 \mathrm{H}, \mathbf{N H}), 7.46(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 7.18(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}$, Ar), $7.06(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 6.89(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 4.80(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{O H}), 3.07(\mathrm{~d}, J=$ $10.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHCCH}), 3.01(\mathrm{p}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}), 2.88(\mathrm{tt}, J=10.8 \mathrm{~Hz}, 2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}), 2.53(\mathrm{~d}$,
$\left.J=10.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHCCH}_{2}\right), 2.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NHCH}_{3}\right), 2.18\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathbf{N H C H}_{3}\right), 2.09\left(\mathrm{AB} \mathrm{q}, J_{A B}=12 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\left.\mathrm{NHCCH}_{2}\right), 1.76\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 1.64 \sim 1.46\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{NCHCH}_{\mathbf{2}} \mathbf{C H}_{2}\right), 1.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathbf{C H}_{3}\right), 1.38(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{NCHCH}_{2}\right), 1.15\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 1.07\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 0.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathbf{C H}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 186.3,140.6,134.1,128.1,127.3,122.4,109.4,84.1,68.5,62.4,55.2,51.6,50.5,46.9$, $40.7,35.4,34.7,32.8,29.8,28.1,22.0,19.0,10.4 ;[\alpha]_{\mathrm{D}}^{22}($ free base $)=+58.7\left(\mathrm{c} 1.2, \mathrm{CHCl}_{3}\right)$.

Preparation of Dibromoanilide 48

Dibromoaniline $46(24.9 \mathrm{~g}, 100 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(400 \mathrm{~mL})$, cooled to $0{ }^{\circ} \mathrm{C}$, and treated with trimethylaluminum (2.0 M in toluene, $100 \mathrm{~mL}, 200 \mathrm{mmol}$). The reaction mixture was stirred at room temperature for 30 minutes. Next was added γ-butyrolactone $47(15 \mathrm{~g}, 120 \mathrm{mmol})$ to produce a yellow solution, which was stirred for an additional 72 hours. The resulting dark green reaction solution was quenched by the slow addition of 0.5 mL potassium sodium tartrate solution (1 M in $\mathrm{H}_{2} \mathrm{O}$) every 15 minutes for one hour. The slurry was poured into a large Erlenmeyer flask containing potassium sodium tartrate solution (1 M in $\mathrm{H}_{2} \mathrm{O}, 398 \mathrm{~mL}$), and the reaction vessel was thoroughly rinsed with a combination of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(400 \mathrm{~mL})$ and water $(200 \mathrm{~mL})$. The biphasic mixture was vigorously stirred for 4 hours. Upon separation, the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic layers were subsequently washed with 1 M HCl , saturated NaHCO_{3} solution, and brine. After drying over sodium sulfate, the solvent was removed in vacuo to yield the crude alcohol as a yellow solid. This residue was purified by triteration in $\mathrm{Et}_{2} \mathrm{O}(150 \mathrm{~mL})$ to provide the pure alcohol 48 as a cream colored solid $(29.8 \mathrm{~g}$, 79%).
$\mathrm{R}_{f}=0.2$ ($50 \% \mathrm{EtOAc} /$ Hexane); mp $156-158^{\circ} \mathrm{C}$ (ether); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.09$ (br s, $1 \mathrm{H}, \mathrm{NH}), 7.60(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{A r}), 7.03(\mathrm{dd}, J=8.1 \mathrm{~Hz}, 8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 3.89(\mathrm{q}, J=5.4,2 \mathrm{H}$,
$\left.\mathrm{CH}_{2} \mathrm{OH}\right), 2.73(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 2.67\left(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 2.09\left(\mathrm{~s}, \mathrm{CH}_{3}, \mathrm{CCH}_{3}\right), 1.83(\mathrm{~s}$, $\mathrm{CH}_{3}, \mathrm{CCH}_{3}$) ${ }^{13}{ }^{1} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 170.4,139.2,135.1,132.4,129.5,128.8,124.0,62.3,32.9$, 23.0, 20.8; IR (thin film): 3212 (br, s), 1654 (s), 1049 (m) cm ${ }^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{Br}_{2} \mathrm{NO}_{2} \mathrm{Na}$ [$\mathrm{M}+\mathrm{Na}+2$]: 399.9347. Found: 399.9332 .

Preparation of bis-Protected Dibromoanilide 132

TBS-Protection:

To a reaction flask containing alcohol $48(29.8 \mathrm{~g}, 79 \mathrm{mmol})$ and imidazole ($8.1 \mathrm{~g}, 118.5$ $\mathrm{mmol})$ was added $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$. The light yellow solution was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice bath before adding TBSCl ($13.1 \mathrm{~g}, 86.9 \mathrm{mmol}$). The reaction was allowed to warm to room temperature overnight (12 h) and a white precipitate emerged. The reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic layers were washed with saturated NaHCO_{3} solution, water, and brine; dried over sodium sulfate; and concentrated. This provided the silyl ether as a light yellow oil ($38.7 \mathrm{~g}, 99 \%$), which was dried under high vacuum and used without further purification.

$$
\mathrm{R}_{f}=0.13\left(10 \% \text { EtOAc/hexanes); }{ }^{1} \mathrm{H} \text { NMR }\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.97(\text { br s, } 1 \mathrm{H}, \mathrm{NH}),\right.
$$ $7.59(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{A r}), 7.01(\mathrm{dd}, J=8.1 \mathrm{~Hz}, 8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 3.91\left(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OTBS}\right)$, $2.72\left(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OTBS}\right), 2.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right), 1.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right), 0.84\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $0.06\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 169.4,140.1,135.4,132.3,129.3,128.9,124.6$, 63.8, 53.5, 32.8, 26.0, 22.6, 20.9, 18.5, -5.4; IR (thin film): 3232 (br, s), 1663.5 (s) cm^{-1}; HRMS (ESI) Calcd. for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{Br}_{2} \mathrm{NO}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}+2]$: 492.0392. Found: 492.0394.

Benzyl-Protection:

To the amide ($477 \mathrm{mg}, 0.97 \mathrm{mmol}$) in DMF $(10 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ in an ice bath was added NaH $(120 \mathrm{mg}, 3 \mathrm{mmol})$ to produce a yellow solution. Benzyl bromide ($178 \mu \mathrm{l}, 1.5 \mathrm{mmol}$) was subsequently added and the reaction was allowed to warm to room temperature. Upon completion (as determined by TLC) the reaction was quenched with a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The aqueous portion was extracted with EtOAc; and the combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over sodium sulfate, concentrated, and purified by flash chromatography to provide the benzyl amide ($447 \mathrm{mg}, 80 \%$ yield).
$\mathrm{R}_{f}=0.5(20 \% \mathrm{EtOAc} / \mathrm{hexanes}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 7.48(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.26-$ $7.14(\mathrm{~m}, 3 \mathrm{H}, \mathbf{P h}), 7.03-7.00(\mathrm{~m}, 2 \mathrm{H}, \mathbf{P h}), 6.95(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 4.84\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{C H}_{2} \mathrm{Ph}\right)$, 3.94 (td, $\left.J=9.7,5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{C H}_{2} \mathrm{OTBS}\right), 3.77\left(\mathrm{td}, J=9.5,6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{C H}_{2} \mathrm{OTBS}\right), 2.84(\mathrm{~m}, 1 \mathrm{H}$, $\mathbf{C H}_{2} \mathrm{CH}_{2} \mathrm{OTBS}$), $2.58\left(\mathrm{~m}, 1 \mathrm{H}, \mathbf{C H}_{2} \mathrm{CH}_{2} \mathrm{OTBS}\right.$), 2.01 ($\mathrm{s}, 3 \mathrm{H}, \mathbf{C H}_{3}$), $1.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathbf{C H}_{3}\right), 0.91$ ($\mathrm{s}, 9 \mathrm{H}$, $\left.\operatorname{SiC}\left(\mathbf{C H}_{3}\right)_{3}\right), 0.08\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathbf{C H}_{3}\right)_{2}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.62,143.60,139.43,139.39$, $137.95,135.72,135.11,133.29,133.23,131.97,67.03,58.56,39.43,31.27,31.20,28.12,24.83,23.60$, 0.10; IR (thin film): 2925 (s), 2850 (s), 1658 (s), 1441 (s), 1083 (s) cm^{-1}; HRMS (ESI) Calcd. for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{Br}_{2} \mathrm{NO}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}+2]$: 582.0882. Found: 582.0857.

Preparation of C7-Bromo-Oxindole 133

To the Dibromoanilide 131 a ($13.5 \mathrm{~g}, 27 \mathrm{mmol}$) dissolved in toluene (270 mL) was added $\mathrm{Pd}(\mathrm{OAc})_{2}(306 \mathrm{mg}, 1.35 \mathrm{mmol}), \mathrm{PPh}_{3}(1.1 \mathrm{~g}, 4.05 \mathrm{mmol})$, and $\mathrm{NEt}_{3}(18.8 \mathrm{~mL}, 135 \mathrm{mmol})$. The subsequent addition of water $(2.7 \mathrm{~mL})$ formed a dispersion on the surface of the glass. This was stirred at room temperature for 15 minutes, during which time the clear solution became cloudy. The reaction was heated to reflux for 24 h . The solution was cooled and the toluene was removed in vacuo. The residue was
purified by flash chromatography ($1 \rightarrow 5 \% \mathrm{EtOAc} /$ hexanes) to provide oxindole $\mathbf{1 3 3}$ as a white solid (8.3 g , 75% yield).
$\mathrm{R}_{f}=0.31\left(10 \%\right.$ EtOAc/hexanes) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 7.34(\mathrm{~d}, J=$ $8.1,1 \mathrm{H}, \mathbf{A r}), 6.98(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 6.93(\mathrm{dd}, J=7.7 \mathrm{~Hz}, 7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 5.00(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 4.98$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}$), $3.41\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OTBS}\right), 2.51\left(\mathrm{ddd}, J=7.8 \mathrm{~Hz}, 7.8 \mathrm{~Hz}, 13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OTBS}\right), 2.15$ (ddd, $\left.J=4.6 \mathrm{~Hz}, 6.3 \mathrm{~Hz}, 13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OTBS}\right), 1.67\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CCH}_{3}\right), 0.78\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $-0.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right),-0.14\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 178.9,143.4,140.9,133.1$, $130.8,123.5,123.2,113.4,103.0,59.6,58.1,37.1,25.9,19.4,18.3,-5.6 ;$ IR (thin film): 1717 (s), 1089 (m) cm^{-1}; HRMS (ESI) Calcd. for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{BrNO}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}+2]$: 412.1151. Found: 412.1129.

Preparation of Benzyl-Protected Oxindole 130

(\pm)-133

(\pm)-130

Oxindole 133 ($8.4 \mathrm{~g}, 20.5 \mathrm{mmol}$) was dissolved in a $10: 1$ solution of THF/DMF (110 mL). The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and treated with $\mathrm{NaH}(60 \%$ in mineral oil, $1.6 \mathrm{~g}, 41 \mathrm{mmol}$) in portions. After stirring at $0^{\circ} \mathrm{C}$ for 5 min , the reaction was allowed to warm to room temperature. To this was added $\mathrm{BnBr}(3.6 \mathrm{~mL}, 30.8 \mathrm{mmol})$. The reaction was stirred for an additional 4 h , at which time THF was removed in vacuo, and the residue was taken up in EtOAc $(100 \mathrm{~mL})$. This solution was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and the aqueous layer was extracted with EtOAc. The combined organic layers were washed with water and brine, dried over sodium sulfate, and concentrated. The residue was purified by flash chromatography $(0 \rightarrow 4 \% \mathrm{EtOAc} /$ hexanes $)$ to afford the benzylamide $\mathbf{1 3 0}$ as a colorless oil $(10.2 \mathrm{~g}$, 99% yield).
$\mathrm{R}_{f}=0.27(5 \% \mathrm{EtOAc} / \mathrm{hexanes}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.37(\mathrm{dd}, J=1.2 \mathrm{~Hz}, 8.2 \mathrm{~Hz}, 1 \mathrm{H}$, Ar), $7.42\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{2} \mathbf{P h}\right), 7.08(\mathrm{dd}, J=1.2 \mathrm{~Hz}, 7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 6.92(\mathrm{dd}, J=7.4 \mathrm{~Hz}, 8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r})$, $5.40\left(\mathrm{AB} \mathrm{q}, J_{A B}=16.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 5.02\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right), 4.99\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right), 3.41(\mathrm{ddd}, J=6.8 \mathrm{~Hz}$,
$8.2 \mathrm{~Hz}, 10.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OTBS}$), 3.33 (ddd, $J=5.1 \mathrm{~Hz}, 8.5 \mathrm{~Hz}, 10.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OTBS}$), 2.54 (ddd, $J=$ 6.8 Hz, $8.4 \mathrm{~Hz}, 13.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OTBS}$), 2.21 (ddd, $J=5.1 \mathrm{~Hz}, 8.2 \mathrm{~Hz}, 13.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OTBS}$), $\left.1.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}=\mathrm{CCH}_{3}\right), 0.81\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right),-0.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right),-0.09(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH})_{3}\right),{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}) \delta 178.5,143.8,140.8,138.0,134.8,134.1,128.6,127.1,126.7,123.8,123.3,113.6,102.4,59.6$, 55.8, 44.6, 37.7, 26.0, 19.6, 18.4, -5.4; IR (thin film): 2954 (m), 2928 (m), 2856 (m), 1724 (s) cm^{-1}; HRMS (ESI) Calcd. for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{BrNO}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}+2]: 502.1600$. Found: 502.1603.

Preparation of N-Boc Methoxyaniline 136

135
$\mathrm{Boc}_{2} \mathrm{O}, \mathrm{NEt}_{3}$,
THF, RT
99\% yield

136

To a solution of 2-aminophenol $\mathbf{1 3 5}(5 \mathrm{~g}, 45.9 \mathrm{mmol})$ in THF $(100 \mathrm{ml})$ was added $\mathrm{Boc}_{2} \mathrm{O}$ $(10.5 \mathrm{~g}, 48.7 \mathrm{mmol})$ in portions. The reaction was stirred at room temperature fro 36 hours before removing the THF. The remaining solids were dissolved in $\mathrm{Et}_{2} \mathrm{O}$, washed with citric acid solution and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to yield the N-Boc methoxyaniline $\mathbf{1 3 6}$ as a light pink solid $(9.5 \mathrm{~g}$, 99% yield).

Known compound; CAS 154150-18-2. Characterization data matched literature reports.

Preparation of 2-Bromo-6-Methoxyaniline 134

Directed Bromination:

To a solution of N-Boc methoxyaniline $\mathbf{1 3 6}(9 \mathrm{~g}, 40.4 \mathrm{mmol}$, azeotroped from toluene) in $\mathrm{Et}_{2} \mathrm{O}(90 \mathrm{ml})$ at $-30^{\circ} \mathrm{C}$ was added $t-\mathrm{BuLi}(1.64 \mathrm{M}$ in pentanes, $54 \mathrm{ml}, 88.9 \mathrm{mmol})$. The reaction was
transferred to a salt/ice bath and allowed to stir for 3 hours, maintaining a bath temperature between -10 and $0^{\circ} \mathrm{C}$. Next, a solution of 1,2-dibromoethane ($\left.11.4 \mathrm{~g}, 60.6 \mathrm{mmol}\right)$ in $\mathrm{Et}_{2} \mathrm{O}(90 \mathrm{ml})$ was added to the reaction at $-78^{\circ} \mathrm{C}$. This was allowed to warm to room temperature gradually. The reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, extracted with EtOAc , washed with water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to provide a crude solid that was triterated with hexanes to provide the desired aryl bromide as a white solid ($6.5 \mathrm{~g}, 53 \%$ yield).

Boc Removal:

To a solution of the carbamate $(6.5 \mathrm{~g}, 21 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(75 \mathrm{ml})$ cooled to $0{ }^{\circ} \mathrm{C}$ was added trifluoroacetic acid $(7.8 \mathrm{ml}, 105 \mathrm{mmol})$. This was stirred at room temperature for 24 hours. The reaction was quenched with saturated NaHCO_{3} solution, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated, and purified by flash chromatography ($10 \% \mathrm{EtOAc} / \mathrm{hexanes}$) to provide the pure aniline $\mathbf{1 3 4}$ as a light yellow oil ($4.0 \mathrm{~g}, 95 \%$ yield)

Known compound; CAS 5473-01-8. Characterization data matched literature reports.

Preparation of 2-Bromo-6-Methoxyanilide 137

134

137

To a solution of 2-bromo-6-methoxyaniline $134(2.4 \mathrm{~g}, 11.9 \mathrm{mmol}$, azeotroped with toluene) in THF (225 ml) cooled to $0^{\circ} \mathrm{C}$ was added methylmagnesium bromide (3 M in diethyl ether, 9 ml , 26.9 mmol). The resulting solution was stirred at room temperature for 30 minutes before adding the lactone $(2.28 \mathrm{~g}, 17.9 \mathrm{mmol})$. The reaction was heated to reflux for 2 hours and then stirred at room temperature for 24 hours. Another portion of methylmagnesium bromide ($3 \mathrm{ml}, 8.97 \mathrm{mmol}$) was added at that time, followed by another portion of lactone ($250 \mathrm{mg}, 1.79 \mathrm{mmol}$). This was refluxed for another 2
hours and stirred at room temperature for another 24 hours. The reaction was quenched with saturated NaHCO_{3} solution, extracted with EtOAc, washed with water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The resulting brown solids were purified by flash chromatography $(30 \% \rightarrow 40 \% \rightarrow 50 \% \rightarrow 60 \% \rightarrow 70 \%$ EtOAc/hexanes) to provide anilide 137 as a white solid ($3.4 \mathrm{~g}, 87 \%$ yield).

$$
\mathrm{R}_{f}=0.08(60 \% \mathrm{EtOAc} / \text { hexanes }) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 7.82(\mathrm{~s}, 1 \mathrm{H}, \mathbf{N H}), 7.11
$$ $(\mathrm{dd}, J=8.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 7.03(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 6.79(\mathrm{dd}, J=7.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 3.89(\mathrm{t}, J=$ $5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{O H}), 3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.73\left(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{C H}_{2} \mathrm{OH}\right), 2.51(\mathrm{t}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathbf{C H}_{\mathbf{2}} \mathrm{CH}_{2} \mathrm{OH}$), $1.96\left(\mathrm{~s}, 3 \mathrm{H}, \mathbf{C H}_{3}\right), 1.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathbf{C H}_{\mathbf{3}}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz} ; \mathrm{CDCl}_{3}$): $\delta 171.4,156.4,136.7$, $129.4,129.0,124.9,124.7,123.5,110.7,61.6,56.2,33.5,22.7,20.4$; IR (thin film): 3225 (br, s), 2939 (s), 1629 (s), 1516 (s), 1267 (m), 1038 (s) cm ${ }^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{BrNO}_{3}[\mathrm{M}+\mathrm{H}+2]: 330.0528$. Found: 330.0526.

Preparation of Phenol 138

A solution of methoxyphenol $137(300 \mathrm{mg}, 0.9 \mathrm{mmol}$, azeotroped with toluene) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{ml})$ was cooled to $-78{ }^{\circ} \mathrm{C}$. To this was added boron tribromide ($20 \% \mathrm{v} / \mathrm{v}$ solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $0.750 \mathrm{ml}, 1.58 \mathrm{mmol}$) dropwise. After stirring at $-78^{\circ} \mathrm{C}$ for 10 minutes, the resulting reaction mixture-an orange solution containing a gummy white solid-was transferred to a salt/ice bath to allow the solid to dissolve and stirring to resume. This was stirred cold for two hours, then quenched with saturated NaHCO_{3} solution. The aqueous layer was basified to pH 11 with $5 \% \mathrm{NaOH}$ solution and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The aqueous layer was then acidified to pH 7 using 10% aqueous HCl solution and extracted with EtOAc. The organic extract was washed with water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to provide $\mathbf{1 3 8}$ as a white solid which was used without further purification ($220 \mathrm{mg}, 77 \%$ yield).

$$
\mathrm{R}_{\mathrm{f}}=0.16(40 \% \text { EtOAc/hexanes }) ;{ }^{1} \mathrm{H} \text { NMR }\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 9.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArOH}),
$$ $9.19(\mathrm{~s}, 1 \mathrm{H}, \mathbf{N H}), 7.07(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 7.03(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 6.86(\mathrm{dd}, J=7.6,1.6 \mathrm{~Hz}$,

$1 \mathrm{H}, \mathbf{A r}), 4.74(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathbf{O H}), 3.56\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{C H}_{2} \mathrm{OH}\right), 2.44\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{C H}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 1.91$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathbf{C H}_{3}\right), 1.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathbf{C H}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz; DMSO): $\delta 169.9,155.2,132.6,129.5,128.7,124.4$, 123.6, 122.5, 115.3, 60.0, 33.9, 22.3, 19.8; IR (thin film): 3230 (br, s), 1629 (s), 1586 (s), 1521 (s), 1448 (s) cm^{-1}; HRMS (ESI) Calcd. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{BrNO}_{3}[\mathrm{M}+\mathrm{H}]$: 314.0392. Found: 314.0392.

Preparation of \boldsymbol{O}-TBS-Protected Alcohol 139

To a solution of diol $138(484 \mathrm{mg}, 1.54 \mathrm{mmol})$ in DMF (20 ml) was added imidazole (304 mg, 4.62 mmol). After cooling to $0^{\circ} \mathrm{C}$ in an ice bath, tertbutyldimethylsilyl chloride ($254.7 \mathrm{mg}, 1.69$ mmol) was added to the reaction. This stirred for 30 minutes at room temperature, was recooled to $0^{\circ} \mathrm{C}$ in an ice bath, and a second portion of tertbutyldimethylsilyl chloride ($70 \mathrm{mg}, 0.462 \mathrm{mmol}$) was added. This was allowed to stir for another 30 minutes at room temperature, cooled again to $0^{\circ} \mathrm{C}$, and a final portion of tertbutyldimethylsilyl chloride ($70 \mathrm{mg}, 0.462 \mathrm{mmol}$) was added. The reaction was quenched cold with water and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The $\mathrm{Et}_{2} \mathrm{O}$ extracts were washed with water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated, and purified by flash chromatography ($1 \% \rightarrow 2 \% \rightarrow 4 \% \rightarrow 6 \% \rightarrow 8 \% \mathrm{EtOAc} / \mathrm{hexanes}$) to provide 139 as a light yellow oil ($605 \mathrm{mg}, 92 \%$ yield).
$\mathrm{R}_{f}=0.33$ (10% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 9.26(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArOH}), 8.95(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}, \mathbf{N H}), 7.14(\mathrm{t}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 7.02-7.01(\mathrm{~m}, 2 \mathrm{H}, \mathbf{A r}), 3.86\left(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{C H}_{2} \mathrm{O}\right), 2.71(\mathrm{t}, J=$ $6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{C H}_{2} \mathrm{CH}_{2} \mathrm{O}$), $2.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathbf{C H}_{3}\right), 1.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathbf{C H}_{\mathbf{3}}\right), 0.84\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathbf{C H}_{3}\right)_{3}\right), 0.02(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{Si}\left(\mathbf{C H}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 172.1,151.8,142.1,128.0,127.7,125.2,124.5,120.0,117.6$, 62.6, 33.3, 26.0, 23.2, 21.4, 18.6, -5.3; IR (thin film): 3250 (br, w), 2929 (s), 1647 (m), 1468 (s), 1312 (m), $1256(\mathrm{~m}), 1086(\mathrm{~m}), \mathrm{cm}^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{BrNO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]: 430.1233$. Found: 430.1239.

Preparation of Triflate 131b

A solution of phenol 139 ($560 \mathrm{mg}, 1.3 \mathrm{mmol}$, azeotroped with toluene) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$ was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice bath. To this was added pyridine ($0.315 \mathrm{ml}, 3.9 \mathrm{mmol}$) and trifluoromethanesulfonic anhydride $(0.328 \mathrm{ml}, 1.95 \mathrm{mmol})$. A white precipitate emerged briefly and then disappeared. The solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 minutes and then at room temperature for another 15 minutes. The reaction was quenched in an ice bath with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extracts were washed with water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The orange residue was purified by column chromatograpy ($1 \% \rightarrow 2 \% \rightarrow 3 \% \rightarrow 4 \% \rightarrow 6 \% \mathrm{EtOAc} / \mathrm{Hexanes}$) to provide 131b as a white solid ($614 \mathrm{mg}, 84 \%$ yield).

$$
\mathrm{R}_{f}=0.13\left(10 \% \text { EtOAc/hexanes); }{ }^{1} \mathrm{H} \text { NMR }\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 9.18(\mathrm{~s}, 1 \mathrm{H}, \mathbf{N H}), 7.63\right.
$$ $(\mathrm{dd}, J=8.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 7.29(\mathrm{dd}, J=8.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 7.21(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 3.92(\mathrm{t}, J=$ $\left.5.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCCH}_{2}\right), 2.69\left(\mathrm{t}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCCH}_{2} \mathbf{C H}_{2}\right), 2.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathbf{C H}_{3}\right), 1.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathbf{C H}_{3}\right), 0.86(\mathrm{~s}$, 9H, TBS), 0.05 ($\mathrm{s}, 6 \mathrm{H}, \mathbf{T B S}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.65,146.76,141.51,132.86,130.75$, $128.91,128.27,124.25,121.27,120.21,117.02,64.10,32.67,26.12,22.49,21.02,18.63,-5.55$; IR (thin film): 3233 (br, m), 2931 (s), 1682 (s), 1427 (s), 1214 (s), 1142 (s), 918 (s), 837 (m) cm ${ }^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{BrF}_{3} \mathrm{NO}_{5} \mathrm{SSi}[\mathrm{M}+\mathrm{H}+2]$: 562.0749. Found: 562.0721.

Preparation of C7-Triflate-Oxindole 140

To a solution of aryl bromide $\mathbf{1 3 1 b}(50 \mathrm{mg}, 0.0892 \mathrm{mmol}$, azeotroped with toluene) in toluene $(1.5 \mathrm{ml})$ was added $\mathrm{Pd}(\mathrm{OAc})_{2}(1 \mathrm{mg}, 0.0045 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{PPh}_{3}(3.5 \mathrm{mg}, 0.0134 \mathrm{mmol}, 15$ $\mathrm{mol} \%)$, and $\mathrm{Et}_{3} \mathrm{~N}(62 \mu \mathrm{l}, 0.446 \mathrm{mmol})$. This stirred at room temperature for 30 minutes and was then heated to reflux for 24 hours. After cooling to room temperature, the reaction was concentrated and purified by flash chromatography $(0.5 \% \rightarrow 1 \% \rightarrow 2 \% \rightarrow 3 \% \rightarrow 4 \%$ EtOAc/hexanes) to provide the aryl triflate 140 ($14 \mathrm{mg}, 38 \%$ yield).
$\mathrm{R}_{f}=0.36(10 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 7.78(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathbf{N H}), 7.20(\mathrm{dd}, J=$ 6.9, $2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 7.09(\mathrm{~m}, 2 \mathrm{H}, \mathbf{A r}), 5.03\left(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{C H}_{2} \mathrm{Ph}\right), 4.99\left(\mathrm{~s}, 1 \mathrm{H}, \mathbf{C H}_{2} \mathrm{Ph}\right), 3.41(\mathrm{~d}, J=$ $\left.5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCCH}_{2}\right), 3.39\left(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCCH}_{2}\right), 2.52\left(\mathrm{dt}, J=13.5,7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCCH}_{2} \mathbf{C H}_{2}\right), 2.19$ $\left(\mathrm{dt}, J=13.5,5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCCH}_{2} \mathbf{C H}_{2}\right), 1.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathbf{C H}_{\mathbf{3}}\right), 0.77(\mathrm{~s}, 9 \mathrm{H}, \boldsymbol{t}-\mathbf{B u}),-0.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathbf{C H}_{3}\right),-0.13(\mathrm{~s}$, $3 \mathrm{H}, \mathbf{C H}_{3}$); ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 178.40,142.86,135.25,133.74,132.45,124.40,123.20,121.11$, 120.36, 113.91, 59.50, 57.08, 37.21, 25.94, 19.37, 18.37, -5.58, -5.62; IR (thin film): 2930 (m), 1727 (s), 1635 (m), 1419 (s), 1205 (s), 1136 (s), 803 (m) cm ${ }^{=1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{NO}_{5} \mathrm{SSi}[\mathrm{M}+\mathrm{H}]:$ 480.1488. Found: 480.1475.

Preparation of Alcohol 141

To a solution of silyl ether $130(12.6 \mathrm{~g}, 25 \mathrm{mmol})$ in THF $(125 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added TBAF (1.0 M in THF, $30 \mathrm{~mL}, 30 \mathrm{mmol}$). The reaction mixture was stirred at room temperature for 4 h and
quenched by saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The aqueous layer was extracted with EtOAc, and the combined organic layers were washed with water and brine, dried, and concentrated. The residue was purified by flash chromatography ($10 \rightarrow 50 \% \mathrm{EtOAc} /$ hexanes) to provide alcohol 141 as a colorless oil which solidified upon standing ($9.4 \mathrm{~g}, 97 \%$).
$\mathrm{R}_{f}=0.13(30 \% \mathrm{EtOAc} /$ hexanes $) ;$ m.p. $84-87^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.38(\mathrm{dd}, J=1.2 \mathrm{~Hz}, 8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 7.27\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{2} \mathbf{P h}\right), 7.08(\mathrm{dd}, J=1.2 \mathrm{~Hz}, 7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 6.93$ (dd, $J=7.3 \mathrm{~Hz}, 8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 5.40\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 5.06\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right), 5.02\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right), 3.52(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH}_{\mathbf{2}} \mathrm{OH}$), $3.42\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 2.55\left(\mathrm{ddd}, J=6.9 \mathrm{~Hz}, 6.9 \mathrm{~Hz}, 13.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 2.19$ (ddd, $\left.J=5.7 \mathrm{~Hz}, 6.2 \mathrm{~Hz}, 13.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 1.63\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}=\mathrm{CCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz) $\delta 179.5$, $143.1,140.7,137.7,134.7,134.3,128.5,127.1,126.6,124.0,123.0,113.9,102.6,59.1,56.0,44.9,37.6$, 19.6; IR (thin film): 3430 (br s), 1717 (s), 1450 (s) cm ${ }^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{BrNO}_{2}[\mathrm{M}+\mathrm{H}]$: 386.0756. Found: 386.0748 .

