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ABSTRACT

MIXTURE OF FACTOR MODELS FOR JOINT DIMENSIONALITY REDUCTION

AND CLASSIFICATION

In many areas such as machine learning, pattern recognition, information retrieval, and

data mining one is interested in extracting a low-dimensional data that is truly representative

of the properties of the original high dimensional data. For example, one application could be

extracting representative low-dimensional features of underwater objects from sonar imagery

suitable for detection and classification. This is a difficult problem due to various factors such

as variations in the operating and environmental conditions, presence of spatially varying

clutter, and variations in object shapes, compositions, and orientation.

The goal of this work is to develop a novel probabilistic method using a mixture of

factor models for simultaneous nonlinear dimensionality reduction and classification. The

framework used here is inspired by the work in [1] which uses a mixture of local PCA

projections leading to an unsupervised nonlinear dimensionality reduction algorithm. In

contrast, the proposed method provides a supervised probabilistic approach suitable for

analyzing labeled high-dimensional data with complex structures by exploiting a set of low-

dimensional latent variables which are both discriminative and generative. With the aid of

these low-dimensional latent variables, a mixture of linear models is introduced to represent

the high-dimensional data. An optimum linear classifier is then built in the latent variable-

domain to separate the support of the latent variable associated with each class. Introducing

these hidden variables allow us to derive the joint probability density function of the data

and class label, reduce data dimension and perform clustering, classification and parameter

estimation. This probabilistic approach provides a mechanism to traverse between the input

space and latent (feature) space and vice versa as well as cluster and classify data.
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A supervised training based on the Expectation-Maximization (EM) and steepest descent

algorithms is then introduced to derive the ML estimates of the unknown parameters. It

is shown that parameters associated with dimensionality reduction can be estimated using

the EM algorithm whereas those of the classifier are estimated using the steepest descent

method. The introduction of latent variables not only helps to represent the pdf of data and

reduce the dimension of them but also in parameter estimation using EM algorithm which

is used to find ML estimates of the parameters when the available data is incomplete.

A comprehensive study is carried out to assess the performance of the proposed method

using two different data sets. The first data set consists of Synthetic Aperture Sonar (SAS)

images of model-generated underwater objects superimposed on background clutter. These

images correspond to two different object types namely Cylinder (mine-like) and Block (non-

mine-like). The signatures of each object are synthetically generated and are placed at

various aspect angles from 1 to 180 degrees for each object type. The goal of our classifier is

to assign non-target versus target labels to these image snippets. The other data set consists

of two sets of facial images of different individuals. Each image set contains 2 series of 93

images of the same person at different poses. The goal of the classifier for this case is to

idnetify each individual correctly. The dimensionality reduction performance of the proposed

method is compared to two relevant dimensionality reduction methods, namely Probabilistic

PCA [2] and Mixture of Probabilistic PCA (MPPCA) [1] while its classification performance

is benchmarked against a Support Vector Machine (SVM). The results on both data sets

indicate promising dimensionality reduction and reconstruction capabilities compared to

PPCA/MPPCA methods. On the other hand, classification performance is competitive

with SVM when the data is linearly separable.
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CHAPTER 1

INTRODUCTION

1.1 Problem Statement and Motivations

The curse of dimensionality expression was coined by Bellman in 1961 when considering

problems in dynamic optimization [3]. It refers to the fact that many algorithms become

intractable when the input data is high dimensional [4]. For instance, when designing a

classifier, if the dimension of input data is very large, the number of unknown parameters to

be identified will be exceedingly large and hence an enormous training set will be needed to

avoid overfitting. Therefore, it is necessary to first reduce the dimension of the input data to a

manageable size while keeping as much of the original information as possible before applying

it to the classifier. In general, dimensionality reduction can bring an improved understanding

of the data apart from a computational advantage. Dimensionality reduction can also be

viewed as a feature extraction or mapping for representing the data in a different coordinate

system. The problem of dimensionality reduction can be formally defined as follows. Suppose

we have a data set D = {xn}Nn=1 where xn ∈ R
D. The fundamental assumption that

justifies dimensionality reduction is that the data actually lies, at least approximately, on

a low dimensional manifold of dimension d ≪ D that needs to be discovered. The goal of

dimensionality reduction is to find an approximate representation of that manifold which

will allow us to obtain a low-dimensional, compact representation of the data.

On the other hand, the problem of classification has been widely studied in decision-

making systems, pattern recognition, data mining, and information retrieval communities.

The problem of supervised classification is defined as follows. Given a set of training data

samples D = {xn, zn}Nn=1 where xn ∈ R
D and zn ∈ {1, ..., K} represents the associated class

label, we would like to construct a classification system that associates a new data sample,

xnew to one of the K possible classes. This is done via a proper training procedure which
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converges to a set of solutions for the unknown parameters of the classifier. In the hard

version of the classification problem, a particular label is explicitly assigned to the sample,

whereas in the soft version of the classification problem, a probability value is assigned to

the test sample. The classification problem assumes categorical values for the labels, though

it is also possible to use continuous values as labels as well. The latter is referred to as the

regression modeling problem [5].

Now, consider joint classification and dimensionality reduction problems. One might

be interested in extracting low-dimensional features that are truly representative of the

properties of the original high-dimensional data and also determine its label at the same time.

When designing feature extraction and classification algorithms separately, the questions

are: (1) How well the low-dimensional features will do in classification? (2) Could there

be any connections between appropriate classification features with the resultant reduced

dimension features? Finding answers to these questions motivated us to develop a supervised

probabilistic approach for analyzing labeled high dimensional data with complex structures

by exploiting a set of low dimensional latent variables (features). Thus, the method proposed

in this work, provides a novel probabilistic method for simultaneous dimensionality reduction

and classification.

1.2 Survey of Previous Works

The problem of dimensionality reduction, extracting low dimensional structure from high

dimensional data, arises often in machine learning and statistical pattern recognition. High

dimensional data takes many different forms: from digital image libraries to gene expression

microarrays, from neuronal population activities to financial time series. We can categorize

dimensionality reduction methods as linear or nonlinear, probabilistic or deterministic, etc.

This section begins with a review of classical linear methods and then it focuses on popular

nonlinear dimensionality reduction and manifold learning methods. Finally, the remainder

of this section is devoted to probabilistic methods.
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1.2.1 Linear Methods

If the data, labeled or unlabeled, is mainly confined to a low dimensional subspace, then

simple linear methods can be used to discover the subspace. Among the most popular linear

dimensionality reduction algorithms are Principal Component Analysis (PCA) [6,7], Linear

Discriminant Analysis (LDA) [8,36], and Factor Analysis [9]. Principal Component Analysis

(PCA) has proven to be an exceedingly popular technique for dimensionality reduction and is

discussed at length in most texts on multivariate analysis. Its many application areas include

data reduction, image analysis, visualization, pattern recognition, regression and time series

prediction. PCA retains maximal variance in the projected space subject to orthonormality

of the mapping matrix. The main property of PCA is that the projection onto the principal

subspace minimizes the squared reconstruction error. In this sense, PCA yields the best

generative low dimensional features among orthogonal linear transformations, but it doesn’t

guarantee any discrimination for labeled data in the feature space. LDA, on the other hand,

seeks to find a set of coordinate axes that carry the most discriminative signal components

that are useful for classification though they are not suitable for reconstruction purposes.

Factor Analysis is another linear (and probabilistic) dimensionality reduction method which

estimates a set of low dimensional latent variables (or features) assuming a linear mapping

from latent space to original data space and normal distributions for both latent variables

and noise. The main drawback with these classical dimensionality reduction methods is that

the low-dimensional subspace provides either a generative or discriminative representation

of the original data, but not both.

1.2.2 Nonlinear Methods

Dimensionality reduction methods that capture the inherent nonlinear properties of the

data in a lower dimensional manifold have attracted considerable attentions in recent years.

Graph-based methods [10] have recently emerged as a powerful tool for analyzing high dimen-

sional data that has been sampled from a low dimensional manifold. To analyze data that
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lies on a low dimensional manifold, matrices are constructed from sparse weighted graphs

whose vertices represent input patterns and whose edges indicate neighborhood relations.

The resulting graph can be viewed as a discretized approximation of the manifold sampled

by the input patterns. From these graphs, one can then construct matrices whose spectral

decompositions reveal the low dimensional structure of the manifold. Spectral methods are

able to reveal low dimensional structure in high dimensional data from the top or bottom

eigenvectors of specially constructed matrices. In what follows, we mention four broadly rep-

resentative graph-based spectral algorithms for manifold learning: Isometric Feature Map-

ping (ISOMAP) [11], Maximum Variance Unfolding (MVU) or semi-definite embedding [12],

Locally Linear Embedding (LLE) [13], and Laplacian Eigenmaps [14].

The general idea principle behind ISOMAP is to use geodesic distances (not Euclidean

distance which obscures the intrinsic manifold structure) on a graph together with the clas-

sical Multidimensional Scaling (MDS) [15]. Unlike ISOMAP which is a global approach, i.e.

preserves geometry at all scales, LLE and Laplacian Eigenmaps are local approaches in that

they attempt to only preserve the local geometry of the data by mapping nearby points on

the manifold to nearby points in the low-dimensional representation. Similar to ISOMAP

and LLE, MVU also belongs to the class of spectral embedding, however, it exploits different

geometrical properties. ISOMAP is based upon geodesic distances, LLE on the coefficients

of local linear reconstructions, and Laplacian eigenmaps on the discrete graph Laplacian,

whereas MVU is based on estimating and preserving local distances and angles. In spite

of their similarities, in [12] it was shown that for cases where the sampled manifold is not

isometric to a convex subset of Euclidean space ISOMAP produces totally different results

than that produced by MVU. Additionally, these methods exhibit inability to deal with

out-of-sample extension for non-isometric manifolds. This implies that they fail to provide

a feature mapping to map new data points that are not included in the original training set.

Additionally and more importantly in forming the low dimensional feature space they don’t

account for the class membership of the data samples as they are inherently unsupervised.
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1.2.3 Probabilistic Methods

One of the central problems in pattern recognition and machine learning is that of density

estimation, i.e the construction of a model of a probability distribution given a finite sample

of data drawn from that distribution. A powerful approach to probabilistic modeling involves

supplementing a set of observed variables with additional latent, or hidden, variables. By

defining a joint distribution over visible and latent variables, the corresponding distribution

of the observed variables is then obtained by marginalization. This allows relatively complex

distributions to be expressed in terms of more tractable joint distributions over the expanded

variable space. On the other hand, estimating continous latent variables could amount to a

feature extraction algorithm [7,16]. In what follows, we mention some broadly representative

probabilistic algorithms, namely Probabilistic PCA [2], Mixture of Probabilistic PCA [1] and

Generative Topographic Mapping [17].

1. Probabilistic PCA (PPCA): One limiting disadvantage of principal components anal-

ysis (PCA) is the absence of an associated probability density model for data. It is

shown [2] how a particular form of linear latent variable model can be used to provide

a probabilistic formulation of the standard PCA. This algorithm emerges from a Max-

imum Likelihood (ML) framework simply by assuming an isotropic noise distribution

in a conventional Factor Analysis model. More specifically, there exists a unique ML

estimate of the mapping matrix which is closely related to the d principal components

of the data. It may also be shown that the ML estimator for noise variance is the aver-

age variance ”lost” per discarded dimensions. The MMSE estimate of low-dimensional

features is the posterior mean of latent variables which is closely related to features

extracted by standard PCA.

Deriving PCA from the perspective of density estimation would offer a number of

important advantages. First, the corresponding likelihood would permit comparison

with other density estimation techniques and facilitate statistical testing. Second,
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Bayesian inference methods could be applied by combining the likelihood with a prior

[18]. Third, the value of the probability density function could be used as a measure

of the ”degree of novelty” of a new data point.

2. Mixture of Probabilistic PCA (MPPCA) is derived extending the probabilistic model

of PCA to a mixtures of models, [1], in an effort to retain a greater proportion of the

variance using fewer components. Introducing the latent variables and using a mix-

ture of linear models in the original data domain allows one to derive the probability

density of the data. This formulation would permit all of the model parameters to

be determined from ML, where both the appropriate partitioning of the data and the

determination of the respective principal axes occur automatically as the likelihood is

maximized. For the mixture of PPCA model, data points are assigned to the mixture

components according to the posterior distribution associated with mixture compo-

nents. In order to perform clustering for a data sample, a MAP estimate of mixture

component is used [1]. The estimated low-dimensional feature in MPPCA model can

also be generated using the postertior mean of the latent variable given the data sample

and estimated model index.

Similar to PPCA, in order to achieve least squares estimate of data sample, a recon-

struction rule is written in terms of the projection matrix onto subspace associated

with the estimated linear model. Implementation of this method was shown [1] to

produce good results in image compression and handwritten digit recognition applica-

tions, though the reconstruction error attained is in general larger than that attained

by a non-probabilistic mixture of PCAs trained to minimize the reconstruction error.

This methods ignores class labels of data samples due to its unsupervised nature.
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3. Generative Topographic Mapping (GTM) is an alternative nonlinear data modeling to

MPPCA. A form of non-linear latent variable model called the Generative Topographic

Mapping is introduced in [17] for which ML estimate of the model parameters can be

determined using the EM algorithm

A specific form for latent variables’ prior is considered by a sum of delta functions

centered on the specific nodes of a regular grid in latent space. Each node is then

mapped to a corresponding point in data space, which forms the center of a Gaussian

density function. It is easily shown that the data distribution is a constrained Gaussian

mixture model [17] since the centers of the Gaussians cannot move independently but

are related through the nonlinear mapping function. One application of GTM is data

visualization, in which Bayes’ theorem is used to invert the transformation from latent

space to data space.

GTM provides a principled alternative to the widely used Self-Organizing Map (SOM)

of Kohonen [19], while overcoming most of its limitations. The most significant differ-

ence between the GTM and SOM algorithm is that GTM defines an explicit probability

density given by the mixture distribution. As a consequence there is a well-defined ob-

jective function given by the log likelihood, and convergence to a local maximum of the

objective function is guaranteed by using the EM algorithm. For the SOM algorithm,

however, there is no probability density and no well-defined objective function that is

being optimized by the training process. A further limitation of the SOM is that the

conditions under which self-organization of the SOM occurs have not been quantified,

and so it is necessary to confirm empirically that the trained model does indeed have

the desired spatial ordering. In contrast, the neighborhood-preserving nature of the

GTM mapping is an automatic consequence of the choice of a continuous mapping

function.
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1.3 Proposed Method

In this thesis, a novel probabilistic method using a Mixture of Factor Models (MFM)

is proposed for simultaneous nonlinear dimensionality reduction and classification. The

framework used here is inspired by the work in [1] which uses a mixture of local PCA

projections leading to an unsupervised nonlinear dimensionality reduction algorithm. In

contrast, this proposed method provides a supervised probabilistic approach for analyzing

labeled high dimensional data with complex structures by exploiting a set of low dimensional

latent variables. With the aid of these low-dimensional latent variables, a mixture of linear

models is introduced to represent the high-dimensional data. An optimum linear classifier

is then built in the latent variable-domain to separate the support of the latent variable

associated with each class. Introducing these hidden variables, discrete and continuous,

allows us to derive relatively complex joint distribution of data and labels to be expressed in

terms of more tractable joint distributions. The ultimate goal is to reduce data dimension,

perform clustering, classification, and parameter estimation. This probabilistic approach

provides a mechanism to traverse between the input space and latent (feature) space and

vice versa as well as to cluster and classify data.

