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ABSTRACT

UNDERWATER UXO CLASSIFICATION USING MATCHED SUBSPACE CLASSIFIER

WITH SYNTHETIC SPARSE DICTIONARIES

Classification of underwater objects such as unexploded ordnances (UXO) and mines

from sonar datasets poses a difficult problem. Among factors that complicate classification

of these objects are: variations in the operating and environmental conditions, presence

of spatially varying clutter, variations in target shape, composition, orientation and burial

conditions. Furthermore, collection of large quantities of real and representative data for

training and testing in various background conditions is very difficult and impractical in

many cases. In order to remedy the lack of data availability, physical models of varying

computational complexity are often used to supplement training databases with synthetically

created samples which predict the response of known target models.

In this thesis, we try to address several key questions for designing robust classifiers

for UXO and munitions classification from low frequency sonar. These include: (1) “How

can we form discriminative and highly separable features for describing UXO and non-UXO

objects in a given dataset?”, (2) “When do we reach a point of diminishing returns when

utilizing synthetic models in a classifier’s training?”, and more importantly (3) “Which

types of object variations cannot be modeled well by synthetic data?”. Although, it may be

somewhat ambitious to expect model data to capture all the essential features of proud or

buried underwater objects for target characterization, these models can nevertheless provide

us with clues on how to augment the training datasets to improve the robustness in different

environmental conditions.
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Using empirically validated scattering models developed by University of Washington’s

Applied Physics Laboratory (APL-UW), fast ray models were acquired to generate the re-

quired synthetic training dataset for various UXO and non-UXO objects. A comprehensive

analysis is then carried out on the classification performance of two subspace matching clas-

sifiers, trained on the synthetic data generated from this physical model, and tested on three

real underwater sonar datasets. Both single and multi-aspect classification were considered

using a combination of linear subspace models. Our classification hypothesis is that the

spectral content of sonar backscatter display unique signatures providing good discrimina-

tion between different classes of objects. To develop a robust target classification method

that can be applied to discriminate munitions from non-hostile man-made objects and com-

peting natural clutter, the Matched Subspace Classifier (MSC) framework was adopted in

conjunction with multidimensional Acoustic Color (AC) feature data extracted from raw

sonar returns.

Classification results of the MSC system constructed using two different signal subspace

learning methods, namely K-SVD and locality preserving (LP) K-SVD are presented and

benchmarked against each other. Additionally, a non-linear version of MSC using the kernel

trick was developed and tested on the same datasets. The first two sonar datasets, PondEX09

and PondEX10, were collected for various underwater UXO and non-UXO objects using a rail

system in a pond, under relatively controlled and clutter-free conditions. The third dataset,

TREX13, was also collected using a similar rail system but in the bay area off of the Panama

City coast where other factors such as schools of fish, water turbulence, seafloor roughness,

and target range variations were more realistic. Classification results are presented using sev-

eral standard performance metrics such as Receiver Operating Characteristic (ROC) curves,

and Confusion Matrices. These results indicate promising performance for the MSC classi-

fier using LP-KSVD dictionary learning method with the LP K-SVD trained system yielding

correct classification rates of PCC = 93.1%, and PCC = 82% for UXO, vs. non-UXO classifi-

cation on the PondEX and TREX datasets, respectively. The Kernel MSC when compared
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with the linear MSC performed comparably for single range testing but degraded in perfor-

mance when attempting to generalize across multi-range datasets demonstrating kneepoint

probability of classification PCC = 88.0%, and PCC = 76.7% for PondEX and TREX all

range datasets, respectively.
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CHAPTER 1

INTRODUCTION

1.1 Problem Statement and Motivations

The United States’ Department of Defense (DoD) is currently responsible for clearing

many sites which are potentially contaminated with munitions as a result of past training and

weapons testing activities. In many cases, these activities occurred near or were performed

in shallow water environments where munitions pose serious threats to public safety and

the environment. In order to effectively search and retrieve munitions, automatic target

recognition (ATR) systems that are robust across environmental and sonar system variations

have long been pursued.

Classification systems employed to search for munitions typically consist of three types

of sensory systems: magnetic metal detection, chemical sensing, and sonar. Metal detection

and chemical sensors are typically restricted to short range sniffing ATR systems. Sonar

technologies can also be limited in range or limited by poor penetration into sediments.

Low frequency broadband sonar systems provide an alternative for the detection and clas-

sification of munitions in underwater environments. Low frequencies offer greater detection

ranges which permits the surveying of wider areas while at the same time attaining greater

penetration depths into sediment which permits detection of partially and completely buried

munitions. Moreover, the use of transmitted signals with a wider bandwidth provides high

range resolution for detailed surveys with greater localization capability as well as better

ability to excite the discriminatory structural modes of the proud and/or buried targets for

unambiguous classification.
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The problem of underwater object classification in sonar imagery has recently attracted a

substantial amount of attention [1–6]. This problem is rather complicated due to the numer-

ous factors which inhibit repeatable and reliable ATR. These include: variations in operating

and environmental conditions, presence of spatially varying clutter, as well as burial depth

and variations in target shapes, compositions and orientation. Moreover, bottom features

such as coral reefs, sand formations, and vegetation may totally obscure a target or confuse a

classification system. Consequently, a robust ATR system should be able to quantify changes

between the returns from the bottom features or structured clutter and any target activity

in sonar data, while at the same time extract useful features for classification.

This work is motivated by several interrelated problems, the primary of which being

the safe reclamation of dangerous expended munitions and remediation of the natural en-

vironment in areas affected by past military exercises. The ultimate goal of this work is to

provide the DoD with improved classification and characterization techniques as it strives

to find safer and more cost-effective technologies for underwater munitions remediation.

Furthermore, this research attempts to enrich and expand the growing bodies of work con-

cerned with the rapid and highly efficient detection and classification of underwater UXOs

from sonar data. More specifically, a major motivation for this work is related to the fact

that collecting real UXO data in realistic settings is a difficult, if not an impossible, task.

Therefore, by using physical models to construct signal subspaces spanned by the acoustic

response of a particular target over a wide range of aspect orientations, our hypothesis is

that an effective classification system can be designed that remains robust to changes in

target aspect in different environmental and operating conditions.

In this work, we plan to investigate the use of sparse dictionary learning for designing

classification systems for underwater munitions through the subspace matching framework.

Using empirically validated models of the frequency-dependent acoustic response from muni-

tions and other objects with known geometrical and physical characteristics, signal subspaces

will be constructed for each object type over a wide range of aspect orientations [7]. Our
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classification hypothesis is that these signal subspaces or “acoustic color” templates can

effectively serve as a “fingerprint” to uniquely identify that object class. A matched sub-

space classifier with signal-dependent dictionaries will then be developed and used to decide

whether or not the object in question is a munition. By keying in on specific target responses,

the classifier will correspondingly exhibit low false alarm rates. Performance of the proposed

algorithms will be demonstrated by applying them to synthesized as well as actual sonar

data collected in realistic environments.

The classification algorithms developed in this thesis will allow for near real-time assess-

ment of large underwater areas using data collected from low frequency, wideband sonar

systems. These algorithms will not only give the user the ability to assess the degree to

which a site is contaminated but will also exhibit sufficient discrimination capabilities to

unambiguously characterize individual objects with high precision. The developed meth-

ods could be useful in a multitude of remote sensing applications in which sonar is used

to search or survey underwater areas including environmental and oceanographic studies,

undersea exploration, the search for wreckage on the sea floor, and mine-hunting.

1.2 Literature Review on Underwater Target Classifi-

cation

Various methods have been developed for modeling the acoustic response of objects with

geometries typically observed in mine and UXO-hunting applications and using this infor-

mation for the purposes of classification. In [8], the authors considered Synthetic Aperture

Sonar (SAS) imaging of simple targets by exploiting models for reverberation, acoustic pen-

etration, and target scattering into a unified model. This is then used to generate pings

suitable for SAS simulations over a wide range of environmental and experimental condi-

tions. Experimentally measured target scattering from proud and buried targets are then

used to validate the model through several simulations. In [9], the authors analyzed exper-

imental results from a SAS data set collected in a fresh water pond. These measurements
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were conducted to investigate discrimination capabilities based on the acoustic response of

targets for underwater UXO applications. Results from this study showed that it is possible

to use the acoustic response template as a fingerprint to uniquely identify a given target.

The work in [10], showed that acoustic-color (AC) features are useful for discriminating

similarly shaped targets and that through using Finite Element Methods (FEM), accurate

simulations of some UXO targets can be used to test the performance of new sonar de-

signs operating in realistic conditions. Despite the improvements in generating high fidelity

simulations of some target models, it was found that reliable detection and classification of

problematic UXO (e.g., those that are small and difficult to image) require additional pro-

cessing tools beyond sonar imaging such as exploring other methods to extract discriminatory

information from target responses. To deal with these cases, methods for predicting sonar

configurations that extract more information from target responses and yield higher target

SNR were considered. The concepts explored made increasing use of projections of target

sonar responses onto non-imaging spaces that do not require high spatial resolution to deter-

mine the target type. In [4], the primary efforts were focused towards building a real UXO

database providing logistical and technical support for the controlled sonar measurement

experiments in Target Reverberation Experiment (TREX13), and BayEX14. Additionally,

efforts to augment existing databases using FEM and T-matrix modeling were also carried

out. Both datasets were processed to check sonar simulations against more realistic data for

UXO applications and to further the evaluation of backscattering phenomena for extraction

of classification features.

Considerable research have been devoted to the development of different detection and

classification methodologies to identify underwater objects from sonar data. In [1] and [2],

the authors developed new coherent-based feature extraction methods for SAS-like acous-

tic color-based detection and classification of underwater mines and UXO objects using the

Canonical Coordinate Analysis (CCA) framework [11]. They demonstrated that the canon-

ical correlation features are robust to changes in the bottom condition. Moreover, it was
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shown that under fixed operating conditions, canonical correlation features are relatively

invariant to changes in aspect angle. New feature and decision-level fusion algorithms were

also developed in [12] and [3] using a hidden Markov model (HMM) and a Collaborative

Multi-Aspect Classifier (CMAC) to improve classification of targets while reducing the false

alarms when multi-pings/aspects sonar data are available. The proposed CMAC system

provided overall hard-limiting correct classification rates of 95% on a SAX ’04 dataset, col-

lected using the disk Buried Object Scanning Sonar (BOSS) system off the coast of Fort

Walton Beach, FL in September of 2004 [13]. In [5], the authors developed a novel classifica-

tion scheme based on wavelet packet [14] features extracted from backscattered sonar . The

wavelet packets were utilized in conjunction with linear predictive coding (LPC), a feature

selection scheme, and a backpropagation neural-network classifier [15]. The overall system

offered excellent classification performance for discriminating mine-like vs. non mine-like for

both single-aspect and multi-aspect cases when decision-level fusion was implemented using

a separate neural network.

In [16], a new adaptive underwater target classification system that copes with environ-

mental changes in acoustic backscattered data from targets and non-targets was developed.

The core of the system had an adaptive feature mapping that minimizes the classification er-

ror rate of the classifier. The goal in this method was to map the feature vector in such a way

that the mapped version remains invariant to the environmental changes. A K-nearest neigh-

bors (KNN) system was used as a memory to provide the closest matches of an unknown

pattern in the feature space. The classification decision was made by a backpropagation

neural network (BPNN) trained on wavelet features of various object classes. In this ap-

proach, the authors defined two different cost functions for adaptation. A memory system

was used to identify the closest matches of an unknown pattern in the feature space and

provide their corresponding decisions (labels). Along with this memory system were feature

mapping and classification subsystems. In this approach, based upon the collective evidence

provided by the memory, the decision about the direction and magnitude of the feature
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mapping was made. Through this technique, a confidence measure based upon the probabil-

ity of error was introduced that provided a means to determine when the feature mapping

is needed, and how it should be directed. Balancing construction error with classification

error, two cost functions were then combined together to improve the overall classification

performance. Performance was seen to approach classification error rates as low as 7% on

real sonar datasets.

1.3 Research Objectives

The main objective of this work is the development of efficient methods for the classifi-

cation of military munitions in shallow underwater environments using data collected from

SAS systems. Specifically, the technical question that is addressed in this work is whether or

not the Matched Subspace Classifier (MSC) [17] can successfully be trained on model-based

sonar data of various UXO-like and non-UXO like objects and then be applied to real sonar

datasets to discriminate munitions from other natural or man-made competing objects with

sufficient accuracy . The development of systems that can be trained on model-based data

with guaranteed performance on real data could provide a significant contribution toward

solving this difficult problem.

The comprehensive testing of the MSC and its application to the classification of mu-

nitions using low frequency sonar is another primary objective of this work. To this end,

we test the hypothesis that the spectral features captured in the AC data, extracted from

the sonar backscattered from various objects, display unique features providing excellent

discrimination between different classes of detected objects. In this thesis we present new

classification results of the MSC when trained via K-SVD [18] and LP-KSVD [19] dictionary

learning methods on AC data that has been generated via a fast ray model (FRM). Addi-

tionally, to determine the effect of using a non-linear version of the MSC, a kernel MSC [20]

was also trained and tested on the sonar datasets. These classifier systems are applied to

the entire PondEX and TREX13 datasets to test the generalization ability of the classifiers
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trained exclusively on FRM-generated datasets.

The work presented here will develop a thorough analysis of the usage of linear and non-

linear subspace matching for the problem of underwater UXO classification and some of the

benefits and pitfalls of current dictionary learning methods when applied to this difficult

problem. Test results on three different real low frequency sonar datasets are presented.