Preparation of Aldehyde 142

(\pm)-141

To a solution of DMSO (17.9 mL, 344.8 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added oxalyl chloride ($19.9 \mathrm{~mL}, 172.4 \mathrm{mmol}$) dropwise. Over the course of one hour, a solution of the alcohol (141) (33.3 g, 86.2 mmol$)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(400 \mathrm{~mL})$ was added plus 100 mL of rinse. Then, $\mathrm{NEt}_{3}(60$ $\mathrm{mL}, 431 \mathrm{mmol}$) was added. This stirred for an additional 30 minutes at $-78^{\circ} \mathrm{C}$, then at room temperature for another 2 h . The reaction was quenched with saturated NaHCO_{3} solution and the aqueous was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organics were washed with water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to give the crude aldehyde as a light yellow oil (33.1 g). The aldehyde was used in the next step without further purification. For characterization purposes, purification by flash chromatography $(10 \rightarrow 30 \%$ EtOAc/hexanes) provided pure $\mathbf{1 4 2}$ as a colorless oil.
$\mathrm{R}_{f}=0.24$ (20% EtOAc/hexane; stains blue-green w/ anisaldehyde); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.59$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CHO}$), 7.39 (dd, $\left.J=1.1 \mathrm{~Hz}, 8.2 \mathrm{~Hz}, 1 \mathrm{H} \mathrm{Ar}\right), 7.34-7.23$ (m, $5 \mathrm{H}, \mathrm{CH}_{2} \mathbf{P h}$), 7.06 (dd, J $=0.8 \mathrm{~Hz}, 7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 9.92(\mathrm{dd}, J=7.8 \mathrm{~Hz}, 7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 5.44\left(\mathrm{AB} \mathrm{q}, J_{A B}=16.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right)$, $5.08\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right), 4.96\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right), 3.31\left(\mathrm{dd}, J=0.7 \mathrm{~Hz}, 17.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHO}\right), 3.13(\mathrm{dd}, J=1.9$ $\mathrm{Hz}, 17.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHO}$), $1.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}=\mathrm{CCH}_{3}\right.$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 198.3, 178.0, 142.3, $141.0,137.7,134.7,133.9,128.6,127.2,126.7,124.1,122.8,114.5,102.8,53.9,48.1,45.1,19.4$; IR (thin film): 1727 (s), 1424 (s), 1345 (s), 1163 (s), cm^{-1}; HRMS (ESI) Calcd. for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{BrNO}_{2}[\mathrm{M}+\mathrm{H}+2]$: 386.0599. Found: 386.0578 .

Preparation of Alkynes 143a and 143b

$(\pm)-142$

$(\pm)-143 \mathrm{a}$

(\pm)-143b

A reaction flask was charged with ethynylmagnesium bromide (0.5 M in THF, 375 mL , $187.5 \mathrm{mmol})$ and cooled to $0^{\circ} \mathrm{C}$. A solution of crude $142(36.2 \mathrm{~g}, 94 \mathrm{mmol}$, azeotropically dried with toluene) dissolved in THF (550 mL), was added to the flask using an addition funnel over the course of 2 h . Following the addition, the reaction was stirred for an additional 2 h at room temperature. This was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and the aqueous portion extracted with EtOAc. The combined organic extracts were washed with water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was purified by flash chromatography ($5 \% \rightarrow 15 \% \rightarrow 40 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes $)$ to provide the $\beta-\mathrm{OH}$ diastereomer (143a) $(24.5 \mathrm{~g}, 63 \%$ yield), as a colorless solid (which could be triterated in 20% EtOAc/hexanes to provide a free-flowing solid) and the α-OH diastereomer $(\mathbf{1 4 3 b})$ ($13.6 \mathrm{~g}, 35 \%$ yield), as a colorless foam.
$\boldsymbol{\beta}-\mathbf{O H}$ diastereomer 143a: $\mathrm{R}_{f}=0.27$ (10\% EtOAc/toluene; stains purple w/ anisaldehyde); m.p.; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37$ (dd, $\left.J=1.2 \mathrm{~Hz}, 8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}\right), 7.28-7.17$ (m, $\left.5 \mathrm{H}, \mathrm{CH}_{2} \mathbf{P h}\right), 7.03(\mathrm{dd}, J=1.2 \mathrm{~Hz}, 7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 6.91(\mathrm{dd}, J=7.4 \mathrm{~Hz}, 8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 5.32\left(\mathrm{AB} \mathrm{q}, J_{A B}\right.$ $\left.=16.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.99\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right), 4.92\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right), 3.97$ (dddd, $J=2.2 \mathrm{~Hz}, 3.5 \mathrm{~Hz}, 8.3 \mathrm{~Hz}$,
$10.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOH}), 2.80\left(\mathrm{dd}, J=10.7 \mathrm{~Hz}, 14.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHOH}\right), 2.38(\mathrm{dd}, J=3.5 \mathrm{~Hz}, 14.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CHOH}\right), 2.33(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \equiv \mathrm{CH}), 2.08(\mathrm{~d}, J=8.3,1 \mathrm{H}, \mathrm{OH}), 1.63\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}=\mathrm{CCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 179.2,143.5,141.5,138.0,134.5,133.4,128.4,127.0,126.7,123.7,123.4,113.8$, $102.8,84.3,73.2,59.5,55.6,45.1,42.6,19.5$; IR (thin film): 3435 (br m), 3296 (m), 1708 (s), 1452 (s), 1347 (s) cm^{-1}; HRMS (ESI) Calcd. for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{BrNNaO}_{2}[\mathrm{M}+\mathrm{Na}+2]$: 434.0575. Found: 434.0549.
$\boldsymbol{\alpha}$-OH diastereomer 143b: $\mathrm{R}_{f}=0.2(10 \% \mathrm{EtOAc} /$ toluene $) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38$ (dd, $J=1.0 \mathrm{~Hz}, 8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 7.33-7.23\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{2} \mathbf{P h}\right), 7.12(\mathrm{dd}, J=1.0 \mathrm{~Hz}, 7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 6.94$ $(\mathrm{dd}, J=7.5 \mathrm{~Hz}, 8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 5.42\left(\mathrm{AB} \mathrm{q}, J_{A B}=16.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 5.12\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right), 5.06(\mathrm{~s}, 1 \mathrm{H}$, $\left.\mathrm{C}=\mathrm{CH}_{2}\right), 4.56(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOH}), 3.02(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 2.70\left(\mathrm{dd}, J=3.9 \mathrm{~Hz}, 14.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COH}\right)$ $2.41(\mathrm{~d}, J=2.1,1 \mathrm{H}, \mathrm{C} \equiv \mathrm{CH}), 2.29\left(\mathrm{dd}, J=8.1 \mathrm{~Hz}, 14.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COH}\right), 1.67\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}=\mathrm{CCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 179.4,142.2,140.2,137.3,134.8,134.5,128.6,127.2,126.6,124.2,123.1$, 114.7, 102.7, 84.2, 73.4, 59.6, 56.1, 44.9, 42.7, 19.8; IR (thin film): 3423 (br m), 3295 (m), 1712 (s), 1451 (s), 1355 (s) cm^{-1}; HRMS (ESI) Calcd. for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{BrNNaO}_{2}[\mathrm{M}+\mathrm{Na}]$: 432.0575. Found: 432.0566.

Preparation of Enyne 144a

(\pm)-143a

TBSCI, Im $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to RT 95\% Yield

(\pm)-144a

To a solution of $\mathbf{1 4 3 a}(24.5 \mathrm{~g}, 60 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{~mL})$ was added imidazole $(6.1 \mathrm{~g}$, $89.6 \mathrm{mmol})$. The solution was cooled to $0^{\circ} \mathrm{C}$ in an ice bath before adding $\mathrm{TBSCl}(9.9 \mathrm{~g}, 65.7 \mathrm{mmol})$. The reaction was allowed to warm to room temperature overnight (12 h) and a white precipitate emerged. The reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic layers were washed with saturated NaHCO_{3} solution, water, and brine; dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$; and concentrated. The residue was purified by flash chromatography $(2 \% \rightarrow 10 \% \rightarrow 25 \% \rightarrow 50 \% \mathrm{EtOAc} /$ hexanes $)$ to provide the pure silyl alcohol (144a) as a colorless oil which solidified upon standing ($29.7 \mathrm{~g}, 95 \%$).
$\mathrm{R}_{f}=0.52$ ($5 \% \mathrm{EtOAc} /$ toluene) $;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38(\mathrm{dd}, J=1.1 \mathrm{~Hz}, 8.1$ $\mathrm{Hz}, 1 \mathrm{H}, \mathbf{A r}), 7.21-7.31\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{2} \mathbf{P h}\right), 7.10(\mathrm{dd}, J=1.1 \mathrm{~Hz}, 7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 6.92(\mathrm{dd}, J=7.7 \mathrm{~Hz}, 7.7$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{Ar}), 5.41\left(\mathrm{AB} \mathrm{q}, J_{A B}=16.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 5.98\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right), 4.87\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right), 4.17$ (ddd, $J=2.1 \mathrm{~Hz}, 6.0 \mathrm{~Hz}, 7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOTBS}), 2.84\left(\mathrm{dd}, J=7.9 \mathrm{~Hz}, 13.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COTBS}\right), 2.40$ (dd, $\left.J=6.0 \mathrm{~Hz}, 13.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COTBS}\right), 2.22(\mathrm{~d}, J=2.1,1 \mathrm{H}, \mathrm{C} \equiv \mathrm{CH}), 1.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}=\mathrm{CCH}_{3}\right), 0.85(\mathrm{~s}, 9 \mathrm{H}$, $\left.\operatorname{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right),-0.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.7,144.3$, $141.2,138.0,134.2,133.7,128.5,127.1,126.7,124.1,123.4,113.6,102.7,84.6,73.6,60.1,55.5,44.5$, 43.0, 25.9, 19.3, 18.2, -4.4, -4.8; IR (thin film): 1725 (s), 1453 (s), 1119 (s) cm^{-1}; HRMS (ESI) Calcd. for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{BrNO}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}+2]: 526.1620$. Found: 526.1598.

Preparation of Enyne 144b

(\pm)-143b

TBSCI, Im

86\% Yield

(\pm)-144b

To a solution of $\mathbf{1 4 3 b}(13.6 \mathrm{~g}, 33 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(165 \mathrm{~mL})$ was added imidazole ($3.4 \mathrm{~g}, 49.7$ mmol). The solution was cooled to $0^{\circ} \mathrm{C}$ in an ice bath before adding $\mathrm{TBSCl}(5.5 \mathrm{~g}, 36.5 \mathrm{mmol})$. The reaction was allowed to warm to room temperature overnight (12 h) and a white precipitate emerged. The reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic layers were washed with saturated NaHCO_{3} solution, water, and brine; dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$; and concentrated. The residue was purified by flash chromatography $(2 \% \rightarrow 10 \% \rightarrow 25 \% \rightarrow 50 \% \mathrm{EtOAc} /$ hexanes $)$ to provide the pure silyl alcohol (144b) as a colorless oil which solidified upon standing (14.8 g, 86\%).
$\mathrm{R}_{f}=0.45$ ($5 \% \mathrm{EtOAc} /$ toluene) $;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35(\mathrm{dd}, J=1.1 \mathrm{~Hz}, 8.1 \mathrm{~Hz}, 1 \mathrm{H}$, Ar), $7.30-7.19\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{2} \mathbf{P h}\right), 7.08(\mathrm{dd}, J=1.1 \mathrm{~Hz}, 7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 6.90(\mathrm{dd}, J=7.5 \mathrm{~Hz}, 8.1 \mathrm{~Hz}, 1 \mathrm{H}$, Ar), $5.35\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.97\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right), 4.90\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right), 4.13(\mathrm{ddd}, J=2.1 \mathrm{~Hz}, 6.1 \mathrm{~Hz}, 7.1$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CHOTBS}$), 2.71 (dd, $J=7.1 \mathrm{~Hz}, 13.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COTBS}$), $2.44(\mathrm{dd}, J=6.1 \mathrm{~Hz}, 13.7 \mathrm{~Hz}, 1 \mathrm{H}$,
$\mathrm{CH}_{2} \mathrm{COTBS}$), $2.28(\mathrm{~d}, J=2.1,1 \mathrm{H}, \mathrm{C} \equiv \mathrm{CH}), 1.6\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}=\mathrm{CCH}_{3}\right), 0.80\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.00(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right),-0.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.8,144.0,140.9,137.9,134.3,134.2$, $128.5,127.1,126.9,123.7,113.7,102.6,84.6,73.8,60.2,55.6,44.7,43.1,25.9,19.6,18.2,-4.4,-4.9$; IR (thin film): 1720 (s), 1451 (s), 1161 (s) cm^{-1}; HRMS (ESI) Calcd. for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{BrNO}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}+2]: 526.1620$. Found: 526.1593.

Preparation of Spiro-oxindole 146a

(\pm)-144a

$(\pm)-145 \mathrm{a}$

(\pm)-146a

Enyne Cyclization:
To a solution of the β - O-TBS enyne diastereomer $144 \mathbf{a}(22.1 \mathrm{~g}, 42.1 \mathrm{mmol})$ dissolved in toluene (2.1 L) was added $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(1.65 \mathrm{~g}, 1.6 \mathrm{mmol})$ and acetic acid $(4.8 \mathrm{~mL}, 84.2 \mathrm{mmol})$ to produce a deep purple colored solution. Next was added $\mathrm{Et}_{3} \mathrm{SiH}(6.7 \mathrm{~mL}, 42.1 \mathrm{mmol})$, dropwise over the course of 15 h , using a syringe pump. The color of the solution gradually changed from purple to red and then back to purple. At this time the solution was filtered through a silica plug which was subsequently rinsed with 1% $\mathrm{EtOAc} / \mathrm{hexanes}$. The filtrate was concentrated to provide the crude β-silyl alcohol (16.5 g) as a colorless oil, used in the next step without further purification.

TBS-Removal:

To a solution of the β-silyl alcohol ($16.5 \mathrm{~g}, 31.3 \mathrm{mmol}$) in THF $(150 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added TBAF (1 M in THF, $37.6 \mathrm{~mL}, 37.6 \mathrm{mmol}$). The reaction was allowed to stir at room temperature for 5 hours. The solution was diluted with $\mathrm{EtOAc}(100 \mathrm{~mL})$ and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The aqueous layer was extracted with EtOAc, and the combined organic extracts were washed with water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was purified by flash chromatography
$(1 \% \rightarrow 5 \% \rightarrow 8 \%$ EtOAc/toluene) to provide the pure β-alcohol 146a as a colorless solid ($8 \mathrm{~g}, 46 \%$ yield over 2 steps).
$\mathrm{R}_{f}=0.22$ ($20 \% \mathrm{EtOAc} /$ hexane, stains pink with anisaldehyde) $;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 7.29-7.17\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{2} \mathbf{P h}\right), 7.14(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 6.91(\mathrm{dd}, J=7.7 \mathrm{~Hz}, 7.7$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{Ar}), 5.46\left(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right), 5.36\left(\mathrm{AB} \mathrm{q}, J_{A B}=16.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 5.07(\mathrm{~d}, J=1.9$, $\left.1 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right), 4.77(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOH}), 4.22(\mathrm{~d}, J=11.9,1 \mathrm{H}, \mathrm{OH}), 2.61(\mathrm{dd}, J=8.0 \mathrm{~Hz}, 14.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{\mathbf{2}} \mathrm{COH}\right), 2.04\left(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathbf{2}} \mathbf{C O H}\right), 1.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right), 0.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right),{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 182.7,162.6,141.1,137.3,134.4,132.2,128.6,127.2,126.6,124.4,123.4,110.2,102.6$, $72.3,60.1,50.8,44.7,41.7,27.8,21.9$; IR (thin film): 3454 (br s), 1695 (s), 1452 (s) 1123 (s) cm^{-1}; HRMS (ESI) Calcd. for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{BrNO}_{2}[\mathrm{M}+\mathrm{H}]: 412.0912$. Found: 412.0903 .

Preparation of Spiro-oxindole 146b

(\pm - $\mathbf{1 4 4 b}$

$(\pm)-145 \mathrm{~b}$

$(\pm)-146 \mathrm{~b}$

Enyne Cyclization:
To a solution of the $\alpha-O$-TBS enyne diastereomer $144 \mathrm{~b}(14.8 \mathrm{~g}, 28 \mathrm{mmol})$ dissolved in toluene (2.8 L) was added $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(725 \mathrm{mg}, 0.7 \mathrm{mmol})$ and acetic acid $(3.2 \mathrm{~mL}, 56 \mathrm{mmol})$ to produce a deep purple colored solution. Next was added $\mathrm{Et}_{3} \mathrm{SiH}(4.5 \mathrm{~mL}, 28 \mathrm{mmol})$, dropwise over the course of 4 h , using a syringe pump. The color of the solution gradually changed from purple to red to orange. At this time the toluene was removed in vacuo, and the crude residue was filtered through a silica plug ($1 \% \rightarrow 2 \%$ EtOAc/hexanes) to provide the α-silyl alcohol (10.7 g) as a colorless oil, used in the next step without further purification.

TBS-Removal:

To a solution of the α-silyl alcohol ($10.7 \mathrm{~g}, 20.3 \mathrm{mmol}$) in THF (100 mL) at $0{ }^{\circ} \mathrm{C}$ was added TBAF (1 M in THF, $24.4 \mathrm{~mL}, 24.4 \mathrm{mmol}$). The reaction was allowed to stir at room temperature over night (12 h). The red solution was diluted with EtOAc (100 mL) and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The aqueous layer was extracted with EtOAc, and the combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by flash chromatography $(5 \% \rightarrow 10 \% \rightarrow 20 \% \rightarrow 25 \%$ $\mathrm{EtOAc} /$ hexanes $)$ to provide the pure α-alcohol $\mathbf{1 4 6 b}$ as a colorless foam $(6.6 \mathrm{~g}, 57 \%$ yield over 2 steps $)$.
$\mathrm{R}_{f}=0.13\left(20 \% \mathrm{EtOAc} /\right.$ hexane, stains pink with anisaldehyde); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36$ (dd, $J=0.9 \mathrm{~Hz}, 8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 7.30-7.2\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathbf{P h}\right.$ and $\left.\mathbf{A r}\right), 6.90(\mathrm{dd}, J=7.9 \mathrm{~Hz}, 7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r})$, $5.39\left(\mathrm{AB} \mathrm{q}, J_{A B}=16.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 5.33\left(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right), 5.22(\mathrm{ddd}, J=1.7 \mathrm{~Hz}, 6.5 \mathrm{~Hz}$, $8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOH}), 5.06\left(\mathrm{~d}, J=2.0,1 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right), 2.59\left(\mathrm{dd}, J=8.4 \mathrm{~Hz}, 13.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COH}\right), 2.48$ (br $\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 2.13\left(\mathrm{dd}, J=6.5 \mathrm{~Hz}, 13.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COH}\right), 1.14\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right), 0.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 180.3,161.8,140.8,137.8,134.1,133.3,128.5,127.1,126.7,124.6,123.2$, $108.4,102.2,72.2,59.0,49.0,44.5,41.6,27.2,23.7$; IR (thin film): 3439 (br s), 1712 (s), 1450 (s), 1121 (s) cm^{-1}; HRMS (ESI) Calcd. for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{BrNO}_{2}[\mathrm{M}+\mathrm{H}]: 412.0912$. Found: 412.0906.

Preparation of Bromoenone 37

(\pm)-146a/b

Swern oxidation
$\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$ 68% Yield

$(\pm)-37$

To a solution of DMSO $(16.8 \mathrm{~mL}, 236 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added oxalyl chloride ($10 \mathrm{~mL}, 118 \mathrm{mmol}$) dropwise. To this was added a solution containing the β - OH diastereomer $\mathbf{1 4 6}(17.7 \mathrm{~g}, 43 \mathrm{mmol})$ and the $\alpha-\mathrm{OH}$ diastereomer $\mathbf{1 4 6 b}(6.6 \mathrm{~g}, 16 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(500$ $\mathrm{mL})$ over the course of one hour. Then, $\mathrm{NEt}_{3}(41 \mathrm{~mL}, 295 \mathrm{mmol})$ was added. This stirred for an additional 30 minutes at $-78^{\circ} \mathrm{C}$, then at room temperature for another 2 h . The reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organics were washed
with water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was purified by recrystallization from EtOAc to provide the pure ketone as a light yellow solid ($16.4 \mathrm{~g}, 68 \%$ yield).

$$
\mathrm{R}_{f}=0.34(20 \% \mathrm{EtOAc} / \text { hexane, does not stain with anisaldehyde }) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta
$$

$7.41(\mathrm{dd}, J=1.1 \mathrm{~Hz}, 8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 7.32-7.22\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{2} \mathbf{P h}\right), 7.11(\mathrm{dd}, J=1.1 \mathrm{~Hz}, 7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r})$, $6.91(\mathrm{dd}, J=7.8 \mathrm{~Hz}, 7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 6.18\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}=\mathbf{C H}_{2}\right), 5.39\left(\mathrm{AB} \mathrm{q}, J_{A B}=16.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{C H}_{2} \mathrm{Ph}\right), 5.27$ $\left(\mathrm{s}, 1 \mathrm{H}, \mathrm{C}=\mathbf{C H}_{2}\right), 2.81\left(\mathrm{AB} \mathrm{q}, J_{A B}=18.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{C H}_{2} \mathrm{CO}\right), 1.15\left(\mathrm{~s}, 6 \mathrm{H}, \mathbf{C C H}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 202.5,179.2,152.6,141.0,137.4,134.7,132.2,128.6,127.2,126.7,123.8,123.6,116.7,102.7$, 54.7, 47.9, 44.8, 44.7, 26.4, 23.8; IR (thin film): 1729 (s), 1451 (s), $1122(\mathrm{~s}) \mathrm{cm}^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{BrNO}_{2}[\mathrm{M}+\mathrm{H}+2]: 412.0756$. Found: 412.0729.

Preparation of Bromo-Isoxazolidines (+)-147 and 148

To a flask containing non-racemic nitrone hydroxylamine precursor $(1.2 \mathrm{~g}, 6.34 \mathrm{mmol})$ was added 2 M HCl solution (12 ml). The mixture was vigorously stirred at room temperature for 25 min , diluted with 12 ml of $\mathrm{H}_{2} \mathrm{O}$ and slowly quenched with solid $\mathrm{Na}_{2} \mathrm{CO}_{3}(1.3 \mathrm{~g})$. The solution was extracted with $\mathrm{CHCl}_{3}(25$ ml , five times) and the combined organic layers were dried (Na 2 SO 4) and concentrated to yield the nitrone $(S)-(-)-57$, which was immediately used in the cycloaddition reaction.

To a solution of racemic enone ($2.6 \mathrm{~g}, 6.34 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(18 \mathrm{ml})$ was added L-proline (730 $\mathrm{mg}, 6.34 \mathrm{mmol})$ and a solution of freshly prepared nitrone in $\mathrm{CH}_{3} \mathrm{CN}(18 \mathrm{ml})$. After stirring for 3.5 d , another portion of nitrone (prepared in the same manner) in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{ml})$ was added. After stirring for 3.5 d , another portion of nitrone (freshly prepared form 600 mg of the hydroxylamine precursor) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 $\mathrm{ml})$ was added. After stirring for 2 d , the reaction was quenched with saturated NaHCO 3 solution, extracted with EtOAc, concentrated and purified by flash chromatography $(10 \% \rightarrow 20 \% \rightarrow 30 \% \rightarrow 40 \%$

EtOAc/hexanes) to provide 1.7 g of the undesired diastereomer (51% yield) and the more polar diastereomer, which was purified by a second flash chromatography ($5 \% \rightarrow 10 \% \rightarrow 15 \% \rightarrow 20 \% \mathrm{EtOAc} /$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to provide 1.2 g (36% yield) of the desired diastereomer.

Isoxazolidine (+)-147: $\mathrm{R}_{f}=0.27(40 \%$ EtOAc/hexanes $) ;[\alpha]_{\mathrm{D}}{ }^{22}+160.4\left(c \quad 1.8, \mathrm{CHCl}_{3}\right) ; 1 \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 7.27 \sim 7.17\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{2} \mathbf{P h}\right), 6.92(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r})$, $6.81(\mathrm{dd}, J=7.2 \mathrm{~Hz}, 8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 5.34\left(\mathrm{AB}\right.$ system, $\left.J=16.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{C H}_{2} \mathrm{Ph}\right), 3.44(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH})$, $3.22\left(\mathrm{~d}, J=18.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{C H}_{2} \mathrm{C}=\mathrm{O}\right), 3.18(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}), 2.52(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH} 2), 2.50(\mathrm{~d}, J=$ $\left.18.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCH}_{2} \mathrm{C}=\mathrm{O}\right), 2.12\left(\mathrm{dd}, J=6.0 \mathrm{~Hz}, 12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 1.94(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHCH}), 1.85(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{NCHCH} 2), 1.63\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHCH}_{2} \mathbf{C H}_{3}\right), 1.44(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCHCH} 2), 1.18\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHCH}_{2} \mathbf{C H}_{3}\right), 1.15$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right), 1.12\left(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 0.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $216.1,178,6,140.9,137.4,134.7,134.4,128.4,127.0,126.6,123.2,122.5,102.3,92.5,61.7,55.6,54.2$, $49.3,44.9,43.1,39.0,32.7,25.2,20.7$ (two carbons), 20.1, 18.8; IR (thin film): 1724 (s), $1450(\mathrm{~s}) \mathrm{cm}^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{BrN}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]$: 525.1576. Found: 525.1563.

The ee of the product was analyzed by chiral HPLC. Analytic chiral HPLC was performed on a Chiralpak AD-H column $(250 \times 4.6 \mathrm{~mm}), \lambda=220 \mathrm{~nm}$, hexane $/ 2-$ propanol $=95 / 5$, flow rate $=1.0 \mathrm{ml} / \mathrm{min}$. Under these conditions, the racemic mixture gave the following peaks: $\mathrm{R}_{\mathrm{t}}=12.44 \mathrm{~min}$ and $\mathrm{R}_{\mathrm{t}}=19.02 \mathrm{~min}$. Racemic sample was prepared by reacting (\pm)-enone with (\pm)-nitrone (prepared according to the literature procedure).

Isoxazolidine 148: $\mathrm{R}_{f}=0.55(50 \%$ EtOAc/hexanes $) ;[\alpha]_{\mathrm{D}}{ }^{22}=$ not obtained; ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$; CDCl3) $\delta 7.48(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 7.38(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 7.33 \sim 7.21\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{2} \mathbf{P h}\right), 6.93(\mathrm{t}, J$ $=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 5.41\left(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 5.37\left(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.51(\mathrm{~m}, 1 \mathrm{H}$, NCH), $3.22(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}), 2.89\left(\mathrm{~d}, J=19.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{O}=\mathrm{CCH}_{2}\right), 2.80\left(\mathrm{~d}, J=19.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{O}=\mathrm{CCH}_{2}\right), 2.65$ $\left(\mathrm{t}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 2.36\left(\mathrm{dd}, J=13.4,5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 2.03-1.89\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCHCH}_{2}\right)$, $1.67\left(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 1.49\left(\mathrm{~m}, J=7.2,3.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCHCH}_{2} \mathbf{C H}_{3}\right), 1.24(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHCH}-$ $\left.{ }_{2} \mathbf{C H}_{3}\right), 1.17\left(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 1.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathbf{C C H}_{3}\right), 0.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 214.52,180.85,141.08,137.53,134.58,133.34,128.66,127.27,126.58,125.85,123.52,102.27$, $93.39,62.11,55.28,54.93,48.61,44.96,43.65,37.29,33.04,25.58,21.55,20.81,20.52,18.92$; IR (thin
film): 2934 (s), 1716 (s), 1601 (m), 1450 (s), 1348 (m), 1120 (m), 754 (s) cm^{-1}; HRMS (ESI) Calcd. for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{BrN}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]:$: 525.1576. Found: 525.1575.