A supervised training based on the EM and steepest descent algorithms is introduced to

derive the ML estimates of the unknown parameters. It is shown that parameters associated

with dimensionality reduction can be estimated using the EM algorithm whereas those of

the classification system are estimated using a steepest descent algorithm. The introduction

of latent variables not only helped representing the pdf of data and reducing the dimension

of them but also in parameter estimation using EM algorithm which is used to find ML

estimates of the parameters when the available data is incomplete. To define the explicit

distribution for data in each class we derived new results for squashed multivariate normal

distribution. It encompasses general cases of multivariate truncated normal and skew-normal

distributions. Finding their distributions also helped us to find analytic solutions for the EM

algorithm in parameter estimation.
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A comprehensive study is then carried out to assess the performance of this proposed

method using two different data sets. The first data set consists of SAS images of model-

generated underwater objects superimposed on background clutter. These images correspond

to two different object types namely Cylinder (mine-like) and Block (non-mine-like). The

signatures of each object are synthetically generated and are inserted into backgrounds at

various aspect angles (w.r.t sonar platform) from 1 to 180 degrees for each object type. The

goal of our classifier here is to assign target versus non-target labels to the image snippets.

The other data set consists of two sets of facial images of different individuals. Each image

set contains of two 2 sets of 93 images of the same person at different poses. The goal of

the classifier is to idnetify each of two selected individuals correctly. The dimensionality

reduction performance of the proposed method is compared to Probabilistic PCA [2] and

MPPCA [1] while its classification performance is benchmarked against SVM [20].

1.4 Organization of the Thesis

This thesis is organized as follows: Chapter 2 gives a detailed review of classical subspace

data modeling and dimensionality reduction algorithms that use latent variables such as Fac-

tor Analysis, Probabilistic PCA and MPPCA. Chapter 3 introduces the general framework

of the proposed method. Dimensionality reduction, clustering, and reconstruction are dis-

cussed in this chapter. This chapter also develops classification system based on both actual

data points and estimated latent features. In Chapter 4, ML estimate of the parameters

using EM and steepest descent algorithms is discussed. This algorithm was implemented in

Chapter 5 and its reconstruction and classification performance are compared against those

of PPCA, MPPCA, SVM, respectively. Finally, Chapter 6 concludes the studies carried out

in this research and discusses possible ideas for future work.
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CHAPTER 2

SUBSPACE DATA MODELING AND DIMENSIONALITY REDUCTION

2.1 Introduction

Most of the popular probabilistic dimensionality reduction methods, [1, 2, 9, 21] make use

of latent variable models since they provide a simple and powerful tool for data analysis,

e.g., when the intrinsic dimensionality of the problem is smaller than the apparent one [21].

In a broad sense many probabilistic models commonly used in machine learning can be

considered as latent variable models inasmuch as they include probability distributions for

variables which are not direclty observed. For example, in mixture models [22] the variable

which indexes the components is a latent variable while in hidden Markov models [23] the

state sequence is unobserved. Continuous latent variable models [21] are, on the other hand,

especially suited for dimensionality reduction and missing data reconstruction.

In this chapter, we will concentrate exclusively on latent variable models where both the

latent and the observed variables are continuous, going further than the famous linear model

of factor analysis [24] [16]. One of the most popular techniques for dimensionality reduction,

PCA has been recast [2] in the form of a particular kind of factor analysis. The association of

a probability model with PCA offers the tempting prospect of being able to model complex

data structures with a combination of local PCA models through the mechanism of a mixture

of probabilistic principal component analyzers [1]. This chapter does not include any of the

more recent latent variable models such as Generative Topographic Mapping (GTM) [17],

Independent Component Analysis (ICA) [25] or Independent Factor Analysis (IFA) [26].

Instead, in this chapter we concentrate on factor analysis, probabilistic PCA (PPCA), and

mixture of PPCA (MPPCA) algorithms.

The outline of this chapter is as follows. Section 2.2 gives a brief review of factor analysis

and provides some background to the methods employed in the later sections of this chapter.
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Section 2.3 illustrates how the principal axes of a set of observed data vectors may be

determined through ML estimation of parameters in a latent variable model that is closely

related to factor analysis. Section 2.4 provides nonlinear variants of PCA by mixing single

PCA models to capture data complexity. Concluding remarks are then given in Section 2.5.

2.2 Factor Analysis

Factor Analysis [16] is probably the most common example of a statistical latent variable

model which uses a linear mapping from latent space to data space. Typically, the latent

variables are assumed to be independent and normal with unit variance, i.e. y ∼ N (0, I).

The latent variables y are often referred to as the factors. The mapping from latent space

to data space, M, is linear of form

M(y) = Gy + µ, (2.1)

where the columns of G ∈ R
D×d matrix are referred to as the factor loadings. Factor loading

are assumed to be linearly independent, or rank(G) = d. The parameter µ permits the data

model to have non-zero mean. Given the data model

x = M(y) + n. (2.2)

where n ∼ N (0,Ψ) is white noise with diagonal covariance matrix Ψ, the distribution of x

given y is normal centered at M(y), i.e.

x|y ∼ N (M(y),Ψ). (2.3)

The D diagonal elements of Ψ are referred to as the uniquenesses. The distribution of data

can be computed analytically by marginalizing the joint distribution of latent and observable

(data) variables. Alternatively, using (2.1) and (2.2) it is easy to see that

x ∼ N (µ,GGT +Ψ). (2.4)

The key motivation for this model is that, because of the diagonality of Ψ, the observed

variables x are conditionally independent given the latent variables, or factors, y. The
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intention is that the dependencies between the data variables x are explained by a smaller

number of latent variables y, while n represents variance unique to each observation variable.

It can easily be shown [16] that the posterior in latent space is also normal,

y|x ∼ N (µy|x,Ry|x) (2.5)

with mean

µy|x = GT (GGT +Ψ)−1(x− µ)

= (I+GTΨ−1G)−1GTΨ−1(x− µ)

and covariance

Ry|x = (I+GTΨ−1G)−1. (2.6)

The reduced dimensional representation of x is the posterior mean of y|x,

M̂−1(x) = (I+GTΨ−1G)−1GTΨ−1(x− µ) (2.7)

which is the MMSE estimate of the latent variable y given x. The dimensionality reduction

mapping M̂−1 is linear and therefore smooth.

Given N i.i.d samples, the log-likelihood of the parameters Θ = {G,Ψ,µ} is the sum-

mation of the natural log of a normal distribution N (µ,Σ) with covariance Σ = GGT +Ψ,

l(Θ|{xn}Nn=1) = −N
2
(D log 2π + log |Σ|+ tr SΣ−1) (2.8)

where S = 1
N

∑N
n=1 (xn − µ)(xn − µ)T . The log-likelihood gradients are:

∇µl(Θ|{xn}Nn=1) = −NΣ−1(x̄− µ) (2.9)

∇Gl(Θ|{xn}Nn=1) = −N(Σ−1(I− SΣ−1)G) (2.10)

∇Ψl(Θ|{xn}Nn=1) = −N
2
diag(Σ−1(I− SΣ−1)) (2.11)
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where x̄ = 1
N

∑N
n=1 xn. The maximum likelihood estimate of µ is the sample mean, i.e.

µ̂ML = x̄.

Remark 2.1:

If we apply an invertible linear transformation, Q ∈ R
d×d, to the factors y to obtain a

new set of factors ỹ = Qy, the prior distribution f(ỹ) is still normal, ỹ ∼ N (0,QQT ), and

the new mapping becomes x = GQ−1ỹ + µ which leads to the same likelihood. That is,

the new factor loadings become G̃ = GQ−1. If Q is an arbitrary nonsingular matrix, which

is called an oblique rotation of the factors [27], the new factors ỹ will not be independent

anymore. Moreover, the log-likelihood has infinitely many equivalent maxima resulting from

orthogonal rotation of the factors in which the factors remain independent. Apart from

these, it is not clear whether the log-likelihood has a unique global maximum or there exist

sub-optimal solutions.

Remark 2.2:

Factor Analysis is covariant under component-wise rescaling of the data variables, i.e the

scale factors simply become absorbed into rescaling of the noise variances, and the rows of

G are rescaled by the same factors.

The parameters of a factor analysis model may be estimated using an EM algorithm.

1. E-step: Compute the posterior moments

〈y〉n = µy|x (2.12)

〈yyT 〉n = Ry|x + µy|xµ
T
y|x (2.13)

for each data point xn given the current parameter values G and Ψ. Note that 〈·〉

represents posterior estimate E[·|x].

2. M-step: Perform the following update equations for the factor loadings G and Ψ.

G = (
N∑

n=1

xn〈y〉n)(
N∑

n=1

〈yyT 〉n)−1 (2.14)
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Ψ =
1

N
diag(

N∑

n=1

xnx
T
n −G〈y〉nxT

n ) (2.15)

where the updated moments are used and the ”diag” operator sets all the off-diagonal

elements of a matrix to zero.

Remark 2.3:

Factor Analysis estimate does not satisfy the condition that M̂−1 ◦ M be the identity,

because GT (GGT +Ψ)−1G 6= I, except in the zero-noise case.

2.3 Probabilistic Principal Component Analysis

Certain links between factor analysis and PCA have been previously established, and such

connections center on the special case of an isotropic error model, where Ψ = σ2I. In this

case, maximum likelihood is equivalent to a least squares criterion and a principal component

solution emerges in a straightforward manner. Assuming the correct choice of d, it is shown

that both G and σ2 can be estimated analytically through eigen-decomposition of S, [28].

One limiting disadvantage of PCA is the absence of an associated probability density model.

Deriving PCA from the perspective of density estimation would offer a number of important

advantages. First, the corresponding likelihood would permit comparison with other density

estimation techniques and facilitate statistical testing. Second, Bayesian inference methods

could be applied (e.g., for model comparison) by combining the likelihood with a prior [18].

Third, the value of the probability density function could be used as a measure of the ”degree

of novelty” of a new data point.

Consider the factor analysis model of the previous section with an isotropic error model.

i.e. y ∼ N (0, I), M(y) = Gy + µ and n ∼ N (0, σ2I). There exists a unique ML estimate

closely related to the d principal components of the data. The log-likelihood function is given
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as,

l(Θ|{xn}Nn=1) = log
N∏

n=1

f(xn) (2.16)

= −N
2
(D log 2π + log |Σ|+ tr SΣ−1)

where f(x) is the normal pdf with mean, µ, and covariance, GTG+σ2I and Σ = σ2I+GGT ,

and S = 1
N

∑N
n=1 (xn − µ)(xn − µ)T . The likelihood function is maximized when µ =

1
N

∑N
n=1 xn and the columns of G span the principal subspace of the data. The log-likelihood

gradient w.r.t G is

∇Gl(Θ|{xn}Nn=1) = −NΣ−1(I− SΣ−1)G (2.17)

where S is the sample covariance matrix. It can be shown [1] that the only non-zero stationary

points occur for

G = Ud(Λd − σ2I)1/2Q (2.18)

where the d column vectors in the D × d matrix Ud are principal eigenvectors of S, with

corresponding eigenvalues in the d × d diagonal matrix Λd, and Q is an arbitrary d × d

orthogonal rotation matrix. It may also be shown that the ML estimator for σ2 is given by

σ2 =
1

D − d

D∑

i=d+1

λi (2.19)

where λd+1, ..., λD are the smallest D − d eigenvalues of S and so estimated σ2 has a

clear interpretation as the average variance ”lost” per discarded dimensions. Therefore, the

posterior in latent space is normal,

y|x ∼ N (µy|x,Ry|x) (2.20)

with mean

µy|x = QTΛ−1
d (Λd − σ2I)1/2UT

d (x− µ) (2.21)

and covariance

Ry|x = σ2QTΛ−1
d Q. (2.22)
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The MMSE estimate of the latent variable y given x is the posterior mean of y|x,

M̂−1(x) = QTΛ−1
d (Λd − σ2I)1/2UT

d (x− µ). (2.23)

Comparing this result to the extracted features obtained in PCA

M̂−1(x) = UT
d (x− µ), (2.24)

we can conclude that the estimated features in PPCA are (1) element-wise scaled versions

of those obtained in PCA, and (2) can be rotated without affecting the likelihood function.

Remark 2.4:

The most attractive property of PCA, is that it is the linear mapping that minimizes the

least squares reconstruction error of a sample. Although, PPCA defines a probability model

in the latent variable model, it is usually constructed as a reconstruction and dimensionality

reduction technique. On the other hand, PPCA estimate does not satisfy the condition

that M̂−1 ◦M be the identity, because GT (GGT + σ2I)−1G 6= I, except in the zero-noise

case. Therefore, to adapt reconstruction mapping of PPCA to PCA, Tipping and Bishop [2]

change the reconstruction equation as follows,

x̂ = G(GTG)−1(σ2I+GTG)M̂−1(x) + µ

= UdU
T
d (x− µ) + µ.

which gives identical reconstruction error as with the conventional PCA. This is similar to

the model bias in rank d reconstruction of stationary signals, discussed in [29])

Remark 2.5:

Since the noise model variance σ2 is the same for all observed variables, the directions

of the columns of G will be more influenced by the variables that have higher noise, unlike

Factor Analysis, which should be able to separate the linear correlations from the noise.

16



Remark 2.6:

PCA and PPCA are covariant under rotations of the data variables, since the transformed

noise covariance σ2QQT will only be proportional to the unit matrix if Q is an orthogonal

matrix. The same covariance property is shared by standard non probabilistic PCA since

a rotation of the coordinates induces a corresponding rotation of the principal axes. Due

to this ambiguity, this framework is suitable for subspace identification rather than factor

identification which needs additional constraints.

The log-likelihood of the estimated parameters is

l(Θ|{xn}Nn=1) = −N
2
(D(1 + log 2π) + log |S|+ (D − d) log

a

g
) (2.25)

where a and g are the arithmetic and geometric means of the D − d smallest eigenvalues

of the sample covariance matrix S. Although there is an EM algorithm that finds the d

principal components by maximizing the log-likelihood [2], the fastest way to perform PCA

is via numerical singular value decomposition (SVD) [30]. Again, as in factor analysis, it is

possible to orthogonally rotate the latent variables while keeping the same distribution.

Remark 2.7:

For a fixed data set, PCA has the property of additivity, to the extent that the principal

components obtained using a latent space of dimension d are exactly the same as the ones

obtained using a latent space of dimension d−1 plus a new, additional principal component.

However, this additivity property does not necessarily hold for Factor Analysis. That is, the

factors found by a factor analysis of order d are, in general, all different from those found by

a factor analysis of order d− 1. That means one can only talk about the joint collection of

d factors or the linear subspace spanned by them.

2.4 Mixture of Probabilistic PCA

The other significant advantage of deriving PCA from the perspective of density estimation

is that the single PCA model could be extended to a mixture of such models. Since PCA only

defines a linear projection of the data, the scope of its application is necessarily somewhat
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limited. This has naturally motivated various developments of nonlinear principal component

analysis in an effort to retain a greater proportion of the variance using fewer components.

An alternative paradigm are global nonlinear approaches, such as principal curves [24, 31],

multi-layer auto-associative neural networks [32] and the generative topographic mapping,

or GTM, [17] is to model nonlinear structure with a collection, or mixture, of local linear

sub-models.