The first dataset contains all objects from the PondEX09 exercise and the corresponding

FRM generated data for this controlled low frequency (1-30 kHz) sonar experiment. The

second dataset, from the PondEX10 features many of the same objects as the former and was

collected in a similar fixed range and fixed motion controlled experiment. The third dataset,

TREX13, features many objects from the previous two experiments, and many more, but

at varying target ranges and with far more realistic environmental conditions. Classification

results and analysis for each of the three experiments are provided in terms of performance

metrics such as ROC curve and confusion matrices.

1.4 Organization of the Thesis

This thesis is organized as follows: In Chapter 2 we begin with an overview of the FRM,

a physical model which characterizes an objects scattering behavior as well as the water

sediment interactions of an underwater object. An overview of the Acoustic Color (AC)

feature generation process is also given for the synthetic and real datasets. In this chapter,

a list of the AC samples from objects used in testing and training is also given. Chapter 3

discusses two different methods of the sparsely constrained subspace representation methods

known as K-SVD [18] and LP-KSVD [19] for subspace construction needed in MSC classifiers.

Chapter 4 gives a review of the linear MSC method in [17] and its invariance properties. The

results of this classifier using the two dictionary learning methods are also presented on all

the testing datasets. Chapter 5 reviews the kernel version of the MSC [20] and benchmarks

its classification performance against the linear MSC on all the listed datasets. Finally, in

Chapter 6 we give concluding remarks on this work and suggestions for future developments.
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CHAPTER 2

FAST RAY MODEL AND SONAR DATASETS

2.1 Introduction

For a classifier system to perform reliably, the system must be trained on samples that

are representative of different object classes. In many practical situations, the acquisition of

a complete and exhaustive, labeled, training sample library is nearly impossible to achieve.

Furthermore, training biases that are introduced from specific properties of a sonar hy-

drophone element or the environment from which training samples were collected can often

lead to poor generalization capabilities in sonar classification systems. As an alternative,

several physical models seek to emulate the interactions of a solid object reflecting sound

pressure underwater in order to predict what target responses we might expect in conditions

we have yet to encounter. These models can be utilized in order to provide some indications

of what response we can expect to receive from objects of a known class, with certain shape

and composition, in different bottom conditions.

In this work, we utilize an empirically validated acoustic scattering model which can

quickly and reliably generate synthetic, yet realistic, sonar datasets with desired environ-

mental conditions and sonar path geometry. This chapter begins by reviewing the fast ray

model (FRM) [7] utilized in this work in Section 2.2. The four-path model and its underlying

parameters are also given. Section 2.2.1 discusses how the FRM data are used to generate

Acoustic Color (AC) features for classification. An overview of the process used for creating

AC plots for the real sonar datasets is also given. Section 2.3 provides descriptions of the

real sonar datasets used for testing of the trained MSC classifier, namely the TREX13 and

PondEx09-10 datasets, and their collection experiments. Section 2.4 gives the concluding

remarks and the benefits and drawbacks of the FRM for data generation.
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2.2 Fast Ray Modeling of the Acoustic Response from

Munitions

In order to construct template signals needed to reliably represent the various UXOs

in our classification system, the work of [7, 21–24] on fast ray modeling of scattering from

objects at a water-sediment interface has been utilized. The scattering model allows for

monostatic SAS data sets to be simulated via a fast ray model that combines an acoustic

ray approximation for propagation in a fluid-filled halfspace with scattering from a target

in a number of conditions and media. This fast ray modeling is beneficial for generating

large data sets for dictionary construction. In this section, we will discuss this scattering

model. Under typical operation for a short-range SAS platform, air-water scattering paths

Figure 2.1: Four Ray Path Model.

can be ignored, because paths that interact with the air-water interface are either removed by

time-gating the received signals or are naturally suppressed by the directivity of the source

and receiver. In addition, the separation distance between the actual source and receiver

is much smaller than the distance between the interface and the target, so the source and

receiver can be considered to be co-located. Under these conditions, only the four ray paths

shown in Figure 2.1 contribute to the scattered pressure. The actual source, receiver, and

target are denoted by S, R, and T , while S1 and R1 are image source and receivers. In this

figure, the path 1 is a direct reflection path. The paths 2 and 3 interact with the sediment

once and scatter from the target in a bistatic direction, and path 4 is a back-scattering path

with two bottom interactions. In this model, the source, receiver, and target are located

at rs, rr, and rt, and an image source is located at rsi with an image receiver at rri . To
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distinguish path 2 and path 3, the source and receiver are shown at distinct locations; and

with our assumption of co-located source and receiver, paths 2 and 3 are reciprocal and paths

1 and 4 are backscattered. With the specification of a source and receiver, the scattering

from a target has been reduced to a superposition of 4 free-field scattering problems. Under

operational conditions, the distance associated with each path satisfies d ≫ λ where λ is the

wavelength of the pressure. The scattered steady-state pressure can then be written as

ps = p0A (ks,ki, ω)
exp(ikr)

r
(2.1)

where p0 is the amplitude of the incident pressure, r is the range from a field point to

the target, A is the scattering amplitude, exp(ikr)/r is a spherically diverging wave, k =

2π/λ is the wavenumber, ω is the angular frequency, and ki and ks are the unit vectors

associated with the direction of the incident and scattered fields, respectively. The scattering

amplitude contains useful information concerning the material properties of the target and

the directionality of the scattered field. The scattering amplitudes can be determined from

analytic solutions to scattering problems (e.g., scattering from a spherical target), direct

measurements from actual targets, or numerical simulations (e.g., a finite element (FE)

model for a given target).

Figure 2.2: Free-field scattering assumes a portion of an incident wave is scattered to a
distant target.
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Combining the ray model paradigm with free-field scattering as given in (2.1), the spec-

trum of the total scattered pressure can be written as

P (ω) =

(

A1(ω)

d1d2
eiωt1 +

V (θg)A2(ω)

d2d3
eiωt2 +

V (θg)A3(ω)

d1d4
eiωt3 +

V 2(θg)A4(ω)

d3d4
eiωt4

)

r0Psrc(ω) (2.2)

with d1 = |rs − rt|, d2 = |rt − rr|, d3 = |rsi − rt|, and d4 = |rt − rri |. The time delays

are then t1 = (d1 + d2)/c1, t2 = (d2 + d3)/c1, t3 = (d1 + d4)/c1, and t4 = (d3 + d4)/c1;

with c1 being the speed of sound in water. The pressure spectrum Psrc(ω) represents the

frequency spectrum of the transmitted wave packet from the source, and r0 = 1 m is a

reference distance. The scattering amplitudes Ak(ω) in (2.2) also depend on the locations of

the sources, receivers, and target. Note the indices of Ak correspond to the path enumeration

depicted in Figure 2.1. The reflection coefficient at the water-sediment interface, V (θg), is a

function of the grazing angle θg, and is defined as follows

V (θg) =
ρ sin(θg)− (κ2 − cos2(θg))

1/2

ρ sin(θg) + (κ2 − cos2(θg))1/2
(2.3)

where ρ = ρ2/ρ1 and κ = (1 + jδ)/ν with ν = c2/c1. Here ρ1 is the density of water. The

density, sound speed, and loss parameter for the sediment are ρ2 ,c2 and δ. An inverse Fourier

transform of P (ω) thus gives a generated sonar signal that includes the four primary acoustic

propagations for a target near an interface. The four paths represented in this model take

into account the interaction of the sonar with the target and the environment (seafloor). If

one were to throw out the three paths that reflect from the seafloor and only keep the first

path, then one would have “free-field scattering” from the target only. The term free-field

scattering implies that the target is so far from any boundary that it can be thought of as

suspended in an infinite volume of water.

2.2.1 Acoustic Color for Synthesized Data

In order to produce AC features for the synthetically generated data to train the MSC

classifier, raw sonar returns generated by the fast ray model must first be pre-processed.
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Generation of AC features amounts to forming the intensity magnitude of the returned spec-

tral power over the entire range of aspect angles that are modeled in either linear path SAS

(LSAS) or circular path SAS (CSAS) runs. This is accomplished by the following procedure:

First, a FE model [24] is implemented to produce scattering amplitude information for the

intended target. These scattering amplitudes are modeled for acoustic transmissions and re-

turns in the low frequency range of 1-30 kHz. Next, the half-space model including the four

described ray paths in (2.2) is utilized to generate a raw sonar return data set by generating

the modeled returns of a target using the inverse FFT of (2.2) over a pre-generated coordi-

nate set representing the various positions along a circular or linear path making soundings.

As will be explained later in more details, in this simulation model, a copy of any transmitted

pulse may be used. For experimentation, a copy of the transmitted pulse used during data

collection was used, which provides spectral information of an object’s backscatter in the

desired frequency range. Next, these raw soundings were pulse-compressed with the original

transmit signal. Finally, the magnitude value of the FFT of the pulse-compressed data is

computed and the result is windowed to 0-30 kHz to remove the unused frequency portions

and isolate the frequency range of interest. As an arbitrary trajectory of a SAS platform can

be modeled with the FRM [7], the model was used to generate synthetic LSAS sonar data

with a target located at the center of the LSAS path for a set of ranges and objects collected

in all real datasets used in this research. Model parameters such as sonar interface elevation

and water conditions were set to match those measured during data collection experiments.

This was repeated for all objects present in the tested datasets. Lists of objects used in

training and their characteristics are given in Table 2.1. An example of these AC features

generated for a 21-m long simulated CSAS run at a range of 10 m and with an interface

elevation of 3.8 m is given in Figure 2.3 (c) for an aluminum UXO object.

AC features generated for template signals via the described scattering model were then

utilized as training data for our various MSC classifiers. AC feature vectors were generated

for all proud objects and ranges that were encountered in the actual test datasets. The
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Figure 2.3: AC data of a bullet-shaped aluminum UXO replica at 10 m range generated via
(a) Data collected during PondEX10 (SERDP MR-1665). (b) FEM and Kirchoff-Helmholtz
integral. (c) FRM with scattering form function derived from the scattered pressure com-
puted in (b).

major benefit of utilizing the ray model developed in [7,24] is that, after free-field scattering

amplitudes for a desired object are collected or modeled via FE methods, the regeneration

of the ray model simulating various aspects and orientations is far simpler and faster than

re-running these variations with the FE method [24].

The validated performance of the FRM can be visualized in Figure 2.3. Figure 2.3(b)

displays the AC template predicted for an Aluminum UXO via the FE method. Figure 2.3(a)

displays the real AC data of a bullet shaped aluminum UXO collected from the TREX13

exercise, while Figure 2.3(c) displays the result of the FRM for the same objects response.

Comparing AC plots in Figures 2.3(a)-(c), one can clearly observe that the AC plot in

Figure 2.3(c), generated via the FRM [7], is not only preserving all the spectral information

of that generated using the slow FE model in Figure 2.3(b), but also capturing the essential

AC features of the real sonar data of Figure 2.3(a) for the same object collected in PondEX

experiments. A great deal of spectral information for object discernment seems to be present

in these AC plots. We shall present in Section 2.3.3 present the AC data generation for real

sonar datasets.
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Table 2.1: Fast Ray Model Combined (PondEX and TREX) Training Data Set.

No. Class Object Description Ranges

1 non-UXO 2 ft Aluminum Cylinder 10 m
2 non-UXO 3 ft Aluminum Cylinder (10), 30, 35, 40 m
3 non-UXO 2 ft Aluminum Pipe Section (10), 15, 25, 30 m
4 UXO 100 mm Aluminum Rocket Round 10, 15, 30 m
5 UXO 100 mm Solid Steel Rocket Round 10, 15, 25, 30 m
6 UXO 105 mm Bullet (Air fill) 15, 20, 25 m
7 UXO 105 mm Bullet (H2O fill) 15, 20, 35 m
8 UXO 155 mm Howitzer w/ Cap (Air fill) 10∗, 15, 20, 35 m
9 UXO 155 mm Howitzer w/ Cap (H2O fill) 15, 25, 30 m
10 UXO 155 mm Howitzer no Cap 25, 30, 40 m

2.2.2 Synthesized Training Data Set

As stated before, the specific objective of this work is to determine if model-generated

AC features, for a wide variety of UXO and non-UXO objects with known geometrical and

physical characteristics at different sonar range and orientation, can be used to successfully

construct dictionary matrices for the MSC-based classification system which provide good

performance on real datasets. Similar to the real datasets described in Sections 2.3.1 and

2.3.2, object orientations were created that ranged from −80◦ to +80◦ in 20◦ increments,

with 90◦ orientation corresponding to broadside view of the object and 0◦ corresponding to

an end-on view of objects. For each object in the real sonar data collection experiments,

the AC features generated were decimated along the frequency dimension to have N = 301

frequency bins spanning the 0-30 kHz frequency range corresponding to approximately 100

Hz separation of frequency bins and along the aspect dimension to have 0.5◦ aspect resolution

(i.e. 721 aspect vectors ∝ 360◦). This database of AC features was created to match aspect

resolution and frequency resolution of those generated for the real sonar data. Table 2.1

gives the list of all the objects and their range information for which synthesized data were

generated to match those in PondEX and TREX experiments. This synthesized training set

is given with range information in order to provide a reference for the FRM types used for

the PondEX and three TREX experiments performed with the three developed classifiers.
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2.3 Sonar Data Descriptions

In this section we overview the sonar datasets and the UXO and non-UXO objects that

were used for testing the developed classifiers. The object characteristics and their ranges

from the sonar platform are also provided.