Preparation of Spiro-epoxide (+)-149

(+)-147

(+)-149

To a mixture of trimethylsulfoxonium iodide $(1.46 \mathrm{~g}, 6.65 \mathrm{mmol})$ and $\mathrm{NaH}(60 \%$ in mineral oil, $266 \mathrm{mg}, 6.65 \mathrm{mmol}$) was added DMSO (15 ml). After stirring for 45 min , to the resulting homogenous solution was added a solution of the ketone ($1.16 \mathrm{~g}, 2.22 \mathrm{mmol}$, azeotropically dried with toluene) in THF $(10 \mathrm{ml})$ followed by 8 ml of rinse. The reaction mixture was stirred at ambient temperature for 30 h , cooled to $0{ }^{\circ} \mathrm{C}$, and quenched with saturated NaHCO_{3} solution $(30 \mathrm{ml})$. The mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{ml})$ and the aqueous layer was extracted with EtOAc ($30 \mathrm{ml} \times 3$). The combined organic layers were concentrated in vacuo and purified by flash chromatography $(10 \% \rightarrow 20 \% \rightarrow 30 \% \rightarrow 40 \% \mathrm{EtOAc} / \mathrm{hexanes})$ to provide 880 mg (75% yield) of the desired product as a white foam.

$$
\mathrm{R}_{f}=0.29(40 \% \text { EtOAc/hexanes }) ;[\alpha]_{\mathrm{D}}^{22}+165.4\left(c \quad 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta
$$ $7.35 \sim 7.20(\mathrm{~m}, 7 \mathrm{H}), 6.90(\mathrm{dd}, J=8.0 \mathrm{~Hz}, 8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{~s}, 2 \mathrm{H}), 3.51(\mathrm{~m}, 1 \mathrm{H}), 3.25(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.03(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{~m}, 1 \mathrm{H}), 2.55(\mathrm{dd}, J=12.4 \mathrm{~Hz}, 12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.35$ $(\mathrm{dd}, J=6.0 \mathrm{~Hz}, 12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.91(\mathrm{~m}, 2 \mathrm{H}), 1.62(\mathrm{~m}, 1 \mathrm{H}), 1.47(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{~m}$, $1 \mathrm{H}), 1.20(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.12(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.73(\mathrm{br} \mathrm{s}, 3 \mathrm{H}),{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 180.6,140.9$, $137.5,136.3,133.9,128.4,126.9,126.4,123.6,122.5,102.1,91.3,65.3,60.0,55.57,55.45,55.38,49.7$, $44.6,36.4,35.6,32.8,25.6,23.7,21.3,20.9,18.5$; IR (thin film): $1722(\mathrm{~s}), 1601(\mathrm{~m}), 1451(\mathrm{~s}) \mathrm{cm}^{-1} ;$ HRMS (ESI) Calcd. for $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{BrN}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]$: 537.1753. Found: 537.1747.

Preparation of Ammonium Salt (+)-150

(+)-149

TMSCI, NaI $\mathrm{THF} / \mathrm{CH}_{3} \mathrm{CN}$
~100\% yield

(+)-150

To a solution of the epoxide ($880 \mathrm{mg}, 1.64 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{THF}(4: 1,20 \mathrm{ml})$ at ambient temperature was added $\mathrm{NaI}(1.2 \mathrm{~g}, 8.00 \mathrm{mmol})$ and $\mathrm{TMSCl}(0.50 \mathrm{ml}, 3.94 \mathrm{mmol})$. After stirring for 1 h , to the yellowish mixture was added another 1.2 g of NaI and 0.50 ml of TMSCl . After stirring for 1 h , the reaction was quenched with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution (10 ml). and saturated NaHCO_{3} solution (10 ml). The aqueous layer was extracted with $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(9: 1,20 \mathrm{ml}, 4$ times). The combined organic layers were concentrated in vacuo and purified by flash chromatography (50\% EtOAc/hexanes $\rightarrow 5 \%$ $\rightarrow 7.5 \% \rightarrow 10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to provide 800 mg of the desired product as a pale yellow solid. The recovered starting material (contaminated with an unidentified product) was placed under high vacuum overnight, dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{ml})$, and washed with NaHCO_{3} solution (10 ml) and saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution (10 ml). The aqueous layer was extracted with $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(9: 1,20 \mathrm{ml}, 3$ times) and the combined organic layers were concentrated in vacuo and purified by flash chromatography (50% EtOAc/hexanes $\rightarrow 5 \% \rightarrow 7.5 \% \rightarrow 10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to provide another crop of 200 mg of the desired product (1 g combined, $\sim 100 \%$ yield).
$\mathrm{R}_{f}=0.15\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;[\alpha]_{\mathrm{D}}{ }^{22}+57.4\left(c 1.1,5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.56(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34 \sim 7.21(\mathrm{~m}, 5 \mathrm{H}), 7.17(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{ddd}, J=1.2 \mathrm{~Hz}, 7.6$ $\mathrm{Hz}, 8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{br} \mathrm{s}, 1 \mathrm{H},-\mathrm{OH}), 5.44(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{AB}$ system, $J=16.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.14$ $(\mathrm{m}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~m}, 1 \mathrm{H}), 2.98(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.87$ $(\mathrm{dd}, J=8.0 \mathrm{~Hz}, 12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{~m}, 1 \mathrm{H}), 2.31(\mathrm{~m}, 2 \mathrm{H}), 2.14(\mathrm{~m}, 1 \mathrm{H}), 1.95(\mathrm{~m}, 2 \mathrm{H}), 1.81(\mathrm{~m}, 1 \mathrm{H}), 1.60$ $(\mathrm{d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 180.1,139.9,137.2,134.5$, $134.1,128.4,127.03,126.99,126.3,123.5,107.4,101.8,86.1,73.4,69.5,66.4,61.4,50.9,46.2,44.8,27.3$, 26.4, 26.3, 26.1, 20.6, 17.4, 12.6; IR (thin film): 3248 (br, s), 1718 (s), 1601 (m), 1450 (s) cm^{-1}; HRMS (ESI) Calcd. for $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{BrN}_{2} \mathrm{O}_{3}\left[\mathrm{M}^{+}\right]$: 537.1747 . Found: 537.1750.

Preparation of Diol (+)-151

(+)-150

(+)-151

To a solution of the ammonia salt (1.0 g) in THF/AcOH ($2: 1,15 \mathrm{ml}$) was added activated zinc powder ($643 \mathrm{mg}, 5.47 \mathrm{mmol}$). The reaction mixture was vigorously stirred at ambient temperature for 25 h , filtered through a pad of Celite, rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and concentrated in vacuo. The resulting yellowish oil was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$, treated with saturated NaHCO_{3} solution and extracted with $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(9: 1,20 \mathrm{ml} \times 4)$. The combined organic layers were concentrated in vacuo and purified by flash chromatography (basic $\mathrm{Al}_{2} \mathrm{O}_{3}, 5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to provide 810 mg (92% yield, two steps) of the desired product as a pale yellow solid.
$\mathrm{R}_{f}=0.36\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, TLC plate pretreated with $\left.\mathrm{NH}_{3}\right)$; m.p. $=231 \sim 234 \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, decomp.); $[\alpha]_{\mathrm{D}}{ }^{22}+56.8\left(c \quad 1.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ (Note: ${ }^{1} \mathrm{H}$ NMR of this compound is highly dependent on the acidity of the purification media. To ensure reproducibility, it is recommended to pass through a pad of basic $\mathrm{Al}_{2} \mathrm{O}_{3}$ before taking ${ }^{1} \mathrm{H}$ NMR) $\delta 7.54(\mathrm{dd}, J=0.8 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37 \sim 7.23$ $(\mathrm{m}, 6 \mathrm{H}), 6.97(\mathrm{dd}, J=7.6 \mathrm{~Hz}, 8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{~s}, 2 \mathrm{H}), 4.95(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OH}), 4.51(\mathrm{br} \mathrm{s}, 1 \mathrm{H},-$ $\mathrm{OH}), 3.41(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{~m}, 1 \mathrm{H}), 2.89(\mathrm{~m}, 1 \mathrm{H}), 2.56(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~d}, J=10.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.09(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.82 \sim 1.50(\mathrm{~m}, 7 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~m}, 1 \mathrm{H}), 1.10(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$, $0.94(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 185.1,140.0,137.2,136.5,133.4,128.4,127.1,126.7,126.4$, $123.8,102.0,83.1,81.7,60.8,57.0,54.9,52.4,47.1,45.9,45.0,36.3,34.3,32.5,27.0,21.5,18.5,10.8$; IR (thin film): 3392 (br, s), 1688 (s), 1451 (s) cm ${ }^{-1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{BrN}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]: 539.1904$. Found: 539.1907.

Preparation of Ring-Fusion Epoxide (+)-152

A parallel of five reactions were set up side by side. To a solution of the diol $(60 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 $\mathrm{ml})$ was added $\mathrm{Et}_{3} \mathrm{~N}(150 \mu \mathrm{l})$ and $\mathrm{MsCl}(25 \mu \mathrm{l})$. After 40 min , another $150 \mu \mathrm{l}$ of $\mathrm{Et}_{3} \mathrm{~N}$ and $25 \mu \mathrm{l}$ of MsCl were added. After 40 min , solid $\mathrm{K}_{2} \mathrm{CO}_{3}(50 \mathrm{mg})$ was added followed by $\mathrm{MeOH}(2 \mathrm{ml})$. The yellowish reaction mixture was stirred at ambient temperature for 15 h . The five reactions were combined and quenched with saturated NaHCO_{3} solution. The aqueous layer was extracted with $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(5: 1,20$ $\mathrm{ml} \times 4$). The organic layers were combined, concentrated in vacuo and purified by flash chromatography $\left(5 \% \rightarrow 7.5 \% \rightarrow 10 \rightarrow 15 \% \rightarrow 20 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$) to provide 195 mg (63% yield) of the desired product as a white foam and 101 mg of recovered starting material (34\%).

$$
\mathrm{R}_{f}=0.57\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, \text { TLC plate pretreated with } \mathrm{NH}_{3}\right) ;[\alpha]_{\mathrm{D}}^{22}+94.0\left(c 1.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}
$$ NMR (400 MHz, CDCl_{3}) (Note: ${ }^{1} \mathrm{H}$ NMR of this compound is highly dependent on the acidity of the purification media. To ensure reproducibility, it is recommended to pass through a pad of basic $\mathrm{Al}_{2} \mathrm{O}_{3}$ before taking ${ }^{1} \mathrm{H}$ NMR) $\delta 7.26(\mathrm{dd}, J=0.8 \mathrm{~Hz}, 8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~m}, 5 \mathrm{H}), 7.01(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.79$ (dd, $J=7.6 \mathrm{~Hz}, 8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~s}, 2 \mathrm{H}), 3.19(\mathrm{AB}$ system, $J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.96(\mathrm{~m}, 1 \mathrm{H}), 2.68(\mathrm{~m}, 1 \mathrm{H})$, $2.59(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{~m}, 2 \mathrm{H}), 1.58 \sim 1.42(\mathrm{~m}, 3 \mathrm{H}), 1.19$ $(\mathrm{m}, 1 \mathrm{H}), 1.01(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~s}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 179.4,140.6$, $137.9,134.1,133.9,128.2,126.9,126.8,125.1,122.2,101.6,70.0,64.7,58.5,51.4,49.8,47.9,45.8,44.4$, $40.8,33.23,33.17,29.9,25.9,20.1,18.5,12.1$; IR (thin film): 2248 (w), 1725 (s), 1601 (m), 1453 (s) cm^{-1}; HRMS (ESI) Calcd. for $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{BrN}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]:$ 521.1798. Found: 521.1792.

Preparation of Alkyne (+)-160

(+)-152

To a solution of the aryl bromide ($196 \mathrm{mg}, 0.376 \mathrm{mmol}$) in DMF (4 ml) was added $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ $(26 \mathrm{mg}, 0.0376 \mathrm{mmol})$, $\mathrm{CuI}(11 \mathrm{mg}, 0.0564 \mathrm{mmol}),{ }^{\operatorname{Pr}} \mathrm{r}_{2} \mathrm{NH}(105 \mu 1,0.752 \mathrm{mmol})$ and 3-methyl-1-butyne ($200 \mu \mathrm{l}, 1.88 \mathrm{mmol}$). The reaction mixture was stirred in a sealed tube at $80^{\circ} \mathrm{C}$ for 7.5 d and quenched with saturated NaHCO_{3} solution. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$, brine and concentrated in vacuo. The residue was dried under high vacuum at 50 ${ }^{\circ} \mathrm{C}$ for 4 h , and purified by flash chromatography $(40 \% \rightarrow 100 \% \mathrm{EtOAc} /$ hexanes $\rightarrow 2.5 \% \rightarrow 5 \% \rightarrow 7.5 \% \rightarrow 10 \%$ $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to provide $160 \mathrm{mg}(84 \%$ yield $)$ of the desired product as a pale yellow foam.
$\mathrm{R}_{f}=0.57\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, TLC plate pretreated with $\left.\mathrm{NH}_{3}\right) ;[\alpha]_{\mathrm{D}}{ }^{22}+94.0\left(c\right.$ 1.1, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) (Note: ${ }^{1} \mathrm{H}$ NMR of this compound is highly dependent on the acidity of the purification media. To ensure reproducibility, it is recommended to pass through a pad of basic $\mathrm{Al}_{2} \mathrm{O}_{3}$ before taking ${ }^{1} \mathrm{H}$ NMR) $\delta 7.26(\mathrm{dd}, J=0.8 \mathrm{~Hz}, 8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~m}, 5 \mathrm{H}), 7.01(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.79$ (dd, $J=7.6 \mathrm{~Hz}, 8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~s}, 2 \mathrm{H}), 3.19(\mathrm{AB}$ system, $J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.96(\mathrm{~m}, 1 \mathrm{H}), 2.68(\mathrm{~m}, 1 \mathrm{H})$, $2.59(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{~m}, 2 \mathrm{H}), 1.58 \sim 1.42(\mathrm{~m}, 3 \mathrm{H}), 1.19$ $(\mathrm{m}, 1 \mathrm{H}), 1.01(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~s}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 179.4,140.6$, $137.9,134.1,133.9,128.2,126.9,126.8,125.1,122.2,101.6,70.0,64.7,58.5,51.4,49.8,47.9,45.8,44.4$, $40.8,33.23,33.17,29.9,25.9,20.1,18.5,12.1$; IR (thin film): 2248 (w), 1725 (s), 1601 (m), 1453 (s) cm^{-1}; HRMS (ESI) Calcd. for $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{BrN}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]: 521.1798$. Found: 521.1792.

Preparation of des-Benzyl Oxindole (+)-163

$(+)-160$

(+)-163

To a solution of the benzyl oxindole ($62 \mathrm{mg}, 0.122 \mathrm{mmol}$, azeotropically dried with toluene) in THF (3 ml) at $-78^{\circ} \mathrm{C}$ was added t - $\mathrm{BuLi}\left(1.2 \mathrm{M}\right.$ in pentane, $200 \mu \mathrm{l}$). After stirring at $-78{ }^{\circ} \mathrm{C}$ for $5 \mathrm{~min}, \mathrm{O}_{2}$ was bubbled through the dark reaction solution for 10 min . The resulting light yellow solution was then treated with $\mathrm{Me}_{2} \mathrm{~S}(100 \mu \mathrm{l})$ and solid $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{mg})$. The reaction mixture was warmed to room temperature, stirred for an additional 3 h , and quenched with saturated NaHCO_{3} solution. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic layers were concentrated in vacuo and purified by flash chromatography (40% EtOAc/hexanes $\rightarrow 2.5 \% \rightarrow 5 \% \rightarrow 7.5 \% \rightarrow 10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to provide 41 mg (80% yield) of the desired product as a pale yellow oil.
$\mathrm{R}_{f}=0.45\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, TLC plate pretreated with $\left.\mathrm{NH}_{3}\right) ;[\alpha]_{\mathrm{D}}{ }^{22}+57.6\left(c 0.9, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) (Note: ${ }^{1} \mathrm{H}$ NMR of this compound is highly dependent on the acidity of the purification media. To ensure reproducibility, it is recommended to pass through a pad of basic $\mathrm{Al}_{2} \mathrm{O}_{3}$ before taking ${ }^{1} \mathrm{H}$ NMR) $\delta 7.31(\mathrm{br} \mathrm{s}, 1 \mathrm{H},-\mathrm{NH}), 7.17(\mathrm{dd}, J=1.2 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.89(\mathrm{dd}, J=7.6 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{AB}$ system, $J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.00(\mathrm{~m}, 1 \mathrm{H}), 2.79($ septet, $J=6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.74(\mathrm{~m}, 1 \mathrm{H}), 2.60(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{~m}, 2 \mathrm{H}), 1.73(\mathrm{~m}, 2 \mathrm{H})$, $1.61 \sim 1.48(\mathrm{~m}, 3 \mathrm{H}), 1.26(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.21(\mathrm{~m}, 1 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 180.1,142.5,130.5,130.3,125.7,121.0,105.0,101.0,74.2,70.0$, $64.6,60.0,51.5,49.6,47.5,45.8,39.8,33.3,33.2,29.9,25.8,23.0$ (two carbons), 21.2, 19.8, 18.5, 12.1; IR (thin film): 3199 (br, m), 1718 (s), 1614 (m), 1593 (m), 1452 (s) cm^{-1}; HRMS (ESI) Calcd. for $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{H}]: 419.2699$. Found: 419.2697.

Preparation of Azide (+)-159

(+)-163

To a solution of the epoxide ($120 \mathrm{mg}, 0.287 \mathrm{mmol}$, azeotroped with PhMe) in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{ml})$ was added $\mathrm{MgCl}_{2}(136 \mathrm{mg}, 1.43 \mathrm{mmol})$ and $\mathrm{NaN}_{3}(93 \mathrm{mg}, 1.43 \mathrm{mmol})$. The reaction mixture was stirred at 63 ${ }^{\circ} \mathrm{C}$ for 2.5 days. Another aliquot of $\mathrm{MgCl}_{2}(136 \mathrm{mg}, 1.42 \mathrm{mmol})$ and $\mathrm{NaN}_{3}(93 \mathrm{mg}, 1.43 \mathrm{mmol})$ were added. The reaction was stirred for 3 more days, quenched with saturated NaHCO_{3} solution, extracted with $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, concentrated and purified by flash chromatography $(10 \% \rightarrow 30 \% \rightarrow 50 \% \mathrm{EtOAc} /$ hexanes \rightarrow $10 \% \rightarrow 15 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to provide the desired azide ($55 \mathrm{mg}, 42 \%$ yield) with some recovered starting material.
$\mathrm{R}_{f}=0.43\left(20 \% \mathrm{EtOAc} /\right.$ hexanes, TLC plate pretreated with $\left.\mathrm{NH}_{3}\right) ;[\alpha]_{\mathrm{D}}{ }^{22}+31.7\left(c 0.3, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (Note: ${ }^{1} \mathrm{H}$ NMR of this compound is highly dependent on the acidity of the purification media. To ensure reproducibility, it is recommended to pass through a pad of basic $\mathrm{Al}_{2} \mathrm{O}_{3}$ before taking ${ }^{1} \mathrm{H}$ NMR) $\delta 8.01(\mathrm{br} \mathrm{s}, 1 \mathrm{H},-\mathrm{NH}), 7.36(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{dd}$, $J=7.6 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OH}), 3.52(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{~m}, 1 \mathrm{H}), 2.97(\mathrm{~m}$, $1 \mathrm{H}), 2.84$ (septet, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{~d}, J=14.4$ $\mathrm{Hz}, 1 \mathrm{H}), 1.81(\mathrm{~m}, 1 \mathrm{H}), 1.64 \approx 1.46(\mathrm{~m}, 6 \mathrm{H}), 1.29(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.25(\mathrm{~m}, 1 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 184.8,142.0,132.2,130.3,126.7,122.6,106.0$, $101.2,83.2,74.1,73.8,62.3,54.6,54.4,52.0,46.8,45.3,36.1,33.9,32.3,26.5,23.0$ (two carbons), 21.5, 21.2, 18.9, 9.8; IR (thin film): 3366 (br m), 3209 (br, m), 2116 (s), 1686 (s), 1447 (s) cm^{-1}; HRMS (ESI) Calcd. for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{~N}_{5} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]$: 462.2869. Found: 462.2866.

Preparation of Enone (+)-158

$\left(\mathrm{PPh}_{3}\right) \mathrm{AuNTf}_{2}$ (1.1 equiv)
THF, RT, 12h
79% yield

(+)-158

(+)-159
To a solution of the aryl alkyne ($48 \mathrm{mg}, 0.104 \mathrm{mmol}$) in THF $(0.5 \mathrm{ml})$ was added a solution of $\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{AuNTf}_{2}(85 \mathrm{mg}, 0.114 \mathrm{mmol})$ and 2-bromopyridine N-oxide ($27 \mathrm{mg}, 0.156 \mathrm{mmol}$) in THF (1 ml) plus 1 ml of rinse with THF. After stirring at ambient temperature for 12 h , the reaction was quenched with saturated NaHCO_{3} solution. The aqueous layer was extracted with $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(5: 1)$ and the combined organic layers were concentrated in vacuo. The residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, passed through a pad of basic $\mathrm{Al}_{2} \mathrm{O}_{3}$, rinsed with $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, and concentrated in vacuo. The residue was purified by flash chromatography ($10 \% \rightarrow 30 \% \rightarrow 50 \% \rightarrow 70 \% \mathrm{EtOAc} /$ hexanes) to provide 35 mg (73% yield) of the desired product as a pale yellow oil.
$\mathrm{R}_{f}=0.33\left(20 \% \mathrm{EtOAc} /\right.$ hexanes, TLC plate pretreated with $\left.\mathrm{NH}_{3}\right) ;[\alpha]_{\mathrm{D}}{ }^{22}+35.3\left(c 0.45, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (Note: ${ }^{1} \mathrm{H}$ NMR of this compound is highly dependent on the acidity of the purification media. To ensure reproducibility, it is recommended to pass through a pad of basic $\mathrm{Al}_{2} \mathrm{O}_{3}$ before taking ${ }^{1} \mathrm{H}$ NMR) $\delta 9.84(\mathrm{br} \mathrm{s}, 1 \mathrm{H},-\mathrm{NH}), 7.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{dd}$, $J=7.6 \mathrm{~Hz}, 8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OH}), 3.53(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{~m}$, $1 \mathrm{H}), 2.99(\mathrm{~m}, 1 \mathrm{H}), 2.67(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~d}, J$ $=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{~m}, 1 \mathrm{H}), 1.64 \approx 1.45(\mathrm{~m}, 6 \mathrm{H}), 1.24(\mathrm{~m}, 1 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.01$ (s, 3H) ; ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 191.7,185.3,157.8,143.1,134.6,131.3,127.8,121.8,120.4$, $120.2,83.3,73.9,60.2,54.7,54.5,52.0,46.8,45.4,36.1,33.9,32.3,28.1,26.7,21.6,21.2,18.9,9.9$; IR (thin film): 3381 (br s), 2115 (s), 1702 (s), 1609 (s), 1450 (s) cm^{-1}; HRMS (ESI) Calcd. for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{~N}_{5} \mathrm{O}_{3}$ $[\mathrm{M}+\mathrm{H}]: 478.2818$. Found: 478.2811.

Preparation of Epoxyketone (+)-171

(+)-158

(+)-171

To a solution of (S, S) - N-methylpseudoephedrine (36 mg) in toluene (1 ml) at 0 C was added $\mathrm{Et}_{2} \mathrm{Zn}$ (1.0 M in heptanes, 80 ul). After 90 min , the reaction vial was attached to a balloon of oxygen and the reaction was stirred at 0 C under O_{2} atmosphere for 6 h , at which point a solution of the enone $(10 \mathrm{mg}$, azeotropically dried with toluene) in toluene (1 ml) plus 0.5 ml of rinse. The resulting brightly yellowish solution was stirred under O_{2} atmosphere for 3 h and room temperature for 9 h . The reaction was quenched by saturated NaHCO_{3} solution. The aqueous layer was extracted with $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5:1) and the combined organic layers were concentrated in vacuo. The residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, passed through a pad of basic $\mathrm{Al}_{2} \mathrm{O}_{3}$, rinsed with $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, and concentrated in vacuo. The residue was purified by flash chromatography $(10 \% \rightarrow 30 \% \rightarrow 50 \% \rightarrow 70 \%$ EtOAc/hexanes) to provide 5 mg (50% yield) of an inseparable mixture of two diastereomers $(\mathrm{dr}=4: 1)$ in favor of the desired product.
$\mathrm{R}_{f}=0.28\left(30 \% \mathrm{EtOAc} /\right.$ hexanes, TLC plate pretreated with $\left.\mathrm{NH}_{3}\right) ;[\alpha]_{\mathrm{D}}{ }^{22}+3.1\left(c 0.13, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) (Note: ${ }^{1} \mathrm{H}$ NMR of this compound is highly dependent on the acidity of the purification media. To ensure reproducibility, it is recommended to pass through a pad of basic $\mathrm{Al}_{2} \mathrm{O}_{3}$ before taking ${ }^{1} \mathrm{H}$ NMR) $\delta 9.55(\mathrm{br} \mathrm{s}, 1 \mathrm{H},-\mathrm{NH}), 7.80(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{dd}$, $J=7.6 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OH}), 4.05(\mathrm{~s}, 1 \mathrm{H}), 3.54(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{~m}$, 1H), $2.99(\mathrm{~m}, 1 \mathrm{H}), 2.68(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{~m}$, $1 \mathrm{H}), 1.65 \approx 1.48(\mathrm{~m}, 6 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~m}, 1 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$, $1.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 194.8,185.3,142.8,135.0,132.7,127.6,122.2,117.5,83.3$, $73.8,64.1,61.6,60.2,54.7,54.5,52.3,46.8,45.6,36.2,33.9,32.3,26.7,24.3,21.6,18.9,18.7,9.9$; IR (thin film): 3391 (br s), 2115 (s), 1707 (s), 1672 (s), 1604 (s), 1452 (s) cm^{-1}; HRMS (ESI) Calcd. for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{~N}_{5} \mathrm{O}_{4}$ $[\mathrm{M}+\mathrm{H}]:$ 494.2767. Found: 494.2765.

Preparation of Boc-Protected Epoxyketone (+)-173

(+)-171

To a solution of the oxindole (3 mg , a mixture of diastereomers in a ratio of $4: 1$) and (Boc$)_{2} \mathrm{O}(3$ $\mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{ml})$ was added DMAP (one crystal) and $\mathrm{Et} 3 \mathrm{~N}(10 \mathrm{ul})$. After 20 min , the reaction was quenched with saturated solution. The aqueous layer was extracted with $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5:1) and the combined organic layers were concentrated in vacuo. The residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, passed through a pad of basic $\mathrm{Al}_{2} \mathrm{O}_{3}$, rinsed with $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, and concentrated in vacuo. The residue was purified by flash chromatography ($10 \% \rightarrow 20 \% \rightarrow 30 \% \rightarrow 40 \% \rightarrow 50 \% \mathrm{EtOAc} /$ hexanes $)$ to provide 2.8 mg (78% yield) of the desired product as white solid.
$\mathrm{R}_{f}=0.43\left(20 \% \mathrm{EtOAc} /\right.$ hexanes, TLC plate pretreated with $\left.\mathrm{NH}_{3}\right) ;[\alpha]_{\mathrm{D}}{ }^{22}-21.9\left(c 0.16, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (Note: ${ }^{1} \mathrm{H}$ NMR of this compound is highly dependent on the acidity of the purification media. To ensure reproducibility, it is recommended to pass through a pad of basic $\mathrm{Al}_{2} \mathrm{O}_{3}$ before taking ${ }^{1} \mathrm{H}$ NMR) $\delta 7.70(\mathrm{dd}, J=1.2 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{dd}, J=1.2 \mathrm{~Hz}, 8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27$ (overlapped with $\left.\mathrm{CHCl}_{3}, 1 \mathrm{H}\right), 4.34(\mathrm{~s}, 1 \mathrm{H},-\mathrm{OH}), 3.70(\mathrm{~s}, 1 \mathrm{H}), 3.53(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{~m}, 1 \mathrm{H}), 2.98$ $(\mathrm{m}, 1 \mathrm{H}), 2.70(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{~m}, 1 \mathrm{H}), 1.60$ $(\mathrm{s}, 9 \mathrm{H}), 1.58 \approx 1.50(\mathrm{~m}, 6 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~m}, 1 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 196.2,183.0,149.5,137.5,133.2,130.2,127.9,124.04,124.01,85.7,83.7,73.6,66.1,62.2,61.4$, $54.7,54.5,53.7,46.7,46.0,36.1,33.9,32.3,27.8,26.2,24.9,21.5,18.9,18.6,9.8$; IR (thin film): 3427 (br s), 2117 (s), 1736 (s), 1687 (s), 1440 (s) cm^{-1}; HRMS (ESI) Calcd. for $\mathrm{C}_{32} \mathrm{H}_{44} \mathrm{~N}_{5} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]: 594.3292$. Found: 594.3286.

Preparation of Boc-Protected Epoxyketone (+)-174

(+)-158

(+)-174

Epoxidation:

To a solution of the enone (2.1 mg , azeotroped with PhMe) in toluene $(1.0 \mathrm{ml})$ at $-78{ }^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{2} \mathrm{Zn}(1.0 \mathrm{M}$ in hexanes, $40 \mu \mathrm{l})$. An O_{2} balloon was attached to the reaction vial and the light yellowish solution was stirred at $-78^{\circ} \mathrm{C}$ for 30 minutes, room temperature for 17 hours, then quenched with saturated NaHCO_{3} solution. The mixture was extracted with $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, concentrated, and purified by flash chromatography ($10 \% \rightarrow 30 \% \rightarrow 50 \% \rightarrow 70 \% \mathrm{EtOAc} / \mathrm{hexanes}$) to provide a mixture of the two epoxide diastereomers ($1 \mathrm{mg}, d r 1: 1$).