The association of a probability model with PCA, enable us to model complex data

structures with a combination of local PCA models through the mechanism of a mixture of

probabilistic principal component analyzers [1]. This mixture can be formalized as follows,

x =





G1y + µ1 + n1 w.p. π1

G2y + µ2 + n2 w.p. π2

... w.p. πl

GLy + µL + nL w.p. πL

(2.26)

where πl is the corresponding mixing proportion, with πl ≥ 0 and
∑L

l=1 πl = 1. This

formulation would permit all of the model parameters to be determined from ML, where both

the appropriate partitioning of the data and the determination of the respective principal

axes occur automatically as the likelihood is maximized. The log-likelihood of observing the

data set for such a mixture model is

l(Θ|{xn}Nn=1) =
N∑

n=1

log f(xn), (2.27)

where f(xn) =
∑L

l=1 πlf(xn|l) and f(x|l) is a single PPCA model, normal pdf with µl mean

and GlG
T
l + σ2

l I covariance. Note that a separate mean vector µl is now associated with

each of the L mixture components, along with the parameters Gl and σ
2
l . The corresponding

generative model for the mixture case now requires the random choice of a mixture compo-

nent according to the proportions πl, followed by sampling from the y and n distributions

and applying linear equation in the single model case, and using the appropriate parameters

µl, Gl, and σ
2
l .
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Clustering and Data Reconstruction

Generating a local PCA model of the form illustrated above is often prompted by the ulti-

mate goal of accurate data reconstruction. For the mixture of PPCA model, data points are

assigned to the mixture components (in a soft fashion) according to the posterior distribution

associated with mixture component, l,

Rn,l = f(l|xn) =
f(xn|l)πl
f(xn)

(2.28)

where Rn,l is the probability of data sample xn being generated by model l. It is also

called responsibility of the mixture component l for the generating data sample xn. Since

denominator f(xn) is the same for all components, Rn,l ∝ πlf(xn|l). In order to perform

clustering for a data sample xn, MAP estimate of mixture component is used as follows,

l̂n = argmax
l

Rn,l. (2.29)

Therefore, for a given data point x, there is now an associated linear model, index of

which is estimated as l̂. The estimated latent variable in MPPCA model is given by

M̂−1(x) = (σ2
l̂
I+GT

l̂
Gl̂)

−1GT
l̂
(x− µl̂). (2.30)

Similar to PPCA, in order to achieve a least squares (LS) estimate of data sample x the

reconstruction rule must be written as,

x̂ = Gl̂(G
T
l̂
Gl̂)

−1(σ2
l̂
I+GT

l̂
Gl̂)M̂−1(x) + µl̂

= PG
l̂
(x− µl̂) + µl̂.

where PG
l̂
is the projection matrix onto subspace Gl̂.

Parameter Estimation

We can develop an iterative EM algorithm for optimization of all of the model parameters

πl, µl, Gl, and σ2
l . Using (2.28), it is shown [1] that we obtain the following parameter

updates for πl and µl:

πl =
1

N

N∑

n=1

Rn,l (2.31)
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µl =
1∑N

n=1Rn,l

N∑

n=1

Rn,lxn (2.32)

Thus the updates for πl and µl correspond exactly to those of a standard Gaussian mixture

formulation [22]. Furthermore, it is also shown [1] that the combination of the E- and M-

steps leads to the intuitive result that the axes Gl and the noise variance σ2
l are determined

from the local responsibility weighted covariance matrix:

Sl =
1∑N

n=1Rn,l

N∑

n=1

Rn,l(xn − µl)(xn − µl)
T (2.33)

by standard eigen-decomposition in exactly the same manner as for a single PPCA model.

Iteration of equations (2.28), (2.31) and (2.32) in sequence followed by computation of Gl

and σ2
l , from (2.33) using (2.18) and (2.19) is guaranteed to find a local maximum of the

log-likelihood in (2.27). At convergence, each weight matrix Gl spans the principal subspace

of its respective Sl.

Implementation of this method was shown [1] to yield good results in image compression

and handwritten digit recognition applications, although the reconstruction error attained

is in general larger than that attained by a non-probabilistic mixture of PCAs trained to

minimize the reconstruction error. This is reasonable since the probabilistic mixture of PCAs

is trained to maximize the log-likelihood rather than minimize the reconstruction error.

Remark 2.8:

Ghahramani and Hinton [33] construct a mixture of factor analyzers where each factor

analyzer is characterized by two kinds of parameters, the mean vector µl and the loadings

matrixGl, in addition to the mixing proportion πl. All analyzers share a common noise model

diagonal covariance matrix Ψ for simplicity. They give an EM algorithm for estimating the

parameters {{πl,µl,Gl}Ll=1,Ψ} by ML from a sample, but the parameters estimation in this

case didn’t show any resemblance with PCA.
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Remark 2.9:

A mixture of diagonal Gaussians and a mixture of spherical Gaussians [1] can be seen,

at limiting cases, as a mixture of factor analyzers with zero factors per component model

and a mixture of principal component analyzers with zero principal components per compo-

nent model, respectively. Thus, Gaussian mixtures explain the data by assuming that it is

exclusively due to noise, without any underlying (linear) structure.

Remark 2.10:

This methods ignores class labels of data samples, i.e., it is unsupervised. In order to

use MPPCA as a classification method, one needs to build a model of data samples for each

class separately, and classify unseen data according to the model to which they are most

”likely”. In this sense, estimated features are not useful for discriminative purposes.

2.5 Conclusion

In this chapter, we reviewed three subspace latent variable models. We began with the

most common example of a latent variable model, i.e. the statistical Factor Analysis. Dif-

ferent shortcomings of this method such as having multiple local likelihood maxima and

lack of additivity property were discussed. With a simple change in Factor Analysis model,

PPCA was then derived from the perspective of density estimation. The association of a

probability model with PCA offers tempting prospects. First, being able to compare with

other density estimation techniques and facilitate statistical testing through the resultant

likelihood. Second, Bayesian inference methods could be applied by combining the likeli-

hood with a prior. Third, the value of the probability density function could be used as a

measure of the ”degree of novelty” of a new data point. And finally, being able to model

complex data structures with a combination of local PCA models through the mechanism of

a mixture of probabilistic principal component analyzers. Modeling complexity in data by a

combination of simple linear models is an attractive paradigm offering both computational

and algorithmic advantages along with increased ease of interpretability.
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The probabilistic model for PCA was exploited to combine local PCA models within the

framework of a probabilistic mixture in which all the parameters are determined from ML

using an EM algorithm. In addition to the clearly defined nature of the resulting algorithm,

the primary advantage of this approach is the definition of an observation density model.

A possible disadvantage of the probabilistic approach to combining local PCA models is

that, by optimizing a likelihood function, the MPPCA does not directly minimize squared

reconstruction error. For applications where this is the key requirement, algorithms which

explicitly minimize reconstruction error should be expected to perform better. There is

evidence that the smoothing implied by the soft clustering inherent in the MPPCA helps to

reduce overfitting, particularly in the case of the experiments where the statistics of the test

data set differed from the training data much more so than for other examples.
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CHAPTER 3

MIXTURE OF FACTOR MODELS FOR JOINT DIMENSIONALITY REDUCTION

AND CLASSIFICATION

3.1 Introduction

A powerful approach to probabilistic modeling involves supplementing the set of observed

variables with additional latent variables. By defining a joint distribution over observable

and latent variables, the corresponding distribution of the observed variables is then obtained

by marginalization. This allows relatively complex distributions to be expressed in terms

of more tractable joint distributions. One well-known example of a discrete hidden variable

model is the mixture distribution in which the hidden variable is the component index. In

the case of continuous latent variables, factor analysis is a famous example. This powerful

approach inspired us to model labeled high-dimensional data using low-dimensional latent

variables.

This chapter provides the general framework of the proposed model. The framework used

here is inspired by the work in [1] which takes advantage of both discrete and continuous

latent variables, by using a mixture of linear models leading to a nonlinear dimensionality

reduction and clustering algorithm. In contrast, the proposed method provides a supervised

probabilistic approach for analyzing labeled high dimensional data by exploiting a set of

low dimensional latent variables. With the aid of these low-dimensional latent variables, a

mixture of linear models is used to locally linearize the unknown nonlinear manifold that

the data supposedly lie on. An optimum linear classifier is then built in the latent domain

to separate the support of latent variables for each class and subsequently help to provide

the discriminative features.

This chapter also develops optimal dimensionality reduction, clustering and reconstruc-

tion algorithms. Introducing hidden variables leads to a mixture of linear models in the
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original data domain hence allowing us to derive the joint probability density of the data

and latent variables. Bayes theorem is used to invert the transformation from latent space to

data space, which leads to dimensionality reduction whereas estimating the discrete latent

variable amounts to data clustering. Given estimates of the latent variables, this probabilis-

tic approach provides a mechanism to traverse from latent to data space and perform data

reconstruction.

Finally, we develop a Bayesian classification algorithm, based on data samples as well as

the estimated low dimensional features. Introducing hidden variables allows us to derive the

joint probability density of the data and labels variables as well.

This chapter is organized as follows: Section 3.2 provides a general framework of the

proposed method. Section 3.3 is devoted to developing dimensionality reduction, data clus-

tering, and reconstruction algorithms in our system. Classification is covered in Section 3.4.

Concluding remarks are given in Section 3.5.

3.2 General Framework

In [2], Tipping and Bishop modified the regular Factor Analysis and proposed a prob-

abilistic method for linear dimensionality reduction using latent variables. In their paper,

an ML framework for estimating the parameters was shown to lead to the same results as

PCA. In order to model complex data structures they proposed a combination of local lin-

ear PCA models leading to a mixture of probabilistic PCA (MPPCA), [1]. MPPCA offers

an alternative dimensionality reduction algorithm with the added capability for clustering

as well as data reconstruction. Here, we introduce a supervised statistical-based approach

which accomplishes these tasks and also performs classification based upon either the data

samples or the estimated latent variables.

Consider a binary classification problem where x ∈ R
D represents the data observation

vector and scalar variable z ∈ {0, 1} represents its corresponding class label. Assume the

data in the ambient space, regardless of its class label, can be represented by a set of linear
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models. One way to model this complex structure is to introduce low-dimensional latent

variable y ∈ R
d (d≪ D) which is assumed to be multi-variate normal with pdf y ∼ N (0, I).

The following set of linear models is then proposed to represent the original data in the

ambient space,

x =





G1y + µ1 + n1 w.p. π1

G2y + µ2 + n2 w.p. π2

... w.p. πl

GLy + µL + nL w.p. πL

(3.1)

where L is the number of the linear models and {nl}Ll=1 are white Gaussian noise vectors with

pdf N (0, σ2
l I). The assumed distribution for the noise components {nl}Ll=1 implies that given

latent variable, y, and model index, l ∈ {1, ..., L}, the elements of the observation vector, x,

are mutually independent. Such a model may also be termed ”generative”, as data vectors

Figure 3.1: Model representation of the data and class label based upon latent variable
vector y.

x may be generated by sampling from the y, l and nl distributions and applying (3.1).

To build a joint dimensionality reduction and classification algorithm, we assume that

the latent variable, y, can be used as a representative feature vector to determine the class
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label z of the original data x. That is, we have

z =





1 w.p. ψ(g(y))

0 w.p. 1− ψ(g(y))
(3.2)

where g(y) = wTy+b is a linear discriminant function (DF) in the latent space and ψ(·) is an

appropriate squashing function (e.g., CDF of standard normal distribution) which maps the

output of DF to [0, 1] range for decision-making. Figure 3.1 depicts this data representation

model and class assignment process based upon latent variable y.

It can easily be verified (see Section 3.3) that the data model in (3.1) and y ∼ N (0; I)

assumption result in a mixture of normal distributions with mixing weights πl for the pdf

of random vector x. Additionally, it is interesting to note that although the distribution of

latent variable, irrespective of class, is assumed to be normal y ∼ N (0, I), the distribution

of y in each class z = 0, 1 is, what we refer to a squashed multi-variate normal distribution.

This is shown next.

Proposition 3.1:

a. The distribution of the latent variable, y, given binary random variable z (class label)

is a squashed multivariate normal,

f(y|z) = f(y)
( ψ(g(y))

E[ψ(g(y))]

)z( 1− ψ(g(y))

1− E[ψ(g(y))]

)1−z

, (3.3)

where ψ(.) is an arbitrary squashing function with ψ(g(y)) = f(z = 1|y) and g(y) = 0

specifies the boundaries. For the special case of Heaviside function, i.e. ψ(.) = 1(0,+∞)(.), this

model coincide with the general Truncated Multivarite Normal Distribution (see Appendix

A, section A.1).

b. If y ∼ N (µ,R), in special case of g(y) = wTy+b and ψ(.) being the CDF of standard

normal distribution, Φ(.), the first and second order statistics of this distribution are given

by

E[y|z] = µ+ γ(z)Rw (3.4)
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E[yyT |z] = R+ µµT + γ(z)(RwµT + µwTR− wTµ+ b

1 +wTRw
RwwTR) (3.5)

where

γ(z) =
φ
(

wTµ+b√
1+wTRw

)

(
Φ
(

wTµ+b√
1+wTRw

)
− 1{0}(z)

)√
1 +wTRw

,

where φ(·) is the standard normal pdf and 1A(z) is the indicator function,

1A(z) =





1 for z ∈ A

0 for z /∈ A.

Proof of Proposition 3.1: See Appendix A, section A.2.

The class conditional distributions f(y|z = 1) and f(y|z = 0) have almost disjoint

supports (see Figure 3.2), i.e. this model almost separates the support of y for each class.

Figure 3.2: Left: Contours of a Multivariate Normal Distribution. Right: Contours of a
Linearly Squashed Multivariate Normal Distribution for z = 1 or 0.

Given training dataset D = {xn, zn}Nn=1, we would like to estimate matrices Gl, mean

vectors µl, variances σ
2
l , priors πl, weight vector w and bias b using the ML estimation.

In Chapter 4, we shall show how a subset of parameters can be estimated using the EM

algorithm whereas the rest can be estimated using a steepest descent method. However, in

the following section we assume these parameters are already computed during the training
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phase and show how we can perform dimensionality reduction and classification using our

framework.

3.3 Dimensionality Reduction, Clustering and Reconstruction from a known Mixture Model

For dimensionality reduction using this algorithm, one needs to estimate a low dimensional

latent variable y ∈ R
d for an observation x ∈ R

D. The solution of this problem is obtained

by minimizing the conditional risk of dimensionality reduction,

Rdim(x) = E[L(y, ŷ)|x],

where L(y, ŷ) = ‖y − ŷ‖22 is a quadratic loss function between the latent variable, y, and

its associated estimate ŷ. This minimization leads to the Minimum Mean Squared Error

(MMSE) estimate of y or ŷ = E[y|x]. The following theorem gives the solution to this

problem.

Theorem 3.1: Analysis Equation

Given the observation xn ∈ R
D in the ambient space, the MMSE estimate of yn ∈ R

d is

given by,

ŷn =
L∑

l=1

f(l|xn)µy|xn,l (3.6)

where µy|xn,l = (σ2
l I+GT

l Gl)
−1GT

l (xn−µl) and f(l|xn) =
πlf(xn|l)
f(xn)

is the posterior probability

of model index. Note that f(x|l) is the pdf of a normal distribution with mean µx|l = µl

and covariance Rx|l = σ2
l I+GlG

T
l , and f(x) can be computed using f(x) =

∑L
l=1 πlf(x|l).