2.3.1 PondEX Data Description

Figure 2.4 shows the layout of the PondEX10 experiment which also matches the setup

that was used in the earlier PondEX09 experiment including the relative locations of the

rail-mounted sonar system and the objects in the target field. The 21 m rail the sonar

system is mounted on is fixed to eliminate platform motion as the sonar interface moves

along its track. The sonar transmit signal is a 6 msec linear frequency modulated (LFM)

pulse over 0.5-30 kHz with a 10% taper between the leading and trailing edges to minimize

ringing in the transmitted signals. Sonar backscatter is received with L = 6 hydrophone

elements that are arranged in a linear array approximately normal to the seafloor. For the

formation of AC data, only the 3rd hydrophone element data was used. As can be seen from

Figure 2.4: Layout of the Field for PondEx10 Data Collection.

Figure 2.4, for the PondEX experiments, the target field contained several objects at a time
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with varying shapes, sizes, and compositions, all of which were located approximately 10 m

horizontally from the rail system and are proud on the sandy bottom. Tables 2.2 and 2.3

enumerate the tested objects for each of the experiments and briefly describes each. Since

the only non-UXO types in PondEX10 were clutter/rock objects, this was considered to be

the easier testing set. For the PondEX09 experiment, objects that we considered (those

objects for which FRM scattering data exists) included hostile and non-hostile man-made

objects for both non-UXO and UXO classes. This data set was expected to provide more

of a challenge because there is the potential for the backscattered frequency structure of a

man-made non-UXO object such as an aluminum pipe to be similar to that of aluminum

UXO due to the regularity and similarity of the shapes and materials.

The sonar data sets used in this study were collected during ten runs through the target

field with the target field for each run containing the listed objects. Each run differs in the

orientation of all the objects, with each object having the same orientation for a given run.

Ten total object orientations were used, ranging from −80◦ to +80◦ in 20◦ increments, with

90◦ orientation corresponding to broadside view of the object and 0◦ corresponding to an

end-on view of objects. Each run consists of 769 pings in which the sonar platform moved

along the fixed rail in increments of 0.025 m, transmitting and receiving once for each sonar

position. The data was sampled at 1 MHz and the sonar platform was tilted at a fixed

20◦ grazing angle for all runs. Since the useful spectral information in the collected data

has a Nyquist frequency well below the sampled rate, the 1 MHz data was down-sampled

in time by a factor of 10 resulting in data sampled at 100 kHz. Then after AC data was

generated, the frequency dimension has N = 301 bins spanning the 0-30 kHz frequency range

corresponding to approximately 100 Hz in each frequency bin.

As the MSC classifier is to be implemented on AC data, testing was performed on AC’s

generated from filtered data from these experiments [23]. Using the method described in

Section 2.3.3, AC Template testing data was formed by composing the useful aspects from

multiple linear SAS runs with the field-centered target taking various rotational poses.
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Table 2.2: Objects in the PondEX09 Experiment Testing Data.

Object No. Class Object Description # Aspects
1 UXO Aluminum UXO 721
2 UXO Stainless Steel UXO 721
3 Non-UXO 3ft Alumnimum Cylinder 721
4 Non-UXO Aluminum Pipe 721
5 Non-UXO Rocks 1 & 2 722

Total # Tested: 3606

Table 2.3: Objects in the PondEX10 Experiment Testing Data.

Object No. Class Object Description # Aspects
1 UXO Small Aluminum Cylinder with Notch 721
2 UXO De-militarized 152 mm TP-T Round 721
3 UXO 100 mm Solid Steel Rocket Round 721
4 UXO Inert 81 mm Mortar 721
5 UXO 100 mm Aluminum Rocket Round 721
6 non-UXO Rock 1 361
7 non-UXO Rock 2 361

Total # Tested: 4327

2.3.2 TREX13 Data Descriptions

The experimental setup for TREX13 was similar to PondEx10 [25] described in the

previous section. For TREX13, the target field contained several objects with varying shapes,

sizes, and compositions, all of which were located between 10 to 40 m horizontally from the

rail system and are proud on the sandy bottom. Table 2.4 gives the list and some properties

of these objects, together with range information for each object. The rail the sonar system

was mounted on was fixed to minimize platform motion as the sonar tower traversed along its

track. The length of the rail during TREX13 was approximately 40 m. The sonar transmit

signal was a 6 msec LFM pulse over 3-30 kHz with a 10% taper between the leading and

trailing edges to minimize ringing effects in the transmitted signals. Sonar backscatter was

received by a 6-element linear array that was approximately normal to the seafloor. For the

formation of AC features, data from the 3rd hydrophone element data was used as before.
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Table 2.4: TREX13 available proud targets used for testing

No. Class TREX # FRM Name Ranges
1 non-UXO Target 17 alcyl2ft 10 m
2 non-UXO Target 7 alcyl3ft 30, 35, 40 m
3 non-UXO Target 16 alpipe 15, 25, 30 m
4 UXO Target 20 aluxo 10, 15, 30 m
5 UXO Target 21 ssuxo 10, 15, 25, 30 m
6 UXO Target 25 bullet 105mm air 15, 20, 25 m
7 UXO Target 29 bullet 105mm h2o 15, 20, 35 m
8 UXO Target 9 howitzer cap air 10, 15, 20, 35 m
9 UXO Target 28 howitzer cap h2o 15, 25, 30 m
10 UXO Target 8 howitzer nocap 25, 30, 40 m

The sonar data sets used in this study were collected during ten runs through the target

field. Each run differed in the orientation of all the objects, with each object having the

same orientation for a given run. Similar to the PondEX experiments, the object orientations

varied from −80◦ to +80◦ in 20◦ increments. However, each run of data consisted of approx-

imately 1600 pings in which the sonar platform moved along the fixed rail in increments of

0.025 m, transmitting and receiving once for each sonar position. The data was sampled at

100 kHz and the sonar platform was tilted at either a 10◦ or 20◦ grazing angle depending on

range to the targets being observed.

2.3.3 AC for Real Sonar Data

The procedure for generating AC features for real raw sonar data experiments is similar

to the procedure performed on the synthesized sonar data described in Section 2.2.1. Raw

sonar data time series collected from the PondEX or TREX13 experiments are first pulse

compressed with the transmit signal that was used in the data collection experiment and

the result is further processed to remove returns from the neighboring objects to isolate the

object of interest. This processing utilizes a reversible SAS imaging process, a spatial filtering

process using a 2-D Tukey window, and a pseudo-inverse filtering [26]. This inverse filter

maps the SAS image back to the pulse-compressed version that has less interface scattering
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(a) Air-Filled Howitzer (object 8) (b) Aluminum UXO Shell (object 4)

Figure 2.5: AC Features for two UXO objects in TREX13 dataset

noise. These filtered pulse-compressed signals are then transformed to the frequency domain

via FFT and the magnitude of the FFT was utilized as the testing feature vectors. This

process is repeated for all aspects of a given LSAS run and the amplitude spectrum is then

generated and plotted to display AC for each object. Examples of these AC plots for two

real UXO objects in the TREX13 test set, the Air-Filled Howitzer with a Cap and the

Aluminum UXO, are shown in Figures 2.5(a) and 2.5(b). From these two figures, it is easy

to verify that the frequency response of the air filled howitzer and aluminum UXO object

types are distinctly different despite similarities in shape and object fill. Furthermore, when

comparing to the Aluminum UXO plot of Figure 2.3 (a), some discrepancies and interference

appears to be present in the TREX observation given in Figure 2.5(b) that was not present

in the more controlled PondEX experiments.

2.4 Conclusion

In this chapter we first introduced the FRM [7] as a framework for modeling object

scattering in a water sediment interface. Using the ray model, target scattering is reduced

to a convolution of a free-field scattering amplitude and an incident acoustic field at the

target location. A simulated or measured scattered free-field pressure from a complicated

19



target can be reduced to a complex scattering, and this is then used within the ray model via

interpolation. Using this model, we explained how the four-path wave guide model could be

used along with pre-saved complex scattering coefficients, found via FEMmethods, to rapidly

generate a customizable and complete library of synthetic training samples. This section was

then followed by an explanation of the AC data features used for sonar classification in this

work and the procedure for generating AC features for synthesized and real sonar datasets.

Examples of a patch of AC vectors generated from a synthesized LSAS run were also given

in this chapter. Finally, overview of the testing and training datasets to be used by the

various classifiers were given also. Using the model-generated data in conjunction with the

subspace learning methods presented in the following chapter, we attempt to learn a robust

signal model for different object classes.
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CHAPTER 3

SUBSPACE LEARNING METHODS

3.1 Introduction

An overcomplete dictionary that leads to sparse representations [18, 19, 27] can either

be chosen as a pre-specified set of functions or designed by adapting its content to fit a

given set of signal examples. In this chapter, we overview two state of the art methods for

learning sparse reprsentations for data from a training set. In the K-SVD dictionary learning

method [18], the dictionary is designed specifically for a signal type in order to meet an

imposed sparsity model. The goal is to find the dictionary that yields signal-dependent sparse

representations for a given training set. Such dictionaries have the potential to outperform

[28] commonly used predetermined dictionaries for the problem of sonar classification owing

to the fact that for different object classes specifically trained dictionaries are utilized to

perform classification. The locality preserving (LP) K-SVD dictionary learning method [19],

on the other hand, extends to the sparse dictionary learning method by adding an additional

constraint which attempts to make landmark points for dictionary atoms. This is done by

enforcing atoms to be representative of the original neighborhoods from where they were

sampled on the nonlinear ambient data manifold. The K-SVD ’s strength lies in its adherence

to strict minimization of squared-error reconstruction w.r.t. a specified sparse signal model.

This can result in low error in sparse reconstructions but class ambiguity in the atoms learned.

The LP K-SVD’s strengths lie in its assumption of smoothness in the data domain, balancing

representative-ness of atoms with reconstruction capabilities while enforcing a local sparse

model.
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The outline of this chapter is as follows. In Section 3.2, an overview of the K-SVD signal

subspace construction method is given. Section 3.3 overviews the Locality Preserving K-

SVD which slightly modifies the objective function in K-SVD to focus learning dictionary

elements locally representative on the data manifold of observations in a selected class. Both

of these methods of signal subspace representation are utilized in MSC classifier testing and

their strengths and weaknesses are discussed in Chapter 4.

3.2 K-SVD Dictionary Learning Review

As will later be shown in Chapter 4, the linear signal model under both ‘UXO’ and

‘non-UXO’ hypotheses for our problem takes the form

Ym = HmXm +N, m = 0, 1 (3.1)

where Ym ∈ R
N×Q is the class m sample observation matrix, N ∈ R

N×Q is the noise or

(inaccuracy modelling) matrix, Hm ∈ R
N×K is the subspace matrix, and Xm ∈ R

K×Q is the

parameter matrix associated with data matrix Ym. The parameter matrix Xm specifies how

to sample linear basis vectors in the mth signal subspace represented by Hm for each of the Q

observed samples yq in Ym. Since with this classifier training amounts to generating suitable

signal subspaces under both hypotheses, the discovery of discriminative basis vectors for

constructing each subspace 〈Hm〉 is of utmost importance. In the remainder of this chapter

we review two methods which attempt to learn signal-dependent dictionaries Hm using the

K-SVD [18] and LP-KSVD [19] frameworks.

The purpose of K-SVD is to create an optimal signal-dependent dictionary that reduces

the dimension of a high dimensional signal vector by representing it as a sparse linear com-

bination of relatively few atoms. More specifically, K-SVD aims to solve a constrained

minimization problem to reduce the reconstruction error in a set of training vectors. Let

Ym ∈ R
N×Q be a matrix consisting of class m (m = 0, 1) training data vectors with yq

for q ∈ [1 · · ·Q] as its columns, Hm ∈ R
N×K be the dictionary matrix to be found, and
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Xm ∈ R
K×Q be the sparse representation of Ym in terms of dictionary atoms in Hm. Note

it is desired that the number of non-zero elements of each xq be substantially less than N as

the dimension should be reduced in this process. The constrained optimization problem [18]

is given by,

min
Hm,Xm

{‖Ym −HmXm‖2F} subject to , ‖xq‖0 ≤ τ, ∀q (3.2)

where || · ||2F is the Frobenius norm of a matrix [29], and || · ||0 is the ℓ0 norm which counts

the non-zero elements of a vector. Put simply, this optimization seeks Hm and Xm which

simultaneously (1) minimizes squared error of reconstructing training samples Ym, and (2)

enforces reconstructions that depend on at most τ ≪ N basis elements.

During the training, the K-SVD algorithm is composed of two-phases. First, a sparse

representation phase is applied where for each yq the corresponding xq is computed based

on a given subspace matrix Hm. These sparse codes are found using a pursuit method

such as Basis Pursuit (BP) [30] or Orthogonal Matching Pursuit (OMP) [28]. Second, a

dictionary update phase where each column hk of matrix Hm is updated one at a time based

on minimizing the reconstruction error using the Singular Value Decomposition (SVD) [29]

of a restricted error matrix ER
k , a matrix representing the reconstruction error incurred

when leaving out the kth atom hk. These two coupled phases are repeated until convergence

through monotonic MSE reduction [18]. These steps are briefly reviewed in the following

subsections.

3.2.1 Sparse Coding Phase Using a Fast OMP Method

In the sparse representation phase, for each yq in the training data matrix Ym, a corre-

sponding xq is computed based on a given Hm using a pursuit method, namely the OMP.

An implementation of OMP that does not require matrix inversion for the sparse coding is

briefly reviewed here [28].