Boc-Protection:

To a solution of the oxindole $(6 \mathrm{mg}, 0.012 \mathrm{mmol})$ and $\mathrm{Boc}_{2} \mathrm{O}(6 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{ml})$ was added DMAP (one crystal) and $\mathrm{Et}_{3} \mathrm{~N}$ (two drops). After 20 minutes, the reaction was quenched with saturated NaHCO_{3} solution, extracted with $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, concentrated and purified by flash chromatography ($10 \% \rightarrow 20 \% \rightarrow 30 \% \rightarrow 40 \% \rightarrow 50 \% \mathrm{EtOAc} / \mathrm{hexanes}$) to provide the less polar diastereomer $(-)-\mathbf{1 7 3}(2 \mathrm{mg})$, the more polar diastereomer $(+)-\mathbf{1 7 4}(2 \mathrm{mg})$, and 1 mg of a mixture of both diastereomers.
$\mathrm{R}_{f}=0.35\left(20 \% \mathrm{EtOAc} /\right.$ hexanes, TLC plate pretreated with $\left.\mathrm{NH}_{3}\right) ;[\alpha]_{\mathrm{D}}{ }^{22}+117\left(c 0.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (Note: ${ }^{1} \mathrm{H}$ NMR of this compound is highly dependent on the acidity of the purification media. To ensure reproducibility, it is recommended to pass through a pad of basic $\mathrm{Al}_{2} \mathrm{O}_{3}$ before taking ${ }^{1} \mathrm{H}$ NMR) $\delta 7.74(\mathrm{dd}, J=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{dd}, J=7.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.31(\mathrm{~s}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 1 \mathrm{H}), 3.53(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{~m}, 1 \mathrm{H}), 2.97(\mathrm{~m}$, $1 \mathrm{H}), 2.68(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{~s}, 2 \mathrm{H}), 1.79(\mathrm{~m}, 2 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}$, $9 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 196.03, 182.27, $148.49,137.38,132.77,130.46,127.63,124.50,124.35,85.61,83.51,73.65,65.50,62.10,61.69,54.58$,

Preparation of Synthetic C21-epi-ent-Citrinadin B (+)-175

Azide Reduction:
To a solution of the azide $\left(1.3 \mathrm{mg}, \mathrm{R}_{f}=0.86,70 \% \mathrm{EtOAc} /\right.$ hexanes, TLC plate pretreated with $\left.\mathrm{NH}_{3}\right)$ in THF $(0.5 \mathrm{ml})$ was added $\mathrm{Pd} / \mathrm{C}(10 \mathrm{wt} \%, 3 \mathrm{mg})$. The mixture was purged with H_{2} for 1 min (from a balloon of H_{2}) and stirred under H_{2} atmosphere for 12 h , filtered through a pad of Celite, rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, concentrated and purified by flash chromatography $\left(5 \% \rightarrow 10 \% \rightarrow 15 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to provide 1.2 mg of the desired primary amine $\left(\mathrm{R}_{f}=0.18,70 \%\right.$ EtOAc/hexanes, TLC plate pretreated with $\left.\mathrm{NH}_{3}\right)$.

Methylation:

To a solution of the amine (1.0 mg , azeotropically dried with toluene) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{ml})$ was added $\mathrm{Na}_{2} \mathrm{CO}_{3}(10 \mathrm{mg})$ and $\mathrm{Me}_{3} \mathrm{O}^{+} \mathrm{BF}_{4}^{-}(6 \mathrm{mg})$. The reaction mixture was vigorously stirred at for 36 h and quenched with saturated NaHCO 3 solution. The aqueous layer was extracted with $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(5: 1)$ and the combined organic layers were concentrated in vacuo. The residue was purified by flash chromatography $\left(5 \% \rightarrow 10 \% \rightarrow 12.5 \% \rightarrow 15 \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to provide 0.8 mg (63% yield, two steps) of the desired product as white solid.
$\mathrm{Rf}=0.45\left(70 \% \mathrm{EtOAc} /\right.$ hexanes, TLC plate pretreated with $\left.\mathrm{NH}_{3}\right) ;[\alpha]_{\mathrm{D}}{ }^{22}-26.0(\mathrm{c} 0.05, \mathrm{CHCl} 3) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (Note: 1H NMR of this compound is highly dependent on the acidity of the purification media. To ensure reproducibility, it is recommended to pass through a pad of basic $\mathrm{Al}_{2} \mathrm{O}_{3}$ before taking 1H NMR) $\delta 7.67(\mathrm{dd}, \mathrm{J}=1.2 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{dd}, \mathrm{J}=1.2 \mathrm{~Hz}, 8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{dd}, \mathrm{J}=$
$7.6 \mathrm{~Hz}, 8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OH}), 3.72(\mathrm{~s}, 1 \mathrm{H}), 3.06(\mathrm{~d}, \mathrm{~J}=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{~m}, 1 \mathrm{H})$, $2.88(\mathrm{~m}, 1 \mathrm{H}), 2.55(\mathrm{~d}, \mathrm{~J}=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{dd}, \mathrm{AB}$ system, $\mathrm{J}=14.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.75(\mathrm{~m}, 1 \mathrm{H})$, $1.60(\mathrm{~s}, 9 \mathrm{H}), 1.62 \approx 1.50(\mathrm{~m}, 5 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.38 \approx 1.28(\mathrm{~m}, 2 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~d}, \mathrm{~J}=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H}) ; 13 \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.3,183.4,150.8,137.7,134.5,131.0,127.2$, $123.81,123.78,85.4,84.3,68.5,66.0,62.14,62.10,55.2,53.5,50.2,46.9,41.4,35.3,34.6,32.7,29.6$, 27.9, 27.6, 24.9, 22.0, 19.0, 18.6, 10.3; IR (thin film): 3449 (br s), 1734 (s), 1686 (m), 1438 (s) cm^{-1}; HRMS (ESI) Calcd. for $\mathrm{C}_{33} \mathrm{H}_{48} \mathrm{~N}_{3} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]: 582.3543$. Found: 582.3541.

Boc-Removal:

To a solution of Boc oxindole $(0.4 \mathrm{mg})$ in $\mathrm{CH}_{3} \mathrm{CN}(0.2 \mathrm{ml})$ was added a solution of $\mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}$ (0.4 mg) in $\mathrm{CH}_{3} \mathrm{CN}(0.2 \mathrm{ml})$. After stirring at $65^{\circ} \mathrm{C}$ for 25 min , the reaction was quenched with saturated NaHCO_{3} solution. The aqueous layer was extracted with $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(5: 1)$ and the combined organic layers were concentrated in vacuo. The residue was purified by flash chromatography $(5 \% \rightarrow 10 \% \rightarrow 15$ $\left.\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to provide 0.3 mg of the desired product as white solid. $\mathrm{R}_{f}=0.28(70 \% \mathrm{EtOAc} / \mathrm{hexanes}$, TLC plate pretreated with NH_{3})

Freebase: (The solid was dissolved in $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and passed through a pad of basic $\mathrm{Al}_{2} \mathrm{O}_{3}$ to provide the free base); $[\alpha]_{\mathrm{D}}{ }^{22}+36.7$ (c $\left.0.03, \mathrm{CHCl} 3\right) ;{ }^{1} \mathrm{H}$ NMR: See Appendix to Chapter 3; HRMS (ESI) Calcd. for $\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]: 482.3019$. Found: 482.3018 .

TFA Salt: (To a vial containing the free base $(0.2 \mathrm{mg})$ was added 0.8 ml of a solution of 0.5% of TFA in $\mathrm{CH}_{3} \mathrm{CN}$ (prepared by adding 5 ul of TFA to 1 ml of $\mathrm{CH}_{3} \mathrm{CN}$). The solution was immediately concentrated on rotvap (ca. 10 min) and dried under vacuo for 4 h.$)^{1} \mathrm{H}$ NMR: See Appendix to Chapter 3.

Preparation of ent-2

Azide Reduction:

To a solution of the azide $\mathbf{1 7 4}(2 \mathrm{mg})$ in THF $(0.5 \mathrm{ml})$ was added $\mathrm{Pd} / \mathrm{C}(10 \mathrm{wt} \%, \sim 3 \mathrm{mg})$. The mixture was purged with H_{2} for 1 minute and stirred under H_{2} atmosphere (balloon) for 10 hours, filtered through a pad of celite, rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, concentrated and purified by flash chromatography $\left(5 \% \rightarrow 10 \% \rightarrow 15 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to provide 1.5 mg of the desired product.

Boc-Removal:

To a vial containing the methylated Boc-oxindole (0.5 mg) was added a solution of $\mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}(0.5 \mathrm{mg})$ in $\mathrm{CH}_{3} \mathrm{CN}(0.5 \mathrm{ml})$. After stirring at $60^{\circ} \mathrm{C}$ for 20 minutes, the reaction was quenched with saturated NaHCO_{3} solution, extracted with $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, concentrated and purified by flash chromatography $\left(5 \% \rightarrow 10 \% \rightarrow 12.5 \% \rightarrow 15 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to provide a trace amount of ent-2.
$\mathrm{R}_{f}=0.38\left(70 \% \mathrm{EtOAc} /\right.$ Hexanes, TLC pre-treated with $\left.\mathrm{NH}_{3}\right)$. HRMS (ESI) Calcd. for $\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]: 482.3019$. Found: 482.3015. ${ }^{1} \mathrm{H}$ NMR: See Appendix to Chapter 3.

[^0]${ }^{5}$ Mitsunobu, O. Synthesis 1981 1-28.
${ }^{6}$ Mukaiyama, T. Angew. Chem. Int. Ed. Eng. 1979 18, 707-721.
${ }^{7}$ (a) Bennua-Skalrnowski, B.; Vorbrüggen, H. Tetrahedron Lett. 1995 36, 2611-2614. (b) Klar, U.; Neef, G.; Vorbrüggen, H. Tetrahedron Lett. 1996 37, 7497-7498.
${ }^{8}$ Martin, J. C.; Franz, J. A.; Arhart, R. J. J. Am. Chem. Soc. 1974 96, 4604-4611.
${ }^{9}$ Chini, M.; Crotti, P.; Macchia, F. Tetrahedron Lett. 1990 31, 4661-4664.
${ }^{10}$ (a) Meguro, M.; Asao,N.; Yamamoto, Y. J. Chem. Soc., Perkin Trans. 11994 2597-2601. (b) Chini, M.; Crotti, P.; Favero, L.; Macchia, F.; Pineschi, M. Tetrahedron Lett. 1994 35, 433-436.
${ }^{11}$ Posner, G. H.; Rogers, D. Z. J. Am. Chem. Soc. 1977 99, 8208-8214.
${ }^{12}$ García-Delgado, N.; Reddy, K. S.; Solà, L.; Riera, A.; Pericàs, M. A.; Verdaguer, X. J. Org. Chem. 2005 70, 7426-7428.
${ }^{13}$ Overman, L. E.; Flippin, L. A. Tetrahedron Lett. 1981 22, 195-198.
${ }^{14}$ Caron, M.; M.; Carlier, P. R.; Sharpless, K. B. J. Org. Chem. 1988 53, 5185-5187.
${ }^{15}$ (a) Benedetti, F.; Berti, F.; Norbedo, S. Tetrahedron Lett. 1998 39, 7971-7974. (b) Davis, C. E.; Bailey, J. L.; Lockner, J. W.; Coates, R. M. J. Org. Chem. 2003 68, 75-82.
${ }^{16}$ Sabitha, G.; Babu, R. S.; Rajkumar, M.; Yadav, J. S. Org. Lett. 2002 4, 343-345.
${ }^{17}$ Attempted Staudinger reduction $\left(\mathrm{PPh}_{3}\right.$ or $\left.\mathrm{PMe}_{3}\right)$ led to unidentified products. Therefore the one-pot procedure developed by Suzuki and coworkers for converting azide to N -mono-methylamine $\left(\mathrm{PMe}_{3}\right.$; then MeI or $\mathrm{NaBH}_{4} / \mathrm{HCHO}$) was not considered, see: Kato, H.; Ohmori, K.; Suzuki, K. Synlett 2001 10031005.
${ }^{18}$ (a) Huang, A.; Kodanko, J. J.; Overman. L. E. J. Am. Chem. Soc. 2004 126, 14043-14053. (b) Lerchner, A.; Carreira, E. M. Chem. Eur. J. 2006 12, 8202-8219.
${ }^{19}$ Yoshimura, J.; Yamaura, M.; Suzuki, T.; Hashimoto, H. Chem. Lett. 1983, 1001-1002.
${ }^{20}$ Kuang, L.; Zhou, J.; Chen, S.; Ding, K. Synthesis 2007 20, 3129-3134.
${ }^{21}$ Williams, R. M. and Kwast, E. Tetrahedron Lett. 1989 30, 451-454.
${ }^{22}$ Full characterization of this unwanted product was not performed, but the structural assignment was based on proton NMR.
${ }^{23}$ Ferrini, S.; Ponticelli, F.; Taddei, M. Org. Lett. 2007 9, 69-72.
${ }^{24}$ McKillop, A.; Hunt, J. D.; Zelesko, M. J.; Fowler, J. S.; Taylor, E. C., McGillivray, G.; and Kienzle, F. J. Am. Chem. Soc. 1971 93, 4841-4844.
${ }^{25}$ Paul, S.; Chotana, G. A.; Holmes, D.; Reichle, R. C.; Meleczka, R. E.; Smith III, M. R. J. Am. Chem. Soc. 2006 128, 15552-15553.
${ }^{26}$ One could ask, given the difficulties with benzyl deprotection of $\mathbf{1 0 8}$, why a change was not made at this stage. In reality, the limited methods available to introducing the C 7 side-chain in (+)-100 had led to the initiation of the efforts described in this section prior to the deprotection difficulties becoming fully apparent.
${ }^{27}$ Dumez, E.; Snaith, John, S.; Jackson, R. F. W.; McElroy, A. B.; Overington, J.; Wythes, M. J.; Withka, J. M.; McLellan, T. J. J. Org. Chem. 2002 67, 4882-4892.
${ }^{28}$ Dounay, A. B.; Overman, L. E. Chem. Rev. 2003 103, 2945-2963.
${ }^{29}$ Lu, B.; Li, C.; and Zhang, L. J. Am. Chem. Soc. 2010 132, 14070-14072.
${ }^{30}$ de Frémont, P.; Marion, N.; Nolan, S. P. J. Organomet. Chem. 2009 694, 551-560.
${ }^{31}$ Yamamoto, K.; Yamamoto, N. Chem. Lett. 1989, 1149-1152.
${ }^{32}$ Enders, D.; Zhu, J., and Raabe, G. Angew. Chem. Int. Ed. Engl. 1996 35, 1725-1728.
${ }^{33}$ Miyano, S.; Lu, L. D.-L.; Viti, S. M.; Sharpless, K. B. J. Org. Chem. 1985 50, 4350-4360.
${ }^{34}$ Kushida, N.; Watanabe, N.; Okuda, T.; Yokoyama, F.; Gyobu, Y.; Yaguchi, T. J. Antibiot. 2007 60, 667673.
${ }^{35}$ a) Altman, R. A.; Nilsson, B. L.; Overman, L. E.; de Alaniz, J. R.; Rohde, J. M.; and Taupin, V. J. Org. Chem. 2010, 75, 7519-7534. b) Hirasawa, Y.; Morita, H.; Kobayashi, J. Org. Lett. 2004 6, 3389-3391.

CHAPTER 4

Progress Toward Citrinadin A

4.1 Developing a Synthetic Approach Toward Citrinadin A

4.1.1 Retrosynthetic Strategies Toward a C14-functionalized Nitrone

The successful application of the $(3+2)$ cycloaddition reaction toward a number of citrinadin B analogues (most notably, ent-2 and 175) is expected to lead to a structural reassignment of Citrinadin B (2) and left us increasingly intrigued by a synthesis of Citrinadin A (1). As proposed by Kobayashi, 1 differs from 2 by the presence of an oxygen atom at C14, which is acylated as the corresponding N, N-dimethylvaline ester. Importantly, the strategy we developed for accessing $\mathbf{2}$ was also

Scheme 4.1

designed to provide access to $\mathbf{1}$ by simply altering the structure of the nitrone employed in the key cycloaddition step. Although there was no guarantee that the more heavily functionalized nitrone required for the synthesis of $\mathbf{1}$ (i.e., 178) would provide identical reactivity, attempting to extend our previous efforts was the logical next step. Key to implementing this strategy was the preparation of $\mathbf{1 7 8}$ and the study of its ability to engage the previously prepared dipolarophile (37) to furnish isoxazolidine (177) (Scheme 4.1). Elaboration of $\mathbf{1 7 7}$ to the ring-fusion epoxide $\mathbf{1 7 6}$ would leave us poised for late stage installation an $\mathrm{N}, \mathrm{N}-$ dimethylvaline ester and completion of $\mathbf{1}$.

Insights gained as a result of our previous preparations of $(\pm)-57$ and $(S)-(-)-57$ proved influential in planning synthetic access to nitrone $\mathbf{1 7 8} .{ }^{1}$ For example, the synthesis of $(\pm)-57$ from acetone oxime 84 (Scheme 4.2) suggested an initial synthetic design for $\mathbf{1 7 8}$, involving nucleophilic attack on a C14-aldehyde or ester (as opposed to an alkyl halide) to provide the requisite oxidation of C14. The ubiquity of stereoselective aldol reactions and ketone reductions would selectively provide access to the desired C14 antipode.

Scheme 4.2

Reflecting on the preparation of $(S)-(-)-57$, the utility of a fixed configuration of the C 12 stereocenter—incorporated at the outset from commercially available starting material—became apparent (Scheme 4.3). ${ }^{2}$ This approach provided enantioenriched $(S)-(-)-57(80 \%$ ee) and made the syntheses of ent-2 and 175 possible. Unfortunately, the synthesis also demonstrated poor scalability. Erosion of the enantiopurity was observed during the reduction and olefination reactions used to access (S) - $\mathbf{8 8}$. The N oxidation and saponification reactions leading to $(S) \mathbf{- 1 8 0}$ were poor yielding upon scale up and difficult to purify. Moreover, the hydroxylamine $((S) \mathbf{- 1 8 0})$ demonstrated a limited shelf life, necessitating on demand synthesis. Thus, the limitations inherent to the synthesis of $(S)-(-)-\mathbf{5 7}$ underscored the need for robust, scalable chemistry to access 178.

Scheme 4.3

Based on these observations, an attractive strategy emerged. Synthesis of nitrone $\mathbf{1 7 8}$ would arise from an intramolecular, desilylative $\mathrm{S}_{\mathrm{N}} 2$ reaction of $\mathbf{1 8 2}$ to form the $\mathrm{N} 11-\mathrm{C} 12$ bond (Scheme 4.4). Unlike the syntheses of nitrones (\pm)- and (S)-(-)-57 which relied on the formation of the N11-C16 bond, this approach would obviate the need for stereoselective reduction of an oxime or an operationally difficult N-oxidation/saponification sequence; the C 12 stereoconfiguration of $\mathbf{1 7 8}$ would be set by a stereospecific inversion of $\mathbf{1 8 2}$. Similar to a procedure reported by Goti et al., the silyl oxime (182) could arise from condensation of hydroxylamine onto the aldehyde tautomer of lactol $\mathbf{1 8 3} .^{3}$

Scheme 4.4

Straightforward access to $\mathbf{1 8 3}$ was expected to result from the lactonization of a thioester (185) followed by a reduction (Scheme 4.5). The next key retrosynthetic intermediate, syn-diol 185, would be accessible from 187 via an aldol reaction between thioacetate 186 and an aldehyde (187).

Scheme 4.5

At the exploratory stage of the synthesis, quick access to a diol such as $\mathbf{1 8 5}$ was anticipated to result from a non-selective aldol reaction. Commercially available β-hydroxybutanoate (\pm)- $\mathbf{1 8 8}$ was protected as the corresponding tertbutyldimethylsilyl (TBS) ether and reduced to the aldehyde according to a known procedure (Scheme 4.6). ${ }^{4}$ An aldol reaction between thioacetate $\mathbf{1 8 6}$ and aldehyde (\pm)- $\mathbf{1 9 0}$ generated the β-hydroxyketones $(\pm) \mathbf{- 1 9 1 a} / \mathbf{b}$ in a $2: 1$ diastereomeric mixture with the anti-diol being the major stereoisomer. ${ }^{5}$ Owing to the difficulty encountered in separation of the diastereomers, $(\pm)-\mathbf{1 9 1} \mathbf{a} / \mathbf{b}$ was carried into subsequent reactions as a mixture.

Scheme 4.6

Initially, it was considered desirable to protect the C14 alcohol as the benzyl ether. ${ }^{6}$ However, attempts to induce the reaction under standard conditions ($\mathrm{NaH}, \mathrm{BnBr}$) did not yield any of the desired product $(\pm) \mathbf{- 1 9 2 a} / \mathbf{b}$ (Scheme 4.7). Instead, an α, β-unsaturated ester resulted, most likely the result of facile elimination of benzyl alcohol. To circumvent the unwanted elimination reaction, acidic conditions (pTSA, $\mathrm{BnCH}_{2} \mathrm{OC}(\mathrm{NH}) \mathrm{CF}_{3}$) were alternatively employed; but, only recovered starting material was obtained. The use of a stronger acid $(\mathrm{TfOH})^{7}$, appeared to provide some of the desired benzyl alcohol but

Scheme 4.7

this rapidly converted to the elimination product during work up. In a final attempt, conditions for silvermediated benzyl protection $\left(\mathrm{Ag}_{2} \mathrm{O}, \mathrm{BnBr}\right)$ were employed but to no avail. ${ }^{8}$

In light of these difficulties, an alternate silyl protection of the C14 alcohol was attempted. ${ }^{9}$ Gratifyingly, conversion of the diastereomeric alcohol mixture ($\pm \mathbf{)} \mathbf{- 1 9 1 a} \mathbf{/ b}$ to the corresponding tertbutyldiphenylsilyl (TBDPS) ether products $(\pm)-\mathbf{1 9 4}$ and $(\pm)-\mathbf{1 9 5}$ was straightforward, and the two diastereomers could be successfully separated via flash chromatography using a nonpolar solvent mixture of toluene and hexanes (Scheme 4.8). ${ }^{10}$

Scheme 4.8

Keeping with the retrosynthetic plan, TBDPS ether $(\pm)-\mathbf{1 9 5}$ was exposed to p toluenesulfonic acid ($p \mathrm{TSA}$) to cleave the more labile TBS ether. Conveniently, the deprotection was accompanied by concomitant cyclization to provide lactone $(\pm) \mathbf{- 1 8 4}$ which participated in the subsequent partial reduction using diisobutylaluminum hydride (DIBAl-H) to effectively provide lactol (\pm)- $\mathbf{1 8 3}$

Scheme 4.9

(Scheme 4.9).
With lactol (\pm)-183 in hand, exploratory studies toward the synthesis of nitrone (\pm)-178 ensued. Inspired by Goti's efficiency, ${ }^{3}$ formation of the protected silyl oxime $(\pm) \mathbf{- 1 9 8}$ from lactol $(\pm)-\mathbf{1 8 3}$ in a single synthetic operation was attempted (Scheme 4.10). Unfortunately, when lactol (\pm)- $\mathbf{1 8 3}$ was exposed to O-TBS hydroxylamine, yields of the corresponding TBS silyl oxime $(\pm)-\mathbf{1 9 8}$ were prohibitively low. As a result, stepwise installation the silyl oxime was employed. In the event, exposure of lactol (\pm)-

183 to hydroxylamine hydrochloride in a concentrated pyridine solution over anhydrous magnesium sulfate

Scheme 4.10

resulted in conversion to the oxime (\pm)-197, which was readily converted to the TBS ether (\pm)-198. Careful control of the reaction stoichiometry and temperature were essential to avoid bis-silyl protection of the oxime and the secondary alcohol. Activation of the secondary alcohol as the tosylate afforded (\pm)-182 the desired target for exploration of the anticipated desilylative cyclization.

4.1.4 Synthesis of Alternate Nitrone Precursors

Although the C14 stereochemistry of syn-nitrone $\mathbf{1 7 8}$ arising from precursor $\mathbf{1 8 2}$ (path A, Scheme 4.11) was consistent with the desired cycloaddition product $\mathbf{1 7 7}$ (and hence, $\mathbf{1}$), we endeavored to synthesize two other nitrone precursors, recognizing that the stereochemistry at C14 (or lack thereof) could potentially impact the sense and degree of stereochemical induction imparted by C 12 in the subsequent

Scheme 4.11

37

cycloaddition reaction. The readily available bis-protected anti-diol (i.e., 192, scheme 4.7) was expected to lead to nitrone precursor 200 which could undergo desilylative cyclization to give anti-nitrone 199 (path B, Scheme 4.11). Alternately, the synthesis of ketal-nitrone 201 from precursor 202 (path C, Scheme 4.11) would provide a C14 ketone.

The synthesis of the anti-nitrone precursor (\pm)-200 proceeded analogously to the synthesis of the syn-nitrone precursor (i.e., (\pm)-182, Scheme 4.10). Lactonization of anti-diol (\pm)-194 was followed by reduction to provide lactol (\pm)-204 (Scheme 4.12). Condensation with hydroxylamine, silyl protection, and tosylation subsequently led to (\pm)-200.

Scheme 4.12

In order to obtain the ketal nitrone precursor (\pm)-202, a synthesis of the ketal-lactol (\pm) 210 ensued (Scheme 4.13). Following a series of procedures published by Anderson et al., a successful

Scheme 4.13

Claisen condensation of tert-butylacetate (\pm) - 207 and β-hydroxybutanoate $(\pm)-\mathbf{1 8 9}$ provided β hydroxyketone $(\pm)-\mathbf{2 0 8} .{ }^{11}$ Lactonization and ketalization of (\pm) - $\mathbf{2 0 8}$ with 1,2 -ethanediol and p TSA in dichloromethane was not reproducible; however, substituting 1,2-dichloroethane for dichloromethane was effective to gain access to the lactone (\pm)-209. DIBAl-H reduction provided the desired lactol $(\pm)-\mathbf{2 1 0}$ wherein conversion to the nitrone precursor ($\pm \mathbf{)} \mathbf{2 0 2}$ via hydroxylamine condensation, oxime protection, and alcohol activation was straightforward.

4.2 Citrinadin A Cycloadditions

4.2.1 Employing the C14-Ketal Nitrone Precursor

Having procured access to three different nitrone precursors (i.e., 182, 200, and 202) efforts to synthesize the corresponding nitrones-and apply them in the subsequent (3+2) cycloadditon reaction-ensued. Unfortunately initial attempts to form nitrone $\mathbf{1 7 8}$ from nitrone precursor $\mathbf{1 8 2}$ only resulted in complex reaction mixtures for which the results were difficult to interpret. As a result, we chose to first explore the desilylative cyclization of the less complex ketal nitrone precursor 202, recognizing that it wouldn't require selective desilylation of the silyl oxime in the presence of an $O-$ TBDPS silyl alcohol.

Using conditions similar to those described by Chevrier et al. (TBAF, dry $\mathrm{CH}_{3} \mathrm{CN}, 80^{\circ} \mathrm{C}$, 1 hour), the desired desilylative cyclization of $(\pm) \mathbf{- 2 0 2}$ to $(\pm) \mathbf{2 0 1}$ was attempted (Scheme 4.14). ${ }^{12}$ Complete desilylation of (\pm)-202 rapidly following the addition of tetrabutylammonium fluoride (TBAF) was observed. After heating the solution to $70{ }^{\circ} \mathrm{C}$ for one hour, two products were identified in the reaction mixture. Gratifyingly, one of these corresponded to the desired nitrone $((\pm) \mathbf{- 2 0 1})$. The other appeared to be

Scheme 4.14

(\pm)-202

$(\pm)-201$

$(\pm)-213$
an undesired cyclic oxime $((\pm)-213) .{ }^{13}$ Although spectroscopic data for the two compounds was similar, they were easily distinguished by the significantly increased polarity of (\pm)-201 relative to (\pm) - $\mathbf{2 1 3}$ by TLC.

Unfortunately, isolated yields of ($\mathbf{\pm}$)-201 were very low (<25\% yield), even when TLC and NMR analysis of crude reaction mixtures implied otherwise. Unsure of the stability of $(\pm)-\mathbf{2 0 1}$ and aware that enone (\pm) - $\mathbf{3 7}$ should be compatible with the nitrone-forming reaction conditions, a one-pot, nitrone-formation and (3+2) cycloaddition reaction was attempted. Impressively, desilylation of the nitrone precursor (\pm)-202 (TBAF, $\mathrm{CH}_{3} \mathrm{CN}$, RT, 5 minutes), followed by immediate addition of the dipolarophile (\pm)-37, provided the combined cycloaddition isoxazolidines $(\pm) \mathbf{- 2 1 4}$ and $(\pm) \mathbf{- 2 1 5}$ in a 54% yield ($d r$ 3:1) after only one hour (Scheme 4.15). Recovered enone ((\pm)-37) (~48\%) and cyclic oxime ($(\pm) \mathbf{- 2 1 3})(\sim 39 \%)$ were also obtained. ${ }^{14}$

Scheme 4.15

Conditions vs \% Yield Trends
Products

* Approximate yields based on co-isolation and ${ }^{1} \mathrm{H}$ NMR Analysis.

Our hope to improve the yields of $(\pm)-214$ and $(\pm)-215$ prompted optimization of the reaction via a series of experiments designed to explore the effect of solvent polarity, fluoride source, order of addition, temperature, and reactant stoichiometry (Scheme 4.15). A screen of solvents $\left(\mathrm{CH}_{3} \mathrm{CN}\right.$,
acetone, THF, and benzene) revealed that solvent polarity did not have a substantial impact upon the amount of (\pm)-214 and (\pm)-215 generated; however, the recovery of enone (\pm)-37 was slightly improved with polar solvents. The fluoride source (TBAF, TBAT, TASF, or CsF) showed little effect on cycloadduct yields; but, TBAF generated significant amounts of the cyclic oxime byproduct (\pm) - $\mathbf{2 1 3}$. Comparable amounts of the cycloadducts were obtained with and without heating. On the other hand, the reaction stoichiometry demonstrated a dramatic effect. When two equivalents of the nitrone precursor (\pm)-202 were added to the reaction, the yield of the combined cycloadducts $(\pm)-214$ and $(\pm)-215$ increased from $54 \%(d r$ $3: 1)$ to $90 \% ~(d r 3: 1)$.