For this estimate, the minimum risk of dimensionality reduction is

R∗
dim.(xn) =

L∑

l=1

f(l|xn)(tr{Ry|x,l}+ ‖µy|xn,l − ŷn‖22). (3.7)

Proof of Theorem 3.1:

To evaluate the MMSE estimate of the latent variable, ŷ = E[y|x] requires finding the a

posteriori distribution f(y|x), which can be related to f(y, l|x) by,

f(y|x) =
L∑

l=1

f(y, l|x). (3.8)
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However, using the chain rule f(y, l|x) = f(l|x)f(y|x, l), where f(l|x) = πlf(x|l)
f(x)

is the

posterior distribution of model index, l, and f(y|x, l) is expressed as

f(y|x, l) = f(x,y|l)
f(x|l) . (3.9)

That is, finding f(y|x) requires the knowledge of f(x|l), f(x), and f(x,y|l). Now, given the

model index, l, using the locally linear model in (3.1) (see Figure 3.1) we have,

x = Gly + µl + nl, (3.10)

where y ∼ N (0, I), and nl ∼ N (0, σ2
l I) which makes f(x|l) a normal distribution with mean

µµµx|l = µl and covariance Rx|l = σ2
l I + GlG

T
l . Furthermore, using f(x) =

∑L
l=1 πlf(x|l)

implies that x has pdf which is a mixture of normal distributions with weights πl. Finally,

f(x,y|l) is also normal with the following composite mean

µx,y|l =




µl

0


 , (3.11)

and composite covariance matrix

Rx,y|l =




GlG
T
l + σ2

l I Gl

GT
l I


 . (3.12)

Using these results in (3.9), it can easily be shown that f(y|x, l) is normal with mean

µy|x,l = GT
l (σ

2
l I+GlG

T
l )

−1(x− µl)

= (σ2
l I+GT

l Gl)
−1GT

l (x− µl),

(3.13)

and covariance

Ry|x,l = I−GT
l (σ

2
l I+GlG

T
l )

−1Gl

= (I+
1

σ2
l

GT
l Gl)

−1.
(3.14)

Thus, given the observation xn, the MMSE estimate of yn may be written as

ŷn =
L∑

l=1

f(l|xn)µy|xn,l,
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where µy|xn,l is obtained using (3.13). Since (3.6) provides an unbiased estimate of y, the

minimum risk of dimensionality reduction is R∗
dim.(x) = tr{Cov[y|x]} which can be written

as

R∗
dim.(xn) = tr{Cov[y|xn]}

= tr{E[yyT |xn]} − ŷT
n ŷn

=
L∑

l=1

f(l|xn)(tr{E[yyT |xn, l]} − ŷT
n ŷn)

=
L∑

l=1

f(l|xn)(tr{Ry|x,l}+ µT
y|xn,lµy|xn,l − ŷT

n ŷn)

which yields (3.7) by using (3.6).

Remark 3.1:

It is interesting to note that since for a given observation xn the model index is unknown,

ŷn is a linear combination of the weighted LMMSE estimates of yn’s for a given model index

l with f(l|xn) = πlf(xn|l)
f(xn)

as weights. In other words, f(l|xn) is indicative of model index

likelihood and µy|xn,l is estimate of yn given that model index. This implementation is

depicted in Figure 3.3.

For data clustering and reconstruction using this algorithm,, we need to estimate the

model index, l, for an observation x. The associated conditional Bayes risk is

Rclus(x) = E[L(l, l̂)|x],

where l is the model (or cluster) index associated with x, and l̂ is an estimate of l. For

the 0 − 1 loss function L(l, l̂) = 1 − 1{l̂}(l), the optimal clustering algorithm leads to the

Maximum A Posteriori (MAP) estimate of l.

Theorem 3.2: Synthesis Equation

Given observation vector xn, for data clustering the MAP estimate of l gives,

l̂n = argmax
l

πlf(xn|l) (3.15)
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Figure 3.3: Dimensionality reduction process.

which can be used together with the estimate of the latent vector ŷn in the following equation

to reconstruct the data from its low dimensional representation,

x̂n = Gl̂n
ŷn + µl̂n

. (3.16)

Proof of Theorem 3.2:

For the given 0− 1 risk function, the model index of each sample point can optimally be

estimated using the a posteriori distribution of l given the observation xn,

l̂n = argmax
l

f(l|x = xn).

where f(l|x = xn) =
πlf(xn|l)
f(xn)

. However, since the denominator is independent of l, this MAP

estimate gives (3.15). This estimate leads to the minimum clustering risk of

R∗
clus.(xn) = 1− f(l̂n|xn). (3.17)

Once the estimate of the model index (or cluster) is generated, the original data can be
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reconstructed from the estimate of the latent variable ŷn using ad-hoc mapping,

x̂n = E[x|y, l]|y=ŷn,l=l̂n

= Gl̂n
ŷn + µl̂n

.

Remark 3.2:

An important feature of the proposed method is that it allows for both analysis and

synthesis of out-of-sample data as well as building an optimum classifier in the latent variable

domain (see the next section).

Remark 3.3:

For very small clustering risk (i.e. it is highly probable that the data sample xn belongs

to a specific linear model), dimensionality reduction may simply be accomplished using

ŷn = (σ2
l̂n
I+GT

l̂n
Gl̂n

)−1GT
l̂n
(xn − µl̂n

). (3.18)

Small clustering risk implies that the data sample xn belongs to a specific linear model, e.g.

for L = 1 case, clustering risk is zero. In this case, in order to have the least squares estimate

of xn without modifying the estimate of latent variable, ŷn, reconstruction must be modified

to

x̂n = Gl̂n
(GT

l̂n
Gl̂n

)−1(σ2
l̂n
I+GT

l̂n
Gl̂n

)ŷn + µl̂n

= PG
l̂n
(xn − µl̂n

) + µl̂n

where PG
l̂n
= Gl̂n

(GT
l̂n
Gl̂n

)−1GT
l̂n

is the projection matrix onto subspace Gl̂n
.

3.4 Classification

Given an observation x ∈ R
D generated according to the model in Figure 3.1, the associ-

ated conditional risk for classification is

Rclass(x) = E[L(z, ẑ)|x],
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where z ∈ {0, 1} is the class label associated with the observation x, and ẑ ∈ {0, 1} is an

estimate of z. For the 0 − 1 loss function L(z, ẑ) = 1 − 1ẑ(z), the optimal classifier that

minimizes this risk (also known as Bayes Classifier) gives the MAP estimate of z.

Theorem 3.3:

Given an observation vector xn ∈ R
D, the MAP estimate of the class label zn is

ẑn = 1( 1
2
,+∞)

( L∑

l=1

f(l|xn)E[ψ(g(y))|xn, l]
)
, (3.19)

where E[ψ(g(y))|xn, l] is the MMSE estimate of zn given the model index, l and f(l|xn) =

πlf(xn|l)
f(xn)

is the posterior distribution of model index, l, computed at xn.

Proof of Theorem 3.3:

For the given 0 − 1 risk function, the class label of unknown sample point, xn, can be

estimated using the MAP estimate of z given the observation xn,

ẑn = argmax
z∈{0,1}

f(z|x = xn),

which requires the a posteriori distribution f(z|x) or equivalently the joint distribution

f(x, z). The latter can be obtained by marginalizing f(x,y, z) over y. On the other hand

we have

f(x, z) =

∫
f(x,y, z)dy. (3.20)

we can derive the joint distribution of (x,y, z),

f(x,y, z) = f(x,y)f(z|x,y)

= f(x,y)f(z|y)

= f(x,y)
(
ψ(g(y))

)z(
1− ψ(g(y))

)1−z

. (3.21)

Note that here we used the fact that given y, the random variable z is independent of x

(see Section 3.2 and Figure 3.1) and further f(z|y) = ψ(g(y))z
(
1− ψ(g(y))

)1−z

. The joint

distribution of x and y in (3.21) can also be expanded as

f(x,y) =
L∑

l=1

πlf(x|l)f(y|x, l). (3.22)
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Therefore, using f(x, z) =
∫
f(x,y, z)dy, (3.22), and (3.21) we have

f(x, z) =
L∑

l=1

πlf(x, z|l) (3.23)

=
∑

l

πlf(x|l)
(
E[ψ(g(y))|x, l]

)z(
1− E[ψ(g(y))|x, l]

)1−z

. (3.24)

Finally, using f(l|x) = πlf(x|l)
f(x)

we get

f(z|x) =
L∑

l=1

f(l|x)
(
E[ψ(g(y))|x, l]

)z(
1− E[ψ(g(y))|x, l]

)1−z

,

Thus, given the observation xn, the MAP estimate of the class label is

ẑn = 1( 1
2
,+∞)

( L∑

l=1

f(l|xn)E[ψ(g(y))|xn, l]
)
,

where E[ψ(g(y))|x, l] is the MMSE estimate of z given the model index, l. Because the

model index is unknown, MMSE estimate of z is a linear combination of the weighted

MMSE estimates with f(l|x) as weights. In other words, f(l|x) is indicative of model

index likelihood and E[ψ(g(y))|x, l] is the estimate of z given that model index. Figure 3.4

illustrates the implementation of the classification process using our method. This estimate

Figure 3.4: Classification process.

leads to minimum classification risk of

R∗
clas.(xn) = 1− f(ẑn|xn). (3.25)

34



Proposition 3.2:

For the linear DF, g(y) = wTy + b, and squashing function being the CDF of normal

distribution, Φ(·), (3.24) and (3.19) become

f(x, z) =
L∑

l=1

πlf(x|l)Φ
( wTµy|xn,l + b√

1 +wTRy|x,lw

)z(
1− Φ

( wTµy|xn,l + b√
1 +wTRy|x,lw

))1−z

, (3.26)

and

ẑn = 1( 1
2
,+∞)

( L∑

l=1

f(l|xn)Φ
( wTµy|xn,l + b√

1 +wTRy|x,lw

))
. (3.27)

Proof of Proposition 3.2: The closed form solution for E[Φ(wty+b)] expression is found

in Appendix A. In order to find E[Φ(wty + b)|x, l], one need to place the posterior mean,

µy|x,1, and covariance, Ry|x,l, in the final expressions in (3.24) and (3.19).

Remark 3.4:

For very small clustering risk, classification may simply be accomplished using

ẑn = 1( 1
2
,+∞)(E[ψ(g(y))|xn, l̂n]).

Using linear DF, g(y) = wty+b, and normal CDF, Φ(.), as squashing function, classification

decision is made using,

ẑn = 1(0,+∞)(w
T ŷn + b). (3.28)

where yn is generated using (3.18).

Remark 3.5:

Since the latent variable y carries everything to be known about the class of x, the

class label can be obtained by maximizing the a posteriori distribution of z given the latent

variable y, i.e

ẑ = argmax
z

f(z|y).

where f(z|y) was defined before. Thus, the estimate of the class label for latent variable y

is obtained using,

ẑ = 1( 1
2
,+∞)(ψ(g(y)). (3.29)
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Now, if the risk of dimensionality reduction for an observed sample, xn, is small enough or

alternatively, ŷn, is accurate enough, for the special case of linear DF and using normal CDF

as the squashing function, (3.29) yields the same result as in Remark 3.4 where ŷn is used

instead of the actual latent variable vector y to perform classification for a given observation

xn. For this case, the minimum classification risk can be given as

R∗
clas.(ŷn) = 1− f(ẑn|ŷn). (3.30)

Remark 3.6: Ambiguity

Both the joint distribution f(x, z) and estimate ẑn in Proposition 3.2 are functions ofGlw

and GlG
T
l as evident from equations for µy|xn,l and Ry|x,l in (3.13) and (3.14), respectively.

This implies there is an inherent ambiguity in parameter estimation, since GlU and UTw

for an arbitrary unitary matrix U ∈ R
d×d lead to the same results. However, the role of this

unitary matrix is equivalent to rotating all the latent variable coordinates for all the samples

which wont have any impact on the classification results. Nevertheless, we can simplify the

model by fixing the direction of w and yet achieve the same likelihood and classification rule,

i.e. w = ‖w‖efix. We can reduce the scope of redundant parameters by fixing the direction

of weight vector w and estimating ‖w‖ instead.

3.5 Conclusion

In this chapter, the general framework of the proposed method was discussed. A mixture of

factor models relates latent variables to observable variables, i.e. a mixture of linear models is

defined to map latent variables to ambient data space. On the other hand, the pdf of the low

dimensional latent variable associated with each class was a squashed multivariate normal

leading to linear separability of the estimated low-dimensional latent variables (features).

Estimating the continuous latent variable y for a given data sample amounts to dimen-

sionality reduction. It was shown that resultant low dimensional feature is a collaborative

estimates of each linear model weighted by likelihood of the model. On the other hand,

estimating model index l amounts to data clustering and subsequent data reconstruction.
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In the special case of small clustering risk or when L = 1, a simplified least squares (LS)

version of reconstruction is provided to reconstruct data samples.

It is shown that classification in our system can be accomplished by estimating class

label z for either a given unknown data sample or its estimated latent variable. Estimated

class label based on actual data sample is a collaborative estimates of each linear model

weighted by likelihood of the model. Due to its optimality, which leads to the minimum

classification risk, it is preferable to estimate class labels based on data samples. However,

small clustering or small dimensionality reduction risk, allows us to classify data samples

based on their estimated latent variables (low-dimensional features).

Natural ambiguity in the model parameterization translated into ambiguity in the direc-

tion of weight vector, w. In other words, one can estimate the norm of w with arbitrary

direction. It was shown that this simplification can not negatively affect likelihood function

or classification rule, but it removes unnecessary parameter redundancy.

In MFM framework, the additional assumption on distribution of latent variables for

each class will negatively affect data modeling and hence reconstruction quality compared

to its counterpart in MPPCA. However, this assumption makes it possible to generate dis-

criminative features which are suitable for classification in low-dimensional domain.
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CHAPTER 4

PARAMETER ESTIMATION AND IMPLEMENTATION

4.1 Introduction

In this chapter, a supervised training based on the Expectation-Maximization (EM) and

steepest descent algorithms is introduced to derive the Maximum Likelihood (ML) estimates

of the unknown parameters of the model discussed in Chapter 3. It is shown that parameters

associated with dimensionality reduction can be estimated using the EM algorithm whereas

those of the classification system are estimated using a steepest descent algorithm.

The introduction of latent variables not only helped representing the data distribution

and reducing the dimensionality in Chapter 3 but also in parameter estimation using EM

algorithm which is used to find ML estimates of the parameters when the available data

is incomplete. To accomplish this, we need to find explicit formulation for the squashed

multivariate normal distribution which encompasses general cases of multivariate truncated

normal [34] and skew-normal [35] distributions. Finding statistics of this random variable

helped us finding analytic solution for EM algorithm in parameter estimation. Distribution of

the latent variables for each class is also squashed multivariate normal which accommodates

separability of the estimated features. For linear squashing boundary, we found the first and

second order moments of this random variable analytically and used it in EM algorithm.

The outline of this chapter is as follows: Section 4.2 develops EM algorithm to find ML

estimates of the model parameters for dimensionality reduction. Section 4.3 then provides

steepest descent algorithm to estimate the classifier’s parameters. Concluding remarks are

given in Section 4.4.
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4.2 EM Algorithm

Supervised learning in our method involves estimating matrices Gl, mean vectors µl,

variances σ2
l , priors πl, weight vector w and bias b using ML estimation. If we define the set

of unknown parameters by Θ , {{Θl}Ll=1, ‖w‖, b}, where Θl , {Gl,µl, πl, σ
2
l }, then given

the i.i.d labeled training dataset D = {xn, zn}Nn=1, we maximize the log-likelihood function

l(Θ|D) =
N∑

n=1

log fΘ(xn, zn)

with respect to all the unknown parameters, under
∑L

l=1 πl = 1 constraint. We show that

dimensionality reduction parameters, {Θl}Ll=1, can be estimated using the EM algorithm.