To begin, let Hm = [h1,h2, ...,hK ] ∈ R
N×K be an overcomplete dictionary matrix repre-

senting the signal subspace for class m samples. Now, given an training vector yk ∈ R
N , we
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would like to find its sparse representation xk ∈ R
K , K ≪ N iteratively using the smallest

possible number of basis vectors hj ’s such that the norm of the reconstruction error is less

than a pre-selected tolerance ǫ, i.e. ||ek|| ≤ ǫ, where ek = yk −Hmxk.

For a given observation vector yk, each iteration of standard OMP involves finding the

inner product of the current residual error vector, calculated at iteration t − 1, with each

of the remaining (unselected) dictionary atoms and selecting that with the largest inner

product. More specifically, at iteration t if the current residual error vector is rt−1, the next

dictionary atom is chosen using,

kt = argmaxj |rTt−1hj| (3.3)

Then, the augmented dictionary matrix (column-wise) and index set respectively become

Hm,t = [Hm,t−1hkt ] and St = St−1

⋃

kt with initial values Hm0
being a matrix with ran-

domly selected training samples, and S0 = ∅. Using this matrix x̂k(t) is estimated by the

minimization,

x̂k(t) = argminxk
||yk −Hm,txk|| (3.4)

which leads to the least squares (LS) solution for x̂k(t),

x̂k(t) = (HT
m,tHm,t)

−1HT
m,tyk = QHm,t

yk (3.5)

where QHm,t
= (HT

m,tHm,t)
−1HT

m,t represents the LS filter based upon the augmented matrix

Hm,t. The new residual error term then becomes

rt = yk −Hm,tx̂k(t) = P⊥
Hm,t

yk (3.6)

where P⊥
Hm,t

= I − PHm,tand PHm,t = Hm,t(H
T
m,tHm,t)

−1HT
m,t is the projection matrix onto

subspace 〈Hm,t〉 spanned by columns of Hm,t. The process is repeated until the error toler-

ance is met.

As can be seen in (3.5) and (3.6), the computational cost of the original OMP algorithm

grows very quickly as the number of chosen atoms increases. This is caused by the rapid in-

crease in cost of matrix inversion as dimensionality increases, the relationship is demonstrated
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Figure 3.1: Timing Analysis of Pursuit Methods

in Figure 3.1. Additionally, to relate this sparse coding to iterative K-SVD an interface be-

tween these two processes is needed. To develop a fast OMP algorithm that avoids matrix

inversion operation, the authors in [28] used the orthogonal projection updating [31, 32] for

PHm,t and QHm,t
to get

P⊥
Hm,t

= P⊥
Hm,t−1

−Ph̃kt
(3.7)

and

QHm,t
=







QHm,t−1

0






+







−bt−1

1






qT
t (3.8)

where Ph̃kt
=

h̃kt
h̃
T
kt

||h̃kt
||2

is the projection matrix for h̃kt = P⊥
Hm,t−1

hkt which is the projection of

hkt onto the orthogonal subspace of 〈Hm,t−1〉 (or innovation); bt−1 = QHm,t−1
hkt , the filtered

version of hkt based upon LS filter QHm,t−1
; and qT

t =
h̃
T
kt

||h̃kt
||2

is the LS filter operator using

h̃kt . Premultiplying (3.7) and (3.8) by yk yields recursive update equations for rt and x̂k(t),

respectively, i.e.

rt = rt−1 − αth̃kt (3.9)

and

x̂k(t) =







x̂k(t− 1)

0






+ αt







−bt−1

1






(3.10)
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where αt = qT
t yk =

hT
kt
rt−1

||hkt
||2

i.e. filtered version of yk based upon LS filter operator qT
t .

Thus, the adjustment term in (3.10) corresponding to the previous coefficients is equal to

the products of two filtered outputs, namely bt−1 and αt; whereas the coefficient associated

with the newly added atom is αt. These equations allow for “time-order” updates after

adding a new dictionary atom. Note that in this algorithm, computing the projection matrix

PHm,t and LS filter operator QHm,t
are completely avoided and hence no matrix inversion is

required. To calculate the new part of hkt i.e. h̃kt = P⊥
Hm,t−1

hkt we only need the filtered

output bt−1 since, h̃kt = hkt −Hm,t−1bt−1.

3.2.2 Dictionary Update Phase

The dictionary update phase involves writing the cost function in (3.2) in terms of

columns of the dictionary matrix, hj s and rows of matrix Xm, x
j
T ’s. More specifically,

∣

∣

∣

∣Ym −
K
∑

j=1

hjx
j
T

∣

∣

∣

∣

2

F
(3.11)

Then, separating the effects of the kth dictionary atom (k ∈ [1, K]) from the other terms

yields,
∣

∣

∣

∣

(

Ym −
∑

j 6=k

hjx
j
T

)

− hkx
k
T

∣

∣

∣

∣

2

F
= ||Ek − hkx

k
T ||2F (3.12)

where Ek is the error matrix that represents the reconstruction error when neglecting the kth

atom. Now, to consider the sparsity of xk
T , we define a subset of indices ωk = {i, |xk

T (i) 6= 0}

which correspond to the training samples in Ym that use column dictionary atom hk for

which xk
T (i) 6= 0. Consequently, 3.12 is reduced to

||EkΩk − hkx
k
TΩk||2F = ||ER

k − hkx
k
R||2F (3.13)

where Ωk is a Q × P matrix whose entries (ωk(i), i) are ones and the rest are zeros. Note

that P = |ωk| ≤ K where | · | represents cardinality of set ωk. When post-multiplying a

vector by Ωk, all the zero elements are discarded and the dimension of xk
T is reduced to

xk
R = xk

TΩk ∈ R
P and also ER

k = EkΩk ∈ R
N×P is the restricted error matrix. Note that this
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is not needed if the proposed fast OMP method is used. When decomposing ER
k = U∆VT

using SVD, the solution for the updated dictionary atom ĥk = u1, or the first column of

U. Now, since ĥk has changed, xk
R must also be updated. This restricted vector is updated

using x̂k
R = v1∆1,1 where v1 is the first row of VT and ∆1,1 is the first entry in the ∆ matrix.

After updating the kth dictionary atom, the same procedure is followed for the (k + 1)th

atom until all atoms have been individually updated. Then, using this updated dictionary

the sparse matrix Xm can be recomputed. The dictionary update and sparse coding steps

are repeated until the stopping condition is met i.e. either maximum number of iterations

or a reconstruction error below some threshold.

Table 3.1: K-SVD Algorithm

K-SVD Optimal Dictionary Construction Algorithm:

a) Initialization: Set the dictionary matrix Hm,0 ∈ R
N×K with K randomly selected l2

normalized columns of Ym. Set t = 1. Repeat following steps until a stopping rule is met.

b) Sparse Coding Stage: Generate Xm by computing the sparse representation xq,t for
each yq based on Hm,t−1 using the Fast-OMP method [28].

c) Dictionary Update Stage: Each column hk,t−1, k ∈ [1, ...,K], in Hm,t−1 is updated
separately by:

1. Compute k−exclusive error matrix Ek = Ym −∑

j 6=k hjx
j
T , where xj

T is the jth row of
Xm.

2. Define column indices of training data Ym that use the kth atom in their reconstruction
via Hm,t−1: ωk = {i | xkT (i) 6= 0}.

3. Compute ER
k and xk

R, the restricted error matrix and coefficient vector respectively, by
selecting only columns of Ek corresponding to ωk indices and likewise for entries of xk

T

(i.e. discard zero entries in the row vector).

4. Apply SVD: ER
k = U∆VT . The updated dictionary column ĥk,t = u1, the first column

of U and the updated coefficient vector x̂k
R = v1∆1,1, where ∆1,1 is the first and largest

singular value in the SVD of ER
k , and v1 is the first row of VT .

Set t = t+ 1 and repeat until repeat b) and c) until stopping criterion is satisfied.
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3.3 Locality Preserving KSVD Dictionary Learning Re-

view

There are two main objectives behind LP-KSVD [19]: (1) establishing a compact dic-

tionary Hm = [h1,h2, ...,hK ] such that linear combinations of hk’s can approximate the

nonlinear ambient space manifold M of the original data, which is sampled based on Ym

or the training samples for class m; and (2) learning hk’s as landmark points capable of

preserving the local information on M. The dictionary learning problem of LP-KSVD is

thus formalized as

min
Hm,Xm

{||Ym −HmXm||2F} (3.14)

s.t. =















xk,q = 0 if hk /∈ Ωτ (yq) ∀k, q

1Txq = 1 ∀q

where xk,q is the kth element of sparse vector xq associated with vector yq in Ym and

Ωτ (yq) denotes the neighborhood containing τ nearest dictionary atoms of yq in terms of

Euclidean distance. The first constraint dictates that every training sample yq can only be

re-constructed by its τ nearest-neighbor dictionary atoms while the second constraint allows

the reconstruction coefficients to be invariant to translation of the data. The main goal is

to learn hk’s as landmark points, which requires that each hk be locally representative of a

small patch on the manifold M.

The LP-KSVD solves minimization (3.14) iteratively by alternating between solving for

Hm and Xm. This is done by first fixing Hm and solving for the optimum coefficient matrix

Xm and then, updating Hm once Xm is found. Iterations are terminated if either the objec-

tive function value reaches some prescribed threshold or a maximum number of iterations

has been reached.
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3.3.1 Solving for Local Reconstruction Codes

Fixing Hm to that of the previous iteration, the coefficient matrix Xm defined in (3.14)

can be obtained by equivalently solving the following for each sample yq:

min
xq∈Xm

||yq −
K
∑

k=1

xk,qhk||22 (3.15)

s.t. =















xk,q = 0 if hk /∈ Ωτ (yq) ∀ k, q

1Txq = 1 ∀q

Figure 3.2: Local Representations used for LP K-SVD.

where xq represents the q-th column in Xm, containing linear representation coefficients

for reconstructing yq, and xk,q is the k-th element in xq. Letting x̂q be a subvector containing

only the non-zero elements in xq . The closed-form solution to (3.15) is given as:

x̂q = x̃q/
∑

x̃k,q (3.16)
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where x̃q = (G + ηI)−11, 1 is a vector of all ones, and G = (Ωτ − yq1
T )T (Ωτ − yq1

T ) is

the local covariance matrix around sample yq. In this expression, η is a small constant used

to secure numerical stability. This formulation for G was popularized by a method similar

to the LP K-SVD method in a dimensionality reduction process known as Locally Linear

Embedding [33]. Note that here, Ωτ = Ωτ (yq) the neighborhood of τ dictionary atoms

nearest to yq.

The concept of neighborhood reconstructions can be illustrated in Figure 3.2. In this

figure, where a small patch around each new sample yq is constructed to define the neighbors

of yq, hk ∈ Ωτ (yq).

3.3.2 Local Dictionary Optimization

This step is similar to that in K-SVD algorithm. More specifically, we would like to

minimize ||Ek−hkx
k
T ||2F with respect to hk and xk

T . As ||Ek−hkx
k
T ||2F is only affected by the

set ωk = {i, |xk
T (i) 6= 0} which corresponds to the training samples in Ym that use column

dictionary atom hk for which xk
T (i) 6= 0, the objective function is reduced to

ĥk, x̂
k
R = argmin

hk,x
k
R

||ER
k − hkx

k
R||2F (3.17)

where ER
k and xk

R were defined before in Section 3.2. Using a similar approach taken in the

K-SVD algorithm, the authors in [19] showed that the minimization problem in (3.14) leads

to the following solutions for ĥk, and x̂k
R

ĥk,t = su1 (3.18)

x̂k
R =

v1∆1,1

s
(3.19)

where u1 and v1 are the first columns of U and V respectively; s is a scaling factor,

and ∆1,1 is the largest eigenvalue in diagonal of matrix ∆ defined before. The process is

summarized in Table 3.2.
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Table 3.2: LP-KSVD Algorithm

LP-KSVD Optimal Dictionary Construction Algorithm:

a) Initialization Set the initial dictionary matrix Hm,0 with K randomly selected normalized
columns of Ym. Set t = 1. Repeat following steps until a stopping criterion is met.

b) Local Reconstruction Coding Generate Xm by computing the local code represen-
tation xq,t for each yq based on Hm,t−1 at the current iteration using the Local Codes

x̂q,t = x̃q/(1
T x̃q), where x̃q = (G+ηI)−11 and G = (Ωτ,t−1(yq)−yq1

T )T (Ωτ,t−1(yq)−yq1
T ),

the local covariance matrix of yq where η is small constant and Ωτ,t−1(yq) denotes the neigh-
borhood containing τ nearest dictionary atoms of yq at time step t− 1.

c) Local Dictionary Update Each column hk,t−1, k ∈ [1, ...,K], in Hm,t−1 is updated by:

1. Compute k−exclusive local error matrix Ek = Ym − ∑

j 6=k hjx
j
T where xj

T is the jth

row vector of Xm which contains the coefficients used by atom hj .

2. Define columns of training data Ym that concurrently select the kth atom in their
reconstruction via Hm as the matrix Λ and xk

R is the succinct row vector containing
only the non-zero coefficients of the xk

T ’s, which select the kth atom.

3. Let ER
k be the error matrix corresponding to samples Λ estimated by xk

R, i.e. ER
k =

Λ−∑

j 6=k hjx
j
R.

4. For Local Representation Error (LRE)
∑

yi∈Λ
||hk − yi||22, the newly updated hk,t and

the xk
R that minimize ||ER

k − hk,t−1x
k,t−1
R ||2F and yield the minimum LRE are given by:

U∆VT = ER
k ⇒, ĥk,t = su1, x

k
R =

v1∆1,1

s , where s = 1
P

∑

yi∈Λ
u1

||u1||2
yi is a gain factor.

