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ABSTRACT 

 

 

RELIABLE, ENERGY-EFFICIENT, AND SECURE SILICON PHOTONIC  

NETWORK-ON-CHIP DESIGN FOR MANYCORE ARCHITECTURES 

 

 

Advances in technology scaling over the past several decades have enabled the integration 

of billions of transistors on a single die. Such a massive number of transistors has allowed multiple 

processing cores and significant memory to be integrated on a chip, to meet the rapidly growing 

performance demands of modern applications. These on-chip processing and memory components 

require an efficient mechanism to communicate with each other. Thus emerging manycore 

architectures with high core counts have adopted scalable packet switched electrical network-on-

chip (ENoC) fabrics to support on-chip transfers. But with several hundreds to thousands of on-

chip cores expected to become a reality in the near future, ENoCs are projected to suffer from 

cripplingly high power dissipation and limited performance. Recent developments in the area of 

silicon photonics have enabled the integration of on-chip photonic interconnects with CMOS 

circuits, enabling photonic networks-on-chip (PNoCs) that can offer ultra-high bandwidth, reduced 

power dissipation, and lower latency than ENoCs.  

There are several challenges that hinder the commercial adoption of these PNoC 

architectures. Especially, the operation of silicon photonic components is very sensitive to thermal 

variations (TV) and process variations (PV) that frequently occur on a chip. These variations and 

their mitigation techniques create significant reliability issues and increase energy costs in PNoCs. 

Furthermore, photonic components are susceptible to intrinsic crosstalk noise and aging, which 

demands higher energy for reliable communication. Moreover, contention in photonic waveguides 
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as well as laser power distribution overheads also reduce performance and energy-efficiency. In 

addition, hardware trojans (HTs) in the electrical circuitry of photonic components lead to covert 

data snooping from shared photonic waveguides and introduces serious hardware security threats.   

To address these challenges, in this dissertation we propose a cross-layer framework towards 

the design of reliable, secure, and energy-efficient PNoC architectures. We devise layer-specific 

solutions for PNoC design as part of our framework: (i) we propose device-level enhancements to 

adapt to TV, and to mitigate heterodyne crosstalk and intermodulation effect induced heterodyne 

crosstalk; we also analyze aging in photonic components and explore its impact on PNoCs; (ii) at 

the circuit-level we propose PV-aware homodyne and heterodyne crosstalk mitigation 

mechanisms, a PV-aware security enhancement mechanism, and TV- and PV-aware photonic 

component assignment mechanisms; (iii) at the architecture-level we propose new application 

specific and reconfigurable PNoC architectures to improve photonic channel utilization, a laser 

power management scheme across components of PNoC architectures, and a reservation-assisted 

security enhancement scheme to improve security in PNoC architectures; and (iv) at the system-

level we propose TV and PV aware thread migration schemes and application scheduling schemes 

that exploit adaptive application degree of parallelism (DoP).  

In addition to layer-specific enhancements, we also combine techniques across layers to 

create cross-layer optimization strategies to aggressively improve reliability and energy-efficiency 

in PNoC architectures. In our SPECTRA and LIBRA frameworks we combine system-level and 

circuit-level enhancements for TV management in PNoCs. In our ‘Island of Heater’ framework 

we combine system-level and device-level enhancements for TV management in PNoCs. We 

combine device-level and circuit-level enhancements for heterodyne crosstalk mitigation in our 

PICO and HYDRA frameworks. Our proposed BiGNoC architecture uses architectural-level 
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enhancements and system-level application scheduling to improve its performance and energy-

efficiency. Lastly, in our SOTERIA framework we combine circuit-level and architecture-level 

enhancements to enable secure communication in DWDM-based PNoC architectures. 

  



v 

ACKNOWLEDGEMENTS 

 

 

I would like to thank all the individuals whose encouragement and support have made the 

completion of this dissertation possible.  

First and foremost, I would like to express my sincere gratitude to my advisor, Dr. Sudeep 

Pasricha, who has patiently guided me through the entire process of graduate study step by step. It 

is only with his encouragement and patience that I was able to survive the trial of graduate school 

while working on the new and exciting area of silicon photonic Network-on-Chip design for 

manycore architectures. In the last year of my bachelors program in Electrical Engineering, I made 

up my mind to seek an overseas study opportunity in another area to feed my curiosity about the 

interaction between computer hardware and software. Although the picture of snowcapped 

mountains on the Colorado State University ECE department website was impressive, it was Dr. 

Pasricha’s description of research on multicore embedded systems that immediately caught my 

eye and enlightened me to the field I like. Since then I have never looked back as I was fortunate 

enough to join his research group and to receive his help that changed my life. In the first year, the 

coursework and research work suggested by Dr. Pasricha helped me prepare for the basic skills 

needed for research and reassured me that I had found my area of interest. After that, it was his 

vision and wisdom that stimulated me to look at research problems with more critical and creative 

thinking, which led to several publications in well-known conferences and journals. Over countless 

times, I was impressed by his thoroughness and attention to detail despite his tight schedule, from 

which I got to know his passion and enthusiasm for research. On the other hand, he is the type of 

advisor that is caring enough to suggest his graduate students to slow down, get some rest, and 

recharge whenever he senses high pressure on them. Dr. Pasricha can also give good life advice 



vi 

when inquired, which helped me to overcome various difficulties and confusions in life and study 

during my graduate school years. I really appreciate all the help, guidance, and inspiration I 

received from Dr. Pasricha, who made it possible for me to survive the trial of graduate school 

with unforgettable memories and broadened horizons.  

I would like to take this opportunity to thank the respected members of my PhD committee,  

Dr. Anura Jayasumana, Dr. Sourajeet Roy, and Dr. Yashwant K. Malaiya. Their feedback helped 

me to rediscover my research and refine my work from different perspectives. Furthermore, my 

special thanks to my research partner and dear friend Ishan Thakkar, whose collaboration helped 

me to broaden my research area by gaining valuable insights on nanophotonic devices. In addition, 

I would like to appreciate the research contributions of Dharanidhar Dang and his advisor Prof. 

Rabi Mahapatra of Texas A&M University.  I am also thankful to my mates in Dr. Pasricha’s EPIC 

lab for their collaboration during my Ph.D. study: Srinivas Desai, Daniel Dauwe, Yaswanth 

Raparti, Yi Xiang, Yong Zou, Nishit Kapadia, and Shirish Bahirat. Also this list cannot be 

complete without mentioning company and help from Vipin Kumar Kukkala, Varun Bhatt, Sai 

Kiran Koppu, Saideep Tiku, Vinay Ugave, Tejasi Pimpalkhute, Pramit Rajkrishna, and Shoumik 

Maiti.  

Last but not least, I would like to thank my family, especially my father Sridhar Reddy 

Chittamuru, my mother Madhavi Chittamuru, and my wife Suveka Siddavarapu, for their support 

to pursue my Ph.D. I cannot wait to share more good news with them in the future as I continue 

with my work and study. Their kindness shaped my view of this world and made me the person I 

am. 

  



vii 

TABLE OF CONTENTS 

 

 

ABSTRACT .................................................................................................................................... ii 

ACKNOWLEDGEMENTS ............................................................................................................ v 

TABLE OF CONTENTS .............................................................................................................. vii 

LIST OF TABLES ....................................................................................................................... xvi 

LIST OF FIGURES ................................................................................................................... xviii 

LIST OF ALGORITHMS ........................................................................................................... xxx 

LIST OF RESEARCH PUBLICATIONS ................................................................................. xxxi 

1. INTRODUCTION ................................................................................................................... 1 

1.1. MOTIVATION FOR CMP DESIGN ............................................................................... 1 

1.2. PHOTONIC INTERCONNECTS ..................................................................................... 3 

1.2.1. PHOTONIC WAVEGUIDES ....................................................................................... 4 

1.2.2. MICRORING RESONATORS ..................................................................................... 5 

1.2.3. TRANS-IMPEDANCE AMPLIFIERS, COMBINERS, AND SPLITTERS ............... 7 

1.3. DESIGN CHALLENGES IN PNOCS .............................................................................. 7 

1.3.1. PERFORMANCE CHALLENGES .............................................................................. 8 

1.3.2. RELIABILITY CHALLENGES ................................................................................... 8 

1.3.3. POWER CHALLENGES ............................................................................................ 10 

1.3.4. SECURITY CHALLENGES ...................................................................................... 11 

1.4. DISSERTATION OUTLINE .......................................................................................... 11 

2. SWIFTNOC: A RECONFIGURABLE SILICON-PHOTONIC NETWORK WITH 

MULTICAST ENABLED CHANNEL SHARING FOR MULTICORE ARCHITECTURES .. 17 

2.1. MOTIVATION AND CONTRIBUTION ....................................................................... 17 



viii 

2.2. RELATED WORK ......................................................................................................... 18 

2.3. ULTRANOC AND SWIFTNOC : PHOTONIC ARCHITECTURE OVERVIEW ....... 21 

2.3.1. ULTRANOC ARCHITECTURE AND TERMINOLOGY ........................................ 21 

2.3.2. MWMR CONCURRENT TOKEN STREAM ARBITRATION AND RECEIVER 

SELECTION IN ULTRANOC ................................................................................... 26 

2.3.3. IMPROVED MWMR CONCURRENT TOKEN STREAM ARBITRATION IN 

SWIFTNOC ................................................................................................................. 29 

2.3.4. MULTICASTING OF MESSAGES IN SWIFTNOC ................................................ 29 

2.3.5. INTER-CLUSTER BANDWIDTH EXCHANGE IN SWIFTNOC ........................... 31 

2.3.6. CLUSTER PRIORITY ADAPTATION WITH LSWC RECONFIGURATION ...... 33 

2.4. EXPERIMENTS ............................................................................................................. 35 

2.4.1. EXPERIMENTAL SETUP ......................................................................................... 35 

2.4.2. EXPERIMENTAL RESULTS .................................................................................... 40 

2.4.2.1. SENSITIVITY ANALYSIS TO DETERMINE OPTIMAL RECONFIGURATION 

WINDOW SIZE .......................................................................................................... 40 

2.4.2.2. RESULTS OF 64-CORE SYSTEM FOR SYNTHETIC TRAFFIC ....................... 41 

2.4.2.3. EXPERIMENTAL ANALYSIS WITH 64-CORE CMP ........................................ 48 

2.4.2.4. SCALABILITY ANALYSIS WITH 256-CORE CMP ........................................... 52 

2.4.2.5. SUMMARY OF RESULTS AND OBSERVATIONS ........................................... 54 

2.5. CONCLUSIONS ............................................................................................................. 55 

3. BIGNOC: ACCELERATING BIG DATA COMPUTING WITH APPLICATION-

SPECIFIC PHOTONIC NETWORK-ON-CHIP ARCHITECTURES ........................................ 56 

3.1. BACKGROUND, MOTIVATION, AND CONTRIBUTION ....................................... 56 

3.2. RELATED WORK ......................................................................................................... 59 

3.3. MASTER-SERVANT CLUSTER ARCHITECTURE ................................................... 61 



ix 

3.3.1. MN-TO-SN COMMUNICATION IN MSNOC CLUSTER ...................................... 64 

3.3.2. SN-TO-MN COMMUNICATION IN MSNOC CLUSTER ...................................... 69 

3.3.3. SN-TO-SN COMMUNICATION IN MSNOC CLUSTER ........................................ 71 

3.4. MSNOC: SENSITIVITY ANALYSIS ........................................................................... 71 

3.5. BIGNOC ARCHITECTURE .......................................................................................... 73 

3.5.1. HOMOGENEOUS BIGNOC ARCHITECTURE ...................................................... 73 

3.5.2. HETEROGENEOUS BIGNOC ARCHITECTURE ................................................... 76 

3.5.3. APPLICATION SCHEDULING IN BIGNOC ........................................................... 78 

3.6. EXPERIMENTS ............................................................................................................. 79 

3.6.1. EXPERIMENTAL SETUP ......................................................................................... 79 

3.6.2. BIGNOC: SENSITIVITY ANALYSIS ...................................................................... 82 

3.6.3. EXPERIMENTAL RESULTS .................................................................................... 84 

3.7. CONCLUSIONS ............................................................................................................. 89 

4. CROSSTALK MITIGATION FOR HIGH-RADIX AND LOW-DIAMETER  PHOTONIC 

NOC ARCHITECTURES ............................................................................................................ 91 

4.1. MOTIVATION AND CONTRIBUTION ....................................................................... 91 

4.2. RELATED WORK ......................................................................................................... 92 

4.3. ANALYTICAL MODELS FOR CROSSTALK ANALYSIS IN DWDM-BASED 

PNOC ARCHITECTURES ............................................................................................ 94 

4.3.1. OVERVIEW OF MR OPERATION IN DWDM-BASED PNOCS ........................... 94 

4.3.2. ANALYTICAL MODELS FOR CROSSTALK-NOISE AND SIGNAL-POWER ... 95 

4.4. TECHNIQUES TO MITIGATE CROSSTALK NOISE ................................................ 98 

4.4.1. PCTM5B ENCODING TECHNIQUE ........................................................................ 99 

4.4.2. PCTM6B ENCODING TECHNIQUE ...................................................................... 100 

4.5. EVALUATION STUDIES ........................................................................................... 101 



x 

4.5.1. EVALUATION METHODOLOGY ......................................................................... 101 

4.5.2. EVALUATION RESULTS WITH CORONA ARCHITECTURE .......................... 104 

4.5.3. EVALUATION RESULTS WITH FIREFLY ARCHITECTURE ........................... 105 

4.5.4. SUMMARY OF RESULTS AND OBSERVATIONS ............................................. 108 

4.6. CONCLUSIONS ........................................................................................................... 109 

5. IMPROVING CROSSTALK RESILIENCE WITH WAVELENGTH SPACING IN 

PHOTONIC CROSSBAR-BASED NETWORK-ON-CHIP ARCHITECTURES .................... 110 

5.1. MOTIVATION AND CONTRIBUTION ..................................................................... 110 

5.2. RELATED WORK ....................................................................................................... 111 

5.3. WAVELENGTH SPACING (WSP) TECHNIQUE ..................................................... 112 

5.3.1. ANALYTICAL MODEL FOR OSNR IN CORONA CROSSBAR-BASED  

PNOC ........................................................................................................................ 113 

5.3.2. WAVELENGTH SPACING (WSP) TECHNIQUE ................................................. 114 

5.4. EXPERIMENTS ........................................................................................................... 115 

5.4.1. EXPERIMENTAL SETUP ....................................................................................... 115 

5.4.2. EXPERIMENTAL RESULTS WITH CORONA AND FIREFLY PNOCS ............ 117 

5.4.3. SUMMARY OF RESULTS AND OBSERVATIONS ............................................. 121 

5.5. CONCLUSIONS ........................................................................................................... 122 

6. PICO: MITIGATING HETERODYNE CROSSTALK DUE TO PROCESS  VARIATIONS 

AND INTERMODULATION EFFECTS IN PHOTONIC NOCS ............................................ 123 

6.1. MOTIVATION AND CONTRIBUTION ..................................................................... 123 

6.2. RELATED WORK ....................................................................................................... 125 

6.3. PV-AWARE CROSSTALK ANALYSIS ..................................................................... 127 

6.3.1. IMPACT OF LOCALIZED TRIMMING ON CROSSTALK .................................. 127 

6.3.2. PV-AWARE CROSSTALK MODELS FOR CORONA PNOC .............................. 130 



xi 

6.3.3. MODELING PV OF MR DEVICES IN CORONA PNOC...................................... 133 

6.4. IM CROSSTALK ANALYSIS ..................................................................................... 133 

6.5. IM-AWARE CROSSTALK MITIGATION ................................................................. 135 

6.6. PV-AWARE CROSSTALK MITIGATION ................................................................ 136 

6.7. PICO FRAMEWORK: SENSITIVITY ANALYSIS ................................................... 137 

6.8. EXPERIMENTS ........................................................................................................... 139 

6.8.1. EXPERIMENTAL SETUP ....................................................................................... 139 

6.8.2. EXPERIMENTAL RESULTS WITH CORONA PNOC ......................................... 140 

6.9. CONCLUSIONS ........................................................................................................... 144 

7. HYDRA: HETERODYNE CROSSTALK MITIGATION WITH DOUBLE  MICRORING 

RESONATORS AND DATA ENCODING FOR PHOTONIC NOCS ..................................... 145 

7.1. MOTIVATION AND CONTRIBUTION ..................................................................... 145 

7.2. RELATED WORK ....................................................................................................... 149 

7.3. PV-AWARE CROSSTALK ANALYSIS ..................................................................... 151 

7.3.1. IMPACT OF LOCALIZED TRIMMING ON CROSSTALK .................................. 152 

7.3.2. IMPACT OF THERMAL TUNING OF MR ON CROSSTALK ............................. 155 

7.3.3. PV-AWARE CROSSTALK MODELS FOR CORONA PNOC ............................... 159 

7.3.4. MODELING PV OF MR DEVICES IN CORONA PNOC ...................................... 162 

7.4. HYDRA FRAMEWORK: OVERVIEW ...................................................................... 162 

7.5. CROSSTALK MITIGATION WITH DMCM ............................................................. 164 

7.5.1. MODELING OF DMR FILTERS ............................................................................. 166 

7.5.2. OVERHEAD ANALYSIS FOR OUR DMCM SCHEME ........................................ 167 

7.6. CROSSTALK MITIGATION WITH EDCM .............................................................. 168 

7.7. HYDRA INTEGRATION WITH PNOCS .................................................................... 170 



xii 

7.8. EVALUATION ............................................................................................................. 173 

7.8.1. SIMULATION SETUP ............................................................................................. 173 

7.8.2. WORST-CASE OSNR COMPARISON FOR VARIOUS PNOCS .......................... 174 

7.8.3. OVERHEAD ANALYSIS OF HYDRA WITH VARIOUS PNOCS ........................ 176 

7.9. CONCLUSIONS ........................................................................................................... 180 

8. ISLANDS OF HEATERS: A NOVEL THERMAL MANAGEMENT FRAMEWORK FOR 

PHOTONIC NOCS ..................................................................................................................... 181 

8.1. MOTIVATION AND CONTRIBUTION ..................................................................... 181 

8.2. ISLANDS OF HEATERS BASED DYNAMIC THERMAL MANAGEMENT 

(IHDTM) ....................................................................................................................... 184 

8.2.1. THERMAL ISLANDS .............................................................................................. 185 

κ.2.2. TEMPERATURE-AWARE THREAD MIGRATION SCHEME (TATM) ............... 188 

8.2.2.1. OBJECTIVE .......................................................................................................... 188 

κ.2.2.2. TEMPERATURE PREDICTION MODEL ........................................................... 190 

8.2.2.3. THERMAL MANAGEMENT ALGORITHM ...................................................... 193 

8.3. EXPERIMENTS, RESULTS, AND ANALYSIS ........................................................ 195 

8.3.1. EXPERIMENT SETUP ............................................................................................ 195 

8.3.2. EXPERIMENTAL RESULTS ................................................................................... 198 

8.4. CONCLUSIONS ........................................................................................................... 203 

9. LIBRA: THERMAL AND PROCESS VARIATION AWARE RELIABILITY 

MANAGEMENT IN PHOTONIC NETWORKS-ON-CHIP .................................................... 204 

9.1. INTRODUCTION ......................................................................................................... 204 

9.2. RELATED WORK ....................................................................................................... 206 

λ.3. IMPACT OF TV AND PV ON DWDM BASED PNOCS ........................................... 209 

9.3.1. IMPACT OF TV ON DWDM BASED PNOCS ....................................................... 210 



xiii 

λ.3.2. IMPACT OF PV ON DWDM BASED PNOCS ....................................................... 212 

9.3.3. MODELING TV AND PV IN PNOC ARCHITECTURES ...................................... 213 

9.4. OVERCOMING PV/TV INDUCED RESONANCE WAVELENGTH SHIFTS ........ 217 

9.5. LIBRA FRAMEWORK: OVERVIEW ........................................................................ 220 

9.6. TV AND PV VARIATION AWARE MICRORING ASSIGNMENT (TPMA) ............ 221 

9.6.1. THERMAL VARIATION AWARE MR ASSIGNMENT (TMA) ............................. 221 

9.6.2. READAPTING TMA FOR PROCESS VARIATIONS (PMA) ................................ 225 

9.7. VARIATION AWARE ANTI WAVELENGTH-SHIFT DYNAMIC THERMAL 

MANAGEMENT (VADTM) ........................................................................................ 228 

9.7.1. OBJECTIVE .............................................................................................................. 228 

λ.7.2. THERMAL MANAGEMENT FRAMEWORK ....................................................... 230 

9.8. EXPERIMENTAL RESULTS ...................................................................................... 231 

9.8.1. EXPERIMENT SETUP ............................................................................................ 231 

9.8.2. SENSITIVITY ANALYSIS ....................................................................................... 233 

9.8.3. COMPARISON RESULTS ....................................................................................... 235 

9.9. CONCLUSIONS ........................................................................................................... 242 

10. ANALYZING VOLTAGE BIAS AND TEMPERATURE INDUCED AGING EFFECTS 

IN PHOTONIC INTERCONNECTS FOR MANYCORE COMPUTING ................................ 243 

10.1. INTRODUCTION ......................................................................................................... 243 

10.2. RELATED WORK ....................................................................................................... 245 

10.3. TRIMMING (VOLTAGE BIAS) INDUCED MR AGING ......................................... 246 

10.3.1. OVERVIEW OF VOLTAGE BIAS INDUCED TRAP GENERATION IN  

MRS ........................................................................................................................... 246 

10.3.2. TRAP GENERATION ANALYTICAL MODEL FOR MRS ............................. 248 

10.3.3. AGING IMPACT ON MR RESONANCE WAVELENGTH AND Q-FACTOR 251 



xiv 

10.4. TEMPERATURE INDUCED MR AGING .................................................................. 254 

10.5. IMPACT OF PROCESS VARIATIONS ON MR AGING .......................................... 255 

10.6. IMPACT OF MR VBTI AGING ON PNOCS .............................................................. 257 

10.6.1. MR AGING ANALYSIS FOR CORONA AND CLOS PNOCS ....................... 257 

10.6.2. MODELING PV OF MR DEVICES IN CORONA AND CLOS PNOCS ........ 260 

10.7. EXPERIMENTS ........................................................................................................... 261 

10.7.1. EXPERIMENT SETUP ...................................................................................... 261 

10.7.2. EXPERIMENT RESULTS ................................................................................. 262 

10.8. CONCLUSIONS ........................................................................................................... 265 

11. SOTERIA: EXPLOITING PROCESS VARIATIONS TO ENHANCE HARDWARE 

SECURITY WITH PHOTONIC NOC ARCHITECTURES ..................................................... 266 

11.1. INTRODUCTION ......................................................................................................... 266 

11.2. RELATED WORK ....................................................................................................... 269 

11.3. HARDWARE SECURITY CONCERNS IN PNOCS .................................................. 270 

11.3.1. DEVICE-LEVEL SECURITY CONCERNS ..................................................... 270 

11.3.2. LINK-LEVEL SECURITY CONCERNS .......................................................... 271 

11.4. SOTERIA FRAMEWORK: OVERVIEW.................................................................... 274 

11.5. PV-BASED SECURITY ENHANCEMENT ............................................................... 274 

11.6. RESERVATION-ASSISTED SECURITY ENHANCEMENT..................................... 278 

11.7. IMPLEMENTING SOTERIA FRAMEWORK ON PNOCS ....................................... 281 

11.8. EXPERIMENTS ........................................................................................................... 283 

11.8.1. EXPERIMENT SETUP ...................................................................................... 283 

11.8.2. OVERHEAD ANALYSIS OF SOTERIA ON PNOCS ..................................... 284 

11.8.3. ANALYSIS OF OVERHEAD SENSITIVITY .................................................. 287 



xv 

11.8.4. SUMMARY OF RESULTS AND OBSERVATIONS ...................................... 288 

11.9. CONCLUSIONS ........................................................................................................... 289 

12. CONCLUSION AND FUTURE WORK SUGGESTIONS ................................................ 290 

12.1. RESEARCH CONCLUSION ....................................................................................... 290 

12.2. SUGGESTION FOR FUTURE WORKS ..................................................................... 293 

BIBLIOGRAPHY ....................................................................................................................... 294 

 

  



xvi 

LIST OF TABLES 

 

 

Table 1 CMP micro-architecture configuration ............................................................................ 23 

Table 2 Memory intensity classification of PARSEC benchmarks .............................................. 36 

Table 3 Energy and losses for photonic devices [73], [74]........................................................... 37 

Table 4 Photonic hardware comparison ........................................................................................ 37 

Table 5 Properties of various PNoC Architectures ....................................................................... 38 

Table 6 Micro-Architectural Parameters for MSNoC Cluster ...................................................... 64 

Table 7 Big Data application benchmarks, with three variants each, based  on their master-servant 

requirements .................................................................................................................................. 80 

Table 8 Energy and Losses for Photonic Devices  [73], [74], [100] ............................................ 81 

Table 9 Photonic Hardware Comparison ...................................................................................... 89 

Table 10 Notations for photonic power-loss, crosstalk-coefficients and model-parameters [100]

....................................................................................................................................................... 96 

Table 11 Code words for encoding techniques ........................................................................... 100 

Table 12 Photonic power loss and crosstalk coefficients [100] .................................................. 116 

Table 13 Worst-case OSNR results for Corona and Firefly architectures .................................. 116 

Table 14 Notations for photonic power loss, crosstalk coefficients [100] ................................. 131 

Table 15 Other model parameter notations ................................................................................. 131 

Table 16 Photonic power loss, crosstalk coefficients [74], [100] ............................................... 160 

Table 17 Other model parameter notations [74] ......................................................................... 160 

Table 18 Code words for EDCM technique ............................................................................... 168 

Table 19 List of TATM parameters and their definitions ............................................................ 188 



xvii 

Table 20 Properties of materials used by 3D-ICE tool [130], [143] ........................................... 196 

Table 21 Properties of materials used by 3D-ICE Tool [130], [143] .......................................... 214 

Table 22 List of VADTM parameters and their definitions ....................................................... 229 

Table 23 Notations for photonic power loss and model parameters [28] ............................... 257 

  



xviii 

LIST OF FIGURES 

 

 

Figure 1 (a) Intel Xeon Phi 72 core CMP [5] (b) Mellanox 72 core CMP [4] with electrical NoC 

for inter-core communication. ........................................................................................................ 2 

Figure 2 Overview of photonic link with wavelength division multiplexing ................................. 3 

Figure 3 (a) Longitudinal cross-section of photonic waveguides (b) microring resonator used in 

PNoC architectures. ........................................................................................................................ 4 

Figure 4 MR acting as a (a) active modulator to remove its resonance wavelength (b) detector to 

detect its resonance wavelength. ..................................................................................................... 5 

Figure 5 (a) trans impedance amplifier (TIA) (b)1×2 splitter (c) 2×1 combiner used in  PNoC 

architectures. ................................................................................................................................... 7 

Figure 6 Outline of Contributions of this dissertation .................................................................. 12 

Figure 7 Layout of MWMR crossbar used in UltraNoC and SwiftNoC along with the arrangement 

of cores and their respective gateway interfaces. .......................................................................... 21 

Figure 8 (a) Timing diagram of arbitration in UltraNoC, which shows distribution of arbitration 

(Ai), receiver prediction (Ri)and data slots (Di) across four MWMR waveguide groups (W1 – 

W4); (b) distribution of different slots within MWMR waveguide group W1 at time cycle 3. ... 25 

Figure 9 (a) Timing diagram of arbitration in SwiftNoC, which shows distribution of arbitration 

(Ai), receiver selection (Ri), and data slots (Di) across four MWMR waveguide groups (W1 – 

W4); (b) distribution of different slots within MWMR waveguide group W1 at time cycle 3. ... 27 

Figure 10 (a) Transmission of unicast data from Node N1 to Node N32 in SwiftNoC, which shows 

receiver selection wavelength 36 in receiver selection slot (R Slot) of the MWMR waveguide; (b) 

Multicast of data from Node N1 to Nodes N18, N24, N26, and N32 in SwiftNoC, which shows 



xix 

respective receiver selection wavelengths 22, 28, 30, and 36 in receiver selection slot (R Slot) of 

the MWMR waveguide. ................................................................................................................ 28 

Figure 11 Bandwidth transfer technique: a cluster can transfer its unused bandwidth to the next 

cluster by absorbing its own arbitration wavelength and releasing arbitration wavelength of next 

cluster. ........................................................................................................................................... 32 

Figure 12 Energy-delay-product (EDP) comparison for SwiftNoC-8 and SwiftNoC-16 in a 64-core 

CMP with time interval window sizes (a) 100-10000 cycles (b) 100-1000 cycles (zoomed version 

of figure 6(a)). ............................................................................................................................... 39 

Figure 13 (a) Average throughput, (b) average latency comparison of SwiftNoC-8 and SwiftNoC-

16 with UltraNoC-8, UltraNoC-16, Flexishare, Firefly, Corona, and EMesh architectures for a 64-

core CMP. Results are shown for uniform random traffic............................................................ 42 

Figure 14 Energy-delay-product (EDP) comparison of SwiftNoC-8 and SwiftNoC-16 with 

UltraNoC-8, UltraNoC-16, Flexishare, Firefly, Corona, and EMesh architectures for a 64-core 

CMP. Results are shown for uniform random traffic with packet injection rate of 0.7. ............... 45 

Figure 15 (a) Average throughput (b) average latency comparison of SwiftNoC-16 with random 

multicast traffic having 10% (SWIFTNoC-MCT-10), 20% (SWIFTNoC-MCT-20), 30% 

(SWIFTNoC-MCT-30), 40% (SWIFTNoC-MCT-40), and 50% (SWIFTNoC-MCT-50) of 

multicast messages for a 64-core CMP. ........................................................................................ 47 

Figure 16 Energy-delay-product (EDP) comparison of SwiftNoC-16-MCT-10, SwiftNoC-16-

MCT-20, SwiftNoC-16-MCT-30, SwiftNoC-16-MCT-40, and SwiftNoC-16-MCT-50 for a 64-

core CMP. Results are shown for uniform random traffic with different percentages of multicast 

traffic at packet injection rate of 0.95. .......................................................................................... 47 



xx 

Figure 17 (a) Average throughput (b) average packet latency (c) average energy-per-bit (EPB) 

comparison of SwiftNoC-8 and SwiftNoC-16 with other architectures for a 64-core CMP. Results 

are shown for multi-application PARSEC workloads. ................................................................. 50 

Figure 18 (a) Average throughput (b) average packet latency (c) average EPB comparison of 

SwiftNoC-8, SwiftNoC-16, and SwiftNoC-32 with other architectures for a 256-core CMP. 

Results are shown for multi-application PARSEC workloads. .................................................... 53 

Figure 19 MapReduce (a) multicast phase, (b) shuffle phase, and (c) aggregation phase of 

communication while executing iterative machine learning algorithms for large-scale data 

analytics applications. ................................................................................................................... 58 

Figure 20 (a) MSNoC layout with SWMR, MWSR, and power waveguides (b) master gateway 

interface (MGI) (c) servant gateway interface (SGI). ................................................................... 62 

Figure 21 Distribution of reservation cycle and data cycle slots within SWMR waveguide to enable 

MN-to-SN communication. .......................................................................................................... 65 

Figure 22 (a) Transmission of unicast data from an MN to SN8 in MSNoC, which shows receiver 

selection wavelength 8 in RCS of the SWMR waveguide; (b) Multicast of data from an MN to 

multiple SNs SN8, SN10, SN12, and SN15 in MSNoC, which shows respective receiver selection 

wavelengths 8, 10, 12, and 15 in RCS of the SWMR waveguide. ............................................ 68 

Figure 23 Variation of average packet latency in MSNoC cluster with (a) 32 nodes (b) 16 nodes, 

and (c) 8 nodes having different MWSR waveguide groups (each group has 4 waveguides) across 

three big data applications. ........................................................................................................... 72 

Figure 24 (a) Homogeneous BiGNoC with four uniform clusters C0, C1, C2, C3, with each cluster 

having 16 nodes, (b) Heterogeneous BiGNoC with four clusters C0, C1, C2, and C3 having 32, 16, 

8, and 8 nodes, respectively. ......................................................................................................... 74 



xxi 

Figure 25 Average packet latency comparison for (a) BiGNoC-HOM and (b) BiGNoC-HET in a 

256-core CMP with different buffer depths (8-40). ...................................................................... 83 

Figure 26 (a) Normalized throughput, (b) normalized EDP comparison of BiGNoC-HOM with 

BiGNoC-HET for 256-core CMP. Results are shown for multi-application workloads and 

normalized w.r.t. BiGNoC-HET. .................................................................................................. 86 

Figure 27 Normalized (a) throughput (b) latency (c) EPB comparison of BiGNoC-HET with other 

architectures for a 256-core CMP. Results are for multi-application workloads and normalized 

w.r.t. EMesh. ................................................................................................................................. 88 

Figure 28 MR operation phases in DWDM-based waveguides (a) modulator modulating in 

resonance-wavelength (b) modulator in passing (through) mode (c) detector in passing-mode (d) 

detector in detecting-mode. ........................................................................................................... 93 

Figure 29 Detector-wise signal power-loss, crosstalk-noise power-loss, and minimum optical-

OSNR in worst-case power-loss node for Corona (a) baseline with 64-detectors (b) PCTM5B with 

65-detectors (c) PCTM6B with 66-detectors. ............................................................................. 103 

Figure 30 (a) Normalized-latency and normalized energy-delay-product (EDP) comparison 

between Corona baseline and Corona with PCTM5B and PCTM6B, for PARSEC benchmarks. 

Results are normalized to the baseline Corona results; (b) Worst-case OSNR (on-top), normalized 

average-latency (bottom-left) and EDP (bottom-right) for PARSEC benchmarks running on the 

baseline Firefly architecture and Firefly with PCTM5B and PCTM6B. .................................... 107 

Figure 31 Transmission spectrum of the cascaded microring modulators when using (a) smaller 

wavelength spacing (b) larger wavelength spacing. ................................................................... 111 



xxii 

Figure 32 WSP technique: variable WSP-node increases wavelength spacing by 100% from � to 

2� in the bottom data waveguide of the PNoC and the modulating node on the waveguide 

modulates on available wavelengths. .......................................................................................... 115 

Figure 33 Detector-wise signal power loss, crosstalk noise power loss and minimum OSNR in 

MPLN for Corona (a) baseline with 64-detectors (b) WSP increased by 20% with 53-detectors (c) 

WSP increased by 40% with 46-detectors (d) WSP increased by 60% with 40-detectors (e) WSP 

increased by 80% with 36-detectors (f) WSP increased by 100% (doubled) with 32-detectors. 117 

Figure 34 (a) Throughput, and (b) energy-delay product (EDP) comparison between Corona 

baseline and Corona configurations with WSP_20%, WSP_40%, WSP_60%, WSP_80% and 

WSP_100%, for PARSEC suite. ................................................................................................. 120 

Figure 35 (a) Throughput, and (b) energy-delay product (EDP) comparison between Firefly 

baseline and Firefly configurations with WSP_20%, WSP_40%, WSP_60%, WSP_80% and 

WSP_100%, for PARSEC suite. ................................................................................................. 121 

Figure 36 Impact of PV-induced resonance shifts on MR operation in DWDM-based waveguides 

(note: only PV-induced red resonance shifts are shown): (a) MR as active modulator modulating 

in resonance wavelength with PV-induced red resonance shifts (b) MR as active detector detecting 

its resonance wavelength with PV-induced red shifts. ............................................................... 127 

Figure 37 Transmission spectrum of MR groups with (a) high channel gap (CG) (b) low channel 

gap (CG); (C) IMCM at low channel gap. .................................................................................. 134 

Figure 38 Overview of proposed PVCM technique ................................................................... 136 

Figure 39 Sensitivity analysis in terms of worst-case OSNR for Corona PNoC with PICO allowing 

0%, 25%, 50% and 100% ratio of shield bits to data bits across 100 process variation maps; average 

power consumption for each configuration is also shown on the top of each bar. ..................... 138 



xxiii 

Figure 40 Worst-case OSNR comparison of PICO with PCTM5B [28] and PCTM6B [28] for 

Corona PNoC considering 100 process variation maps. ............................................................. 141 

Figure 41 (a) normalized latency and (b) energy-delay product (EDP) comparison between Corona 

baseline and Corona with PCTM5B, PCTM6B, and PICO techniques, for PARSEC benchmarks. 

Latency results are normalized to the baseline Corona architecture results. .............................. 142 

Figure 42 Impact of PV-induced resonance shifts on MR operation in DWDM waveguides (noteμ 

only PV-induced red resonance shifts are shown)μ (a) MR as active modulator with PV-induced 

red shift, modulating in-resonance wavelength (b) detector-coupled MR filter with PV-induced red 

shift, filtering its resonance wavelength and dropping it on the detector. .................................. 151 

Figure 43 (a) Effect of localized trimming, (b) effect of thermal tuning, on the Q-factor and 

fractional increase in coupling factor of an example MR. Here, the fractional increase in coupling 

factor is calculated w.r.t. the original coupling factor of the MR without PV. ............................ 158 

Figure 44 Overview of cross-layer HYDRA framework that integrates a device-level IM-aware 

crosstalk mitigation mechanism (IMCM) (see chapter 6), a device-level double MR based crosstalk 

mitigation mechanism (DMCM) and a circuit-level 5-bit crosstalk mitigation mechanism 

 (EDCM). .................................................................................................................................... 163 

Figure 45 Coupling factor (φ/φ’) variation with increase in gap between the non-resonant 

wavelength available in the photonic waveguide and the resonance wavelength of (a) a single MR 

filter and (b) a DMR filter. .......................................................................................................... 164 

Figure 46 Crosstalk mitigation with double microring resonatorsμ (a) MR detector operation when 

receiving its resonance wavelength; (b) double MR operation when receiving its resonance 

wavelength. ................................................................................................................................. 165 



xxiv 

Figure 47 Organization of MR and DMR detectors in a detecting node on a photonic data 

waveguide with the EDCM mechanism. .................................................................................... 167 

Figure 48 Worst-case OSNR comparison of HYDRA with PCTM5B [2κ], PCTM6B [2κ], and 

PICO [31] for Corona, Firefly, and Flexishare PNoCs. Bars show mean values of worst-case OSNR 

across 100 PV maps; confidence intervals show variation in worst-case OSNR. ...................... 175 

Figure 49 (a) Normalized average latency and (b) energy-delay product (EDP) comparison 

between Corona baseline and Corona configurations with PCTM5B, PCTM6B, PICO, and 

HYDRA techniques, for PARSEC benchmarks. Latency results are normalized to the baseline 

Corona results. In the EDP plot, bars represent mean values of EDP across 100 PV maps; 

confidence intervals show variation in EDP. .............................................................................. 177 

Figure 50 (a) Normalized average latency and (b) energy-delay product (EDP) comparison 

between different variants of Firefly and Flexishare PNoCs which include their baselines and their 

variants with PCTM5B, PCTM6B, PICO, and HYDRA techniques, for PARSEC benchmark 

applications. Latency results are normalized with their respective baseline architecture results. 

Bars represent mean values of average latency and EDP for 100 PV maps; confidence intervals 

show variation in average latency and EDP across PARSEC benchmarks. ............................... 179 

Figure 51 Impact of thermal variations on MRs. ........................................................................ 183 

Figure 52 Peak thermal gradient (in Kelvin) across a 64-core chip running 4κ-threaded PARSEC 

[43] and SPLASH-2 [131] benchmarks. ..................................................................................... 183 

Figure 53 IHDTM framework with device-level thermal islands and system-level temperature-

aware thread migration mechanism (TATM). ............................................................................. 184 

Figure 54 (a) MR with adaptive heater (b) Thermal tuning of MR ............................................ 186 

Figure 55 Non-linear support vector based regression prediction model. .................................. 189 



xxv 

Figure 56 Actual and predicted maximum temperature variation with execution time for (a) 

fluidanimate (FA) and (b) radiosity (RD) benchmarks run on a 64-core platform executing 32-

threads. ........................................................................................................................................ 192 

Figure 57 Overview of TATM technique with support vector regression (SVR) based temperature 

prediction model. ........................................................................................................................ 193 

Figure 58 Maximum temperature comparison of IHDTM with RATM and PDTM for (a) 4κ and 

(b) 32 threaded PARSEC and SPLASH-2 benchmarks executed on 64-core CMP with Corona 

PNoC. .......................................................................................................................................... 197 

Figure 59 Normalized power (Laser Power (LP), Trimming and tuning power (TP) and modulating 

and detecting Power (MDP)) comparison of IHDTM with RATM and PDTM for (a) 4κ and (b) 32 

threaded applications of PARSEC and SPLASH-2 suites executed on Corona PNoC architectures 

for a 64-core multicore system. Results shown are normalized w.r.t RATM. ............................ 199 

Figure 60 Normalized average power (laser power (LP), trimming and tuning power (TP) and 

modulating and detecting power (MDP)) comparison of IHDTM with RATM and PDTM for (a) 

4κ and (b) 32 threaded applications of PARSEC and SPLASH-2 suites executed on Flexishare 

PNoC for a 64-core system. Power results are normalized wrt RATM results. Bars represent mean 

values of power dissipation; confidence intervals show variation in power across PARSEC and 

SPLASH-2 benchmarks. ............................................................................................................. 200 

Figure 61 Normalized execution time comparison of IHDTM with RATM and PDTM for (a) 4κ 

and (b) 32 threaded applications of PARSEC and SPLASH-2 suites executed on Corona PNoC for 

a 64-core system. Results shown are normalized w.r.t RATM. .................................................. 201 

Figure 62 Normalized average execution time comparison of IHDTM with RATM and PDTM for 

Flexishare PNoC running (a) 4κ; and (b) 32 threaded applications from PARSEC and SPLASH-2 



xxvi 

suites executed on 64-core system. Results are normalized wrt RATM results. Bars represent mean 

values of execution time; confidence intervals show variation in execution time across PARSEC 

and SPLASH-2 benchmarks. ...................................................................................................... 202 

Figure 63 Impact of temperature increase on an MR bank ......................................................... 209 

Figure 64 Impact of PV on DWDM based PNoCs ..................................................................... 212 

Figure 65 Simulation framework to analyze TV and PV in a manycore system with a PNoC 

architectures; the framework integrates performance, power, thermal, and variation  

simulators. ................................................................................................................................... 214 

Figure 66 (a) spatial variation in peak temperatures (b) histogram of peak TV-induced resonance 

wavelength variation across a chip of size 400mm2 using 3D ICE tool while executing 64 threaded 

PARSEC and SPLASH2 benchmark applications on a 64-core CMP. ....................................... 216 

Figure 67 (a) PV-induced resonance wavelength variation (b) histogram of resonance wavelength 

variation across a chip of size 400 mm2. ..................................................................................... 217 

Figure 68 Periodic resonances (R1-R4) of an example bank of four MRs and their assigned carrier 

wavelengths ( 1- 4) for (a) an ideal case with no resonance shifts, (b) a case with systematic blue-

shifts in resonances, (c) a case with random red-shifts in resonances. ....................................... 219 

Figure 69 Overview of LIBRA framework that integrates a device-level thermal and process 

variation aware microring assignment mechanism (TPMA) and a system-level variation aware anti 

wavelength-shift dynamic thermal management (VADTM) technique. .................................... 221 

Figure 70 Red shift of MR with increase in temperature from IRTs Ti to Ti+1 with trimming and 

tuning range of temperatures between these IRTs. ..................................................................... 222 

Figure 71 Thermal aware assignment of microrings (R1-n) to wavelengths ( 1-n) at four successive 

IRTs T1, T2, T3, and T4 in TMA mechanism................................................................................ 223 



xxvii 

Figure 72 Impact of PV-induced red and blue shift on boundary temperature on TMA. ........... 225 

Figure 73 Boundary temperature adaptation for larger PV-induced blue shifts in PMA............ 227 

Figure 74 Overview of VADTM in LIBRA framework with support vector regression (SVR) based 

temperature prediction model. .................................................................................................... 229 

Figure 75 Percentage of decrease in trimming/tuning power (TP) and percentage of increase in 

execution time (ET) comparison across different Ztu values for LIBRA framework implemented 

on Flexishare PNoC in a 64-core CMP executing blackscholes (BS), Facesim (FS), and 

Fluidanimate (FA). Presented results are averaged across 100 PV maps. All percentage 

increments/decrements are calculated w.r.t baseline Flexishare PNoC employing frequency align 

scheduling policy (FATM). ......................................................................................................... 233 

Figure 76 Maximum temperature comparison for LIBRA with RATM [133], FATM [145], PDTM 

[13λ] and SPECTRA [33], for (a) 4κ thread, and (b) 32 thread PARSEC and SPLASH-2 

benchmarks executing on 64-core manycore system with Corona PNoC. Bars show mean values 

of maximum temperature across 100 PV maps; confidence intervals show variation in maximum 

temperature. ................................................................................................................................ 235 

Figure 77 Normalized power dissipation (Laser Power, Dithering Power, Trimming/Tuning power, 

and Modulating and Detecting (Tx/Rx) Power) comparison for LIBRA with RATM [133], FATM 

[145], PDTM [13λ] and SPECTRA [33] for 4κ threaded applications of PARSEC and SPLASH-2 

suites executed on (a) Corona (b) Flexishare PNoC architectures for a 64-core manycore system. 