Collectively, these results suggested that the E / Z stereoisomers of the silyloxime were not equally competent at forming the nitrone $((\pm) \mathbf{- 2 0 1})$. Perhaps optimistically, attempts were made to shift the E / Z ratio observed for $(\pm) \mathbf{2 1 1}$ by isomerizing the higher energy (Z)-conformation to the lower energy (E) conformation..15 However, when a solution of (E/Z)-211 was heated to $100{ }^{\circ} \mathrm{C}$ in pyridine for several days, no significant change in the diastereomeric ratio could be seen (Scheme 4.16). Thus, in the absence of E enriched oxime $(\pm)-\mathbf{2 1 1}$, it was determined that super-stoichiometric amounts of the nitrone precursor would be required for the cycloaddition reaction to reach completion.

Scheme 4.16

In an effort to explore the effect of enantioenriched nitrone on the diastereomeric ratio of cycloaddition products, the synthesis of enantioenriched nitrone precursor $(S) \mathbf{- 2 0 2}$ was pursued. Starting from the commercially available (S) - β-hydroxybutyrate (S) - $\mathbf{1 8 8}$ the enantioenriched precursor (S) - $\mathbf{2 0 2}$ was

Scheme 4.17

(S)-202

dr 3:2 214/215

(3R,12R)-214
C3-Epimer of Desired

(3S,12R)-215
Desired
synthesized in the same fashion as $(\pm) \mathbf{- 2 0 2}$ (see Scheme 4.13). As expected, resolution of the enone (\pm)- $\mathbf{3 7}$ with two equivalents of (S)-202 under the desilylative cyclization conditions (TBAF, $\mathrm{CH}_{3} \mathrm{CN}, 70{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$) resulted in the isolation of the cycloadducts $(3 R, 12 R)-214$ and $(3 S, 12 R)-215$ in comparable yields, but with more of the desired isoxazolidine diastereomer ($d r \sim 3: 2$) (Scheme 4.17).

4.2.2 Employing the C14-O-TBDPS Nitrone Precursors

Having established the utility of the desilylative cyclization to form nitrone 201, which was capable of participating in a one-pot (3+2) cycloaddition reaction, we decided to revisit the C14-O-TBDPS nitrone precursors $(\pm) \mathbf{- 1 8 2}$ and $(\pm) \mathbf{2 0 0}$. Unfortunately, the TBAF-mediated desilylative cyclization conditions did not prove compatible with the O-TBDPS alcohol protecting group and resulted in complex reaction mixtures. Seeking a more selective desilylation, Ishibashi's tetrabutylammonium triphenyldifluorosilicate (TBAT) ${ }^{16}$ emerged as ideal reagent. Preliminary results using TBAT indicated that both $(\pm)-\mathbf{1 8 2}$ and $(\pm)-\mathbf{2 0 0}$ were competent in the nitrone-forming reaction, and led to investigations of the one-pot nitrone-formation / (3+2) cycloaddition protocol.

Unfortunately when (\pm)- $\mathbf{1 8 2}$ was exposed to enone (\pm)- $\mathbf{3 7}$ under the desilylative cyclization conditions (TBAT, benzene, $\mathrm{MgSO}_{4}, \mathrm{RT}$), no appreciable amounts of the desired cycloaddition products could be identified (Scheme 4.18). On the other hand, when two equivalents of (\pm)-200 were exposed to

Scheme 4.18

the same conditions, the desired cycloadducts were isolated in 74% yield ($d r \sim 3: 1$). Employing three equivalents of (\pm) - $\mathbf{2 0 0}$ provided a slight improvement in the yield (84% yield, $d r \sim 3: 1$).

In order to rationalize the difference in reactivity between the syn-nitrone precursor (182) and the anti-nitrone precursor (200) we turned to conformational analysis. Analysis of the two half-chair conformations of syn-nitrone 178, suggested that conformation $\mathbf{1 7 8 A}$-where both nitrone substituents are

Scheme 4.19

pseudoaxial—would be higher in energy due to 1,3-diaxial interactions (Scheme 4.19). Regrettably, the more stable conformation 178B would place the C12 methyl group gauche to the nitrone, perhaps disfavoring the approach of the dienophile in the $(3+2)$ cycloaddition reaction or facilitating the reverse reaction.

In contrast, the more stable half-chair conformation of anti-nitrone 199 could favor the (3+2) cycloaddition reaction. Conformation 199B-containing a psuedoaxially orientated C14-siloxy group and

Scheme 4.20

199B
the deleterious gauche interaction-would be higher in energy than 199A (Scheme 4.20). Most significantly, the favorable pseudoequatioal orientation of the silyloxy moiety in nitrone 199 suggested that this nitrone should participate more readily in the $(3+2)$ cycloaddition relative to the $C 14$-unsubstituted nitrone 57. Experimental data support this supposition. Whereas (3+2) cycloaddition reactions with 57 required lengthy reaction times ($7-10$ days), cycloadditions with anti-nitrone precursor (\pm)-200 were complete in less than 24 hours.

4.2.3 Synthesis of an Enantioenriched Anti-Nitrone

While the (3+2) cycloaddition of (\pm) - $\mathbf{2 0 0}$ and (\pm) - $\mathbf{3 7}$ enabled the synthesis of $(\pm) \mathbf{- 2 1 7}$ and $(\pm)-218$ in high overall yield (84% yield, $d r 1: 3$), it was recognized that enantioenriched anti-nitrone $\mathbf{1 9 9}$ would be required to obtain greater yields of the desired, minor isoxazolidine 218. Retrosynthetically, 200 was accessible from a non-racemic anti-diol (e.g., 194); however, our desire to selectively synthesize the anti-diol to the exclusion of the syn-diol (i.e., 195, Scheme 4.8) prompted us to pursue an alternate, stereoselective reduction of ketone 208, readily accessible from (S) - $\mathbf{1 8 8}$ (Scheme 4.21).

Scheme 4.21

(12S,14R)-219

(S)-208

(S)-188

Following a literature procedure, (S) - $\mathbf{1 8 8}$ was synthesized from the Claisen condensation of t-butyl acetate $\mathbf{2 0 7}$ and hydroxybutyrate (S) - $\mathbf{1 8 8}$ (Scheme 4.22). ${ }^{17}$ Subjection of the hydroxyketone (S) 208 to an Evans' reduction $\left(\mathrm{Me}_{4} \mathrm{NBH}(\mathrm{OAc})_{3}, \mathrm{CH}_{3} \mathrm{CN} / \mathrm{AcOH} 1: 1\right)$ provided the desired diol $(12 S, 14 R)$-219 in high yield and good diastereoselectivity. ${ }^{18}$ Lactonization of ($12 S, 14 R$)-219 using pyridinium p toluenesulfonic acid in dichloroethane was immediately followed with protection of the secondary alcohol to provide $(12 S, 14 R)$-203. Reduction and condensation with hydroxylamine were followed with silyl protection of the oxime and tosylation to provide the non-racemic nitrone precursor $(12 S, 14 S)-\mathbf{2 0 0}$.

As expected, when $(12 S, 14 S)$ - $\mathbf{2 0 0}$ was exposed to enone $(\pm)-\mathbf{3 7}$ under the desilylative cyclization conditions (TBAT, benzene, $\left.\mathrm{MgSO}_{4}, \mathrm{RT}\right)$, the desired cycloadducts $(3 R, 12 R)$ - $\mathbf{2 1 7}$ and $(3 S, 12 R)$ - $\mathbf{2 1 8}$ were isolated in high yield, but with improved diastereoselectivity ($d r \sim 3: 2$) (Scheme 4.23).

Scheme 4.23

4.3 Beyond the Cycloaddition

With two sets of C14-substituted isoxazolidines in hand, we began efforts to advance toward a ring-fusion epoxide (e.g., 176, Scheme 4.1). Unfortunately, chromatographic separation of the

Scheme 4.24

isoxazolidines (\pm)-214 and (\pm)-215 proved prohibitively difficult. Attempts were made to employ CoreyChakovsky epoxidation conditions on the mixture with the hope that the resulting diastereomers might be separated following work up (Scheme 4.24). In practice, however, this did not prove to be fruitful and a complex mixture was obtained.

Isoxazolidine ($\mathbf{\pm} \mathbf{- 2 1 8}$, more easily isolated from the (3+2) cycloaddition reaction, readily participated in the Corey-Chakovsky epoxidation reaction to give the desired spiro-epoxide (\pm)-219 (Scheme 4.25). Exposure to Caputo's conditions (TMSCl, NaI, THF/CH3 CN) enabled the intramolecular opening of spiro-epoxide (\pm) - $\mathbf{2 1 9}$ to provide the corresponding ammonium iodide salt (\pm)-220. ${ }^{19}$ Interestingly, the counterion of the ammonium salt appeared to be susceptible to exchange. When a brine wash of the reaction mixture was conducted, the resulting product-believed to be the ammonium chloride salt-was not reactive toward reductive cleavage of the N-O bond. Omission of the brine wash, however, provided a product $((\pm) \mathbf{- 2 2 0})$ that was susceptible to the reductive zinc and acetic acid conditions necessary to furnish diol $(\pm) \mathbf{- 2 2 1}$. Diol $(\pm) \mathbf{- 2 2 1}$ was successfully advanced to the ring-fusion epoxide $(\pm) \mathbf{- 2 2 2}$ following mesylation and exposure to base.

Scheme 4.25

(\pm)-222

4.4

Conclusions

Endeavoring toward a total synthesis of Citrinadin A (1) using the (3+2) cycloaddition strategy outlined for Citrinadin B (2) (See Chapters 2 and 3) led to the design of a desilylative cyclization reaction for the synthesis of C 14 -substituted nitrones.

In total, three nitrone precursors were explored: a ketal-nitrone 202, a syn-O-TBDPS-nitrone 182, and an anti-O-TBDPS nitrone 200. Desilylative cyclization of 202 revealed that the corresponding ketalnitrone 201 could be isolated, but in low yield. On the other hand, in-situ nitrone formation in the presence of the enone dipolarophile (\pm)-37 resulted in high combined yields of the desired ketal cycloadducts $\mathbf{2 1 4}$ and 215. Optimal yields required at least two equivalents of the nitrone precursor 202.

Desilylative cyclization of the syn-O-TBDPS-nitrone precursor (\pm)- $\mathbf{1 8 2}$ in the presence of enone (\pm) - $\mathbf{3 7}$ did not result in the isolation of any $(3+2)$ cycloaddition products. However, desilylative cyclization of the anti-O-TBDPS nitrone precursor 200 provided the combined cycloadducts $((\pm)-\mathbf{2 1 7}$ and $(\pm)-\mathbf{2 1 8})$ in high overall yield (84% yield). The synthesis of an enantioenriched nitrone precursor $\mathbf{2 0 0}$ improved the yield of the minor, desired cycloadduct $((3 S, 12 R)-\mathbf{2 1 8})$ from 25% to 40% yield.

Advancing toward a synthesis of Citrinadin A (1), isoxazolidine (\pm)-218 was subjected to reaction conditions resulting in the formation of ring-fusion expoxide (\pm)-222, analogous to epoxide (+)-152 (e.g. Scheme 3.34) used in the total synthesis of ent-2 and $\mathbf{1 7 5}$.

Elaboration of $\mathbf{2 2 2}$ to access $\mathbf{1}$ would require incorporation of the 1,2 amino alcohol moiety, installation of the epoxyketone side-chain, and installation of the N, N-dimethylvaline ester. Although the latter necessitates an inversion of the C14 stereochemistry, this should be readily accomplished using a Mitsunobu esterification. ${ }^{20}$ Forthcoming efforts to access $\mathbf{1}$ will be reported in due course.

4.5

Experimental

4.5.1

Materials and Methods

General. Unless otherwise stated, reactions were magnetically stirred in flame- or oven-dried glassware under an atmosphere of nitrogen. Triethylamine, diisopropylamine, and methanol were dried over calcium hydride and freshly distilled. Benzene, tetrahydrofuran, dichloromethane, toluene, and diethyl ether were dried using a solvent purification system manufactured by SG Water U.S.A., LLC. Anhydrous $\mathrm{CH}_{3} \mathrm{CN}$, DMF, DMSO, acetone, and 1,2-dichloroethane were supplied by Fischer Scientific and purchased from the Colorado State Chemistry Stockroom and kept under a nitrogen atmosphere. All other commercially available reagents were used as received.

Unless otherwise stated, all reactions were monitored by thin-layer chromatography (TLC) using Silicycle glass-backed extra hard layer, $60 \AA$ plates (indicator F-254, $250 \mu \mathrm{~m}$). Column or flash chromatography was performed with the indicated solvents using Silicycle SiliaFlash. P60 (230-400 mesh) silica gel as the stationary phase. All melting points were obtained on a Gallenkamp capillary melting point apparatus (model: MPD350.BM2.1) and are uncorrected. Infrared spectra were obtained using a Nicolet Avatar 320 FTIR or Bruker Tensor 27 FTIR. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian Inova 500, Varian Inova 400, Varian Inova 400 autosampler, or Varian Inova 300 spectrometer. Chemical shifts (δ) are reported in parts per million (ppm) relative to internal residual solvent peaks from indicated deuterated solvents. Coupling constants (J) are reported in Hertz (Hz) and are rounded to the nearest 0.1 Hz. Multiplicities are defined as: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, quint. $=$ quintuplet, $\mathrm{m}=$ multiplet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{dt}=$ doublet of triplets, $\mathrm{ddd}=$ doublet of doublet of doublets, dddd $=$ doublet of doublet of doublet of doublets, $\mathrm{br}=$ broad, $\mathrm{app}=$ apparent, $\mathrm{par}=$ partial. High resolution mass spectra were performed at the Central Instrument Facility by Donald L. Dick of Colorado State University. Single-crystal X-ray analyses were performed by Susie Miller, Brian Newell, and Stephanie Fielder of Colorado State University.

Preparation of Silyl Alcohol 189

To a solution of ethyl-3-hydroxybutyrate $(6.5 \mathrm{ml}, 50 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(125 \mathrm{ml})$ was added imidazole ($3.7 \mathrm{~g}, 55 \mathrm{mmol}$). The solution was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice bath and tertbutyldimethylsilyl chloride was added $(11.3 \mathrm{~g}, 75 \mathrm{mmol})$. The reaction was allowed to stir at room temperature over night (17 h) before adding a 50% saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The layers were separated and the aqueous portion was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated, and subjected to flash chromatography $(0.5 \% \rightarrow 1 \% \rightarrow 2 \% \rightarrow 4 \% \rightarrow 6 \%$ $\mathrm{EtOAc} /$ hexanes $)$ to provide the silyl alcohol as a light yellow oil $(11.1 \mathrm{~g}, 90 \%$ yield).

Known compound; CAS 81327-43-7. Characterization data matched literature reports.

Preparation of Aldehyde 190

A solution of the ester ($12.1 \mathrm{~g}, 49 \mathrm{mmol}$, azeotroped with toluene) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(450 \mathrm{ml})$ was cooled to $-78{ }^{\circ} \mathrm{C}$ in a three-neck flask. To this was added diisobutylaluminum hydride (1 M in hexanes, $54 \mathrm{ml}, 54 \mathrm{mmol}$) dropwise via addition funnel. This stirred cold for another hour, at which time the reaction was quenched at $-78^{\circ} \mathrm{C}$ with $\mathrm{MeOH}(50 \mathrm{ml})$ and allowed to warm to room temperature. The resulting reaction solution was vigorously stirred with an added solution of Rochelle's salt (50 g in 200 ml $\left.\mathrm{H}_{2} \mathrm{O}\right)$ for one hour. Following separation of the layers, the aqueous portion was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200$ $\mathrm{ml})$, and the combined organics were washed with water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to provide the aldehyde ($9.9 \mathrm{~g}, 100 \%$ yield) as a clear oil, used in the next step without further purification.

Known compound; CAS 92775-37-6. Characterization data matched literature reports.

Preparation of the $\boldsymbol{\beta}$-Hydroxyketones 191a and 191b

To a solution of diisopropylamine ($8.9 \mathrm{ml}, 63.6 \mathrm{mmol}$) in THF $(125 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$ was added $n-\mathrm{BuLi}(1.47 \mathrm{M}$ in hexanes, $38 \mathrm{ml}, 56.1 \mathrm{mmol})$. This was stirred at $0^{\circ} \mathrm{C}$ for 30 minutes, then cooled to $-78{ }^{\circ} \mathrm{C}$ before adding EtSAc ($6 \mathrm{ml}, 56.1 \mathrm{mmol}$, as a solution in THF (75 ml), dried over molecular sieves). After 30 minutes, the aldehyde ($9.4 \mathrm{~g}, \sim 85 \%$ pure, $\sim 37.4 \mathrm{mmol}$, as a solution in THF (125 ml), dried over molecular sieves) was added. The reaction was allowed to stir for 3 hours at $-78{ }^{\circ} \mathrm{C}$ before quenching the reaction with a 50% saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution at $-78{ }^{\circ} \mathrm{C}$. Upon warming to room temperature, the layers were separated and the THF removed in vacuo. The aqueous portion was extracted with EtOAc and the combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated, and subjected to flash chromatography $(2 \% \rightarrow 4 \% \rightarrow 6 \% \rightarrow 8 \% \rightarrow 10 \% \mathrm{EtOAc} /$ hexanes $)$ to provide the diol as a light yellow oil ($8.5 \mathrm{~g}, d r 2: 1 \mathrm{anti} / \mathrm{syn}, 74 \%$ yield) and some less pure product fractions ($2.4 \mathrm{~g}, d r 7: 3, \sim 2: 3$ diol/aldehyde, $\sim 11 \%$ yield).
$\mathrm{R}_{f}=0.12$ (5% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; d r 2: 1$ anti/syn mixture) $\delta 4.40$ (dddt, $J=10.0,7.5,4.9,2.5 \mathrm{~Hz}, 0.7 \mathrm{H}, \mathrm{OCH}), 4.27 \sim 4.13(\mathrm{~m}, 0.3 \mathrm{H}, \mathrm{OCH}), 4.18(\mathrm{td}, J=6.3,3.5 \mathrm{~Hz}, 0.7 \mathrm{H}$, $\mathbf{O C H}), 4.12 \sim 4.03(\mathrm{~m}, 0.3 \mathrm{H}, \mathbf{O C H}), 3.62(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 0.3 \mathrm{H}, \mathbf{O H}), 3.59(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 0.7 \mathrm{H}, \mathbf{O H})$, $2.94 \sim 2.86\left(\mathrm{~m}, 1.4 \mathrm{H}+0.6 \mathrm{H}, \mathbf{S C H}_{2}\right), 2.79 \sim 2.61\left(\mathrm{~m}, 1.4 \mathrm{H}+0.6 \mathrm{H}, \mathrm{OCHCH}_{2}\right), 1.70 \sim 1.59(\mathrm{~m}, 1.4 \mathrm{H}$, $\left.\mathrm{OCHCH}_{2}\right), 1.51(\mathrm{ddd}, J=14.1,6.3,2.5 \mathrm{~Hz}, 0.6 \mathrm{H}, \mathbf{O C H C H} 2), 1.25(\mathrm{tx} 2, J=7.5 \mathrm{~Hz}, 2.1 \mathrm{H}+0.9 \mathrm{H}$, $\left.\mathrm{SCH}_{2} \mathbf{C H}_{2}\right), 1.20\left(\mathrm{dx} 2, J=6.2 \mathrm{~Hz}, 2.1 \mathrm{H}+0.9 \mathrm{H}, \mathbf{C H}_{3}\right), 0.89(\mathrm{sx} 2,6.3 \mathrm{H}+2.7 \mathrm{H}, \mathbf{T B S}), 0.10(\mathrm{~d}, J=3.7$ $\mathrm{Hz}, 1.8 \mathrm{H}, \mathbf{T B S}), 0.08(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 4.2 \mathrm{H}, \mathrm{TBS}) .{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 198.63,198.39,68.91$, $68.00,66.84,65.71,51.57,51.26,45.35,44.32,24.33,23.45,23.43,23.30,18.05,18.01,14.73,14.70$, 3.90, -4.38, -4.67, -4.88; IR (thin film): $\mathrm{cm}^{=1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{NaO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]: 329.1581$. Found: 329.1583.

Preparation of the Bis-Protected Diols 194 and 195

To a solution of the alcohol ($6: 4$ anti/syn, $8.4 \mathrm{~g}, 27.4 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{ml})$ was added imidazole $(3.7 \mathrm{~g}, 54.8 \mathrm{mmol})$ and then tertbutyldiphenylsilyl chloride ($7.8 \mathrm{~g}, 30.1 \mathrm{mmol}$) at room temperature. The reaction was allowed to stir for 24 hours before adding a 50% saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The layers were separated, and the aqueous portion was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated, and subjected to flash chromatography. To obtain the best separation of diastereomers, the residue was adsorbed onto silica gel (1 column volume) and loaded onto a bed of silica (3 column volumes) $\left(0 \% \rightarrow 2.5 \% \rightarrow 5 \%\right.$ (Hold until $2^{\text {nd }}$ diastereomer starts to elute) $\rightarrow 7.5 \% \rightarrow 10 \% \rightarrow 80 \%$ Toluene/hexanes). This provided the pure bis-protected anti-diol (5 g), enriched anti-diol (2.5 g), and enriched syn-diol (6 g) for a total yield of 13.5 g (93% yield).

Anti Diol 194: $\mathrm{R}_{f}=0.53$ (40% Toluene/hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71$ ($\mathrm{m}, 4 \mathrm{H}$, TBDPS), $7.40(\mathrm{~m}, 6 \mathrm{H}, \mathbf{T B D P S}), 4.26(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}), 3.56(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}), 2.84(\mathrm{qd}, J=7.4 \mathrm{~Hz}, 1.4 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 2.76\left(\mathrm{dd}, J=14.4 \mathrm{~Hz}, 6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{SCCH}_{2}\right), 2.70(\mathrm{dd}, J=14.4 \mathrm{~Hz}, 5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{SCCH})$, $1.69\left(\mathrm{dt}, J=14.0 \mathrm{~Hz}, 7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCCH}_{2} \mathrm{CO}\right), 1.53\left(\mathrm{ddd}, J=13.8 \mathrm{~Hz}, 5.5 \mathrm{~Hz}, 4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCCH}_{2} \mathrm{CO}\right)$, $1.23\left(\mathrm{t}, \boldsymbol{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{SCH}_{2} \mathbf{C H}_{3}\right), 1.03(\mathrm{~s}, 9 \mathrm{H}, \boldsymbol{t}$ - $\mathbf{B u}), 0.84\left(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 0.82(\mathrm{~s}, 9 \mathrm{H}, \boldsymbol{t}$ - $\mathbf{B u})$, -0.04 (s, 3H, CH3), -0.06 ($\mathrm{s}, 3 \mathrm{H}, \mathbf{C H}_{3}$) ; ${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 14.80,18.13,19.51,23.45,24.12$, 26.01, 27.06, 47.84, 52.44, 66.39, 69.57, 127.69, 129.73, 129.80, 133.94, 134.30, 135.71, 136.06, 136.09, 197.28, -4.08, -4.51; IR (thin film): 2930 (s), 2857 (s), 1691 (s), 1112 (s), 703 (s) $\mathrm{cm}^{-1} ;$ HRMS (ESI) Calcd. for $\mathrm{C}_{28} \mathrm{H}_{43} \mathrm{NaO}_{3} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{Na}]$: 567.2760. Found: 567.2760.

Syn Diol 195: $\mathrm{R}_{f}=0.37$ (40\% Toluene/hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 7.71 \sim 7.66(\mathrm{~m}$, 4H, TBDPS), $7.43 \sim 7.34(\mathrm{~m}, 6 \mathrm{H}, \mathbf{T B D P S}), 4.33$ (quintet, $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}), 3.84(\mathrm{dt}, J=12.1,6.1 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{OCH}), 2.81\left(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{S C H}_{2}\right), 2.73\left(\mathrm{dd}, J=5.7,4.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCCH}_{2}\right), 1.68(\mathrm{dt}, J=13.4,6.6$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{OCCH}_{2}\right), 1.56\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCCH}_{2}\right), 1.21\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{SCH}_{2} \mathbf{C H}_{2}\right), 1.03(\mathrm{~s}, 9 \mathrm{H}, \boldsymbol{t}-\mathrm{Bu}), 0.86(\mathrm{~d}, J$ $\left.=6.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 0.80\left(\mathrm{~s}, 9 \mathrm{H}, \boldsymbol{t}\right.$ - $\mathbf{B u}$), $-0.03\left(\mathrm{~s}, 6 \mathrm{H}, \mathbf{C H}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 201.94,
$140.70,138.77,138.55,134.37,134.36,132.30,132.27,73.20,70.34,56.03,51.27,31.74,30.61,28.22$, 28.06, 24.15, 22.71, 19.38, 18.89, 0.47, -0.00; IR (thin film): 2931 (s), 2857 (s), 1691 (s), 1111 (s), 703 (s) cm^{-1}; HRMS (ESI) Calcd. for $\mathrm{C}_{28} \mathrm{H}_{43} \mathrm{NaO}_{3} \mathrm{Si}_{2}$ [M+Na]: 567.2760. Found: 567.2747.

Preparation of Lactones 184 and 203

(Representative Procedure)

To a solution of the silyl alcohol ($5 \mathrm{~g}, 9.2 \mathrm{mmol})$ in THF $(100 \mathrm{ml})$ at room temperature was added p-toluenesulfonic acid $(5.2 \mathrm{~g}, 27.5 \mathrm{mmol})$. The reaction was allowed to stir overnight (12 h). The reaction was cooled to $0^{\circ} \mathrm{C}$ in an ice bath and basified with a 50% saturated NaHCO_{3} solution (200 $\mathrm{ml})$. To the biphasic mixture was added hydrogen peroxide ($30 \% \mathrm{w} / \mathrm{w}_{2} \mathrm{H}_{2}, 1 \mathrm{ml}, 9.2 \mathrm{mmol}$) and this was stirred vigorously for two hours. Water was added to dissolve any residual salts, and the layers were separated. The aqueous portion was extracted with EtOAc , and the combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated, and purified by flash chromatography $(2 \% \rightarrow 4 \% \rightarrow 6 \% \rightarrow 10 \% \rightarrow 20 \% \mathrm{EtOAc} /$ hexanes $)$ to yield the lactone as a viscous oil ($3.2 \mathrm{~g}, 94 \%$).
syn-Lactone 184: Known compound. CAS 136786-47-5. Characterization data matched literature reports.
anti-Lactone 203: Characterization data matched literature reports for the $(+)-(\mathrm{R}, \mathrm{R})$-stereoisomer, CAS 263369-05-7.

Preparation of Lactols 183 and 204

(Representative Procedure)

Lactone ($3.2 \mathrm{~g}, 8.7 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(90 \mathrm{ml})$ was cooled to $-78{ }^{\circ} \mathrm{C}$ for the addition of diisobutylaluminum hydride solution (1 M in hexanes, $9.6 \mathrm{ml}, 9.6 \mathrm{mmol}$). This stirred cold for two hours at which time the reaction was quenched at $-78{ }^{\circ} \mathrm{C}$ with $\mathrm{MeOH}(9 \mathrm{ml})$ and allowed to warm to room temperature. The resulting reaction solution was vigorously stirred with an added solution of Rochelle's salt (9 g in $100 \mathrm{ml} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$) for one hour. Following separation of the layers, the aqueous portion was extracted with $\mathrm{Et}_{2} \mathrm{O}$, and the combined organics were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to provide the lactol as a $1: 1$ mixture of anomers $(3.2 \mathrm{~g}, 100 \%$ yield), which was used in the next step without further purification.

anti-Lactol 183: Characterization data matched literature reports for the (+)-(R, R)-stereoisomer, CAS 263369-06-8.

syn-Lactol 204: $\mathrm{R}_{f}=0.29 \sim 0.44(20 \%$ EtOAc/hexanes $) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.71-7.68 (m, 8H, TBDPS), 7.46-7.36 (m, 12H, TBDPS), 5.30 (br t, 1H, OCHO), 4.50 (ddd, $J=9.7,6.6$, $2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHO}), 4.22(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}), 3.91(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH} \& \mathbf{O H}), 3.79(\mathrm{tt}, J=10.9,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH})$, $3.31(\mathrm{dqd}, J=11.6,5.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{O C H}), 3.01(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{O H}), 2.09(\mathrm{ddt}, J=12.2,4.4,2.1 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{O}_{2} \mathrm{CCH}_{2} \mathrm{CH}\right), 1.98\left(\mathrm{ddt}, J=12.8,4.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{O}_{2} \mathrm{CCH}_{2} \mathrm{CH}\right), 1.76\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{O}_{2} \mathrm{CCH}_{2} \mathrm{CH} \&\right.$ OCCH$\left.{ }_{2} \mathrm{CH}\right), 1.60\left(\mathrm{dddd}, J=12.9,11.0,3.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{O}_{2} \mathrm{CCH}_{2} \mathrm{CH}\right), 1.48 \sim 1.26\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{OCCH}_{2} \mathrm{CH}\right), 1.19(\mathrm{~d}, J$ $\left.=6.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathbf{C H}_{3}\right), 1.11\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathbf{C H}_{3}\right), 1.08(\mathrm{~s}, 9 \mathrm{H}, \mathbf{T B D P S}), 1.07(\mathrm{~s}, 9 \mathrm{H}, \mathbf{T B D P S}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 135.83,134.60,134.48,134.24,134.13,129.84,129.82,129.70,129.69,127.76$, 127.74, 127.67, 127.65, 94.39, $92.93,68.28,68.16,65.14,64.16,43.30,42.61,42.29,39.51,27.07,27.01$,
21.51, 21.27, 19.24, 19.19; IR (thin film): 3398 (br, m), 2932 (m), 2858 (m), 1428 (m), 1112 (s), 702 (s) $\mathrm{cm}^{=1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{NaO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]: 393.1858$. Found: 393.1862.