Set iteration index t = t+ 1 and repeat b) and c) until stopping criterion is satisfied.

3.4 Conclusion

In this chapter, we reviewed two different methods for determining subspace matrices to

be used in the MSC classifier. The K-SVD algorithm was reviewed first which generalizes

k-means clustering [18] with flexibility as to what sparsity model is assumed. Both the sparse

coding algorithm as well as the dictionary updating process were discussed for the K-SVD

and a novel approach for sparse coding using fast OMP iterations was presented. Second, a

recent extension of the K-SVD known as the LP K-SVD was reviewed which solves for the

sparse codes by using information on the neighborhoods of dictionary atoms and training

samples.

Both the K-SVD and LP-KSVD methods have their respective benefits and drawbacks.

For the K-SVD method, the atoms are learned to be utilized in a greedy approach which
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selects the τ -best candidates to represent an observed sample. The LP-KSVD, on the other

hand, learns atoms whose sparse linear combinations are representative of their neighborhood

of origin on the original data manifold. The LP-KSVD has the added benefit of a closed

form solution for Local code computation which does not involve matrix inversion. Instead a

search for the τ−nearest neighbors of every training sample is used which are then utilized to

represent the sample. For the extreme sparsity case when τ = 1, these algorithms essentially

become clustering/learning vector quantization methods, their difference being that for K-

SVD the learning goal is to minimize global errors, whereas for LP-KSVD, the focus is

instead on minimizing local representations around the training samples. LP-KSVD manages

to decrease global error manifold by learning it in a patch-by-patch manner, with each

neighborhood increasing global reconstruction capabilities. In Chapter 4 we shall show how

the algorithms are used in conjunction with the matched subspace classifier for UXO vs.

non-UXO discrimination.
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CHAPTER 4

MATCHED SUBSPACE CLASSIFICATION -

LINEAR CASE

4.1 Introduction

Detection and Classification problems can be simply described as deciding which of a

set of models has most likely generated a given set of observations. This is easily cast into

the framework of statistical hypothesis testing, the most basic being the binary hypothesis

(two-class) test, where we must decide among only two models. The binary hypothesis test

is described as a decision between either the alternative hypothesis H1 (target present), or

the null hypothesis H0 (background clutter). In signal processing applications, one typi-

cally encounters tests where observations are assumed to be a deterministic or stochastic

signal additively corrupted by noise under the alternative hypothesis versus that of noise

alone under H0. The most fundamental building block for hypothesis testing is the Bayesian

framework [15, 29, 34, 35] where the problem is to minimize the expected Bayesian risk in-

volved with making a decision. Risk is quantified on a problem specific basis but essentially a

high risk event corresponds to a highly undesirable event. Minimizing Bayesian risk leads to

a solution involving the comparison of a likelihood ratio with a threshold that is dependent

on the costs and the a priori conditional probability density functions (pdfs). When these

costs and conditional pdfs are available, a Bayesian framework is optimal.

In developing a classification framework for sonar imagery, the a priori conditional prob-

ability densities are impossible to ascertain as this would require prior knowledge of the

distribution of the background alone as well as when targets are included with the back-

ground. The background distribution in sonar data is highly variable. Studies on bottom
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return statistics reveal [36–38] that the distribution of the envelope of the matched filtered

output is dependent on the frequency, grazing angle, range, and roughness properties of

the sea-floor. Rough surface measurements made using high-resolution sonar have indicated

that the amplitude distributions can often deviate from a Rayleigh distribution and be better

modeled using log-normal, Weibull, or other more complex distributions [39]. This suggests

that the underlying complex data are not Gaussian and that the first and second-order mo-

ments will not be sufficient for detection and classification purposes. Thus, the standard

tests that rely on assumptions of normality can fail to capture the true properties of the

background clutter, hence increasing the incident of false alarms.

The generalized likelihood ratio test (GLRT) is typically employed when unknown pa-

rameters are involved while the class of pdfs are known. The GLRT detector replaces the

unknown parameters by their maximum likelihood estimates (MLE). However, if the pdf

of the noise matrix is unknown, or it is not possible to derive the MLE’s of the unknown

parameters, as is the case in our problem, other methods should be employed.

In [17], the authors proposed the MSC framework specifically for non-Gaussian noise

with unknown pdf. The MSC essentially assumes the observations lie in a linear subspace

where the estimates of unknown model parameters are obtained via the Least Squares (LS)

estimate, which happens to be the MLE estimate under Gaussian additive noise case. How-

ever, in reality, the distribution of the noise is unknown and certainly not Gaussian, and

hence it is not possible to derive the MLE of the unknown parameters [17].

In this chapter, we begin by reviewing the classical MSC framework along with its in-

variance properties. This is followed by results of the MSC Classifier on PondEX09-10 and

TREX13 datasets when using signal subspaces created from synthetic training datasets and

the two dictionary learning methods described in Chapter 3.
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4.2 Weighted Matched Subspace Classification Frame-

work

In our application, the MSC classifier operates on AC feature vectors previously described

in Chapter 2, with the assumption that each AC vector belongs to a given class, and can

be formed using some linear combination of basis vectors associated with that particular

class. Our classification problem is referred to as an M−ary classification problem in which

the following hypothesis is to be tested: Our observation contains spectral features from

M possible classes and one is uniquely most likely to be generating the data. For a simple

consideration of classifying ‘UXO’ vs. ‘non-UXO,’ M = 2, i.e. binary hypothesis testing.

We will begin by defining the M−ary classification problem by considering m = 1 ... M

hypotheses each satisfying the signal model,

Y = AmΨ+ Sζ +N ∀m ∈ [1,M ] (4.1)

In this general model, Y ∈ R
N×Q, the observation matrix, consists of a sum of the subspace

signal AmΨ, with Am ∈ R
N×(K−R) a matrix whose columns are basis vectors that span

the subspace associated with the mth object class, and structured interference signal Sζ

with subspace matrix S ∈ R
N×R, and an additive zero-mean noise matrix N ∈ R

N×Q.

To account for the co-existence of structured interference in the same target data, we can

combine the unknown parameters Ψ ∈ R
(K−R)×Q, ζ ∈ R

R×Q into an unknown parameter

matrix [ΨT , ζT ]T = X ∈ R
K×Q, and the known subspace basis atoms into [Am,S] = Hm,

allowing the expression in (4.1) to be simplified to the following form

Y = HmX+N, ∀m ∈ [1,M ] (4.2)

Here, our observation matrix (each column is an AC vector) is represented by Y a sum

of the subspace HmX with Hm ∈ R
N×K is a matrix whose columns are basis vectors that

span the subspace associated with the mth object class together with background clutter, an

unknown parameter matrix X ∈ R
K×Q, and an additive zero-mean noise matrix N ∈ R

N×Q.
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In the ideal scenario where we do not consider atoms for interference on their own, we could

consider our structured interference matrix S = [·], 0 × 0 matrix. Alternatively, we can

express (4.2) for a single observation vector yq (or q
th column of Y),

yq = Hmxq + nq (4.3)

where nq is the qth column of matrix N and xq is the qth column of X. The model-based

AC subspaces Hm can be constructed for the mth object class utilizing different subspace

reconstruction methods. As discussed in Chapter 3, two variations of the K-SVDmethod [18],

which perform class specific subspace construction with sparse coding can be utilized to build

Hm’s.

The distribution of the noise matrix is unknown, and hence it is not possible to derive

the MLE of the unknown parameters in X [17]. Instead, as mentioned earlier, we focus on

minimizing the squared error between HmX and Y under the assumed linear model through

LS estimation.

However, the core idea behind the weighting in the weighted MSC [17] is the implicit

suppression of large amplitude residuals. This is done by weighting each of the row residual

terms in the discriminant function

Jm(Y) = tr{(Y −HmX)TW(Y −HmX)} = ||W 1

2 (Y −HmX)||2F , ∀m ∈ [1, ...,M ] (4.4)

where W is a diagonal matrix with weights along the diagonal, corresponding to row-

weighting, and ||A||2F = tr{AAT} represents the squared Frobenius norm of matrix A.

For a given weight matrix W, the weighted LS estimate of X under the mth hypothesis is

found using:

X̂ = (HT
mWHm)

−1HT
mWY (4.5)

Substituting X̂ in place of X in (4.5) into the discriminant function in (4.4) we get

Jm(Y) = tr{(YTW(I− Em)Y)} (4.6)

36



where Em is an oblique projection onto subspace 〈Hm〉 (i.e. Em = Hm(H
T
mWHm)

−1HT
mW).

This discriminant function can be reinterpreted as the orthogonal projection of the weighted

data matrix Z = W1/2Y onto subspace 〈W1/2Hm〉.

Jm(Z) = tr{(ZT (I−PW1/2Hm
)Z)} (4.7)

where PW1/2Hm
= W1/2Hm(H

T
mWHm)

−1(W1/2Hm)
T is the projection matrix onto the sub-

space spanned by the columns of matrix W1/2Hm.

For a single weighted observation zq = W1/2yq, this WMSC classifier assigns a class label

to an observation vector yq in 4.3 based on the following criterion,

m∗ = arg min
m∈[1,M ]

Jm(zq) = arg min
m∈[1,M ]

{zTq
(

I−P
W

1
2Hm

)

zq} (4.8)

While for a sequence of observations (AC Vectors) forming matrix Y, we make decisions

using

m∗ = argminm∈[1,M ] Jm(Z) = argminm∈[1,M ] tr{ZT
(

I−P
W

1
2Hm

)

Z} (4.9)

As Figure 4.1 and equation (4.8) indicate, this classifier measures the energy in each of the

Figure 4.1: Weighted Matched Subspace Classifier Geometric Perspective.

subspaces 〈W1/2Hm〉 and selects the class label corresponding to the subspace that contains

the largest amount of energy. If the noise vector nq is assumed to be normal with covariance
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matrix E
[

nqn
H
q

]

= σ2I then the criterion given in (4.8) also corresponds to the decision that

minimizes the probability of assigning an erroneous class label. It is important to note that

for W = I, this weighted MSC reduces to the standard MSC [11].

4.3 Invariance Properties

In this section we will discuss the natural invariances of the original MSC when W = I.

At the end of the section, comments will be made on the invariance properties of the MSC

when W 6= I.

We shall say that a disciminant function Jm(y) is G-invariant if it is invariant to trans-

formation group G ∈ G, i.e.

Jm(G(y)) = Jm(y) (4.10)

We study invariance class G in order to gain geometrical insight into the mathematical

structure of the classifier.

4.3.1 Invariance to Subspace Rotation

Given the discriminant statistic Jm(y) = yT (I−PHm)y for a single observation vector y

and under the assumption that W = I, we would like to demonstrate the invariance of the

MSC test statistic w.r.t. rotation of data in the signal subspace 〈Hm〉.

Letting group transformation G be G = {G(y) = QHm
y}, where QHm

= UHmQUT
Hm

+

PB a matrix which rotates samples within subspace 〈Hm〉. Here, PB = PH⊥
m
is an orthogonal

projection into the perp space of signal subspace 〈Hm〉 representing interference components

not in the span of our signal subspace. To show that Jm(y) is invariant under the above

group transformation, we must first show the invariance property, i.e. that for an arbitrary

sample y, it holds that Jm(y) = Jm(G(y)), ∀G ∈ G.

First we will demonstrate that QT
Hm

P⊥
Hm

= P⊥
Hm

, this can be done by using orthonormal

decompositions of both the projection matrix PHm = UHmU
T
Hm

and using rotation matrix

QHm
for orthonormal basis UHm whose columns span subspace 〈Hm〉 and rank K rotation
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matrix Q. Using these decompositions, basic properties of orthonormal basis UHm , and the

fact that 〈B〉 = 〈Hm〉⊥ we see

QT
Hm

P⊥
Hm

= (UHmQ
TUT

Hm
+PB)(I−UHmU

T
Hm

)

= (UHmQ
TUT

Hm
−UHmQ

TUT
Hm

UHmU
T
Hm

+PBP
⊥
Hm

)

= (UHmQ
TUT

Hm
−UHmQ

TUT
Hm

+P⊥2
Hm

)

= P⊥
Hm

(4.11)

Now, it is simple to show the invariance like so

Jm(G(y)) = yTQT
Hm

P⊥
Hm

QHm
y

= ||yTQT
Hm

P⊥
Hm

||2

= ||yTP⊥
Hm

||2

= yTP⊥
Hm

y = Jm(y)

(4.12)

i.e. Jm(y) is G−invariant.

4.3.2 Invariance to Scaling

Here we show scale invariance of (4.4) property that can be achieved with an slight

modification of the discriminant function in (4.4). We would like to show that

J ′
m(y) =

yTP⊥
Hm

y

yTy
(4.13)

is invariant to scaling of data samples y. That is, we would like to show J ′
m(y) is S−invariant

where S ∈ S = {S(y) = αy, α ∈ R} is the family of all scaling transformations of the data.

We can show that J ′
m(S(y)) = J ′

m(y) like so:

J ′
m(S(y)) = J ′

m(αy)

=
α2yTP⊥

Hm
y

α2yTy

=
yTP⊥

Hm
y

yTy

= J ′
m(y)

(4.14)
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i.e. J ′
m(y) is invariant to scaling. It is important to note that since the denominator yTy is

the power of the sample, the statistic in (4.13) is essentially giving the cosine of the angle

between the sample and the signal subspace. It is also important to note that since QTQ = I

for all rotation matrices Q, it is easy to see that yTQTQy = yTy and thus the G−invariance

previously shown for Jm(y) has not been lost in the modified J ′
m(y). For the testing of all

MSC methods, a normalized form of the discriminant functions was utilized. Figure 4.2

demonstrates the geometric interpretation of the invariance properties of the MSC.