Results shown are normalized w.r.t RATM, therefore, RATM does not have confidence intervals. 

Bars show mean values of power dissipation across 100 PV maps; confidence intervals show 

variation in power dissipation. .................................................................................................... 238 



xxviii 

Figure 78 Normalized average execution time comparison of LIBRA with RATM [133], FATM 

[145], PDTM [13λ] and SPECTRA [33] for (a) Corona; and (b) Flexishare PNoCs for 4κ threaded 

applications from PARSEC and SPLASH-2 suites executed on 64-core system. Results shown are 

normalized wrt RATM. ............................................................................................................... 239 

Figure 79 Normalized energy consumption comparison of LIBRA with RATM [133], FATM [145], 

PDTM [13λ] and SPECTRA [33] for (a) Corona; and (b) Flexishare PNoCs for 4κ threaded 

applications from PARSEC and SPLASH-2 suites executed on a 64-core system. Results shown 

are normalized wrt RATM, therefore, RATM does not have confidence intervals. Bars show mean 

values of energy consumption across 100 PV maps; confidence intervals show variation in energy 

consumption. ............................................................................................................................... 241 

Figure 80 Cross-section of a tunable MR with PN junction in its core to facilitate carrier injection 

into and removal from core with voltage biasing. ...................................................................... 247 

Figure 81 Distribution of electric field (E) across (a) MR waveguide; (b) Si-SiO2 boundary B2 

when -4V bias voltage is applied across PN junction. ................................................................ 247 

Figure 82 (a) Microring resonator 3D-view with Si-core, SiO2-cladding, and metal contacts for 

voltage biasing; (b) top view of MR which shows hydrogen diffusion length ( D) across its 

cladding. ...................................................................................................................................... 250 

Figure 83 Variation of resonance wavelength red shift (�� � ) and QA with operation time at 

three operating temperatures 300K, 350K, and 400K. ............................................................... 255 _�oc Figure 84 Variation of QA and resonance wavelength red shift (Δλ W ) with 

operation time at four bias voltages -2V, -4V, -6V, and -8V. .................................................... 256 

Figure 85 Worst-case signal power loss analysis of (a) Corona PNoC and (b) Clos PNoC, with 1 

Year, 3 Years, and 5 Years of aging across 100 PV maps. ......................................................... 262 



xxix 

Figure 86 EDP comparison of (a) Corona and (b) Clos PNoCs with 1 Year, 3 Years, and 5 Years 

of aging considering 100 process variation maps. ...................................................................... 263 

Figure 87 Impact of (a) malicious modulator MR, (b) malicious detector MR on data in DWDM-

based photonic waveguides. ........................................................................................................ 271 

Figure 88 Impact of (a) malicious modulator (source) bank, (b) malicious detector bank on data in 

DWDM-based photonic waveguides. ......................................................................................... 272 

Figure 89 Overview of proposed SOTERIA framework that integrates a circuit-level PV-based 

security enhancement (PVSC) scheme and an architecture-level reservation-assisted security 

enhancement (RVSC) scheme. .................................................................................................... 273 

Figure 90 Overview of proposed PV-based security enhancement scheme. .............................. 277 

Figure 91 Reservation-assisted data transmission in DWDM-based photonic waveguides  

(a) without RVSC, (b) with RVSC. ............................................................................................. 279 

Figure 92 Comparison of (a) worst-case signal loss and (b) laser power dissipation of SOTERIA 

framework on Firefly and Flexishare PNoCs with their respective baselines considering 100 

process variation maps. ............................................................................................................... 284 

Figure 93 (a) normalized average latency and (b) energy-delay product (EDP) comparison between 

different variants of Firefly and Flexishare PNoCs that include their baselines and their variant 

with SOTERIA framework, for PARSEC benchmarks. Latency results are normalized with their 

respective baseline architecture results. ...................................................................................... 286 

Figure 94 (a) normalized latency and (b) energy-delay product (EDP) comparison between 

Flexishare baseline and Flexishare with 4, κ, 16, and 24 SOTERIA enhanced MWMR waveguide 

groups, for PARSEC benchmarks. Latency results are normalized to the baseline Flexishare 

results. ......................................................................................................................................... 288 



xxx 

LIST OF ALGORITHMS 

 

 

Algorithm 1 Application scheduling in BiGNoC ......................................................................... 77 

Algorithm 2 Thermal management of MR ................................................................................. 186 

Algorithm 3 TATM thread migration algorithm ........................................................................ 194 

Algorithm 4 VADTM thread migration algorithm ..................................................................... 230 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xxxi 

LIST OF RESEARCH PUBLICATIONS 

 

 

• S. V. R. Chittamuru, S. Desai, and S. Pasricha, “A Reconfigurable Silicon-Photonic Network 

with Improved Channel Sharing for Multicore Architectures,” ACM Great Lakes Symposium 

on VLSI, May 2015. (Best Paper Award) 

• S. V. R. Chittamuru, S. Pasricha, “Crosstalk Mitigation for High-Radix and Low-Diameter 

Photonic NoC Architectures”, IEEE Design and Test (D&T), vol.32, no.3, pp.29-39, June 2015. 

• S. V. R. Chittamuru, S. Pasricha, “Improving Crosstalk Resilience with Wavelength Spacing 

in Photonic Crossbar-based Network-on-Chip Architectures,” IEEE Midwest Symposium on 

Circuits and Systems (MWSCAS), Aug. 2015. 

• S. V. R. Chittamuru, S. Pasricha, “SPECTRAμ A Framework for Thermal Reliability 

Management in Silicon-Photonic Networks-on-Chip,” IEEE International Conference on VLSI 

Design (VLSID), Jan. 2016. 

• S. V. R. Chittamuru, I. Thakkar, S. Pasricha, “Process Variation Aware Crosstalk Mitigation 

for DWDM based Photonic NoC Architectures,” IEEE International Symposium on Quality 

Electronic Design (ISQED), Mar. 2016. (Best Paper Award Candidate) 

• S. V. R. Chittamuru, I. Thakkar, S. Pasricha, “PICOμ Mitigating Heterodyne Crosstalk Due to 

Process Variations and Intermodulation Effects in Photonic NoCs,” IEEE/ACM Design 

Automation Conference (DAC), June 2016. 



xxxii 

• I. Thakkar, S. V. R. Chittamuru, and S. Pasricha, “A Comparative Analysis of Front-End and 

Back-End Compatible Silicon Photonic On-Chip Interconnects,” IEEE/ACM International 

Workshop on System-Level Interconnect Prediction (SLIP), June 2016. (Best Paper Award) 

• I. Thakkar, S. V. R. Chittamuru, S. Pasricha, “Run-Time Laser Power Management in 

Photonic NoCs with On-Chip Semiconductor Optical Amplifiers,” IEEE/ACM International 

Symposium on Networks-on-Chip (NOCS), Aug. 2016.  

• I. Thakkar, S. V. R. Chittamuru, and S. Pasricha, “Mitigation of Homodyne Crosstalk Noise 

in Silicon Photonic NoC Architectures with Tunable Decoupling,” in ACM/IEEE International 

Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS), Oct. 

2016. 

• S. V. R. Chittamuru, D. Dang, R. Mahapatra, and S. Pasricha, “Islands of Heatersμ A Novel 

Thermal Management Framework for Photonic NoCs,” in IEEE/ACM Asia and South Pacific 

Design Automation Conference (ASPDAC), Jan. 2017. 

• S. V. R. Chittamuru, S. Desai, and S. Pasricha, "SWIFTNoC: A Reconfigurable Silicon-

Photonic Network with Multicast Enabled Channel Sharing for Multicore Architectures," in 

ACM Journal on Emerging Technologies in Computing Systems (JETC), vol. 13, no. 58, Feb. 

2017. 

• S. V. R. Chittamuru, I. Thakkar, and S. Pasricha, "Analyzing Voltage Bias and Temperature 

Induced Aging Effects in Photonic Interconnects for Manycore Computing," in International 

Workshop on System-Level Interconnect Prediction (SLIP), June. 2017. 



xxxiii 

• I. Thakkar, S. V. R. Chittamuru, and S. Pasricha, "Improving the Reliability and Energy-

Efficiency of High-Bandwidth Photonic NoC Architectures with Multilevel Signaling," in 

IEEE/ACM International Symposium on Networks-on-Chip (NOCS), Oct. 2017. 

• S. V. R. Chittamuru, I. Thakkar, S. Pasricha, “HYDRAμ Heterodyne Crosstalk Mitigation with 

Double Microring Resonators and Data Encoding for Photonic NoCs,” in IEEE Transactions 

on VLSI Systems (TVLSI), vol. 26, no. 1, Jan. 2018. 

• S. V. R. Chittamuru, I. Thakkar, S. Pasricha, “LIBRA: Thermal and Process Variation Aware 

Reliability Management in Photonic Networks-on-Chip,” in IEEE Transactions on Multi-Scale 

Computing Systems (TMSCS). (Under review)  

• S. V. R. Chittamuru, D. Dang, S. Pasricha, and R. Mahapatra, “BiGNoC: Accelerating Big 

Data Computing with Application-Specific Photonic Network-on-Chip Architectures,” in IEEE 

Transactions on Parallel and Distributed Systems (TPDS). (Under review)  

• S. V. R. Chittamuru, I. Thakkar, V. Bhat, and S. Pasricha, “SOTERIAμ Exploiting Process 

Variations to Enhance Hardware Security with Photonic NoC Architectures,” in IEEE/ACM 

Design Automation Conference (DAC), June 2018. (Under review) 

 



1 

1. INTRODUCTION 

 

 

Modern chip manycore processor (CMP) design aims to meet the rapidly growing 

performance demands of modern applications with minimum power dissipation. This chapter 

outlines the design challenges of CMPs, and also emphasizes the importance of on-chip 

communication in CMPs.  Furthermore, this chapter motivates the usage of photonics-based 

Network-on-Chip (NoC) architectures for communication in future CMPs as they can enable 

higher bandwidth and lower dynamic (or data-dependent) power dissipation compared to 

traditional electrical NoCs. In addition, this chapter also presents the challenges of performance, 

reliability, static (or non-data dependent) power dissipation, and security in the design of Photonic 

Network-on-Chip (PNoC) architectures, and presents an outline of a cross-layer framework that 

addresses these challenges. 

 

1.1. MOTIVATION FOR CMP DESIGN 

In the era of cloud computing and the internet-of-things (IoT), modern applications have 

higher performance requirements. Advances in technology scaling over the past several decades 

have enabled the integration of billions of transistors on a single die. Such a massive number of 

transistors has allowed multiple processing cores and more memory to be integrated on a chip, 

allowing new chip manycore processors (CMPs) [1] to meet the rapidly growing performance 

demands of modern applications with lower power dissipation. An efficient on-chip 

communication fabric is essential to satisfy communication bandwidth and latency constraints of 

these CMPs. It is therefore becoming evident that focus on communication architecture design, 

customization, and exploration can provide huge performance gains in CMPs. Most processing 
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systems that include fewer processors encompass a hierarchical or crossbar-type, bus-based 

communication fabric. However, as the number of on-chip cores increases, bus-based 

communication architectures do not scale well in terms of bandwidth, clocking frequency, and 

power dissipation [1] because they are more susceptible to ultra-deep submicron (UDSM) effects 

[2] such as high signal propagation latency and high crosstalk. NoCs are now considered viable 

options for homogeneous CMPs as well as application specific and heterogeneous multi-processor 

systems-on-chip (MPSoCs). NoCs offer significant benefits in bandwidth, scalability, and 

reliability compared to traditional hierarchical and crossbar-based shared bus communication 

architectures in UDSM technologies [2]. NoCs with packet-switched network fabrics and routers 

can transfer data between on-chip components [3] [4] at very high data rates. Therefore, manycore 

processor designs have shifted toward using NoC communication fabrics instead of shared buses. 

Two contemporary CMPs with electrical NoCs are presented in Figure 1. 

 

           
(a) (b) 
 

Figure 1 (a) Intel Xeon Phi 72 core CMP [5] (b) Mellanox 72 core CMP [4] with electrical NoC 

for inter-core communication. 

 

As core counts continue to steadily increase, electrical NoC communication fabrics [4] [6] 

[5] are beginning to suffer from cripplingly high power dissipation and severely reduced 
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performance [7]. Moreover, the susceptibility of metallic interconnects to crosstalk and 

electromagnetic interference has also increased with technology scaling, which has further reduced 

the performance and reliability of electrical NoCs [2]. Therefore, there is a crucial need to 

investigate new and more viable alternatives to metallic interconnects for NoCs. 

 

 
 

Figure 2 Overview of photonic link with wavelength division multiplexing  

 

1.2. PHOTONIC INTERCONNECTS  

Recent advances in the area of silicon nanophotonics have enabled the integration of 

photonic devices with CMOS circuits. The resulting on-chip photonic interconnects (shown in 

Figure 2) have demonstrated several prolific advantages over their metallic counterparts. Photonic 

interconnects enable near light speed transfers as they employ photons for data communication 

which are 10× faster than the electrons in metallic (copper) interconnects [κ]. Photonic links can 

also achieve distance-independent bit-rates unlike the distance dependent (crosstalk-limited) lower 
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bit-rates in electrical wires. The photonic links are also able to employ dense wavelength division 

multiplexing (DWDM) [λ] to achieve a bandwidth density that is 5× higher than that achieved by 

electrical wires. In DWDM-based photonic communication, multiple wavelengths of light can be 

used to simultaneously transfer multiple streams of data in a single photonic waveguide as shown 

in Figure 2. Additionally, because photonic links dissipate energy only at the endpoints of the 

communication channel [κ] with low crosstalk [7] they have lower dynamic (or data-dependent) 

power dissipation (about 7.λ fJ/bit) than that of electronic links. Thus silicon nanophotonics is 

being considered as an exciting new option for integration in future NoCs. Several photonic 

devices such as Microring Resonators (MRs), waveguides, and photodetectors have already been 

successfully fabricated and demonstrated at the chip level [10]. These devices have been used as 

a foundation for several PNoC architectures [11], [12], [13], [14]. 

 

                 
                   (a)                                                                           (b) 
 

Figure 3 (a) Longitudinal cross-section of photonic waveguides (b) microring resonator used in 

PNoC architectures. 

 

1.2.1. PHOTONIC WAVEGUIDES 

In PNoC architectures, photonic waveguides are used to traverse optical signals from a 

source core to a destination core. Photonic waveguides, as shown in Figure 3(a), use a high 

refractive index silicon (Si) core (i.e., nsi= 3.5) and low refractive index silicon-di-oxide (SiO2) 

cladding (i.e., nsi= 1.5) fabricated on a silicon-on-insulator (SOI) platform. These waveguides have 
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a lower pitch and area footprint than the polymer waveguides used in [2]. Waveguides fabricated 

on an SOI platform have other advantages such as lower losses (on the order of 1 dB/cm) and the 

malleability to be curved with bend radii of ~5µm [15]. Malleability of these photonic waveguides 

and the SOI platform’s high refractive index contrast enables fabrication of compact modulators 

which require lower drive voltage for high frequency operation. To support high bandwidths for 

future CMP applications, these photonic waveguides support dense wavelength division 

multiplexing (DWDM) [16], with multiple wavelengths available for concurrent data transfers in 

each waveguide. 

 

 
(a) (b) 

 

Figure 4 MR acting as a (a) active modulator to remove its resonance wavelength (b) detector to 

detect its resonance wavelength.  

 

1.2.2. MICRORING RESONATORS 

To transmit data between cores through a photonic waveguide, electrical to optical (E/O) 

conversion at the source and an optical to electrical (O/E) conversion at the destination is required. 

MRs can enable both E/O and O/E conversion in PNoCs. MRs modulate light for transmission of 

data at a source (data-modulation phase). MRs also detect light-modulated data from the 

waveguide at the destination (data-detection phase) and subsequently help with the generation of 
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proportional electrical signals that are amplified by Trans-Impedance Amplifiers (TIAs). An MR 

can be functionally described as a circular photonic waveguide with a small diameter as shown in 

Figure 3(b). 

MRs are wavelength selective and couple light when the relation ×m=neff,ring×2πR is 

satisfied, where R is the radius of the microring resonator, neff,ring is the effective refractive index, 

m is an integer value, and  is the resonant wavelength [17]. As resonance wavelength is a function 

of R and neff,ring, by changing R and neff,ring, the resonant wavelength of the MR can be altered. It is 

necessary to alter resonance wavelength of an MR to remove a wavelength (in active mode to write 

‘0’-bit) from a data waveguide, and to let a wavelength pass through (in passive mode to write ‘1’-

bit) in a data waveguide. In general, alteration in resonance wavelength of an MR by Δ  is achieved 

with neff change in effective refractive index. There are two ways that can change the effective 

refractive index of an MR. Injection or removal of carriers (electrons) from the Si core of an MR 

alters its effective refractive index due to the Electro Optic (EO) effect [1κ]. Heating of MR’s also 

alters its effective refractive index due to the Thermo Optic (TO) effect [1λ]. More details about 

EO and TO effects are presented in chapter 7 and λ. However, the former method is faster and 

consumes lower power compared to the latter one for smaller resonance wavelength shift (i.e., 

<1nm) [1λ]. Therefore, carrier injection/removal is predominantly used to switch MRs between 

active and passive modes. To enable carrier injection/removal in MRs require a series of drivers. 

These drivers are electrical circuits which regulate carrier injection/removal rates (by altering 

voltage VR shown in Figure 4) into MRs to control their resonance wavelength shifts. An MR as a 

modulator is shown in Figure 4(a) that removes its resonance wavelength from the data waveguide, 

which converts electrical signal to optical signal. Furthermore, as shown in Figure 4(b), an MR 

with germanium (Ge) deposited on its Si core acts as a detector to drop the corresponding 
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resonance wavelength from the data waveguide and convert the optical signal back to an electrical 

signal.  

 

                       
            (a)                                                (b)                                               (c) 
 

Figure 5 (a) trans impedance amplifier (TIA) (b)1×2 splitter (c) 2×1 combiner used in  

PNoC architectures. 

 

1.2.3. TRANS-IMPEDANCE AMPLIFIERS, COMBINERS, AND SPLITTERS  

TIAs are used to amplify detected signals at the MR detector to digital voltage levels as 

shown Figure 5(a). As the signals amplified by TIAs are ultimately stored and processed on the 

chip, their amplitudes should match the supply voltage of logic circuits (i.e., VDD). To enable 

amplification of signals to VDD, the TIAs are typically operated at 20% higher supply voltage than 

VDD. In addition to these TIAs, PNoCs employ splitters and combiners respectively to distribute 

and aggregate signal power in photonic waveguides, as shown in Figure 5(b) and (c), respectively. 

 

1.3. DESIGN CHALLENGES IN PNOCS 

Despite the aforementioned advantages of high bandwidth, low latency, and low dynamic 

power dissipation for photonic interconnects, building PNoCs with photonic interconnects still 

faces several challenges. We organize these challenges into four categories: performance 

challenges, reliability challenges, power dissipation challenges, and security challenges. 
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1.3.1. PERFORMANCE CHALLENGES 

Performance challenges in PNoC architecture design includes network resource contention, 

adaptation to application traffic, low bandwidth, and high network latency. Some prior work has 

given emphasis to the importance of network resource contention in photonic NoC channels and 

proposed arbitration techniques to resolve this contention [11] [13]. However, these approaches 

are limited because they do not fully exploit available network bandwidth and typically only target 

single parallel application workloads when designing and optimizing the proposed techniques. In 

emerging multicore systems where multiple applications execute simultaneously on unique subsets 

of cores, there is significantly greater variation in temporal and spatial characteristics of network 

injected traffic. For example, cores running memory intensive tasks can require more network 

bandwidth than cores running compute intensive tasks [20]. Furthermore, O/E and E/O 

conversions in the photonic NoC channel increases network latency of PNoCs.  

 

1.3.2. RELIABILITY CHALLENGES 

Reliability challenges in PNoC architecture design includes crosstalk noise, process 

variations, thermal variations, and aging of MRs. Crosstalk noise in MRs is classified into two 

types: heterodyne crosstalk noise and homodyne crosstalk noise. The homodyne crosstalk noise 

power of a particular wavelength affects the signal power of the same wavelength, whereas with 

heterodyne crosstalk the signal power gets affected by some noise power of one or more other 

(different) wavelengths. The strength of the heterodyne crosstalk noise at a detector MR depends 

on the following four attributes: (i) channel gap between the MR resonant wavelength and the 

adjacent wavelengths; (ii) Q-factors of neighboring detector MRs, (iii) the strengths of the non-

resonant signals at the detector, and (iv) bit-rate or modulation rate of the photonic link. With an 
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increase in DWDM, the channel gap between two adjacent wavelengths decreases, which in turn 

increases heterodyne crosstalk in detector MRs. With a decrease in Q-factors of MRs, the widths 

of the resonant passbands of MRs increases, increasing passband overlap among neighboring MRs, 

which in turn increases heterodyne crosstalk. The strengths of the non-resonant signals depend on 

the losses faced by the non-resonant signals throughout their path from the laser source to the MR 

detector. When a data-modulated non-resonant signals passes by an MR, depending on its data bit-

rate (modulation rate), a part of its signal power is dropped by the MR, which in turn affects the 

heterodyne crosstalk noise caused by these non-resonant signals. 

Fabrication process variations (PV) induce variations in the width and thickness of MRs, 

which cause resonance wavelength shifts in MRs [21] [22]. PV-induced resonance shifts may 

reduce the channel gap between the resonances of the victim MRs and adjacent MRs, which 

increases crosstalk and worsens optical signal-to-noise-ratio (OSNR). The worsening of OSNR 

deteriorates the bit-error-rate (BER) in a waveguide. For example, a previous study shows that in 

a DWDM-based photonic interconnect, when PV-induced resonance shift is over 1/3 of the 

channel gap, BER increases from 10-12 to 10-6 [23]. Techniques to counteract the PV-induced 

resonance shifts in MRs involve realigning the resonant wavelengths by using localized trimming 

[18] or thermal tuning [19]. 

MR devices are highly sensitive to temperature fluctuations. With increase or decrease in 

temperature, the refractive index of an MR device changes, causing a change in its resonance 

wavelength. This wavelength is supposed to remain static, as the value assigned at design-time 

[19]. As a result of this variation in resonance wavelength, an MR may be unable to write or read 

data in the waveguide. As the temperature increases or decreases from the MR’s design (baseline) 

temperature, due to the resulting variations in refractive index, each MR now resonates with a 
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different wavelength towards the red (i.e., red-shift) or blue (i.e., blue-shift) end of the visible 

spectrum. This phenomenon reduces transmission reliability and also leads to wastage of available 

bandwidth. 

To facilitate switching of resonance-modes of an MR with voltage biasing or trimming, a 

PN junction is created in the Si core of the MR surrounded by SiO2 cladding. A positive/negative 

voltage bias is applied to this PN-junction to inject/remove free carriers into/out of the MR’s Si 

core. For high frequency operation and lower power consumption, an MR’s PN-junction is 

typically operated under a negative voltage bias (or reverse bias) [24]. The application of this 

voltage bias generates an electric field across the MR’s Si core and SiO2 cladding boundary. 

Similar to MOSFETs, this electric field generates voltage bias temperature induced (VBTI) traps 

at the Si-SiO2 boundary of the MR over time (i.e., VBTI aging). Our analysis has shown that these 

VBTI aging induced traps alter carrier concentration in the Si core of MRs, which incur resonance 

wavelength shifts and increase optical scattering loss in MRs to decrease their Q-factor. 

 

1.3.3. POWER CHALLENGES 

Power challenges in PNoC architecture design includes high laser power dissipation and 

high trimming/tuning power dissipation. Data communication with photonic signals in photonic 

interconnects is lossy. Photonic signals traversing in waveguides incur propagation and bending 

losses and modulators and detectors incur through losses and modulator/detector insertion losses 

[λ]. In addition to these losses, couplers and splitters incur coupling and splitting losses. The 

aforementioned losses in photonic signals demand higher laser power to ensure that all the 

detectors along the photonic interconnect receive sufficient signal power. This laser power 

dissipation needs to be controlled otherwise it will reduce the energy benefits of photonic 
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interconnects. Another component of power dissipation in PNoC is static trimming and tuning 

power dissipation. As explained in subsection 1.3.2, an increase in process and thermal variations 

increases trimming and tuning power dissipation. Further trimming/tuning power has linear 

dependency on the number of MRs used within a PNoC architecture. Therefore, PNoCs with a 

higher number of MRs (larger photonic footprint) incur more trimming/tuning power dissipation 

and lead to higher energy consumption.   

 

1.3.4. SECURITY CHALLENGES 

PNoC architectures employ shared photonic waveguides to achieve higher data rates with 

the minimum amount of photonic hardware [11]- [13]. Several nodes in a PNoC architecture are 

able to read and write data on these shared waveguides. Furthermore, several PNoC architectures 

[11], [12], [25] send multicast or broadcast data to multiple nodes using these shared waveguides. 

Despite achieving higher data rates, these shared waveguides are vulnerable to security risks. A 

malicious node on the shared waveguide can steal or snoop the data from the shared waveguides 

and transmit it to a malicious core to extract sensitive information from the data. Furthermore, 

malicious nodes on the shared waveguides can performs deep packet inspection and inject faults 

on links to develop a denial-of-service (DoS) attack. In addition, malicious nodes can corrupt data 

on the shared waveguides and increase bit errors in PNoCs beyond correctable limits. 

    

1.4. DISSERTATION OUTLINE 

To address the challenges presented in the previous section, in this dissertation, we propose 

a framework for silicon photonic NoC design, with a high level preview of contributions shown in 

Figure 6 [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41].  This 
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framework includes not only layer-specific solutions, but also cross-layer solutions that combine 

enhancements at the system-level, architecture-level, circuit-level, and device-level towards the 

design of reliable, energy-efficient, and secure PNoC architectures. The rest of this dissertation is 

organized as follows:  

 

 
 

Figure 6 Outline of Contributions of this dissertation 

 

In chapter 2, we propose a novel PNoC architecture called SwiftNoC [25] that utilizes 

multiple-write-multiple-read (MWMR) photonic waveguides in a crossbar topology, and supports 

a novel approach for dynamic performance adaptation to aggressively utilize network bandwidth 

and meet diverse application demands. Our SwiftNoC architecture integrates a novel distributed 

concurrent token stream arbitration that provides multiple simultaneous tokens and increases 

channel utilization in MWMR photonic waveguides. Furthermore, the SwiftNoC PNoC uses 

multicast enabled MWMR waveguides which facilitate the energy efficient multicast of messages. 
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The novel dynamic bandwidth transfer mechanism in SwiftNoC enables low-overhead transfers 

of unused bandwidth between clusters of cores to improve channel utilization even further. The 

SwiftNoC architecture also utilizes real-time monitoring of the traffic being injected into the 

network by different co-running applications, to facilitate dynamic arbitration wavelength 

injection rate modulation. 

In chapter 3, we present a novel application-specific PNoC architecture for manycore chips, 

called BiGNoC [27], that enables the execution of large-scale data analytics applications with high 

throughput and ultra-low latency. We devise a master-servant cluster based communication fabric 

(MSNoC) with dedicated channels for master-to-servant and servant-to-master communication. 

Furthermore, we design a hierarchical manycore BiGNoC architecture with multiple MSNoCs to 

execute any combination of high performance large-scale data analytics applications. In addition, 

we analyze the power and performance of two variants of the BiGNoC architecture: homogenous 

BiGNoC (BiGNoC-HOM) and heterogeneous BiGNoC (BiGNoC-HET).    

In chapter 4, we present the design of two novel circuit-level techniques that attempt to 

intelligently reduce crosstalk by minimizing undesirable data value occurrences in a photonic 

waveguide. Our first crosstalk mitigation technique uses 5-bit encoding (PCTM5B) [28] to 

improve the worst-case OSNR with relatively low impact on energy-delay product (EDP) for 

DWDM-based photonic crossbar PNoCs. Our second crosstalk-mitigation scheme with 6-bit 

encoding (PCTM6B) [28], more aggressively improves OSNR but with relatively higher EDP 

overhead. These techniques are easily implementable on any existing DWDM-based photonic 

crossbar without requiring major modifications to the architectures, unlike previously proposed 

crosstalk mitigation techniques [42] that aim to reduce crosstalk in specific PNoC architectures by 
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requiring modifications to their router designs. Further, our techniques are lightweight and possess 

low overhead. 

In chapter 5, we propose novel wavelength spacing (WSP) techniques [29] to increase 

spacing between adjacent wavelengths in a DWDM waveguide for PNoCs. The WSP technique 

can help to reduce crosstalk noise and improve OSNR in DWDM-based PNoC architectures. The 

proposed WSP technique very effectively improves both reliability and EDP for these architectures. 

In chapter 6, we present a novel crosstalk mitigation framework called PICO [31] to enable 

reliable communication in emerging PNoC-based multicore systems. PICO mitigates the effects 

of IM crosstalk by controlling signal loss of wavelengths in the waveguide and reduces trimming-

induced crosstalk by intelligently reducing undesirable data value occurrences in a photonic 

waveguide based on the PV profile of MRs. We present device-level analytical models to capture 

the deleterious effects of localized trimming in MRs. Moreover, we extend this model for system-

level heterodyne crosstalk analysis. Furthermore, this chapter also discusses a scheme for IM 

passband truncation-aware heterodyne crosstalk mitigation (IMCM) to improve worst-case OSNR 

of MRs by controlling non-resonant signal power. We also propose a scheme for PV-aware 

heterodyne crosstalk mitigation (PVCM) to improve worst-case OSNR of detector MRs by 

encoding data to avoid undesirable data occurrences. 

In chapter 7, we present a novel cross-layer heterodyne crosstalk mitigation framework 

called HYDRA [32] to enable reliable communication in emerging PNoC-based manycore chips. 

We present device-level analytical models to capture the deleterious effects of localized trimming 

and thermal tuning in MRs. We extend these models for system-level heterodyne crosstalk analysis. 

We also propose a device-level technique in this chapter for heterodyne crosstalk mitigation 

(DMCM) that uses double MRs to improve worst-case OSNR in detectors by tailoring the MRs’ 
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passbands to have a steeper roll-off. Furthermore, a circuit-level technique for heterodyne crosstalk 

mitigation (EDCM) is proposed that aims to improve worst-case OSNR in detectors by encoding 

data to avoid undesirable data value occurrences. Lastly, we combine IMCM (see chapter 6), 

DMCM, and EDCM into a holistic cross-layer heterodyne crosstalk mitigation framework called 

HYDRA and evaluate it on three well-known crossbar PNoC architectures as well as prior work 

on heterodyne crosstalk mitigation. 

In chapter 8, we propose a novel cross-layer, low-power, thermal management framework 

[34] that integrates an adaptive heater mechanism at the device-level and a dynamic thread 

migration scheme at the system-level. We present a novel temperature island framework with 

adaptive heater based MRs to handle thermal gradients across PNoC. Furthermore, an islands-of-

heaters-based dynamic thread migration (IHDTM) scheme is also proposed in conjunction with a 

support-vector-regression (SVR) based temperature prediction mechanism. This scheme nullifies 

on-chip thermal threshold violations and also reduces trimming/tuning power for MRs. 

In chapter 9, we propose a thermal and process variation aware dynamic reliability 

management framework called LIBRA [35] that integrates adaptive MR assignment at the device-

level and dynamic thread migration at the system-level for PNoC-based manycore systems. The 

adaptive thermal and process variation aware microring assignment (TPMA) mechanism at the 

circuit-level tunes a set of photonic microring resonators (MRs) dynamically for reliable 

modulation and reception of data from a photonic waveguide in a specific temperature and process 

variation range. This technique aims to adapt to the changing on-chip thermal profile and maintain 

maximum bandwidth while minimizing trimming and tuning power in the PNoC. However, TPMA 

cannot control maximum on-chip temperature, whose control is critical to further minimize MR 

trimming and tuning power. Thus, to control maximum on-chip temperature, we devise a system-
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level PV-aware anti-wavelength-drift dynamic thermal management (VADTM) scheme that uses 

SVR based thermal prediction and dynamic thread migration, to avoid on-chip thermal threshold 

violations, minimize hotspots, and reduce thermal tuning power for MRs. Both TPMA and 

VADTM work synergistically to reduce PNoC energy consumption. 

In chapter 10, we study the VBTI aging in MRs and its impact on PNoC architectures [36]. 

At the device-level, we carefully developed analytical models for trap generation with VBTI aging 

in MRs. We also devise analytical models in this chapter that determine variations of MR 

resonance wavelength shifts and Q-factor with aging-induced traps. These models are further 

extended to examine the impact of different operating temperatures and bias voltages, as well as 

process variations. From those models, we follow a mathematical bottom-up approach to analyze 

the system-level impact of aging on different PNoC architectures. 

In chapter 11, we present a framework [37] that protects data from snooping attacks and 

improves hardware security in PNoCs. We analyze security risks in photonic devices and extend 

this analysis to the link-level, to determine the impact of these risks on PNoCs. We propose a 

circuit-level PV-based security enhancement scheme that uses PV-based authentication signatures 

to protect data from snooping attacks in photonic waveguides. We propose an architecture-level 

reservation-assisted security enhancement scheme to improve security in DWDM-based PNoCs; 

Chapter 12 concludes this dissertation. We summarize our overall body of research and make 

recommendations for future research. 
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2. SWIFTNOC: A RECONFIGURABLE SILICON-PHOTONIC NETWORK WITH 

MULTICAST ENABLED CHANNEL SHARING FOR MULTICORE 

ARCHITECTURES  

 

 

With recent advances in silicon nanophotonics, photonics-based network-on-chip (NoC) 

architectures are being considered as a viable solution to support communication in future CMPs 

as they can enable higher bandwidth and lower power dissipation compared to traditional electrical 

NoCs. In this chapter, we present SwiftNoC, a novel reconfigurable silicon-photonic NoC 

architecture that features improved multicast-enabled channel sharing, as well as dynamic re-

prioritization and exchange of bandwidth between clusters of cores running multiple applications, 

to increase channel utilization, and system performance. Experimental results show that SwiftNoC 

improves throughput by up to 25.4× while reducing latency by up to 72.4% and energy-per-bit by 

up to 95% over state-of-the-art solutions. 

 

2.1. MOTIVATION AND CONTRIBUTION 

A few prior works have emphasized the importance of network resource contention in 

photonic NoC channels and proposed arbitration techniques to resolve this contention [11] [13]. 

However, a limitation of these approaches is that they do not fully exploit available network 

bandwidth and typically only target single parallel application workloads when designing and 

optimizing the proposed techniques. In emerging multicore systems where multiple applications 

execute simultaneously on unique subsets of cores, there is significantly greater variation in 

temporal and spatial characteristics of network injected traffic. For example, cores running 

memory intensive tasks can require more network bandwidth than compute intensive tasks [20]. 
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To overcome all of these shortcomings, we propose a novel photonic NoC architecture called 

SwiftNoC that utilizes multicast enabled multiple-write-multiple-read (MWMR) photonic 

waveguides in a crossbar topology and supports dynamic performance adaptation to aggressively 

utilize network bandwidth and meet diverse application demands. The SwiftNoC architecture 

improves data transfer rate in its MWMR waveguides through a better and faster arbitration 

mechanism. We compare SwiftNoC against alternative architectures with the best-known 

arbitration mechanisms from prior work, for synthetic and multi-threaded PARSEC [43] 

workloads on CMP platform sizes ranging from 64-cores to 256-cores.  

The novel contributions of this chapter can be summarized as follows: 

• A flexible on-chip photonic network architecture (SwiftNoC) that facilitates selective and 

reconfigurable prioritization of applications based on their time-varying performance goals; 

• Multicast enabled MWMR waveguide in SwiftNoC that facilitates energy efficient multicast of 

messages; 

• Improved distributed concurrent token stream arbitration that provides multiple simultaneous 

tokens and increases channel utilization; 

• A dynamic bandwidth transfer technique with low overhead, to transfer unused bandwidth 

among clusters of cores; 

• A mechanism to monitor traffic being injected into the network by different co-running 

applications, to facilitate dynamic arbitration wavelength injection rate modulation.  

  

2.2. RELATED WORK 

As per projections from the International Technology Roadmap for Semiconductors (ITRS) 

[44], in the near future, delay and power consumption of copper-based electrical interconnects will 
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become a serious bottleneck for chip design. These projections motivate the exploration of new 

technologies to enable viable fabrication of CMPs in future process technologies. On-chip 

networks in the TILE-Gx72 Processor with 72 cores [4] and Intel 80-core Terascale processor [3] 

consume approximately 20-30% of the total chip power. This trend is expected to continue as more 

wire density becomes available in future process technologies [44]. Thus the expected on-chip 

network power will continue to rise as we scale to several hundreds of cores on a single IC. 

To overcome this challenge, several novel interconnect technologies are beginning to be 

explored, including carbon nanotubes (CNTs) [45] [46] [47] [48] and wireless interconnects [49] 

[50] [51] [52] [53] for on-chip communication. However, CNT fabrication is not yet mature and 

has serious practical concerns to overcome. Multiband RF transmission lines and wireless 

interconnects (RF-Is) require high operating frequencies in the range of hundreds of GHz to THz. 

Complex RF-I Frequency Division Multiple Access (FDMA), transmission lines, or on-chip 

antennas also entail high area, power, verification, and implementation costs. Nonetheless, these 

technologies are quite promising and may become more viable in the near future.  

Silicon photonic on-chip interconnects are yet another promising alternative for chip level 

communication [54]. A considerable amount of work has focused on the design of photonic NoCs 

in recent years. The concept of photonic interconnects for on-chip communication was first 

discussed by Goodman et al. in [55]. Inter-chip photonic interconnects were explored in several 

works [21] [56] [57] [58] [59]. Other efforts have focused on on-chip photonic interconnects with 

either high-radix low-diameter photonic on-chip crossbar architectures that provide non-blocking 

connectivity, e.g., [11] [13] [60] [61]; or low-radix high-diameter NoCs [62] [63]. A categorization 

of various photonic crossbars to meet the design requirements of different CMPs is presented in 

[64]. Further, there was a recent effort [65] which combines reconfigurable adaptive routing and 
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network coding to improve power and performance in electrical NoCs which can also be extended 

to PNoCs. In addition to these, cross-layer solutions  [33] [34] [66]were presented towards the 

design of thermally resilient PNoCs with enhancements at the circuit, architecture, and operating 

system (OS) levels. Moreover, few more cross-layer solutions [31] [40] were presented to mitigate 

crosstalk noise in PNoCs with enhancements at device and circuit levels.     

Prior work has shown that photonic crossbars are extremely promising on-chip 

communication architectures to meet future on-chip bandwidths demands, but they can suffer from 

(i) large power dissipation, and (ii) high contention overheads for shared resources, especially 

when using inefficient token-based arbitration schemes. A few techniques to reduce power 

overhead of photonic NoCs have been proposed in literature. For example, an effective policy for 

runtime management of the laser source is proposed in [14]. We build on the foundations from 

their work to manage power dissipation in photonic crossbar NoCs in this chapter. 

To reduce contention issues in crossbars, a few improved arbitration techniques have been 

proposed in [13] [67] that use time division multiplexing (TDM), so that a single data waveguide 

can be simultaneously used by more than one node in different time slots. In Flexishare [13], a 

token stream arbitration scheme is proposed. The scheme requires wavelengths corresponding to 

each data waveguide to be injected serially into different time slots of an arbitration waveguide. A 

node writes on the data waveguide only when it gets access to the corresponding arbitration 

wavelength. Subsequently, the node cannot send data again till its arbitration wavelength is 

injected into the arbitration waveguide, which takes N cycles for N data waveguides. The scheme 

leads to channel under-utilization, and performs worse as the number of nodes and waveguides 

increase. In [67], the token ring arbitration scheme from Corona [11] was improved with the token 

channel and token-slot arbitration techniques for Multiple-write-single-read (MWSR) crossbars. 
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Token-slot arbitration uses TDM and improves upon token channel arbitration by dividing the 

arbitration waveguide into fixed-size, back-to-back slots, with destination nodes circulating tokens 

in one-to-one correspondence to slots. A limitation of this approach is that a fixed time gap is 

required between two arbitration slots to set up data for transmission, which reduces the available 

time slots to send data. UltraNoC [26] improves upon these prior works by utilizing a more 

effective concurrent token stream arbitration strategy, together with support for reconfigurable 

cluster prioritization and bandwidth re-allocation to improve MWMR photonic channel utilization. 

 

 
 

Figure 7 Layout of MWMR crossbar used in UltraNoC and SwiftNoC along with the arrangement 

of cores and their respective gateway interfaces. 

 

2.3. ULTRANOC AND SWIFTNOC : PHOTONIC ARCHITECTURE OVERVIEW 

2.3.1. ULTRANOC ARCHITECTURE AND TERMINOLOGY 

The baseline UltraNoC architecture [26] is designed for a 64-core CMP, as shown in Figure 

7. We also extend the baseline architecture to a 256-core CMP for the purposes of scalability 

analysis. Each core has a private L1 and shared L2 cache. In a 64-core CMP, each group of 8 cores 

has access to main memory via a dedicated memory controller, whereas in a 256-core CMP, each 

group of 16 cores has a dedicated memory controller. We have considered memory interleaving in 

our architecture and adapted its specific implementation from prior work [68]. A node (N) is 
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defined as an entity consisting of one and four cores for the 64-core and 256-core CMPs, 

respectively. Every node in UltraNoC is attached to a gateway interface (GI) module that facilitates 

transfers between the CMOS electrical layer and a photonic layer (with photonic waveguides, 

modulators, detectors, etc.). The entire chip is divided into four clusters (C0, C1, C2, C3) as shown 

in Figure 7, where a cluster contains 16 cores in a 64-core CMP and 64 cores in a 256-core CMP. 