Preparation of Oximes 197, 205, and 211

(Representative Procedure)
Lactol $\mathbf{1 8 3}(2.8 \mathrm{~g}, 7.6 \mathrm{mmol})$ was taken up in pyridine $(15 \mathrm{ml})$. To this was added anhydrous magnesium sulfate ($1.8 \mathrm{~g}, 15.2 \mathrm{mmol}$) and hydroxylamine hydrochloride ($791 \mathrm{mg}, 11.4 \mathrm{mmol}$). This was allowed to stir at room temperature for 36 hours. To work up, the reaction mixture was filtered through Celite, which was subsequently washed with $1: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes and then $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The resulting solution was concentrated, azeotroped with hexanes, and subjected to column chromatography $(5 \% \rightarrow 10 \% \rightarrow 15 \% \rightarrow 30 \% \rightarrow 50 \%$ EtOAc/hexanes) to provide oxime 197 as an oil in a $1: 1$ mixture of E / Z isomers ($2.9 \mathrm{~g}, 100 \%$).

Oxime 197: $\mathrm{R}_{f}=0.18(30 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.64(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NOH})$, $8.35(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NOH}), 7.71 \sim 7.67(\mathrm{~m}, 7 \mathrm{H}$, TBDPS$), 7.64(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}$, TBDPS $)$, 7.47-7.36 (m, 12H, TBDPS), $7.31(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}), 6.77(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}), 4.16(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}), 3.90(\mathrm{~m}, 2 \mathrm{H}$, OCH), $2.57\left(\mathrm{ddd}, J=15.9,5.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 2.46(\mathrm{dt}, J=15.9,5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH} 2), 2.36(\mathrm{dt}$, $\left.J=14.6,6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 2.28\left(\mathrm{ddd}, J=14.6,6.8,4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 2.14(\mathrm{~s}, 1 \mathrm{H}), 1.67(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{OCCH}_{2}\right), 1.57\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCCH}_{2}\right), 1.073(\mathrm{~s}, 9 \mathrm{H}, \mathbf{T B D P S}), 1.069(\mathrm{~s}, 9 \mathrm{H}, \mathbf{T B D P S}), 1.04(2 \mathrm{x} \mathrm{d}, J=6.2$ $\left.\mathrm{Hz}, 6 \mathrm{H}, \mathbf{C H}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl3) $\delta 149.67,149.50,136.49,136.33,134.28,134.27,134.08$, $134.03,130.52,128.36,70.69,70.11,66.32,66.11,46.37,46.36,46.01,45.99,37.40,32.89,27.62,24.42$, 24.38, 19.88; IR (thin film): 3281 (br, m), 2932 (m), 1428 (m), 1111 (s), 738 (m), 703 (s) cm ${ }^{=1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{NNaO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]: 408.1969$. Found: 408.1970.

(\pm)-204
$\mathrm{H}_{2} \mathrm{NOH} \cdot \mathrm{HCl}$
$\mathrm{MgSO}_{4}, \mathrm{Pyr}$
99\% yield

$(\pm)-205$

Oxime 205: $\mathrm{R}_{f}=0.12$ (25\% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \quad 9.16$ (br s, 1 H , NOH), 8.81 (br s, 1H, NOH), 7.71~7.66 (m, 8H, TBDPS), 7.45~7.35 (m, 12H, TBDPS), $7.26(\mathrm{t}, J=6.3$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{NCH}), 6.67(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}), 4.15(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}), 3.94(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}), 2.63(\mathrm{ddd}, J=$ $15.8 \mathrm{~Hz}, 6.8 \mathrm{~Hz}, 5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}$), $2.55\left(\mathrm{ddd}, J=15.8 \mathrm{~Hz}, 5.3 \mathrm{~Hz}, 4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 2.45$ (ddd, $\left.J=14.6 \mathrm{~Hz}, 7.1 \mathrm{~Hz}, 6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 2.30(\mathrm{ddd}, J=14.6 \mathrm{~Hz}, 6.6 \mathrm{~Hz}, 4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH} 2), 1.66-$ $1.52\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCCH}_{2}\right), 1.069(\mathrm{~s}, 9 \mathrm{H}, \mathbf{T B D P S}), 1.065(\mathrm{~s}, 9 \mathrm{H}, \mathbf{T B D P S}), 1.05\left(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 6 \mathrm{H}, \mathbf{C H}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl3) $\delta 149.54,148.81,148.64,136.02,135.99,133.48,133.47,133.38,133.33$, $130.09,127.89,69.73,69.24,64.60,64.52,45.08,44.63,36.70,32.38,27.11,23.78,19.35$; IR (thin film): 3268 (br, m), 2931 (m), 2858 (m), 1428 (m), 1112 (s), 738 (m), 703 (s) $\mathrm{cm}^{=1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{NNaO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]$: 408.1969. Found: 408.1971.

$(\pm)-210$

HO
(\pm)-211

Oxime 211: $\mathrm{R}_{f}=0.15\left(50 \%\right.$ EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NOH})$, $7.43(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NOH}), 7.40(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}), 6.80(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}), 4.13-4.00(\mathrm{~m}, 10 \mathrm{H}, \mathbf{C H}-$ $\left.{ }_{2} \mathbf{C H}_{\mathbf{2}} \& \mathbf{O C H}\right), 3.38(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{O H}), 2.80(\mathrm{qd}, J=17.6,5.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCHCH}), 2.58(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{NCHCH}_{2}\right), 1.82\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCHCH}_{2}\right), 1.17\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CHCH}_{3}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $147.22,146.88,110.19,110.05,65.08,64.97,64.78,64.67,63.97,63.86,44.99,44.93,37.78,32.99,23.18$, 23.14; IR (thin film): 3313 (br s), 2970 (s), 1416 (m), 1143 (m), 1065 (m), 948 (m) $\mathrm{cm}^{=1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]: 190.1079$. Found: 190.1076.

Preparation of Silyl-Protected Oximes 198, 206, and 212

(Representative Procedure)

To a solution of oxime $\mathbf{2 0 5}\left(2.9 \mathrm{~g}, 7.6 \mathrm{mmol}\right.$, azeotroped in toluene) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (75 ml) was added imidazole ($1 \mathrm{~g}, 15.2 \mathrm{mmol}$). The solution was cooled to $0^{\circ} \mathrm{C}$ in an ice bath and tertbutylsilyl chloride ($0.6 \mathrm{~g}, 4 \mathrm{mmol}$) was added. The reaction was stirred cold for 45 minutes. Then, another portion of tertbutylsilyl chloride ($0.6 \mathrm{~g}, 4 \mathrm{mmol}$) was added and the reaction was allowed to gradually come to room temperature overnight. The reaction was extracted with a 50% saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and the aqueous was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated, and purified by flash chromatography $(0 \% \rightarrow 2 \% \rightarrow 4 \% \rightarrow 8 \% \rightarrow 15 \%$ EtOAc/Hexanes) to yield the TBS-protected oxime 206 as an oil ($3 \mathrm{~g}, 79 \%$ yield).

\boldsymbol{O}-TBS Oxime 198: $\mathrm{R}_{\mathrm{f}}=0.21(10 \%$ EtOAc/hexanes $) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71 \sim 7.68$ $(\mathrm{m}, 8 \mathrm{H}$, TBDPS $), 7.47 \sim 7.36(\mathrm{~m}, 13 \mathrm{H}$, TBDPS \& NCH), $6.95(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}), 4.17(\mathrm{~m}, 2 \mathrm{H}$, OCH), $3.88(\mathrm{dtd}, J=13.2,7.0,3.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}), 2.62(\mathrm{ddd}, J=15.7,5.9,4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH} 2), 2.43$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 2.36\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 2.30\left(\mathrm{ddt}, J=14.5,6.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right)$, $2.13(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{O H}), 1.95(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{O H}), 1.66\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{OCHCH}_{2}\right), 1.55(\mathrm{ddd}, J=14.3$, $\left.6.4,3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2}\right), 1.079\left(\mathrm{~m}, 18 \mathrm{H}+3 \mathrm{H}+3 \mathrm{H}, \mathbf{T B D P S} \& \mathrm{CHCH}_{3}\right), 0.91(\mathrm{~s}, 9 \mathrm{H}, \mathbf{T B S}), 0.89(\mathrm{~s}$, 9H, TBS), 0.127 ($\mathrm{s}, 6 \mathrm{H}, \mathbf{T B S}$), $0.123(\mathrm{~s}, 6 \mathrm{H}, \mathbf{T B S}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.51,152.44,135.98$, $133.87,133.84,133.62,133.51,130.05,130.01,129.99,127.89,127.88,127.85,127.84,70.57,70.09$, $66.04,65.88,45.97,45.47,37.01,32.87,27.14,27.12,26.23,26.15,23.99,23.96,19.39,19.38,18.30$, 18.21, -5.12, -5.16; IR (thin film): 3440 (br, m), 2931 (s), 1428 (m), 1252 (m), 1111 (s), 703 (s) $\mathrm{cm}^{=1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{28} \mathrm{H}_{46} \mathrm{NO}_{3} \mathrm{Si} 2[\mathrm{M}+\mathrm{H}]: 500.3020$. Found: 500.3017.

79\% yield
(\pm)-205

$(\pm)-206$
\boldsymbol{O}-TBS Oxime 206: $\mathrm{R}_{f}=0.72$ (25% EtOAc/hexanes); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73 \sim 7.68$ (m, 8H, TBDPS), $7.47 \sim 7.37(\mathrm{~m}, 12 \mathrm{H}, \mathbf{T B D P S}), 7.33(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}), 6.85(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}$, NCH), 4.17 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{OCH}$), 4.01 (ddqt, $J=18.1 \mathrm{~Hz}, 9.1 \mathrm{~Hz}, 6.1 \mathrm{~Hz}, 3.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{O C H}), 2.70$ (ddd, $J=15.6$ $\left.\mathrm{Hz}, 7.1 \mathrm{~Hz}, 5.5 \mathrm{~Hz}, 1 \mathrm{H} \mathrm{NCHCH}_{2}\right), 2.57(\mathrm{ddd}, J=15.7 \mathrm{~Hz}, 9.9 \mathrm{~Hz}, 5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH} 2), 2.53(\mathrm{dt}, J=$ $\left.14.5 \mathrm{~Hz}, 6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 2.5(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{O H}), 2.31(\mathrm{ddd}, J=14.5 \mathrm{~Hz}, 5.9 \mathrm{~Hz}, 4.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{NCHCH}_{2}\right), 2.27(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{O H}), 1.61\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCHCH}_{2}\right), 1.093\left(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 1.09$ $(\mathrm{s}, 18 \mathrm{H}, \mathbf{T B D P S}), 1.07\left(\mathrm{~d}, J=6.4,3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 0.92(\mathrm{~s}, 9 \mathrm{H}, \mathbf{T B S}), 0.91(\mathrm{~s}, 9 \mathrm{H}, \mathbf{T B S}), 0.14(\mathrm{~s}, 6 \mathrm{H}, \mathbf{T B S})$, 0.13 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{TBS}$) ${ }^{13}{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.31,152.10,136.06,136.01,133.53,133.46,133.38$, $133.25,130.13,130.11,127.93,127.90,69.99,69.48,64.49,64.31,44.99,44.03,36.52,32.86,27.14$, 26.23, 26.16, 23.82, 19.39, 19.34, 18.29, 18.23, -5.14, -5.16; IR (thin film): 3452 (br, m), 2931 (s), 2858 (s), 1472 (m), 1112 (s), 703 (s) $\mathrm{cm}^{=1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{28} \mathrm{H}_{46} \mathrm{NO}_{3} \mathrm{Si} 2$ [M+H]: 500.3020. Found: 500.3016.

(\pm)-211

TBSO
(\pm)-212

O-TBS Oxime 212: $\mathrm{R}_{f}=0.33$ ($30 \% \mathrm{EtOAc} /$ hexanes) ; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47(\mathrm{t}, J=$ $6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}), 6.92(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}), 4.13-3.99\left(\mathrm{~m}, 10 \mathrm{H}, \mathbf{C H}_{2} \mathbf{C H}_{\mathbf{2}} \& \mathrm{OCH}\right), 3.40(\mathrm{~d}, J=11.7$ $\mathrm{Hz}, 2 \mathrm{H}, \mathbf{O H}), 2.80\left(\mathrm{qd}, J=15.9,5.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 2.58(\mathrm{~d}, J=6.5,2 \mathrm{H}, \mathrm{NCHCH} 2), 1.85 \sim 1.75(\mathrm{~m}$, $\left.4 \mathrm{H}, \mathrm{OCHCH}_{2}\right), 1.16\left(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CHCH}_{3}\right), 0.93(\mathrm{~d}, J=2.1,18 \mathrm{H}, \mathbf{T B S}), 0.16(\mathrm{~d}, J=3.9,12 \mathrm{H}, \mathbf{T B S}) ;$ ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.12,150.68,110.54,110.45,65.20,65.16,64.87,64.81,63.98,63.86$, $45.19,37.94,33.56,26.21,26.16,23.41,23.37,18.33,18.27,-5.14$; IR (thin film): 3541 (br s), 2930 (s), 2858 (s), 1473 (m), 1252 (m), 1143 (w), 1065 (w), 927 (m), 838 (m) $\mathrm{cm}^{=1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{NO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]: 304.1944$. Found: 304.1935.

Preparation of Nitrone Precursors 182, 200, and 202

(Representative Procedure)
A solution of alcohol $206(1.1 \mathrm{~g}, 3.6 \mathrm{mmol})$ and pyridine $(10 \mathrm{ml})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml})$ was cooled to $0^{\circ} \mathrm{C}$ in an ice bath. To this was added tosyl chloride $(2.7 \mathrm{~g}, 14.4 \mathrm{mmol})$. The solution was allowed to gradually warm to room temperature overnight (20 h). The reaction was washed with 10% CuSO_{4} solution and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organics were washed with water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The crude oil was purified by flash chromatography $(1 \% \rightarrow 2 \% \rightarrow 3 \% \mathrm{EtOAc} / \mathrm{hexanes})$ to provide tosyl alcohol $200(1.3 \mathrm{~g}, 81 \%$ yield), which was either used immediately or temporarily stored as a solution (1 M in benzene, over molecular sieves) in the freezer.

Tosyl Alcohol 182: $\mathrm{R}_{f}=0.35$ (10% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta{ }^{1} \mathrm{H}-$ NMR (400 MHz; CDCl_{3}): $\delta 7.62-7.55(\mathrm{~m}, 12 \mathrm{H}, \mathbf{P h}), 7.47-7.35(\mathrm{~m}, 12 \mathrm{H}, \mathbf{P h}), 7.30(\mathrm{dd}, J=7.1,5.3 \mathrm{~Hz}, 1 \mathrm{H}$, NCH), 7.19 (dd, $J=18.8,8.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathbf{P h}), 6.84(\mathrm{dd}, J=6.7,4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}), 4.53(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}), 3.79$ $(\mathrm{m}, 2 \mathrm{H}, \mathrm{OCH}), 2.46\left(\mathrm{dq}, J=12.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 2.40(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 6 \mathrm{H}, \mathbf{T s}), 2.12(\mathrm{dt}, J=14.8$, $\left.5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 2.04\left(\mathrm{ddd}, J=14.8,7.2,4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 1.95(\mathrm{dt}, J=15.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{NCHCH}_{2}\right), 1.87\left(\mathrm{ddt}, J=13.9,8.5,5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2}\right), 1.63(\mathrm{ddd}, J=14.1,7.1,5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}-$ $\left.{ }_{2}\right), 1.53\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCHCH}_{2}\right), 1.11\left(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 1.08\left(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 1.02(\mathrm{~s}$, $18 \mathrm{H}, \boldsymbol{t}$-Bu), $0.91\left(\mathrm{~s}, 9 \mathrm{H}, \boldsymbol{t}\right.$-Bu), $0.90(\mathrm{~s}, 9 \mathrm{H}, \boldsymbol{t}$ - Bu$), 0.13\left(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 6 \mathrm{H}, \mathbf{C H}_{3}\right), 0.12\left(\mathrm{~s}, 6 \mathrm{H}, \mathbf{C H}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 152.10,151.99,144.57$, 144.55, 136.01, 135.97, 134.27, 134.14, 133.69, $133.56,130.04,130.02,129.99,129.85,129.79,127.90,127.86,127.83,77.45,77.39,67.87,67.47,43.72$, $43.30,35.93,31.46,27.10,26.26,26.20,21.77,21.38,21.14,19.37,19.35,18.32,18.28,-5.09,-5.13$; IR (thin film): 2931 (m), 1365 (m), 1177 (s), 1111 (m), 899 (m), 703 (m) cm^{-1}; HRMS (ESI) Calcd. for $\mathrm{C}_{35} \mathrm{H}_{52} \mathrm{NO}_{5} \mathrm{SSi}_{2}[\mathrm{M}+\mathrm{H}]: 654.3105$. Found: 654.3087.

Tosyl Alcohol 200: $\mathrm{R}_{f}=0.56(20 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.55~7.49 (m, 12H, Ph), 7.34~7.21 (m, 12H, Ph), $7.16(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}), 7.13(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H}$, Ph), $6.70(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}), 4.46(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}), 3.75$ (quintet, $J=5.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}), 2.30(\mathrm{dt}, J=$ $\left.16.0 \mathrm{~Hz}, 5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 2.29(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Ts}), 2.26(\mathrm{dt}, J=16.0 \mathrm{~Hz}, 5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH} 2), 2.13(\mathrm{dt}, J$ $\left.=14.6 \mathrm{~Hz}, 6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 2.06(\mathrm{ddd}, J=14.6 \mathrm{~Hz}, 6.2 \mathrm{~Hz}, 4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}), 1.74(\mathrm{ddd}, J=$ $\left.14.5 \mathrm{~Hz}, 7.5 \mathrm{~Hz}, 6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2}\right), 1.68\left(\mathrm{dd}, J=14.0 \mathrm{~Hz}, 7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2}\right), 1.49(\mathrm{tt}, J=14.0$ $\left.\mathrm{Hz}, 5.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCHCH}_{2}\right), 0.93\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 0.90(\mathrm{~s}, 18 \mathrm{H}, \boldsymbol{t}-\mathrm{Bu}), 0.89(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CHCH}_{3}\right), 0.79\left(\mathrm{~s}, 9 \mathrm{H}, \boldsymbol{t}\right.$-Bu), $0.77(\mathrm{~s}, 9 \mathrm{H}, \boldsymbol{t}$-Bu$), 0.005\left(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 6 \mathrm{H}, \mathbf{C H}_{3}\right), 0.00\left(\mathrm{~s}, 6 \mathrm{H}, \mathbf{C H}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta \quad 18.20,18.25,19.35,19.39,21.27,21.47,21.74,26.15,26.22,27.08,33.09$, $37.22,44.25,44.62,68.30,68.71,77.88,77.96,127.70,127.72,127.81,127.83,127.85,129.81,129.93$, $129.97,133.64,133.70,133.77,134.81,134.87,135.93,135.95,135.98,144.46,144.49,152.09,152.18,-$ 5.11, -5.15; IR (thin film): 2931 (m), 2858 (m), 1363 (m), 1177 (s), 1111 (m), 919 (m), 703 (m) cm^{-1}; HRMS (ESI) Calcd. for $\mathrm{C}_{35} \mathrm{H}_{52} \mathrm{NO}_{5} \mathrm{SSi}_{2}[\mathrm{M}+\mathrm{H}]:$ 654.3105. Found: 654.3113 .

Tosyl Alcohol 202: $\mathrm{R}_{f}=0.39(20 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 7.79(\mathrm{dd}, J=$ $8.3,1.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathbf{T s}), 7.36(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}), 7.31(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathbf{T s}), 6.80(\mathrm{t}, J=5.3 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{NCH}), 4.87$ (septet, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{O C H}), 3.91\left(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 8 \mathrm{H}, \mathbf{C H}_{2} \mathbf{C H}_{2}\right), 2.72(\mathrm{dd}, J=16.1,5.5$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 2.61\left(\mathrm{dd}, J=16.1,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 2.43(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Ts}), 2.42(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCHCH})$, $2.08\left(\mathrm{ddd}, J=15.0,5.6,1.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCHCH}_{2}\right), 1.84\left(\mathrm{dd}, J=15.0,6.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCHCH}_{2}\right), 1.31(\mathrm{~d}, J=6.3$ $\left.\mathrm{Hz}, 6 \mathrm{H}, \mathrm{CHCH}_{3}\right), 0.92(\mathrm{~s}, 18 \mathrm{H}, \mathbf{T B S}), 0.15(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 12 \mathrm{H}, \mathbf{T B S}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $151.06,150.65,144.50,134.93,129.79,127.86,127.84,108.31,108.16,76.53,76.50,64.98,64.95,64.93$,
64.87, 43.89, 43.73, 38.12, 33.77, 26.20, 26.15, 22.45, 22.40, 21.75, 18.31, 18.24, -5.13, -5.15; IR (thin film): 2930 (m), 1362 (m), 1189 (m), 1177 (s), 920 (m) $\mathrm{cm}^{=1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{NO}_{6} \mathrm{SSi}$ $[\mathrm{M}+\mathrm{H}]: 458.2033$. Found: 458.2034.

Preparation of $\boldsymbol{\beta}$-hydroxyketone 208

To a solution of diisopropylamine ($13.3 \mathrm{ml}, 95 \mathrm{mmol}$) in THF $(50 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ was added n-BuLi (1.6 M in hexanes, $47.5 \mathrm{ml}, 76 \mathrm{mmol})$. This was stirred at $0^{\circ} \mathrm{C}$ for 30 minutes, then cooled to -78 ${ }^{\circ} \mathrm{C}$ before adding tertbutylacetate $(10.2 \mathrm{ml}, 76 \mathrm{mmol}$, as a solution in THF (20 ml), dried over molecular sieves). After 30 minutes, S-hydroxybutyrate ($2.46 \mathrm{ml}, 19.0 \mathrm{mmol}$, as a solution in THF (50 ml), dried over molecular sieves) was added followed by a THF rinse (30 ml). The reaction was allowed to stir cold for 1.25 hours at $-78{ }^{\circ} \mathrm{C}$, then above the cold bath for 30 minutes, and finally at room temperature for 15 minutes (The glass was still frosty). The reaction was quenched with water, the layers separated, and the organic portion concentrated. The aqueous portion was extracted with EtOAc, and the combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated, and subjected to flash chromatography $(5 \% \rightarrow 7.5 \% \rightarrow 10 \% \rightarrow 20 \% \rightarrow 30 \% \mathrm{EtOAc} /$ hexanes $)$ to provide the pure product as a light yellow oil $(3.29 \mathrm{~g}$, 87% yield).

Known compound; CAS 125404-65-1. Characterization data matched literature reports.

Preparation of Ketal Lactone 209

To a solution of β-hydroxyketone 208 ($3.2 \mathrm{~g}, 14.5 \mathrm{mmol}$) in 1,2-dichloroethane (100 ml) was added p-toluenesufonic acid ($552 \mathrm{mg}, 2.9 \mathrm{mmol}$) and 1,2-ethanediol $(8.1 \mathrm{ml}, 145 \mathrm{mmol})$. The resulting heterogenous solution was heated to $100{ }^{\circ} \mathrm{C}$ for 30 hours. The reaction was cooled and directly adsorbed onto silica gel. Flash chromatography $(10 \% \rightarrow 15 \% \rightarrow 20 \% \rightarrow 30 \% \rightarrow 40 \%$ EtOAc/hexanes) provided 209 as a white crystalline solid ($1.7 \mathrm{~g}, 68 \%$ yield $)$.

Characterization data matched literature reports for the known (S)-(-) stereoisomer; CAS 1202377-91-0.

Preparation of Ketal Lactol 210

$(\pm)-209$

99\% yield

$(\pm)-210$

Lactone $209(1.6 \mathrm{~g}, 8.7 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(90 \mathrm{ml})$ was cooled to $-78{ }^{\circ} \mathrm{C}$ for the addition of diisobutylaluminum hydride solution (1 M in hexanes, $10.2 \mathrm{ml}, 10.2 \mathrm{mmol}$). This stirred cold for one hour at which time the reaction was quenched at $-78{ }^{\circ} \mathrm{C}$ with $\mathrm{MeOH}(9 \mathrm{ml})$ and allowed to warm to room temperature. The resulting reaction solution was vigorously stirred with an added solution of Rochelle's salt (9 g in $100 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$) for one hour. Following separation of the layers, the aqueous portion was extracted with $\mathrm{Et}_{2} \mathrm{O}$, and the combined organics were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to provide lactol 210 as a 1:1 mixture of anomers ($1.6 \mathrm{~g}, 100 \%$ yield), used in the next step without further purification.

Characterization data matched literature reports for the known (S) stereoisomer; CAS 1202377-94-3.

Preparation of Ketal Nitrone 201 and Ketal Cyclic Oxime 213

(\pm)-202
 $70^{\circ} \mathrm{C}, 1 \mathrm{~h}$
$(\pm)-201$

(\pm)-213

To the activated alcohol ($110 \mathrm{mg}, 0.28 \mathrm{mmol}$) in THF (3 ml) was added TBAF ($1 \mathrm{M}, 320$ $\mu 1,0.32 \mathrm{mmol})$. The reaction was stirred at ambient temperature for 1 hour, then heated to $70{ }^{\circ} \mathrm{C}$ for 1 hour. After cooling to room temperature, the reaction was filtered through celite and the solution was adsorbed onto celite and subjected to flash chromatography (cyclic oxime: $5 \% \rightarrow 10 \% \rightarrow 15 \% \rightarrow 20 \% \rightarrow 100 \%$ acetone/ hexanes. Nitrone: $0 \% \rightarrow 1 \% \rightarrow 2 \% \rightarrow 10 \%$ MeOH/acetone; then a second purification $\left.0 \% \rightarrow 1 \% \rightarrow 2 \% \rightarrow 10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to afford both products as clear oils.

Nitrone 201: $\mathrm{R}_{f}=0.44\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 6.97(\mathrm{t}, J=3.4 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{NCH}), 4.08-3.95\left(\mathrm{~m}, 5 \mathrm{H}, \mathbf{C H}_{\mathbf{2}} \mathbf{C H}_{2} \& \mathrm{OCH}\right), 2.68(\mathrm{~d}, J=19.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH} 2), 2.57(\mathrm{~d}, J=19.3$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 2.17\left(\mathrm{ddd}, J=13.7,5.4,2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2}\right), 1.97(\mathrm{dd}, J=13.7,9.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{OCHCH}_{2}\right), 1.56\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 132.91,103.67,65.05,64.78$, 62.60, 39.48, 36.70, 18.89; IR (thin film): 3200 (br m), 2887 (s), 1375 (m), 1210 (s), 1047 (s), 949 (m) $\mathrm{cm}^{=1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]:$ 172.0974. Found: 172.0968.

Cyclic Oxime 213: $\mathrm{R}_{f}=0.27$ ($50 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 7.52(\mathrm{dd}, J=$ 6.0, $4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}$), $3.95\left(\mathrm{~m}, 5 \mathrm{H}, \mathbf{C H}_{\mathbf{2}} \mathbf{C H}_{\mathbf{2}} \& \mathrm{OCH}\right), 3.10(\mathrm{dd}, J=13.2,3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH} 2), 2.34$ $\left(\mathrm{ddd}, J=13.2,6.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 2.10\left(\mathrm{dd}, J=14.0,11.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2}\right), 1.92(\mathrm{dt}, J=14.0$, $\left.2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2}\right), 1.33\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.69,105.97$, $73.41,65.03,64.74,48.05,37.39,21.75$; IR (thin film): $2970(\mathrm{~s}), 1373(\mathrm{~s}), 1130(\mathrm{~s}), 1054(\mathrm{~s}), 948(\mathrm{~s}) \mathrm{cm}^{=1}$; HRMS (ESI) Calcd. for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]:$ 172.0974. Found: 172.0966.

Preparation of Ketal Cycloadducts 214 and 215

TBSO
(\pm)-202
 RT, 5 min
ii. (\pm)-37 $70^{\circ} \mathrm{C}, 1 \mathrm{~h}$ dr 3:1

(\pm)-214

(\pm)-215

To a solution of the tosyl nitrone precursor ($54 \mathrm{mg}, 0.12 \mathrm{mmol}$) in acetonitrile ($600 \mu \mathrm{l}$) was added a solution of tetrabutylammonium fluoride (1 M in $\mathrm{THF}, 128 \mu \mathrm{l}, 0.128 \mathrm{mmol}$). After stirring at room temperature for 5 minutes, the enone ($24.5 \mathrm{mg}, 0.06 \mathrm{mmol}$) was added and the reaction stirred at $70{ }^{\circ} \mathrm{C}$ for 1 hour. The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (to dissolve any residual enone), directly adsorbed onto silica gel and purified by flash chromatography $(0 \% \rightarrow 2.5 \% \rightarrow 5 \% \rightarrow 20 \%$ Acetone/hexanes) to provide a mixture of two isoxazolidine diastereomers ($31 \mathrm{mg}, 89 \%$ yield, $d r 3: 1$). (The diastereomers could be chromatographically separated for purification purposes, but were too close in polarity for total separation.)