Figure 4.2: Invariance of Matched Subspace Classifier

4.3.3 Invariances for W 6= I

In the scenario where W 6= I, the story is quite similar. However, the properties can

only be shown for a dataset and subspace that have simultaneously been weighted by the

weighting matrix W. As was shown in equation (4.7) the discriminant function can be

reinterpreted as the orthogonal projection of the weighted data vector z = W1/2y onto

subspace 〈W1/2Hm〉. Thus, the same invariance properties hold for this weighted MSC.
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4.4 Computation of Weighting Matrix

A robust implementation of the weighted MSC is achieved by assigning a weighting

matrix which can limit the influence of large error amplitudes for certain measurements or

de-emphasize less important AC features by assigning small corresponding weights. Two

estimators were suggested in [17] for creating non-identity weighting matrices. Here we

briefly review the method of Least Median of Squares estimators (LMedS) which provides a

robust estimate of these parameters. This method will be briefly outlined below.

The LMedS estimator seeks to solve the following minimization problem:

X̂ = argmin
X

med
i

||ri||22 (4.15)

where ri is the ith row of the residual error matrix R = Y−HmX.

The idea is to randomly select NC subsets of C < N rows from the measurement matrix

Y, and then fit a parameter matrix Xj to the data for each subset. This is done via a LS

estimate formed of the C rows of Y and the corresponding rows of Hm denoted by Yj and

Hj
m respectively,

Xj = (HjT
m Hj

m)
−1HjT

m Yj (4.16)

The dimension C of the subsets Yj and Hj
m must clearly be larger than the number of

parameters to be estimated (i.e. C > K since X ∈ R
K×Q and we desire a full row rank

estimation). The median, Mj, of each set of squared row residuals is then determined

Mj = med
i=1,...,N

||ri(Xj)||22, j = 1, ..., Nc (4.17)

The LMedS solution is the estimator for which the corresponding Mj is minimum among

all Nc different Mj’s. The LMedS procedure is used to determine a set of binary weights

(diagonal elements of W), wi ∈ {0, 1}, on which we can build our subspace classifier and

which modifies the estimator of X to

X̂ = argmin
X

∑

i

wi||ri||22, (4.18)
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with

wi =











1 for ||ri||22 ≤ (2.5σ̂)2

0 else
(4.19)

and σ̂ is the robust standard deviation [40] given as

σ̂ = (1/
√
D)[1 + 5/(N − C)]

√

Mmin (4.20)

where Mmin = minj{Mj} and D denotes median of a centralized Chi-Squared with Q degrees

of freedom distribution (i.e. χ2
Q). For fixed C and ξ, where ξ is the maximum fraction of

‘large’ amplitudes in an observation, the probability that at least one of the NC subsets is

good is P = 1− [1− (1− ξ)NC ]C . We can then calculate NC as

NC =
log[1− P ]

log[1− (1− ξ)C ]
(4.21)

Essentially, the medians of several subsets of row residuals are computed and the least median

is used as a measure of deviation from σ̂. This is then used to find the best estimators X for

describing Y in Hm by removing highly deviant residual values completely. This method,

as mentioned before, is intended to place appropriate weights in matrix W in order to

attenuate large deviations in the representation. Preliminary testing of these methods did

not yield very promising results and hence, the standard W = I weighting was chosen for

all experiments performed in this work.

4.5 Modified MSC

In order to use this MSC classifier successfully, it is crucial that class-dependent dictionary

matrices Hm are accurately constructed from the training datasets in each class m. In this

work, we used and tested two signal-specific dictionary learning methods, namely K-SVD

[18] and LP-KSVD [19], using model-generated datasets as described in Chapter 3. These

dictionary learning algorithms use sparse coding methods such as Orthogonal Matching

Pursuit (OMP) or Basis Pursuit (BP) [30] to reduce the data into sparse vectors as columns

of X̂ that contain only a few nonzero elements. Now, since these estimates differ from those
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of the LS solution [29] used to develop MSC decision rule in (4.4), a modification to this rule

is needed. This simple modification involves the following decision rule instead of 4.8

m∗ = arg min
m∈[1,M ]

Jm(Y) = ||Y −HmX̂OMP||2F (4.22)

with X̂OMP being the estimate of X generated using the OMP algorithm when dictionary

Hm is used.

4.6 Classification Results of Linear MSC

In this section we will give a review of the results obtained using the MSC framework

with both the K-SVD and LP K-SVD subspace learning methods. Results are presented

in the form of ROC curves and binary confusion matrices for ‘UXO’ vs. ‘non-UXO’ class

objects. Results are first presented on the objects from the PondEX09 and PondEX10

experiments which were all captured at a fixed 10 m range from the sonar interface which

was insonifying the target scene. This subsection briefly explains the experimental setup

and tabulates the results of both methods. The Pond results are first presented. These are

followed by a subsection on the same classifier’s performance on the TREX13 dataset, a

much larger dataset which was broken into 3 experiments, namely all range for objects at

ranges {10 − 40} m, short range for objects at ranges {10 − 25} m, and long range object

testing for objects at {30 − 40} m range. Training samples for the linear MSC classifiers

were chosen from those objects previously described in Table 2.1 which correspond to the

appropriate ranges featured in the test dataset. For PondEX testing, trained and tested

features were truncated to Npond = 295 frequency bins corresponding to the 1 − 30kHz

freqeuncy response bins. For TREX testing, trained and tested features were truncated to

Npond = 275 frequency bins corresponding to the 3− 30kHz freqeuncy response bins.

4.6.1 PondEX Testing Results

To make a classification decision for a given sonar ping observation, the corresponding

AC data vector of dimension NPond = 295 that contains the intended range (1− 30 kHz) of
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spectral features of an underwater UXO or non-UXO object at a particular aspect is applied

to the classifier. For the K-SVD and LP K-SVD MSCs, this decision-making is implemented

using the modified classification rule given in (4.22). The same process can be carried out for

all object aspects in a run in the PondEX09 and PondEX10 testing dataset. However, using

the more general decision rule (4.22) for MSC, one can make decision on an augmented

data matrix Y that contains multiple AC observation vectors at different aspects. This

multi-aspect decision-making provides better opportunity to discriminate between UXO and

non-UXO object classes. Moreover, multi-aspect classification is more amenable to actual

operational situations where several views from an underwater objects are received. Here, we

use three aspects of an object to perform classification decision. Although, in the PondEX

experiments aspect separation is uniform due to the rail system, to account for platform

instability in a realistic data collection scenario aspect separation is modeled by a uniformly

distributed random variable s ∼ unif {8, 16} which shuffles data, beginning with the first

aspect in a given run that meets the power threshold. Note that the procedure does not

shuffle between rotations of objects, only the order in which the aspects of a single linear

run are encountered is changed.

Figure 4.3: Pond ROC K-SVD vs. LP-K-

SVD (3 Asp/dec.)

Table 4.1: Linear MSC Confusion Matrix

PondEX

Truth\Dec. ‘UXO’ ‘non-UXO’

‘UXO’ 0.8800 0.1200

‘non-UXO’ 0.0159 0.9840
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Figure 4.3 gives the Receiver Operating Characteristic (ROC) curves of the MSC classi-

fier using K-SVD, and LP-KSVD dictionaries. As can be observed by the 2 circles in Figure

4.3, the ROC curves for the K-SVD, and LP-KSVD exhibit knee-point (the point where

PCC +PFA = 1) probability of correct classification of PCC,KSV D ≈ 90.07%, PCC,LP−KSV D ≈

93.20% and probability of false alarm PFA,KSV D ≈ 9.93%, PFA,LP−KSV D ≈ 6.80%, respec-

tively. These results show that the MSC performs very well in discriminating ‘UXO’ vs.

‘non-UXO’ in the PondEX dataset in spite of the fact that there are indeed obvious discrep-

ancies between the model data used for training and the AC sonar data of actual objects.

Additionally, the best overall results for the PondEX datasets are obtained for a classifier

trained and tested using data from LP-KSVD dictionary learning method.

Table 4.1 displays the confusion matrix for the MSC. It was found that the most com-

mon type I error (i.e. ‘UXO’ mis-classification) occurred for the Stainless Steel UXO object

(Tables 2.1, object 2), which was most commonly mis-classified as 2 ft Aluminum Cylin-

der (non-UXO). All the observed type II errors (i.e. False Alarms) occurred for samples

of Aluminum Pipe object, which were almost equally mis-classified as the Aluminum and

Stainless Steel UXO classes. These results suggest that the inclusion of ambiguous or mis-

leading aspects in the training of subspaces could potentially have a significant influence on

the power of FRM data in representing different classes. Additionally, the results in Figure

4.3 and Table 4.1 reveal much improved performance of our approach when compared to

the results of previously tested classifiers [23], including: kernel matching pursuit, support

vector machine, and relevance vector machine, which at best demonstrated UXO vs. non-

UXO discrimination with PCC ≈ 90% and PFA ≈ 10%. However, in these previous cases

the classifiers were trained on real sonar data whereas here training was exclusively done on

model-generated datasets via the fast ray model [7] explained in Chapter 2.
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4.6.2 TREX Testing Results

Using the discriminant rule given in (4.22) a class membership was decided for each

observation matrix Y which contained three AC feature vectors (as its columns) extracted

from data at three different aspects with certain separation. Identical processing and ex-

periment setup to the PondEX testing was utilized for TREX testing, including simulated

platform instability as described in Section 4.6.1. To prepare the data for the MSC classifier,

the filtering method described in Section 2.3.3 was used to isolate the object response from

those of the adjacent objects and to eliminate possible overlap in the sonar backscattered

from the objects. For analyzing the performance of the MSC classifier, three experiments

were conducted where the testing data sets varied depending on the range of the targets

from the sonar rail. These experiments corresponded to: (a) complete testing data for all

the object types, ranges, and orientations given in Table 2.4; (b) a subset of the entire test

set corresponding to short range i.e. {10m, 15m, 20m, 25m}; and (c) a subset of the entire

test set corresponding to long range i.e. {30m, 35m, 40m}. This was done to examine how

the performance of the trained classifier varies depending on range in the actual TREX13

data sets. As was done with the PondEX dataset, AC features in the TREX13 experiments

were truncated to NTREX = 275 corresponding to the 3 − 30 kHz frequency bins of the

TREX chirp which had meaningful acoustic response data. The ROC curves of the MSC is

presented in Figures 4.4 - 4.6 for Experiments 1-3, respectively. Tables 4.2 - 4.4 also display

the corresponding confusion matrices for these three testing datasets. Note that the results

in all of these tables are generated using a hard-limiting threshold which was determined

from training dataset, typically this threshold was very near to γ = 1. The circles on the

ROC curves in Figures 4.4 - 4.6, correspond to the knee-points of ROC curves at which

PCC + PFA = 1 where PCC and PFA are the correct classification and false alarm rates,

respectively. The knee-points of the MSC classifier exhibit PCC = 83%, PCC = 86%, and

PCC = 91% when tested on the data sets in Experiments 1-3, respectively. Comparison of

these results with those presented in [23] on similar TREX13 data sets using a Relevance
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Vector Machine classifier [41] indicates somewhat similar classification performance. How-

ever, as mentioned before, [23, 42] utilized real data for training of the classifiers while our

system was trained entirely on model generated data.

Figure 4.4: ROCs TREX Experiment 1.

Figure 4.5: ROCs TREX Experiment 2.

Figure 4.6: ROCs TREX Experiment 3.

Further investigation of the misclassified objects in the confusion matrices in Tables

4.2-4.4 revealed that the most common source of confusion (false alarm) was between 2 ft

Aluminum Cylinder objects which were misclassified as the Aluminum UXO class. This
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Table 4.2: Confusion Matrices for Experiment 1

KSVD LPKSVD

Truth\Dec. ‘UXO’ ‘non-UXO’ ‘UXO’ ‘non-UXO’

‘UXO’ 0.8496 0.1504 0.9056 0.0944

‘non-UXO’ 0.2162 0.7838 0.3748 0.6252

Table 4.3: Confusion Matrices for Experiment 2

KSVD LPKSVD

Truth\Dec. ‘UXO’ ‘non-UXO’ ‘UXO’ ‘non-UXO’

‘UXO’ 0.8671 0.1329 0.8138 0.1862

‘non-UXO’ 0.1470 0.8530 0.2069 0.7931

Table 4.4: Confusion Matrices for Experiment 3

KSVD LPKSVD

Truth\Dec. ‘UXO’ ‘non-UXO’ ‘UXO’ ‘non-UXO’

‘UXO’ 0.8140 0.1860 0.7968 0.2032

‘non-UXO’ 0.0209 0.9791 0.0356 0.9644

could be due to the fact that these objects have similar size and composition. The most

common misclassification of UXO objects was Howitzer with a Cap (mostly the air-filled)

which were commonly misclassified as aluminum pipe and cylinder samples. AC plots of

objects 8 and 4 (Howitzer w/Cap (air fill) and Aluminum UXO) from Table 2.4 can be seen

in Figures 2.5(b) and 2.5(a) which shows the variation that can occur between two UXO class

objects. Additionally, it is interesting to note that misclassifications largely occurred in the

10 m and 15 m runs which warrants further investigation. For the long-range Experiment

3, for all of objects besides object 6, a 105 mm air-filled bullet UXO type from Table 2.4,

much improved classification results were observed. Degraded performance in the all-range

data set (Experiment 1) is another indication of the difficulty in generalizing across multiple

ranges especially when the MSC classifier is trained exclusively on synthesized data sets.