Beyond 256-core CMPs (i.e. 512 or 1024 cores), we can certainly increase the number of clusters 

(e.g., to 8), to enable more re-configurability in these architectures. Increase in the number of 

clusters increases the number of arbitration wavelengths (see section 2.3.2) in the waveguide, 

which ultimately requires an increase in DWDM of the waveguide, incurring more power 

dissipation. Therefore, a careful analysis is required to remain within power constraints while 

meeting performance objectives. However, our scope of work is limited to 64-core and 256-core 

CMPs, for which four clusters provides a good trade-off between performance and power 

dissipation in our UltraNoC architecture. More details of the micro-architectural parameters of the 

cores and main memory are shown in Table 1.  

A detailed layout of the UltraNoC architecture is shown in Figure 7, where 64 nodes (N0-

N63) are arranged in an 8×8 grid. Communication between cores within a node for the 256-core 

CMP uses an electrical 5×5 NoC router, where four of its input and output port pairs are connected 

to four cores and the fifth input/output port pair is connected to a GI module. A round-robin 

arbitration scheme is used within each node for communication between cores and the GI. For 

higher concentration degree (more than 4 cores within a concentrator) in a general purpose CMP 

platform, using a round-robin strategy is a suitable option to achieve fairness for a diverse 

distribution and choice of workloads; however, if workloads and task to core mapping information 

is available, priority based arbitration schemes (e.g., [69]) may be a better choice. 
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Table 1 CMP micro-architecture configuration 

 
 

CMP Type 64-Core  256-Core  

Number of cores 64 256 

Number of clusters 4 (16 cores each) 4 (64 cores each) 

Per Core:  

L1 I-Cache size/Associativity       16KB/Direct Mapped Cache 

L1 D-Cache size/Associativity       16KB/Direct Mapped Cache 

L2 Cache size/ Associativity 128KB/ Direct Mapped Cache 

L2 Coherence MOESI 

Frequency 5 GHz 

Issue Policy In-order 

Memory controllers 8 32 

Main memory 8GB; DDR4@30ns 32GB; DDR4@30ns 

 

Inter-node transfers are facilitated by dual-coiled MWMR waveguide groups, where each 

group has four MWMR waveguides. Each MWMR waveguide group in UltraNoC passes every 

node twice in the dual-coiled structure to enable a two pass inter-node data communication. A 

node has the ability to write on the first pass using its ring modulators and read from the waveguide 

group using its ring detectors in the second pass. As all nodes are capable of modulating (writing) 

in an MWMR waveguide group during the first pass, there is a need for arbitration (see Section 

2.3.2 for more details) between sending nodes to ensure that the data of different senders does not 

destructively overlap on the shared waveguide group. Throughout this chapter this first pass 

portion of the waveguide group is referred to as the modulating and arbitration waveguide group. 

In the second pass of the MWMR waveguide group all nodes receive data through their respective 

ring detectors; hence this portion of the waveguide group is referred to as the receiving waveguide 

group. As all nodes are capable of receiving (reading) from an MWMR waveguide group during 

the second pass, there is a need for receiver selection (see Section 2.3.2 for more details) between 

receiving nodes to ensure that the designated receiver will receive data from the shared waveguide 

group. Further each node in our architecture is capable of sending (in the first pass) and receiving 
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(in the second pass) data from all the multiple MWMR waveguide groups through their separate 

ring modulator and ring detector banks respectively on each individual MWMR waveguide group. 

Additionally, there is a power waveguide that runs in parallel with the other waveguides, and 

carries arbitration wavelengths. This waveguide facilitates our bandwidth transfer and priority 

adaptation techniques (see Sections 2.3.3, 2.3.4). 

Figure 7 depicts an expanded view of the collection of GIs for four nodes, which shows the 

modulating and arbitration, receiving, and power waveguide groups, along with their connection 

to GIs. As explained above, each modulating and arbitration, and receiving waveguide group has 

four MWMR waveguides. Among these four MWMR waveguides, the first waveguide has 68 

DWDM (i.e., 6κ wavelengths represented as 0 to 67) and the remaining three waveguides have 

64 DWDM each. In the first MWMR waveguide 4 wavelengths ( 0 – 3) are used for arbitration 

and the remaining 64 wavelengths ( 4 – 67) are used for data transfer and receiver selection. 

During the receiver selection process, each of the 64 wavelengths is assigned to a unique receiving 

node (i.e., 4, 5,…., 67 are assigned to N0, N1,…., N63 respectively), such that whenever a receiver 

detects its corresponding wavelength during a clock cycle, it switches its detectors “on” to receive 

data in the next clock cycle. All other receivers keep their detectors turned off to save power. More 

details about the usage of these wavelengths in the first MWMR waveguide is presented in the 

next subsection (Section 2.3.2). As each waveguide in this MWMR waveguide group uses 64 

wavelengths for data transfer, each waveguide group in the UltraNoC architecture facilitates 

simultaneous transfer of a total of 512 bits of data with data modulation at both clock edges in a 

clock cycle. Thus in an MWMR waveguide group, each ring modulator and detector group has 

256 ring modulators and 256 ring detectors, respectively that are accessed at the positive and 

negative edges of the clock. 
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(a) (b) 

 

Figure 8 (a) Timing diagram of arbitration in UltraNoC, which shows distribution of arbitration 

(Ai), receiver prediction (Ri)and data slots (Di) across four MWMR waveguide groups (W1 – 

W4); (b) distribution of different slots within MWMR waveguide group W1 at time cycle 3. 

 

For powering the waveguides, we use a broadband off-chip laser source with a laser power 

controller (LSWC). The LSWC has groups of ring modulators capable of injecting different 

wavelengths in different clock cycles. As we use 68 DWDM in the first MWMR waveguide and 

64 DWDM in the remaining three MWMR waveguides of an MWMR waveguide group, there are 

260 ring modulators in each ring modulator group in the LSWC. These ring modulators either 

allow (in non-resonance mode) or remove (in resonance mode) their corresponding wavelengths 

from the waveguide group. Therefore, these ring modulators in the LSWC inject either of the four 

arbitration wavelengths (i.e., 0- 3) in the arbitration slot, the remaining 64 receiver selection 

wavelengths (i.e., 4- 67) in the receiver selection slot, and the same 64 receiver selection 

wavelengths (i.e., 4- 67) in the data slot (SwiftNoC uses the same set of wavelengths for the 

receiver selection process and data transfers). Further on-off switching time of a ring modulator is 

about 3.1 ps [9], which is less than one clock cycle (i.e. 400ps) at 2.5GHz frequency. The laser 

controller also has control logic that can alter the rate of injection of arbitration wavelengths into 

each waveguide group. The LSWC’s ring modulators and its control logic are assumed to be 

fabricated on-chip [14]. More details about the LSWC are presented in the following subsections 

and overhead analysis is given in Section 2.4.1. 
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2.3.2. MWMR CONCURRENT TOKEN STREAM ARBITRATION AND RECEIVER 

SELECTION IN ULTRANOC 

In UltraNoC, all of the cores on a chip are partitioned into four clusters (C0 – C3) and each 

cluster is assigned a dedicated arbitration wavelength ( 0 – 3). Each MWMR waveguide group is 

divided into a fixed number of time slots, based on the time taken by light to traverse the waveguide 

on a die. Based on geometric calculations, each pass of the MWMR waveguide takes 4 cycles in 

our architecture at 2.5GHz clock frequency. Thus we divide each MWMR waveguide group into 

8 time slots (4 time slots for each of first and second pass). The time slots are further classified 

into three types: arbitration slot, receiver selection slot, and data slot. 

Figure 8(a) shows an example of the distribution of time slots across 4 MWMR waveguide 

groups (Note: a minimum of 8 MWMR waveguide groups are used in our architecture; we only 

show 4 in the figure for brevity). As per the explanation provided in the previous subsection, in 

the arbitration slot, the LSWC injects the arbitration wavelengths of clusters, selectively using a 

modulator group to dedicate the arbitration slot to a particular cluster.  Further in UltraNoC each 

receiving node Ni is assigned a receiver selection wavelength i+4 (see section 2.3.1). Thus after a 

sending node grabs an arbitration wavelength in the arbitration slot, it gets access to the next 

receiver selection slot which initially has all the receiver selection wavelengths injected by the 

LSWC. In this receiver selection slot the sending node removes all the receiver selection 

wavelengths except the one corresponding to its receiving node using its modulators bank. 

Subsequently, in the next data slot, the sending node modulates data on the 64 wavelengths ( 4 – 

67) in each waveguide group assigned for data transfer. In the receiving portion of the MWMR 

waveguide (second pass of dual-coiled MWMR waveguide) whenever a receiver selection slot 

reaches a receiving node (Ni), the receiving node only switches-on its detector corresponding to 
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its receiver selection wavelength i+4. Whenever a receiving node detects its receiver selection 

wavelength in the receiver selection slot, it switches-on its remaining detectors to receive data in 

the next data slot. 

 

          

(a)                                                                              (b) 

 

Figure 9 (a) Timing diagram of arbitration in SwiftNoC, which shows distribution of arbitration 

(Ai), receiver selection (Ri), and data slots (Di) across four MWMR waveguide groups (W1 – 

W4); (b) distribution of different slots within MWMR waveguide group W1 at time cycle 3. 

 

We illustrate this sending and receiving process with an example. In Figure 8(b) suppose N1 

in cluster C0 needs to send data to N31 in cluster C1 that has a corresponding receiver selection 

wavelength 35. N1 first grabs arbitration wavelength 0 which is dedicated to cluster C0, in the 

arbitration slot. N1 then modulates in the next receiver selection slot, such that only 35 (the 

dedicated wavelength for receiver selection of N31) is made available by removing all the 

wavelengths except 35 (using its ring modulators) in that receiver selection slot. On the receiving 

end, all the detecting nodes which are in the receiver selection slot switch-on their detectors for 

the corresponding receiver selection wavelengths (e.g. Nodes N24 to N31 switch-on detectors with 

resonance wavelengths 28 to 35). Thus at N31, only the detector for wavelength 35 is switched on 

in the receiver selection slot. Once 35 is detected, N31 prepares to receive data in the next data slot 

by switching on the remaining detectors in that node. 
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Figure 8(b) shows a snapshot of the position of different slots in the MWMR waveguide 

group W1 at time cycle 3 for the example in Figure 8(a). As our architecture divides each pass of 

an MWMR waveguide group into 4 slots, each slot covers 16 nodes in a particular time instance. 

The stream of tokens (i.e., stream of arbitration slots with arbitration wavelengths dedicated to a 

specific cluster) on concurrent slots in waveguide groups allows multiple nodes to inject packets 

simultaneously on the same MWMR waveguide, resulting in extremely high channel utilization of 

each MWMR waveguide group. Further in our architecture, multiple nodes can inject packets 

across different MWMR waveguide groups as well, as each node has a separate modulator and 

detector bank on each MWMR waveguide group. As each arbitration slot covers 16 nodes on each 

MWMR waveguide at a time instant, therefore, two or more nodes (up to 16 nodes) from the same 

cluster can arbitrate for the same arbitration slot on each MWMR group. Ultimately one of them 

gets access to the arbitration slot by grabbing the arbitration wavelength. We employ a round-robin 

arbiter within each cluster to resolve this contention among the 16 nodes within a cluster, and avoid 

starvation. 

 

         

(a) (b) 

 

Figure 10 (a) Transmission of unicast data from Node N1 to Node N32 in SwiftNoC, which shows 

receiver selection wavelength 36 in receiver selection slot (R Slot) of the MWMR waveguide; (b) 

Multicast of data from Node N1 to Nodes N18, N24, N26, and N32 in SwiftNoC, which shows 

respective receiver selection wavelengths 22, 28, 30, and 36 in receiver selection slot (R Slot) of 

the MWMR waveguide. 
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2.3.3. IMPROVED MWMR CONCURRENT TOKEN STREAM ARBITRATION IN 

SWIFTNOC 

As discussed in the previous subsection, UltraNoC uses separate wavelengths for arbitration 

(4 wavelengths 0 – 3) and data transfer (64 wavelengths 4 – 67). Further from Figure 8 it can 

be observed that arbitration slots (Ai+1) and data slots (Di) in UltraNoC are adjacent to each other. 

We propose to overlap arbitration and data slots in our improved SwiftNoC architecture. This 

overlapping mechanism effectively reduces the number of slots for each data transfer from 3 in 

UltraNoC to 2 in the SwiftNoC architecture. Figure 9 illustrates the SwiftNoC version of the timing 

diagram for UltraNoC shown in Figure 8. Figure 9(a) shows an example of the distribution of time 

slots across 4 MWMR waveguide groups, with overlapped arbitration and data slots. Further, 

Figure 9(b) shows the position of different slots in the MWMR waveguide group W1 at time cycle 

3 for the example in Figure 9(a) with arbitration and data slots overlapped. The SwiftNoC 

architecture improves utilization of MWMR waveguides compared to the MWMR waveguide 

utilization in UltraNoC, which results in an increase in available bandwidth and reduced average 

packet latency in comparison to the UltraNoC architecture. 

 

2.3.4. MULTICASTING OF MESSAGES IN SWIFTNOC 

In CMP’s with cache coherency support, multicast traffic makes up a significant portion of 

total network traffic. For example, in the MOESI cache coherence protocol, when a shared block 

is invalidated, an invalidate message must be multicast to all sharers of that particular shared block. 

The UltraNoC architecture presented in the subsections 2.3.1 and 2.3.2 will translate these 

multicast messages into several unicast messages and send them to their respective destination 

nodes. These unicast messages cause network congestion and may reduce its performance [70].  
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In SwiftNoC, we avoid such repeated unicast messages by providing multicasting support in 

its MWMR waveguides. Unlike Corona [11] and Firefly [12] architectures where all multicast 

messages are broadcast and transmitted to all nodes in the network, SwiftNoC enables multicasting 

to specific nodes in the network. This is realized as follows: each sending node in SwiftNoC, after 

removal of the arbitration wavelength from the arbitration slot, releases multiple receiver selection 

wavelengths corresponding to multiple receiving nodes in the next receiver selection slot (in 

contrast, in UltraNoC, a sender node, after removal of the arbitration wavelength from the 

arbitration slot, releases the wavelength of a single receiving node in the next receiver selection 

slot). In the immediately following data slot, the sending node modulates data which needs to be 

multicast to different receivers. To enable photonic multicast of data in MWMR waveguides, we 

partially de-tune the ring detectors from their resonating wavelengths [71], such that a portion of 

the photonic energy continues on in the MWMR waveguide to be absorbed in subsequent ring 

detectors. Multicasting thus requires higher laser power compared to unicasting so as to maintain 

sufficient photonic signal intensity for detection in the worst case, i.e., for the detectors of the last 

receiving node which receives the multicast data. Laser power injected into the MWMR 

waveguide for multicasting operation in SwiftNoC does not change with the number of nodes that 

need to receive the multicast message. We designed the laser source for the worst-case power loss, 

which occurs when all the receiving nodes receive a multicast message from a sending node. We 

have considered this extra laser power overhead when presenting energy consumption results for 

the SwiftNoC architecture in our results section. In this chapter, we do not consider optimizing 

laser power through a laser power management scheme. However, it is possible to integrate 

previously proposed laser power management schemes [14] [39] with our work, as these works 

are orthogonal to our work. 
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Figure 10(a) and (b) illustrate the difference between transmission of unicast and multicast 

messages in our SwiftNoC architecture. Suppose N1 in cluster C0 needs to multicast data to N18, 

N24, N26, and N32 whose corresponding receiver selection wavelengths are 22, 28, 30, and 36 

respectively. N1 first grabs arbitration wavelength 0 which is dedicated to cluster C0, in the 

arbitration slot. N1 then modulates in the next receiver selection slot, such that only 22, 28, 30, 

and 36 are made available by removing all the wavelengths except 22, 28, 30, and 36 (using its 

modulators) in that receiver selection slot. At the receiver end at N18, N24, N26, and N32, the 

detectors for wavelengths 22, 28, 30, and 36 respectively are switched on when these nodes are 

in the receiver selection slot. At N18, once 22 is detected in the receiver selection slot, the node 

prepares to receive data in the next data slot by partially de-tuning the ring detectors from its 

resonating wavelengths in that node. The partial de-tuning of ring detectors of N18 will remove a 

portion of light available in the MWMR waveguide leaving the remaining portion of light for the 

other detectors to absorb. Similarly, on detection of 28, 30, and 36, nodes N24, N26, and N32 

respectively prepare to receive data in the next data slot. Our SwiftNoC architecture does not 

differentiate between unicast and multicast transmissions, as it always employs partial detuning to 

receive both unicast and multicast messages. To further improve channel utilization in the 

SwiftNoC architecture we adapt the inter-cluster bandwidth transfer mechanism from UltraNoC, 

as described in in the next subsection.       

 

2.3.5. INTER-CLUSTER BANDWIDTH EXCHANGE IN SWIFTNOC 

SwiftNoC support inter-cluster bandwidth transfers to further improve channel utilization 

and overall performance. As an example, if cluster C0 does not need to transfer data, it transfers 

its bandwidth to a subsequent cluster C1. Similarly, any cluster can transfer its unused bandwidth 
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to the subsequent clusters. Figure 11 presents an overview of the bandwidth transfer technique. 

The last node in each cluster is provisioned with an extra ring modulator that is capable of injecting 

the arbitration wavelength of the next cluster. Whenever a ring detector of the last node of a cluster 

detects its own arbitration wavelength, and if this node does not have data to transfer, this indicates 

a case where the cluster has not used its bandwidth.  

 

 
 

Figure 11 Bandwidth transfer technique: a cluster can transfer its unused bandwidth to the next 

cluster by absorbing its own arbitration wavelength and releasing arbitration wavelength of next 

cluster. 

 

Figure 11 illustrates an example of the bandwidth transfer process. Clusters C0 – C3 are 

assigned with arbitration wavelengths highlighted with green, yellow, blue, and red respectively. 

The last node in the first three clusters (N15, N31, and N47) is shown with an extra ring modulator 

that facilitates the injection of the arbitration wavelength of the next cluster. For this example, 

nodes in C0 do not need to transfer any data in the current cycle. Then N15, which is the last node 

in C0 removes its clusters’ arbitration wavelength (green) from the arbitration slot and injects the 
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arbitration wavelength of C1 (yellow) so that nodes in C1 can use this arbitration slot for sending 

data in the next available data slot. The bandwidth exchange mechanism performs arbitration 

wavelength conversion in an arbitration slot in one cycle, thus it has minimal delay/control 

overhead. The presence of additional microrings for bandwidth transfer mechanism does lead to 

more through losses on the MWMR waveguide which ultimately increases total laser power 

dissipation. This increase in laser power is included in the laser power dissipation of the 68 DWDM 

MWMR waveguide (PMWMR-MCT) in Table 3. Figure 11 also shows counters at nodes N15, N31, N47, 

and N63 that are used to count the number of arbitration wavelength conversions over a time 

interval. The next subsection presents more details about the need for these counters. 

 

2.3.6. CLUSTER PRIORITY ADAPTATION WITH LSWC RECONFIGURATION 

SwiftNoC also supports runtime alteration of allocated bandwidth to each cluster, to closely 

track changing application bandwidth needs, by altering the number of arbitration slots dedicated 

to each cluster (i.e., cluster priority). This is essential because while our bandwidth transfer 

technique can transfer unused arbitration slots from one cluster to another in the direction of the 

concurrent arbitration token stream flow (e.g., C0 to C1), it lacks the ability to transfer bandwidth 

in the opposite direction (e.g., C1 to C0). To overcome this limitation, we design a cluster priority 

adaptation mechanism to more comprehensively manage cluster bandwidth allocations over time. 

This mechanism also helps to minimize laser power by intelligently reducing the total number of 

injected arbitration slots for runtime scenarios with low bandwidth (traffic) requirements. The 

cluster priority adaptation technique consists of 3 main steps, they are: 

Step 1: Determination of wavelength conversion count: Each cluster C0 – C3 has associated weights 

W0 – W3, which determine the proportion of arbitration slots (and consequently bandwidth or 
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priority) assigned to the cluster. Initially, these weights can be set to be equal, i.e., 0.25 each. At 

runtime, whenever the last node in a cluster performs a wavelength conversion from its current 

cluster arbitration wavelength to the next cluster arbitration wavelength, a counter (shown in 

Figure 11) is incremented. This conversion event represents the case where an unused arbitration 

slot (bandwidth) is transferred from one cluster to another. Over a time interval T, the recorded 

wavelength conversion counts WCC0 – WCC3 from each cluster are then used to determine the 

unused bandwidth for each cluster. 

Step 2: Calculation of excess arbitration slots: The wavelength conversion count values of 

different clusters show the aggregate number of excess arbitration slots, which includes excess 

arbitration slots of the present cluster along with the excess arbitration slots of predecessor clusters. 

The excess arbitration slots for the ith cluster (ESi) are calculated using Eq. (1) shown below, by 

subtracting the cluster wavelength conversion count of the predecessor cluster (WCCi-1) from the 

wavelength conversion count of the cluster under consideration (WCCi). ESi values can also be 

negative, when a cluster consumes a greater number of arbitration slots (made available by 

predecessor clusters) than its allocated arbitration slots. Such a cluster has a deficit of arbitration 

slots. 

  � � = {����,                     � =���� −����− , � >                                            (1) 

Step 3: Setting new weight (priority) for each cluster: Based on the estimation of excesses and 

deficits in arbitration slots assigned across clusters, this final step attempts to adjust weight values 

of each cluster to eliminate the excesses and deficits. To determine the new weight of the ith cluster 

Wi(next) for the upcoming time interval, we must subtract the excess weight EWi of the cluster 

from its current weight Wi(current). We can calculate EWi by dividing the excess arbitration slots 
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of the ith cluster (ESi), calculated in Eq. (1), by the total number of arbitration slots released in the 

time interval T, which we denote as K. The equations below show these calculations: 

  � =  /                                                            (2) 

  � � =  � ��� − �                                              (3) 

Based on the values of the new weights, the LSWC changes the distribution of arbitration 

wavelengths injected for the next time interval T, such that a cluster with a higher weight will 

receive more arbitration wavelengths, presenting it with more opportunities to use the waveguides 

for data transfer. These weight values are communicated to all clusters, so that arbiters can adjust 

their local counters to match the new arbitration slot profile in the waveguides.   

 

2.4. EXPERIMENTS 

2.4.1. EXPERIMENTAL SETUP 

To evaluate our proposed SwiftNoC architecture, we compared it to a traditional electrical 

mesh (EMesh) based NoC as well as to four state-of-the-art photonic crossbar NoCs: UltraNoC 

with concurrent token stream arbitration [26], Flexishare with token stream arbitration [13], Firefly 

with reservation-assisted single-write-multiple-reader (R-SWMR) data waveguides [12], and 

Corona with an enhanced token-slot arbitration [67]. We modeled and simulated the architectures 

at a cycle-accurate granularity with a SystemC-based NoC simulator, for two CMP platform 

complexities: 64-core and 256-core. We used random synthetic traffic for preliminary analysis of 

the proposed architectures. Subsequently, we used the PARSEC benchmark suite [43] to create 

multi-application workloads, with clusters running parallelized versions of different benchmarks 

from this suite, for more detailed comparisons. 
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Table 2 Memory intensity classification of PARSEC benchmarks 

 

Application  Representation Workload Type 

Blackscholes BS Compute intensive 

Bodytrack BT Compute intensive 

Vips VI Compute intensive 

Dedup DU Compute intensive 

Freqmine FQ Hybrid  

Ferret FR Hybrid  

Fluidanimate FA Hybrid  

X264 X264 Hybrid  

Streamclusters SC Memory intensive 

Canneal CA Memory intensive 

Facesim FS Memory intensive 

Swaptions SW Memory intensive 

 

Table 2 shows the PARSEC benchmarks we considered, classified into three categories 

according to their memory intensities. Compute intensive benchmarks spend most of the time 

computing and less time communicating with memory; whereas memory intensive applications 

spend a larger portion of their execution time communicating with memory and less time 

computing within cores. Hybrid intensity benchmarks demonstrate both compute and memory 

intensive phases. We created 12 multi-application workloads from these benchmarks. Each 

workload combines 4 benchmarks, and the memory intensity of the workloads varies across the 

spectrum, from compute intensive to memory intensive. As an example, the SC-BT-BS-VI 

workload combines parallelized implementations of Streamclusters (SC), Bodytrack (BT), 

Blackscholes (BS), and Vips (VI), and executes them in clusters C0, C1, C2, and C3 respectively. 

Each parallelized benchmark is executed on a group of 16 cores and 64 cores, in the 64-core and 

256-core CMP platforms, respectively. A system-level simulation was performed with the open-

source GEM5 [72] architectural simulator with 64 and 256 ARM-based cores running parallelized 

PARSEC benchmarks, to generate traces that were fed into our cycle-accurate NoC simulator. 

More details about cache sizes, cache associativity, cache coherence, issue policy, memory 
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controllers, and DRAM sizes which we have considered to generate these traces are presented in 

Table 1. We set a “warm-up” period of 100-million instructions and then captured traces for the 

subsequent 1-billion instructions. Than a trace-driven simulation was performed with our cycle-

accurate SystemC based NoC simulator. 

 

Table 3 Energy and losses for photonic devices [73], [74] 

 

Energy consumption type Energy 

Edynamic 0.42 pJ/bit 

Elogic−dyn 0.18 pJ/bit 

Static power per waveguide group Power  

PMWMR (with 64 DWDM) 3.73 W 

PMWMR-MCT (with 68 DWDM) 5.32 W 

PMWMR-MCT (with 64 DWDM) 4.95 W 

PMWSR (with 64 DWDM) 2.35 W 

PSWMR (with 64 DWDM) 1.15 W 

Photonic loss type Loss (in dB) 

Microring through 0.02 

Waveguide propagation per cm 1 

Waveguide coupler/splitter 0.5 

Chip coupling 1 

Waveguide bending loss 0.005 per 900 

 

Table 4 Photonic hardware comparison 

 

Architecture  Waveguides Ring 

Modulators 

Ring 

Detectors 

PNoC Area (in mm2) 

SwiftNoC-8 32 131,640 131,584 24.50 

SwiftNoC-16 64 263,280 263,168 49.01 

SwiftNoC-32 128 526,560 526,336 98.01 

UltraNoC-8 32 131,640 131,584 24.51 

UltraNoC-16 64 263,280 263,168 49.01 

UltraNoC-32 128 526,560 526,336 98.01 

FLEXISHARE 33 131,080 131,648 24.58 

FIREFLY 64 4,096 28,672 10.25 

CORONA 257 1,032,256 20,416 113.47 
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Table 5 Properties of various PNoC Architectures 

 

Architecture  Waveguide 

Type 

Arbitration Scheme Multicast 

Ability  

Packet 

Size 

SwiftNoC-8 MWMR Improved Concurrent Token Stream  Yes 512 bits 

SwiftNoC-16 MWMR Improved Concurrent Token Stream  Yes 512 bits 

SwiftNoC-32 MWMR Improved Concurrent Token Stream  Yes 512 bits 

UltraNoC-8 MWMR Concurrent Token Stream  No 512 bits 

UltraNoC-16 MWMR Concurrent Token Stream  No 512 bits 

UltraNoC-32 MWMR Concurrent Token Stream  No 512 bits 

FLEXISHARE MWMR 2-Pass Token Stream No 512 bits 

FIREFLY SWMR - Yes 512 bits 

CORONA MWSR Fair Token Slot No 512 bits 
 

 

We targeted 32nm and 22nm process technologies for the 64-core and 256-core CMPs, 

respectively. Based on the geometric calculation of the waveguides for a 20mm×20mm chip 

dimension, we estimated the time needed for light to travel from the first to the last node in a single 

pass of the MWMR waveguide group in SwiftNoC as 4 cycles at 2.5 GHz clock frequency. The 

same clock and 4 cycle round trip time is also applicable to the waveguides in the UltraNoC, 

Flexishare, Firefly, and Corona photonic crossbar NoCs. Throughout our analysis we use a flit size 

of 64 bits for EMesh and a total packet size of 512 bits. Further we also consider a similar packet 

size of 512 bits for all photonic NoC architectures. We consider data modulation at both clock 

edges to enable simultaneous transfer of 512 bits in a single cycle, in the SwiftNoC, UltraNoC, 

Flexishare, Firefly, and Corona architectures. We presented architectural information about all the 

PNoC architectures used in our analysis in Table 5. 

The static and dynamic energy consumption of electrical routers is based on results obtained 

from the open-source DSENT tool [75]. Energy consumption of various photonic components for 

all the photonic NoC architectures are adapted from photonic device characterizations in line with 

state-of-the-art proposals [30] [73] [74] and shown in Table 3. Here Edynamic is the energy/bit for 
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modulators and photodetectors and Elogic−dyn is the energy/bit for the driver circuits of modulators 

and photodetectors. PMWMR, PMWSR, and PSWMR are the static power consumption of an MWMR, 

MWSR, and SWMR waveguide group, respectively, which includes the power overhead of ring 

resonator thermal tuning. The static power consumption of each MWMR waveguide group with 

multicasting enabled in the SwiftNoC architecture is shown as PMWMR-MCT. Further we have 

considered a power dissipation overhead of 0.12W and 0.1W in the electrical circuits of the 68 and 

64 DWDM MWMR-MCT waveguides respectively, to realize partial detuning while still 

maintaining acceptable bit-error-rate (BER) as low as 10-9, based on the estimation from the prior 

work [71]. We consider a ring heating power of 15 µW per ring and detector responsivity of 0.8 

A/W [73].  

 

 

                                                         (a)                                    (b) 

 

Figure 12 Energy-delay-product (EDP) comparison for SwiftNoC-8 and SwiftNoC-16 in a 64-

core CMP with time interval window sizes (a) 100-10000 cycles (b) 100-1000 cycles (zoomed 

version of Figure 12(a)). 

 

To compute laser power consumption, we calculated photonic loss in components, which 

sets the photonic laser power budget and correspondingly the electrical laser power. Lastly, based 
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on our gate-level analysis, area and power overheads are estimated to be 0.011mm2 and 0.023W 

respectively for the electrical circuitry (e.g., adders, multipliers, comparators) in the LSWC for our 

priority adaptation mechanism for SwiftNoC at 32nm.  We set the reconfiguration delay overhead 

in SwiftNoC to be 20 cycles to account for the time to transfer wavelength conversion counter 

values from each cluster to the LSWC, time to determine new priority weights of each cluster, and 

time to update these values in the arbiters in each cluster. 

 

2.4.2. EXPERIMENTAL RESULTS 

2.4.2.1. SENSITIVITY ANALYSIS TO DETERMINE OPTIMAL RECONFIGURATION 

WINDOW SIZE 

Our first set of experiments presents a sensitivity analysis to explore the optimal dynamic 

bandwidth and priority reconfiguration time interval window size in SwiftNoC. We explore two 

variants of our architecture: SwiftNoC-8 which uses 8 waveguide groups and SwiftNoC-16 which 

uses 16 waveguide groups. Figure 12(a) shows the energy-delay-product (EDP) for three multi-

application PARSEC workloads in SwiftNoC-8 and SwiftNoC-16, with window lengths varying 

from 100 to 10000 cycles. In this analysis to compute EDP we have considered energy 

consumption of PNoC only (core + cache energy consumption is not considered in our analysis). 

The three workloads were chosen to possess high, medium, and low aggregate memory intensity, 

to explore the impact of varying memory intensities on window size. At a particular window size, 

this figure shows higher EDP for memory intensive workloads compared to compute intensive 

workloads, as memory intensive workloads route more packets in SwiftNoC, which increases their 

dynamic energy consumption and average packet latency (due to increased network congestion), 

thereby increasing overall EDP. Also, for both memory and compute intensive workloads, a large 
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window size should intuitively result in lower reconfiguration overhead but will also result in less 

reactivity to changing application traffic demands which ultimately increases average packet 

latency and EDP as well; while a small window size will result in higher reconfiguration overhead 

with higher energy consumption in the reconfiguration hardware and increased EDP, but better 

adaptivity to changing application traffic. A careful observation of the plot in Figure 12 shows that 

for compute intensive workloads (i.e., DU-BT-BS-VI) EDP is lower for a larger window size, 

whereas for memory intensive workloads (i.e. SC-FS-SW-CA) EDP is lower at smaller window 

sizes. However, there is an overlap region from 300 cycles to 750 cycles that can be observed from 

Figure 12(b) (which is the zoomed version of Figure 12(a) between window sizes 100-1000 cycles) 

where EDP is low for both memory and compute intensive workloads. Additionally, results for 

average throughput and latency also indicate worsening performance beyond 750-1000 cycles. 

Thus, we set reconfiguration time interval window size in SwiftNoC to 300 cycles, to balance 

reconfiguration overhead and performance. Our analysis of the reconfiguration time interval 

window size for UltraNoC also indicates an optimal EDP at around 300 cycles, thus we also set a 

300-cycle reconfiguration time interval window size for UltraNoC. 

 

2.4.2.2. RESULTS OF 64-CORE SYSTEM FOR SYNTHETIC TRAFFIC 

Our second set of experiments targets a 64-core CMP platform with a synthetic benchmark 

that utilizes a uniform random traffic pattern. In uniform random traffic, cores arbitrarily generate 

packets to random destination cores in the CMP. Cache coherency or multicast traffic is not 

considered in this analysis with random traffic. We compare network throughput, average packet 

latency, and EDP of SwiftNoC with the electrical mesh (EMesh), UltraNoC with concurrent token 

arbitration [26], Flexishare with token stream arbitration [13], Firefly with reservation-assisted 
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single write multiple reader (R-SWMR) data waveguides [12], and Corona with token-slot 

arbitration [67]. Later in this section we also present comparison results of SwiftNoC architecture 

(SwiftNoC-MCT) for various percentages of multicast traffic to the total traffic of the network. 

 

 

 
              (a)                                                                (b) 

 

Figure 13 (a) Average throughput, (b) average latency comparison of SwiftNoC-8 and SwiftNoC-

16 with UltraNoC-8, UltraNoC-16, Flexishare, Firefly, Corona, and EMesh architectures for a 64-

core CMP. Results are shown for uniform random traffic. 

 

The average throughput for uniform random traffic in the 64-core CMP is shown in Figure 

13(a). It can be observed that SwiftNoC with 8 MWMR waveguides (SwiftNoC-8) has 4.2× and 

1.7× higher throughput compared to Flexishare and UltraNoC-8 with the same number of MWMR 

data waveguides. Even though Flexishare uses MWMR waveguides and time division 

multiplexing (TDM) as in SwiftNoC, there are significant differences between these architectures. 

In Flexishare, arbitration wavelengths corresponding to each MWMR data waveguide are injected 

serially into an arbitration waveguide. A node that grabs a token in the arbitration waveguide gets 

exclusive access to the corresponding MWMR data waveguide which leads to underutilization of 

the MWMR waveguide. In contrast, SwiftNoC-8 uses improved concurrent token stream 
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arbitration with TDM, such that each MWMR waveguide with multiple arbitration, receiver 

selection, and data slots can be accessed concurrently by multiple nodes to facilitate simultaneous 

transfer of multiple packets to improve MWMR waveguide utilization. Moreover, unlike 

SwiftNoC, Flexishare does not support the priority reconfiguration and bandwidth exchange 

mechanisms. Further, compared to UltraNoC, SwiftNoC uses an improved version of concurrent 

token stream arbitration which increases the data rate in MWMR waveguides by overlapping 

arbitration and data slots. This overlapping mechanism effectively reduces the number of slots for 

each data transfer from 3 in UltraNoC to 2 in the SwiftNoC architecture and increases throughput 

for SwiftNoC-8 compared to UltraNoC-8. The throughput of SwiftNoC-8 is 2.8× higher than the 

throughput of EMesh, as our architecture uses faster silicon photonic waveguides for data 

communication compared to slower electrical links. SwiftNoC-8 also has 2.2× higher throughput 

compared to Firefly. This is because SwiftNoC-8 for a 64-core CMP is an all optical MWMR 

crossbar, which transfers all of its data at near light speed whereas Firefly is a hybrid photonic 

network, where a significant portion of data traverses through slower electrical links. The 

SwiftNoC configurations with 16 waveguide groups (SwiftNoC-16) with approximately twice the 

number of microring resonators in SwiftNoC-8 provides even better throughput than the UltraNoC-

16 (with 16 MWMR waveguide groups), Firefly, Flexishare, and EMesh architectures.  SwiftNoC-

16 has 1.6×, 8.4×, 4.5×, and 5.6× greater throughput compared to UltraNoC-16, Flexishare, 

Firefly, and EMesh respectively for the 64-core CMP. 

Figure 13(a) also shows that Corona has greater throughput compared to SwiftNoC-8. This 

is because Corona has 64 MWSR waveguides and an MWMR arbitration waveguide to facilitate 

communication between 64 cores, which utilizes approximately four times the number of 

microring resonators compared to SwiftNoC-8 (as shown in  
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Table 4 earlier). However, SwiftNoC with 16 waveguide groups (SwiftNoC-16) and 

approximately half the number of microring resonators of Corona has 1.9× better throughput 

compared to Corona. SwiftNoC-16 uses MWMR waveguides with improved concurrent token 

stream arbitration and achieves higher data rates through simultaneous data transfers using TDM, 

which is not possible with the MWSR waveguides used in Corona. The enhanced token-slot 

arbitration [67] in Corona requires a fixed time gap between two arbitration slots to set up data for 

transmission, which reduces available time slots to send data.  

From Figure 13(b) it can be seen that in terms of average latency, SwiftNoC-8 and SwiftNoC-

16 have better performance compared to Flexishare and Firefly. Flexishare with its inefficient 

arbitration scheme has underutilized MWMR waveguides which increases overall packet latency. 

In contrast, SwiftNoC with an improved concurrent token stream arbitration mechanism, 

bandwidth transfer mechanism, and cluster priority adaptation mechanism increases MWMR 

waveguide utilization and reduces wait time for packets, which in turn reduces latency. Further, in 

the reservation assisted Firefly architecture, a sender needs extra cycles to broadcast reservation 

flits to all the destination nodes, so that destination node can tune in on the corresponding SWMR 

data waveguides to receive the data in the following cycles. These extra cycles lead to lower data 

rates in SWMR waveguides of the Firefly architecture and increase its average latency compared 

to SwiftNoC. The improved concurrent token stream arbitration scheme used in SwiftNoC enables 

higher communication parallelism compared to token based arbitration in Corona, which explains 

the lower latency in SwiftNoC compared to Corona. Lastly, SwiftNoC has lower latency compared 

to UltraNoC with the same number of waveguides, as the improved concurrent token stream 

arbitration in SwiftNoC increases the data rate in its MWMR waveguides by overlapping 

arbitration and slots, which helps reduce average latency.  
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Figure 14 Energy-delay-product (EDP) comparison of SwiftNoC-8 and SwiftNoC-16 with 

UltraNoC-8, UltraNoC-16, Flexishare, Firefly, Corona, and EMesh architectures for a 64-core 

CMP. Results are shown for uniform random traffic with packet injection rate of 0.7. 

 

Figure 14 summarizes the EDP of our SwiftNoC architectures with UltraNoC-8, UltraNoC-

16, Flexishare, Firefly, Corona, and EMesh for the uniform synthetic traffic pattern. These results 

are generated for a packet injection rate of 0.7, for which the throughputs for all of these compared 

architectures are saturated. Energy consumption includes static, dynamic and laser energy for 

every architecture. From these results it can be seen that SwiftNoC-8 has 49%, 57%, 91%, and 

88%, and SwiftNoC-16 has 17%, 30%, 85%, and 81% lower EDP compared to Flexishare, Firefly, 

Corona, and EMesh, respectively. Corona has more EDP compared to SwiftNoC-8 and SwiftNoC-

16 as it uses more number of microring resonators as shown in  

Table 4, which in turn leads to more static energy consumption. The lower EDP of SwiftNoC-

8 and SwiftNoC-16 compared to Firefly is due to higher energy consumption in the electrical 

network of the Firefly architecture. Although SwiftNoC-8 has similar number of microring 

resonators compared to Flexishare, the improvements in average latency for SwiftNoC-8 due to 

improved sharing contribute to its lower EDP. SwiftNoC-8 also has 21% and 58% lower EDP 

compared to UltraNoC-8 and UltraNoC-16 respectively and SwiftNoC-16 has 31% lower EDP 
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compared to UltraNoC-16. Despite higher dynamic power due to an increase in its data rate 

(increase in number of data modulation and detection events), SwiftNoC has higher EDP savings 

compared to UltraNoC with similar number of MWMR waveguides because of overlapped 

arbitration and data slots which reduce average packet latency and EDP. SwiftNoC-8 also has half 

the number of microring resonators compared to UltraNoC-16, which in turn results in higher 

relative static energy consumption and EDP for UltraNoC-16. 

As a final set of experiment with synthetic traffic we present average throughput, average 

packet latency, and EDP for the SwiftNoC architecture for various percentages of multicast traffic 

to total traffic in the network. The average throughput for uniform random traffic for a 64-core 

CMP with SwiftNoC having 16 MWMR waveguides is shown in Figure 15(a) for 10% (SwiftNoC-

16-MCT-10), 20% (SwiftNoC-16-MCT-20), 30% (SwiftNoC-16-MCT-30), 40% (SwiftNoC-16-

MCT-40), and 50% (SwiftNoC-16-MCT-50) of multicast traffic out of the total traffic in the 

network. It can be observed that with increase in multicast traffic percentage there is a monotonic 

increase in throughput for SwiftNoC. From Figure 15(b), for average latency, SwiftNoC-16-MCT-

50 has lower latency compared to SwiftNoC-16-MCT-40, SwiftNoC-16-MCT-30, SwiftNoC-16-

MCT-20 and SwiftNoC-16-MCT-10. With the increase in multicast traffic in the network, SwiftNoC 

enables sharing of photonic signals during multicast with partial de-tuning of microring resonators, 

which allows multiplexing of data streams. This in turn increases throughput and reduces latency 

with simultaneous delivery of packets to their respective destinations, and shows the adaptability 

of the proposed SwiftNoC architecture for higher multicast traffic rates. 
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                               (a)                                                                   (b) 

 

Figure 15 (a) Average throughput (b) average latency comparison of SwiftNoC-16 with random 

multicast traffic having 10% (SWIFTNoC-MCT-10), 20% (SWIFTNoC-MCT-20), 30% 

(SWIFTNoC-MCT-30), 40% (SWIFTNoC-MCT-40), and 50% (SWIFTNoC-MCT-50) of multicast 

messages for a 64-core CMP. 
 

 
 

Figure 16 Energy-delay-product (EDP) comparison of SwiftNoC-16-MCT-10, SwiftNoC-16-

MCT-20, SwiftNoC-16-MCT-30, SwiftNoC-16-MCT-40, and SwiftNoC-16-MCT-50 for a 64-core 

CMP. Results are shown for uniform random traffic with different percentages of multicast traffic 

at packet injection rate of 0.95. 