Remark 4.1:

For the special case of L = 1 (i.e. no mixture), the likelihood function can be written as

(refer to (3.26))

L(Θ|D) =
N∏

n=1

fΘ(xn, zn)

=
N∏

n=1

f(xn)Φ
( wT ŷn + b√

1 +wTRy|xw

)zn(
1− Φ

( wT ŷn + b√
1 +wTRy|xw

))1−zn

= LG × LD

where LG =
∏N

n=1 f(xn) and LD =
∏N

n=1 Φ
(

wT ŷn+b√
1+wTRy|xw

)zn(
1− Φ

(
wT ŷn+b√
1+wTRy|xw

))1−zn
. As

it is shown in (2.16), LG is the likelihood function of PPCA algorithm. Maximizing this

likelihood function will guarantee that the estimated features are ”generative”, i.e., we can

reconstruct the data samples xn in the LS sense. On the other hand, maximizing LD com-

ponent alone, will guarantee that the estimated features ŷn are ”discriminative”, since the

following conditions must be satisfied

wtŷn + b≫ 0 for z = 1

wtŷn + b≪ 0 for z = 0
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to maximize LD. That is, the estimated features must be linearly separable in R
d space

via wty+ b discriminant function. However, the objective function in the proposed method

is LG × LD, which tries to find the parameters that can be used to estimate ”generative-

discriminative” features ŷn. The same argument can be made for each component (or linear

model) in L > 1 case as well though there is no direct relationship between the estimated

features and likelihood function.

Since EM algorithm is used to find ML estimates of the parameters when the available

data is incomplete [36], the introduction of latent variables helps in parameter estimation.

In this model, the complete data samples, which cannot be fully observed, is denoted by

(x,y, z, l). Therefore, the complete log-likelihood function is

L(Θ) =
N∑

n=1

log fΘ(xn,yn, zn, ln).

However, the observable samples are only (x, z) and the pdf of incomplete data is given by

fΘ(x, z) =
L∑

l=1

πl

∫
fΘ(x,y, z, l)dy.

EM algorithm maximizes the expected value of the complete log-likelihood function,

conditioned on observed data and current iteration estimate of Θ in two steps, Expectation

and Maximization. It is shown that the successive estimates Θ never decrease the likelihood

function in each iteration. The two steps of the algorithm are:

1. Expectation or E-Step: At (k + 1)-th iteration where the previous estimate of the

parameters, Θ̂k is available, calculate the expected value of complete log-likelihood

function given the observable variables (training data) as a function of the parameters,

Θ.

Q(Θ, Θ̂k) = E[L(Θ)|D; Θ̂k]

=
N∑

n=1

E[log fΘ(xn,yn, zn, ln)|xn, zn; Θ̂
k]

=
N∑

n=1

L∑

l=1

∫
log fΘ(xn,y, zn, l)f(y, l|xn, zn; Θ̂

k)dy
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Note that the marginalization is done w.r.t the latent variables y and l by integral

and summation, respectively, over all their possible values. Since y and l are dummy

variables and (x,y, z, l) samples are i.i.d, we can drop subscript n. Further, using the

chain rule,

f(y, l|xn, zn; Θ̂
k) = fΘ̂k(l|xn, zn)f(y|xn, zn, l; Θ̂

k)

leads to simplified Q(Θ, Θ̂k)

Q(Θ, Θ̂k) =
N∑

n=1

L∑

l=1

fΘ̂k(l|xn, zn)E[log fΘ(xn,y, zn, l)|xn, zn, l; Θ̂
k]. (4.1)

From now on we drop subscript Θ for convenience. Using chain rule, f(xn,y, zn, l) can

be written as

f(xn,y, zn, l) = πlf(y)f(xn|y, l)f(zn|y). (4.2)

Note that f(z|x,y, l) = f(z|y), since z given y is independent of x and model index,

l, and y are independent as well. Taking logarithm from each component,

log f(y) = −d
2
log 2π − 1

2
tr{yyT}

log f(xn|y, l) = −D
2
log 2π − D

2
log σ2

l −
1

2σ2
l

tr{(xn −Gly − µl)(xn −Gly − µl)
T}

log f(zn|y) = zn logψ(g(y)) + (1− zn) log (1− ψ(g(y)))

log f(xn,y, zn, l) can be written as

log f(xn,y, zn, l) = C+log πl−
D

2
log σ2

l −
1

2σ2
l

tr{(xn−Gly−µl)(xn−Gly−µl)
T} (4.3)

where C contains all other terms that are not dependent on the parameters Θl. Given

the expression for log f(xn,y, zn, l) in (4.3), simplified Q(Θ, Θ̂k) in (4.1) requires find-

ing the posterior probabilities pn,l = fΘ̂k(l|xn, zn) and 〈y〉n,l = E[y|x, z, l; Θ̂k] and

〈yyT 〉n,l = E[yyT |x, z, l; Θ̂k] evaluating with current iteration estimate of the parame-

ters, Θ̂k. In the training phase, labeled data samples are assigned to the linear model,
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l, according to the responsibility of l-th model, pn,l, for generation of the n-th data

sample which can be calculated by using Bayes’ rule,

f(l|xn, zn) =
πlf(xn, zn|l)
f(xn, zn)

(4.4)

where f(x, z) and f(x, z|l) were given in (3.23) and (3.26). Using the definition of

conditional probability distribution and chain rule, we can find the distribution of the

latent variable y given training data sample (x, z) and model index l as follows

f(y|z,x, l) = f(x,y, z|l)
f(x, z|l)

=
f(x|l)f(y|x, l)f(z|y)

f(x|l)f(z|x, l)

= f(y|x, l) f(z|y)
f(z|x, l)

= f(y|x, l)( Φ(wTy + b)

E[Φ(wTy + b)|x, l] )
z(

1− Φ(wTy + b)

1− E[Φ(wTy + b)|x, l] )
1−z

which is squashed multivariate normal for both z = 0 and z = 1 cases. Therefore, the

first and second order moments of y given (x, z, l) can be summarized as follows,

E[y|xn, zn, l] = µy|xn,l + µ̃xn,zn,l (4.5)

E[yyT |xn, zn, l] = Ry|x,l+µy|xn,lµy|xn,l
T +µ̃xn,zn,lµ

T
y|xn,l+µy|xn,lµ̃

T
xn,zn,l+R̃xn,zn,l (4.6)

where

µ̃xn,zn,l = γ(xn, z, l)Ry|x,lw, (4.7)

R̃xn,zn,l = −γ(xn, z, l)
wTµy|xn,l + b

1 +wTRy|x,lw
Ry|x,lwwTRy|x,l, (4.8)

γ(xn, z, l) =
φ
(

wTµy|xn,l+b√
1+wTRy|x,lw

)

√
1 +wTRy|x,lw

(
Φ
(

wTµy|xn,l+b√
1+wTRy|x,lw

)
− 1{0}(zn)

) . (4.9)
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which can be found by merging the results of squashed multivariate normal distribution

of both z = 1 and z = 0 cases and replacing posterior mean, µy|x,1, and covariance,

Ry|x,l, in the moments calculated in Appendix A.

2. Maximization or M-Step: Update the estimate of parameter θ ∈ Θ by maximizing

Q(Θ, Θ̂k) w.r.t the parameter of interest, θ, i.e.

∇θQ(Θ, Θ̂
k) =

N∑

n=1

L∑

l=1

pn,l∇θE[log f(xn,y, zn, l)|xn, zn, l; Θ̂
k] (4.10)

= 0.

If we replace (4.3) in (4.10) and take gradient w.r.t the model parameters and apply

∑L
l=1 πl = 1 constraint, we have

Nl =
N∑

n=1

pn,l

πl =
Nl

N

µl =
1

Nl

N∑

n=1

pn,l(xn −Gl〈y〉n,l)

Gl =
( N∑

n=1

pn,l(xn − µl)〈y〉n,l
)( N∑

n=1

pn,l〈yyT 〉n,l
)−1

σ2
l =

1

NlD

N∑

n=1

pn,l

(
‖xn − µl‖2 − 2(xn − µl)

TGl〈y〉n,l + tr GT
l Gl〈yyT 〉n,l

)

Update equations for µl and Gl are coupled and some simplifications are needed to

decouple them. The simplified decoupled versions of EM implementation are provided

in Table 4.1.
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Table 4.1: Steps of the EM Algorithm

Require: L and the number of iterations, I.

Input: The labeled training dataset D = {xn, zn}Nn=1
and w, b.

Output: ML estimate of the parameters {Gl,µl, πl, σ
2

l }Ll=1
.

Initialization Initialize Gl and µl randomly, priors πl = 1

L
and choose large variances σ2

l or use

pre-determined values. Set the iteration index, i = 1.

for i ≤ I do

Expectation Step: Given the current parameters, evaluate the following estimates.

for all l do

Nl =
∑N

n=1
pn,l

mx|l =
1

Nl

∑N

n=1
pn,lxn

my|l =
1

Nl

∑N

n=1
pn,l〈y〉n,l

Ryy|l =
1

Nl

∑N

n=1
pn,l〈yyT 〉n,l

Rxy|l =
1

Nl

∑N

n=1
pn,lxn〈y〉Tn,l

Rxx|l =
1

Nl

∑N

n=1
pn,lxnx

T
n

Cyy|l = Ryy|l −my|lm
T
y|l

Cxy|l = Rxy|l −mx|lm
T
y|l

end for

where pn,l = f(l|xn, zn), 〈y〉n,l = E[y|xn, zn, l] and 〈yyT 〉n,l = E[yyT |xn, zn, l]. The expressions of

these terms can be found in (4.4), (4.5) and (4.6), respectively.

Maximization Step: Update the current parameters.

for all l do

πl =
Nl

N

µl = mx|l − 1

1−mT
y|l

R
−1

yy|l
my|l

Cxy|lR
−1

yy|lmy|l

Gl = Cxy|lC
−1

yy|l

σ2

l = 1

D

(
tr{Rxx|l}+ µT

l µl − 2tr{GT
l Rxy|l}+ 2µT

l (Glmy|l −mx|l) + tr{GT
l GlRyy|l}

)

end for

i := i+ 1.

end for
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4.3 Steepest Descent Algorithm

As mentioned before, to estimate the the classification parameters, {‖w‖, b}, we use steep-

est descent algorithm,

θk+1 = θk + α∇θl(Θ
k|D) (4.11)

where∇θl(Θ
k|D) is the gradient of the log-likelihood function w.r.t parameters θ ∈ {‖w‖, b},

∇θl(Θ|D) =
N∑

n=1

1

fΘ(xn, zn)
∇θfΘ(xn, zn)

and α is the learning rate.

The update equations for b and ‖w‖ can be obtained by taking gradient of (3.20) w.r.t these

parameters. The summary of implementation of steepest descent algorithm for estimating

‖w‖ and b in training phase is provided in Table 4.2.

Table 4.2: Steps of the Steepest Descent Algorithm

Require: Learning rates αw, αb and number of iterations, I.

Input: The labeled training dataset D = {xn, zn}Nn=1
and {Gl,µl, πl, σ

2

l }Ll=1
.

Output: ML estimate of the parameters ‖w‖2 and b.

Initialization Initialize w = 1√
d
1 and b = 0 or use pre-determined values, and set the iteration index,

i = 1.

for i ≤ I do

‖w‖k+1 = ‖w‖k − αw

∑N
n=1

∑L
l=1

(−1)znπlf(xn|l)
f(xn,zn)

φ

(

wT
µy|xn,l+b

√

1+wT Ry|x,lw

)

‖w‖(1+wTRy|x,lw)
3
2

(wTµy|xn,l −wTRy|x,lwb)|
w=wk

bk+1 = bk − αb

∑N
n=1

(−1)zn

f(xn,zn)

∑L
l=1 πlf(xn|l)

φ

(

wT
µy|xn,l+b

√

1+wT Ry|x,lw

)

√

1+wTRy|x,lw

|
w=wk+1,b=bk

i := i+ 1

end for

Table 4.3 demonstrates the full implementation of the proposed algorithm, including train-

ing phase and testing for new data. In training the parameters are estimates whereas in

testing phase, dimensionality reduction, clustering, reconstruction and classification are per-

formed on a new data.
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Table 4.3: Summary of Implementation Steps

Require: d, L, the number of iterations, I1 and I2 and threshold.

Input: The labeled training dataset D = {xn, zn}Nn=1
and a new unknown sample xnew.

Output: ML estimate of the parameters, estimated low-dimensional feature ŷnew, estimated label ẑnew,

model index l̂new and reconstructed sample x̂new.

Initialization Initialize log-likelihood, L = −∞ and error = +∞

while error > thershold do

Find ML estimate of the parameters {Gl,µl, πl, σ
2

l }Ll=1
via EM algorithm (I1 iterations).

Find ML estimate of the parameters ‖w‖2 and b via steepest descent method. (I2 iterations)

Calculate log-likelihood of the parameters:

L∗ =
N∑

n=1

log fΘ(xn, zn).

Update the error:

error = |L − L∗

L |

Update the log-likelihood: L = L∗.

end while

Find ŷnew, ẑnew, l̂new and x̂new using (3.6), (3.19), (3.15), and (3.16) .

4.4 Conclusion

In this chapter, a combined EM and steepest descent algorithm is introduced to derive

the ML estimates of the unknown parameters of the model. It was shown that parameters

associated with dimensionality reduction can be estimated using the EM algorithm whereas

those of the classification system are estimated using steepest descent algorithm. Squashed

multivariate normal distribution and its moments, derived in Appendix A, helped us finding

analytical and explicit solutions in the E-Step. It must be mentioned that these algorithms

are batch and iterative in nature, i.e. they need all the training data in each iteration to

estimate the parameters. However, by interpreting EM as an alternating maximization of a

negative free-energy-like function [37], it is possible to derive online EM algorithms, suitable

for online learning (e.g. in situations where the data arrives one at a time). Additionally,
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EM has slow convergence after the first few steps. Despite these shortcomings, EM usu-

ally remains the best choice for parameter estimation when there are some unobservable

(latent) variables. Steepest descent’s issue is the learning rate that needs to be selected

using a trial and error procedure. These algorithms are used in the Chapter 5 to estimate

the model parameters to perform dimensionality reduction, clustering, reconstruction, and

classification.

47



CHAPTER 5

EXPERIMENTAL RESULTS

5.1 Introduction

In this chapter, the developed Mixture of Factor Models (MFM) is applied to two datasets

to assess and compare its performance in dimensionality reduction, clustering, reconstruc-

tion, and classification. In the first section, we introduce different measures to quantify

performance of each task. Sample average of the dimensionality reduction and clustering

risks are the only measures to evaluate the dimensionality reduction and clustering algo-

rithms. In order to evaluate the overall analysis-synthesis reconstruction performance, we

use the signal-to-error ratio (SER) measure of the reconstruction process. These measures

are common among PPCA and MPPCA algorithms and have been used for the purpose

of comparison. On the other hand, empirical probability of correct classification is a useful

measure that compares the classification performance of the proposed method with any other

methods, such as SVM. However, sample average of classification risk gives us a better and

more accurate measure of confidence of correct classification, which is used for MFM.

This chapter describes the experiments conducted on two sets of image databases, namely

Synthetic Aperture Sonar (SAS) and facial images. The first dataset consists of 181 SAS

images of model-generated underwater objects. The second dataset consists of 186 facial

images of different individuals. The goal is to compare all the aforementioned functionalities

of the proposed MFMmethod with those of the corresponding methods using these measures.

The organization of this chapter is as follows: Section 5.2 provides different measures used

in this chapter to quantify performance of dimensionality reduction, clustering, reconstruc-

tion and classification tasks. Sections 5.3 and 5.4 provide experimental results on the SAS

and facial image data sets, respectively. Finally, concluding remarks are given in Section 5.5.
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5.2 Adopted Performance Measures

The proposed MFM method offers a unified framework to analyze high-dimensional data.