The author believes that enforcing sparse estimations in the classifier is a key difference

between the classifiers used in this chapter and those used in Chapter 5, which uses a batch

(all dictionary atoms at once) LS estimate from all representative class samples in its power

projection terms.
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While there could be a few reasons for the discrepancy in classification performance for

differing ranges in the TREX datasets, the primary cause is believed to be the sensitivity of

the acoustic color templates to grazing angle. Since the source/receiver are at a fixed height

above the seafloor, as one goes out in range the grazing angle changes from 43◦ at 5 m, to 22◦

at 10 m, 11◦ at 20 m, and 5.4◦ at 40 m. Thus, going from 5 to 20 m the grazing angle sweeps

through the critical grazing angle (i.e. the point where total internal reflection occurs) and

the phase of the reflection coefficient goes through a phase shift of π. The AC templates used

in testing are constructed from a fixed angular width of about 30◦ regardless of range to the

target. In TREX13 and PondEX10, the targets were rotated by 20◦ increments. The AC

templates for 20◦ and 40◦ orientations span (5◦, 35◦) and (25◦, 55◦). The overlapping region

of (25◦, 35◦) is used to help stitch the individual sections into the final plot.

Despite the variations within classes that occur due to range/grazing angle dependencies,

the two linear systems using LP K-SVD and K-SVD managed to achieve low classification

errors on the TREX datasets yielding PCC = 83%, PFA = 17% and PCC = 80%, PFA = 20%,

respectively, for UXO vs. non-UXO discrimination across all ranges. This suggests that

enforcing a sparse model assumptions for observations made in AC feature space provides a

solution to identifying class membership of samples that have components from more than

one class subspace.

4.7 Conclusion

In this chapter we first reviewed classical linear MSC used for M-ary classification. The

weighted MSC, and methods for computing the weight matrix were also discussed. The

procedure of subspace matching was explained as well as the manner in which the weighting

matrix augments the data and signal subspace to minimize errors from unreliable feature

components. Invariance properties of the MSC under an identity as well as general weight-

ing matrices were demonstrated. Classification results of the MSC system when used in

conjunction with K-SVD and LP K-SVD subspace learning methods on three sonar sonar
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datasets introduced in Chapter 2 were also provided. These results indicated that the LP

K-SVD trained MSC system performs best at UXO vs. non-UXO discrimination across all

datasets. The LP K-SVD and K-SVD systems managed to acheive low classification errors

on the PondEX datasets yielding PCC = 93%, PFA = 7% and PCC = 90%, PFA = 10% for

UXO vs. non-UXO discrimination, respectively.
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CHAPTER 5

MATCHED SUBSPACE CLASSIFICATION -

KERNEL CASE

5.1 Introduction

It is well-known that certain non-linearly separable classification problems can be con-

verted to linearly separable problems by mapping the data to a high dimensional feature

space using kernel-producing nonlinear mapping functions [41]. Thus, to improve the per-

formance of the linear MSC, in this chapter we investigate the kernel-based extension of the

MSC classification framework. This method basically extends the hypothesis test for the

linear subspace model described in (4.1) to a higher dimensional feature domain F associ-

ated with nonlinear mapping Φ(.). That is, the mapping Φ(.) : Y −→ F maps data in Y to

points in F , which are of much higher dimensionality when compared to the original signal

domain, and in this mapped space, the mapped samples hopefully become linearly separable.

The decision rules in the original observation space Y can completely be represented in the

feature space F using only kernel eigenvector representations of kernel Gram matrices and

their empirical maps [41].

In this chapter, we begin by reviewing the kernelized MSC framework proposed in [20].

This method essentially extends the framework of subspace matching to a higher dimensional

feature space associated with a kernel function satisfying the Mercer theorem condtions [15].

This is followed by classification results of the kernel MSC on the PondEX09-10 and TREX13

datasets when trained exclusively on synthetic data.
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5.2 Kernel MSC

In this section we briefly outline the steps required to convert the MSC likelihood function

in 4.8 to a mapped feature domain.

Let Φ : Y −→ F be a mapping which maps data points in data domain Y to points in

feature space F , typically of much greater dimensionality than the original data domain. The

MSC expressions in the feature space can completely be represented in the data space using

only kernel eigenvector representations and empirical kernel maps. This method extends the

hypothesis tests for the linear subspace model, described previously in the data domain, into

the feature domain F associated with nonlinear mapping Φ. To begin, we will rewrite the

linear subspace model in 4.1 as it would appear in the high dimensional feature space F , i.e.

H0Φ : Φ(y) = SΦζΦ + nΦ, Target Absent

H1Φ : Φ(y) = AΦΨΦ + SΦζΦ + nΦ

= [AΦ SΦ]







ΨΦ

ζΦ






+ nΦ, Target Present

= HΦXΦ + nΦ

(5.1)

Here, AΦ and SΦ represent orthonormal matrices (though not necessarily mutually orthogo-

nal), the columns of which span the signal and background subspaces in F , respectively. As

before in the linear case, we combine signal and interference components in HΦ = [AΦ,SΦ]

and their respective parameter matrices in XΦ = [ΨT
Φ, ζ

T
Φ]

T . Under the assumption of ad-

ditive Gaussian noise in the F -domain, a bit of a wild assumption since the noise was not

likely to be Gaussian even in the original domain, the MSC is a form of GLRT [20] resulting

in a test

JΦ(y) =
Φ(y)T (PIΦ −PSΦ

)Φ(y)

Φ(y)T (PIΦ −PHΦ
)Φ(y)

(5.2)

The basic operations described in (5.2) require taking a ratio of sums of the following three

terms: Φ(y)TPIΦΦ(y), Φ(y)
TPSΦ

Φ(y), and Φ(y)TPHΦ
Φ(y). The assumption behind the
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usage of PIΦ rather than I is that our training samples only occupy a small union of subspaces

in possibly infinite dimensional feature space associated with the chosen kernel. Also, PHΦ

and PSΦ
are the projection matrices associated with signal and structured noise subspaces,

respectively.

Clearly, the terms in (5.2) are not computable in their explicit form as Φ(y) is poten-

tially infinite dimensional. However, we are only interested in computing the inner products

represented in (5.2). In order to find expressions for these terms, we will utilize concepts of

kernel Principal Component Analysis (PCA) [41].

5.2.1 Review of Kernel PCA

The terms in (5.2) are converted into kernel forms using kernel PCA which seeks to express

the eigenvectors of the covariance matrix of the mapped data in terms of eigenvectors of the

covariance matrix in the original data domain.

Consider the eigenvectors e ∈ F with corresponding eigenvalue λ 6= 0 of the covariance

matrix CΦ for centered training samples Φ(yi), i ∈ [1, ..., Q]. Then, we have the eigenvalue

problem

λe = CΦe =
1

Q

Q
∑

i=1

Φ(yi)Φ(yi)
Te =

1

Q

Q
∑

i=1

〈Φ(yi), e〉Φ(yi) (5.3)

The previous equation shows that any of the eigenvectors e with λ 6= 0 can be spanned by

the training samples Φ(y1), ...,Φ(yQ) i.e.,

e =

Q
∑

i=1

γiΦ(yi) = ΦYγ (5.4)

where ΦY = [Φ(y1), ...,Φ(yQ)] and γ = [γ1, ..., γQ]
T a vector of all the inner products

〈Φ(yi), e〉. Substituting (5.4) into (5.3) and multiplying both sides of (5.3) from the left
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by Φ(yn)
T for n ∈ [1, ..., Q], yields

λ

Q
∑

i=1

γi〈Φ(yn),Φ(yi)〉

=
1

Q

Q
∑

i=1

γiΦ(yn)
TΦ(yi)Φ(yi)

T

Q
∑

j=1

Φ(yj)

=
1

Q

Q
∑

i=1

γi〈Φ(yn),Φ(yi)

Q
∑

j=1

〈Φ(yj),Φ(yi)〉〉, ∀n ∈ [1, ..., Q]

(5.5)

If we denoteK = {Ki,j = 〈Φ(yi),Φ(yj)〉 = k(yi,yj)} i.e. the Gram matrix of inner products,

then (5.5) can be written as

QλKγ = K2γ (5.6)

Assuming that K is full rank, the solution of the generalized eigenvalue problem in (5.6) are

obtained by solving the following eigenvalue problem:

Qλγ = Kγ (5.7)

where γ turn out to be the eigenvectors with nonzero eigenvalues Qλ of the kernel matrix

K. Note that γ need to be normalized by the square root of their corresponding eigenvalues,

and the kernel matrix K needs to be properly centered if the original data did not have zero

mean. The centered kernel matrix is given by K̂ = (K− 1QK−K1Q + 1QK1Q) where the

Q×Q matrix (1Q)i,j =
1
Q
.

5.2.2 Kernel GLRT in F-Domain

To kernelize the GLRT in (5.2), we will write the inner products in the projections in

terms of kernel eigenvector representations which are computable. Using the result that

eigenvectors of any data covariance matrix in mapped space F can be written as a vector in

the span of the mapped training samples Φ(y), SΦ and AΦ can be written as

SΦ = [e1se
2
s...e

Qs
s ] = ΦYS

S (5.8)

AΦ = [e1ae
2
a...e

Qa
a ] = ΦYA

A (5.9)
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where eis and eja are the significant eigenvectors of CSΦ
and CAΦ

, respectively, and

ΦYS
= [Φ(y1)Φ(y2)...Φ(yQs

)], yi ∈ YS (5.10)

and

ΦYA
= [Φ(y1)Φ(y2)...Φ(yQa

)], yi ∈ YA (5.11)

Here YA and YS represent the target signal and background training sets, respectively.

The column vectors of matrices S and A represent only the significant normalized eigen-

vectors (ς1, ς2, ..., ςQs , ) and (α1,α2, ...,αQa , ) of the background centered kernel matrix

K(YS,YS) = {Ki,j = k(yi,yj),yi,yj ∈ YS} and the target centered kernel matrixK(YA,YA) =

{Ki,j = k(yi,yj),yi,yj ∈ YA}, respectively. Now, using (5.8), the projection of Φ(y) onto

SΦ becomes:

ST
ΦΦ(y) = [e1se

2
s...e

Qs
s ]TΦ(y) =



















ςT1Φ
T
YS

Φ(y)

ςT2Φ
T
YS

Φ(y)

..

ςTQs
ΦT

YS
Φ(y)



















= STK(YS,y) (5.12)

Using a similar approach, we can express the projection onto AΦ like so

AT
ΦΦ(y) = [e1ae

2
a...e

Qa
a ]TΦ(y) =



















αT
1Φ

T
YA

Φ(y)

αT
2Φ

T
YA

Φ(y)

..

αT
Qa
ΦT

YA
Φ(y)



















= ATK(YA,y) (5.13)

The other two projections required to compute the likelihood function in (5.2) are formed

in a similar manner resulting in the kernelized likelihood ratio JΦK(y) for the linear signal

model in F i.e.

JΦK(y) =
K(YAS,y)

T∆∆TK(YAS,y)−K(YS,y)
TSSTK(YS,y)

K(YAS,y)T∆∆TK(YAS,y)−
[

K(YA,y)TH K(YS,y)TS
]

Λ−1







ATK(YA,y)

STK(YS,y)







(5.14)

55



where

Λ =







ATK(YA,YA)A ATK(YA,YS)S

STK(YS,YA)A STK(YS,YS)S






(5.15)

and ∆ is a matrix whose columns are the normalized (by the square root of their re-

spective eigenvalues) eigenvectors of the combined background and target kernel matrix

K(YAS,YAS), with K(YAS,YAS) = (K)i,j = k(yi,yj),yi,yj ∈ YS

⋃

YA. For our M−ary

hypothesis test for a linear signal model in space F , the kernel MSC amounts to the following

test.

m∗ = argmin
m=1,...,M

{Jm(y)}

= argmin
m=1,...,M

{Φ(y)T (PIΦ −PHmΦ
)Φ(y)}

= argmin
m=1,...,M

{K(Ytot,y)
T∆∆TK(Ytot,y)−K(Ym,y)

THmHT
mK(Ym,y)}

= argmin
m=1,...,M

{K(Ytot,y)
T∆∆TK(Ytot,y)

−
[

K(Ym,y)
TAm K(YS,y)

TS
]

Λ−1
m







AT
mK(Ym,y)

BTK(YS,y)






}

(5.16)

with

Λm =







AT
mK(Ym,Ym)Am AT

mK(Ym,YS)S

STK(YS,Ym)Am STK(YS,YS)S






(5.17)

Here Ytot is the set of all training samples from all classes and background, ∆ is a matrix

whose columns are the normalized non-zero eigenvectors of the kernel matrix K(Ytot,Ytot),

and Am,S are the significant normalized eigenvectors of class m target and background

kernel matrices K(YAm ,YAm) and K(YS,YS), respectively.

5.3 Classification Results of Kernel MSC

In this section we present the results of the kernel MSC classifier on real sonar datasets

described in Chapter 2. The datasets included in training and testing datasets are the same as

those described in Chapter 4. However, training samples underwent an additional procedure
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of k-means clustering in order to reduce the number of training samples in YAm ,YS used

in the kernel PCA process for forming subspace projections in the mapped feature domain.

Training samples for the kernel MSC classifiers were chosen from those objects previously

described in Table 2.1 which correspond to the appropriate ranges featured in a given test

dataset. For PondEX testing, trained and tested features were truncated to NPond = 295

frequency bins corresponding to the 1− 30kHz freqeuncy response bins. For TREX testing,

trained and tested features were truncated to NTREX = 275 frequency bins corresponding

to the 3 − 30kHz freqeuncy response bins. For testing of the KMSC system, the Radial

Basis Function (RBF) k(y1,y2) = exp(−yT
1 y2/σΦ) was utilized with a spread parameter of

σΦ = 0.1.