 

Figure 16 shows the EDP comparison between SwiftNoC-16-MCT-10, SwiftNoC-16-MCT-

20, SwiftNoC-16-MCT-30, SwiftNoC-16-MCT-40, and SwiftNoC-16-MCT-50 for a 64-core CMP 

for a uniform synthetic traffic pattern. These results are generated for a packet injection rate of 

0.95, where the throughput for all of these compared architectures is saturated. From these results 

it can be seen that SwiftNoC-16-MCT-50 has 50%, 38%, 32%, and 18% lower EDP compared to 

SwiftNoC-16-MCT-10, SwiftNoC-16-MCT-20, SwiftNoC-16-MCT-30, and SwiftNoC-16-MCT-40. 
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Although SwiftNoC-16-MCT-50 has similar number of microring resonators as SwiftNoC-16-

MCT-10, SwiftNoC-16-MCT-20, SwiftNoC-16-MCT-30, and SwiftNoC-16-MCT-40, but with 

higher multicast traffic in the network, SwiftNoC-16-MCT-50 performs more number of multicasts 

though partial de-tuning of microring resonators and significantly increases the delivery rate of 

packets, which reduces overall average latency and decreases EDP. 

 

2.4.2.3. EXPERIMENTAL ANALYSIS WITH 64-CORE CMP  

Our next set of experiments target a 64-core CMP platform and compare network 

throughput, average packet latency, and energy-per-bit (EPB) of SwiftNoC with the electrical mesh 

(EMesh), UltraNoC, Flexishare, Firefly, and Corona architectures.  

Figure 17(a)-(c) show the results of this study, with all results normalized with respect to the 

EMesh results. From the throughput comparison in Figure 17(a), it can be observed that, not 

surprisingly, all photonic NoCs provide better throughput than EMesh, due to the presence of 

higher bandwidth photonic links. Further, SwiftNoC when compared to EMesh, UltraNoC, 

Flexishare, Firefly, and Corona has even better throughput improvements for PARSEC benchmark 

traffic than with synthetic traffic. From Figure 17(a) it can be seen that SwiftNoC-8 has 7.8× greater 

throughput compared to EMesh, as well as 9.1× and 2.3× greater throughput compared to 

Flexishare and UltraNoC-8, with the same number of MWMR waveguides. In Flexishare, as 

explained in the previous subsection token stream arbitration hinders utilization of MWMR 

waveguides; whereas in SwiftNoC, multiple arbitration, reservation and data slots are available 

concurrently in an MWMR waveguide, such that each MWMR waveguide can be accessed 

simultaneously by multiple nodes. The improved concurrent token stream arbitration which 

reduces the number of time slots for each data transfer and multicasting which enables 
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simultaneous transfer of multiple messages contribute to increase in the throughput of SwiftNoC-

8 compared to UltraNoC-8. SwiftNoC-8 also provides 5.1× higher throughput than Corona. This 

is because of instances in Corona, where multiple sender nodes attempt to communicate with a 

single receiver node (e.g., memory controller). Such instances result in the sender nodes attempting 

to access the single MWSR waveguide connected to the receiver, creating a significant imbalance 

among MWSR waveguides, with the other waveguides being underutilized while packets get 

queued waiting for the waveguide connected to the receiver. SwiftNoC avoids such an imbalance 

with its use of more efficient MWMR waveguides and improved arbitration. SwiftNoC-8 also 

provides 4.6× more throughput than Firefly. SwiftNoC for a 64-core CMP is an all optical MWMR 

crossbar, which transfers data entirely over photonic links and thus has increased throughput 

compared to Firefly which is a hybrid photonic network, where a significant portion of data 

traverses through slower electrical links. The bandwidth transfer mechanism and cluster priority 

adaption mechanism in SwiftNoC also increase available bandwidth and contribute to increase in 

throughput. 

SwiftNoC with 16 MWMR waveguide groups (SwiftNoC-16) with approximately twice the 

number of microring resonators of SwiftNoC-8, provides even better throughput than the other 

architectures. SwiftNoC-16 has 2.2×, 17.8×, 9.1×, 9.9×, and 14.2× higher throughput compared to 

UltraNoC-16, Flexishare, Firefly, Corona and EMesh, respectively. The improvement is somewhat 

higher for memory intensive workloads than for compute intensive workloads. The large 

throughput improvement for SwiftNoC is a direct consequence of improved concurrent token 

stream arbitration, multicasting, avoiding unused bandwidth by transferring it to cores that need it 

the most, and using the bandwidth transfer and priority alteration mechanisms at runtime. 
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(a) 

 

(b) 

 

(c) 

 

Figure 17 (a) Average throughput (b) average packet latency (c) average energy-per-bit (EPB) 

comparison of SwiftNoC-8 and SwiftNoC-16 with other architectures for a 64-core CMP. Results 

are shown for multi-application PARSEC workloads. 
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These mechanisms also improve the average packet latency in SwiftNoC as shown in Figure 

17(b), by reducing the time spent waiting for access to the photonic waveguides.  On average 

SwiftNoC-8 has 39.8%, 55.7%, 59.7%, 65.1%, and 65.3% lower average packet delay over 

UltraNoC-8, Flexishare, Firefly, Corona and EMesh, respectively for the different multi-

application workloads. On the other hand, SwiftNoC-16 has 45.1%, 63.9%, 68.4%, 72.1%, and 

72.4% lower average packet delay over UltraNoC-16, Flexishare, Firefly, Corona and EMesh, 

respectively. From these results, we can surmise that average latency improvements of SwiftNoC 

over UltraNoC, Flexishare, Firefly, Corona and EMesh with benchmark traffic and synthetic traffic 

follow similar trends. 

Figure 17(c) shows the EPB comparison between the architectures. It can be observed that 

on average SwiftNoC-8 has 34%, 25%, 59%, 72%, 90%, and 89%, and SwiftNoC-16 has 47%, 

38%, 67%, 77%, 92%, and 91%, lower EPB compared to UltraNoC-8, UltraNoC-16, Flexishare, 

Firefly, Corona, and EMesh respectively. Most of the energy in the photonic architectures was 

consumed in the form of static energy. From  

Table 4 presented earlier, it can be observed that SwiftNoC-8 has 75% lesser number of MRs, 

whereas SwiftNoC-16 has 50% lesser number of MRs compared to Corona. This allows SwiftNoC-

8 and SwiftNoC-16 to have lower EPB compared to Corona. Further SwiftNoC-8 with similar 

number of MRs as Flexishare maintains lower EPB with more efficient utilization of its MWMR 

waveguides through its concurrent token stream arbitration. On the other hand, despite SwiftNoC-

16 using more hardware than Flexishare, it has lower EPB compared to Flexishare because of more 

efficient arbitration and multicasting, the bandwidth transfer mechanism, and priority alteration 

mechanism. Firefly has higher EPB even though it uses lesser number of microring resonators 

compared to SwiftNoC-8 and SwiftNoC-16. Firefly being a hybrid network, consumes most of its 
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energy in the electrical network and this in turn increases overall EPB compared to the SwiftNoC 

architectures. All the variants of our SwiftNoC architecture have lower EPB compared to EMesh, 

as our architectures use energy efficient photonic links for data transfer instead of power hungry 

electrical links. Although SwiftNoC-8 and SwiftNoC-16 use power hungry multicast MWMR 

waveguides (see Table 3), the increase in data rate due to efficient multicasting and improved 

concurrent token stream arbitration decreases EPB of these architectures compared to different 

variations of the UltraNoC architecture. 

 

2.4.2.4. SCALABILITY ANALYSIS WITH 256-CORE CMP  

Our final set of experiments explores the scalability of SwiftNoC. We considered a larger 

256-core CMP platform by increasing the core concentration in each tile to four to enable higher 

traffic injection into the network for this scalability study. We evaluated NoC throughput, average 

packet latency, and EPB for all photonic NoCs. In addition to SwiftNoC-8 and SwiftNoC-16, we 

also considered a SwiftNoC-32 variant of our architecture with 32 MWMR waveguide groups. 

Similarly, we also considered an additional UltraNoC-32 variant of the UltraNoC. 

Figure 18(a)-(c) show the results of these experiments. From the throughput results in Figure 

18(a) it can be seen that on average SwiftNoC-8 has 2.4×, 1.2×, 7.3×, 4.1×, 7.2×, and 4.8×, 

SwiftNoC-16 has 5.1×, 2.5×, 16.5×, 9.1×, 16.3× and 10.8×, and SwiftNoC-32 has 8×, 3.7×, 25.4×, 

14.3×, 25.1×, and 16.6×, greater throughput compared to UltraNoC-8, UltraNoC-16, Flexishare, 

Firefly, Corona and EMesh. Further SwiftNoC-16 and SwiftNoC-32 have 1.3× and 2.1× higher 

throughput compared to UltraNoC-32, respectively. The improvements in throughput for 

SwiftNoC over UltraNoC, Firefly, Flexishare, Corona, and EMesh are even better for the 256-core 

CMP, than in the 64-core CMP case. With the increase in core count, the amount of traffic injected 

into the network increases and SwiftNoC with its better utilized MWMR waveguides effectively 
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handles this traffic whereas UltraNoC, Firefly, Flexishare, Corona, and EMesh end up moving to 

the saturation region (throughput will not increase), which explains throughput improvements for 

SwiftNoC. 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 18 (a) Average throughput (b) average packet latency (c) average EPB comparison of 

SwiftNoC-8, SwiftNoC-16, and SwiftNoC-32 with other architectures for a 256-core CMP. Results 

are shown for multi-application PARSEC workloads. 
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From Figure 18(b), it can be seen that on average SwiftNoC-8 has 19%, 12%, 7%, 49%, 39%, 

46%, and 53%, SwiftNoC-16 has 27%, 20%, 11%, 54%, 45%, 51% and 57%, and SwiftNoC-32 

has 39%, 34%, 26%, 62%, 54%, 59% and 64% lower latency compared to UltraNoC-8, UltraNoC-

16, UltraNoC-32, Flexishare, Firefly, Corona, and EMesh architectures respectively. Lastly, 

Figure 18(c) shows that on average SwiftNoC-8 has 39%, 28%, 14%, 63%, 74%, 89% and 92%, 

SwiftNoC-16 has 51%, 42%, 30%, 71%, 79%, 91%, and 94%, and SwiftNoC-32 has 62%, 55%, 

46%, 77%, 84%, 93%, and 95% lower EPB compared to UltraNoC-8, UltraNoC-16, UltraNoC-

32, Flexishare, Firefly, Corona, and EMesh architectures respectively. The average packet latency 

and EPB improvements in SwiftNoC are higher for the 256-core CMP compared to the 64-core 

CMP. The greater volume of traffic in the 256-core system increases packet wait time in the 

sending nodes across all the architectures. SwiftNoC is able to reduce this wait time with its 

efficient arbitration, multicasting, bandwidth transfer, and priority alteration mechanisms, to 

achieve better average latency improvements over the UltraNoC, Flexishare, Firefly, Corona, and 

EMesh architectures. Despite the increase in energy consumption for all the architectures when 

going from the 64-core CMP to the 256-core CMP, the EPB of the SwiftNoC architecture has 

greater improvements over UltraNoC, Flexishare, Firefly, Corona, and EMesh architectures 

because of its higher packet delivery rate. 

 

2.4.2.5. SUMMARY OF RESULTS AND OBSERVATIONS 

From the results presented in the previous sections, we can summarize that our proposed SwiftNoC 

architecture can achieve better performance with less hardware compared to existing state-of-the-

art photonic NoCs, for CMP platforms with low as well as high core counts. SwiftNoC achieves 

higher performance and energy-efficiency by efficiently utilizing MWMR waveguides with its 
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improved arbitration scheme, bandwidth transfer mechanism, and cluster priority adaptation. 

SwiftNoC also improves upon UltraNoC due to its more aggressively concurrent token stream 

arbitration scheme which increases utilization of MWMR waveguides compared to UltraNoC. The 

SwiftNoC architecture’s ability to efficiently multicast messages across different nodes in the 

network using its multicast-friendly MWMR waveguides also contribute to its higher performance 

with lower energy consumption. 

 

2.5. CONCLUSIONS 

In this chapter, we presented the SwiftNoC photonic NoC architecture which is an improved 

version of the UltraNoC architecture, with more efficient channel sharing among cores with an 

aggressive concurrent token stream-based arbitration strategy and more efficient multicast support. 

SwiftNoC supports the ability to dynamically transfer bandwidth between clusters of cores and to 

re-prioritize multiple co-running applications to further improve channel utilization and adapt to 

time-varying application performance goals. SwiftNoC improves throughput by up to 25.4× while 

reducing latency by up to 72.4% and EPB by up to 95% over state-of-the-art solutions. SwiftNoC 

also scales well with increasing core counts on a chip. 
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3. BIGNOC: ACCELERATING BIG DATA COMPUTING WITH APPLICATION-

SPECIFIC PHOTONIC NETWORK-ON-CHIP ARCHITECTURES 

 

 

In the era of big data, high performance data analytics applications are frequently executed 

on large-scale cluster architectures to accomplish massive data-parallel computations. Often, these 

applications involve iterative machine learning algorithms to extract information and make 

predictions from large data sets. Multicast data dissemination is one of the major performance 

bottlenecks for such data analytics applications in cluster computing, as terabytes of data need to 

be distributed frequently from a single data source to hundreds of computing nodes. To overcome 

this bottleneck for big data applications, we propose BiGNoC, a manycore chip platform with a 

novel application-specific photonic network-on-chip (PNoC) fabric. BiGNoC is designed for big 

data computing and exploits multicasting in photonic waveguides. For high performance data 

analytics applications, BiGNoC improves throughput by up to 9.9× while reducing latency by up 

to 88% and energy-per-bit by up to 98% over two state-of-the-art PNoC architectures as well as a 

broadcast-optimized electrical mesh NoC architecture, and a traditional electrical mesh NoC 

architecture. 

 

3.1. BACKGROUND, MOTIVATION, AND CONTRIBUTION 

Large-scale data analytics applications represent some of the most data-intensive workloads 

in the emerging domain of big data computing. Most of the high-performance data analytics 

applications e.g., cancer genome analysis, stock market predictions, consumer product 

recommendations, disaster forecasting, etc. involve iterative execution of various machine learning 

algorithms. These iterative machine learning algorithms for large-scale data analytics tasks often 
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run on a MapReduce framework [76] implemented either in the cloud or on commodity clusters in 

datacenters. 

Recently, Hadoop [77] and Spark [78] based distributed frameworks are being increasingly 

used for MapReduce implementations on cloud services. However, wide-spread security exploits 

and higher off-loading time with cloud computing have driven several organizations to build their 

own datacenters for big data processing [77]- [78]. Such datacenters are safer from intrusion with 

lower off-loading time, but according to the Hamilton’s cost model [79] the overheads due to 

power dissipation, power distribution, and cooling in such datacenters with commodity processors 

can be quite significant. A specialized manycore processor solution in which a large number of 

cores are interconnected through an efficient on-chip network can reduce such overheads and lead 

to improved system performance, comparted to commodity processors. This motivates us to design 

a customized chip manycore processor (CMP) platform to more efficiently run the iterative 

machine learning algorithms for big data processing.  

The iterative algorithms in big data processing with MapReduce execute on multiple master 

and servant cores and take thousands of iterations to produce the desired output. Each iteration 

typically consists of three phases [80] (Figure 19). In the initial multicast phase (Figure 19(a)) a 

master node (MN), which consists of one or more master cores, multicasts a large feature set of 

model parameters to one or more servant nodes (SN; each with one or more servant cores) that 

perform computations based on the parameters. While computing, these servant nodes may need 

to exchange or shuffle data with other servant nodes. This phase is called the shuffle phase (Figure 

19(b)). Lastly, in the aggregation phase (Figure 19(c)), all the servant nodes update and send their 

partial results to the master node. The master node aggregates this partial data to produce the 

multicasting data for the next iteration. 
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                                          (a)                        (b)                            (c) 

 

Figure 19 MapReduce (a) multicast phase, (b) shuffle phase, and (c) aggregation phase of 

communication while executing iterative machine learning algorithms for large-scale data 

analytics applications. 

 

Multicasting is a performance bottleneck in executing large scale data analytics applications 

that have large fan-out, big data sizes, and take a large number of iterations to achieve convergence. 

For example, the K-nearest neighbor algorithm for breast cancer prediction and prognosis [81] 

requires multicasting of approximately 200 MB of sampled cancer genomic features in each 

iteration, from 100 image samples, each of size 2MB. As the typical number of iterations is more 

than 1000, the total multicasting data is in the order of hundreds of gigabytes. Another example is 

the alternating least squares algorithm for Netflix movie rating prediction, which involves 385MB 

of data being distributed to servant nodes per iteration, over hundreds of iterations [82]. This 

computation thus involves tens of gigabytes of multicast data. These examples motivate the need 

for supporting efficient multicasting for big data workload execution scenarios. 

Recent developments in the fabrication of CMOS-compatible on-chip photonic 

interconnects have opened up the possibility of redesigning emerging manycore processing 

architectures, especially for big data applications. On-chip photonic interconnects provide several 

prolific advantages over their conventional metallic counterparts, including the ability to 

communicate at near light speed, larger bandwidth density by using dense wavelength division 

multiplexing (DWDM), and lower power dissipation [71]. These advantages motivate us to 

consider using photonic links for inter-core communication in CMPs that run the iterative 
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algorithms for big data processing. Further, a few prior works  [11], [12], [13], [71]  have 

emphasized the importance of multicasting in photonic waveguides to improve data 

communication rates, and proposed photonic network-on-chip (PNoC) architectures that enable 

inter-core communication with multicast-enabled waveguides. The multicasting capability of 

photonic interconnects further inspires us to use them in CMPs optimized for big data processing.  

In this chapter, we present a novel application-specific PNoC architecture for manycore 

chips, called BiGNoC, to execute large-scale data analytics applications with high throughput and 

ultra-low latency. To the best of our knowledge, this is the first work that attempts to design PNoCs 

to tackle iterative machine learning algorithm based large-scale data analytics applications in 

CMPs. Our novel contributions are: 

• We devise a master-servant cluster based communication fabric (MSNoC) with dedicated 

channels for master-to-servant and servant-to-master communication; 

• We design a hierarchical manycore BiGNoC architecture with multiple MSNoCs to execute any 

combination of high performance large-scale data analytics applications; 

• We evaluate BiGNoC by comparing it with two previously proposed PNoCs, as well as a 

broadcast optimized electrical mesh NoC, and a traditional electrical mesh NoC for multiple 

real-world big data applications [83], [84], [85], [86]. 

 

3.2. RELATED WORK  

Photonic interconnects utilize several photonic devices such as microring resonators (MRs) 

as modulators, detectors, and switches; photonic waveguides; splitters, and trans-impedance 

amplifiers (TIAs). Each MR has a unique resonance wavelength in the utilized DWDM spectrum 

in a waveguide (typically consisting of 64 or less wavelengths) that it can couple to and work 
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correctly with. This resonant nature of an MR allows it to be use as a filter or a switch. A filter 

MR is used to filter and drop its resonance wavelength on to a photodetector, whereas a switch 

MR is used to route the propagation of a resonant wavelength signal between two waveguides.   

Several PNoC architectures have been proposed to date (e.g., [11]- [13], [61], [62], [87]) that 

use on-chip photonic interconnects with MR modulators to modulate electrical signals at the source 

node on to photonic signals, which then travel through a photonic waveguide, and arrive at MR 

detectors at the destination node where the photonic signals are detected and electrical signals 

recovered. Several efforts have explored high throughput crossbar PNoCs that provide non-

blocking connectivity, e.g., [11]- [13], [62] using different types of photonic waveguides such as 

Multiple-Write-Single-Read (MWSR), Single-Write-Multiple-Read (SWMR), and Multiple-

Write-Multiple-Read (MWMR). A few works exploit multicasting in SWMR [12] and MWSR 

[11] waveguides to improve the performance of PNoC architectures with cache coherence traffic 

(e.g., in the MOESI coherence protocol, when a shared block is invalidated, an invalidate message 

must be multicast to all sharers). However, no prior work has attempted to design PNoCs to 

optimize iterative machine learning algorithm-based large-scale data analytics applications in 

CMPs. 

Several architectures have been explored recently to address large-scale data analytics 

applications. A PENC manycore architecture consisting of 192 small processing cores was 

proposed in [88], which can work as a co-processor in tandem with a general-purpose CPU to 

accelerate big data processing. A low-power manycore architecture for a modern big-data stream 

mining applications is proposed in [89] that is able to cope with the dynamic nature of the input 

data stream while consuming limited power. A parallel CMP architecture called SpiNNaker based 

on a customized electrical NoC to implement spiking neural networks was proposed in [90]. The 
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cores in this architecture are connected by a modified version of the torus topology, whereas the 

inter-chip topology is a 2D triangular mesh with 6-port routers. A neural   network   architecture 

called EMBRACE is proposed in [91] which integrates a 2D array of interconnected neural tiles 

surrounded by I/O blocks and adopts a hierarchical mesh-based topology to connect neural tiles. 

Furthermore, it uses a region-based routing scheme in each network layer to direct messages to 

destination nodes. Some works have demonstrated reconfigurable neural networks on a broadcast-

aware mesh NoC architecture [92], [93]. A theoretical analysis for determining a preferred 

interconnect architecture for general purpose configurable emulation of spiking neural networks 

is presented in [92] and shows that mesh NoC using multicast is the most suitable architecture for 

a wide range of neural network topologies. A cluster-based reconfigurable NoC architecture for 

neural networks is presented in [93], which employs a reconfigurable communication fabric that 

efficiently handles multicast communication. In [94], a CPU-GPU architecture was presented with 

an electrical ring network to better execute large-scale data analytics applications, but this ring 

interconnect is known to be inefficient for large-scale systems. A hybrid (wired+wireless) on-chip 

interconnect based CPU-GPU architecture was proposed in [95] for large-scale data analytics 

applications. The authors in [96] propose Melia, which is an FPGA-based MapReduce 

architecture. None of the abovementioned prior works explore the impact of using photonic 

interconnects for big data processing as part of the on-chip network. Our goal in this chapter is 

to show, for the first time, how PNoC architectures can be designed and customized for manycore 

chips, to meet the unique communication requirements of big data analytics applications. 

 

3.3. MASTER-SERVANT CLUSTER ARCHITECTURE 

High-performance data analytics applications use a set of iterative machine learning 

algorithms for data predictions. A machine learning job may take hundreds or thousands of 
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iterations to converge to a solution. On a CMP, each iteration starts with the multicast of a big data 

set of model parameters from a master core to all the servant cores. Then the servant cores 

sometimes exchange data among themselves while processing their received data, thus creating 

inter-servant traffic. Lastly, each servant updates the model parameters partially and sends these 

model parameters to the master node. These partial results are aggregated at the master node to 

form the global model parameters for the computations in the subsequent iteration. Thus, execution 

of large-scale data-intensive applications requires dedicated hardware with master cores, servant 

cores, and an interconnection fabric between the masters and servants. In this section, we describe 

the architecture of a new master-servant cluster based communication fabric (MSNoC), in which 

master cores are connected to servant cores via photonic communication channels. 

 

 

 
(a) 

 
                                              (b)                                                 (c) 

 

Figure 20 (a) MSNoC layout with SWMR, MWSR, and power waveguides (b) master gateway 

interface (MGI) (c) servant gateway interface (SGI). 
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In our MSNoC architecture, a node (N) is defined as an entity consisting of four cores. A 

node can either be a master node (MN; with four master cores) or a servant node (SN; with four 

servant cores). Each master core in an MN has a private L1 and L2 cache, whereas each servant 

core in an SN has only a private L1 cache. Every MN and SN is attached to a gateway interface 

(GI) module that facilitates transfers between the core-cache layer and the interconnection network 

layer. A detailed layout of the MSNoC is shown in Figure 20(a), where 16 nodes are arranged in a 

4×4 grid. Among these 16 nodes, a single node is an MN and the remaining nodes are SNs (i.e., 

SN1 to SN15). The master GI (MGI) and servant GI (SGI) are shown in Figure 20(b) and (c), 

respectively, and discussed further in Sections 3.3.1-3.3.3. Communication between cores within 

a node (MN or SN) uses a 5×5 on-chip electrical router, where four of its input and output (I/O) 

ports are connected to four cores (master or servant) and the fifth I/O port is connected to the GI 

module associated with the node. A round-robin arbitration scheme is used within each node for 

communication between cores and the GI.  

Communication between SNs and MNs is accomplished using SWMR and MWSR 

waveguides (Sections 3.3.1-3.3.3). There is also a power waveguide that runs in parallel with the 

SWMR and MWSR waveguides. This power waveguide carries all the wavelengths used for data 

traversal in the waveguides. A 1×2 splitter is used to split power from the power waveguide to 

SWMR waveguides as shown in Figure 34(a). In addition, a series of 1×2 splitters along the power 

waveguide are used to supply power to the modulators that are used to write data on to the MWSR 

waveguides. The splitting losses due to these splitters are considered in the laser power calculations 

of MSNoC (see Section 3.6).  Our MSNoC with a group of 16 nodes (with 64 cores) has dedicated 

access to main memory via a memory controller at the MN. This is similar to the processor used 

in Sunway TaihuLight [97], which has dedicated main memory access for every 64 cores. The 
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micro-architectural parameters of nodes and cores in an MSNoC cluster are summarized in Table 

6. In the following three subsections, we present more details about the interconnects that are used 

to enable communication between the MNs and SNs of an MSNoC. 

 

Table 6 Micro-Architectural Parameters for MSNoC Cluster 

 

Number of nodes per cluster 16 (1 MN and 15 SNs) 
Number of cores 64 (4 per node) 
Servant Core: 

L1 I-Cache size/Associativity       16KB/Direct Mapped Cache 

L1 D-Cache size/Associativity       16KB/Direct Mapped Cache 

Master Core: 

L1 I-Cache size/Associativity       32KB/Direct Mapped Cache 

L1 D-Cache size/Associativity       32KB/Direct Mapped Cache 

L2 Cache size/ Associativity 128KB/ Direct Mapped Cache 

L2 Coherence MOESI 

Frequency 5 GHz 

Issue Policy In-order 

Memory controllers 1 
Main memory 8GB; DDR5@30ns 

 

3.3.1. MN-to-SN COMMUNICATION IN MSNOC CLUSTER 

As discussed earlier, the interconnection network between the master and servant cores plays 

a crucial role towards achieving faster execution of large-scale data analytics applications on an 

MSNoC cluster. As the communication from master cores to servant cores has significant periods 

of multicast traffic, this motivates us to use multicast enabled photonic waveguides in our MSNoC 

cluster, to enable faster master-servant communication. As shown in Figure 20(a), in an MSNoC 

cluster we use a multicast enabled Single-Write-Multiple-Read (SWMR) waveguide group to 

enable communication from a single MN to multiple SNs, where each waveguide group has four 

SWMR waveguides. The SWMR waveguide group in an MSNoC starts from an MN and passes 

through all of the SNs (i.e., SN1-SN15) in the cluster Figure 20(a)) to enable MN-to-SN 

communication. An MN has the ability to write on the SWMR waveguide group using its ring 

modulators (see Figure 20(b), which shows modulators of an MN on SWMR waveguide), and all 
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the SNs are capable of reading from the SWMR waveguide group using their ring detectors (see 

Figure 20(c), which shows detectors of an SN on SWMR waveguide). To power these SWMR 

waveguides, we use a broadband off-chip laser source and a 1×4 splitter to split the laser power 

across the four SWMR waveguides. We also use 64 DWDM wavelengths in each of the four 

SWMR waveguides of the SWMR waveguide group. Therefore, in an SWMR waveguide group 

there are 256 modulators and 256 detectors in each MN and SN, respectively. 

As all SNs are capable of receiving (reading) from an SWMR waveguide group during MN-

to-SN communication, there is a need for receiver selection between SNs to ensure that only the 

designated receiver will receive data from the shared waveguide group. For receiver selection, 

each SWMR waveguide group is divided into a fixed number of time slots, based on the time taken 

by light to traverse the length of the waveguide on a die. Based on the geometric calculations 

considering a 100mm2 chip area for a 64 core CMP at 22nm technology node, traversal of light 

through an SWMR waveguide group takes 2 cycles (i.e., 0.4 ns) in an MSNoC cluster at 5GHz 

clock frequency. Therefore, we divide the SWMR waveguide group into 2 time slots, and each 

time slot is spread across 8 nodes (the node can either be an MN or SN), as shown in Figure 21. 

These time slots are further classified into two types: reservation cycle slots (RCS), and data cycle 

slots (DCS). 

 

 
 

Figure 21 Distribution of reservation cycle and data cycle slots within SWMR waveguide to 

enable MN-to-SN communication.  
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In our reservation assisted MN-to-SN communication process, MNs send data to SNs in two 

cycles (Figure 21). In the reservation cycle, the MN reserves the SWMR waveguide group for an 

SN. Once the reservation is done, the MN sends data to the selected SN in the next cycle (i.e., data 

cycle). To perform the reservation, the MN uses the first SWMR waveguide in the SWMR 

waveguide group (this waveguide is shown in Figure 21). The remaining three SWMR waveguides 

in the SWMR waveguide group are used only in the data cycle to transfer data. Each SNi is 

assigned a receiver selection wavelength i, that is available in the first SWMR waveguide of the 

SWMR waveguide group. When an MN wants to send data to an SN, it gets access to the next 

RCS, which initially has all of the receiver selection wavelengths from the power waveguide. In 

this RCS, the MN uses its modulator bank to remove all of the receiver selection wavelengths 

except the one corresponding to the SN of interest. Subsequently, in the next DCS, the MN 

modulates data on the 256 wavelengths in four SWMR waveguides (as each SWMR waveguide 

uses 64 DWDM wavelengths ( j – j+64)) of each SWMR waveguide group assigned for data 

transfer. Therefore, our receiver selection mechanism prudently reuses the same set of wavelengths 

in the first SWMR waveguide of an SWMR waveguide group for reservation and data transmission. 

On the receiving side of the SWMR waveguide group, whenever an RCS reaches an SNi, it only 

switches on the detector which corresponds to its receiver selection wavelength i located on the 

first SWMR waveguide of the SWMR waveguide group. Whenever an SNi detects its receiver 

selection wavelength in the RCS, it switches on its remaining detectors not only on the first SWMR 

waveguide but also on the remaining three SWMR waveguides of the SWMR waveguide group to 

receive data in the next DCS. 

We illustrate this sending and receiving process with a simple example. In Figure 22(a), 

suppose an MN needs to send data to SN8 that has a corresponding receiver selection wavelength 
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8. The MN modulates in the next RCS, such that only 8 (the dedicated wavelength for receiver 

selection of SN8) is made available by removing all of the wavelengths except 8 (using its 

modulators) in the first SWMR waveguide of the SWMR waveguide group. On the receiving end, 

all of the SNs which are in the RCS switch-on their detectors for the corresponding receiver 

selection wavelengths (e.g., nodes SN8 to SN15 switch-on detectors with resonance wavelengths 

8 to 15, respectively) in the first SWMR waveguide of the SWMR waveguide group. Therefore, 

at SN8 only the detector for wavelength 8 is switched on in the RCS. Once 8 is detected, SN8 

prepares to receive data in the next DCS by switching on the remaining detectors not only on the 

first SWMR waveguide but also on the remaining three SWMR waveguides in the SWMR 

waveguide group in that node. 

The receiver selection mechanism presented above can only transmit unicast messages, but 

while executing big data applications the MN will send not only unicast messages to a single SN 

but also multicast messages to multiple SNs. One possible solution is to translate these multicast 

messages into several unicast messages and send them to their respective SNs. But this can cause 

network congestion and reduce network performance [70]. Therefore, for MN to multiple SN 

communication in an MSNoC, we avoid such repeated unicast messages by providing multicasting 

support in the MSNoC’s SWMR waveguides.  

Unlike Corona [11] and Firefly [12] PNoCs, where all multicast messages are broadcast and 

transmitted to all nodes in the network, MSNoC enables multicasting to specific nodes in the 

network. This is realized as follows: the MN in an MSNoC releases multiple receiver selection 

wavelengths into the first SWMR waveguide of the SWMR waveguide group (see Figure 22(b)) 

corresponding to multiple SNs in the next RCS. In the immediately following DCS, the MN 

modulates the data which needs to be multicast to different SNs on to four SWMR waveguides 
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within the SWMR waveguide group. To enable photonic multicast of data in SWMR waveguides, 

we partially de-tune the ring detectors from their resonating wavelengths [71], such that a portion 

of the photonic energy in the SWMR waveguide group continues to be absorbed in subsequent 

ring detectors. Multicasting thus requires higher laser power compared to unicasting so as to 

maintain sufficient photonic signal intensity for detection in the worst case, i.e., for the detectors 

of the last receiving node which receives the multicast data.  

 

 
                            (a)                                                                          (b) 

 

Figure 22 (a) Transmission of unicast data from an MN to SN8 in MSNoC, which shows receiver 

selection wavelength 8 in RCS of the SWMR waveguide; (b) Multicast of data from an MN to 

multiple SNs SN8, SN10, SN12, and SN15 in MSNoC, which shows respective receiver selection 

wavelengths 8, 10, 12, and 15 in RCS of the SWMR waveguide. 

 

Interestingly, the laser power injected in the SWMR waveguide group for multicasting in an 

MSNoC does not change with the number of nodes that need to receive the multicast message. We 

designed the laser source for the worst-case power loss, which occurs when all of the SNs receive 

a multicast message (i.e., broadcast message) from an MN. We have considered this extra laser 

power overhead when presenting energy-delay-product and energy-per-bit results for the MSNoC 

cluster in our experimental results section. In this chapter, we do not consider optimizing laser 

power through a laser power management scheme. However, it is possible to integrate previously 

proposed laser power management schemes [14], [39], as these works are orthogonal to our work. 
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Figure 22(a) and (b) illustrate the difference between transmission of unicast and multicast 

messages in our MSNoC cluster. Suppose an MN needs to multicast data to SN8, SN10, SN12, and 

SN15 whose corresponding receiver selection wavelengths are 8, 10, 12, and 15, respectively. 

The MN modulates in the next RCS, such that only 8, 10, 12, and 15 are made available by 

removing all the wavelengths except 8, 10, 12, and 15 (using the MN’s modulators; Figure 22(b)) 

from the first SWMR waveguide of SWMR waveguide group. At the receiver end at SN8, SN10, 

SN12, and SN15, the detectors for wavelengths 8, 10, 12, and 15 respectively on the first SWMR 

waveguide of the SWMR waveguide group are switched on when these SNs are in the RCS. At 

SN8, once 8 is detected in the receiver selection slot, the node prepares to receive data from all of 

the four SWMR waveguides within the SWMR waveguide group in the next DCS by partially de-

tuning the ring detectors (partial detuning of ring resonators is employed to receive both unicast 

and multicast data in SN8) from their corresponding resonating wavelengths in that node. The 

partial de-tuning of ring detectors of SN8 will remove a portion of light available in the SWMR 

waveguide, leaving the remaining portion of light for the other detectors to absorb. Similarly, on 

detection of 10, 12, and 15, nodes SN10, SN12, and SN15 respectively prepare to receive data in 

the next DCS. Note that our architecture does not differentiate between unicast and multicast 

transmissions, as it always employs partial detuning to receive both unicast and multicast 

messages. 

 

3.3.2. SN-TO-MN COMMUNICATION IN MSNOC CLUSTER 

All the SNs send data back to an MN in the aggregation phase, for which our MSNoC uses 

a Multiple-Write-Single-Read (MWSR) waveguide group for SN-to-MN communication, with 

each waveguide group having four MWSR waveguides. As shown in Figure 20(a), this MWSR 
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waveguide group starts from the last SN (i.e., SN15) and traverses all of the remaining SNs (i.e., 

SN1-SN14) and finally terminates at the MN. In contrast to the SWMR waveguide group, all SNs 

have the ability to write on the MWSR waveguide group using their ring modulators (see Figure 

20(c) which shows modulators of an SN on an MWSR waveguide) and the MN has the ability to 

read from the MWSR waveguide group using its ring detectors (see Figure 20(b) which shows 

detectors of an MN on an MWSR waveguide).  

As all SNs are capable of modulating (writing) in an MWSR waveguide group, there is a 

need for arbitration between SNs to ensure that the data from different SNs does not destructively 

overlap on the shared MWSR waveguide group. We use a centralized electrical arbiter to avoid 

contention between SNs when writing to an MWSR waveguide group. This arbiter uses a round-

robin arbitration scheme. However, by virtue of being a centralized arbiter, it lacks scalability 

beyond a certain cluster size. We address this drawback of the centralized arbiter in Section 5. 

Furthermore, MSNoC exploits the centralized arbiter to enable flow control in the SN-to-MN 

communication. We employ an Xon/Xoff flow control mechanism to control packet flow from an 

SN to MN. Whenever, the receiving buffer in the MN is full then a signal is sent to the centralized 

arbiter, such that this arbiter stops assigning MWSR waveguide groups to the SNs. Otherwise, if 

the buffer is not full then the centralized arbiter allocates MWSR waveguide groups to SNs to 

transmit packets to MNs.   As per the explanation provide in Section 3.3, a power waveguide (see 

Figure 20(a)) that runs in parallel with the MWSR waveguide group uses a series of splitters to 

supply photonic signals to the ring modulators to write data on to the MWSR waveguide group. 

As each of four MWSR waveguides within this MWSR waveguide group carries 64 wavelengths, 

therefore, each MWSR waveguide group requires 256 modulators and 256 detectors in the SN and 
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MN to write and read data, respectively. The total amount of photonic hardware required for the 

MSNoC architecture is quantified in Section 3.6. 

 

3.3.3. SN-TO-SN COMMUNICATION IN MSNOC CLUSTER 

SN-to-SN communication occurs in the MSNoC when the execution of high-performance 

data analytics applications is in the ‘shuffle’ phase. Our MSNoC enables SN-to-SN communication 

via the MN. We illustrate this SN-to-SN communication with a simple example. When SN15 wants 

to send data to SN5, first SN15 sends data to the MN using an MWSR waveguide group, and then 

the MN sends the received data to SN5 using an SWMR waveguide group. We show the SN15-to-

SN5 communication path in Figure 20(a) as a dotted line. This process thus involves two O/E 

(optical to electrical) and two E/O (electrical to optical) conversions for each SN-to-SN transfer. 

The next section presents a performance analysis for an MSNoC cluster with different SN counts. 

In Section 3.5, we describe how multiple MSNoC clusters are combined to form the BiGNoC 

architecture. 

 

3.4. MSNOC: SENSITIVITY ANALYSIS 

In an MSNoC cluster, with the increase in number of SNs, contention between SNs to access 

an MWSR waveguide group increases. One possible solution to reduce this contention is to 

increase the number of MWSR waveguide groups in the MSNoC cluster. To understand the impact 

of this change, we performed a sensitivity analysis by varying the number of MWSR waveguide 

groups within an MSNoC, for different cluster sizes (8, 16, 32 nodes; each cluster has 1 MN and 

the remainder of the nodes are SNs). We modeled and simulated these variants of MSNoC at a 

cycle-accurate granularity with a SystemC-based NoC simulator. We considered three 
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applications: Text Mining [83], Financial Time Series [84], and Airline Query Processing [85]. 

The goal with these workloads was to emulate an environment with different intensities of MN-

to-SN, SN-to-MN, and SN-to-SN traffic with diverse bandwidth needs. 

 

 
                      (a)                                         (b)                                         (c) 

 

Figure 23 Variation of average packet latency in MSNoC cluster with (a) 32 nodes (b) 16 nodes, 

and (c) 8 nodes having different MWSR waveguide groups (each group has 4 waveguides) across 

three big data applications.  

 

Figure 23 (a)-(c) show the variation of average packet latency with increase in number of 

MWSR waveguide groups (x-axes) for the three sizes of the MSNoC cluster, across the three big 

data applications. It can be observed that for a specific MWSR waveguide group count within an 

MSNoC, increase in cluster size (i.e., increase in node count) increases the average packet latency 

for all big data applications. Increase in number of nodes within a cluster increases contention 

between SNs to access the MWSR waveguide groups while sending data to an MN, which 

increases packet wait time in the buffers of SNs and ultimately increases overall packet latency. 

From Figure 23 (a)-(c), it can also be seen that with the increase in MWSR waveguide groups, the 

average packet latency first decreases until the waveguide group count reaches two. When MWSR 
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waveguide group count is increased beyond two, the latency starts increasing. Intuitively, increase 

in number of MWSR waveguide groups from one to two increases the SN-to-MN data rate (as two 

MWSR waveguide groups enable two packets to be sent simultaneously from two SNs to an MN), 

which decreases packet waiting time in the buffers of SNs and reduces the average packet latency. 

Despite the increase in data rate from SN-to-MN, with the increase in number of MWSR 

waveguide groups beyond two, there is saturation in the data channel to the MN (as this data 

channel is capable of sending only one packet per cycle from the concentrator to a master core). 

This increases the waiting time of packets at the receiving buffers of MGIs and increases average 

packet latency across all the big data applications.  

Based on the analysis presented above, we optimally select two MWSR waveguide groups 

for MSNoCs with cluster sizes of 32 and 16 nodes. Additionally, from the Figure 23(a)-(c) it can 

also be seen that average latency for an MSNoC with 8 nodes remains constant for all MWSR 

waveguide group counts across all the benchmark applications. From this result, it can be 

concluded that in an MSNoC with 8 nodes, a single MWSR waveguide group is sufficient and 

optimal for SN-to-MN communication. We use these optimally determined MWSR waveguide 

group counts for different cluster sizes in our homogeneous and heterogeneous master-servant 

multi-cluster architecture (BiGNoC) which we describe in detail in the next section. 

 

3.5. BIGNOC ARCHITECTURE 

3.5.1.  HOMOGENEOUS BIGNOC ARCHITECTURE 

In Section 3.3, we presented an MSNoC architecture that aims to effectively connect an MN 

and many SNs within a master-servant cluster using MWSR and SWMR waveguide groups. 

Typically, large-scale data analytics applications require a greater number of servant cores than 
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can be accommodated in a single MSNoC cluster. There are two ways to address the requirement 

for additional servant cores: increase the cluster size or use multiple inter-connected clusters. We 

prefer the latter solution as increase in cluster size leads to: (i) increase in power dissipation of the 

SWMR and MWSR waveguide groups (see Table 8 later in the chapter), (ii) increase in average 

packet latency (see Figure 23), and (iii) increase in MWSR waveguide group arbiter complexity. 

These drawbacks suppress the power and performance benefits of photonic interconnects. 

Moreover, increase in cluster size limits the number of available masters within a cluster as the 

MSNoC is designed to have only one master node. Therefore, we propose a homogeneous multi-

cluster architecture (BiGNoC-HOM) with four uniform clusters represented as C0, C1, C2, and C3, 

as shown in Figure 24(a), where each cluster has 16 nodes (i.e., 64 cores). 

 

 

              
                                 (a)                                                                 (b) 

 

Figure 24 (a) Homogeneous BiGNoC with four uniform clusters C0, C1, C2, C3, with each cluster 

having 16 nodes, (b) Heterogeneous BiGNoC with four clusters C0, C1, C2, and C3 having 32, 16, 

8, and 8 nodes, respectively. 
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Each 16-node cluster in the BiGNoC-HOM architecture uses one SWMR waveguide group 

for MN-to-SN communication. As explained in Section 3.3.1, each SWMR waveguide group is 

divided into two time slots to enable receiver selection. Furthermore, based on the sensitivity 

analysis presented in the previous section, we optimally select two MWSR waveguide groups in 

each cluster for SN-to-MN communication. This architecture considers a single broadband laser 

source to power all of its SWMR and MWSR waveguides and uses 64 wavelengths in each 

waveguide for data communication. We add three more splitters to the power waveguide, to 

distribute laser power to the SWMR and MWSR waveguide groups of the four clusters in BiGNoC-

HOM.  