More specifically, its clustering, dimensionality reduction and reconstruction performance

is compared against those of PPCA and MPPCA which are motivated by the objective of

deriving a reduced-dimensionality representation of the data, with minimum reconstruction

error. Sample average of the dimensionality reduction risk per dimension,

R̂dim. =
1

Nd

N∑

n=1

R∗
dim.(xn) (5.1)

and sample average of the clustering risk,

R̂clus. =
1

N

N∑

n=1

R∗
clus.(xn) (5.2)

are appropriate measures to assess and compare the dimensionality reduction and clustering

performance. In order to quantify the overall analysis-synthesis performance, or simply the

reconstruction quality, we use the SER defined as

SER = 20 log10
1

N

N∑

n=1

‖xn‖2
‖x̂n − xn‖2

. (5.3)

On the other hand, we compare classification performance with SVM using the empirical

probability of correct classification

P̂cc =
1

N

N∑

n=1

1zn(ẑn) (5.4)

which is the most popular measure of classification performance. For MFM, label variables

can be estimated based on data samples, xn or alternatively the associated low-dimensional

features, ŷn. Empirical probability of correct classification might be misleading when the

number of test samples are small. The alternative measures to assess classification confidence

are the sample average of classification risk based on data samples, xn,

R̂x
clas. =

1

N

N∑

n=1

R∗
clas.(xn) (5.5)
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or based on the estimated low-dimensional features ŷn

R̂y

clas. =
1

N

N∑

n=1

R∗
clas.(ŷn) (5.6)

which are unique to Bayesian classifiers.

Among the important theoretical results are asymptotic behaviors of dimensionality re-

duction, classification and reconstruction methods, which can be investigated in these ex-

periments. The following table provides a summary of these asymptotic simplifications.

Table 5.1: Asymptotic behavior of dimensionality reduction, classification and reconstruction

methods.

R∗
dim.(xn) → 0 R∗

clus.(xn) → 0

ŷn - (σ2
l̂n
I+GT

l̂n
Gl̂n

)−1GT
l̂n
(xn − µl̂n

)

ẑn 1(0,+∞)(w
T ŷn + b) 1(0,+∞)(w

T ŷn + b)

x̂n Gl̂n
ŷn + µl̂n

PG
l̂n
(xn − µl̂n

) + µl̂n

The significance of having two different classification measures, based on data samples xn

as well as associated low-dimensional features ŷn is to approve the theoretical asymptotic

behaviors of MFM.

5.3 Results on SAS Image Data Set

The image data set used in this section contains SAS images of model-generated objects

superimposed on noisy backgrounds. The data set consists of high frequency (HF) sonar im-

ages which have high spatial resolution that provides the ability to capture different target

characteristics. These images correspond to two different object types namely Cylinder (tar-

get or mine-like) and Block (non-target or non-mine-like). Each image snippet is originally

of size 260× 540 pixels. For computational convenience, these images are then sub-sampled

to 65 × 135 images and vectorized to produce data vectors xn with dimension D = 8775.
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The signatures of each object are synthetically generated and are placed at various aspect

angles from 1 to 180 degrees for each object type.

Figure 5.1: Samples of Block Snippets (Non-

Target).

Figure 5.2: Samples of Cylinder Snippets

(Target).

The goal of the classification is to assign non-target versus target labels to these image

snippets. Figures 5.1 and 5.2 give 15 different examples of target and non-target snippets,

respectively, which are uniformly selected from aspect angles 1− 180 degrees with 12 degree

separation. Two-fold cross-validation method is used to evaluate the results, i.e. the training

set consists of 50% randomly chosen image snippets at different aspects while using the rest

as the test set and vice versa. The average results of the two experiments is reported as

the final result. For our experiment, the dimension of the low-dimensional feature space is

chosen to be d = 3, 6, 9 and number of linear model L = 1, 2, 3.
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Table 5.2: Performance measures of the MFM method for different choices of d and L - SAS

data set.

L d R̂dim. R̂x
clas. R̂y

clas. R̂clus. P̂ x
cc P̂ y

cc SER

1 3 0.0017 0.0045 0.0045 0 1 1 15.75

2 3 0.0013 0.0099 0.0099 2.8710e-14 1 1 17.39

3 3 0.0014 0.0042 0.0042 2.3086e-09 1 1 18.76

1 6 0.0063 0.0060 0.0060 0 1 1 17.65

2 6 0.0073 0.0094 0.0094 2.6755e-26 1 1 19.83

3 6 0.0047 0.0096 0.0096 1.3020e-64 1 1 21.42

1 9 0.0086 0.0058 0.0058 0 1 1 19.12

2 9 0.0066 0.0094 0.0093 9.1295e-73 1 1 21.66

3 9 0.0055 0.0096 0.0096 2.0454e-285 1 1 23.14

Table 5.2 provides the experimental results of applying MFM to SAS data set. Results are

presented in terms of performance measures, e.g., sample average of dimensionality reduction,

R̂dim., and clustering, R̂clus., risks, SER in dB, sample average of classification risk and

probabilities of correct classification based on data samples xn, R̂
x
clas. and P̂

x
cc, or based on

estimated low-dimensional features ŷn, R̂
y

clas. and P̂
y
cc.
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Table 5.3: Performance measures of the PPCA (L = 1) and MPPCA (L > 1) methods for

different choices of d and L - SAS data set.

L d R̂dim. R̂clus. SER

1 3 3.0632e-04 0 15.75

2 3 0.0056 7.6220e-21 17.84

3 3 0.0034 1.1223e-110 19.65

1 6 3.6321e-04 0 17.63

2 6 0.0069 2.2151e-183 20.29

3 6 0.0052 5.0288e-16 22.24

1 9 4.2536e-04 0 19.12

2 9 0.0068 4.2120e-42 21.83

3 9 0.0060 4.9142e-264 23.63

Table 5.3, on the other hand, provides experimental results of applying PPCA (L = 1) and

MPPCA (L > 1) on SAS data set. It provides the dimensionality reduction and clustering

risks, and SER. There are two different clustering mechanisms i.e. hard vs. soft clustering [1].

In soft clustering, which is employed in MFM as well as MPPCA, one talks about the

probability of a data sample belonging to a cluster. On the other hand, in hard clustering

each cluster contains exclusive set of data samples. For both MFM and MPPCA methods,

sample average of clustering risk (for L > 1), was insignificant. In other words, each data

sample is assigned to a specific linear model with high probability. As mentioned before,

this result mimics hard clustering method. However, since the objective in MPPCA is data

modeling, irrespective of classification performance, it is expected to perform clustering with

more confidence, which is also obvious in the results as sample average of clustering risk for

MPPCA is smaller than of the MFM.
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In general, as the number of latent variables increases the data model becomes more

complex. This happens by either increasing dimension of continuous latent variables, y, or

the number of discrete latent variables, L. Sample average of dimensionality reduction risk

is in direct relation with model complexity i.e. the more complex the model is, the less

confidence are the estimates for latent variables. Other factors play important role as well.

For instance, for L > 1 there are multiple local likelihood maxima that the EM can achieve,

which will lead to different results. Data structure is the other factor. In general, as the

estimated parameters and model complexity describe the data model better, it will achieve

a smaller risk of dimensionality reduction.

When the clustering risk is negligible, it can be shown that (3.7) can be simplified to

R∗
dim.(xn) = tr{(I+ 1

σ2
l̂n

GT
l̂n
Gl̂n

)−1}. (5.7)

which is not a function of data sample xn any more. In this case, there are two major

components affecting dimensionality reduction risk. The first component is the eigenvalues

of 1
σ2
l̂n

GT
l̂n
Gl̂n

. The larger these eigenvalues are, the better the estimated subspace Gl̂n

models the training data samples hence leading to lower risk. The second component is

the dimension of latent variables, d. As the dimension of latent variables increases, the

risk of dimensionality reduction per dimension increases as well. This property can easily

be shown for PPCA algorithm. In Chapter 2, it was shown that the columns of G are

the principal eigenvalues of the data covariance matrix weighted by their corresponding

eigenvalues (discarding noise variance). As we increase the dimension of the latent variable

y, we subsequently increase the dimension of G. The added columns helps capturing more

of the covariance structure of the data, majority of which was captured before. The reason is

that the added dimensions are influenced by minor eigenvalues of the data covariance matrix,

therefore the risk of the added dimension is more than the previous ones. This will lead to

an increase in risk of dimensionality reduction per dimension. However, we can not make

the same argument about MPPCA or MFM because these methods don’t have additivity

property (see Chapter 2).
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For the same model complexity, i.e. same d and L, MPPCA and PPCA yield a much

smaller dimensionality reduction risk than MFM. Since the average clustering risk is small,

the only explainable factor is that the eigenvalues of 1
σ2
l̂n

GT
l̂n
Gl̂n

matrix for MPPCA/PPCA

is larger than their counterparts in MFM. The reason is that maximizing the likelihood

function in PPCA/MPPCA algorithm is equivalent to best modeling the data distribution,

whereas in MFM likelihood maximization yields to a model for data and label. This addi-

tional constraint in MFM prevents it to model data distribution as well as PPCA/MPPCA.

Therefore, the eigenvalues of 1
σ2
l̂n

GT
l̂n
Gl̂n

matrix, which are indicative of a quality measure of

data modeling, are larger for PPCA and MPPCA methods.

In order to quantify reconstruction quality, signal to reconstruction error ratio was used.

For the linear models, L = 1, both MFM and PPCA yield the same reconstruction SER.

The reason behind this equality is that original SAS images (target and non-target) were

originally linearly separable. This can be explained by observing estimated latent variables,

for d = 3 L = 1, in PPCA algorithm. Therefore, assuming linear separability of the latent

variable, in MFM, doesn’t impact the quality of data modeling detrimentally.

In order to evaluate the reconstruction performance visually and study the effect of d

and model complexity L on reconstruction SER, we chose a random selection of target/non-

target images that were mapped to the d-dimensional latent space and the reconstructed

using the procedure in Chapter 3. For the L = 1 case, there were no tangible differences

between MFM and PPCA results hence only MFM results are presented in Figures 5.4-5.6

(for d = 3, 6, 9). On the other hand, Figures 5.7-5.10 show the reconstructed SAS images

using both MFM and MPPCA methods for d = 3 and L = 2, 3.
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Figure 5.3: An specific selection of original

target and non-target SAS images.

Figure 5.4: Reconstructed SAS images using

FM method with L = 1 and d = 3.

Figure 5.5: Reconstructed SAS images using

FM method with L = 1 and d = 6.

Figure 5.6: Reconstructed SAS images using

FM method with L = 1 and d = 9.
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Figure 5.7: Reconstructed SAS images using

MFM method with L = 2 and d = 3.

Figure 5.8: Reconstructed SAS images using

MFM method with L = 3 and d = 3.

Figure 5.9: Reconstructed SAS images using

MPPCA method with L = 2 and d = 3.

Figure 5.10: Reconstructed SAS images using

MPPCA method with L = 3 and d = 3.

One of the obvious conclusions from these experiments is that increasing the dimension of

latent variables, d, leads to a better reconstruction quality in terms of SER. As the number

of columns of G increases, we have more flexibility to reconstruct image details (since the

mean is already captured) as a linear combinations of them.
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Increasing the model complexity by increasing the number of linear models will improve

reconstruction performance as well. While the dimension of latent variables is fixed, adding

linear models enables us cluster the data and reconstruct them with the best available local

linear model. However, this clustering and reconstruction mechanism do not have the same

degrees of freedom as linear model with the larger dimensions, thus it doesn’t achieve the

same reconstruction SER (compare cases where d × L are equal in Tables 5.3 as well as

Table 5.2 to see the differences between local (L = 1)and global (L > 1) data modeling). For

instance in d = 3 and L = 2 model, data set is clustered into two sets and reconstruction is

done with 3 basis but in d = 6 and L = 1 case there is no clustering involved and the whole

data is reconstructed using 6 basis which will obviously achieve a better reconstruction SER.

Generally, MPPCA leads to a better reconstructed images with higher reconstruction SER.

However, there is only one visual superiority of the reconstructed images using MFM over

MPPCA. Reconstructed highlights and shadows, which are among discriminative features of

these SAS images, seem to be sharper than of those of the MPPCA.

The main distinction between MFM and MPPCA is the assumption of latent variable

distribution for different classes with the premise of producing generative and discrimina-

tive features. It is worthy to compare distribution of estimated latent variables (or low-

dimensional features) of MFM with PPCA/MPPCA in this experiment. Figures 5.11-5.16

provide estimated low dimensional features using both MPPCA/PPCA and MFM methods,

for d = 3 and L = 1, 2, 3, respectively.
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Figure 5.16: Distribution of estimated latent

variables for SAS Images, MFM method with

L = 3 and d = 3.

There are two main observations in the resultant distribution of low-dimensional features

of MFM and PPCA/MPPCA. First, low-dimensional features of MFM method are linearly

disjoint and thus suitable for classification whereas there is no such property for features

of MPPCA. Second, as we increase the number of linear models, L, the more scattered the

features become. Each cluster of features relates to one linear model.

As mentioned before, since we had finite number of test samples, sample average of risk

of classification (which is greater than zero) is a better measure to quantify classification

performance than empirical probability of correct classification, which is 100%. However,

SVM with linear kernel also achieved the same probability of correct classification.

According to asymptotic behaviors discussed before, we expect to be able to perform

classification based on the estimated latent variables since the expected clustering risk is

negligible. It is fruitful to investigate this property by showing the linear discriminant func-

tion in y domain as well as estimated features. Figures 5.17 and 5.18 show the distribution

of estimated latent variables using MFM method for d = 3 and L = 2, 3.
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As it was expected, not only we are able to achieve the same empirical probability of

correct classification, 100%, from both data samples and estimated latent variables but also

the same empirical classification rates.

5.4 Results on Facial Image Database

The facial database consists of two sets of images. Each set contains of two series of 93

images of the same person at different poses. In the original database, there are 15 people

with or without glasses and having various skin color. The pose, or head orientation is

determined by 2 angles (h, v), which vary from −90 degrees to +90 degrees. Figures (5.19)

and (5.20) give 15 different examples of two individuals.
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Figure 5.19: Samples of Facial Images of In-

dividual 1.

Figure 5.20: Samples of Facial Images of In-

dividual 2.

All images have been taken using the FAME Platform of the PRIMA Team in INRIA

Rhone-Alpes [38]. To obtain different poses, they put markers in the whole room. Each

marker corresponds to a pose (h, v). The whole set of markers covers a half-sphere in front

of the person. In order to obtain the face in the center of the image, the person is asked to

adjust the chair to see the device in front of him. After this initialization phase, person is

asked to stare successively at 93 markers, without moving his eyes.

Since MFM method provides binary classifier, we had to restrict our data set to two

individuals only. Each image is of size 288 × 384 pixels which is subsequently sub-sampled

to 48× 64 images and then vetorized to yield data vectors of dimension D = 3072. The goal

of classification is to identify each individual correctly. Two fold cross-validation method

is used to evaluate the results. For this experiment, the dimension of the low-dimensional

features is chosen to be d = 6, 12, 18 and number of linear model L = 1, 2, 3.
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Table 5.4: Performance measures of the MFM method for different choices of d and L - facial

image data set.