5.3.1 PondEX Testing Results

To make a classification decision for given sonar observations, the corresponding AC

data vector of dimension NPond = 295 that contains the spectral features of an underwater

UXO or non-UXO object at a particular aspect is applied to the kernel MSC classifier.

This decision-making is implemented using the classification rule given in (5.16). The same

process is carried out for all object aspects in a run in the PondEX09 and PondEX10 testing

dataset. As before, multi-aspect decision-making was utilized to provide a better opportunity

to discriminate between UXO and non-UXO object classes. Here, we used three aspects of

an object to perform classification decision. As in the previous experiments, to account for

platform instability in a realistic data collection scenario aspect separation is modeled by a

uniformly distributed random variable s ∼ unif {8, 16} which shuffles data, beginning with

the first aspect in a given run that meets the threshold.
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Figure 5.1: ROC for KMSC on Pond data (3

Asp./dec.)

Table 5.1: KMSC Confusion Matrix PondEX

Truth\Dec. ‘UXO’ ‘non-UXO’

‘UXO’ 0.8803 0.1197

‘non-UXO’ 0.1149 0.8851

As can be observed by the circle in Figure 5.1, the ROC curves for the kernel MSC exhibits

knee-point PCC,KMSC ≈ 88.0% and PFA,KMSC ≈ 12.0%. These results show that the kernel

MSC performs rather poorly in discriminating ‘UXO’ vs. ‘non-UXO’ in the PondEX dataset

when compared to that of the results in Chapter 4 for linear MSC. The most common

mis-classified ‘UXO’ type was again stainless steel UXO which was incorrectly labeled as

aluminum pipe and cylinder about equally as often.

5.3.2 TREX Testing Results

A similar procedure was applied to the TREX13 dataset as the PondEX data, the

difference being that for these experiments there were objects of varying ranges present

and as a results, training datasets were chosen to include these variations. Training data

was similar to that utilized in the linear MSC testing, for the all range test, Experiment

1, the training dataset featured FRM models of all 10 objects in Table 2.1 for ranges

{10, 15, 20, 25, 30, 35, 40} m. For the short range test, Experiment 2, all 10 objects were again

used in training however only samples from ranges {10, 15, 20, 25} m were used. Lastly the

training set for the long range test, Experiment 3, featured all 10 FRM objects at ranges
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{30, 35, 40} m. To prepare the data for the kernel MSC classifier, the filtering method de-

scribed in Section 2.3.3 was again used to isolate the object response from those of the

adjacent objects and to eliminate possible overlap in the sonar backscattered from the ob-

jects. As was utilized before, AC features were truncated to NTREX = 275 corresponding to

the 3− 30 kHz frequency bins of the TREX chirp.

Figure 5.2: KMSC ROC TREX Ex. 1.

Table 5.2: KMSC Confusion Matrix TREX

Ex. 1

Truth\Dec. ‘UXO’ ‘non-UXO’

‘UXO’ 0.7672 0.2328

‘non-UXO’ 0.2315 0.7685

Figure 5.3: KMSC ROC TREX Ex. 2.

Table 5.3: KMSC Confusion Matrix TREX

Ex. 2

Truth\Dec. ‘UXO’ ‘non-UXO’

‘UXO’ 0.8146 0.1854

‘non-UXO’ 0.1862 0.8138
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Figure 5.4: KMSC ROC TREX Ex. 3.

Table 5.4: KMSC Confusion Matrix TREX

Ex. 3

Truth\Dec. ‘UXO’ ‘non-UXO’

‘UXO’ 0.9080 0.0920

‘non-UXO’ 0.0909 0.9091

The ROC curves of the kernel MSC for TREX13 dataset is presented in Figures 5.2

- 5.4 for Experiments 1-3, respectively. Tables 5.2 - 5.4 also display the corresponding

confusion matrices for these experiments. These results show that the kernel MSC performed

quite poorly when compared with the linear MSC with knee-point probability of correct

classification of only PCC = 76.7% for all ranges (Experiment 1). For Experiments 2 and

3, the kernel MSC gave knee-point PCC = 81.5%, and PCC = 90.8% respectively. These

results demonstrated inferior performance to the linear MSCs tested in Chapter 4 for all

experiments.

Further investigation revealed that the kernel MSC struggled at correctly classifying the

stainless steel UXO. However, as with the results in Chapter 4 for linear MSC, the best

overall performance on the TREX13 dataset was obtained for long range cases. Figures 5.2

-5.3 indeed attest to this fact. In the short range experiment, similar to the observations in

Chapter 4, the most common mis-classified ‘UXO’ type (Type I error) was the stainless steel

UXO, commonly being identified at a cylinder or pipe. As with the PondEX dataset, the

most common Type II error was from aluminum pipes being incorrectly labeled as Aluminum

or Stainless Steel UXOs. As evident from both the long and short range testing results, the

kernel MSC, in its current state (i.e. utilizing k-means for learning subspace samples), is
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not capable of generalizing well between different ranges of the same class. Moreover, the

training of this system is very sensitive to the choice of model-generated data and kernel

function spread parameter σΦ. A well selected parameter σΦ can yield excellent results for

samples of any fixed range, but it was found that learning a single range very well necessarily

meant some overfitting had occurred and thus resulted in poor generalization across multiple

ranges.

5.4 Conclusion

In this chapter we presented a non-linear form of the MSC framework using the kernel

trick which allows for hypothesis testing to utilize higher dimensional features. We began

by presenting the GLRT form of this kernel detector as in [20], and then proceeded to

kernelize it using the well-established results of kernel PCA. This kernelized detector was

then converted to an M -ary classifier which we refer to as the kernel MSC. This kernelized

MSC was then applied to the PondEX and TREX13 datasets and performance of the system

was benchmarked against that of the linear MSC in Chapter 4. It was found that, comparing

to the results of Chapter 4, the kernel MSC did not provide better results for either dataset.

These poor results of the kernel MSC classifier may be due to oversimplifications in the

signal model that assumes Gaussianity in the infinite dimensional feature space which is

certainly inappropriate. Indeed, the error between observations and the signal model is

likely some sort of structured noise dependent on factors such as grazing angle, range, water

turbulence, and density. Furthermore, the successful usage of a non-linear classifier depends

largely on the choice of parameters used in a given kernel function. As is the case with many

kernel-based approaches, parameters could be found which would fine tune the classifier to a

specific classification task (e.g. UXO vs. non-UXO for only long range TREX samples) but

it was found that these parameters would not generalize across all testing data when using

only synthetic training data. As a result, it makes sense that the linear classifiers would

generalize more appropriately because they find the best average boundary in the original
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data domain rather than attempting to separate the samples with a non-linear curve that

may or may not describe the true class separation boundary but can be fine tuned to include

non-linearly separable, outlier, data points in a given class of samples. Indeed, the flexibility

of the kernel framework is both a blessing and a curse as it provides the tools for creation of

arbitrary class boundaries but as a result can learn the most misleading portions of training

data far too well, resulting in poor generalization performance.

These results also indicated that, while it is tempting to cast classification problems into

the typical non-linear frameworks with expectations to achieve better results, it may be more

tactful to rely on sparse representation methods which can provide better ability to discrim-

inate different object classes. Obviously, further work is needed to format the signals into

a range invariant form which allows for better generalization performance in classification.

Indeed, the proposed kernel MSC appears to be somewhat flawed in its formulation and

more careful consideration of the derivation and its intrinsic assumptions must be pursued.
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CHAPTER 6

CONCLUSIONS AND SUGGESTIONS FOR

FUTURE WORK

6.1 Conclusions and Discussions

The main objective of the work in this thesis was the development and testing of a MSC-

based UXO vs. non-UXO classifier. In particular, the hypothesis that was tested involved

building an MSC classifier exclusively using model-generated AC data sets while evaluating

it using real PondEX and TREX13 low frequency sonar datasets. The motivation was that

one cannot easily collect abundance of data for different UXO shapes and sizes in realistic

settings. The scattering model that was developed allowed for monostatic sonar data sets

to be simulated via a fast ray model (FRM). This large dataset was then used to build an

over-complete dictionary for creation of signal subspaces used in MSC via the K-SVD and

LP K-SVD signal-dependent dictionary learning methods. Once MSC was trained based

on this model-generated data it was subsequently tested on real sonar datasets collected in

PondEX and TREX13 exercises. The classification results revealed promising performance

in UXO versus non-UXO discrimination when compared to the existing results on similar

but arguably less challenging datasets [23]. For the K-SVD and LP K-SVD MSC systems,

performance on PondEX was reported to be PCC,KSV D ≈ 90.07%, PCC,LP−KSV D ≈ 93.20%

, respectively. For the more challenging TREX13 datasets, the K-SVD and LP K-SVD

systems performed with PCC,KSV D ≈ 80%, PCC,LP−KSV D ≈ 83.0% for a combined all range

test. These results were found to be substantially better than those of the kernelized MSC in

Chapter 5. The poor performance of the kernel MSC is mostly attributed to kernel parameter

choice and over-fitting on synthetic data samples which led to poor generalization. What was
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particularly notable about the results presented is the utility of the synthetic FRM-generated

data in representing real sonar data for classification purposes has been confirmed.

6.2 Future Work

The need to accomplish several new tasks has been revealed by this work. This research

has suggested a path towards more consistent ‘UXO identification that is invariant to tar-

get range, aspect, and other important observation conditions for sonar systems. In future

endeavors, we hope to accomplish the following two major tasks and several smaller tasks re-

lated to the problem of underwater UXO classification. These endeavors include incremental

training of systems and multi-aspect fusion strategies.

Incremental Training for Better Robustness: Our results presented in this thesis

clearly indicated the promise and effectiveness of the developed methods for classification

of munitions from sonar data. However, it is obvious that the spectral features in the AC

data for a specific target vary significantly depending on the object’s burial condition, sea

floor properties and roughness, actual orientation of the object, range and grazing angles

with respect to the sonar, etc. Although, it is unrealistic to expect model data will cap-

ture all such variations for target characterization, it can provide us with clues on how to

augment the training datasets using perhaps a limited training samples from sonar returns

of actual objects to improve the robustness in different environmental conditions. A pre-

liminary study was carried out to show the importance of this data augmentation beyond

the FRM-generated data and incremental training using real data for improving classifica-

tion performance. Several PondEX object samples (only 2 % of training from real PondEX

test data) that correspond to the same objects in the TREX13 dataset were added to the

model-generated training set to form the dictionary training set and build the MSC classi-

fier. The trained system was then tested on TREX 10m run datasets. It was found that

the addition of real Pond samples from the relevant objects improved the overall results
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noticeably. Clearly, we didn’t attempt to optimize this data selection process based upon

the information content of the selected sample for classification purposes. Additionally, we

had to retrain (in batch) all the dictionaries and consequently the MSC classifier, which is

not an efficient way of doing this training. Future work should address these needs more

formally.

Multi-Aspect Classification Fusion: In a real operating environment, the decision

about the presence and type of an object is typically made based upon the observation

of the properties of the sonar returns at several aspect angles. This is due to the fact that

the multi-aspect processing yields substantial improvements in performance, resolution, and

sensing of the properties of the object in a non-isotropic environment. Inspired by these

desired properties, two different general frameworks were developed in [2, 5, 12, 43]. The

framework in [2, 43] is based upon the idea of multi-aspect feature extraction that uses

the two-channel canonical coordinate decomposition method [11] to extract robust features

with maximum coherence (or mutual information) from pairs of sonar pings with certain

separation. The idea is that the coherence pattern extracted from the UXO objects differ

from those of the non-UXO objects, hence aiding the overall classification process. The

theme of the other framework is multi-aspect classification using either (a) a decision-level

multi-aspect fusion [44], which linearly or non-linearly combines the individual classification

decisions, generated at several aspects, or (b) a feature-level multi-aspect fusion [12] using

hidden Markov model (HMM) to generate one decision based upon observing a sequence of

AC feature vectors at various aspects with certain separations, or (c) a collaborative decision-

making process [43], which uses a combination of the feature-level and decision-level fusion

methods. It would be prudent to study and test these different methods and compare their

results with the multi-aspect MSC classifier in (4.4).
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Other important areas and extensions that can be pursued in the future include, but are

not limited to:

• Use real and synthesized sonar data to determine the effectiveness of the developed

adaptive dictionary learning and sparse representation methods in different situations.

One should investigate how the model and dictionaries can be designed to guarantee

robustness to partial burial or occlusion of the targets, and separation of similar class

types.

• The developed kernel MSC should be more thoroughly studied to overcome some of

the theoretical shortcomings of the derivation in [20].

• The PC-SWAT sonar data generation program [45] developed by Naval SystemWarfare

Center (NSWC), Panama City, FL should be used to generate UXO and non-UXO

datasets and the classification results should be compared to those obtained from the

FRM-generated datasets presented in this thesis.

• Additional and more challenging real datasets can be used to truly test the overall

system for classification of buried or partially buried objects and should involve testing

of the Buried Object Scanning Sonar (BOSS) datasets [46]. These datasets include

sonar returns from various UXO, mine-like and non-target as well as plenty of difficult

bottom clutter.

With these objectives in place, a clearer separation of ‘UXO’ and ‘non-UXO’ objects will

be achieved by uncovering the relationships between range/grazing angle and the frequency

response of objects of interest, and identifying a reliable means for mitigating these effects.
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