Each MN has a memory controller to send and receive data from off-chip main memory with 

dedicated channels for communication. Therefore, BigNoC-HOM uses four memory controllers, 

where each is associated with an MN within a cluster. In addition, as shown in Figure 24, all the 

four MNs within the four clusters of BiGNoC-HOM are connected to a single 4×4 electrical router 

using their external electrical I/O ports (shown at the top left of Figure 20(a)). This electrical router 

is used for inter-cluster communication. We have considered a four-stage pipelined electrical 

router with 4 I/O ports that are connected to four MNs with the following pipeline stages: buffer 

write/route computation, region validation/switch allocation, switch traversal, and link traversal. 

This router has an input and output queued crossbar and uses double buffering with an 8-flit buffer 

size to more effectively cope with the higher photonic path throughput. Each master node is 

provisioned with an additional buffer which receives and stores packets from other clusters. 

Intuitively, inter-cluster MN-to-MN communication occurs in one hop through the electrical 

router. Inter-cluster MN-to-SN and SN-to-MN communication require two hops: inter-cluster 

MN-to-SN communication requires MN-to-MN (inter-cluster) and MN-to-SN (intra-cluster) hops, 
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whereas inter-cluster SN-to-MN communication requires SN-to-MN (intra-cluster) and MN-to-

MN (inter-cluster) hops. Further, inter-cluster SN-to-SN communication requires three hops: SN-

to-MN (intra-cluster), MN-to-MN (inter-cluster), and MN-to-SN (intra-cluster). We illustrate the 

SN-to-SN communication across different clusters with a simple example. If node N2 (i.e., SN) of 

C0 needs to send a packet to node N10 (i.e., SN) of cluster C1, then N2 of C0 first sends data to N0 

(i.e., MN) of C0 using an MWSR waveguide group. Then from this node the packet is sent to N0 

(i.e., MN) of C1 through the electrical router that enables inter-cluster communication. Lastly, the 

packet is sent to N10 of C1 using the SWMR waveguide group in that cluster. Thus, inter-cluster 

SN-to-SN communication incurs minimal overhead with only two O/E and two E/O conversions, 

which is similar to intra-cluster SN-to-SN communication. 

 

3.5.2. HETEROGENEOUS BIGNOC ARCHITECTURE 

As explained in the previous subsection, BiGNoC-HOM with four uniform clusters can 

enable inter-cluster communication between MNs and SNs. While executing applications with 

larger servant core count requirements, BiGNoC-HOM incurs higher inter-cluster traffic. This 

increase in inter-cluster traffic via slower electrical links may reduce the performance of the 

proposed BiGNoC-HOM architecture. This motivates us to design a heterogeneous version of 

BiGNoC (BiGNoC-HET) with four clusters, but with different cluster sizes.  

In BiGNoC-HET, we use clusters C0, C1, C2, and C3 with 32, 16, 8, and 8 nodes, respectively, 

as shown Figure 24(b). To enable receiver selection in SWMR waveguide groups of these clusters, 

we divided the waveguides in clusters C0, C1, C2, and C3 into 4, 2, 1, and 1 time slots respectively, 

based on the time taken by light to traverse these waveguides on a die. Based on the sensitivity 

analysis presented in Section 3.4, we use 2, 2, 1, and 1 MWSR waveguide groups for clusters C0, 
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C1, C2, and C3 respectively. Similar to BiGNoC-HOM, we use four memory controllers to control 

off-chip memory and an electrical router to connect all four clusters of BiGNoC-HET. 

In BiGNoC (especially BiGNoC-HET), scheduling of applications plays a crucial role in 

enhancing overall performance. For example, BiGNoC-HET can achieve better performance when 

an application with a greater servant core requirement is scheduled to a cluster with more servant 

cores. In contrast, scheduling a larger application on multiple smaller clusters will increase inter-

cluster communication, which in turn may degrade performance. This motivates us to design an 

application scheduling algorithm for BiGNoC which is presented in the next subsection. We 

perform a detailed comparative study between BiGNoC-HOM and BiGNoC-HET in Section 3.6.3. 

 

Algorithm 1 Application scheduling in BiGNoC  

Inputs: Applications (APi) with master cores (MAi) and servant cores (SAi) requirements, and 

BiGNoC with clusters (Cj), master cores (MCj), and servant cores (SCj) 
 

1:     Sort APi (highest SA to lowest SA) 

2:     Sort BigNoC clusters (highest SC to lowest SC) 

3:     for all i do NSAi = SAi; NMAi = MAi;  

4:     for all j do FSCj =SCj; FMCj = MCj; 

5:     for each APi do  

6:         for each Cj do  

7:            if FSCj > 0 then // Checks for free cores in clusters 

8:                 if FSCj – NSAi ≥ 0 then  

9:                      Do_ Scheduling (APi → NSAi servant cores of Cj) //Map servants 

10:                 FSCj = FSCj – NSAi; NSAi = 0; 

11:                 if FMCj > 0 and FMCj – NMAi ≥ 0 then 

12:                      Do_Scheduling (APi → NMAi master cores of Cj)//Map masters 

13:                    FMCj = FMCj – NMAi; NMAi = 0; 

14:                 else if FMCj > 0 and FMCj – NMAi < 0 then 

15:                    Do_ Scheduling (APi → (NMAi – FMCj) master cores of Cj)  

16:                    NMAi = NMAi – FMCj; FMCj = 0; 

17:                else            

18:                  Do_ Scheduling (APi → (NSAi – FSCj) servant cores of Cj)  

19:                  NSAi = NSAi – FSCj; FSCj = 0; 

20:                  if FMCj > 0 and FMCj – NMAi ≥ 0 then 

21:                    Do_ Scheduling (APi → NMAi master cores of Cj) 

22:                    FMCj = FMCj – NMAi; NMAi = 0; 

23:                  else if FMCj > 0 and FMCj – NMAi < 0 then 

24:                    Do_ Scheduling (APi → (NMAi – FMCj) master cores of Cj) 

25:                    NMAi = NMAi – FMCj; FMCj = 0; 
 

Output: Scheduled master-servant cores of app onto clusters of BiGNoC 
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3.5.3. APPLICATION SCHEDULING IN BIGNOC  

Algorithm 1 shows the pseudo-code for the application scheduling procedure in BiGNoC. 

Applications (APi) are assumed to have master core (MAi) and servant core (SAi) requirements. 

The target BiGNoC platform is characterized by its clusters (Cj), master cores (MCj), and servant 

cores (SCj). First, the applications and BiGNoC platform clusters are sorted in the descending order 

of their SAi and SCj counts, respectively (steps 1-2). In steps 3-4, the algorithm initializes the 

required number of master cores (NMAi) and servant cores (NSAi) that are to be scheduled for 

each application, and also initializes the number of available free master cores (FMCj) and free 

servant cores (FSCj) in each cluster of BiGNoC, respectively. A nested loop iterates over all 

applications (APi) and clusters (Cj) in steps 5-6. If FSCj are available in cluster Cj at step 7, then 

in steps 8-25, we assign master and servant cores of BiGNoC to applications. We compare the 

number of available free servant cores within a cluster with the number of servant cores required 

by an application. If the number of free servant cores within a cluster are greater (steps 8-10), then 

we assign the required free servant cores in the current cluster to the current application, else we 

assign all the free servant cores in the current cluster to the current application (steps 17-19). For 

every free servant core assignment to an application in a cluster, we also compare the number of 

available free master cores within the cluster with the number of master cores required by an 

application. If the number of free master cores within a cluster are greater (steps 11-13 and 20-22), 

then we assign the required free master cores in the current cluster to the current application, else 

we assign all the free master cores in current cluster to the current application (steps 17-19 and 23-

25). The proposed algorithm is used to schedule applications on both variants of BiGNoC. 
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3.6. EXPERIMENTS 

3.6.1. EXPERIMENTAL SETUP 

To evaluate the proposed BiGNoC architecture, we compared it with a traditional electrical 

mesh NoC (EMesh) and a broadcast optimized electrical mesh NoC (BO-EMesh) [98] as well as 

with two state-of-the-art photonic crossbar NoCs: Flexishare with token stream arbitration [13] 

and Firefly with a reservation assisted SWMR (R-SWMR) waveguide groups [12]. We modeled 

and simulated the NoC architectures at a cycle-accurate granularity with a SystemC-based NoC 

simulator for a 256-core CMP platform. We used this NoC simulator to emulate the execution of 

big data benchmarks across different architectures. In Flexishare, Firefly, BO-EMesh, and EMesh 

architectures with 256-cores, we have considered 16 master cores (similar to the number of master 

cores in BiGNoC; recall that BiGNoC has 4 MNs, which corresponds to 16 master cores) and the 

remaining cores are considered as servant cores for a fair comparison with the BiGNoC 

architecture. We used five big data benchmarks [82], [85]- [86] (Table 7) to create multi-

application workloads. The goal with these workloads is to emulate an environment that executes 

future large-scale data analytics applications having different master and servant combinations 

with diverse bandwidth needs. 

Table 7 shows the variants of big data benchmarks with different master-servant 

requirements considered for our analysis. We created 12 multi-application workloads from these 

benchmarks. Each workload combines 2 to 4 benchmarks, such that the summation of all the 

master cores and servant cores within the multi-application workload is lower than the number of 

available cores (i.e., 256) in the CMP. As an example, the T (1-40)-A (5-50)-F (2-100)-N (1-50) 

workload combines variants of Text Mining with 1-master and 40-servants (T (1-40)), Airline 

Query Processing with 5-masters and 50-servants (A (5-50)), Financial Time Series with 2-masters 
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and 100-servants (F (2-100)), and Netflix Movie Rating with 1-master and 50-servants (N (1-50)), 

and schedules them to clusters C0, C1, C2, and C3 of BiGNoC-HOM and BiGNoC-HET using the 

application scheduling algorithm presented in Section 3.5.3. We analyzed the actual execution 

characteristics of the big data applications presented in Table 7 (such as the master processing 

time, servant processing time, etc.) that are measured using an Amazon’s Elastic Compute Cloud 

(EC2) instance [99], to generate traces that were fed into our network simulator. We set a “warm-

up” period of 1M cycles and executed the applications for 100M cycles. 

 

Table 7 Big Data application benchmarks, with three variants each, based  

on their master-servant requirements 

 
Application Representation Application variants 

Netflix Movie Rating N (Masters-Servants) N (1-50), N (1-70), N (1-100) 

Text Mining  T (Masters-Servants) T (1-40), T (1-60), T (1-80) 

Gray Sort Contest  G (Masters-Servants) G (5-200), G (7-200), G (10-200) 

Financial Time Series  F(Masters-Servants) F (2-100), F (3-110), F (4-120) 

Airline Query Process A (Masters-Servants) A (5-50), A (5-60), A (5-70) 

 

We targeted a 22nm process technology for the 256-core system. Based on geometric 

calculations of the waveguides for a 20mm× 20mm chip dimension, we estimated the time needed 

for light to travel in a photonic waveguide with a length of 12 cm from the first to the last node in 

a single pass of the MWMR waveguide group in Flexishare as 8 cycles (i.e., 1.6ns) at 5 GHz clock 

frequency. Throughout our analysis we use a flit size of 64 bits for BO-EMesh and EMesh and a 

total packet size of 512 bits for all PNoC architectures. We consider data modulation at both clock 

edges to enable simultaneous transfer of 512 bits in a single cycle, in the BiGNoC-HOM, BiGNoC-

HET, Flexishare, and Firefly PNoCs. We considered an on-off switching time of 3.1 ps for a ring 

modulator and ring detector [13], which is less than one clock cycle (i.e., 200ps) at 5GHz 

frequency. 
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Table 8 Energy and Losses for Photonic Devices  [73], [74], [100]  

 
Cluster-wise static power per waveguide group of BiGNoC 

Waveguide Type 32-Node Power 16-Node Power 8-Node Power 

PMWSR 1.54W 0.62 W 0.21W 

PSWMR 5.72 W 2.69 W 1.26 W 

Static power per waveguide group Power 

PSWMR-FY  1.15 W 

PMWMR-FX 3.73 W 

Energy consumption type Energy 

Edynamic 0.42 pJ/bit 

Elogic−dyn 0.18 pJ/bit 

Photonic loss type Loss (in dB) 

Microring through -0.005 

Waveguide propagation per cm -0.274 

Waveguide coupler/splitter -0.2 

Waveguide bending loss 0.005 per 900 

 

The static and dynamic energy consumption of the electrical routers is based on results 

obtained from the DSENT tool [75]. Energy consumption of various photonic components for all 

the photonic NoC architectures are adopted from photonic device characterizations in line with 

state-of-the-art proposals [73], [74], [100], and shown in Table 8. Here Edynamic is the energy per 

bit for modulators and photodetectors and Elogic−dyn is the energy per bit for the driver circuits of 

modulators and photodetectors. PSWMR-FY and PMWMR-FX are the static power dissipation of SWMR 

and MWMR waveguide groups in Firefly and Flexishare architectures, respectively. Further, the 

PMWSR and PSWMR rows in Table 8 show static power dissipation of MWSR and SWMR waveguide 

groups of clusters in BiGNoC with sizes 32, 16, and 8 nodes, respectively. Also, we calculate 

power dissipation overheads of 75mW, 35mW, and 15mW in the electrical circuits of the SWMR 

waveguide groups in clusters of BiGNoC with sizes 32, 16, and 8 nodes, respectively, to realize 

partial detuning based on estimates from prior work [71]. All the static power dissipation values 

for waveguides presented in Table 8 include the power overhead of MR thermal tuning. We 

consider an MR heating power of 15 µW per MR and detector responsivity of 0.8 A/W [74]. To 
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compute laser power dissipation, we calculated photonic loss in components, which sets the 

photonic laser power budget and correspondingly the electrical laser power. Lastly, based on our 

gate-level analysis, we estimate area overheads of 0.0065mm2 and 0.008mm2, and power 

overheads of 0.12W and 0.16W in the electrical arbiters for the MWSR waveguide groups of 

BiGNoC-HOM and BiGNoC-HET, respectively. 

 

3.6.2. BIGNOC: SENSITIVITY ANALYSIS 

Our first set of experiments presents a sensitivity analysis to explore the optimal buffer size 

of the electrical router that is used for inter-cluster communication in two variants of our BiGNoC 

architecture with 256 cores: BiGNoC-HOM and BiGNoC-HET. BiGNoC-HOM has four 

homogeneous clusters with each cluster having 16 nodes; and BiGNoC-HET has four clusters with 

32, 16, 8, and 8 nodes, respectively. 

Figure 25(a) and (b) show the average packet latency for three multi-application big data 

workloads on BiGNoC-HOM and BiGNoC-HET, with buffer depth of the electrical router varying 

from 8 to 40. In this analysis, to compute average packet latency we have considered the delay 

incurred by the packet to move from the source node to the destination node along with the queuing 

delays in routers and interfaces. The three workloads were chosen to possess high, medium, and 

low aggregate inter-cluster traffic, to explore the impact of application traffic on buffer depth. We 

characterized inter-cluster traffic of an application by counting the number of transfers through the 

electrical router, which is used for inter-cluster communication.  
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                                  (a)                                                                            (b) 

 

Figure 25 Average packet latency comparison for (a) BiGNoC-HOM and (b) BiGNoC-HET in a 

256-core CMP with different buffer depths (8-40). 

 

At a particular buffer depth for both BiGNoC-HOM and BiGNoC-HET, Figure 25 shows 

higher average packet latency for workloads with higher inter-cluster traffic (i.e., G(10-200)-T(1-

40)) compared to workloads with lower inter-cluster traffic (i.e., T(1-40)-A(5-50)-F(2-100)-N(1-

50) for BiGNoC-HOM and A(5-70)-F(4-120)-N(1-50) for BiGNoC-HET) as queuing of packets 

occurs at the master nodes for workloads with higher inter-cluster traffic, which increases their 

queueing delay and average packet latency. Also, for all workloads executing on both BiGNoC-

HOM and BiGNoC-HET, a smaller buffer size should intuitively result in higher average packet 

latency, as the buffer in the electrical router becomes more frequently full and creates back pressure 

on the buffers in the MN of each cluster of BiGNoC-HOM and BiGNoC-HET. As a result, the 

centralized arbiter within each cluster stops assigning MWSR waveguide groups to SNs (due to 

Xon/Xoff flow control mechanism used within each cluster; for explanation see Section 3.3.2) in 

that cluster, which are used to transfer packets to MN, which in turn increases packet queuing 

delay within each SN and incurs higher average packet latency.     
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On the other hand, beyond a particular buffer depth in both BiGNoC-HOM and BiGNoC-

HET the average packet latency of all the applications saturate. After a particular buffer depth, the 

buffer in the electrical router of both variants of BiGNoC seldom gets full, which is the main reason 

for this saturation. A careful observation of the plots in Figure 25 shows that for workloads with 

lower inter-cluster traffic (i.e., T(1-40)-A(5-50)-F(2-100)-N(1-50) for BiGNoC-HOM and A(5-

70)-F(4-120)-N(1-50) for BiGNoC-HET) latency saturation occurs at a small buffer depth, whereas 

for workloads with higher inter-cluster traffic (i.e. G(10-200)-T(1-40) for both BiGNoC-HOM and 

BiGNoC-HET) latency saturation occurs at a large buffer depth. However, as shown in Figure 

25(a) and (b), there is a region (light yellow shaded region) between saturation points of low inter-

cluster traffic application and high inter-cluster traffic application, where both BiGNoC-HOM and 

BiGNoC-HET archive optimal performance. Therefore, we chose to use 21 and 26 as the optimal 

buffer depth for BiGNoC-HOM and BiGNoC-HET, respectively, which are the highest buffer 

depths of the optimal performance regions shown in Figure 25(a) and (b). We use these optimal 

buffer depths for BiGNoC-HOM and BiGNoC-HET in the rest of our analysis. 

 

3.6.3. EXPERIMENTAL RESULTS 

Our next set of experiments presents a comparative study between BiGNoC-HOM and 

BiGNoC-HET. We used the optimal buffer depth of 21 and 26 for BiGNoC-HOM and BiGNoC-

HET, respectively (determined as per the previous subsection) in this comparative study. Figure 

26(a) and (b) present detailed simulation results that quantify the average throughput and energy-

delay product (EDP) for BiGNoC-HOM and BiGNoC-HET, for twelve multi-application 

workloads. Results are normalized with respect to the BiGNoC-HET results.  
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From Figure 26(a) it can be seen that on an average BiGNoC-HET has 30.4% higher average 

throughput compared to BiGNoC-HOM. Variable cluster sizes in BiGNoC-HET help reduce the 

inter-cluster traffic while executing big data workloads involving different master-servant 

combinations. This decrease in inter-cluster traffic improves utilization of MWSR and SWMR 

waveguides within a cluster and increases the throughput of BiGNoC-HET compared to BiGNoC-

HOM. Also, from Figure 26(b) it can be observed that on an average BiGNoC-HET has 12.5% 

lower EDP compared to BiGNoC-HOM. Decrease in average latency and decrease in trimming 

energy (due to decrease in number of detectors) decreases EDP of BiGNoC-HET compared to 

BiGNoC-HOM even though there is increase in laser energy for BiGNoC-HET. However, from 

Figure 26(b) it can also be seen that for a few application combinations, EDP of BiGNoC-HET is 

higher compared to BiGNoC-HOM. For these application combinations, BiGNoC-HET achieves 

lower average latency benefits compared to BiGNoC-HOM, which increases BiGNoC-HET’s EDP 

(as BiGNoC-HET always consumes more laser energy then BiGNoC-HOM).  From the average 

throughput and EDP results presented in Figure 26, we can summarize that BiGNoC-HET achieves 

better performance with lower EDP compared to BiGNoC-HOM, which motivates its usage 

towards executing future large-scale data analytics applications. Therefore, for our next set of 

experiments we have used only BiGNoC-HET to estimates benefits over electrical and photonic 

NoC architectures from prior work. 

In the next set of experiments, we compare network throughput, average packet latency, and 

energy-per-bit (EPB) of BiGNoC-HET with the EMesh, BO-EMesh, Flexishare with token stream 

arbitration [13], and Firefly with R-SWMR waveguide [12] architectures. Figure 27(a)-(c) show 

the results of this comparative analysis, where all the results are normalized with respect to the 

EMesh results. From the throughput comparison in Figure 27(a), it can be observed that, not 
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surprisingly, BiGNoC-HET provides 8.7× and 7.2× higher throughput than EMesh and BO-

EMesh, respectively, due to the presence of higher bandwidth photonic links for data 

communication. 

 

 

(a) 

 

(b) 

 

Figure 26 (a) Normalized throughput, (b) normalized EDP comparison of BiGNoC-HOM with 

BiGNoC-HET for 256-core CMP. Results are shown for multi-application workloads and 

normalized w.r.t. BiGNoC-HET. 

 

BiGNoC-HET has nearly 9.9× greater throughput compared to Flexishare. Even though 

Flexishare uses MWMR waveguides and time division multiplexing (TDM), its token stream 
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arbitration reduces its waveguide utilization and overall throughput compared to BiGNoC-HET. In 

Flexishare, arbitration wavelengths corresponding to MWMR data waveguides are injected 

serially into the arbitration waveguide and a node that grabs a token in the arbitration waveguide 

gets exclusive access to the corresponding MWMR data waveguide, which limits Flexishare’s 

ability to perform simultaneous data transfers. In contrast, BiGNoC-HET has dedicated photonic 

paths (MWSR waveguide group for SN-to-MN communication and SWMR waveguide group for 

MN-to-SN communication) between the master node and servant nodes within each cluster. This 

helps in increasing simultaneous data transfers in BiGNoC-HET with increase in number of 

clusters. BiGNoC-HET also facilitates efficient multicasting to improve throughput over 

Flexishare by using its SWMR waveguide groups from MN to SNs, whereas in Flexishare, 

multiple unicast packets are sent from the master core to servant cores instead of a single multicast 

packet. 

BiGNoC-HET has 4.4× higher throughput compared to Firefly. This is due to the near light 

speed communications for a majority of the path traversed by the data in BiGNoC-HET using 

photonic links, whereas Firefly being a hybrid network, utilizes slower electrical links for a 

significant portion of the path traversed by the data. These mechanisms also improve the average 

packet latency in BiGNoC-HET, as shown in Figure 27(b), by reducing the time spent waiting for 

access to the photonic waveguides. On average BiGNoC-HET has 81%, 84%, 85%, and 88% lower 

average packet delay over Flexishare, Firefly, BO-EMesh, and EMesh, respectively for the 

different multi-application workloads. 
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(a) 

 

(b) 

 

(c) 

 

Figure 27 Normalized (a) throughput (b) latency (c) EPB comparison of BiGNoC-HET with other 

architectures for a 256-core CMP. Results are for multi-application workloads and normalized 

w.r.t. EMesh. 
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Figure 27(c) shows the EPB comparison between the architectures. It can be observed that 

on average BiGNoC-HET has 88%, 90%, 96%, and 98% lower EPB compared to Flexishare, 

Firefly, BO-EMesh, and EMesh, respectively. BiGNoC-HET has lower EPB compared to BO-

EMesh and EMesh, as it uses energy efficient photonic links for data transfer instead of power 

hungry electrical links. Most of the energy in the photonic architectures was consumed in the form 

of static energy. 

  

Table 9 Photonic Hardware Comparison 

 

Architecture  Waveguides Modulators Detectors 

BiGNoC-HOM 12 31,744 17,408 

BiGNoC-HET 10 33,280 11,776 

Flexishare 33 131,080 131,648 

Firefly 64 4,096 28,672 

 

 Table 9 shows the photonic hardware comparison between the PNoC architectures. It can 

be seen that BiGNoC-HET has 82% less photonic hardware compared to Flexishare. This reduction 

in photonic hardware reduces its overall static energy consumption and its EPB. Although both 

BiGNoC-HET and Firefly use multicasting in their SWMR waveguides, the lower EPB of 

BiGNoC-HET compared to Firefly is due to the higher energy consumption in the electrical 

network of the Firefly architecture. 

 

3.7. CONCLUSIONS 

We presented a new application-specific BiGNoC architecture that features master-servant 

clusters with efficient utilization of SWMR and MWSR waveguides to improve performance while 

executing large-scale data analytics applications. BiGNoC exploits efficient multicasting in 

photonic waveguides to achieve high data rates. In particular, we showed how BiGNoC-HET, a 
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variant of BiGNoC, improves performance due to improved photonic channel utilization and its 

ability to adapt to time-varying application performance goals while co-running multiple large-

scale data analytics applications. BiGNoC-HET improves throughput by up to 9.9×, packet latency 

by up to 88%, and energy-per-bit by up to 98% over traditional EMesh, broadcast optimized 

EMesh, and state-of-the-art photonic NoC architectures (Flexishare and Firefly). These results 

corroborate the excellent capabilities of our proposed BiGNoC architecture towards executing 

large-scale data analytics applications. 
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4. CROSSTALK MITIGATION FOR HIGH-RADIX AND LOW-DIAMETER  

PHOTONIC NOC ARCHITECTURES 

 

 

PNoC architectures have shown the potential to replace electrical networks-on-chip as they 

can attain higher bandwidth with lower power-dissipation for on-chip communication. But 

microring-resonators, which are the basic building blocks of PNoCs, are highly susceptible to 

crosstalk that can notably degrade OSNR, reducing reliability in PNoCs. We propose two novel 

encoding mechanisms to improve worst-case-OSNR by reducing crosstalk noise in microring-

resonators used within high-radix and low-diameter crossbar-based PNoCs. Our evaluation results 

indicate that the encoding schemes improve worst-case-OSNR in Corona and Firefly PNoCs by 

up to 18%.  

 

4.1. MOTIVATION AND CONTRIBUTION 

MRs suffers from intrinsic crosstalk-noise and power-loss due to their design imperfections. 

The crosstalk noise severely impacts PNoCs, especially crossbar architectures with high MR 

counts, where the generated crosstalk is intensified, leading to transmission errors. For example, 

the Corona [67] crossbar architecture has worst-case OSNR of 14dB [100] in its data channels, 

which is insufficient for reliable data communication, as its corresponding bit-error-rates (BER) 

are very high, in the order of 10-3.  

Crosstalk in DWDM-based PNoCs mainly occurs due to inefficient coupling in ring-

detectors, with non-resonant-wavelengths closer to the detector resonance-wavelengths creating 

greater crosstalk-noise. In the electrical domain, crosstalk occurs when adjacent wires 

simultaneously transition in opposite directions. The code-words used in the electrical domain are 
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not directly applicable to the photonic domain. For example, forward-error-correcting (FEC) codes 

that are effective in correcting erroneous bit-flips in the electrical domain utilize code-words with 

adjacent 1’s that cannot improve OSNR in the photonic domain. Thus different techniques to 

mitigate crosstalk noise and improve reliability are needed for PNoCs.  

We observe that when transmitting data in PNoCs, crosstalk noise in MRs depends on the 

characteristics of data values propagating in the photonic waveguide. Therefore we propose two 

novel techniques to intelligently reduce undesirable data value occurrences in a photonic 

waveguide. These techniques are easily implementable in any existing DWDM-based photonic 

crossbar without requiring major modifications to the architectures, unlike previously proposed 

crosstalk mitigation techniques (e.g., [42]) that are targeted to reduce crosstalk in specific 

architectures by requiring modifications to their router designs. Our novel contributions in this 

chapter are:  

• We design a crosstalk mitigation technique with 5-bit encoding (PCTM5B) to improve worst-

case OSNR for DWDM-based photonic crossbar PNoCs; 

• We introduce another crosstalk-mitigation scheme with 6-bit encoding (PCTM6B), that more 

aggressively improves OSNR but with relatively higher EDP overhead; 

• We validate our schemes by implementing them on well-known crossbar PNoCs: Corona [67] 

and Firefly [12], for real-world multi-threaded PARSEC [43] benchmarks.  

 

4.2. RELATED WORK  

Several prior works have performed photonic crosstalk analysis at the device-level and 

architecture-level. The device-level efforts analyze crosstalk behavior for single waveguide 

crossings (e.g., [101]) and for one or few photonic switching elements with MRs [102]. Results 
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from these efforts show that crosstalk is very small at the device-level. However, at the architecture 

level, prior work (e.g., [42]) indicates that crosstalk has a significant impact on the OSNR of 

PNoCs because of the presence of several waveguide-crossings and switching-elements. Minimum 

OSNR was shown to be key limiting factor in the design of mesh-based PNoCs [42]. Further, [103] 

showed that in fat-tree-based PNoCs, crosstalk-noise power is higher than signal power when on-

chip core counts exceed 128. 

 

 

           (a)                                     (b)                               (c)                                  (d) 

 

Figure 28 MR operation phases in DWDM-based waveguides (a) modulator modulating in 

resonance-wavelength (b) modulator in passing (through) mode (c) detector in passing-mode (d) 

detector in detecting-mode. 

 

The above works focus on single-wavelength PNoCs, where crosstalk is generated from a 

single wavelength. A few prior works have also explored crosstalk in DWDM-based PNoCs where 

multiple wavelengths co-exist in a waveguide. A cascaded MR-based modulator structure is 

proposed in [102] for low-density DWDM waveguides, with an extinction ratio of 13dB and 

negligible crosstalk. In [104], losses in a similar multi-wavelength MR-based structure are 

measured. Though crosstalk appears negligible in these works where only four-wavelength 

DWDM waveguides are considered, in crossbar PNoC architectures such as Corona [67] that use 
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64-wavelength DWDM, there is significant crosstalk noise. The results in [100] demonstrate the 

damaging impact of crosstalk-noise in Corona, where the worst-case OSNR is estimated to be 

14dB in data waveguides, which is insufficient for reliable data communication. A methodology 

to salvage network-bandwidth loss due to process-variation-drifts was proposed in [105], which 

reorders microrings and trims them to nearby wavelengths. In [106], [107], reliability aware 

multiple-segmented-bus (MSB) based PNoCs are proposed to enable data transfers with low BER. 

But this chapter does not address crosstalk reliability issues. Other efforts focus on architecture-

specific crosstalk-mitigation [42], [103] by changing the physical design of PNoC routers. 

However, to date, no prior work has proposed generalized approaches to improve OSNR in an 

entire class of PNoC architectures, as we do in this chapter, for bit-parallel and packet-serial 

photonic data-transmission. 

 

4.3. ANALYTICAL MODELS FOR CROSSTALK ANALYSIS IN DWDM-BASED PNOC 

ARCHITECTURES 

4.3.1. OVERVIEW OF MR OPERATION IN DWDM-BASED PNOCS 

DWDM-based PNoC architectures utilize photonic devices such as microring-resonators 

(MRs), photonic waveguides, splitters, and trans-impedance-amplifiers (TIAs). MRs in particular 

are essential to modulate light for transmission of data at a source-node (data-modulation-phase). 

MRs also detect light-modulated data from the waveguide at the destination-node (data-detection-

phase) and subsequently generate proportional electrical signals that are amplified by TIAs. Each 

source node requires optical power/signals that are made available in the PNoC via power 

waveguides and splitters. An unfortunate property of silicon photonic waveguides is that signal 

propagation is lossy, i.e., the light signal is subject to losses such as through-loss, modulating-loss, 
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and detecting-loss in MRs, propagation-loss and bending-loss in waveguides, and splitting-loss in 

splitters. Such losses negatively impact OSNR in waveguides. 

At any point in time in a photonic-waveguide, MRs are either in-resonance or out-of-

resonance with respect to the incident wavelengths. In the resonance-mode, an MR couples light 

of a wavelength from the waveguide when its circumference is an integer multiple of that 

wavelength. Different-sized MRs in a DWDM-waveguide are thus required to simultaneously 

modulate data on different available wavelengths. These MRs in DWDM-based PNoCs suffer 

from intrinsic crosstalk-noise and power-loss.  

Figure 28 (a)-(d) shows crosstalk noise (as dotted/dashed lines) in modulator and detector 

MRs during typical modulation/detection phases in the DWDM-waveguide. Whenever a 

modulator modulates a ‘0’ or a detector detects a ‘1’ from a particular wavelength (see Figure 28) 

by removing the light pulse, there is also crosstalk generated in the waveguide.  

 

4.3.2. ANALYTICAL MODELS FOR CROSSTALK-NOISE AND SIGNAL-POWER 

In this chapter, we consider crosstalk in DWDM-waveguides for the Corona PNoC 

architecture enhanced with token-slot arbitration [67] and the Firefly PNoC architecture [12]. In 

DWDM-based waveguides in both architectures, data-transmission requires modulating light 

using a series of MR-modulators equal to the number of wavelengths supported by DWDM. 

Similarly, data-detection at the receiver requires a group of MR-detectors equal to the number of 

DWDM wavelengths. We present analytical equations that model worst-case crosstalk-noise 

power, maximum power-loss, and OSNR in the MR-detector groups (similar equations are 

applicable to MR-modulator groups). We have validated these analytical models against device-

level works [102]- [104]. In these analytical models we assume negligible inter-modulation 
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crosstalk. In the interest of brevity, we only present models and a description for the Corona PNoC, 

although our evaluation show results for both the Corona and Firefly PNoCs. We refer the reader 

to [12], [67] for details of the photonic crossbar topology and protocols employed in the Corona 

and Firefly PNoCs. 

 

Table 10 Notations for photonic power-loss, crosstalk-coefficients and model-parameters [100] 

 

Notation Parameter type Parameter value  

LP Propagation loss -0.274 dB per cm 

LB Bending loss -0.005 dB per 90o 

LMI Inactive modulator through loss -0.0005 dB 

LMA Active modulator power loss -0.6 dB 

LDP Passing detector through loss -0.0005 dB 

LDD Detecting detector power loss -1.6 dB 

LS12 1X2 splitter power loss -0.2 dB 

LS14 1X4 splitter power loss -0.2 dB 

LS15 1X5 splitter power loss -0.2 dB 

LS16 1X6 splitter power loss -0.2 dB 

XMA Active modulator -16 dB 

XDD Detecting detector -16 dB 

Q Q-factor of MR 9000 

FSR Free spectral range 62nm 

Other model parameter notations �(i, j) Coupling factor between ith microring resonators and jth 

wavelengths in waveguide 

L Photonic path length in cm 

B Number of bends in photonic path 

j Resonance wavelength of MR 

RS12 Splitting factor for 1X2 splitter 

RS14 Splitting factor for 1X4 splitter 

RS15 Splitting factor for 1X5 splitter 

RS16 Splitting factor for 1X6 splitter 

 

The notations for parameters used in the analytical equations are shown in Table 10. Corona 

is designed for a 256-core single-chip platform, with cores grouped into 64 clusters, and 4 cores-

per-cluster. For inter-cluster communication, Corona uses a photonic-crossbar topology with 64 
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data-channels. Each channel consists of 4 multiple-write-single-read (MWSR) waveguides with 

64-DWDM in each waveguide. As modulation occurs on both positive and negative edges of the 

clock in Corona, 512-bits (cache-line size) can be modulated and inserted on 4-MWSR waveguides 

in a single cycle by a sender-node. A data-channel starts at a cluster called ‘home-cluster’, traverses 

other clusters (where modulators can modulate light in this channel and detectors can detect this 

light), and finally ends at the home-cluster again, at a set of detectors (optical termination). 

A power-waveguide supplies optical power to each of the 64 data-channels at its home-

cluster, through a series of 1×2 splitters starting from home-cluster 1 to 64. In each home-cluster, 

optical-power is distributed among 4-MWSR waveguides equally using a 1×4 splitter. As all 1×2 

splitters are present before the last (64th) channel, this channel suffers the most signal-power-loss. 

Thus, the worst-case signal and crosstalk-noise power exists in the detector group of the 64th cluster 

node, and this node is defined as the worst-case power-loss-node (NWCPL). For this node, signal-

power (Psignal(j)) and crosstalk-noise-power (Pnoise(j)) received at each detector j are expressed in 

Eq.(4) and (5) [100]:  

         � = ��� , ,                                            (4) = �� , +∑ � , ( , + , )= ≠         (5) 

The parameters in the above equations are defined below: 

             , = � ,                                               (6) 

� , = {  
  X�� L� −         j − i and D =L� −                  j − < i and D =X X�� L� −   j − i and D =  X L� −         j − < i and D = 

           (7) 

� , = �− Fn +� , ���� = λ
                                      (8) 
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 P , =  {  
                                         , If j > i and D =  L�             , if j i and D =                                        , If j > i and D =   X L�    , if j i and D =        (9) 

= { R L L L × =  R L L L × + =           (10) 

                 = { R L L X L × + =  R L L X L × + =  (11) 

PS(i,j) in Eq.(6) is the signal-power of the ith-wavelength received before the jth-detector. 

Similarly in Eq.(9), PN(i,j) is the crosstalk-noise power of the ith-wavelength before the jth-detector. 

KS and KN in Eq.(10) and Eq.(11) represent signal and crosstalk-noise power-losses before the 

detector group of NWCPL. �(i,j) in Eq.(7) represents signal power-loss of the ith-wavelength before 

the jth-detector within the detector group of NWCPL. �(i,j) in Eq.(8) is the crosstalk coupling-factor 

of the ith-wavelength and the jth-detector. Finally, we can define OSNR(j) of the jth-detector of 

NWCPL as the ratio of Psignal(j) to Pnoise(j), as shown in Eq.(12): =  ��                                                      (12) 

These equations are sufficient to analyze signal and crosstalk-noise power during the 

detection of ones (DB=‘1’) and zeros (DB=‘0’) in a photonic waveguide. The next section uses 

these models to discuss how crosstalk mitigation techniques impact OSNR. 

 

4.4. TECHNIQUES TO MITIGATE CROSSTALK NOISE  

Crosstalk noise in the detectors of DWDM-based PNoCs is caused mainly due to inefficient 

coupling of MRs, as MR-detectors in their detecting mode not only couple photonic-power from 

their resonance-wavelengths but also couple some photonic-power from other wavelengths in the 
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waveguide. This coupling-factor (Φ) increases with a decrease in gap between resonant and non-

resonant wavelengths of an MR-detector (Eq.(8)). Thus non-resonant wavelengths closer to the 

detector resonance wavelengths create greater crosstalk-noise. In addition, crosstalk-noise 

increases with increase in signal power of non-resonant wavelengths. 

Based on the above observations, crosstalk noise can be mitigated by placing one or more 

‘0’s adjacent to ‘1’s in the data in the waveguide, to reduce photonic signal-strength of immediate 

non-resonant wavelengths (adjacent wavelengths in DWDM). In this section, we present two 

techniques for mitigation of crosstalk noise in DWDM-based PNoCs that utilize this mechanism. 

The two techniques (PCTM5B, PCTM6B) employ 5-bit and 6-bit encoding for every 4-bit data 

block to reduce photonic-signal-strength of the immediate non-resonant wavelengths. The 

area/power/delay overheads of these techniques are discussed in Section 4.5. 

 

4.4.1. PCTM5B ENCODING TECHNIQUE 

Table 11 shows the 5-bit codes proposed in the PCTM5B scheme, to replace 4-bit data words. 

To implement this encoding technique on a 64-bit word, 16 additional bits are required, which 

increases the number of MRs by 25%. To facilitate simultaneous transfer of an entire packet in 

Corona, which requires 512-bits before encoding, we increase DWDM-degree in MWSR-

waveguides from 64 to 65 and increase MWSR-waveguides in each channel from 4 to 5. To 

distribute optical-power between these waveguides, there is also a need to replace 1X4 splitters 

with 1X5 splitters. Therefore Eq.(10)-(11) for worst-case signal and crosstalk-noise power are 

changed to Eq.(13)-(14) below: 

= { R L L L × =  R L L L × + =                     (13) 
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= { R L L X L × + =  R L L X L × + =               (14) 

 

Table 11 Code words for encoding techniques 

 
Code words for PCTM5B technique 

Data 

Word 

Code 

Word 

 Data  

Word 

Code 

Word 

000 00000  1000 01000 

0001 00001  1001 01001 

0010 00010  1010 01010 

0011 10101  1011 10100 

0100 00100  1100 01100 

0101 00101  1101 10010 

0110 00110  1110 10001 

0111 10110  1111 10000 

 

4.4.2. PCTM6B ENCODING TECHNIQUE 

The codes used in this 6-bit encoding technique are shown in Table 11. This encoding 

technique requires 32 additional bits for a 64-bit data word, and increases the number of MRs by 

50%. To facilitate simultaneous transfer of an entire packet in Corona, which requires 512-bits 

before encoding, we increase DWDM-degree in MWSR-waveguides from 64 to 66 and increase 

MWSR-waveguides in each channel from 4 to 6. To distribute optical power between these 

waveguides, there is also a need to replace 1×4 splitters with 1×6 splitters. The modified versions 

of equations (10), (11) for worst-case signal and crosstalk-noise power in Corona are shown below: 

= { R L L L ×       =R L L L × + =                        (15) 

= { R L L X L × + =  R L L X L × + =                  (16) 

 

Code words for PCTM6B technique 

Data 

Word 

Code 

Word 

 Data  

Word 

Code 

Word 

0000 000000  1000 001000 

0001 000001  1001 001001 

0010 000010  1010 001010 

0011 100000  1011 010100 

0100 000100  1100 100010 

0101 000101  1101 010010 

0110 010101  1110 010001 

0111 100001  1111 010000 
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4.5. EVALUATION STUDIES 

4.5.1. EVALUATION METHODOLOGY 

To evaluate the proposed crosstalk-noise mitigation schemes, we implement them on two 

well-known crossbar-based PNoC architectures: Corona [67] and Firefly [12]. We modeled and 

simulated our schemes on these architectures using a cycle-accurate NoC simulator. We 

considered a 256-core single-chip architecture at 22nm for performance analysis. A system-level 

simulation was performed with the open-source GEM5 architectural simulator with 256 ARM-

based cores running parallelized PARSEC benchmarks, to generate traces that were fed into our 

cycle-accurate NoC simulator. We set a “warm-up” period of 100-million instructions and then 

captured traces for the subsequent 1-billion instructions. We performed geometric calculations for 

a 20mm×20mm chip size, to determine lengths of MWSR and SWMR waveguides in the Corona 

and Firefly PNoCs, respectively. Based on this analysis, we estimated the time for light to travel 

from the first to the last node as 8-cycles at 5GHz clock frequency in both PNoCs. We used a total 

packet size of 512-bits as advocated in these architectures, and a DWDM wavelength range in the 

C and L bands [104], with a starting wavelength of 1530nm. 

We increased photonic hardware of Corona and Firefly to have a minimal performance 

(latency, bandwidth) impact and to still enable transfer of an entire encoded-packet from source to 

destination in one-cycle. PCTM5B (PCTM6B) requires 25% (50%) increase in number of micro-

rings and waveguides over the baseline Corona and Firefly architectures. More precisely, 

PCTM5B has an area overhead of 5.98mm2 (electrical) and 8.98mm2 (photonic) for Corona; and 

11.95mm2 (electrical) and 18.69mm2 (photonic) for Firefly. PCTM6B has an area overhead of 

9.34mm2 (electrical) and 17.97mm2 (photonic) for Corona; and 18.69mm2 (electrical) and 

25.34mm2 (photonic) for Firefly. These area overheads are reasonably low compared to the much 
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larger footprint of the chip (400mm2). The static and dynamic energy consumption of routers and 

concentrators in the Corona and Firefly PNoCs is calculated with the open-source DSENT tool. 

Both our schemes also have electrical power overhead:  PCTM5B has 0.2W and 0.4W overhead, 

and PCTM6B has 0.6W and 1.2W overhead for Corona and Firefly, respectively.  