Isoxazolidine 214: $\mathrm{R}_{f}=0.14$ (20% acetone/pentane); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 7.39(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{A r}), 7.39(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{A r}), 7.32-7.20(\mathrm{~m}, 5 \mathrm{H}, \mathbf{P h}), 6.93(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 5.40(\mathrm{~d}$, $\left.J=16.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{C H}_{2} \mathrm{Ph}\right), 5.37\left(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{C H}_{2} \mathrm{Ph}\right), 4.00-3.84\left(\mathrm{~m}, 4 \mathrm{H}, \mathbf{C H}_{2} \mathbf{C H}_{2}\right), 3.63-3.50(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{NCH} \& \mathrm{NCH}), 3.00\left(\mathrm{t}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 2.82\left(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{O}=\mathrm{CCH}_{2}\right), 2.50(\mathrm{dd}, J=$ $\left.13.6,5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 2.19\left(\mathrm{dd}, J=14.1,6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 1.97(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{NCHCH}_{2}\right), 1.70\left(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 1.57\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 1.19(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}$, CHCH_{3}), $1.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathbf{C H}_{3}\right), 0.96\left(\mathrm{~s}, 3 \mathrm{H}, \mathbf{C H}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 214.24, 180.93, 141.15, $137.49,134.64,133.04,128.66,127.27,126.54,125.73,123.46,106.35,102.33,93.92,77.36,64.89$, $64.15,61.93,54.82,52.90,48.52,43.45,40.76,38.46,33.77,21.09,20.91,20.07$; IR (thin film): 3401 (br m), 2932 (s), 1750 (s), 1716 (s), 1451 (s), 1350 (s), 1124 (s), 729 (s) cm^{-1}; HRMS (ESI) Calcd. for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{BrN}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}+2]$: 583.1651. Found: 583.1633.

Isoxazolidine 215: $\mathrm{R}_{f}=0.19$ (20% acetone/pentane); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 7.38(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 7.31(\mathrm{~m}, 2 \mathrm{H}, \mathbf{P h}), 7.20(\mathrm{~m}, 3 \mathrm{H}, \mathbf{P h}), 7.00(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 6.88(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$, Ar), $5.40\left(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{C H}_{2} \mathrm{Ph}\right), 5.38\left(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{C H}_{2} \mathrm{Ph}\right), 4.01(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathbf{C H}_{2} \mathrm{CH}_{2}$), $3.91\left(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathbf{C H}_{2} \mathrm{CH}_{2}\right), 3.55(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH} \& \mathrm{NCH}), 3.24(\mathrm{~d}, J=19.0 \mathrm{~Hz}, 1 \mathrm{H}$,
$\left.\mathrm{O}=\mathrm{CCH}_{2}\right), 2.91\left(\mathrm{t}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 2.56\left(\mathrm{~d}, J=19.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{O}=\mathrm{CCH}_{2}\right), 2.26(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{NCHCH}_{2}\right), 1.94\left(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 1.73\left(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 1.56(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{NCHCH}_{2}\right), 1.20\left(\mathrm{~m}, 6 \mathrm{H}, \mathbf{C H}_{\mathbf{3}} \& \mathrm{CHCH}_{3}\right), 0.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathbf{C H}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 178.86, $141.10,137.59,134.68,128.67,127.30,126.80,126.56,123.51,122.82,106.42,102.60,98.84,93.26$, $77.36,64.97,64.07,61.80,54.45,53.30,49.35,45.13,43.19,40.32,39.80,33.94,21.10,20.70,19.89 ;$ IR (thin film): 3279 (br m), 2930 (s), 1725 (s), 1450 (s), 1103 (s), 734 (s), 703 (s) cm^{-1}; HRMS (ESI) Calcd. for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{BrN}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}+2]$: 583.1651. Found: 583.1623.

Preparation of \boldsymbol{O}-TBDPS Cycloadducts 217 and 218

To a solution of the tosyl nitrone precursor ($118 \mathrm{mg}, 0.18 \mathrm{mmol}$) in benzene $(900 \mu \mathrm{l})$ was added $\mathrm{MgSO}_{4}(43 \mathrm{mg}, 0.36 \mathrm{mmol})$ and the enone $(24.5 \mathrm{mg}, 0.06 \mathrm{mmol})$. Lastly, tetrabutylammonium difluorotriphenylsilicate ($97 \mathrm{mg}, 0.18 \mathrm{mmol}$) was added in two portions. This stirred at ambient temperature overnight (17 hours). At that time the heterogeneous mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{ml})$ and filtered through a celite plug. The filtrate was directly adsorbed onto silica gel and purified by flash chromatography $(0 \% \rightarrow 2.5 \% \rightarrow 5 \% \rightarrow \rightarrow 20 \% \mathrm{EtOAc} /$ hexanes $)$ to provide two isoxazolidine diastereomers (39 mg total, 84% yield, $d r 7: 3$), the desired isoxazolidine (12 mg) and the C3-epimer (27 mg), both as white foams.

Isoxazolidine 217: $\mathrm{R}_{f}=0.42$ ($15 \% \mathrm{EtOAc} /$ toluene $) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 7.70(\mathrm{~m}, J=$ $1.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathbf{P h}$), 7.57 (dd, $J=7.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 7.44-7.27$ (m, 10H, Ph \& Ar), 7.23 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$, Ph), $6.91(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 5.42\left(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{C H}_{2} \mathrm{Ph}\right), 5.38\left(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{C H}_{2} \mathrm{Ph}\right), 3.98$ (br s, 1H, OCH), 3.79 (br m, 1H, NCH), 3.42 (br m, 2H, $\mathrm{NCH} \& \mathrm{NCHCH}_{2}$), $2.90\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{O}=\mathrm{CCH}_{2}\right.$), 2.44 (br m, 1H, NCHCH2 $), 2.02\left(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 1.91(\mathrm{dt}, J=14.4,3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}), 1.55$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 1.25\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 1.13\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{SitBu} \& \mathrm{CHCH}_{3}\right), 1.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathbf{C H}_{3}\right), 0.97(\mathrm{~s}$,
$3 \mathrm{H}, \mathbf{C H}_{3}$) ${ }^{13} \mathrm{C}^{\mathrm{N} M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.35,19.24,19.99,20.62,22.44,27.10,32.31,38.16,39.59$, $43.70,44.96,48.24,48.67,55.01,61.28,65.67,77.36,93.73,102.10,123.49,125.97,126.57,127.20$, $127.78,128.65,129.80,129.86,133.98,134.02,134.40,136.01,136.06,137.78,141.04,180.54,213.66 ;$ IR (thin film): 2930 (s), 1751 (s), 1718 (s), 1450 (m), 1104 (s), 733 (s) cm^{-1}; HRMS (ESI) Calcd. for $\mathrm{C}_{44} \mathrm{H}_{49} \mathrm{BrN}_{2} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}+2]: 779.2723$. Found: 779.2707.

Isoxazolidine 218: $\mathrm{R}_{f}=0.37(15 \% \mathrm{EtOAc} /$ toluene $) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 7.72-7.67(\mathrm{~m}$, 4H, Ph), 7.46-7.39 (m, 6H, Ph), 7.37 (dd, $J=8.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 7.33-7.29(\mathrm{~m}, 2 \mathrm{H}, \mathbf{P h}), 7.26-7.22(\mathrm{~m}$, $3 \mathrm{H}, \mathbf{P h}), 6.82(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 6.71(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 5.42\left(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{C H}_{2} \mathrm{Ph}\right), 5.39$ $\left(\mathrm{d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{C H}_{2} \mathrm{Ph}\right), 4.03(\mathrm{br} \mathrm{m}, 1 \mathrm{H}, \mathrm{NCH}), 3.93(\mathrm{br} \mathrm{m}, 1 \mathrm{H}, \mathrm{NCH}), 3.37(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH} \&$ NCHCH_{2}), $3.29\left(\mathrm{~d}, J=18.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{O}=\mathbf{C C H}_{2}\right), 2.53\left(\mathrm{~d}, J=18.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{O}=\mathrm{CCH}_{2}\right), 2.26(\mathrm{br} \mathrm{m}, 1 \mathrm{H}$, $\left.\mathrm{NCHCH}_{2}\right), 1.88\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 1.68\left(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 1.31(\mathrm{t}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{NCHCH}_{2}\right), 1.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathbf{C H}_{3}\right), 1.19\left(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 1.14(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SitBu}), 0.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathbf{C H}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta \quad 216.00,178.69,141.09,137.59,135.97,135.92,135.19,134.59,134.00$, $133.80,130.02,129.90,128.64,127.88,127.82,127.28,126.84,123.46,122.43,102.48,93.00,66.02$, $60.98,54.39,49.61,49.56,45.10,43.08,42.08,39.62,32.07,27.08,20.84,19.93,19.76,19.43$; IR (thin film): 3278 (br w), 2963 (m), 1748 (s), 1722 (s), 1450 (m), 1125 (s), 1068 (s), 729 (s) cm^{-1}; HRMS (ESI) Calcd. for $\mathrm{C}_{44} \mathrm{H}_{49} \mathrm{BrN}_{2} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}+2]$: 779.2723. Found: 779.2703.

Preparation of Enantioenriched anti-Diol (12S,14R)-219

A solution of tetramethylammonium triacetoxyborohydride ($6 \mathrm{~g}, 22.8 \mathrm{mmol}$) in acetonitrile (15 ml) and acetic acid (20 ml) was cooled to $-40^{\circ} \mathrm{C}$. To this was added a solution of the $S-\beta-$ hydroxyketone ($768 \mathrm{mg}, 3.8 \mathrm{mmol}$) in acetonitrile (5 ml). The resulting icy slurry was sealed and placed in a cryocool for 5 days and mixed by hand every 24 hours. At this time, the reaction was allowed to warm to $0{ }^{\circ} \mathrm{C}$ in an ice bath and stirred for an additional 5 hours. The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, quenched via addition to a solution of Rochelle's salt (30 g) in water (100 ml), and carefully basified via
the addition of solid $\mathrm{Na}_{2} \mathrm{CO}_{3}(\sim 20 \mathrm{~g})$. The addition of water produced a clear solution, and the layers were separated. The aqueous portion was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were washed with saturated NaHCO_{3} solution and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. This provided the diol as an oil ($666 \mathrm{mg}, 86 \%$ yield).

Known compound; (racemic) CAS 139209-89-5. Characterization data matched literature reports.

Preparation of Enantioenriched Lactone (12S,14R)-203

Lactonization:

To a solution of the diol ($666 \mathrm{mg}, 3.26 \mathrm{mmol}$) in 1,2-dichloroethane (15 ml) was added pyridinium p-toluenesulfonic acid ($83 \mathrm{mg}, 0.33 \mathrm{mmol}$), and the reaction was heated to reflux overnight (17 h). At that time, the reaction mixture was filtered through a plug of silica gel using EtOAc as an eluent. The resulting solution was concentrated to provide the crude product as a light yellow oil (430 mg) .

Known compound; (racemic) CAS 121843-08-1. Characterization data matched literature reports.

TBDPS Protection:

To a solution of the crude alcohol ($424 \mathrm{mg}, 3.26 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{ml})$ was added imidazole ($666 \mathrm{mg}, 9.78 \mathrm{mmol}$). The solution was cooled to $0^{\circ} \mathrm{C}$ in an ice bath, and tertbutyldiphenylsilyl chloride $(0.94 \mathrm{ml}, 3.6 \mathrm{mmol})$ was added. This was allowed to stir at room temperature for 8 hours, then placed in the freezer overnight. The next day, the reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, extracted with $\mathrm{Et}_{2} \mathrm{O}$, washed with water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. Flash chromatography of the resulting residue provided the product as a clear oil ($1.1 \mathrm{~g}, 92 \%$ yield over 2 steps $)$.

Characterization data matched racemic silyl alcohol (\pm)-203.

Preparation of Spiro-epoxide 219

$(\pm)-218$
 80% yield

(\pm)-219

To a solution of trimethylsulfoxonium iodide ($145.3 \mathrm{mg}, 0.66 \mathrm{mmol}$) in DMSO (2.2 ml) was added $\mathrm{NaH}(60 \%$ in mineral oil, $26.4 \mathrm{mg}, 0.66 \mathrm{mmol}$). After stirring at room temperature for 4 hours, the resulting homogenous solution was added a solution of the ketone ($170 \mathrm{mg}, 0.22 \mathrm{mmol}$) in THF (4.4 ml) cooled to $0{ }^{\circ} \mathrm{C}$ in an ice bath to produce an opaque white solution. This was stirred at ambient temperature for 36 h , cooled to $0^{\circ} \mathrm{C}$, and quenched with saturated NaHCO_{3} solution. The mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and the aqueous layer was extracted with EtOAc. The combined organic portions were washed with brine solution, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated in vacuo, and purified by flash chromatography $(4 \% \rightarrow 8 \% \rightarrow 12 \% \rightarrow 30 \% \mathrm{EtOAc} / \mathrm{hexanes})$ to provide the desired product as a white foam ($140 \mathrm{mg}, 80 \%$ yield).
$\mathrm{R}_{f}=0.36(30 \%$ EtOAc/hexanes $) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 7.72(\mathrm{~m}, 4 \mathrm{H}, \mathbf{P h}), 7.42(\mathrm{~m}, 6 \mathrm{H}$, Ph), $7.34(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 7.30(\mathrm{~m}, 3 \mathrm{H}, \mathbf{P h}), 7.24(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 7.21(\mathrm{~m}, 2 \mathrm{H}, \mathbf{P h}), 6.87(\mathrm{t}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 5.35\left(\mathrm{~s}, 2 \mathrm{H}, \mathbf{C H}_{2} \mathrm{Ph}\right), 3.96(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCH}), 3.34(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OCH}), 3.33(\mathrm{~d}, J=5.5 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}-\mathrm{O}-\mathbf{C H}_{2}\right), 3.29\left(\mathrm{~m}, 1 \mathrm{H}, \mathbf{C H}_{2} \mathrm{C}-\mathrm{O}-\mathrm{CH}_{2}\right) 3.05(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCH}), 2.55(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH})$, 2.43 (br s, 1H, CH2 $\mathbf{C}-\mathrm{O}-\mathrm{CH}_{2}$), $2.20\left(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 1.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHCH}), 1.84(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{NCHCH}_{2}\right), 1.62\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 1.28 \sim 1.09\left(\mathrm{~m}: 9 \mathrm{H}, \boldsymbol{t} \mathbf{B u} ; 3 \mathrm{H}, \mathbf{C H}_{3} ; 3 \mathrm{H}, \mathrm{CHCH}_{3} ; 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 0.72$ ($\mathrm{s}, 3 \mathrm{H}$) ${ }^{13}{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 180.69,141.14,137.82,136.56,136.00,134.11,134.00,129.87$, $128.60,127.78,127.14,126.68,124.07,122.57,102.19,91.85,77.36,65.72,65.57,59.19,56.05,55.21$, $50.44,49.64,44.88,39.55,38.26,36.92,36.21,34.81,34.66,32.45,31.72,29.20,27.12,27.06,25.42$, $23.48,22.79,21.00,20.85,19.32,18.91,14.26,11.57$; IR (thin film): 2930 (s), 1723 (s), 1450 (s), 1105 (s), 734 (s), 703 (s) cm^{-1}; HRMS (ESI) Calcd. for $\mathrm{C}_{45} \mathrm{H}_{52} \mathrm{BrN}_{2} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}+2]$: 793.2880. Found: 793.2870.

Preparation Ammonium Salt 220

(\pm)-219

To a solution of the epoxide ($30 \mathrm{mg}, 0.04 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{THF}(3: 1,0.6 \mathrm{ml})$ cooled to $0^{\circ} \mathrm{C}$ in an ice bath was added $\mathrm{NaI}(30 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathrm{TMSCl}(12.5 \mathrm{ml}, 0.1 \mathrm{mmol})$. The clear solution became yellow and a precipitate formed. After stirring for 4 hours, the reaction was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and washed with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution. (Note: DO NOT wash with brine solution.) The aqueous layer was extracted with EtOAc. The combined organic extracts were concentrated in vacuo and purified by flash chromatography $\left(20 \% \rightarrow 40 \% \rightarrow 60 \% \rightarrow 80 \% \rightarrow 100 \%\right.$ EtOAc/hexanes $\left.\rightarrow 5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to provide the desired product as a clear glass ($26 \mathrm{mg}, 70 \%$ yield).
$\mathrm{R}_{f}=0.10\left(80 \%\right.$ EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 7.66(\mathrm{~m}, J=1.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathbf{P h})$, $7.54(\mathrm{dd}, J=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 7.50-7.40(\mathrm{~m}, 7 \mathrm{H}, \mathbf{P h}), 7.31(\mathrm{dd}, J=8.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 7.28(\mathrm{~m}, 1 \mathrm{H}$, Ph), $7.22(\mathrm{~m}, 1 \mathrm{H}, \mathbf{P h}), 7.13(\mathrm{~m}, 2 \mathrm{H}, \mathbf{P h}), 6.89(\mathrm{dd}, J=8.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 5.31\left(\mathrm{~s}, 2 \mathrm{H}, \mathbf{C H}_{2} \mathrm{Ph}\right), 5.16(\mathrm{~d}, J$ $\left.=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 4.10\left(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 4.01(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH} \& \mathrm{OCH}), 3.82(\mathrm{~m}, 1 \mathrm{H}$, NCH), $2.99\left(\mathrm{q}, J=13.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{HOCCH}_{2}\right), 2.81\left(\mathrm{dd}, J=12.4,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 2.49(\mathrm{dd}, J=14.7$, $\left.10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 2.41\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 2.21\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 2.15(\mathrm{dt}, J=15.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{NCHCH}_{2}\right), 1.84\left(\mathrm{dd}, J=15.1,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 1.24\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CHCH}_{2}\right), 1.07(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SitBu}), 1.04(\mathrm{~s}$, $3 \mathrm{H}, \mathbf{C H}_{3}$), $1.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathbf{C H}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 193.83, 180.27, 140.10, 137.40, 135.83, $134.43,132.87,132.76,130.50,130.48,128.71,128.24,128.21,127.40,127.22,126.40,123.95,108.64$, $102.07,98.63,86.22,77.36,75.58,68.75,65.64,64.58,61.68,51.33,46.51,45.11,36.22,35.10,29.86$, $26.95,26.35,26.28,20.70,19.15,13.36$; IR (thin film): not obtained; HRMS (ESI) Calcd. for $\mathrm{C}_{45} \mathrm{H}_{52} \mathrm{BrN}_{2} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}+2]: 793.2874$. Found: 793.2861.

Preparation of Diol 221

$(\pm)-220$

71\% yield

(\pm)-221

To a solution of the ammonium salt ($8 \mathrm{mg}, 0.009 \mathrm{mmol}$) in THF/AcOH ($180 \mu \mathrm{l} / 240 \mu \mathrm{l}$) was added activated zinc powder ($4 \mathrm{mg}, \sim 0.05 \mathrm{mmol}$). The reaction mixture was vigorously stirred under nitrogen for 18 h at ambient temperature, after which time the solvent had evaporated. The solvent mixture THF/AcOH ($180 \mu \mathrm{l} / 240 \mu \mathrm{l})$ was added again, and the reaction was stirred in a sealed flask for 2 more days. This was filtered through a pad of Celite, rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and concentrated in vacuo. The resulting yellowish oil was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with saturated NaHCO_{3} solution and the aqueous portion extracted with $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were concentrated and purified by flash chromatography (basic $\mathrm{Al}_{2} \mathrm{O}_{3}, 0 \% \rightarrow 1 \% \rightarrow 2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to provide the desired product as a clear oil ($5 \mathrm{mg}, 71 \%$ yield).
$\mathrm{R}_{f}=0.50\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, TLC plate pretreated with $\left.\mathrm{NH}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta$ $7.65(\mathrm{~m}, 4 \mathrm{H}, \mathbf{P h}), 7.48(\mathrm{dd}, J=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 7.39(\mathrm{~m}, 6 \mathrm{H}, \mathbf{P h}), 7.32(\mathrm{dd}, J=8.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r})$, $7.28(\mathrm{~m}, 2 \mathrm{H}, \mathbf{P h}), 7.21(\mathrm{~m}, 3 \mathrm{H}, \mathbf{P h}), 6.93(\mathrm{dd}, J=8.1,7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 5.36\left(\mathrm{~s}, 2 \mathrm{H}, \mathbf{C H}_{2} \mathrm{Ph}\right), 4.90(\mathrm{~d}, J=$ $2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{O H}), 4.31(\mathrm{~s}, 1 \mathrm{H}, \mathbf{O H}), 3.92(\mathrm{tt}, J=11.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{O C H}), 3.23\left(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right)$, $2.98(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}), 2.75(\mathrm{tt}, J=11.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}), 2.47\left(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HOCCH}_{2}\right), 2.22(\mathrm{~d}, J=$ $\left.10.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.02\left(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HOCCH}_{2}\right), 1.82(\mathrm{ddt}, J=12.2,4.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH})$, $1.74\left(\mathrm{td}, J=11.7,4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 1.63\left(\mathrm{ddt}, J=10.3,4.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 1.57(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{NCHCH}_{2}\right), 1.45\left(\mathrm{dd}, J=13.0,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 1.32\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 1.22\left(\mathrm{~s}, 3 \mathrm{H}, \mathbf{C H}_{3}\right), 1.05(\mathrm{~s}$, 9H, $\mathrm{Sit} \mathbf{B u}$), $0.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathbf{C H}_{3}\right), 0.75\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 185.31$, $140.15,137.31,136.57,135.89,135.84,134.76,134.54,133.70,129.74,129.72,128.66,127.71,127.68$, $127.27,126.87,126.59,124.01,102.23,82.93,81.97,77.36,66.16,61.05,56.35,55.56,52.49,46.38$, 46.06, 45.22, 43.74, 41.96, 36.13, 29.86, 27.19, 27.14, 21.68, 19.27, 11.79; IR (thin film):; HRMS (ESI) Calcd. for $\mathrm{C}_{45} \mathrm{H}_{53} \mathrm{BrN}_{2} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}+2]$: 795.3036. Found: 795.3028.

Preparation of Epoxide 222

$(\pm)-221$

$(\pm)-222$

To a solution of the diol $(10 \mathrm{mg}, 0.13 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mu \mathrm{l})$ at room temperature was added triethylamine $(175 \mu \mathrm{l}, 0.123 \mathrm{mmol})$ and $\mathrm{MsCl}(3 \mu \mathrm{l}, 0.039 \mathrm{mmol})$. After stirring for 3 hours, another portion of triethylamine $(175 \mu \mathrm{l}, 0.123 \mathrm{mmol})$ and $\mathrm{MsCl}(3 \mu \mathrm{l}, 0.039 \mathrm{mmol})$ were added. After 3 hours, the gummy orange reaction mixture was dissolved in $\mathrm{MeOH}(250 \mu \mathrm{l})$ and solid $\mathrm{K}_{2} \mathrm{CO}_{3}(7 \mathrm{mg}, 0.052 \mathrm{mmol})$ was added. The reaction mixture was stirred at room temperature overnight (17 hours), quenched with saturated NaHCO_{3} solution, extracted with $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, concentrated and purified by flash chromatography ($5 \% 10 \% 15 \% 20 \% 30 \% \mathrm{EtOAc} /$ Hexanes) to provide the epoxide ($5 \mathrm{mg}, 48 \%$ yield) and some recovered starting material ($5 \mathrm{mg}, 50 \%$ recovered).
$\mathrm{R}_{f}=0.25\left(60 \% \mathrm{EtOAc} /\right.$ hexanes, TLC plate pretreated with $\left.\mathrm{NH}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) \delta 7.59(\mathrm{~m}, 4 \mathrm{H}, \mathbf{P h}), 7.37 \sim 7.28(\mathrm{~m}, 6 \mathrm{H}, \mathbf{P h}), 7.23(\mathrm{dd}, J=8.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 7.17 \sim 7.09(\mathrm{~m}, 5 \mathrm{H}$, Ph $), 7.00(\mathrm{dd}, J=7.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 6.77(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{A r}), 5.23\left(\mathrm{~s}, 2 \mathrm{H}, \mathbf{C H}_{2} \mathrm{Ph}\right), 3.82(\mathrm{tt}, J=10.0$, $4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}), 3.05\left(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.01(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH} 2), 2.94(\mathrm{tt}, J=6.8,3.3$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{NCH}), 2.54 \sim 2.44\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{HOCCH}_{2} \& \mathrm{NCH}\right), 2.11\left(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HOCCH}_{2}\right), 1.81(\mathrm{dd}, J=$ $\left.14.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 1.72\left(\mathrm{dd}, J=14.1,10.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 1.61(\mathrm{td}, J=11.4,4.3 \mathrm{~Hz}, 1 \mathrm{H}$, NCHCH_{2}), 1.52 (ddd, $\left.J=16.2,6.8,4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCH}_{2}\right), 1.24(\mathrm{q}, J=11.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCHCH}), 0.98$ (s, 9H, SitBu), $0.93\left(\mathrm{~s}, 3 \mathrm{H}, \mathbf{C H}_{3}\right), 0.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathbf{C H}_{3}\right), 0.63\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (contains trace $\mathrm{EtOAc} \& \mathrm{MsOH})\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 193.64,179.49,140.73,138.10,135.90,135.85,134.64$, $134.50,134.45,134.14,129.78,129.75,128.43,127.73,127.68,127.09,127.00,125.29,125.26,122.53$, $101.89,77.37,70.17,65.96,65.58,59.10,52.49,49.57,47.96,45.00,44.69,43.35,43.13,42.18,40.85$, 31.92, $31.69,27.13,25.98,20.37,19.26,11.47$; IR (thin film): ; HRMS (ESI) Calcd. for $\mathrm{C}_{45} \mathrm{H}_{52} \mathrm{BrN}_{2} \mathrm{O}_{3} \mathrm{Si}$ [$\mathrm{M}+\mathrm{H}+2]$: 777.2931. Found: 777.2910.

Notes and References

${ }^{1}$ For a helpful review on the synthesis of asymmetric nitrones see: Revuelta, J.; Cicchi, S.; Goti, A.; and Brandi, A. Synthesis 2007 4, 485-504.
${ }^{2}$ Chackalamannil, S.; Wang, Y. Tetrahedron 1997 53, 11203.
${ }^{3}$ a) Cicchi, S.; Marradi, M.; Vogel, P.; Goti, A. J. Org. Chem. 2006 71, 1614-1619. b) Cicchi, S.; Corsi, M.; Brandi, A.; Goti, A. J. Org. Chem. 2002 67, 1678-1681.
${ }^{4}$ Amans, D.; Bareille, L.; Bellosta V.; Cossy, J. J. Org. Chem. 2009 74, 7665-7674.
${ }^{5}$ For a relevant example, see: Schuler, M.; Silva, F.; Bobbio, C.; Tessier, A.; Gouverneur, V.; Angew Chem Int Ed 2008, 47, 7927-7930.
${ }^{6}$ Difficulties encountered in the benzyl deprotection of $\mathbf{1 0 8}$ (Scheme 3.11) had not yet been established; thus, a late-stage global benzyl deprotection was viewed as an efficient means of generating the C14 alcohol later in the synthesis.
${ }^{7}$ For a relevant example, see: Sugimura, T.; Sato, Y.; Im, C.-Y.; Okuyama T. Org Lett 2004 6, 4439-4741.
${ }^{8}$ For a relevant example, see: Dehoux, C.; Gorrichon, L.; Baltas, M. Eur. J. Org. Chem. 2001 1105-1113.
${ }^{9}$ For a related example see: Amans, D.; Bareille, L.; Bellosta, V.; and Cossy, J. J. Org. Chem. 2009 74, 7665-7674.
${ }^{10}$ Substantial amounts of the pure bis-protected anti-diol could be obtained via a single chromatographic separation, however, to obtain the pure bis-protected syn-diol, multiple purifications were generally required.
${ }^{11}$ Anderson, K. R.; Atkinson, S. L. G.; Fujiwara, T.; Giles, M. E.; Matsumoto, T.; Merifield, E.; Singleton, J. T.; Saito, T.; Sotoguchi, T.; Tornos, J. A.; Way, E. L. Org. Proc. Res. \& Devel. 2010 14, 58-71.
${ }^{12}$ Chevrier, C.; LeNouen, D.; Neuburger, M.; Defoin, A.; Tarnus, C. Tet. Lett. 2004 45, 5363-5366.
${ }^{13}$ Chevrier et al. (see reference 12) report the isolation of a similar cyclic oxime as a minor byproduct in a similar, desilylative cyclization to form a 5-membered nitrone.
${ }^{14}$ Enone 37 and cyclic oxime 213 were co-isolated from the reaction mixture. Yields were estimated based upon relative ratios of the two compounds as determined by ${ }^{1} \mathrm{H}$ NMR.
${ }^{15}$ O’Ferrall, R. A. M.; O’Brien, Deirdre. J. Phys. Org. Chem. 2004 17, 631-640.
${ }^{16}$ Tamura, O.; Toyao, A.; Ishibashi, H. Synlett 2002 8, 1344-1346.
${ }^{17}$ Nakamura, R.; Tanino, K.; Miyashita, M. Org. Lett. 2005 7, 2929-2932.
${ }^{18}$ Evans, D. A.; Chapman, K. T.; Carreira, E. M. J. Am. Chem. Soc. 1988 110, 3560-3578.
${ }^{19}$ Caputo, R.; Mangoni, L.; Nerl, O.; Palumbo, G. Tetrahedron Lett. 1981 22, 3551-3552.
${ }^{20}$ For a review of the Mitsunobu esterification, see: Hughes, D. L. Org. Prep. \& Proc. Int. 1996 28, 127164.