L d R̂dim. R̂x
clas. R̂y

clas. R̂clus. P̂ x
cc P̂ y

cc SER

1 6 0.0153 0.0362 0.0360 0 0.995 0.995 17.35

2 6 0.0120 0.0351 0.0350 1.0711e-06 0.995 0.995 18.38

3 6 0.0115 0.0365 0.0364 6.3916e-06 0.997 0.997 18.97

1 12 0.0151 0.0318 0.0318 0 0.997 0.997 18.95

2 12 0.0140 0.0315 0.0314 9.8115e-05 0.997 0.997 19.98

3 12 0.0117 0.0297 0.0297 4.3435e-10 0.997 0.997 20.83

1 18 0.0152 0.0303 0.0302 0 0.997 0.997 19.98

2 18 0.0133 0.0283 0.0282 6.1415e-18 0.997 0.997 21.20

3 18 0.0123 0.0285 0.0284 7.0485e-13 0.997 0.997 23.19

Table 5.4 provides the experimental results of applying MFM to facial image data set. Re-

sults are presented in terms of performance measures, e.g., sample average of dimensionality

reduction, R̂dim., and clustering, R̂clus., risks, SER in dB, sample average of classification

risk and probabilities of correct classification based on data samples xn, R̂
x
clas. and P̂ x

cc, or

based on estimated low-dimensional features ŷn, R̂
y

clas. and P̂
y
cc.

63



Table 5.5: Performance measures of the PPCA (L = 1) and MPPCA (L > 1) methods for

different choices of d and L - facial image data set.

L d R̂dim. R̂clus. SER

1 6 0.0020 0 17.36

2 6 0.0214 5.5298e-04 18.28

3 6 0.0131 1.6792e-04 18.97

1 12 0.0027 0 18.95

2 12 0.0140 3.1350e-05 20.03

3 12 0.0124 5.6196e-09 20.84

1 18 0.0035 0 19.99

2 18 0.0169 1.7853e-04 21.28

3 18 0.0118 2.9108e-49 22.69

Table 5.5 provides the dimensionality reduction and clustering risks, reconstruction signal

to noise ratio for PPCA and MPPCA algorithms on facial data set. For this experiment

we can make mostly the same conclusions as in SAS data set. For instance, although both

MFM and MPPCA employ soft clustering mechanism, due to small clustering risk they

behave like a hard clustering method. However, one major observation in this experiment is

that classification using estimated latent variables leads to smaller risk. The reason is that

the optimality of classification based on data samples holds just for the training data. But the

result shows that classification based on low-dimensional features has a better generalization

property (compare R̂x
clas. with R̂

y
clas.).

In order to evaluate the reconstruction performance visually, we chose a fixed selection

of images from both individuals and mapped them to d-dimensional latent space and then

reconstructed them. Then, we studied the effects of d and model complexity L on the
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reconstruction SER. For L = 1 case, there were no tangible difference between MFM and

PPCA hence just MFM results are presented by Figures 5.22-5.24 (for d = 6, 12, 18). Figures

5.25-5.28 show the reconstructed facial images using both MFM and MPPCA methods for

d = 6 and L = 2, 3.

Figure 5.21: An specific selection of individ-

ual 1 and 2 facial images.

Figure 5.22: Reconstructed facial images us-

ing FM method with L = 1 and d = 6.

Figure 5.23: Reconstructed facial images us-

ing FM method with L = 1 and d = 12.

Figure 5.24: Reconstructed facial images us-

ing FM method with L = 1 and d = 18.
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Figure 5.25: Reconstructed facial images us-

ing MFM method with L = 2 and d = 6.

Figure 5.26: Reconstructed facial images us-

ing MFM method with L = 3 and d = 6.

Figure 5.27: Reconstructed facial images us-

ing MPPCA method with L = 2 and d = 6.

Figure 5.28: Reconstructed facial images us-

ing MPPCA method with L = 3 and d = 6.

Similar to the results in SAS dataset, the obvious conclusion from these experiments is

that increasing the dimension of latent variables, d, leads to a better reconstruction quality

in terms of SER (compare cases where d×L are equal in Tables 5.5 as well as 5.4). However,

this quality is not visually tangible since facial features were completely blurred. Although

increasing the number of linear models helps to achieve a better reconstruction too, increasing

d seems to be more effective. Generally, MPPCA leads to a better reconstructed images
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with higher reconstructed SER. The main counter example was d = 18 and L = 3 case

where MFM lead to a much better SER than MPPCA since the parameters were initialized

5 different times (in parameters estimation) and we selected the one corresponds to the

maximum likelihood of all. However, in both cases they have poor quality due to lack of

enough training data since the inherent degrees of freedom in this data set is large (3 for

face locations and 2 for head angle and etc.).

As mentioned before, the main distinction between MFM and MPPCA is the assump-

tion of latent variable distribution for different classes with premise of getting generative-

discriminative features. It is worthy to compare the distribution of estimated latent variables

of MFM with PPCA/MPPCA for this experiment. Figures 5.29-5.34 provide estimated

low dimensional features using both MPPCA/PPCA and MFM methods, for d = 3 and

L = 1, 2, 3, respectively.
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-10
-5

0

y
2

5
10-5

0

y
1

5

-8

-6

-4

-2

0

2

4

10

y 3

Individual #1
Individual #2

Figure 5.30: Distribution of estimated latent

variables for facial data set, FM method with

L = 1 and d = 3.

67



-10

0

y
2

10-15
-10

y
1

-5
0

5
10
-6

-4

0

6

4

2

-2

y 3

Individual #1
Individual #2

Figure 5.31: Distribution of estimated latent

variables for facial data set, MPPCA method

with L = 2 and d = 3.
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Figure 5.32: Distribution of estimated latent

variables for facial data set, MFM method

with L = 2 and d = 3.
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Figure 5.33: Distribution of estimated latent

variables for facial data set, MPPCA method

with L = 3 and d = 3.
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Figure 5.34: Distribution of estimated latent

variables for facial data set, MFM method

with L = 3 and d = 3.

In all the cases, the low-dimensional features of MFM method are linearly disjoint and thus

suitable for classification whereas there is no such property for those of MPPCA. Moreover,

classification risk is a more conservative measure than probability of correct classification as

it yields to worse results (if we interpret it as probability of mis-classification). Since we had

finite number of test samples, sample average of expected risk of classification (which is about
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0.03) is a better measure to quantify classification performance than empirical probability

of correct classification, which is 99%. However, SVM with linear kernel achieved slightly a

better probability of correct classification of 100% due to its optimality in finding maximum

margin discriminant hyperplane.

According to asymptotic behavior discussed before, we expect to be able to perform classi-

fication based on estimated latent variables (or low-dimensional features) since the expected

clustering risk is negligible. It is fruitful to investigate this property by showing the lin-

ear discriminant function in y domain as well as estimated features. Figures 5.35 and 5.36

show the distribution of estimated latent variables for facial data set and associated linear

discriminant function using MFM method with d = 3 and L = 2, 3.
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The figures illustrates an important property of resultant features of MFM. Not only the

relative spatial coordinates of these features are useful for data visualization but also by

comparing them with discriminant function we can classify them as well. Moreover, we are

able to achieve the same empirical probability of correct classification, 99%, from both data

samples and estimated latent variables.

69



5.5 Conclusion

In this chapter, we applied the proposed MFM method to two datasets, namely SAS and

facial image data sets, to assess and compare its performance in clustering, dimensionality

reduction, reconstruction and classification against PPCA/MPPCA and SVM with linear

kernel, respectively.

Classification performance gives a promising results especially when the data is linearly

separable. SVM with linear kernel is the optimal linear classifier as it provides the maximum

margin hyperplane to classify the labeled data. Both of the dataset were linearly separable

since we achieved perfect, 100%, probability of correct classification with SVM. However,

MFM provides competitive results as well. One of the advantage of MFM over SVM is that

it provides a classification risk which is a measure of classification confidence.

PPCA and MPPCA ultimate goals were data modeling and reconstruction. Comparing

MFM dimensionality reduction and reconstruction with PPCA/MPPCA shows interesting

resemblance. Occasionally MFM outperformed both of PPCA and MPPCA methods. For

L = 1 case, the reason could be the inherent linear separability of the data which didn’t

affect reconstruction performance of MFM. For L > 1 case, the reason might be due to

local optimality of both approaches which might prevent them to hit the best achievable

parameters.

For both MFM and MPPCA methods, increasing dimension of feature space and model

complexity, d or L, leads to a better generative features as they give better reconstructed

images. Meanwhile, increasing model complexity didn’t have detrimental effects on classifi-

cation. But, in order to offer generalization ability, it needs more data samples to train on

while avoid overfitting problem.
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CHAPTER 6

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

6.1 Conclusions

In general, dimensionality reduction can bring an improved understanding of the data

whenever the intrinsic dimensionality of a data set is smaller than the actual one. Dimension-

ality reduction can also be seen as a feature extraction or mapping for representing the data

in a different coordinate system. The fundamental assumption that justifies dimensionality

reduction is that the data actually lies, at least approximately, on a low dimensional mani-

fold of dimension d ≪ D that needs to be discovered. The goal of dimensionality reduction

is to find a representation of that manifold which will allow us to obtain a low-dimensional,

compact representation of the data. Considering joint classification and dimensionality re-

duction problem, one might be interested in extracting low-dimensional features that are

truly representative of the properties of the original high-dimensional data and also deter-

mine its label at the same time. Finding a solution to relate dimensionality reduction with

classification, motivated the present work to develop a supervised probabilistic approach for

analyzing labeled high dimensional data with complex structures by exploiting a set of low

dimensional latent variables.

The popular nonlinear dimensionality reduction and manifold learning methods, such as

Isometric Feature Mapping (ISOMAP) [11], Maximum Variance Unfolding (MVU) or semi-

definite embedding [12], Locally Linear Embedding (LLE) [13], and Laplacian Eigenmaps

[14], suffer from some serious drawbacks that are:

1. The low-dimensional subspace provides either a generative representation of the origi-

nal data, but not both discriminative and generative.

2. There usually is no explicit mapping for out-of-sample data.
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Comparing our method to the probabilistic methods, such as Probabilistic PCA [2], Mix-

ture of Probabilistic PCA [1] and Generative Topographic Mapping [17]. the same drawback

in item 1 above holds for these systems.

Chapter 2 reviewed latent variable models where both the latent and the observed variables

are continuous, going further than the famous linear model of factor analysis [24] [16]. We

began with the most common example of a latent variable model, i.e. the statistical Factor

Analysis. Different shortcomings of this method, such as having multiple local likelihood

maxima and lack of additivity property were discussed. With a simple change in Factor

Analysis model, PPCA was then derived from the perspective of density estimation. The

association of a probability model with PCA offers the tempting prospects. First, being able

to compare with other density estimation techniques and facilitate statistical testing through

the resultant likelihood. Second, Bayesian inference methods could be applied by combining

the likelihood with a prior. Third, the value of the probability density function could be used

as a measure of the ”degree of novelty” of a new data point. And finally, being able to model

complex data structures with a combination of local PCA models through the mechanism

of a mixture of probabilistic principal component analyzers. The probabilistic model for

PCA was exploited to combine local PCA models within the framework of a probabilistic

mixture in which all the parameters are determined from ML using an EM algorithm [1].

A possible disadvantage of the probabilistic approach to combining local PCA models is

that, by optimizing a likelihood function, the MPPCA does not directly minimize squared

reconstruction error. For applications where this is the key requirement, algorithms which

explicitly minimize reconstruction error should be expected to perform better.

In Chapter 3, we discussed the general framework of the proposed model which provides a

supervised probabilistic approach for analyzing labeled high dimensional data by exploiting

a set of low dimensional latent variables. Mixture of factor models relate latent variable to

observable variable, i.e. mixture of linear models is defined to map latent variable to ambient
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data space. A linear classifier is then built in the latent domain to perform two-class decision-

making. The pdf of the low dimensional latent variable associated with each class was

shown to be a squashed multivariate normal leading to linear separability of the estimated

low-dimensional latent variables (features). Using the transformation from latent space to

data space leads to data synthesis or reconstruction whereas estimating the latent variable

amounts to dimensionality reduction and data clustering. It was shown that resultant low

dimensional feature is a collaborative estimates of each linear model weighted by likelihood

of the model. In the special case of small clustering risk or when L = 1, a simplified least

squares (LS) version of reconstruction is provided to reconstruct data samples. Finally, we

develop a Bayesian classification algorithm, based on data samples as well as estimated low

dimensional features. Same as dimensionality reduction, the estimated class label based on

data sample is also a collaborative estimates of each linear model weighted by likelihood

of the model. Due to its optimality, which leads to the minimum classification risk, it is

preferable to estimate class labels based on data samples. However, for small clustering or

small dimensionality reduction risk, one can classify data samples based on their estimated

latent variables as well.

Chapter 4 presented a mixture of EM and steepest descent algorithms to derive the ML

estimates of the unknown parameters of the model. It was shown that parameters associated

with dimensionality reduction can be estimated using the EM algorithm whereas those of

the classifier can be estimated using a steepest descent algorithm. Squashed multivariate

normal distribution and its moments, using linear boundary, helped us finding analytical

solutions in the E-Step of EM algorithm for the dimensionality reduction parameters. It

encompasses general cases of multivariate truncated normal and skew-normal distributions.

Classification parameters appeared nonlinearly in the formulation and thus we were unable

to estimate them using EM. Therefore, steepest descent algorithm was adopted to estimate

these parameters.
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In Chapter 5, we applied the developed Mixture of Factor Models (MFM) to two datasets,

synthetic aperture sonar (SAS) images and facial images. The first data set consists of 181

SAS images of model-generated underwater objects. The second data set consists of 186 facial

images of different individuals. Classification performance is compared to that of SVM with

linear kernel whereas the dimensionality reduction and signal reconstruction are compared to

those of PPCA/MPPCA. Classification performance gives promising results especially when

the data is linearly separable. SVM with linear kernel is the best linear classifier as it provides

the maximum margin hyperplane to classify data. The probability of correct classification

for SVM and our proposed MFM methods was found to be 100% on both datasets. Sample

classification risk, which can be interpreted as mis-classification probability, is a more con-

servative measure provided by MFM. PPCA and MPPCA ultimate goal were data modeling

and reconstruction. Comparing MFM dimensionality reduction and reconstruction perfor-

mance with those of PPCA/MPPCA shows interesting resemblance. Occasionally MFM

outperformed both of PPCA and MPPCA methods (in SER sense). For L = 1 case, the

reason could be the inherent linear separability of the data which didn’t affect reconstruc-

tion performance of MFM. For L > 1 case, the reason might be due to local optimality of

both approaches which might prevent them to hit the best achievable parameters (compare

resultant SER for d = 18 and L = 3 case from applying MFM on facial dataset with that of

MPPCA). For both MFM and MPPCA methods, increasing model complexity, d or L, led to

a better generative features as they gave better reconstructed images. It seemed that inher-

ent dimensionality of SAS images were small (d = 3) due to good quality of reconstruction

visual appearance whereas for the facial images this is not true as the facial features were

completely lost in the reconstruction. The low dimensional features extracted by MFM have

discriminatory property which can not be shared by PPCA/MPPCA. Meanwhile, increasing

model complexity didn’t have detrimental effects on the classification performance. But,

in order to have good generalization, it needs more data samples to train while avoiding

overfitting problem.
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6.2 Future Work

Although the proposed probabilistic method based on mixture of factor models offers

a promising solution to classification and dimensionality reduction problems, there is still

room for improvements in many different aspects which can be pursued in the future. These

include but are not limited to:

• MFM method assumes a linear discriminant function which may affect the quality of

classification if data in the feature space is not linearly separable. Generalizing it to a

nonlinear function in the latent space can offer more promising results.

• Both EM and steepest descent algorithms are batch and iterative in nature. Another

item for future research is to develop online optimization method for streaming data.