We estimated electrical area and power overhead using gate-level analysis and the open-

source CACTI-6.5 tool for memory/buffers. Photonic area overhead is estimated based on the 

physical dimensions of waveguides, MRs and splitters [104]. For energy consumption of photonic 

devices, we adopt parameters from [74], [100], with 0.42pJ/bit for every modulation and detection 

event, and 0.18pJ/bit for driver circuits of modulators and photodetectors. We used photonic-loss 

values for photonic components, as shown in Table 10, to obtain the photonic laser-power-budget 

and the corresponding electrical laser power. We consider a one-cycle overhead for both encoding 

and decoding of data in PCTM5B and PCTM6B, based on our circuit-level analysis at 5GHz. 

While we consider the baseline token management scheme from [67] for Corona, more 

sophisticated token management schemes can be employed to further reduce delay overheads of 

PCTM5B and PCTM6B. Lastly, as our scope of work is limited to optical crosstalk analysis, we 

consider OSNR as a measure for reliability. A detailed analysis and optimization of the resulting 

OSNR in the electrical domain at the optical receivers, due to factors such as thermal- and shot-

noise is beyond the scope of this work.  
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(a) 

 

(b) 

 

(c) 

 

Figure 29 Detector-wise signal power-loss, crosstalk-noise power-loss, and minimum optical-

OSNR in worst-case power-loss node for Corona (a) baseline with 64-detectors (b) PCTM5B with 

65-detectors (c) PCTM6B with 66-detectors.  
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4.5.2. EVALUATION RESULTS WITH CORONA ARCHITECTURE 

Utilizing the models presented in Sections 4.3 and 4.4, we calculate the received crosstalk-

noise and OSNR at detectors for the node with worst-case power-loss (NWCPL), which corresponds 

to detectors in cluster 64 for Corona. We compared the baseline Corona PNoC with fair token-slot 

arbitration [67] but without any crosstalk-enhancements, with two variants of the architecture 

corresponding to the two crosstalk-mitigation strategies proposed in this chapter. The worst-case 

OSNR for the baseline Corona PNoC occurs when all the 64-bits of a received data word in a 

waveguide are 1’s. However, for the implementations of Corona with our crosstalk-mitigation 

techniques, this is not the case, i.e., each detector in cluster 64 has a worst-case OSNR for a 

different pattern of 1’s and 0’s in the received data word. We used our analytical models to 

determine these unique worst-case patterns for each of the techniques when used with Corona. 

Figure 29(a)-(c) show detector signal power-loss, crosstalk-noise power-loss, and OSNR 

corresponding to the detectors in the 64th cluster for the baseline and two variants of the Corona 

architecture. Note that the number of detectors in the node (x-axis) varies across the proposed 

techniques and depends on the number of data bits transmitted in the data waveguide for each 

technique, as discussed in Section 4.4. Figure 29(b) indicates that worst-case OSNR (lowest value 

of the bars, which represent OSNR in detectors) improves notably over the baseline shown in 

Figure 29 (a) when using PCTM5B. However, the improvement is on the lower side for the 

remaining detectors. Figure 29(c) shows that PCTM6B improves worst-case OSNR marginally 

over PCTM5B, but does a better job of improving OSNR significantly for most detectors. 

From Figure 29, the worst-case OSNR results for the baseline, PCTM5B and PCTM6B 

techniques are 21.74, 24.13, and 25.50, respectively. The worst-case OSNR is obtained at the 42nd 

detector of the 64th cluster in the baseline case; whereas for PCTM5B and PCTM6B, worst-case 
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OSNR occurs at the 45th and 48th detectors of the same cluster, respectively. The worst-case OSNR 

for Corona from [67] was shown to be close to 14dB – our baseline result (OSNR=21.74) when 

converted to dB scale (OSNRdb=13.4dB) is in line with those results, with a slight difference due 

to the use of enhanced token-slot arbitration in Corona, compared to [67]. From these results it can 

be surmised that Corona with PCTM5B and PCTM6B techniques has 11% and 18% improvements 

in worst-case OSNR compared to the baseline. Both PCTM5B and PCTM6B eliminate 

occurrences of ‘111’ in a data word and also limit occurrences of ‘11’, to reduce crosstalk-noise 

in detectors.  

Figure 30(a) shows results that quantify average-packet-latency and energy-delay-product 

(EDP) for the three Corona configurations, across twelve multi-threaded PARSEC benchmarks. It 

can be observed that on average, Corona configurations with PCTM5B and PCTM6B have a 9% 

higher average-latency compared to the baseline. The additional delay due to encoding and 

decoding of data with PCTM5B and PCTM6B contributes to this latency increase. The Corona 

configurations with PCTM5B and PCTM6B have 26.5% and 46.2% higher EDP compared to the 

baseline, respectively. This increase in EDP is not only due to the increase in average latency, but 

also due to the addition of extra bits for encoding and decoding, which leads to an increase in the 

amount of photonic hardware in the architectures (more number of MRs, more complex splitters), 

which increases static energy. Dynamic energy also increases in these architectures, but to a much 

lesser extent. 

 

4.5.3. EVALUATION RESULTS WITH FIREFLY ARCHITECTURE 

Utilizing static schedule templates for run-time workload management shifts the burden 

associated with the complex task graph scheduling problem to design-time. However, embedded 
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systems can encounter unpredictable variations at run-time such as those due to fluctuations in 

harvested solar energy, slight variations in task execution time on the same core, and randomness 

of soft error occurrences. To understand how our crosstalk-mitigation techniques behave when 

ported to a different PNoC architecture, we integrated the techniques with the Firefly [12] crossbar-

based PNoC architecture. Unlike the MWSR waveguides used in Corona, Firefly employs 

reservation-assisted single-write-multiple-reader (R-SWMR) data-waveguides. Each data-channel 

in Firefly consists of 8 single-write-multiple-read (SWMR) waveguides, with 64-DWDM in each 

waveguide. Firefly uses only one-eighth of the MRs on each data waveguide compared to Corona, 

as only eight nodes are capable of accessing each SWMR waveguide. We considered a power 

waveguide in Firefly similar to that used in Corona and determined that the worst-case-power-loss 

node (NWCPL) is at the detectors of C4R0, which is the router 0 of cluster 4 in Firefly. Similar to 

Corona, in Firefly the worst-case signal (Psignal(j)) and noise power (Pnoise(j))  in the detectors of 

router C4R0 are calculated using Eq.(4)-(9) and OSNR is calculated by Eq.(12). But as Firefly has 

fewer number of MRs in its data channels, this in turn changes the signal and crosstalk noise power 

losses before the detector group of NWCPL, so KS and KN from Eq.(10) and Eq.(11) are modified to 

capture the architecture-specific requirements for Firefly.  

To implement our PCTM5B and PCTM6B crosstalk-mitigation techniques on Firefly, we 

propose to make changes similar to that made for Corona, in terms of an appropriate increase in 

the number of waveguides in each data channel and DWDM in each waveguide, as dictated by the 

technique. The worst-case OSNR comparison of the baseline Firefly architecture and Firefly 

configurations with the PCTM5B and PCTM6B techniques is shown in Figure 30 (b) (top-figure). 

It can be observed that Firefly with the PCTM5B and PCTM6B techniques has 10.5% and 16.5%, 

improvements in worst-case OSNR over the baseline configuration. 
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(a) 

 

(b) 

 

Figure 30 (a) Normalized-latency and normalized energy-delay-product (EDP) comparison 

between Corona baseline and Corona with PCTM5B and PCTM6B, for PARSEC benchmarks. 

Results are normalized to the baseline Corona results; (b) Worst-case OSNR (on-top), normalized 

average-latency (bottom-left) and EDP (bottom-right) for PARSEC benchmarks running on the 

baseline Firefly architecture and Firefly with PCTM5B and PCTM6B. 
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We also ran simulations with 12 applications from the PARSEC benchmark-suite and 

obtained normalized average packet-latency and normalized average-EDP for the Firefly 

configurations, just as we did for the Corona configurations. These results are shown in Figure 30 

(b) (bottom-figure), with vertical lines on the bars showing the range of values obtained across the 

12 benchmarks. It can be observed that on average, Firefly with PCTM5B and PCTM6B has 9.8% 

higher average latency compared to the baseline configuration. The PCTM5B and PCTM6B 

techniques also increase EDP in Firefly by 10% and 12.8% respectively. This increase in latency 

and EDP of the encoding techniques is due to the additional clock-cycles needed by the encoding 

and decoding phases as well as the additional bits used by these mechanism, that translate to greater 

photonic hardware which increases static/dynamic power overheads. 

 

4.5.4. SUMMARY OF RESULTS AND OBSERVATIONS 

From the results presented in the previous sections, we can summarize that both of our 

crosstalk-mitigation techniques significantly reduce crosstalk-noise and improve OSNR in 

photonic data waveguides. Our techniques have a less than 10% latency overhead (Fig. 3) and less 

than 5% throughput overhead (results omitted for brevity), on average. The EDP overheads of the 

techniques are much lower on architectures optimized for physical-layouts such as Firefly, than on 

non-optimized architectures such as Corona. The PCTM5B technique is a good option to 

implement on DWDM-based PNoC crossbars with stringent limitations on area and energy 

overheads and where modest improvements to reliability are sufficient. The PCTM6B technique 

is a more viable choice for DWDM-based PNoC crossbars that are biased more towards reliability 

than energy consumption or area concerns, i.e., where higher energy and area overheads are an 

acceptable price to pay for greater reliability. Finally, while it is possible to extend our work to 
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create higher order encoding scheme variants with better reliability, e.g., PCTM7B and PCTM8B, 

we believe that their prohibitively high power and EDP overheads limit their practical 

applicability.  

 

 

4.6. CONCLUSIONS 

We have presented two crosstalk mitigation techniques for the reduction of crosstalk noise 

in the detectors of DWDM-based PNoC architectures with crossbar topologies. These techniques 

(PCTM5B, PCTM6B) show interesting trade-offs between reliability, performance, and energy 

overhead across two different crossbar-based PNoC architectures. Our experimental analysis on 

the well-known Corona and Firefly PNoCs has shown that the PCTM5B and PCTM6B techniques 

can notably improve worst-case OSNR by up to 18%.  
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5. IMPROVING CROSSTALK RESILIENCE WITH WAVELENGTH SPACING IN 

PHOTONIC CROSSBAR-BASED NETWORK-ON-CHIP ARCHITECTURES 

 

 

Crosstalk noise can significantly reduce data transfer reliability in emerging PNoC 

architectures. Undesirable mode coupling between photonic signals at microring resonators (MR) 

is the main cause of crosstalk in photonic waveguides. As emerging PNoC architectures employ 

dense wavelength division multiplexing (DWDM) with multiple cascaded MRs, these 

architectures suffer from high crosstalk levels. In this chapter, we propose a novel solution to this 

problem, by increasing the wavelength spacing between adjacent wavelengths in a DWDM 

waveguide to reduce crosstalk noise. Experimental results on two photonic crossbar architectures 

(Corona and Firefly) indicate that our approach improves worst-case OSNR by up to 51.7%. 

 

5.1. MOTIVATION AND CONTRIBUTION 

A few recent works propose to exploit on-chip photonic links to create PNoC architectures 

with a crossbar topology [12], [67] that demonstrate improved performance over other topologies. 

These crossbar-based PNoCs use large numbers of cascaded MRs to support DWDM in their 

waveguides for parallel data transfers. But crosstalk noise is a major drawback with MRs in these 

crossbar-based PNoCs, causing severe performance degradation by reducing OSNR in the 

network. Results in [100] show worst-case OSNR of the Corona crossbar-based PNoC [67] with 

64 DWDM in its data channels is close to 14dB. This OSNR value is not sufficient for reliable 

data communication, as it corresponds to a very high bit error rate (BER), in the order of 10-3.  

     We observe that for a fixed free spectral range (FSR), increase in DWDM of the waveguide 

leads to reduction in wavelength spacing between two adjacent wavelengths and this in turn 
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increases crosstalk noise. From transmission spectrums of cascaded MRs shown in Figure 31, it 

can be seen that overlapping region between adjacent wavelengths decreases with increase in the 

wavelength spacing; this in turn reduces crosstalk noise. Thus OSNR in DWDM based photonic 

crossbars is directly related to the available DWDM in its waveguides. In this chapter, we propose 

novel wavelength spacing (WSP) techniques to increase spacing between adjacent wavelengths in 

a DWDM waveguide for PNoCs. Our novel contributions are:  

• We propose a novel wavelength spacing (WSP) technique and explore varying levels of WSP 

to reduce crosstalk noise in DWDM-based crossbar PNoC architectures; 

• We explore worst-case OSNR and performance overheads due to WSP on DWDM-based 

PNoCs such as Corona [12] and Firefly [3] for real-world multi-threaded PARSEC 

benchmarks.  

 

 

(a)                                                                 (b) 

 

Figure 31 Transmission spectrum of the cascaded microring modulators when using (a) smaller 

wavelength spacing (b) larger wavelength spacing. 

 

5.2. RELATED WORK 

Crosstalk is an intrinsic characteristic of MRs and waveguide crossings. Several prior efforts 

have analyzed the crosstalk behavior of these components. Crosstalk noise in single waveguide 

crossings is shown to be close to -47.58 dB [101]. A cascaded MR-based modulator is proposed 

in [102] for low-density DWDM waveguides, with an extinction ratio of 13dB and negligible 
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crosstalk. In the aforementioned works, crosstalk noise appears negligible at the device-level. But 

at the network-level, aggregate crosstalk due to several photonic devices reduces OSNR 

considerably, creating severe reliability issues. For example, crosstalk analysis of a folded-torus-

based PNoC in [103] shows that crosstalk noise power exceeds signal power when network size is 

equal to or greater than 8×8 nodes. Similar conclusions were drawn from the crosstalk analysis in 

[100] for the Corona PNoC [67], where its 64 wavelength DWDM data channels are studied and 

worst-case OSNR is estimated to be 14dB, which is too low for reliable data transmission in 

practice.   

Thus, an emphasis on network-level crosstalk is critical in emerging PNoCs, such as Corona 

[67] and Firefly [12], otherwise such architectures may not be viable for implementation in future 

chips. Two encoding techniques PCTM5B and PCTM6B are presented in [28] to improve OSNR 

in DWDM-based crossbar architectures. Our goal in this chapter is to reduce network-level 

crosstalk via wavelength spacing (WSP) optimizations. We analyze and quantify the worst-case 

OSNR, performance, and energy overheads of using variants of our WSP technique with different 

levels of wavelength spacing in DWDM-based photonic waveguides used in [12], [67]. 

 

5.3. WAVELENGTH SPACING (WSP) TECHNIQUE 

Microring resonators (MRs) in DWDM-based PNoC architectures can be used as either 

modulators or detectors. An MR modulator can be operated in two modes: modulating and passing. 

In the modulating mode, the MR is in resonance with the corresponding resonant wavelength in 

the waveguide and is capable of removing this wavelength from the waveguide. In the passing 

mode, the MR simply allows all the wavelengths to pass through undisturbed, as the modulator is 

out of resonance with all the wavelengths. Similarly, MR detectors can be operated in two modes: 
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detecting and passing. In the detecting mode, the MR can remove a corresponding resonant 

wavelength light pulse from the waveguide, whereas in the passing mode it will permit 

wavelengths to pass through.  

Figure 28(a)-(d) show these different modes of operation for an MR modulator and detector. 

The figures also show crosstalk noise (as dotted/dashed lines) in the modulator and detector MRs 

during typical modulation and detection modes in the DWDM-waveguide. Whenever a modulator 

modulates a ‘0’ or a detector detects a ‘1’ from a particular wavelength by removing the light 

pulse, there is also crosstalk generated in the waveguide, as shown in Figure 28(a) and (d). Thus, 

MRs generate crosstalk noise, as they not only couple photonic power from their resonance 

wavelengths but also couple certain portions of photonic power from other wavelengths in the 

waveguide. 

 

5.3.1. ANALYTICAL MODEL FOR OSNR IN CORONA CROSSBAR-BASED PNOC 

Crossbar-based PNoCs such as Corona [67] use cascaded MRs to modulate and detect data 

from their multiple writer and single reader (MWSR) waveguides. Corona has 64 nodes and each 

node consists of four processing cores. Inter-node communication is facilitated via a crossbar 

network with 64 data channels, where each channel has 4 MWSR waveguides with 64 DWDM in 

each waveguide. This architecture considers a packet size of 512 bits (cache-line size) and is 

capable of traversing an entire packet from source node to destination node in a single cycle. Note 

that we also modeled OSNR for the Firefly PNoC [12], but omit its discussion for brevity. 

The worst-case OSNR in the Corona crossbar occurs in the detectors of the last (64th) node 

traversed by the MWSR data channels. This node is called the maximum power loss node (MPLN). 

Eq.(17) defines OSNR(j) of the jth detector at the MPLN as the ratio of Psignal(j) to Pnoise(j) [2]. The 
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signal power (Psignal(j)) and crosstalk noise power (Pnoise(j)) received at each detector j of MPLN 

are expressed in Eq. (18) and (19) [100]. PS(i,j) in Eq. (18) and (19) is the signal power of the ith 

wavelength received before the jth detector. Similarly in Eq. (20), PN(i,j) is the crosstalk noise 

power of the ith wavelength before the jth detector. �(i,j) is the crosstalk coupling factor of the ith 

wavelength and the jth detector as per Eq. (20). Q refers to the Q-factor of MR and j is resonance 

wavelength of MR.    =    ��                                                                     (17) 

         � = �� ,                                                               (18)   = �� , +∑ � , ( , + , )= ≠           (19) 

� , = �− FN + � , ���� = λ
                                     (20) 

 

5.3.2. WAVELENGTH SPACING (WSP) TECHNIQUE 

Crosstalk noise in an MR depends on the gap between its resonant and non-resonant 

wavelengths. We observe that the coupling factor (�) between these wavelengths increases with 

a decrease in this gap (Eq. (20)). Therefore, we propose a wavelength spacing (WSP) technique to 

decrease crosstalk noise at an MR device in DWDM waveguides by increasing spacing between 

resonant and immediate non-resonant wavelengths. As illustrated in Figure 32, a variable WSP 

node is added at the beginning of a data waveguide. This node consists of an array of variable-

sized MRs capable of switching different spaced wavelengths from a broadband laser source to 

the data waveguides. To implement the WSP technique in Corona and Firefly, for a fixed FSR, 

there is a need to decrease DWDM degree in their MWSR and SWMR waveguides. Further due 

to reduction in DWDM degree, it is not possible to send a packet of 512 bits from source to 
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destination in one cycle, so the packet size need to be decreased to meet the waveguide DWDM 

requirements. Depending on the degree of WSP used (see Section 5.4.2), each waveguide is 

simplified because the number of modulating and detecting MRs is effectively reduced. The 

reduction in MRs decreases throughput as fewer bits can be transferred in a single cycle. On the 

other hand fewer MRs also reduce through loss and lower laser power. 

 

 
 

Figure 32 WSP technique: variable WSP-node increases wavelength spacing by 100% from � to 

2� in the bottom data waveguide of the PNoC and the modulating node on the waveguide 

modulates on available wavelengths. 

 

5.4. EXPERIMENTS 

5.4.1. EXPERIMENTAL SETUP 

To evaluate the proposed WSP technique, we implement it on two well-known crossbar 

PNoC architectures: Corona [67] and Firefly [12]. We modeled and simulated the WSP technique 

and these PNoCs using a cycle-accurate NoC simulator. We evaluated performance for a 256-core 

single-chip architecture at a 22nm CMOS node. We used real-world traffic from applications in 

the PARSEC benchmark suite [43] in our analysis. GEM5 full-system simulation [72] of 

parallelized PARSEC applications was used to generate traces that were fed into our cycle-accurate 

NoC simulator. We set a “warm-up” period of 100M instructions and then captured traces for the 

subsequent 1B instructions. Based on geometric analysis, we estimated the time needed for light 
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to travel from the first to the last node as 8 cycles at 5 GHz in both architectures, for a 

20mm×20mm die. We use a packet size of 512 bits, and a DWDM wavelength range is in the C 

and L bands [104], with a starting wavelength of 1530nm and FSR of 62 nm. We consider Q-factor 

(Q) of MR as 9000.  

 

Table 12 Photonic power loss and crosstalk coefficients [100] 

 

Parameter type Parameter value (in dB) 

Propagation loss -0.274 per cm 

Bending loss -0.005 per 90o 

Inactive modulator through loss -0.0005 

Active modulator power loss -0.6 

Passing detector through loss -0.0005 

Detecting detector power loss -1.6 

Active modulator crosstalk coefficient -16 

Detecting detector crosstalk coefficient -16 

 

Table 13 Worst-case OSNR results for Corona and Firefly architectures 

 

Configuration Waveguide 

DWDM 

Packet Size 

(in bits) 

Worst-case 

OSNR 

Corona Baseline  64 512  21.74 

Corona WSP_20% 53 424 25.39 

Corona WSP_40% 46 368 27.91 

Corona WSP_60% 40 320 30.13 

Corona WSP_80%  36 288 31.6 

Corona WSP_100% 32 256 33.04 

Firefly Baseline 64 512 22.55 

Firefly WSP_20% 53 424 26.22 

Firefly WSP_40% 46 368 28.88 

Firefly WSP_60% 40 320 31.23 

Firefly WSP_80% 36 288 32.82 

Firefly WSP_100% 32 256 34.21 

 

The static and dynamic energy consumption of NoC routers and concentrators in Corona and 

Firefly is based on results from the open-source DSENT tool. We estimated power overhead using 
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gate-level analysis and CACTI 6.5 for buffers. For energy consumption of photonic devices, we 

adopt model parameters from recent work [74], [100] with 0.42pJ/bit for every modulation and 

detection event and 0.18pJ/bit for the driver circuits of modulators and photodetectors. We used 

photonic loss for photonic components, as shown in Table 12, to determine the photonic laser 

power budget and correspondingly the electrical laser power. 

 

 

 

Figure 33 Detector-wise signal power loss, crosstalk noise power loss and minimum OSNR in 

MPLN for Corona (a) baseline with 64-detectors (b) WSP increased by 20% with 53-detectors (c) 

WSP increased by 40% with 46-detectors (d) WSP increased by 60% with 40-detectors (e) WSP 

increased by 80% with 36-detectors (f) WSP increased by 100% (doubled) with 32-detectors. 

 

5.4.2. EXPERIMENTAL RESULTS WITH CORONA AND FIREFLY PNOCS  

We compared the baseline Corona PNoC with fair token-slot arbitration [67] and baseline 

reservation-assisted Firefly PNoC architecture but without any crosstalk-enhancements, with five 

variants of these architectures corresponding to different degrees of increase in the wavelength 

spacing: 20% (WSP_20%), 40% (WSP_40%), 60% (WSP_60%) and 100% (WSP_100%). We 

calculate the received crosstalk noise and photonic OSNR at detectors for the MPLN in Corona, 
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which corresponds to the detectors in node 64, using analytical models presented in Section 5.3. 

In a similar manner, we also determine the MPLN in Firefly, which is the router 0 of cluster 4. For 

the Corona and Firefly architectures along with their variants, the worst-case OSNR occurs in the 

MPLN when all the bits of a received data word in a waveguide are 1’s.  

Figure 33 (a)-(f) presents detector signal power loss, crosstalk noise power loss, and OSNR 

corresponding to the detectors in the MPLN for the baseline and five variants of the Corona PNoC. 

Note that the number of detectors in the node (x-axis) varies across the proposed techniques and 

depends on the number of data bits transmitted in the data waveguide for each technique, as 

discussed in Section 5.3. Table 13 summarizes the worst-case OSNR results for all the 

architectures. The worst-case OSNR in both Corona and Firefly architectures is obtained at the 

42nd detector of the MPLN in the baseline case; whereas for the WSP_20%, WSP_40%, 

WSP_60%, WSP_80% and WSP_100% configurations, worst-case OSNR occurs at the 33th, 27th, 

23rd, 20th and 17th detectors of the WPLN, respectively. From the table it can be surmised that 

Corona with WSP_20%, WSP_40%, WSP_60%, WSP_80% and WSP_100% shows 16.8%, 

28.3%, 38.6%, 45.4% and 49.3% improvements in worst-case OSNR compared to the baseline. 

Furthermore, Firefly with WSP_20%, WSP_40%, WSP_60%, WSP_80% and WSP_100% shows 

16.2%, 28%, 38.5%, 45.6% and 51.7% decrease in the worst-case OSNR compared to its baseline. 

Thus our WSP technique reduces crosstalk and improves OSNR significantly in both Corona and 

Firefly PNoCs.  

The average throughput and energy-delay product (EDP) for the six configurations of 

Corona and Firefly architectures are presented in Figure 34 and Figure 35, across 12 multi-threaded 

PARSEC benchmarks. From Figure 34(a) it can be seen that on average, Corona configurations 

with WSP_20%, WSP_40%, WSP_60%, WSP_80% and WSP_100% have 17.2%, 28.1%, 37.5%, 
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43.7% and 50% lower throughput compared to the baseline. Similarly, from Figure 35(a) we 

observe that on average, Firefly configurations with WSP_20%, WSP_40%, WSP_60%, 

WSP_80% and WSP_100% have 15.2%, 26.4%, 36.5%, 41% and 48.5% lower throughput 

compared to the baseline. The decrease in throughput with the WSP technique in these 

architectures is due to the decrease in number of wavelengths in DWDM for data transfer, as shown 

in Table 13. In Corona we observe a higher reduction in the throughput compared to Firefly though 

DWDM was reduced to same extent in both of these architectures. Corona is an all optical crossbar 

where all data transfers on the chip traverse the optical waveguides (with reduced DWDM), 

whereas Firefly is a hybrid network where only a certain portion of the on-chip traffic travels 

through its photonic links (the remaining traffic traverses through its electrical links). Thus, 

reduction in DWDM has more impact on throughput for Corona compared to Firefly.  

From the results for EDP shown in the Figure 34(b), on average Corona configurations with 

WSP_20%, WSP_40%, WSP_60%, WSP_80% and WSP_100% techniques have 34.1%, 47.8%, 

56.8%, 61.8% and 66.36% lower EDP compared to the baseline. From Figure 35(b) we observe 

that on average, Firefly configurations with WSP_20%, WSP_40%, WSP_60%, WSP_80% and 

WSP_100% have 17.18%, 25.1%, 35.2%, 40.1% and 49.9% lower EDP compared to the baseline. 

In general, the WSP technique results in a reduction in energy due to an aggregation of several 

factors. On the one hand, both Corona and Firefly configurations with WSP_20%, WSP_40%, 

WSP_60%, WSP_80% and WSP_100% in their data waveguides transmit only 53-bits, 46-bits, 

40-bits, 36-bits and 32-bits instead of 64-bits in their respective baselines, which reduces the 

number of MR modulators and detectors on each waveguide by 17%, 28%, 37.5%, 43.8% and 

50% respectively. This reduction in MRs on each waveguide minimizes through loss and decreases 

laser power, while also minimizing static energy consumption in these architectures. 
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(a) 

 

(b) 

 

Figure 34 (a) Throughput, and (b) energy-delay product (EDP) comparison between Corona 

baseline and Corona configurations with WSP_20%, WSP_40%, WSP_60%, WSP_80% and 

WSP_100%, for PARSEC suite. 

 

On the other hand, dynamic energy also decreases in all of these configurations compared to 

its baseline architectures, because fewer bits transverse across data channels, which reduces the 

energy consumption in modulators, detectors and driver circuits. That is why there is a notable 

reduction in EDP with the WSP technique. 
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(a) 

 

(b) 

 

Figure 35 (a) Throughput, and (b) energy-delay product (EDP) comparison between Firefly 

baseline and Firefly configurations with WSP_20%, WSP_40%, WSP_60%, WSP_80% and 

WSP_100%, for PARSEC suite. 

 

5.4.3. SUMMARY OF RESULTS AND OBSERVATIONS 

From the results presented in the previous subsection, we can summarize that our proposed 

WSP technique can help to reduce crosstalk noise and improve OSNR in DWDM-based PNoC 

architectures such as Corona and Firefly. The proposed WSP technique very effectively improves 
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both reliability and EDP for these architectures. Comparatively higher improvements in EDP were 

observed in higher through-loss architectures such as Corona compared to architectures with low 

through-losses such as Firefly.  

 

5.5. CONCLUSIONS 

We proposed a WSP technique for the reduction of crosstalk noise in the detectors of dense 

wavelength division multiplexing (DWDM) based photonic network-on-chip (PNoC) 

architectures with crossbar topologies. Different WSP configurations (WSP_20%, WSP_40%, 

WSP_60%, WSP_80% and WSP_100%) of Corona and Firefly show interesting trade-offs 

between reliability, throughput performance, and energy consumption. Our experimental analysis 

on the Corona and Firefly PNoCs configurations with WSP_20%, WSP_40%, WSP_60%, 

WSP_80% and WSP_100% shows improvements in worst-case OSNR by up to 51.7%. This 

translates into an improvement in bit error rates (BER) in these architectures by up to 100×. Thus 

the WSP technique can notably improve reliability, with some throughput degradation; however 

it also reduces EDP due to decrease in photonic hardware and through losses. 
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6. PICO: MITIGATING HETERODYNE CROSSTALK DUE TO PROCESS  

VARIATIONS AND INTERMODULATION EFFECTS IN PHOTONIC NOCS 

 

 

DWDM in photonic links increases susceptibility to intermodulation effects, which reduces 

OSNR for photonic data transfers. Additionally, process variations induce variations in the width 

and thickness of MRs causing resonance wavelength shifts, which further reduces OSNR, and 

creates communication errors. This chapter proposes a novel framework (called PICO) for 

mitigating heterodyne crosstalk due to process variations and intermodulation effects in PNoC 

architectures. Experimental results indicate that our approach can improve the worst-case OSNR 

by up to 4.4× and significantly enhance the reliability of DWDM-based PNoC architectures. 

 

6.1. MOTIVATION AND CONTRIBUTION 

Prior work indicates that heterodyne crosstalk is a major contributor of crosstalk noise in 

DWDM-based waveguides, which reduces photonic signal OSNR and reliability in PNoCs [100]. 

Heterodyne crosstalk noise occurs at a detector MR when it picks up some non-resonant optical 

power from neighboring wavelengths. The strength of the heterodyne crosstalk noise at a detector 

MR depends on the following three attributes: (i) channel gap between the MR resonant 

wavelength and the adjacent wavelengths; (ii) Q-factors of neighboring detector MRs, and (iii) the 

strengths of the non-resonant signals at the detector. With increase in DWDM, the channel gap 

between two adjacent wavelengths decreases, which in turn increases heterodyne crosstalk in 

detector MRs. With decrease in Q-factors of MRs, the widths of the resonant passbands of MRs 

increases, increasing passband overlap among neighboring MRs, which in turn increases 
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heterodyne crosstalk. The strengths of the non-resonant signals depend on the losses faced by the 

non-resonant signals throughout their path from the laser source to the MR detector.  

Intermodulation (IM) crosstalk has the biggest influence on the last attribute discussed 

above, causing loss of non-resonant signals in a DWDM waveguide [108]. IM crosstalk occurs 

when a modulator MR truncates and consequently modulates the passbands of the neighboring 

non-resonant signals. Thus the level of heterodyne crosstalk and resultant OSNR at the detector 

depends on the amount of IM passband truncation at the modulator. This motivates mitigating the 

effects of IM passband truncation on heterodyne crosstalk by controlling the strengths of the non-

resonant signals at the detector.  

Additionally, fabrication process variations (PV) induce variations in the width and 

thickness of MRs, which cause resonance wavelength shifts in MRs  [21] [22]. PV-induced 

resonance shifts reduce the channel gap between the resonances of the victim MRs and adjacent 

MRs, which increases crosstalk and worsens OSNR. The worsening of OSNR deteriorates the bit-

error-rate (BER) in a waveguide. For example, a previous study shows that in a DWDM-based 

photonic interconnect, when PV-induced resonance shift is over 1/3 of the channel gap, BER 

increases from 10-12 to 10-6 [23]. Techniques to counteract the PV-induced resonance shifts in MRs 

involve realigning the resonant wavelengths by using localized trimming [21] or thermal tuning 

[22]. Localized trimming is the more viable technique as it enables faster and finer grained control 

that is also not impacted by on-die thermal variations, unlike thermal tuning. However, our analysis 

has shown that localized trimming increases intrinsic optical signal loss in MRs and waveguides 

due to the free carrier absorption effect (FCA). This loss decreases Q-factor of MRs, which 

increases heterodyne crosstalk in MRs and reduces OSNR. 



125 

In this chapter, we present a novel crosstalk mitigation framework called PICO to enable 

reliable communication in emerging PNoC-based multicore systems. PICO mitigates the effects 

of IM crosstalk by controlling signal loss of wavelengths in the waveguide and reduces trimming-

induced crosstalk by intelligently reducing undesirable data value occurrences in a photonic 

waveguide based on the PV profile of MRs. Our framework has low overhead and is easily 

implementable in any existing DWDM-based PNoC without major modifications to the 

architecture. To the best of our knowledge, this is the first work that attempts to improve OSNR 

in PNoCs considering both IM effects and PV in its MRs. Our novel contributions are:   

• We present device-level analytical models to capture the deleterious effects of localized 

trimming in MRs. Moreover, we extend this model for system-level heterodyne crosstalk 

analysis; 

• We propose a scheme for IM passband truncation-aware heterodyne crosstalk mitigation 

(IMCM) to improve worst-case OSNR of MRs by controlling non-resonant signal power;  

• We propose a scheme for PV-aware heterodyne crosstalk mitigation (PVCM) to improve 

worst-case OSNR of detector MRs by encoding data to avoid undesirable data occurrences; 

• We evaluate our proposed PICO (PVCM+ IMCM) framework by implementing it on the well-

known Corona crossbar PNoC architecture [67], and compare it with two encoding based 

heterodyne crosstalk mitigation mechanisms from [28] for real-world multi-threaded PARSEC 

benchmarks. 

 

6.2. RELATED WORK 

Crosstalk noise can be classified as homodyne or heterodyne. Homodyne crosstalk usually 

occurs in MRs used as optical injectors, when an injector MR couples optical power of the same 
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wavelength from two different ports to a single output port. Heterodyne crosstalk occurs in detector 

and modulator MRs when an MR picks up some optical power from non-resonant signals. As 

discussed in [100], homodyne crosstalk may either contribute to the noise or cause fluctuation in 

the signal power, which makes the analysis and mitigation of homodyne crosstalk more 

complicated and beyond the scope of this work. Thus this chapter focuses on heterodyne crosstalk 

and propose solutions to mitigate it. In the rest of the chapter, we use the term crosstalk to refer 

heterodyne crosstalk. 

A few prior works have analyzed crosstalk in PNoCs. The effect of crosstalk noise on OSNR 

is shown to be negligible in WDM systems presented in [102] and [104], as these systems use only 

four WDM wavelengths per waveguide. In [108], IM effects are shown to be negligible for a WDM 

link operating at 10 Gb/s. However, in PNoC architectures that use DWDM (e.g., Corona [11] 

with 64 wavelength DWDM), there exists significant crosstalk noise. The damaging impact of 

crosstalk noise in the Corona PNoC is presented in [100], where worst-case OSNR is estimated to 

be 14dB in data waveguides, which is insufficient for reliable data transfers. To mitigate the impact 

of crosstalk noise in DWDM based PNoCs, two encoding techniques (PCTM5B and PCTM6B) 

were presented in [28]. In [29] a technique was proposed to increase channel spacing between 

adjacent DWDM wavelengths, to mitigate crosstalk in MR detectors. However, none of these 

works considers the system-level impact of IM effects or PV on crosstalk in DWDM-based PNoCs. 

Fabrication-induced process variations (PV) impact the cross-section, i.e., width and height, 

of photonic devices such as MRs and waveguides.  A few prior works have explored the impact 

of PV on DWDM-based photonic links at the system-level [23] [105]. In [23], a thermal tuning 

based approach is presented that adjusts chip temperature using dynamic voltage and frequency 

scaling (DVFS) to compensate for chip-wide PV-induced resonance shifts in MRs. In [109], a 
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methodology to salvage network-bandwidth loss due to PV-drifts is proposed, which reorders MRs 

and trims them to nearby wavelengths. All of these PV-remedial techniques are network specific 

and ignore the harmful effects of PV remedies on crosstalk. Our proposed framework in this 

chapter is different and novel as it considers the deleterious effects of IM crosstalk and PV-

remedial techniques that increase crosstalk noise in detector MRs.  

 

 
(a)                                                             (b) 

 

Figure 36 Impact of PV-induced resonance shifts on MR operation in DWDM-based waveguides 

(note: only PV-induced red resonance shifts are shown): (a) MR as active modulator modulating 

in resonance wavelength with PV-induced red resonance shifts (b) MR as active detector detecting 

its resonance wavelength with PV-induced red shifts. 

 

6.3. PV-AWARE CROSSTALK ANALYSIS 

6.3.1. IMPACT OF LOCALIZED TRIMMING ON CROSSTALK 

An MR can be considered to be a circular photonic waveguide with a small diameter, not to 

be confused with the larger DWDM-based photonic waveguide for which MRs serve as 

modulators and detectors. Variations in MR dimensions due to PV cause a “shift” in the resonance 

wavelengths of MRs. Fig. 1 shows the impact of PV on crosstalk noise (as dotted/dashed lines) in 

MRs. From Figure 36(a) it can be seen that PV-induced red shifts in MR modulators increase 

crosstalk noise in the waveguide and decrease signal strength of non-resonating wavelengths. 

Figure 36(b) shows how PV-induced red shifts increase detected crosstalk noise and decrease 
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detected signal power of resonance wavelengths in MR detectors, which in turn reduces OSNR 

and photonic data communication reliability.  

As discussed earlier, the localized trimming method is essential to deal with PV-induced 

resonance red shifts in MRs. However, the use of this method in an MR alters its intrinsic optical 

properties, which leads to increased crosstalk noise and degraded performance in PNoCs that use 

these MRs. In this section, we discuss the effects of the localized trimming method on crosstalk 

and present analytical models to capture these effects in MRs. Further, we extend these models to 

generate system-level models for the Corona PNoC in order to quantify signal and noise powers 

in the constituent MRs and DWDM waveguides of the Corona PNoC architecture. 

The localized trimming method injects extra free carriers in the circular MR waveguide to 

counteract the PV-induced resonance red shifts. The introduction of extra free carriers reduces the 

refractive index of the circular MR waveguide, which in turn induces a blue shift in resonance to 

counteract the PV-induced red shifts. However, the extra free carriers increase the absorption 

related optical loss in the MR due to the free carrier absorption effect (FCA) [110]. The increase 

in the optical loss results in a decrease of MR Q-factor, which increases MR insertion loss and 

crosstalk, as discussed in Section 6.1. 

We use a PV map (described in more detail in Section 6.3.3) to estimate PV-induced shifts 

in the resonance wavelengths of all the MRs across a chip. Then, for each MR device, we calculate 

the amount of change in refractive index ( ) required to counteract this PV-induced wavelength 

shift using the following equation [111]: = � ∗∗� ,                                                                (21) 

where,  is the PV-induced resonance shift that needs to be compensated for,  is the 

target resonance wavelength of the MR, ng is the group refractive index (ratio of speed of light to 
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group velocity of all wavelengths traversing the waveguide) of the MR waveguide, and  is the 

confinement factor describing the overlap of the optical mode with the MR waveguide’s silicon 

core. We assume that the MR waveguides used in this study are similar to those reported in [110], 

fabricated using standard Si-SiO2 material with a cross section of 450nm×250nm. The values of  

and  for these MR waveguides are set to 0.7 and 4.2 respectively [110]. 

The required change in the free carrier concentration to induce the refractive index change 

of  at around 1.55µm wavelength can be quantified using the following equation [111]: Δ = − . × − Δ − . × − 8 Δ ℎ .8,                  (22) 

where, Δ  and Δ ℎ are the change in free electron concentration and the change in free hole 

concentration respectively. The change in the absorption loss coefficient (Δ� ) due to the change 

in free carrier concentration (owing to the FCA effect) can be quantified using the following 

equation [111]: Δ� = − . × − 8Δ − . × − 8Δ ℎ,                                    (23) 

The Q-factor of an MR depends on this absorption loss coefficient. The relation between the 

Q-factor and Δ� , assuming critical coupling of MRs, is given by the following equation [110], 

where Q’ is the loaded Q-factor of the MR: 

′ = + Δ = � �+Δ� ,                                                           (24) 

where, Δ  is the change in Q-factor and � is the original loss coefficient, which is a sum of 

three components: (i) intrinsic loss coefficient due to material loss and surface roughness; (ii) 

bending loss coefficient, which is a result of the curvature in the MR; and (iii) the absorption effect 

factor that depends on the original free carrier concentration in the waveguide core. Typically, the 

localized trimming method injects excess concentration of free carriers into the MR, which 

increases the absorption loss coefficient (positive Δ� ). As evident from Eq. (24), a positive value 
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of Δ�  results in a decrease of the Q-factor. This causes a broadening of the MR passband, which 

results in increased insertion loss and crosstalk power penalties.  

   We model the MR transmission spectrum using a Lorentzian function. This function is 

used to represent coupling factor � in Eq. (25) between wavelength i and an MR with resonance 

wavelength j. From Eq. (23) and (24), it can be inferred that an MR’s loaded Q-factor (Q’) 

decreases with localized trimming. This in turn increases � and crosstalk noise. Further, using the 

same function, we determined loss factor  in Eq. (26) which is the factor by which signal power 

of a wavelength i is reduced when it passes through an MR whose resonance wavelength is j. 

Through loss of a wavelength in a waveguide when it passes through an MR is defined as  times 

the signal power of all wavelengths received before the MR. �(λ , λ , Q′ ) = + ′ λ −λλ − ,                                    (25) 

(λ , λ , Q′) = + ′ λ −λλ − − ,                                 (26) 

In the next section, we use the derived values of coupling factor � and loss factor  from 

this section to model worst case crosstalk and OSNR for the Corona PNoC, in the presence of 

process variations. 

 

6.3.2. PV-AWARE CROSSTALK MODELS FOR CORONA PNOC 

We characterize crosstalk in DWDM-waveguides for the well-known Corona PNoC 

enhanced with token-slot arbitration [67]. In DWDM-based waveguides, data transmission 

requires modulating light using a group of MR modulators equal to the number of wavelengths 

supported by DWDM. Similarly, data detection at the receiver requires a group of detector MRs 

equal to the number of DWDM wavelengths. We present analytical equations to model worst-case 
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crosstalk noise power, maximum power loss, and OSNR in detector MR groups (similar equations 

are applicable to modulator MR groups). Before presenting actual equations, we provide notations 

for the parameters used in the equations, in Table 14 and Table 15.  