APPENDIX I: SPECTRA RELEVANT TO CHAPTER 2

Figure A.1.1b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 56

Figure A.1.1c IR spectrum (thin film $/ \mathrm{NaCl}$) of compound $\mathbf{5 6}$

Figure A.1.2b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 58

Figure A.1.2c IR spectrum (thin film $/ \mathrm{NaCl}$) of compound $\mathbf{5 8}$

Figure A.1.4b ${ }^{13} \mathrm{C}$ NMR spectrum ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 61

Figure A.1.4c IR spectrum (thin film $/ \mathrm{NaCl}$) of compound $\mathbf{6 1}$

Figure A.1.5b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 62

Figure A.1.5c IR spectrum (thin film $/ \mathrm{NaCl}$) of compound $\mathbf{6 2}$

Figure A.1.6b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 63

Figure A.1.6c IR spectrum (thin film $/ \mathrm{NaCl}$) of compound $\mathbf{6 3}$

Figure A.1.7b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 67

Figure A.1.7c IR spectrum (thin film $/ \mathrm{NaCl}$) of compound 67

Figure A.1.8b ${ }^{13} \mathrm{C}$ NMR spectrum ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{6 8 a}$

Figure A.1.8c IR spectrum (thin film/ NaCl) of compound 68 a

Figure A.1.9b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{6 8 b}$

Figure A.1.9c IR spectrum (thin film/ NaCl) of compound $\mathbf{6 8 b}$

Figure A.1.10b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{6 9 a}$

Figure A.1.10c IR spectrum (thin film $/ \mathrm{NaCl}$) of compound 69a

Figure A.1.11b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{6 9 b}$

Figure A.1.11c IR spectrum (thin film/ NaCl) of compound $\mathbf{6 9 b}$

Figure A.1.12b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 70

Figure A.1.12c IR spectrum (thin film/ NaCl) of compound 70

Figure A.1.13b ${ }^{13} \mathrm{C}$ NMR spectrum ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 72

Figure A.1.13c IR spectrum (thin film/ NaCl) of compound 72

Figure A.1.14b ${ }^{13} \mathrm{C}$ NMR spectrum ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 73

Figure A.1.14c IR spectrum (thin film/NaCl) of compound 73

Figure A.1.15b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 74

Figure A.1.15c IR spectrum (thin film/ NaCl) of compound 74

Figure A.1.16b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 78a

Figure A.1.16c IR spectrum (thin film/ NaCl) of compound 78a

Figure A.1.17b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 79

Figure A.1.17c IR spectrum (thin film/ NaCl) of compound 79

Figure A.1.18b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 82a

Figure A.1.18c IR spectrum (thin film $/ \mathrm{NaCl}$) of compound 82a

Figure A.1.19b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{8 2 b}$

Figure A.1.19c IR spectrum (thin film $/ \mathrm{NaCl}$) of compound $\mathbf{8 2 b}$

Figure A.1.20b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{8 3}$

Figure A.1.20c IR spectrum (thin film/ NaCl) of compound $\mathbf{8 3}$

Figure A.1.21b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{8 7}$

Figure A.1.21c IR spectrum (thin film/ NaCl) of compound $\mathbf{8 7}$

Figure A.1.23b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $90 b$

Figure A.1.23c IR spectrum (thin film/ NaCl) of compound 90 b

Figure A.1.24b ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 91

Figure A.1.24c IR spectrum (thin film/NaCl) of compound 91

Figure A.1.25b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 94

Figure A.1.26b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 95

Figure A.1.26c IR spectrum (thin film/ NaCl) of compound 95

Figure A.1.28b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 98

Figure A.1.28c IR spectrum (thin film/ NaCl) of compound $\mathbf{9 8}$

Figure A.1.29b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 99

Figure A.1.29c IR spectrum (thin film/NaCl) of compound 99

APPENDIX II: SPECTRA RELEVANT TO CHAPTER 3

Figure A.2.1b. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 37

Figure A.2.1c. IR spectrum (thin film $/ \mathrm{NaCl}$) of compound 37

Figure A.2.2b. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 48

Figure A.2.2c. IR spectrum (thin film $/ \mathrm{NaCl}$) of compound 48

Figure A.2.3b. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{1 0 0}$ (Free Base)

Figure A.2.3c. IR spectrum (thin film/ NaCl) of compound $\mathbf{1 0 0}$ (TFA salt)

Figure A.2.4b. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 101

Figure A.2.4c. IR spectrum (thin film/ NaCl) of compound 101

Figure A.2.5b. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 102

Figure A.2.5c. IR spectrum (thin film/NaCl) of compound 102

Figure A.2.6b. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 103

Figure A.2.6c. IR spectrum (thin film/ NaCl) of compound 103

Figure A.2.7b. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 107

Figure A.2.7c. IR spectrum (thin film/ NaCl) of compound $\mathbf{1 0 7}$

Figure A.2.8b. ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 108

Figure A.2.8c. IR spectrum (thin film/ NaCl) of compound 108

Figure A.2.9b. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{1 1 0}$

Figure A.2.9c. IR spectrum (thin film/ NaCl) of compound $\mathbf{1 1 0}$

Figure A.2.10b. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{1 1 3}$

Figure A.2.10c. IR spectrum (thin film/ NaCl) of compound 113

Figure A.2.11b. ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 114

Figure A.2.11c. IR spectrum (thin film/ NaCl) of compound 114

Figure A.2.12b. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 115

Figure A.2.12c. IR spectrum (thin film/ NaCl) of compound 115

Figure A.2.13b. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{1 2 1}$
\square

Figure A.2.13c. IR spectrum (thin film/ NaCl) of compound 121

Figure A.2.14b. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 122
\square

Figure A.2.14c. IR spectrum (thin film $/ \mathrm{NaCl}$) of compound $\mathbf{1 2 2}$

Figure A.2.15b. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{1 2 5}$

Figure A.2.15c. IR spectrum (thin film $/ \mathrm{NaCl}$) of compound $\mathbf{1 2 5}$

Figure A.2.16b. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 130

Figure A.2.16c. IR spectrum (thin film/ NaCl) of compound 130

220	200	180	160	140	120	100	18	$1{ }_{6}$	40	20	1

Figure A.2.17b. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{1 3 1 b}$

Figure A.2.17c. IR spectrum (thin film/ NaCl) of compound $\mathbf{1 3 1 b}$

Figure A.2.18b. ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 132

Figure A.2.18c. IR spectrum (thin film $/ \mathrm{NaCl}$) of compound 132

Figure A.2.19b. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{1 3 3}$

Figure A.2.19c. IR spectrum (thin film/ NaCl) of compound $\mathbf{1 3 3}$

Figure A.2.20b. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 137

Figure A.2.20c. IR spectrum (thin film/NaCl) of compound 137

Figure A.2.21b. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 138

Figure A.2.21c. IR spectrum (thin film $/ \mathrm{NaCl}$) of compound 138

Figure A.2.22b. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 139

Figure A.2.22c. IR spectrum (thin film/ NaCl) of compound 139

Figure A.2.23b. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 140

Figure A.2.23c. IR spectrum (thin film/ NaCl) of compound 140

Figure A.2.24b. ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 4 1}$

Figure A.2.24c. IR spectrum (thin film/ NaCl) of compound 141

Figure A.2.25b. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 142

Figure A.2.25c. IR spectrum (thin film/ NaCl) of compound 142

Figure A.2.26b. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{1 4 3 a}$

Figure A.2.26c. IR spectrum (thin film/ NaCl) of compound $\mathbf{1 4 3 a}$

Figure A.2.27b. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{1 4 3 b}$

Figure A.2.27c. IR spectrum (thin film/ NaCl) of compound 143b

Figure A.2.28b. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{1 4 4 a}$

Figure A.2.28c. IR spectrum (thin film/ NaCl) of compound $\mathbf{1 4 4 a}$

Figure A.2.29b. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{1 4 4 b}$

Figure A.2.29c. IR spectrum (thin film/ NaCl) of compound 144b

Figure A.2.30b. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{1 4 6 a}$

Figure A.2.30c. IR spectrum (thin film/ NaCl) of compound $\mathbf{1 4 6 a}$

Figure A.2.31b. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{1 4 6 b}$

Figure A.2.31c. IR spectrum (thin film/ NaCl) of compound $\mathbf{1 4 6 b}$

Figure A.2.32b. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 147
\square

Figure A.2.32c. IR spectrum (thin film $/ \mathrm{NaCl}$) of compound 147

Figure A.2.33b. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 148

Figure A.2.33c. IR spectrum (thin film $/ \mathrm{NaCl}$) of compound 148

Figure A.2.34b. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 149

Figure A.2.34c. IR spectrum (thin film $/ \mathrm{NaCl}$) of compound 149

Figure A.2.35b. ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 5 0}$
-

Figure A.2.35c. IR spectrum (thin film $/ \mathrm{NaCl}$) of compound $\mathbf{1 5 0}$

Figure A.2.36b. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 151

Figure A.2.36c. IR spectrum (thin film $/ \mathrm{NaCl}$) of compound $\mathbf{1 5 1}$

Figure A.2.37b. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 152

Figure A.2.37c. IR spectrum (thin film $/ \mathrm{NaCl}$) of compound 152

Figure A.2.38b. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 158
\square

Figure A.2.38c. IR spectrum (thin film $/ \mathrm{NaCl}$) of compound 158

Figure A.2.39b. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 159

Figure A.2.39c. IR spectrum (thin film $/ \mathrm{NaCl}$) of compound 159

Figure A.2.40b. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 160

Figure A.2.40c. IR spectrum (thin film/ NaCl) of compound 160

Figure A.2.41b. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 163

Figure A.2.41c. IR spectrum (thin film $/ \mathrm{NaCl}$) of compound 163

Figure A.2.42b. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 171

Figure A.2.42c. IR spectrum (thin film/ NaCl) of compound 171

Figure A.2.43b. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 173

Figure A.2.43c. IR spectrum (thin film/ NaCl) of compound 173

Figure A.2.44b. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 174

Figure A.2.45b. ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) of compound 175 (Free Base)

APPENDIX III: SPECTRA RELEVANT TO CHAPTER 4

Figure A.3.1b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 182

Figure A.3.1c IR spectrum (thin film/ NaCl) of compound $\mathbf{1 8 2}$

Figure A.3.2b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{1 8 3}$

Figure A.3.2c IR spectrum (thin film/ NaCl) of compound $\mathbf{1 8 3}$

Figure A.3.3b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 184

Figure A.3.3c IR spectrum (thin film/ NaCl) of compound $\mathbf{1 8 4}$

Figure A.3.4b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 191

Figure A.3.4c IR spectrum (thin film/NaCl) of compound 191

Figure A.3.5b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 194
\square

Figure A.3.5c IR spectrum (thin film/ NaCl) of compound 194

Figure A.3.6b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 195

Figure A.3.6c IR spectrum (thin film/ NaCl) of compound 195

Figure A.3.7b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 197

Figure A.3.7c IR spectrum (thin film/NaCl) of compound 197

Figure A.3.8b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) of compound 198

Figure A.3.8c IR spectrum (thin film/ NaCl) of compound 198

Figure A.3.9b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 200

Figure A.3.9c IR spectrum (thin film/ NaCl) of compound 200

Figure A.3.10b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 201

Figure A.3.10c IR spectrum (thin film $/ \mathrm{NaCl}$) of compound 201

Figure A.3.11b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 202

Figure A.3.11c IR spectrum (thin film $/ \mathrm{NaCl}$) of compound 202

Figure A.3.12b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 203

Figure A.3.12c IR spectrum (thin film $/ \mathrm{NaCl}$) of compound 203

220	200	180	160	$\stackrel{1}{140}$	120	100	80	$\stackrel{1}{60}$	$\stackrel{1}{40}$	$\stackrel{1}{20}$	1

Figure A.3.13b ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 204

Figure A.3.13c IR spectrum (thin film $/ \mathrm{NaCl}$) of compound 204

Figure A.3.14b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 205

Figure A.3.14c IR spectrum (thin film $/ \mathrm{NaCl}$) of compound 205

Figure A.3.15b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 206

Figure A.3.15c IR spectrum (thin film $/ \mathrm{NaCl}$) of compound 206

Figure A.3.16b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 211

Figure A.3.16c IR spectrum (thin film $/ \mathrm{NaCl}$) of compound 211

Figure A.3.17b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 212

Figure A.3.17c IR spectrum (thin film $/ \mathrm{NaCl}$) of compound 212

Figure A.3.18b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 213

Figure A.3.18c IR spectrum (thin film $/ \mathrm{NaCl}$) of compound 213

Figure A.3.19b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 214

Figure A.3.19c IR spectrum (thin film/ NaCl) of compound 214

Figure A.3.20b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 215

Figure A.3.20c IR spectrum (thin film $/ \mathrm{NaCl}$) of compound 215

Figure A.3.21b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 217

Figure A.3.21c IR spectrum (thin film $/ \mathrm{NaCl}$) of compound 217

Figure A.3.22b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 218

Figure A.3.22c IR spectrum (thin film $/ \mathrm{NaCl}$) of compound 218

Figure A.3.23b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 219

Figure A.3.23c IR spectrum (thin film/ NaCl) of compound 219

Figure A.3.24b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 220

Figure A.3.25b ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 221

Figure A.3.25c IR spectrum (thin film $/ \mathrm{NaCl}$) of compound 221

Figure A.3.26b ${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 222

Figure A.3.26c IR spectrum (thin film/ NaCl) of compound 222

NOTEBOOK CROSS-REFERENCE

Butyrolactone 47 KK-VII-57, KK-VII-69
Iodoanilide 61 KK-III-123, GSA13
Bis-Protected Anilide 62
TBS ProtectionKK-III-129
Benzyl Protection KK-II-9, KK-III-131
Aldehyde 63
Alcohol Deprotection KK-II-39
Dess-Martin Oxidation KK-II-25, KK-II-49
Enone 59
Grignard Addition KK-II-51
Dess-Martin Oxidation KK-II-23, KK-II-57
Enone 67 KK-II-83, KK-II-89
Oxindole 70 KK-II-33, KK-II-199
Phenol-alcohol 69 KK-III-225
Aryl Triflate 73
TBS Protection KK-III-267, KK-VI-223
Benzyl Protection KK-III-257, KK-III-291
Phenol Deprotection KK-III-293
Phenol Triflation KK-III-261, KK-IV-177
Asymmetric Oxindoles (+)- and (-)-70
(-)-70 From (+)-BINAP KK-IV-21
(+)-70 From (-)-BINAP KK-VI-235, KK-VI-241
Aldehyde 74
Alcohol Deprotection KK-II-115, KK-II-209, KK-VI-245
Swern Oxidation KK-II-249, KK-VI-247
Enynes 68a/b
Grignard Addition KK-II-121, KK-II-253KK-II-255, KK-VI-253
Silyl-Allylic Alcohol 78a KK-II-109-I, KK-II-179
Spiro-oxindole 69a KK-II-223, KK-III-23, KK-VI-255
Allylic Alcohol 82a KK-II-191, KK-III-27, KK-VI-259
Spiro-oxindole 69b and Cyclopropane 79 KK-II-213, KK-II-273, KK-VI-257
Allylic Alcohol 82b KK-II-267, KK-II-281
Unsubstituted Nitrone 80 KK-III-69
Acetone Oxime 84 KK-IV-137, KK-IV-143
Oxime 85
Alkylation KK-IV-139, GSC105
Oxime Reduction KK-IV-141, GSC119
Nitrone (\pm)-57 .KK-IV-145, GSC123
Olefin 88
CBz Protection KK-IV-43
Esterification KK-IV-55
DIBAl-H Reduction KK-IV-125, KK-IX-213
Wittig Reagent KK-IV-57, KK-IX-235
Wittig Reaction KK-V-261, KK-IX-215, KK-IX-239
Benzyloxyamine 89
Hydrogenation KK-V-271, KK-IX-247
Oxidation KK-VI-187, KK-IX-249
Nitrone (S)-(-)-57
SaponificationKK-VI-199, KK-VI-251, KK-IX-251
Determination of the ee KK-VI-213
Acid-Mediated Nitrone Condensation KK-VI-191
Isoxazolidine $\mathbf{8 3}$ KK-II-277, KK-III-17
Enone 58 KK-II-215, KK-V-63, KK-VI-263
Isoxazolidines (\pm)-87 and (\pm)-56 KK-IV-153, KK-V-67
Enantioenriched Isoxazolidine 87 KK-VI-189
Enantioenriched Isoxazolidine 56 KK-VI-265
Exomethylene 91 KK-VII-265, KK-VII-287
Cbz-Protected Piperdine 90 \& TFA-Protected Piperdine 90b
Samarium Iodide-Mediated Ring Opening KK-VII-277, KK-VIII-53
Cbz-Protection KK-VII-189, KK-VII-253
TFA-Protection KK-VII-283, KK-VII-291, KK-VIII-15
Spiro-epoxide 94 KK-VII-285, KK-VII-297
Diol 95 KK-VIII-11, KK-VIII-13
Epoxybromide 98 KK-VIII-17, KK-VIII-57
Ring-Fusion Epoxide 99 KK-VIII-27, KK-VIII-61
C3-epi-Citrinadin B Core 97 KK-VIII-77
Spiro-epoxide 103 KK-VIII-213, KK-VIII-261, KK-IX-285
Ammonium Salt 107 KK-VIII-217, KK-VIII-295, KK-IX-299
Diol 102 KK-VIII-227, KK-VIII-297, KK-IX-301
Ring-Fusion Epoxide 101 KK-VIII-239, KK-IX-137, KK-X-89
Benzylamine 110 KK-IX-119
Pyridinium Salt 113 KK-VIII-287
Azide 114 KK-VIII-291, KK-IX-279
Amine 115. KK-IX-79, KK-IX-261
Methylamine 108 KK-IX-135, KK-IX-261
des-Benzyl Oxindole (+)-121 KK-X-111
des-Benzyl Azide (+)-122 KK-X-113
Boc-Protected Oxindole (+)-125 KK-X-145, KK-X-163
ent-Citrinadin Core (+)-100
Azide Reduction KK-X-167
Methylation KK-X-173
Boc-Removal. KK-X-155
Dibromoanilide 48 GSB197, GSB207, GSC33
Bis-Protected Dibromoanilide 132
TBS-Protection GSB221, GSC41
Benzyl-Protection GSA100
C7-Bromo-Oxindole 133 GSB217, GSB293
Benzyl-Protected Oxindole 130 GSB223, GSC11
N-Boc Methoxyaniline 136 GSA137
2-Bromo-6-Methoxyaniline 134
Directed Bromination GSA160
Boc Removal GSA118
2-Bromo-6-Methoxyanilide 137 GSA154, GSA168, GSA124
Phenol 138 GSA158, GSA175
O-TBS-Protected Alcohol 139 GSA176
Triflate 131b GSA177, GSA187
C7-Triflate-Oxindole 140 GSA179
Alcohol 141 GSB225, GSC13
Aldehyde 142 GSC15, GSB227, GSC79
Alkynes 143a and 143bGSB229, GSC81
Enyne 144a GSB237a, GSC91
Enyne 144b GSB237b, GSC93
Spiro-oxindole 146a
Enyne Cyclization GSC145
TBS-Removal GSB243, GSC147
Spiro-oxindole 146b
Enyne Cyclization GSC113
TBS-Removal GSB245, GSC115
Bromoenone 37 GSB247, GSC149
Bromo-Isoxazolidines (+)-147 and 148 KK-X-285-I/II, KK-XI-141
Spiro-epoxide (+)-149 KK-X-297, KK-XI-161
Ammonium Salt (+)-150 KK-X-287, KK-XI-169
Diol (+)-151 KK-X-303, KK-XI-173
Ring-Fusion Epoxide (+)-152 KK-X-291, KK-XI-179
Alkyne (+)-160 KK-XI-183
des-Benzyl Oxindole (+)-163 KK-XI-139, KK-XI-191
Azide (+)-159 KK-XI-131, KK-XI0193
Enone (+)-158 KK-XI-133, KK-XII-271
Epoxyketone (+)-171 KK-XI-135, KK-XII-273
Boc-Protected Epoxyketone (+)-173 KK-XI-157
Boc-Protected Epoxyketone (+)-174
Epoxidation KK-XI-103, KK-XI-209
Boc-Protection KK-XI-213
C21-epi-ent-Citrinadin B (+)-175
Azide Reduction KK-XI-159
Methylation KK-XI-185
Boc-Removal KK-XI-203 (Free Base), KK-XI-221 (Salt)
ent-Citrinadin B (2)
Azide Reduction KK-XI-217
Methylation KK-XI-237
Boc-Removal. KK-XI-239
Silyl Alcohol 189 GSD27
Aldehyde 190 GSE213
β-Hydroxyketones 191a and 191b GSC177, GSD87
Bis-Protected Diols 194 and 195 GSC105, GSD89
Lactone 184 GSD149
Lactone 203 GSE107, GSD93
Lactol 183 GSD155
Lactol 204 GSD95, GSE109
Oxime 197 GSD153
Oxime 205 GSD113, GSE111
Oxime 211 GSE35
Silyl-Protected Oxime 198 GSD157
Silyl-Protected Oxime 206 GSE115
Silyl-Protected Oxime 212. GSE39
Nitrone Precursor 182 GSD159
Nitrone Precursor 200 GSE117
Nitrone Precursor 202 GSE43
β-hydroxyketone 208 GSD19, GSE123
Ketal Lactone 209 GSE135
Ketal Lactol 210 GSE137
Ketal Nitrone 201 GSD291, GSE45, GSE47
Ketal Cyclic Oxime 213 GSD265, GSD293, GSE11, GSE45, GSE47
Ketal Cycloadducts 214 and 215 GSD293, GSE155
O-TBDPS Cycloadducts 217 and 218 GSE125, GSE161
Enantioenriched anti-Diol (12S,14R)-219 GSD21
Enantioenriched Lactone (12S,14R)-203
Lactonization GSD51
TBDPS Protection GSD53
Spiro-epoxide 219 GSD205
Preparation Ammonium Salt 220. GSD181, GSD211
Diol 221 GSD183
Epoxide 222 GSD223, GSD241

INDEX OF EXPERIMENTAL PROCEDURES

Preparation of Butyrolactone 47 33
Preparation of Iodoanilide 61 34
Preparation of Bis-Protected Anilide 62 35
TBS Protection: 35
Preparation of Aldehyde 63 36
Alcohol Deprotection: 36
Dess-Martin Oxidation: 37
Preparation of Enone 59 37
Grignard Addition: 37
Dess-Martin Oxidation: 38
Preparation of Enone 67 38
Preparation of Oxindole 70 39
Phenol-alcohol 69 40
Preparation of Aryl Triflate 73 41
TBS Protection: 41
Benzyl Protection: 41
Phenol Deprotection: 42
Phenol Triflation: 43
Preparation of Asymmetric Oxindoles (+)- and (-)-70 43
(-)-70 From (+)-BINAP: 43
(+)-70 From (-)-BINAP: 44
Preparation of Aldehyde 74 44
Alcohol Deprotection: 44
Swern Oxidation: 45
Preparation of Enynes 68a/b 46
Grignard Addition: 46
TBS Protection: 47
Preparation of Silyl-Allylic Alcohol 78a 48
Preparation of Spiro-oxindole 69a 49
Preparation of Allylic Alcohol 82a 50
Preparation of Spiro-oxindole 69b and Cyclopropane 79 51
Preparation of Allylic Alcohol 82b 52
Preparation of Unsubstituted Nitrone 80 52
Preparation of Acetone Oxime 84 53
Preparation of Oxime $\mathbf{8 5}$ 53
Alkylation: 53
Oxime Reduction: 54
Preparation of Nitrone (\pm)-57 54
Preparation of Olefin 88 55
CBz Protection: 55
Esterification: 55
DIBAI-H Reduction: 56
Wittig Reagent: 56
Wittig Reaction 56
Preparation of Benzyloxyamine 89 57
Hydrogenation: 57
Oxidation: 57
Preparation of Nitrone (S)-(-)-57. 58
Saponification: 58
Determination of the ee: 58
Acid-Mediated Nitrone Condensation: 59
Preparation of Isoxazolidine 83 59
Preparation of Enone 58 60
Preparation of Isoxazolidines $(\pm)-87$ and $(\pm)-56$ 61
Preparation of Enantioenriched Isoxazolidine 87 62
Preparation of Enantioenriched Isoxazolidine 56 63
Preparation of Exomethylene 91 63
Preparation of Cbz-Protected Piperdine 90 and TFA-Protected Piperdine 90b 64
Samarium Iodide-Mediated Ring Opening: 64
Cbz-Protection: 65
TFA-Protection: 65
Preparation of Spiro-epoxide 94 66
Preparation of Diol 95 67
Preparation of Epoxybromide 98 68
Preparation of Ring-Fusion Epoxide 99 69
Preparation of C3-Epi-Citrinadin B Core 97 70
Preparation of Spiro-epoxide 103 101
Preparation of Ammonium Salt 107 102
Preparation of Diol 102 103
Preparation of Ring-Fusion Epoxide 101 104
Preparation of Benzylamine 110 and Pyridinium Salt 113 105
Preparation of Azide 114 106
Preparation of Amine 115 107
Preparation of Methylamine 108 108
Preparation of des-Benzyl Oxindole (+)-121 109
Preparation of des-Benzyl Azide (+)-122 110
Preparation of Boc-Protected Oxindole (+)-125 111
Preparation of the ent-Citrinadin Core (+)-100 112
Azide Reduction: 112
Methylation: 112
Boc-Removal: 113
Preparation of Dibromoanilide 48 114
Preparation of bis-Protected Dibromoanilide 132 115
TBS-Protection: 115
Benzyl-Protection: 116
Preparation of C7-Bromo-Oxindole 133 116
Preparation of Benzyl-Protected Oxindole 130 117
Preparation of N-Boc Methoxyaniline 136 118
Preparation of 2-Bromo-6-Methoxyaniline 134 118
Directed Bromination: 118
Boc Removal: 119
Preparation of 2-Bromo-6-Methoxyanilide 137 119
Preparation of Phenol 138 120
Preparation of O-TBS-Protected Alcohol 139 121
Preparation of Triflate 131b 122
Preparation of C7-Triflate-Oxindole 140 123
Preparation of Alcohol 141 123
Preparation of Aldehyde 142 124
Preparation of Alkynes 143a and 143b 125
Preparation of Enyne 144a. 126
Preparation of Enyne 144b 127
Preparation of Spiro-oxindole 146a 128
Enyne Cyclization: 128
TBS-Removal: 128
Preparation of Spiro-oxindole 146b 129
Enyne Cyclization: 129
TBS-Removal: 130
Preparation of Bromoenone 37 130
Preparation of Bromo-Isoxazolidines (+)-147 and 148 131
Preparation of Spiro-epoxide (+)-149 133
Preparation of Ammonium Salt (+)-150 134
Preparation of Diol (+)-151 135
Preparation of Ring-Fusion Epoxide (+)-152 136
Preparation of Alkyne (+)-160 137
Preparation of des-Benzyl Oxindole (+)-163 138
Preparation of Azide (+)-159 139
Preparation of Enone (+)-158 140
Preparation of Epoxyketone (+)-171 141
Preparation of Boc-Protected Epoxyketone (+)-173 142
Preparation of Boc-Protected Epoxyketone (+)-174 143
Epoxidation: 143
Boc-Protection: 143
Preparation of Synthetic C21-epi-ent-Citrinadin B (+)-175 144
Azide Reduction: 144
Methylation: 144
Boc-Removal: 145
Preparation of ent-2 146
Azide Reduction: 146
Boc-Removal: 146
Preparation of Silyl Alcohol 189 166
Preparation of Aldehyde 190 166
Preparation of the β-Hydroxyketones 191a and 191b 167
Preparation of the Bis-Protected Diols 194 and 195 168
Preparation of Lactones 184 and 203 169
Preparation of Lactols 183 and 204 170
Preparation of Oximes 197, 205, and 211 171
Preparation of Silyl-Protected Oximes 198, 206, and 212 173
Preparation of Nitrone Precursors 182, 200, and 202 175
Preparation of β-hydroxyketone 208 177
Preparation of Ketal Lactone 209 178
Preparation of Ketal Lactol 210 178
Preparation of Ketal Nitrone 201 and Ketal Cyclic Oxime 213 179
Preparation of Ketal Cycloadducts 214 and 215 180
Preparation of O-TBDPS Cycloadducts 217 and 218 181
Preparation of Enantioenriched anti-Diol (12S,14R)-219 182
Preparation of Enantioenriched Lactone (12S,14R)-203 183
Lactonization: 183
TBDPS Protection: 183
Preparation of Spiro-epoxide 219 184
Preparation Ammonium Salt 220. 185
Preparation of Diol 221. 186
Preparation of Epoxide 222 187

[^0]: ${ }^{1}$ (a) Tsuda, M.; Kasai, Y.; Komatsu, K.; Sone, T.; Tanaka, M.; Mikami, Y.; Kobayashi, J. Org. Lett. 2004 6, 3087-3089. (b) Mugishima, T.; Tsuda, M.; Kasai, Y.; Ishiyama, H.; Fukushi, E.; Kawabata, J; Watanabe, M.; Akao, K.; Kobayashi, J. J. Org. Chem. 2005 70, 9430-9435.
 ${ }^{2}$ Corey, E. J.; Chaykovsky, M. J. Am. Chem. Soc. 1965 87, 1353-1364.
 ${ }^{3}$ Caputo, R.; Mangoni, L.; Nerl, O.; Palumbo, G. Tetrahedron Lett. 1981 22, 3551-3552.
 ${ }^{4}$ Even though hetereogeneous hydrogenolysis $\left(\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}\right)$ was operationally more convenient, the yields were variable upon scale up. As a result, $\mathrm{Zn} / \mathrm{AcOH}$ was used for the reduction.