• Assuming priors for the parameters and employing Bayesian inference can be helpful

to avoid overfitting problem, since Bayesian inference takes average of the objective

function (for instance likelihood function) w.r.t the posterior distribution of the pa-

rameters. This approach can be an answer to the situations where training and testing

data come from different mediums, e.g., training on model-generated SAS images and

testing on the real SAS data.

• For L > 1 models, estimated parameters are different in each experiment due to ex-

istence of multiple local maxima in the likelihood function. Develop a method for

merging these estimated parameters so that the new set of parameters yield a better

likelihood.

• Introduce a control parameter to stress either ”generative” or ”discriminative” prop-

erties of the low dimensional features. For instance in the L = 1 case, we showed

that the likelihood function can be written as the product of two terms LG and LD.

By elaborating the significance of these components this goal can be achieved, i.e.

Likelihood ∝ (LD)
α × LG.
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• The proposed method can be generalized to suit multi-class problems, while using a

linear discriminant function in latent space.

• We can employ different methods, such as [39] and [40], to improve the probability of

hitting the global maximum of the likelihood function.

76



REFERENCES

[1] M. E. Tipping and C. M. Bishop, “Mixtures of probabilistic principal component ana-

lyzers,” Neural computation, vol. 11, no. 2, pp. 443–482, 1999.

[2] ——, “Probabilistic principal component analysis,” Journal of the Royal Statistical So-

ciety: Series B (Statistical Methodology), vol. 61, no. 3, pp. 611–622, 1999.

[3] R. E. Bellman, “Adaptive control processes,” Princeton, NJ, 1961.

[4] P. Domingos, “A few useful things to know about machine learning,” Communications

of the ACM, vol. 55, no. 10, pp. 78–87, 2012.

[5] C. C. Aggarwal and C. Zhai, “A survey of text classification algorithms,” pp. 163–222,

2012.

[6] H. Hotelling, “Analysis of a complex of statistical variables into principal components.”

Journal of educational psychology, vol. 24, no. 6, p. 417, 1933.

[7] I. Jolliffe, Principal component analysis. Wiley Online Library, 2002.

[8] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification. John Wiley & Sons,

2012.

[9] T. Hastie, R. Tibshirani, J. Friedman, and J. Franklin, “The elements of statistical learn-

ing: data mining, inference and prediction,” The Mathematical Intelligencer, vol. 27,

no. 2, pp. 83–85, 2005.

[10] L. K. Saul, K. Q. Weinberger, J. H. Ham, F. Sha, and D. D. Lee, “Spectral methods

for dimensionality reduction,” Semisupervised learning, pp. 293–308, 2006.

[11] J. B. Tenenbaum, V. De Silva, and J. C. Langford, “A global geometric framework for

nonlinear dimensionality reduction,” Science Journal, vol. 290, pp. 2319–2323, 2000.

77



[12] K. Q. Weinberger and L. K. Saul, “An introduction to nonlinear dimensionality reduc-

tion by maximum variance unfolding,” vol. 6, pp. 1683–1686, 2006.

[13] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by locally linear

embedding,” Science Journal, vol. 290, pp. 2323–2326, 2000.

[14] M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality reduction and data

representation,” Neural computation, vol. 15, no. 6, pp. 1373–1396, 2003.

[15] T. F. Cox and M. A. Cox, Multidimensional scaling. CRC press, 2000.

[16] D. J. Bartholomew, M. Knott, and I. Moustaki, Latent variable models and factor

analysis: A unified approach. John Wiley & Sons, 2011.

[17] C. M. Bishop, M. Svensén, and C. K. Williams, “GTM: The generative topographic

mapping,” Neural computation, vol. 10, pp. 215–234, 1998.

[18] C. M. Bishop, “Bayesian PCA,” Advances in neural information processing systems, pp.

382–388, 1999.

[19] T. Kohonen, “Self-organized formation of topologically correct feature maps,” Biological

cybernetics, vol. 43, no. 1, pp. 59–69, 1982.

[20] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning Journal, vol. 20,

no. 3, pp. 273–297, 1995.

[21] C. M. Bishop, “Latent variable models,” pp. 371–403, 1998.

[22] ——, “Pattern recognition,” Machine Learning Journal, 2006.

[23] L. R. Rabiner, “A tutorial on hidden markov models and selected applications in speech

recognition,” Proceedings of the IEEE, vol. 77, pp. 257–286, 1989.

[24] T. Hastie and W. Stuetzle, “Principal curves,” Journal of the American Statistical

Association, vol. 84, pp. 502–516, 1989.

78



[25] A. Hyvärinen, J. Karhunen, and E. Oja, Independent component analysis. John Wiley

& Sons, 2004, vol. 46.

[26] H. Attias, “Independent factor analysis,” Neural computation, vol. 11, pp. 803–851,

1999.

[27] A. T. Basilevsky, Statistical factor analysis and related methods: theory and applications.

John Wiley & Sons, 2009, vol. 418.

[28] T. W. Anderson, “Asymptotic theory for principal component analysis,” The Annals of

Mathematical Statistics, vol. 34, no. 1, pp. 122–148, 1963.

[29] L. L. Scharf and D. W. Tufts, “Rank reduction for modeling stationary signals,” Acous-

tics, Speech and Signal Processing, IEEE Transactions on, vol. 35, no. 3, pp. 350–355,

1987.

[30] G. H. Golub and C. F. Van Loan, Matrix computations. JHU Press, 2012, vol. 3.

[31] R. Tibshirani, “Principal curves revisited,” Statistics and Computing, vol. 2, pp. 183–

190, 1992.

[32] M. A. Kramer, “Nonlinear principal component analysis using autoassociative neural

networks,” American Institute of Chemical Engineers (AIChE) journal, vol. 37, pp.

233–243, 1991.

[33] Z. Ghahramani, G. E. Hinton et al., “The EM algorithm for mixtures of factor analyz-

ers,” Technical Report CRG-TR-96-1, University of Toronto, Tech. Rep., 1996.

[34] W. C. Horrace, “Some results on the multivariate truncated normal distribution,” Jour-

nal of Multivariate Analysis, vol. 94, pp. 209–221, 2005.

[35] A. Azzalini and A. Dalla Valle, “The multivariate skew-normal distribution,”

Biometrika, vol. 83, no. 4, pp. 715–726, 1996.

79



[36] S. Theodoridis and K. Koutroumbas, Pattern Recognition. Academic Press, 2003.

[37] R. M. Neal and G. E. Hinton, “A view of the em algorithm that justifies incremental,

sparse, and other variants,” pp. 355–368, 1998.

[38] N. Gourier, D. Hall, and J. L. Crowley, “Estimating face orientation from robust detec-

tion of salient facial structures,” pp. 1–9, 2004.

[39] D. Karlis and E. Xekalaki, “Choosing initial values for the em algorithm for finite

mixtures,” Computational Statistics & Data Analysis, vol. 41, no. 3, pp. 577–590, 2003.

[40] A. O. Griewank, “Generalized descent for global optimization,” Journal of optimization

theory and applications, vol. 34, pp. 11–39, 1981.

[41] G. Rodriguez-Yam, R. A. Davis, and L. L. Scharf, “Efficient gibbs sampling of trun-

cated multivariate normal with application to constrained linear regression,” Unpub-

lished manuscript, 2004.

[42] J. A. Gubner, Probability and random processes for electrical and computer engineers.

Cambridge University Press, 2006.

[43] C. K. Williams and C. E. Rasmussen, “Gaussian processes for machine learning,” the

MIT Press, vol. 2, no. 3, p. 4, 2006.

80



APPENDIX A

SQUASHED MULTIVARIATE NORMAL DISTRIBUTION

A.1 Definitions and Preliminaries

A squashed multivariate normal distribution is the probability distribution of a multivari-

ate normally distributed random vector whose probability density function is skewed by a

squashing function. After presenting the formal definition of this random variable and its

statistics in special cases, we conclude with the proof of each part.

Let y ∼ N (µ,R) and an auxiliary binary random variable z with f(z = 1|y) = ψ(g(y)),

where ψ(.) is an arbitrary squashing function and g(y) = 0 specifies squashing boundaries.

Then y conditioned on z = 1 (as well as z = 0) has a squashed multivariate normal distri-

bution of form

f(y|z = 1) =
ψ(g(y))

E[ψ(g(y))]

1√
(2π)d|R|

exp
(
− 1

2
(y − µ)TR−1(y − µ)

)

where

E[ψ(g(y))] =

∫
ψ(g(y))f(y)dy. (A-1)

First and second order moments of squashed multivariate normal are closely related to the

original multivariate normal via logE[ψ(g(y))] as follows (see Section A.2),

E[y|z = 1] = µ+ µ̃, (A-2)

E[yyT |z = 1] = R+ µµT + µ̃µT + µµ̃T + R̃ (A-3)

where µ̃ = R∇µ logE[ψ(g(y))], R̃ = 2R∇R logE[ψ(g(y))]R, and ∇µ and ∇R are gradients

w.r.t µ and R respectively. (See the proofs in Section A.2)
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Special Cases

1. Truncated Multivariate Normal: When using Heaviside squashing function,

ψ(t) = 1(0,+∞)(t), this distribution boils down to the general truncated multivariate

normal distribution, [41], and we have

E[ψ(g(y))] = E[1(0,+∞)(g(y))]

= Pr(g(y) > 0).

which is the volume under one side of the multivariate normal distribution.

2. Linearly Truncated Multivariate Normal: If we use ψ(g(y)) = 1(0,∞)(w
Ty + b),

then we have

E[ψ(g(y))] = Φ(
wTµ+ b√
wTRw

) (A-4)

where Φ(·) is the CDF of a standard normal distribution. This expression can easily

be proven by using the fact that wty+b ∼ N (wtµ+b,wtRw). First and second order

moments can then be derived by calculating the gradient of (A-4) w.r.t µ and R and

replace them in equations (A-2) and (A-3). These gradients are,

∇µ logE[ψ(g(y))] =
1

Φ( wTµ+b√
wTRw

)

φ( wTµ+b√
wTRw

)
√
wTRw

w, (A-5)

∇R logE[ψ(g(y))] = − wTµ+ b

2Φ( wTµ+b√
wTRw

)

φ( wTµ+b√
wTRw

)

(wTRw)
3
2

)wwT , (A-6)

where φ(.) is the pdf of a standard normal distribution.
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3. Linearly Φ-Squashed Multivariate Normal: In case of using ψ(t) = Φ(t) and

g(y) = wTy + b, this distribution is a special case called Linearly Φ-Squashed Multi-

variate Normal Distribution, which is closely related to skew-normal distribution [35],

and we have,

E[ψ(g(y))] = E[Φ(wTy + b)]

= Φ(
wTµ+ b√
1 +wTRw

) (A-7)

where the proof is presented in Section A.2. The main difference between linearly Φ-

squashed normal and its truncated counterpart is that it doesn’t have any singularity

problems due to the positive denominator of 1 +wTRw.

First and second order moments can be derived by calculating the gradient of equation

(A-7) w.r.t µ and R, i.e.

∇µ logE[ψ(g(y))] =
1

Φ( wTµ+b√
1+wTRw

)

φ( wTµ+b√
1+wTRw

)
√
1 +wTRw

w (A-8)

∇R logE[ψ(g(y))] = − wTµ+ b

2Φ( wTµ+b√
1+wTRw

)

φ( wTµ+b√
1+wTRw

)

(1 +wTRw)
3
2

)wwT , (A-9)

and replace them in equations (A-2) and (A-3). Similarly, first and second or-

der moments of y given z = 0 can be derived by substituting Φ( wTµ+b√
1+wTRw

) with

Φ( wTµ+b√
1+wTRw

) − 1 in the resultant expressions for those of y given z = 1 case. Com-

bining these two results yields the moments given by (3.4) and (3.5).
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A.2 Proofs of Proposition 3.1

(a) We start by using Bayes’ rule for f(y|z = 1),

f(y|z = 1) =
ψ(g(y))∫

ψ(g(y))f(y)dy
f(y)

where ψ(g(y)) = f(z = 1|y). Conditional distribution of f(y|z = 0) is also squashed

multivariate normal distribution,

f(y|z = 0) =
1− ψ(g(y))

1− E[ψ(g(y))]
f(y).

Combining these two pdfs yields the conditional distribution of f(y|z) in (3.3).

(b) To find a closed form expression for the conditional mean of y given z = 1,

E[y|z = 1] =
1

E[ψ(g(y))]

∫
yψ(g(y))f(y)dy (A-10)

where E[ψ(g(y))] =
∫
ψ(g(y))f(y)dy. Now, consider taking the gradient of E[ψ(g(y))]

w.r.t µ. Note that ∇µf(y) = R−1(y − µ)f(y). After simplifying terms, we have

∇µE[ψ(g(y))] =

∫
R−1(y − µ)ψ(g(y))f(y)dy

= R−1

∫
yψ(g(y))f(y)dy −R−1µE[ψ(g(y))] (A-11)

Conditional mean of E[y|z = 1] in (A-10) can be found by pre-multiplying by R and

rearranging terms in (A-11).

To find a closed form expression for the conditional second order moment, E[yyt|z = 1],

we can write

E[yyT |z = 1] =
1

E[ψ(g(y))]

∫
yyTψ(g(y))f(y)dy. (A-12)

Using the same approach as in (A-11) and taking gradient of E[ψ(g(y))] w.r.t R, we

get

∇RE[ψ(g(y))] = −1

2

∫ (
R−1 −R−1(y − µ)(y − µ)TR−1

)
ψ(g(y))f(y)dy. (A-13)
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Now, after pre- and post-multiplying (A-13) by R, rearranging it and using (A-11), we

can easily find the conditional second order moment E[yyt|z = 1] as in (A-3).

Note:

For the linearly Φ-squashed normal distribution, the Law of the Unconscious Statisti-

cian (LOTUS) [42] can be used to simplify E[Φ(wTy + b)] as follows,

E[Φ(wTy + b)] =

∫
Φ(wTy + b)f(y)dy

=

∫
Φ(x)

1√
2πwTRw

exp
(
− (x−wTµ− b)2

2wTRw

)
dx.

It is fruitful to find a closed form expression for the general case of this integral, [43],

i.e. ∫
Φ(
x−m√
u2

)
1√
2πv2

exp(−(x− n)2

2v2
)dx. (A-14)

Substituting the definition of Φ(x) in the integral and simplifying terms, we have

1

2πuv

∫ +∞

−∞

∫ x

−∞
exp

(
− (y −m)2

2u2
− (x− n)2

2v2

)
dydx

With a simple variable substitution,



z

w


 =




1 −1

0 1






y

x


+



n−m

−n




it becomes the integral of a multivariate normal distribution

∫ n−m

−∞

∫ +∞

−∞
N (µz,w,Rz,w)dwdz =

∫ n−m

−∞
N (µz, Rz)dz

= Pr(Z < n−m) (A-15)

where the composite mean, µz,w, and covariance, Rz,w, are

µz,w =




0

0



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Rz,w =



v2 + u2 −v2

−v2 v2


 .

The distribution of Z is normal with mean µz = 0 and variance Rz = v2 + u2. Thus,

(A-14) could be simplified by using (A-15),

∫
Φ
(x−m√

u2

) 1√
2πv2

exp
(
− (x− n)2

2v2

)
dx = Φ

( n−m√
v2 + u2

)
.

By comparison (u = 1, n = wTy + b, m = 0 and v2 = wTRw), hence we can find a

closed form expression for E[Φ(wTy + b)] as,

E[Φ(wTy + b)] = Φ
( wTµ+ b√

1 +wTRw

)
.
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