 

Table 14 Notations for photonic power loss, crosstalk coefficients [100] 

 

Notation Parameter type Parameter value (in dB) 

LP Propagation loss -0.274 per cm 

LB Bending loss -0.005 per 90o 

LS12 1X2 splitter power loss -0.2 

LS14 1X4 splitter power loss -0.2 

LS16 1X6 splitter power loss -0.2 

 

Table 15 Other model parameter notations 

 

Notation Crosstalk Coefficient Parameter Value 

Q Q-factor 9000 

L Photonic path length in cm 

B Number of bends in photonic path 

j Resonance wavelength of MR 

RS12 Splitting factor for 1X2 splitter 

RS14 Splitting factor for 1X4 splitter 

RS16 Splitting factor for 1X6 splitter 

 

     The Corona PNoC is designed for a 256-core single-chip platform, where cores are 

grouped into 64 clusters, with 4 cores in each cluster. A photonic crossbar topology with 64 data 

channels is used for communication between clusters. Each channel consists of 4 multiple-write-

single-read (MWSR) waveguides with 64-wavelength DWDM in each waveguide. As modulation 

occurs on both positive and negative edges of the clock in Corona, 512 bits (cache-line size) can 

be modulated and inserted on 4 MWSR waveguides in a single cycle by a sender. A data channel 

starts at a cluster called ‘home-cluster’, traverses other clusters (where modulators can modulate 

light and detectors can detect this light), and finally ends at the home-cluster again, at a set of 



132 

detectors (optical termination). A power waveguide supplies optical power from an off-chip laser 

to each of the 64 data channels at its home-cluster, through a series of 1X2 splitters. In each of the 

64 home-clusters, optical power is distributed among 4 MWSR waveguides equally using a 1X4 

splitter with splitting factor RS14. As all 1X2 splitters are present before the last (64th) channel, this 

channel suffers the highest signal power loss. Thus, the worst-case signal and crosstalk noise exists 

in the detector group of the 64th cluster node, and this node is defined as the worst-case power loss 

node (NWCPL) in the Corona PNoC. 

For this NWCPL node, the signal power (Psignal( j)) and crosstalk noise power (Pnoise( j)) 

received at each detector with resonance wavelength j are expressed in Eq. (27) and (28). PS( i, 

j) in Eq. (29) is the signal power of the i wavelength received before the detector with resonance 

wavelength j. K( i) in Eq. (31) represents signal power loss of i before the detector group of 

NWCPL. �( i, j) in Eq. (30) represents signal power loss of i before the detector with resonance 

wavelength j within the detector group of NWCPL. Due to PV, crosstalk coupling factor (�, Eq. 

(25)) increases with decrease in loaded Q-factor (Q’, Eq. (24)), which in turn increases crosstalk 

noise in the detectors. We can define OSNR( j) of the detector having resonance wavelength j of 

NWCPL as the ratio of Psignal( j) to Pnoise( j), as shown in Eq. (32).  

         � (λ ) = �(λ , λ , Q′ × +  ) (λ , λ ),                        (27) 

(λ ) =∑ �(λ , λ , Q′ × + ) (λ , λ )= ≠ ,                (28) 

            (λ , λ ) = λ �(λ , λ ) ,                                      (29) �(λ , λ ) =   ∏ λ , λ , Q′ × +− <= ,                   (30) 

λ = R L L ∏ ∏ λ , λ , Q′( − × )+== ,   (31)                  

(λ ) =    ��(λ )   (λ ) ,                                                     (32) 
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6.3.3. MODELING PV OF MR DEVICES IN CORONA PNOC 

We adapt the VARIUS tool [112] similar to prior work [105] to model die-to-die (D2D) as 

well as within-die (WID) process variations in MRs. We consider photonic devices with a silicon 

(Si) core and silicon-dioxide (SiO2) cladding. VARIUS uses a normal distribution to characterize 

on-chip D2D and WID process variations. The key parameters are mean (µ), variance (σ2), and 

density (α) of a variable that follows the normal distribution. As wavelength variations are 

approximately linear to dimension variations of MRs, we assume they follow the same distribution. 

The mean (µ) of wavelength variation of an MR is its nominal resonance wavelength. We consider 

a DWDM wavelength range in the C and L bands [104], with a starting wavelength of 1550nm 

and a channel spacing of 0.8nm. Hence, those wavelengths are the means for each MR modeled. 

The variance (σ2) of wavelength variation is determined based on laboratory fabrication data [22] 

and our target die size. We consider a 256-core chip with die size 400 mm2 at a 22nm process 

node. For this die size we consider a WID standard deviation (σWID) of 0.61nm [105] and D2D 

standard deviation (σD2D) of 1.01 nm [105]. We also consider a density (α) of 0.5 [105] for this die 

size. With these parameters, we use VARIUS to generate 100 process variation maps. Each process 

variation map contains over one million points indicating the PV-induced resonance shift of MRs. 

The total number of points picked from these maps equal the number of MRs in the Corona PNoC. 

 

6.4. IM CROSSTALK ANALYSIS   

Intermodulation (IM) crosstalk occurs when a resonance wavelength of an MR modulator is 

modulated by the neighboring MR modulators. As evident from Eq. (26), signal strength of 

wavelengths in photonic waveguides of DWDM-based PNoCs decrease with increase in loss factor 

( ). This  increases with a decrease in IM gap, which is the gap between resonance wavelengths 
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of an MR in active and inactive state. Furthermore, this reduction in signal strength of the 

resonance wavelength also depends on the channel gap (CG) between two adjacent wavelengths 

in the DWDM. Figure 37 shows the transmission spectrum of MR groups with high and low CG.  

A change from low DWDM (Figure 37(a)) to higher DWDM (Figure 37(b)) reduces the CG and 

IM gap, which in turn increases IM crosstalk as is evident from the intersection of the transmission 

spectrum of inactive MRs with wavelengths in the waveguide ( 1- n). This IM crosstalk increases 

wavelength signal loss. 

 

 

      

                                            (a)                                                              (b) 

 

(c) 

 

Figure 37 Transmission spectrum of MR groups with (a) high channel gap (CG) (b) low channel 

gap (CG); (C) IMCM at low channel gap. 
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All MR modulators at a node in a DWDM waveguide have neighbors on both sides except 

the first and the last modulators. So, the first ( 1) and the last ( n) wavelengths of DWDM have 

the lowest signal losses and highest signal strengths. Thus, the modulated set of DWDM 

wavelengths that travel along a photonic waveguide to the target detector node have varying signal 

strengths. At an MR detector group, the first ( 1) wavelength signal gets filtered and detected by 

the first detector. As a result, the signal strength of the first wavelength becomes negligible. This 

negligible signal strength of the first wavelength does not significantly add crosstalk noise in the 

succeeding neighboring detectors. In contrast, the last ( n) wavelength, which also has higher 

signal strength, gets filtered and detected by the last detector in the detector group. So, the last ( n) 

wavelength signal has to travel along all the detectors in the group of detector rings before being 

detected. On its way to the last detector, the last wavelength signal incurs crosstalk noise in all the 

detectors across the detector group. As the strength of the last ( n) wavelength signal is high, the 

incurred crosstalk noise is also high. 

 

6.5. IM-AWARE CROSSTALK MITIGATION 

 Based on the observations in the previous section, we propose an IM passband truncation 

aware crosstalk mitigation (IMCM) scheme to decrease crosstalk noise in MRs of DWDM based 

photonic links. In IMCM, to reduce signal strength of the last wavelength in the DWDM, we 

propose placing an additional MR at each modulating and detecting node. This extra MR is tuned 

near to the last ( n) wavelength of DWDM with a tuning distance of half the channel gap (CG/2) 

of the DWDM (as shown in Figure 37(c)). This extra MR increases signal loss of this last ( n) 

wavelength and reduces its signal strength. Thus, it creates uniform signal loss across all 

wavelengths used in the DWDM. This extra MR (passband of this MR is shown with a dotted line 
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in Figure 37(c)) is always maintained in inactive mode and reduces the effects of IM crosstalk on 

the boundary wavelengths of DWDM by reducing their respective signal strengths. This 

mechanism reduces crosstalk in detecting MRs to improve OSNR (and thus reduce BER). To 

implement the IMCM technique in the Corona PNoC, there is a need to increase the number of 

MRs in all modulating and detecting nodes by one on their MWSR and SWMR waveguides. The 

increase in MRs on the waveguides increases through loss and laser power. We account for this 

overhead in our analysis.  

 

 
 

Figure 38 Overview of proposed PVCM technique 

 

6.6. PV-AWARE CROSSTALK MITIGATION 

We also propose a PV-aware trimming-induced crosstalk mitigation (PVCM) scheme, which 

is illustrated in Figure 38. PV-induced red shifts can be realigned using localized trimming, but 

this process worsens crosstalk noise. From Eq. (25), crosstalk in MR detectors of DWDM-based 

PNoCs increases with increase in coupling factor (Φ) and increase in signal strength of an 

immediate non-resonating wavelength. This implies that the trimming-affected crosstalk in a 

detector can be reduced by reducing the signal strength of immediate non-resonating wavelengths. 

Therefore, our proposed PVCM technique decreases the signal strength of the immediate non-
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resonant wavelength by modulating a zero (shielding bit) on it, which reduces crosstalk noise in 

the detector. The PVCM technique first divides detecting MRs into groups of 8 MRs each. Then, 

it determines the maximum PV-induced resonance red shift (Δ max) in each MR group. As 

discussed in [113], the PV-induced resonance shifts in MRs can be gauged in situ at system 

initialization by using a dithering signal to generate an anti-symmetric error signal that indicates 

the magnitude of PV-induced resonance shifts. The overhead of this in-situ PV detection technique 

can be considered to be negligible [113]. In our analysis, we model and estimate PV in MRs using 

the VARIUS tool [112], a description of which was given in Section 6.3.3. 

Once PV-induced red shifts of MRs are determined, we store information about whether to 

enable or disable encoding (i.e., injecting shield bits between data bits) for each MR group in a 

read-only memory (ROM) at the modulating node, based on the maximum PV-induced resonance 

red shift (Δ max) value for the group. If this value is greater than a threshold red shift value (Δ th) 

for an MR group, we store a ‘1’ to enable PVCM, else we store a ‘0’ to disable PVCM for this MR 

group. MR groups with Δ max < Δ th are thus not impacted. Only MR-groups with Δ max > Δ th 

employ encoding.  

 

6.7. PICO FRAMEWORK: SENSITIVITY ANALYSIS 

We combine the IMCM scheme that mitigates the effects of IM crosstalk and the PVCM 

scheme that mitigates the PV-affected crosstalk in PNoCs into a holistic crosstalk mitigation 

framework called PICO. As the number of shield bits used in PICO increases, laser power and 

trimming power of PNoCs also increase. Thus, we need to limit the number of shield bits. We 

performed a sensitivity analysis using the Corona PNoC with varying number of shield bits per 

detector node to quantify its effect on worst-case OSNR. We analyzed worst case OSNR with 0%, 
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25%, 50%, 75% and 100% of shield bits added to data bits for the Corona PNoC. Based on our 

analysis across 100 process variation maps, we determined the value of Δ th to be 0.45nm, 0.88 

nm, 1.25nm and 4.25nm, for the cases with 25%, 50%, 75% and 100% of shielding bits to data 

bits, respectively.  

 

 
 

Figure 39 Sensitivity analysis in terms of worst-case OSNR for Corona PNoC with PICO allowing 

0%, 25%, 50% and 100% ratio of shield bits to data bits across 100 process variation maps; average 

power consumption for each configuration is also shown on the top of each bar. 

 

Figure 39 shows the range of worst-case OSNR values across PV maps, for different ratios 

of shield bits to data bits. From the figure it can be seen that on average PICO with 25%, 50%, 

75% and 100% shield bits has 8.2%, 19.77%, 26.5% and 40.9% higher worst-case OSNR (note: 

higher OSNR is better) respectively compared to the baseline (with 0% shielding). Intuitively, 

higher ratios of shield bits to data bits should result in higher worst case OSNR, as more shield 

bits can be used to protect data bits, which in turn reduces crosstalk and improves OSNR. But, 

with increase in number of shield bits, the number of MRs on the waveguides increases, which 

increases the through losses, requiring more laser power to compensate for the losses. Addressing 

PV drifts for high MR counts also requires higher trimming power in PNoCs. Figure 39 shows that 

average power consumption with 25%, 50%, 75% and 100% shield bits is 12.6%, 33.5%, 62.2% 
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and 109.5% higher compared to the baseline. To balance crosstalk reliability and power overheads, 

we select the 50% shield bits to data bits configuration for the rest of our experiments.  

To implement our PICO framework with 50% shielding bits on the Corona PNoC, we 

increase the number of MWSR waveguides in each channel from 4 to 6, to maintain the same 

bandwidth as in the baseline case. Additionally, each modulating node needs to store 2,646 bits in 

its ROM to capture encoding requirements for all the remaining 63 detecting nodes. Power and 

area overheads for these modifications are presented in the next section. Lastly, we also consider 

up to a two cycle overhead for encoding and decoding of data in PICO. The first cycle is needed 

to retrieve data from the ROM storage, whereas the second cycle is used only if data is to be 

encoded before sending on the waveguide. 

 

6.8. EXPERIMENTS 

6.8.1. EXPERIMENTAL SETUP 

To evaluate our proposed crosstalk noise mitigation framework PICO (IMCM+PVCM) in 

DWDM-based PNoCs, we implement and integrate it with the Corona [67] crossbar-based PNoC. 

We modeled and performed simulation based analysis of the enhanced Corona PNoC using a 

cycle-accurate NoC simulator, for a 256 core single-chip architecture at 22nm. As explained in 

Section 3.3, we generated 100 PV maps to evaluate how PICO performs for different PV profiles. 

We used real-world traffic from applications in the PARSEC benchmark suite [43]. GEM5 full-

system simulation [72] of parallelized PARSEC applications was used to generate traces that were 

fed into our cycle-accurate NoC simulator. We set a “warm-up” period of 100 million instructions 

and then captured traces for the subsequent 1 billion instructions. We performed geometric 

calculations for a 20mm×20mm chip size, to determine lengths of MWSR waveguides in the 
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Corona PNoC. Based on this analysis, we estimated the time needed for light to travel from the 

first to the last node as 8 cycles at 5 GHz clock frequency. We use a 512 bit packet size, as 

advocated in the Corona PNoC. 

The static and dynamic energy consumption of electrical routers and concentrators in Corona 

is based on results from the open source DSENT tool. We model and consider area, power, and 

performance overheads for our framework implemented with the Corona PNoC, as follows. PICO 

has an electrical area overhead estimated to be 6.24 mm2 and a power overhead of 1.14 W, using 

gate-level analysis and the CACTI 6.5 [114] tool for memory and buffers. The photonic area 

overhead is 9.44 mm2, based on the physical dimensions [104] of waveguides, MRs, and splitters. 

For energy consumption of photonic devices, we adapt model parameters from recent work [73], 

[74], [100], with 0.42pJ/bit for every modulation and detection event and 0.18pJ/bit for the driver 

circuits of modulators and photodetectors. We used optical loss for photonic components, as shown 

in Table 14, to determine the photonic laser power budget and correspondingly the electrical laser 

power. The MR trimming power is set to 130 W/nm [19] for current injection (blue shift). 

 

6.8.2. EXPERIMENTAL RESULTS WITH CORONA PNOC  

Our first set of experiments compares the baseline Corona PNoC with fair token-slot 

arbitration [67] but without any crosstalk-enhancements, with three variants of the architecture 

corresponding to the three crosstalk-mitigation strategies we compare: PCTM5B and PCTM6B 

from [28] and our proposed PICO framework from this chapter. PCTM5B and PCTM6B are 

encoding schemes that replace each 4-bits of a data word with 5-bit and 6-bit code words. These 

schemes aim to reduce photonic signal-strength of immediate non-resonant wavelengths (adjacent 

wavelengths in DWDM) to decrease crosstalk and improve OSNR in MR detectors. 
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Figure 40 Worst-case OSNR comparison of PICO with PCTM5B [28] and PCTM6B [28] for 

Corona PNoC considering 100 process variation maps. 

 

Utilizing the models presented in section 6.3, we calculate the received crosstalk noise and 

OSNR at detectors for the node with worst-case power loss (NWCPL), which corresponds to MR 

detectors in cluster 64 for the Corona PNoC. While the worst-case OSNR for the baseline Corona 

PNoC occurs when all of the 64-bits of a received data word in a waveguide are 1’s, for the 

implementations of Corona with PCTM5B, PCTM6B and PICO, this is not the case, i.e., each 

detector in cluster 64 has a worst-case OSNR for a different pattern of 1’s and 0’s in the received 

data word. We used our analytical models to determine these unique worst-case patterns for each 

of the techniques when used with Corona, for an accurate analysis. 

Figure 40 summarizes the worst-case OSNR results for the baseline, PCTM5B, PCTM6B, 

and PICO. From the figure, it can be observed that Corona PNoC with PICO has 4.4×, 2.05×, and 

1.2× OSNR improvements on average, compared to baseline, PCTM5B, and PCTM6B 

respectively. Both the PCTM5B and PCTM6B techniques eliminate occurrences of ‘111’ in a data 

word and have limited occurrences of ‘11’, which helps reduce crosstalk noise in the detectors. 

But these techniques do not consider the impact of IM effects and PV resonance wavelength drifts. 

More specifically, IM can create significant additional crosstalk with these techniques in some 
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cases where occurrences of ‘11’ are present. PV in MRs also varies signal power of wavelengths 

in DWDM as they propagate through the waveguide, so there is need for encoding on specific 

wavelengths where there is high signal loss (due to trimming) which is not considered in both 

PCTM5B and PCTM6B. Due to these reasons, PCTM5B and PCTM6B have worse OSNR 

degradation. PICO reduces crosstalk in the detectors by combining benefits from IMCM and using 

PVCM’s shield bits between data bits. PICO also considers the PV profile of MRs to intelligently 

select MRs for shielding. 

 

 
(a) 

 
(b) 

 

Figure 41 (a) normalized latency and (b) energy-delay product (EDP) comparison between Corona 

baseline and Corona with PCTM5B, PCTM6B, and PICO techniques, for PARSEC benchmarks. 

Latency results are normalized to the baseline Corona architecture results. 
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Figure 41 (a) and (b) present detailed simulation results that quantify the average network 

packet latency and energy-delay product (EDP) for the four Corona configurations. Results are 

shown for twelve multi-threaded PARSEC benchmarks. From Figure 41(a) it can be seen that on 

average, Corona with PICO has 12.6% higher latency compared to baseline, and it also has 2.1% 

higher latency compared to both PCTM5B and PCTM6B. The additional delay due to encoding 

and decoding of data with PICO, PCTM5B and PCTM6B contributes to their increase in average 

latency. The penalty due to encoding/decoding is 1 cycle in PCTM5B and PCTM6B, whereas 

PICO has a 1 or 2 cycle penalty, which increases its delay overhead. 

   From the results for EDP shown in Figure 41(b), it can be seen that on average, the Corona 

configuration with our PICO framework has 17.2% higher EDP compared to the baseline. Increase 

in EDP for Corona with PICO is not only due to the increase in average latency, but also due to 

the addition of extra bits for encoding and decoding, which leads to an increase in the amount of 

photonic hardware in the architectures (more number of MRs, complex splitters). This in turn 

increases static energy consumption. Dynamic energy also increases in these architectures, but by 

much less. However, EDP for the PICO framework is 5.1% and 16.18% lower compared to 

PCTM5B and PCTM6B respectively. Despite the higher latency overhead compared to PCTM5B, 

PICO saves considerable dynamic energy compared to PCTM5B as it uses lower number of bits 

for traversal of the packet. In a similar manner, although PICO has higher latency compared to 

PCTM6B, it conserves laser and trimming/tuning power due to lower photonic hardware 

requirements than PCTM6B. 
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6.9. CONCLUSIONS 

We have presented a novel heterodyne crosstalk mitigation framework for the reduction of 

crosstalk noise in the detectors of DWDM based photonic network-on-chip (PNoC) architectures. 

Our proposed PICO framework shows interesting trade-offs between reliability, performance, and 

energy overhead for the Corona crossbar-based PNoC architecture. Our experimental analysis 

shows that the PICO framework improves worst-case OSNR by 4.4× compared to the baseline 

Corona PNoC architecture, and by up to 2.05× compared to the best known PNoC crosstalk 

mitigation schemes from prior work. Thus, PICO represents an attractive solution to enhance 

reliability in emerging DWDM-based PNoCs. 
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7. HYDRA: HETERODYNE CROSSTALK MITIGATION WITH DOUBLE  

MICRORING RESONATORS AND DATA ENCODING FOR PHOTONIC NOCS 

 

 

DWDM in photonic links increases susceptibility to intermodulation and off-resonance 

filtering effects, which reduces optical signal-to-noise ratio (OSNR) for photonic data transfers. 

Additionally, process variations induce variations in the width and thickness of MRs causing 

resonance wavelength shifts, which further reduces OSNR, and creates communication errors. 

This chapter proposes a novel cross-layer framework called HYDRA to mitigate heterodyne 

crosstalk due to process variations, off-resonance filtering, and intermodulation effects in PNoCs. 

The framework consists of two device-level mechanisms and a circuit-level mechanism to improve 

heterodyne crosstalk resilience in PNoCs. Simulation results on three PNoC architectures indicate 

that HYDRA can improve the worst-case OSNR by up to 5.3× and significantly enhance the 

reliability of DWDM-based PNoC architectures.   

 

7.1. MOTIVATION AND CONTRIBUTION 

MRs suffer from intrinsic crosstalk-noise and power-loss due to their design imperfections. 

Prior work [115] categorizes crosstalk noise into two typesμ homodyne (coherent) and heterodyne 

(incoherent). The homodyne crosstalk noise power of a particular wavelength affects the signal 

power of the same wavelength, whereas with heterodyne crosstalk the signal power gets affected 

by some noise power of one or more other (different) wavelengths. Heterodyne crosstalk is a major 

contributor of noise in DWDM-based PNoCs, and reduces OSNR and reliability in PNoCs [115].  

Due to the heterodyne crosstalk phenomenon, when a data-modulated wavelength passes by 

an MR, depending on its data bit-rate (modulation rate), average spectral power, and its relative 
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detuning from the resonance of the MR, part of its power is dropped by the MR [116]. All 

modulator, filter, and switch MRs can drop signal power due to heterodyne crosstalk. This 

heterodyne crosstalk induced signal power drop creates impairments in the passing non-resonant 

signals. These impairments in a signal result in smoothened transition edges, lengthened rise and 

fall times, dampened signal amplitude, suppressed signal strength, and reduced extinction ratio, 

which causes data errors in the signal [117]. The overall impact of these signal impairments is 

manifested as a power penalty, which is defined as the amount of extra power required at the 

detector to overcome the data errors caused by these signal impairments. 

Heterodyne crosstalk induced signal power drop has an additional effect, referred to as off-

resonance filtering, at the filter MRs that are coupled with detectors. When a filter MR drops some 

power from the adjacent non-resonant signals on to a detector at its drop port, this dropped optical 

power (i.e., crosstalk noise power) produces proportional (pessimistic case) or shot-noise limited 

(optimistic case) noise current in the detector. This noise current increases the noise floor of the 

detector, increasing the minimum detectable signal power for the detector. As a result, the detector 

requires larger signal power to achieve a target OSNR in the presence of this crosstalk noise power. 

One of our goals is to reduce crosstalk noise power in detectors due to this off-resonance filtering 

effect. 

The strength of the heterodyne crosstalk noise power at a detector depends on the following 

three attributesμ (i) channel gap between the MR resonant wavelength and the adjacent wavelength 

signals; (ii) Q-factors of neighboring detector-coupled filter MRs, and (iii) the strengths of the non-

resonant signals at the detector-coupled filter MR. With increase in DWDM, the channel gap 

between two adjacent wavelength signals decreases, which in turn increases heterodyne crosstalk 

noise power in detectors. With decrease in Q-factors of MRs, the widths of the resonant passbands 
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of MRs increase, increasing passband overlap with neighboring non-resonant signals, which in 

turn increases heterodyne crosstalk noise power. The strengths of the non-resonant signals depend 

on the losses faced by the non-resonant signals throughout their path from the laser source to the 

detector-coupled MR filter. 

Intermodulation (IM) crosstalk has the biggest influence on the last attribute discussed above, 

causing suppression (or loss) of signal strength of non-resonant signals in a DWDM waveguide 

[10κ]. IM crosstalk occurs when a modulator MR induces impairments in, and as a result, 

suppresses the neighboring non-resonant signals. Thus the level of heterodyne crosstalk noise 

power and resultant OSNR at the detector depends on the amount of IM crosstalk induced signal 

suppression at the modulator. This motivates mitigating the effects of IM crosstalk induced signal 

suppression on heterodyne crosstalk by controlling the strengths of the non-resonant signals at the 

detector.  

Additionally, fabrication process variations (PV) induce variations in the width, thickness, 

and doping concentration width and thickness of active MRs, which cause resonance wavelength 

shifts in MRs [22] [30]. PV-induced resonance shifts, when uncompensated, may reduce the gap 

between the resonances of the victim MRs and adjacent MRs, which increases crosstalk and 

worsens OSNR. For example, a previous study shows that in a DWDM-based photonic link with 

1.4κnm channel spacing and 4 Gbps bit-rate, when PV-induced resonance shift is over 1/3rd of the 

channel gap, bit-error-rate (BER) increases from 10-12 to 10-6 [23]. Techniques to counteract PV-

induced resonance shifts in MRs involve realigning the resonant wavelengths by using localized 

trimming [1κ] or thermal tuning [11κ]. Localized trimming induces a blue shift in the resonance 

wavelengths (to compensate PV-induced red shifts) of MRs using carrier injection into MRs, 

whereas thermal tuning induces a red shift in the resonance wavelengths (to compensate PV-
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induced blue shifts) of MRs through heating or thermal tuning of MRs using micro-heaters. 

However, our analysis has shown that localized trimming and thermal tuning increase intrinsic 

optical loss in MRs and signal loss in waveguides due to the free carrier absorption effect (FCA) 

[111] and increased optical scattering [11λ]. It is important to address this increase in loss, which 

drives the MR away from critical coupling and decreases its Q-factor, increasing heterodyne 

crosstalk and reducing OSNR [31].  

In this chapter, we present a novel cross-layer heterodyne crosstalk mitigation framework 

called HYDRA to address the abovementioned challenges and enable reliable communication in 

emerging PNoC-based manycore chips. Our framework has low overhead and is easily 

implementable on any existing DWDM-based PNoC without major modifications to the 

architecture. Our novel contributions areμ   

• We present device-level analytical models to capture the deleterious effects of localized 

trimming and thermal tuning in MRs. We also extend these models for system-level heterodyne 

crosstalk analysis; 

• We propose a device-level method for IM effect induced signal suppression aware heterodyne 

crosstalk mitigation (IMCM) that improves worst-case OSNR in detectors by controlling non-

resonant signal power;  

• We propose another device-level technique for heterodyne crosstalk mitigation (DMCM) that 

uses double MRs to improve worst-case OSNR in detectors by tailoring the MRs’ passbands 

to have steeper roll-off;  

• We propose a circuit-level technique for heterodyne crosstalk mitigation (EDCM) that 

improves worst-case OSNR in detectors by encoding data to avoid undesirable data value 

occurrences; 
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• We combine IMCM (see chapter 6), DMCM, and EDCM into a holistic cross-layer heterodyne 

crosstalk mitigation framework called HYDRA and evaluate it on three well-known crossbar 

PNoC architectures as well as prior work on heterodyne crosstalk mitigation. 

 

7.2. RELATED WORK 

An important characteristic of photonic signal transmission in on-chip photonic waveguides 

is that it is inherently lossy, i.e., the light signal is subject to losses such as insertion losses in MR 

modulators and filters [120], propagation and bending loss in waveguides, and splitting loss in 

splitters. Such losses negatively impact signal strength in waveguides, which reduces OSNR for a 

given noise power. In addition to the optical signal loss, crosstalk noise of the constituent MRs 

also deteriorates OSNR. Crosstalk noise in PNoCs usually occurs due to imperfections in MRs 

used as optical modulators, filters, and switches. This crosstalk noise can be classified as homodyne 

or heterodyne. 

For homodyne crosstalk, the noise power has the same wavelength as the signal power. As 

demonstrated in [115], out-of-phase homodyne crosstalk noise always degrades signal integrity. 

Homodyne crosstalk may either contribute to noise or cause fluctuations in signal power, which 

makes the analysis and mitigation of homodyne crosstalk complicated and beyond the scope of 

this work. On the other hand, heterodyne crosstalk occurs when an MR picks up some optical 

power from non-resonant signals (as explained in Section 7.1). This chapter proposes solutions to 

mitigate heterodyne crosstalk due to the off-resonance filtering effect. In the rest of the chapter, 

we use the term crosstalk to refer to heterodyne crosstalk, unless specified otherwise. 

A few prior works have analyzed crosstalk in PNoCs. The effect of crosstalk noise on OSNR 

is shown to be negligible in the WDM system presented in [102], as this system uses only four 
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WDM wavelengths per waveguide with 1.3nm channel spacing and 4 Gbps bit-rate. In [10κ], IM 

crosstalk is shown to be negligible for a WDM link operating at 10 Gbps with a channel spacing 

of 1.6nm. However, in PNoC architectures that use DWDM (e.g., Corona [11] with 64 wavelength 

DWDM), significant crosstalk noise is expected. The damaging impact of crosstalk noise in the 

Corona PNoC is presented in [100], where worst-case OSNR is estimated to be 14dB in data 

waveguides, which is insufficient for reliable data transfers. To mitigate the impact of crosstalk 

noise in DWDM-based PNoC architectures, two encoding techniques and one wavelength spacing 

technique were presented in [2κ], [2λ]. However, none of these works considers the system-level 

impact of IM effects, off-resonance filtering, or process variations on crosstalk noise in DWDM-

based PNoCs. 

Fabrication-induced process variations (PV) impact the cross-section, i.e., width and height, 

of photonic devices such as MRs and waveguides. In MRs, PV causes resonance wavelength drifts, 

which can be counteracted by using device-level techniques such as localized trimming [1κ] and 

thermal tuning [11κ]. Trimming induces a blue shift in the resonance wavelengths of MRs using 

carrier injection into MRs, whereas thermal tuning induces a red shift in the resonance wavelengths 

of MRs through heating of MRs using ring heaters. Such device-level techniques are essential to 

overcome PV-induced drifts, but they incur high power overheads and may increase signal loss 

and crosstalk noise, thereby reducing OSNR. This motivates the use of supplementary system-

level approaches to reduce the overheads of device-level techniques. A few prior works have 

explored the impact of PV on DWDM-based PNoCs at the system-level [23], [105]. In [23], a 

thermal tuning based approach is presented that adjusts chip temperature using dynamic voltage 

and frequency scaling (DVFS) to compensate for chip-wide PV-induced resonance shifts in MRs. 

In [105], a methodology to salvage network-bandwidth loss due to PV-drifts is proposed, which 
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reorders MRs and trims them to nearby wavelengths. But the achievable benefits for all these 

supplementary system-level techniques highly depend on the underlying system architecture and 

they also ignore the harmful effects of device-level PV remedies (i.e., trimming and tuning) on 

crosstalk. 

 

 
                                (a)                                                                           (b) 
 

Figure 42 Impact of PV-induced resonance shifts on MR operation in DWDM waveguides (noteμ 
only PV-induced red resonance shifts are shown)μ (a) MR as active modulator with PV-induced 
red shift, modulating in-resonance wavelength (b) detector-coupled MR filter with PV-induced red 
shift, filtering its resonance wavelength and dropping it on the detector. 
 

7.3. PV-AWARE CROSSTALK ANALYSIS 

An MR can be considered to be a looped photonic waveguide with a small diameter, not to 

be confused with the straight photonic waveguide used for wavelength-parallel data transfers for 

which MRs serve as modulators and filters. Variations in an MR’s dimensions due to PV cause a 

“shift” in its resonance wavelength. Figure 42 shows the impact of PV on crosstalk noise (dashed 

lines) in MRs. From Figure 42(a), PV-induced red shifts in MR modulators increase crosstalk noise 

in the waveguide and decrease signal strength of non-resonating wavelength signals. Figure 42(b) 

shows how PV-induced red shifts increase detected crosstalk noise and decrease detected signal 

power of resonance wavelengths in detectors, which in turn reduces OSNR and photonic data 
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communication reliability. As discussed earlier, localized trimming and thermal tuning are 

essential to deal with PV-induced resonance red and blue shifts in MRs, respectively. However, 

the use of these methods in an MR alters its intrinsic optical properties, which leads to increased 

crosstalk and degraded performance in PNoCs that use these MRs. 

 

7.3.1. IMPACT OF LOCALIZED TRIMMING ON CROSSTALK 

The localized trimming method injects extra free carriers in the circular MR waveguide to 

counteract the PV-induced resonance red shift. The introduction of extra free carriers reduces the 

refractive index of the looped MR waveguide, which in turn induces a blue shift in resonance to 

counteract the PV-induced red shift. However, the extra free carriers increase the absorption related 

optical loss in the MR due to the free carrier absorption effect (FCA) [111]. The increase in optical 

loss results in a decrease of MR Q-factor, which increases MR insertion loss and crosstalk. We use 

a PV map (described in more detail in Section 7.4) to estimate PV-induced shifts in the resonance 

wavelengths of all the MRs across a chip. Then, for each MR device, we calculate the amount of 

change in refractive index ( ) required to counteract this PV-induced wavelength shift using 

the following equation [121]μ 

 Δ = Δ ∗� ≈ Γ∗Δ ∗�                                                    (33) 

 

where,  is the PV-induced resonance shift that needs to be compensated for,  is the 

target resonance wavelength of the MR, and ng is the group refractive index (ratio of speed of light 

to group velocity of all wavelengths traversing the waveguide) of the MR waveguide. Moreover, 

neff is the change in effective index that is approximately equal to Γ* nsi, where   is the 
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confinement factor describing the overlap of the optical mode with the MR waveguide’s silicon 

core. The waveguides used in this study (both MRs’ looped waveguides and straight bus 

waveguides) are rectangular channel waveguides fabricated using Si-SiO2 material with a cross 

section of 450nm×220nm. We model these waveguides using a commercial eigenmode solver 

[122], based on which the values of   and   at 1550nm are calculated to be 0.7κ and 4.16, 

respectively. 

The change in free carrier concentration required to induce refractive index change of  

at around 1.55µm wavelength can be quantified as follows [111]μ 

 Δ = − . × − Δ − . × − 8 Δ ℎ .8,                     (34) 

 

where, Δ   and Δ ℎ  are the change in free electron concentration and free hole 

concentration respectively. The change in the absorption loss coefficient (Δ� ) due to the change 

in free carrier concentration (owing to the FCA effect) can be quantified using the following 

equation [111]μ Δ� = . × − 8Δ + . × − 8Δ ℎ,                                      (35) 

Quality factor (Q-factor) is a measure of the sharpness of the MR’s resonance relative to its 

central (resonant) wavelength [121]. The Q-factor of MRs affects the magnitudes of crosstalk 

penalties (as explained in [10κ] and [123]) and determines the photon-lifetime limited allowable 

bitrate of signals [3κ]. Moreover, the Q-factor of an MR represents the number of oscillations of 

the field in the MR before the circulating field-energy in the MR is depleted to 1/e of the initial 

energy [121]. Now, from [121], the field-energy decay in the MR cavity depends on the losses in 

the cavity. Therefore, the Q-factor of an MR depends on the MR’s loss coefficient (�) along with 



154 

some other parameters. The relationship between the Q-factor and the change in absorption loss 

coefficient (Δ� ) is given by the Eq. (36) and (37) [121]μ 

′ = + Δ = √ �′� − �′                                       (36) 

′ = + Δ = �− �+Γ.Δ�                                          (37) 

where, r1 and r2 are the self-coupling coefficients of an add-drop MR (defined in [121]); R is the 

MR radius; a’ is the resultant round-trip field-transmission after an arbitrary change Δa in the 

original round-trip field-transmission a; αSi is the change in the MR’s original loss coefficient α; 

and Δ  is the change in the loaded Q-factor (Q). Eq. (36) gives the resultant loaded Q-factor Q’ 

for an add-drop MR. Similarly, the Q’ for an all-pass MR (described in [121]) can be modeled by 

setting r2=1 in Eq. (36). Note that, as depicted in Figure 42, we use all-pass MRs as modulators 

and add-drop MRs as filters and switches. 

Now, the original loss coefficient α is a sum of three componentsμ (i) intrinsic loss coefficient 

due to material loss and sidewall roughness induced scattering loss; (ii) bending loss coefficient, 

which is a result of the curvature in the MR; and (iii) the absorption effect factor that depends on 

the original free carrier concentration in the waveguide core. Typically, the localized trimming 

method (when used to induce a blue-shift in the MR resonance) injects excess concentration of 

free carriers into the MR, which increases the absorption loss coefficient (positive Δ�  ). As 

evident from Eq. (37), a positive value of Δ�  results in a decrease in a’, which in turn decreases 

the Q-factor Q’ (from Eq. (36)). This causes a broadening of the MR passband, which results in 

increased insertion loss, crosstalk noise, and signal impairment/degradation related power penalty.  

   We model the MR transmission spectrum using a Lorentzian function [124]. In Eq. (38), 

this function is used to represent coupling factor φ [115] between wavelength i and an MR with 

resonance wavelength j. From [115], we use this coupling factor φ to model the heterodyne 
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crosstalk noise power (of wavelength λi) that is dropped on the detector at the drop port of a filter 

MR with resonance wavelength λj. From [10κ], intermodulation crosstalk incurred by a modulator 

MR induces signal impairment, suppressing the power in the adjacent signal. As in [10κ], we use 

the same Lorentzian function to determine a loss factor γ in Eq. (39), which is the factor by which 

signal power of a wavelength i is suppressed when it passes by a modulator MR whose resonance 

wavelength is j. Thus, when a wavelength signal in a waveguide passes by a modulator MR, the 

intermodulation-crosstalk induced bit-rate independent suppression in its power can be modeled 

as a through loss, which is defined as γ times the signal power before it passes by the MR. 

Now from Eq. (35)-(37), Q’ of an MR decreases with localized trimming based increase in 

carrier concentration. This in turn increases φ and crosstalk noise power (Eq. (38)). Note that we 

do not consider the effect of decrease in free carrier concentration, as we use only carrier injection 

for both modulation and trimming (to counteract PV-induced red shifts). As would be clear in 

Section 7.3.2, we do not need to use carrier depletion with trimming, as we would rather heat up 

the MRs at higher temperatures to counter the PV-induced blue shifts. �(λ , λ , Q′ ) = + ′ λ −λλ − ,                                (38) 

(λ , λ , Q′) = + ′ λ −λλ − − ,                              (39) 

 

7.3.2. IMPACT OF THERMAL TUNING OF MR ON CROSSTALK 

As mentioned earlier, localized trimming based carrier injection induces blue shifts in 

resonance wavelengths of MRs, which can be used to compensate PV-induced red shifts in 

resonance wavelengths. In contrast, thermal tuning of MRs incurs red shifts in resonance 

wavelengths of MRs, which can be used to compensate PV-induced blue shifts in resonance 

wavelengths. From Section 7.3.1, localized trimming results in increased absorption loss 
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coefficient and subsequent decrease in Q-factor and increase in insertion loss and crosstalk power 

penalties. Similarly, it can be intuitively inferred that heating of MRs would also increase the 

absorption loss coefficient in MRs, because, the increase in temperature from the heating of MRs 

imparts enough energy to some valence electrons of doped silicon (constitutive semiconductor 

material of MRs) so that they become free carriers. However, these extra free electrons do not 

significantly increase the net concentration of free carriers in doped silicon. This is because, in 

doped silicon, the majority of free carriers emanate from the ionization of dopant atoms and usually, 

all the dopant atoms are completely ionized at room temperature [125]. Thus, any increase in the 

MR operating temperature above room temperature does not cause ionization of any more dopant 

atoms. As a result, the concentration of the majority free carriers, and hence, the net free carrier 

concentration in doped silicon does not change with heating of MRs. Therefore, heating of MRs 

does not increase the absorption loss coefficient of MRs. 

The scattering loss coefficient (that gives fractional loss in signal amplitude) of an MR’s 

circular waveguide is proportional to the refractive index contrast between the core and the 

cladding (nSi – nSiO2) of the MR waveguide and the size of the surface roughness σ, and is given 

by the following equation [11λ] [126]μ  

α a = � �� . ( √ � −√ � − + )                 (40) 

where, � �  is scattering loss coefficient, k0 is the free-space wave number, n1 =nSi is the 

MR core’s refractive index, n2=nSiO2 is the MR cladding’s refractive index, L is the MR thickness, 

and θ is the propagation angle for the fundamental mode in the MR. With heating of the MR, the 

refractive index nSi (of the MR’s core) and the refractive index nSiO2 (of the MR’s cladding) 

increase to their new values of nSi+ nSi and nSiO2+ nSiO2 respectively, which are given by the 

following equations (41) and (42). 
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+ = + = + . , (41) 

+ = + . ,  (42) 

where, δnSi/δT and δnSiO2/δT are the thermo-optic coefficients of Si (MR’s core) and SiO2 

(MR’s cladding) materials respectively, and they assume the values of 1.κ6×10-4 K-1 and 1×10-5 K-

1 respectively [113]. ΔT is an increase in temperature of the MR due to heating. Due to smaller 

thermo-optic coefficient of SiO2 and smaller mode field confinement in SiO2 cladding, the effects 

of temperature change on +  is negligible. If a blue shift in an MR’s resonance wavelength of 

Δ r is to be compensated by heating the MR, the required increase in MR’s temperature can be 

computed using the following equation [113]. =  . �� . � . ,                                                                  (43)                                              

Now, as the thermo-optic coefficient of Si is greater than that of SiO2, + increases faster 

with increase in temperature than + . As a result, the difference sin � −  in Eq. 

(40), which depends on the index contrast between the core and the cladding, increases with 

increase in temperature. This leads to an increase in αscatter with increase in temperature (Eq. (40)). 

Now, similar to the case of localized trimming, this increase in scattering loss coefficient leads to 

decrease in MR Q-factor. Using Eq. (40), the increased value of scattering loss coefficient αscatter 

can be calculated, which then can be used in place of (α+ αSi) in Eq. (37) to find the decreased 

value of Q-factor from Eq. (36). 

To model and compare the effects of localized trimming and thermal tuning of MRs, we 

simulate an MR with a radius (R) of 1.κ m (deemed as implementable with CMOS-type processes 

based on projections from [127]) considering initial original Q-factor of 12500, self-coupling 

coefficients r1=0.λλ, r2=0.λλ, and field-transmission coefficient a of 0.λλ1. Note that we use the 
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initial Q=12500, because it gives the optimum value of total MR filter penalty for 5Gbps bitrate 

and 64 channels (as projected from [41]). Also, note that we assume initial αscatter=0.14cm-1, which 

corresponds to σ=1nm, nSi=3.5, nSiO2=1.5, L = 220nm, and θ=26.51 in Eq. (40). 

 

 

                                  (a)                                                      (b) 
 

Figure 43 (a) Effect of localized trimming, (b) effect of thermal tuning, on the Q-factor and 
fractional increase in coupling factor of an example MR. Here, the fractional increase in coupling 
factor is calculated w.r.t. the original coupling factor of the MR without PV. 
 

Using Eq. (33)-(42), we evaluate the values of Q-factor and increase in coupling factor φ for 

this example MR, when PV-induced red/blue shifts of different values in the resonance wavelength 

of this MR are compensated by using localized trimming/thermal tuning. Figure 43(a)-(b) plot 

these values of Q-factor and φ for localized trimming and thermal tuning respectively. From the 

figure, compensating 2nm PV-induced red shift in an MR’s resonance wavelength with localized 

trimming decreases the MR’s Q-factor by λ1.7% and increases φ by 77.κ× compared to original 

Q-factor and coupling factor, respectively. Furthermore, compensating 2nm of PV-induced blue 

shift in MR’s resonance wavelength with thermal tuning decreases the MR’s Q-factor by only 

3.25% and increases φ by 1.07× compared to the original Q-factor and coupling factor, respectively. 

Thus, it can be concluded that thermal tuning of MRs has negligible impact on MRs’ Q-factor and 
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coupling factor compared to localized trimming. Therefore, compared to localized trimming, 

thermal tuning does not significantly increase insertion loss and crosstalk penalties for MRs. 

However, note that thermal tuning cannot compensate for PV-induced red shifts in MRs’ 

resonance wavelengths. Therefore, in a typical PNoC, where both red and blue shifts in MRs’ 

resonance wavelengths are present, the use of localized trimming is inevitable. As a result, it is 

imperative to overcome the poor efficiency of localized trimming. We propose, as part of our 

HYDRA framework, a circuit-level data encoding technique (EDCM; Section 7.6) that mitigates 

the effect of PV-remedial techniques (both localized trimming and thermal tuning) on MR crosstalk 

penalties. Furthermore, this chapter only analyzes the impact of PV and its remedial techniques on 

crosstalk noise. Evaluating the impact of thermal variations on crosstalk noise is beyond the scope 

of this chapter. In the next subsection, we use the derived values of � and  from this and the 

previous section to model worst-case crosstalk and OSNR for the Corona PNoC, in the presence 

of process variations. 

 

7.3.3. PV-AWARE CROSSTALK MODELS FOR CORONA PNOC 

We characterize crosstalk in waveguides with DWDM for the Corona PNoC enhanced with 

token-slot arbitration [67]. We present equations to model the off-resonance filtering effect induced 

crosstalk noise power and resultant OSNR in the detectors of receiver groups. Before presenting 

actual equations, we show notations for parameters used in the equations, in Table 16 and Table 

17. 

The Corona PNoC is designed for a 256-core single-chip platform, where cores are grouped 

into 64 clusters, with 4 cores in each cluster. A photonic crossbar topology with 64 data waveguide 

groups is used for communication between clusters. Each data waveguide group consists of 4 



160 

multiple-write-single-read (MWSR) waveguides with 64-wavelength DWDM in each waveguide. 

As modulation occurs on both positive and negative edges of the clock in Corona, 512 bits (cache-

line size) can be modulated and inserted on 4 MWSR waveguides in a single cycle by a sender. 

Each of the 64 data waveguide groups starts at a different cluster called ‘home-cluster’, traverses 

other clusters (where modulators can modulate light and receivers can filter and detect this light), 

and finally ends at the home-cluster again, at a set of receivers (optical termination). 

 

Table 16 Photonic power loss, crosstalk coefficients [74], [100] 
 

Notation Parameter type Parameter value (in dB) 

LP Propagation loss -0.274 per cm 

LB Bending loss -0.0085 per 90o 

LS12 1×2 splitter power loss -0.2 

LS14 1×4 splitter power loss -0.2 

LS16 1×6 splitter power loss -0.2 
 

 

Table 17 Other model parameter notations [74] 
 

Notation Crosstalk Coefficient Parameter Value 

Q Q-factor 9000 

RS Detector responsivity 0.8 A/W 

L Photonic path length in cm 

B Number of bends in photonic path 

j Resonance wavelength of MR 

RS12 Splitting factor for 1×2 splitter 

RS14 Splitting factor for 1×4 splitter 

RS16 Splitting factor for 1×6 splitter 
 

 

A power waveguide supplies optical power from an off-chip laser to each of the 64 data 

waveguide groups at its home-cluster via a series of 1×2 splitters. In each of the 64 home-clusters, 

optical power is distributed among 4 MWSR waveguides equally using a 1×4 splitter with splitting 

factor RS14. As all 1×2 splitters are present before the last (64th) waveguide group, this waveguide 

group suffers the highest signal power loss. Therefore, the worst-case signal and crosstalk noise 
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exists in the detectors of the receiver group of the 64th cluster node, and this node is called the 

worst-case power loss node (NWCPL) in the Corona PNoC. 

For this NWCPL node of the Corona PNoC, the signal power (Psignal( j)) and crosstalk noise 

power (Pnoise( j)) received at a receiver (i.e., detector-coupled MR filter) with resonance 

wavelength j are expressed in Eq. (44) and (45) respectively. K( i) in Eq. (46) represents signal 

power loss of i before the receiver group of NWCPL. �( i, j) in Eq. (47) represents signal power 

loss of i before the receiver with resonance wavelength j within the receiver group of NWCPL. 

PS( i, j) in Eq. (48) is the signal power of the i wavelength in the waveguide that has reached 

the receiver with j resonance wavelength in the receiver group of NWCPL after passing through all 

the preceding receivers. Due to PV (more details about modeling of PV in PNoCs are presented in 

the next subsection), crosstalk coupling factor (φ, Eq. (38)) increases with decrease in loaded Q-

factor (Q’, which is calculated by using Eq. (36) and Eq. (37)), which in turn increases off-

resonance filtering effect induced crosstalk noise in the detectors. Furthermore, Q’(x×y)+j is defined 

as the Q-factor of jth MR which is in the x+1th node and each node is having ‘y’ number of MRs. 

We can define OSNR( j) at the detector in the receiver (with resonance wavelength j) of NWCPL 

as the ratio of Psignal( j) to Pnoise( j), as shown in Eq. (49). These equations (i.e., (44)-(49)) are 

based on the models presented in the prior works [100] and [115]. 

         � (λ ) = �(λ , λ , Q′ × +  ) (λ , λ ),                          (44) 

(λ ) =∑ �(λ , λ , Q′ × + ) (λ , λ )= ≠ ,             (45) 

λ = R L L ∏ ∏ λ , λ , Q′( − × )+== ,         (46)   

�(λ , λ ) =   ∏ λ , λ , Q′ × +− <= ,                           (47)               

            (λ , λ ) = λ �(λ , λ ) ,                               (48) 
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(λ ) =    ��(λ )   (λ ) ,                                               (49) 

 

7.3.4. MODELING PV OF MR DEVICES IN CORONA PNOC 

We adapt the VARIUS tool [112], similar to prior work [105], to model die-to-die (D2D) as 

well as within-die (WID) process variations in MRs. We consider photonic devices with a silicon 

(Si) core and silicon-dioxide (SiO2) cladding. VARIUS uses a normal distribution to characterize 

on-chip D2D and WID process variations. 

The key parameters are mean (µ), variance (σ2), and density (ω) of a variable that follows 

the normal distribution. As wavelength variations are approximately linear to dimension variations 

of MRs, we assume they follow the same distribution. The mean (µ) of wavelength variation of an 

MR is its nominal resonance wavelength. We consider a DWDM wavelength range in the C and L 

bands [104], with a starting wavelength of 1550nm and a channel spacing of 0.κnm. Hence, those 

wavelengths are the means for each MR modeled. The variance (σ2) of wavelength variation is 

determined based on laboratory fabrication data [22] and our target die size. We consider a 256-

core chip with die size 400 mm2 at a 22nm process node. For this die size we consider a WID 

standard deviation (σWID) of 0.61nm [105] and D2D standard deviation (σD2D) of 1.01nm [105]. 

We also consider a density (ω) of 0.5 [105] for this die size, which is the parameter that determines 

the range of WID spatial correlation required by the VARIUS tool. With these parameters, we use 

VARIUS to generate 100 PV maps, these maps are used to model PV in Corona PNoC. 

 

7.4. HYDRA FRAMEWORK: OVERVIEW 

Our proposed cross-layer HYDRA framework enables crosstalk resilience in DWDM-based 

PNoC architectures by integrating device-level and circuit-level enhancements that seamlessly 
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work together. Figure 44 gives a high-level overview of our framework. The IM effects induced 

signal suppression aware crosstalk mitigation (IMCM) scheme employs additional MRs to 

decrease wavelength-specific crosstalk noise at the detectors of DWDM-based photonic links. For 

more details of IMCM scheme refer to Section 6.5 of chapter 6. The double MR based crosstalk 

mitigation mechanism (DMCM) employs double microrings (DMRs) as signal filters to reduce the 

crosstalk noise at the detectors. This technique improves OSNR in DWDM-based photonic links. 

However, excessive usage of DMRs (or higher-order filters) increases area, PV redress power 

(static power required to counter PV-induced resonance drifts in the DMRs) and laser power 

overheads for PNoC architectures [12κ]. Thus, to reduce these overheads, we also devise a circuit-

level crosstalk mitigation mechanism (EDCM) that uses a 5-bit encoding mechanism to 

intelligently reduce undesirable data value occurrences in a photonic waveguide. This allows for 

further reduction in crosstalk noise and more effectively improves OSNR in DWDM-based PNoC 

architectures. The next three sections present details of the IMCM, DMCM, and EDCM techniques. 

 

 
 

Figure 44 Overview of cross-layer HYDRA framework that integrates a device-level IM-aware 

crosstalk mitigation mechanism (IMCM) (see chapter 6), a device-level double MR based crosstalk 

mitigation mechanism (DMCM) and a circuit-level 5-bit crosstalk mitigation mechanism (EDCM). 
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                                            (a)                                                          (b) 
 

Figure 45 Coupling factor (φ/φ’) variation with increase in gap between the non-resonant 
wavelength available in the photonic waveguide and the resonance wavelength of (a) a single MR 
filter and (b) a DMR filter. 

 

7.5. CROSSTALK MITIGATION WITH DMCM 

Crosstalk noise in the detectors of DWDM-based PNoCs is mainly caused due to inefficient 

coupling of filter MRs, as filter MRs in their active mode not only couple photonic power from 

their resonance wavelengths but also couple a small amount of photonic power from other 

wavelengths in the waveguide. The coupling factor φ in Figure 45(a) represents the fraction of 

signal power of non-resonant wavelength coupled by an MR filter. This coupled power is then 

dropped on a detector at the MR’s drop port. Figure 45(a) illustrates the variation of φ (using Eq. 

(38)) with increase in gap between the MR resonance wavelength and the non-resonant wavelength 

available in the waveguide. It can be seen that φ decreases abruptly with an increase in this gap. 

The first immediate non-resonance wavelength has almost 4× higher coupling factor than the 

second immediate non-resonance wavelength considering a channel spacing of 0.κnm, Q=12500, 

and 5 Gbps bit-rate. We choose these values of channel spacing, Q, and bitrate, as they provide 

optimal value of total filter penalty for single MR filters (as projected from [123]). Thus non-
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resonant wavelengths closer to the MR filter’s resonance wavelengths create greater crosstalk 

noise. 

 

 

(a)                                            (b) 
 

Figure 46 Crosstalk mitigation with double microring resonatorsμ (a) MR detector operation when 
receiving its resonance wavelength; (b) double MR operation when receiving its resonance 
wavelength. 

 

One way of reducing this crosstalk noise is to increase the Q-factor of MR filters so that φ 

is reduced. But doing so would increase the photon-lifetime in MR filters limiting their maximum 

allowable bit-rate [3κ]. An alternate method for reducing crosstalk is to use second-order filters 

with double MRs (DMRs), as used in  [40] [12κ], for steeper roll-off of filter response. The use of 

a DMR filter in place of a single MR filter is depicted in Figure 46. To further reduce crosstalk, 

use of filter MRs of even higher order (3rd order or higher) is possible, but as explained in [40], 

the use of higher-order MR filters and the choice of Q for the MR stages trade off crosstalk 

suppression with signal degradation due to signal side-lobe truncation. From [12κ], the DMRs 

present lower signal degradation power penalty than third order and first-order (single MR) MR 

filters. The optimal crosstalk performance for DMRs is achieved at 12.5Gbps bitrate or lower with 
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0.κnm channel spacing and the individual MRs having the Q-factor of κ000 [12κ]. For these 

reasons, in this chapter we use DMR filters with individual MR Q-factor of κ000 to reduce 

crosstalk noise. 

 

7.5.1. MODELING OF DMR FILTERS 

In this section, we model the resultant coupling factor φ’ and signal suppression/loss factor 

γ’ due to the steeper roll-off of a DMR filter response. From [12λ], in analogy to electronic filter 

design, the effect of steeper roll-off of a DMR filter response can be modeled as a maximally flat 

Butterworth filter response. From [12λ], the shape, and hence the Q-factor of the Butterworth filter 

response does not change for higher order filters (and hence for a DMR) except that the roll-off 

becomes steeper. Therefore, a Butterworth type of DMR filter response can be modeled by simply 

setting the exponent of the term 2Q’( i- j)/ j in Eq. (38) and (39) to four instead of two. As a result, 

Eq. (38) and (39) can be revised for a DMR to be Eq. (50) and (51), respectively. �′(λ , λ , Q′ ) = + ′ λ −λλ − ,                               (50) 

′(λ , λ , Q′) = + ′ λ −λλ − − ,                             (51) 

Here, as the Q-factor for a Butterworth DMR filter does not change from the Q-factor of a 

single MR filter, Q’ in Eq. (50) and (51) can be modeled as the loaded Q-factor of the individual 

MRs using Eq. (36) and (37). We modeled a DMR with an original Q-factor of κ000 

(corresponding to self-coupling coefficients r1=0.λκ5, r2=0.λκ5, and field-transmission coefficient 

a of 0.λκ5 in Eq. (36) and (37)). Based on this model, we simulated φ’ using Eq. (50). Figure 45(b) 

illustrates the variation of φ’ (using Eq. (50)) with increase in gap between the DMR resonance 

wavelength and the non-resonant wavelength available in the waveguide. By comparing Figure 

45(a) with Figure 45(b), it is evident that φ’ of the MR’s immediate non-resonant wavelength (with 
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a channel gap of 0.κnm) for the DMR filter is about 30× smaller than φ for the single MR filter. 

Since the coupling factor is used to determine crosstalk noise power in the filter-coupled detectors, 

it is evident that the DMR filter reduces the crosstalk noise power by about 30×. Thus, it can be 

concluded that the use of DMR filters in place of signal MR filters at the receiver nodes of PNoCs 

results in significantly less crosstalk noise power at the detectors. Thus, our double-MR enabled 

crosstalk mitigation (DMCM) scheme uses DMR filters in place of single MR filters and achieves 

significant reduction in crosstalk noise power and improvement in OSNR at the detectors. 

 

 
 

Figure 47 Organization of MR and DMR detectors in a detecting node on a photonic data 
waveguide with the EDCM mechanism. 

 

7.5.2. OVERHEAD ANALYSIS FOR OUR DMCM SCHEME 

In this section, we discuss the overhead of using DMR filters. From [121] and [12λ], as 

depicted in Figure 46(b), in a DMR, both the constituent MRs should be in resonance with the 

same wavelength (i.e., λ2 in Figure 46(b)) to achieve a smooth filter response without any ripples 

or multiple peaks. However, in reality, due to the presence of PV, the constituent MRs end up 

having different resonance wavelengths after fabrication, which results in multiple peaks in the 

DMR filter’s response. Therefore, the resonances of both the individual MRs of a DMR need to 

be aligned with trimming or tuning, which almost doubles the required trimming or tuning power 

for DMR filters compared to single MR filters. In addition to this, a DMR filter incurs crosstalk 
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induced signal impairment related power penalty of 0.5dB for 0.κnm channel spacing [12κ] and 

incurs about 1.5dB insertion loss [12κ]. Moreover, thermal stabilization of a DMR requires 0.λmW 

more power [12κ]. Because of all these penalties, too much use of DMR filters result in a very 

high power overhead. Nevertheless, we propose an intelligent method of using a few DMR filters 

along with a data encoding mechanism (see next section) to limit the use and overheads of DMRs 

and further mitigate the crosstalk noise power in the detectors.  

 

Table 18 Code words for EDCM technique 

 

Data Word Code Word  Data Word Code Word 

0000 00000  1000 01000 

0001 00001  1001 01001 

0010 00010  1010 01010 

0011 00011  1011 01011 

0100 00100  1100 10100 

0101 00101  1101 10010 

0110 10011  1110 10001 

0111 10101  1111 10000 

 

7.6. CROSSTALK MITIGATION WITH EDCM 

The crosstalk noise in a detector is also highly dependent on the strengths of the non-resonant 

signals at the detector. Crosstalk noise increases with increase in signal power of non-resonant 

wavelengths. Based on this observation, one can conjecture that crosstalk noise may be mitigated 

by placing one or more ‘0’s adjacent to ‘1’s in the data in the waveguide, to reduce photonic signal 

strength of non-resonant wavelengths. In this section, we present a novel technique (EDCM) at the 

circuit-level for mitigation of crosstalk noise in DWDM-based PNoCs.  

DMRs in the DMCM technique presented in section 7.5 increase laser power (because of 

higher signal loss due to higher crosstalk power penalty and insertion loss) and redress power 

dissipation overheads. These power overheads increase with an increase in the number of DMRs, 



169 

hence there is a need to reduce the number of DMRs used with photonic waveguides. In DMCM, 

DMRs are beneficial when there are consecutive ‘1’s in the parallel data word being transmitted, 

because consecutive ‘1’s imply higher signal strength in the immediate non-resonant wavelengths. 

One way to reduce the number of DMRs while still minimizing the crosstalk noise due to 

consecutive ‘1’s is by reducing the number of consecutive ‘1’s in the parallel data word being 

transmitted. To do so, we propose a circuit-level scheme that employs a sophisticated encoding 

mechanism. 

Our proposed circuit-level DMR-aware crosstalk mitigation mechanism (EDCM) places one 

or more ‘0’s adjacent to ‘1’s in the data to restrict the number of consecutive ‘1’s in the data stream 

to three. EDCM employs 5-bit encoding for every 4-bit data block to restrict the number of 

consecutive ‘1’s to two in the data block, which in turn limits the worst-case number of consecutive 

‘1’s in the data stream to three. Figure 47 shows the organization of MRs and DMRs in the 

implementation of the proposed EDCM encoding mechanism along with the location of occurrence 

of worst-case consecutive ‘1’s. Table 18 shows the 5-bit codes in the EDCM scheme, to replace 4-

bit data words. To implement this encoding technique on a 64-bit word, 16 additional bits are 

required, which in turn increases the number of MR devices by 25%. However, EDCM reduces 

the number of DMR detectors required by DMCM and reduces the total number of MR detectors 

by 12.5%. We propose to use an SRAM based lookup table with a size of κ0-bits to facilitate 

encoding and decoding of data in each modulating and detecting node for our EDCM mechanism. 

This encoding and decoding mechanism incurs a delay overhead of approximately one clock cycle, 

which we account for in our simulation analysis. 

 



170 

7.7. HYDRA INTEGRATION WITH PNOCS 

7.7.1. CORONA PNOC WITH HYDRA FRAMEWORK 

In this subsection, we extend the PV-aware crosstalk models of the Corona PNoC from 

subsection 7.3.3 to devise PV-aware crosstalk models for Corona enhanced with the HYDRA 

framework. To integrate HYDRA with the Corona PNoC, we increase the DWDM degree in the 

MWSR waveguides from 64 to 65 (i.e., channel spacing is reduced from 0.κnm to 0.7λnm) and 

increase the number of MWSR waveguides in each channel from 4 to 5 to facilitate simultaneous 

transfer of an entire packet (which requires 512 bits before encoding). To distribute optical power 

between these waveguides, there is also a need to replace 1×4 splitters with 1×5 splitters with a 

splitting factor of RS15. Because of the increase in DWDM from 64 to 65 the number of modulators 

in the modulating node increases from 64 to 65. Furthermore, we need to add an additional IMCM 

MR in all modulating nodes on each MWSR waveguide, thus the total number of modulators in 

each modulating node on each MWSR waveguide increases to 66. In the detecting node, first we 

need to increase the number of detector MRs on each data waveguide from 64 to 65 and secondly 

as shown in Figure 47 in each group of 5 consecutive detector MRs we need to replace the last two 

detector MRs with DMR detectors (replace φ, and  with φ’, and ’ respectively). Therefore, 

equations (44), (45), (46), and (47) for worst-case signal and crosstalk noise power are changed to 

equations (52), (53), (54), and (55) below respectively.    � (λ ) = �′(λ , λ , ′ × +  ) (λ , λ ),                           (52) 

(λ ) =∑ �′(λ , λ , ′ × + ) (λ , λ )= ≠ ,              (53) 

λ = R L L ∏ ∏ ′ λ , λ , Q′( − × )+=    = (54) 

�(λ , λ ) =   ∏ ′(λ , λ , Q′ × + )− <= ,                          (55) 
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7.7.2. FIREFLY PNOC WITH HYDRA FRAMEWORK 

To investigate the efficacy of integrating our HYDRA framework into other PNoC 

architectures, we integrated it with the Firefly [12] crossbar-based PNoC architecture. Firefly 

PNoC, for a 256-core system, has κ clusters (C1-Cκ) with 32 cores in each cluster. Within each 

cluster, a group of four cores are connected to a router through a concentrator. Thus each cluster 

has κ routers (R1-Rκ) and these routers are electrically connected using a mesh topology. Firefly 

uses photonic signals for inter-cluster communication. Unlike the MWSR waveguides used in the 

Corona crossbar, Firefly uses reservation-assisted single write multiple reader (R-SWMR) data 

waveguides in its crossbar. Each data channel in Firefly consists of κ SWMR waveguides, with 64 

DWDM in each waveguide. Firefly uses only 1/κth of the MRs on each data waveguide compared 

to Corona, as only eight nodes are capable of accessing each SWMR waveguide.  

In our implementation of Firefly, we considered a power waveguide similar to that used in 

Corona and determined that the worst-case power loss node (NWCPL) is at the detectors of C4R0, 

which is the router-0 (R0) of cluster-4 (C4) in this architecture. Similar to Corona, in Firefly, the 

worst-case signal and noise power in the detectors of router C4R0 are calculated using Eq. (44)-

(49) presented in Section 7.3.3. But as Firefly has fewer number of MRs in its data channels, this 

in turn changes the signal and crosstalk noise power losses before the detector group of NWCPL. 

To integrate HYDRA with the Firefly PNoC, we need to increase the DWDM degree in 

SWMR waveguides from 64 to 65 and increase the number of SWMR waveguides in each channel 

from κ to 10 to facilitate simultaneous transfer of an entire packet (which requires 512 bits before 

encoding). To deal with the increase in DWDM degree, we need to increase the number of 

modulators and detectors from 64 to 65 on each SWMR waveguide in a modulating node and 

detecting node respectively. Further, we need to add an additional IMCM MR in all modulating 
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and detecting nodes on each SWMR waveguide, which increases the total number of MRs in each 

modulating and detecting node on each SWMR waveguide to 66.  Also, in each detecting node, 

for each group of 5 consecutive detector MRs (excluding the IMCM MR in that detecting node) 

we need to replace the last two detector MRs with DMR detectors (see Figure 47). Lastly, we 

determine worst-case OSNR using Eq. (52)-(55) with modified through losses. 

 

7.7.3. FLEXISHARE PNOC WITH HYDRA FRAMEWORK 

We also investigated integrating HYDRA with the Flexishare [13] PNoC architecture with 

256 cores. We considered a 64-radix, 64 node Flexishare architecture with 4 cores in each node 

having 32 data channels for inter-node communication. Each data channel in Flexishare has four 

multiple write multiple read (MWMR) waveguides with 64 DWDM in each waveguide. Similar 

to the MWSR data waveguides of Corona, multiple write multiple read (MWMR) data waveguides 

in Flexishare also uses the models from Eq. (44)-(49) presented in subsection 7.3.3, to determine 

the received crosstalk noise and OSNR at detectors for the node with worst-case power loss 

(NWCPL), which corresponds to detectors of node 63 (R63).  

To integrate HYDRA with Flexishare, we need to increase the DWDM degree in the MWMR 

waveguides from 64 to 65 and increase the number of MWMR waveguides in each channel from 

4 to 5 to simultaneously transfer 512 bits. We also need to increase the number of modulators and 

detectors from 64 to 65 on each MWMR waveguide in each modulating and detecting node. 

Similar to the Firefly PNoC, we need to add an additional IMCM MR in all modulating and 

detecting nodes on each MWMR waveguide, which increases the total number of MRs in each 

modulating and detecting node on each SWMR waveguide to 66 respectively.  In the detecting 

nodes of Flexishare, for each group of 5 consecutive detector MRs (excluding the IMCM MR in 
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that detecting node), we need to replace the last two detector MRs with DMR detectors. Lastly, we 

can use Eq. (42)-(55) to determine worst-case OSNR.  

 

7.8. EVALUATION 

7.8.1. SIMULATION SETUP 

To evaluate the efficacy of our proposed cross-layer crosstalk noise mitigation framework 

HYDRA which combines device layer (IMCM, DMCM) and circuit layer (EDCM) mechanisms for 

DWDM-based PNoCs, we integrate the framework with the Corona, Firefly, and Flexishare 

crossbar-based PNoCs, as explained in Section 7.7. We modeled and performed simulation based 

analysis of the HYDRA-enhanced Corona, Firefly, and Flexishare PNoCs using a cycle-accurate 

SystemC based NoC simulator, for a 256-core single-chip architecture at 22nm. We validated the 

simulator in terms of power dissipation and energy consumption based on the results obtained from 

the DSENT tool [75]. We used real-world traffic from applications in the PARSEC benchmark 

suite [43]. GEM5 full-system simulation [72] of parallelized PARSEC applications was used to 

generate traces that were fed into our cycle-accurate NoC simulator. We set a “warmup” period of 

100 million instructions and then captured traces for the subsequent 1 billion instructions. These 

traces are extracted from parallel regions of execution of PARSEC benchmark applications. We 

performed geometric calculations for a 20mm×20mm chip size, to determine lengths of MWSR, 

SWMR, and MWMR waveguides in the Corona, Firefly, and Flexishare PNoCs. Based on this 

analysis, we estimated the time needed for light to travel from the first to the last node as κ cycles 

at 5 GHz clock frequency  [25] [67]. We use a 512-bit packet size, as advocated in the Corona, 

Firefly, and Flexishare PNoCs. 
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The static and dynamic energy consumption of electrical routers and concentrators in 

Corona, Firefly, and Flexishare PNoCs is based on results from the open source DSENT tool [75]. 

We model and consider area, power, and performance overheads for our framework implemented 

with the Corona, Firefly, and Flexishare PNoCs, as follows. HYDRA with Corona, Firefly, and 

Flexishare PNoCs has an electrical area overhead estimated to be 6.4 mm2, 12.7 mm2, and 3.4 mm2 

respectively and power overhead of 0.23 W, 0.44 W, and 0.36 W respectively, using gate-level 

analysis and the CACTI 6.5 [114] tool for memory and buffers. The photonic area overhead of 

Corona, Firefly, and Flexishare architecture is λ.63 mm2, 1λ.κ3 mm2, and 5.2 mm2 respectively, 

based on the physical dimensions [104] of their waveguides, MRs, and splitters. For energy 

consumption of photonic devices, we adapt model parameters from recent work  [73], [74], [115], 

with 0.42pJ/bit for every modulation and detection event and 0.1κpJ/bit for the driver circuits of 

modulators and photodetectors. The MR trimming power is set to 130 W/nm [1κ] for current 

injection (blue shift) and tuning power is set to 240 W/nm [11κ] for heating (red shift).  

 

7.8.2. WORST-CASE OSNR COMPARISON FOR VARIOUS PNOCS 

Our first set of simulation results compares the baseline (without any crosstalk-mitigating 

enhancements) Corona, Firefly and Flexishare PNoCs with four variants of these architectures 

corresponding to three crosstalk-mitigation strategies from prior work (PCTM5B and PCTM6B 

from [2κ], PICO from [31]) and our proposed HYDRA framework from this chapter. PCTM5B and 

PCTM6B are encoding schemes that replace each 4-bits of a data word with 5-bit and 6-bit code 

words respectively. These schemes aim to reduce photonic signal-strength of immediate non-

resonant wavelengths (adjacent wavelengths in DWDM) to decrease crosstalk and improve OSNR 

in MR detectors. PICO is a process-variation aware crosstalk mitigation mechanism which also 
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encodes data to reduce photonic signal-strength of immediate non-resonant wavelengths based on 

the process variation profile of the receiving MR detectors.   

 

 
 

Figure 48 Worst-case OSNR comparison of HYDRA with PCTM5B [2κ], PCTM6B [2κ], and 
PICO [31] for Corona, Firefly, and Flexishare PNoCs. Bars show mean values of worst-case OSNR 
across 100 PV maps; confidence intervals show variation in worst-case OSNR. 

 

Utilizing the models presented in Sections 7.3 and 7.7, we calculate the received crosstalk 

noise and OSNR at detectors for the node with worst-case power loss (NWCPL), which correspond 

to MR detectors in cluster 64 for the Corona PNoC, MR detectors of router C4R0 for the Firefly 

PNoC, and MR detectors of node R63 for the Flexishare PNoC. Figure 48 summarizes the worst-

case OSNR results for the baseline, PCTM5B, PCTM6B, PICO, and HYDRA configurations of the 

three PNoC architectures considered. From the figure, it can be observed that Corona PNoC with 

HYDRA has 5.3×, 2.26×, 1.25×, and 1.06×, Firefly PNoC with HYDRA has 1.42×, 1.33×, 1.32×, 

and 1.13×, and Flexishare PNoC with HYDRA has 1.λ6×, 1.41×, 1.33×, and 1.14× worst-case 

OSNR improvements on average, compared to the baseline and PCTM5B, PCTM6B, and PICO 

enhanced variants of these architectures respectively. 

Both PCTM5B and PCTM6B eliminate occurrences of ‘111’ in a data word and have limited 

occurrences of ‘11’, which helps to reduce crosstalk noise in the detectors. But these techniques 
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are unable to eliminate all occurrences of ‘11’, because of which these techniques are unable to 

achieve higher reduction in crosstalk noise and significant improvement in OSNR. PICO considers 

the PV-profile of detecting nodes and performs encoding on specific wavelengths where there is 

high signal loss due to trimming to reduce crosstalk noise and improve OSNR in PNoCs. But even 

with the PICO technique, there still exist occurrences of ‘111’ and ‘11’, because of which OSNR 

gains with PICO are on the lower side. In contrast, HYDRA virtually eliminates all of the 

occurrences of ‘111’ and ‘11’ from the data word by combining benefits from IMCM and DMCM, 

and using EDCM’s 5-bit encoding mechanism. Although EDCM’s 5-bit encoding still results in 

limited occurrences of ‘111’ and ‘11’ in a data word, the DMRs of DMCM reduce the impact of 

consecutive ‘1’s in the data word by removing crosstalk noise generated by these ‘1’s in detector 

MRs. Thus HYDRA demonstrates higher OSNR gains compared to the best known previously 

proposed techniques. Furthermore, the OSNR values achieved with HYDRA (see Figure 48) are 

sufficient to enable reliable data transfers in PNoCs such as Corona, Firefly, and Flexishare. 

 

7.8.3. OVERHEAD ANALYSIS OF HYDRA WITH VARIOUS PNOCS 

Our last set of results quantify the overhead for the proposed HYDRA framework and other 

techniques when used with the Corona, Firefly, and Flexishare PNoCs. Figure 49(a) and Figure 

49(b) present detailed simulation results that quantify the average network packet latency and 

energy-delay product (EDP) for five Corona configurations. Results are shown for 12 multi-

threaded PARSEC benchmarks. From Figure 49(a) it can be seen that on average, Corona with 

HYDRA has λ.24% higher latency compared to the baseline. The additional delay due to encoding 

and decoding of data with HYDRA, PCTM5B, PCTM6B, and PICO contributes to their increase 

in average latency. The penalty due to encoding/decoding is approximately 1 cycle in PCTM5B, 
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PCTM6B, and HYDRA. Thus HYDRA has a similar overhead compared to PCTM5B and 

PCTM6B. However, PICO has a 2 cycle penalty, which increases its delay compared to HYDRA 

by 3.1%. Note that for the chosen clock frequency, PV in photonic components does not change 

the number of clock cycles for various operations, such as encoding/decoding, 

modulation/detection etc., therefore Figure 49(a) does not have confidence intervals or variations 

in packet latency due to PV. 

 

 

(a) 

 

(b) 
 

Figure 49 (a) Normalized average latency and (b) energy-delay product (EDP) comparison 
between Corona baseline and Corona configurations with PCTM5B, PCTM6B, PICO, and 
HYDRA techniques, for PARSEC benchmarks. Latency results are normalized to the baseline 
Corona results. In the EDP plot, bars represent mean values of EDP across 100 PV maps; 
confidence intervals show variation in EDP. 
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From the results for EDP shown in Figure 49(b), it can be seen that on average, the Corona 

configuration with our HYDRA framework has 24.3% higher EDP compared to the baseline. The 

increase in EDP for Corona with HYDRA is not only due to the increase in average latency, but 

also due to the addition of extra bits for encoding and decoding, which leads to an increase in the 

amount of photonic hardware in the architectures (more number of MRs, complex splitters). This 

in turn increases static power dissipation. Dynamic power also increases in these architectures, but 

by much less amount. However, EDP for Corona with HYDRA is 17.1% and 5.7% lower compared 

to PCTM6B and PICO respectively. The higher latency of PICO compared to HYDRA increases 

its EDP, whereas HYDRA has lower EDP compared to PCTM6B because HYDRA conserves laser 

and MR trimming/tuning power due to a lower photonic hardware footprint compared to 

PCTM6B. The EDP for Corona with HYDRA is 1.3% higher compared to PCTM5B. Although 

PCTM5B and HYDRA have similar average latency, the increase in number of MRs in HYDRA 

due to the presence of IMCM MRs and DMRs increases its laser and trimming/tuning power, which 

in turn increases its EDP. 

Figure 50(a) and Figure 50(b) summarize the average network packet latency and EDP 

results for the five configurations of Firefly and Flexishare PNoCs. Results are shown for twelve 

multi-threaded PARSEC benchmarks and are averaged across these benchmark applications, for 

brevity. From Figure 50(a) it can be observed that on average, Firefly with HYDRA has 5.2% and 

Flexishare with HYDRA has 10.6% higher latency compared to their respective baselines. The 

additional delay due to encoding and decoding of data with HYDRA contributes to its increase in 

average latency over the respective baselines of Firefly and Flexishare PNoCs. The latency 

overhead for Firefly with HYDRA is lower compared to Corona and Flexishare with HYDRA. This 

is because Firefly is a hybrid PNoC where some portion of data traverses through electrical links. 
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This data over electrical links is unaffected by the extra encoding/decoding delays in HYDRA, 

whereas in Corona and Flexishare the entire traffic traverses through photonic waveguides. Much 

like Corona (Figure 49(a)), the Firefly and Flexishare architectures with HYDRA have similar 

latency values compared to these architectures with PCTM5B and PCTM6B (Figure 50(a)). 

Furthermore, Firefly with HYDRA has 2.7% and Flexishare with HYDRA has 3.2% lower latency 

compared to PICO. Reduction in number of encoding or decoding cycles from 2 to 1 from PICO 

to HYDRA reduces average latency of HYDRA. 

 

 

(a) 

 

(b) 
 

Figure 50 (a) Normalized average latency and (b) energy-delay product (EDP) comparison 
between different variants of Firefly and Flexishare PNoCs which include their baselines and their 
variants with PCTM5B, PCTM6B, PICO, and HYDRA techniques, for PARSEC benchmark 
applications. Latency results are normalized with their respective baseline architecture results. 
Bars represent mean values of average latency and EDP for 100 PV maps; confidence intervals 
show variation in average latency and EDP across PARSEC benchmarks. 
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From the results for EDP shown in Figure 50(b), it can be seen that on average, the Firefly 

and Flexishare configurations with our HYDRA framework have 5% and 22% higher EDP 

compared to their respective baselines. EDP overhead for Firefly is relatively lower compared to 

the Corona and Flexishare architectures because of its lower latency overheads and smaller 

increase in laser/trimming power due to lesser increase in the amount of photonic hardware. Firefly 

with HYDRA has 3.1% and 2.4%, and Flexishare with HYDRA has 5.λ% and 2.4% lower EDP 

compared to the respective architecture configurations with PCTM6B and PICO. Additionally, 

compared to Firefly and Flexishare configurations with PCTM5B, the configurations of the same 

architectures with HYDRA framework have 0.6% and 1.5% higher EDP respectively. 

 

7.9. CONCLUSIONS 

We have presented a novel cross-layer crosstalk mitigation framework for the reduction of 

crosstalk noise in the detectors of DWDM-based PNoC architectures. Our proposed HYDRA 

framework seamlessly integrates two device layer and a circuit layer technique to enable 

interesting trade-offs between reliability, performance, and energy overheads for the Corona, 

Firefly, and Flexishare crossbar-based PNoC architectures. Our simulation based analysis shows 

that the HYDRA framework improves worst-case OSNR by up to 5.3× compared to the baseline 

architectures, and by up to 1.14× compared to the best known PNoC crosstalk mitigation scheme 

from prior work. Thus, HYDRA is an attractive solution to enhance reliability in emerging DWDM-

based PNoCs. 
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8. ISLANDS OF HEATERS: A NOVEL THERMAL MANAGEMENT FRAMEWORK 

FOR PHOTONIC NOCS 

 

 

Operation of photonic NoCs (PNoCs) is very sensitive to temperature variations that 

frequently occur on a chip. These variations can create significant reliability issues for PNoCs. For 

example, microring resonators (MRs) which are the building blocks of PNoCs, may resonate at 

another wavelength instead of their designated wavelength due to thermal variations, which can 

lead to bandwidth wastage and data corruption in PNoCs. This chapter proposes a novel run-time 

framework to overcome temperature-induced issues in PNoCs. The framework consists of (i) a 

PID controlled heater mechanism to nullify the thermal gradient across PNoCs, (ii) a device-level 

thermal island framework to distribute MRs across regions of temperatures; and (iii) a system-

level proactive thread migration technique to avoid on-chip thermal threshold violations and to 

reduce MR tuning/trimming power by migrating threads between cores. Our experimental results 

with 64-core Corona and Flexishare PNoCs indicate that the proposed approach reliably satisfies 

on-chip thermal thresholds and maintains high network bandwidth while reducing total power by 

up to 64.1%. 

 

8.1. MOTIVATION AND CONTRIBUTION 

Photonic components and especially MRs are extremely susceptible to thermal fluctuations. 

Figure 51 depicts the impact of thermal variation on MRs. MRs R1-Rn have been designed to 

resonate on wavelengths 1- n respectively at temperature T1. As the temperature increases, due 

to the resulting variations in refractive index, each MR now resonates with a different wavelength 

towards the red end of the visible spectrum (i.e., red-shift). This red-shift is shown in the figure 
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where, at temperature T2, MR Ri will now be in resonance with i-1. This phenomenon reduces 

transmission reliability and results in wastage of available bandwidth, e.g., MRs are unable to read 

or write to wavelength n at temperature T2. 

Maintaining a uniform temperature across all the MRs is a must for reliable data transmission 

in PNoCs. But thermal fluctuations and gradients are common in CMPs. 3D-ICE [130] simulations 

of PARSEC [43] and SPLASH-2 [131] benchmarks indicate a 15-20K peak thermal gradient in a 

64-core CMP as shown in Figure 52. Such a huge gradient causes a mismatch of resonant 

wavelengths of MRs, leading to unreliable data transmission and PNoC performance degradation.  

Recently, few techniques have been proposed to address thermal issues in PNoCs. At the 

device-level, a trimming mechanism is proposed in [1κ] that induces a blue shift (decrease) in the 

resonance wavelengths of MRs using carrier injection. A tuning technique was demonstrated in 

[1λ] where a red-shift (increase) in the resonance wavelengths is induced by using a localized 

heater. Further several athermal photonic devices have been presented to reduce the localized 

tuning/trimming power in MRs. These design time solutions include using cladding to reduce 

thermal sensitivity [132] and using heaters as well as temperature sensors for thermal control. 

While these device-level techniques are promising, they either possess a high power overhead or 

require costly changes in the manufacturing process (e.g., much larger device areas) that would 

decrease network bandwidth density and area efficiency. At the system-level, a thread migration 

framework was presented in [33] to avoid on-chip thermal threshold violations and also reduce 

trimming/tuning power for MRs. In [133], a ring aware thread scheduling policy was proposed to 

reduce on-chip thermal gradients in a PNoC. A proportional-integral-derivative (PID) heater 

mechanism was proposed in [134] that minimizes the effect of thermal variation on PNoC’s 



183 

performance and power. However, all these system-level techniques do not consider the impact of 

run-time workload variations and also result in considerable power performance overheads.  

 

 
 

Figure 51 Impact of thermal variations on MRs. 

 

 
 

Figure 52 Peak thermal gradient (in Kelvin) across a 64-core chip running 4κ-threaded PARSEC 
[43] and SPLASH-2 [131] benchmarks.  
 

Our goal in this chapter is to minimize thermal variations with reduced localized thermal 

tuning and trimming in PNoCs, thereby reducing key overheads and ultimately easing the adoption 

of PNoCs for future CMP systems. We propose a novel low-power thermal management 

framework that integrates an adaptive heater mechanism at the device-level and a dynamic thread 

migration scheme at the system-level. This chapter makes the following contributionsμ 

• A novel temperature island framework with adaptive heater based MR to handle thermal 

gradients across PNoC;  
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• An islands of heaters based dynamic thread migration (IHDTM) scheme in conjunction with a 

support vector regression based temperature prediction mechanism. Such a scheme nullifies on-

chip thermal threshold violations and also reduces trimming/tuning power for MRs; 

• The evaluation of the proposed framework on a 64-core CMP with a system-level simulator 

showsμ (a) 70% improvement in trimming power dissipation over the most recent prior work, 

(b) 64.1% improvement in total power dissipation compared to a state-of-the-art thermal 

management technique, (c) 13.72K improvement in peak temperature, and (d) these 

improvements are achieved while maintaining full network-bandwidth. 

The rest of the chapter is organized as follows. Section κ.2 explains the proposed thermal 

management framework in detail. Experiments, results, and comparative analysis are demonstrated 

in Section κ.3 followed by conclusions in Section κ.4. 

 

 
 

Figure 53 IHDTM framework with device-level thermal islands and system-level temperature-
aware thread migration mechanism (TATM).  
 

8.2. ISLANDS OF HEATERS BASED DYNAMIC THERMAL MANAGEMENT (IHDTM) 

The proposed IHDTM framework enables variation-aware thermal management by 

integrating device-level and system-level enhancements. A high-level overview of the framework 
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is shown in Figure 53. At the device-level, the entire PNoC layer is divided into ‘k’ regions or 

islands, namelyμ TIS1-island, TIS2-island, TIS3-island, and so on. All MRs in the TISi-island (i ≤ k) 

are designed to operate at TISi; similarly, MRs in the other islands are designed to operate at their 

respective temperatures. We use our device-level technique to overcome small deviations (±10K) 

in TISi whereas the system-level technique is used to adapt to larger variations (> ±10K). The 

device-level technique aims to adapt to the changing on-chip thermal profile, maintaining 

maximum bandwidth and correct MR operation while minimizing trimming and tuning power in 

the PNoC. At the system-level, the dynamic thread migration scheme maintains acceptable core-

temperatures for each island. The following sections explain the proposed (i) device-level island 

framework and (ii) system-level thread migration scheme in detail. 

 

8.2.1. THERMAL ISLANDS 

The thermal distribution across a 64-core PNoC chip running PARSEC and SPLASH-2 

benchmarks (using 3D-ICE simulation) shows three major zones of temperatureμ 363K, 343K, and 

323K. Also, the average thermal gradient in the PNoC chip is found out to be approximately 15-

20K. To reduce this gradient, the proposed device-level framework adopts three islands (as shown 

in Figure 53) each of which are maintained at a unique temperature by assigning TIS1, TIS2, and 

TIS3 to 363K, 343K, and 323K respectively. As mentioned in the previous section, MRs in the 

363K-island (TIS1-island) are designed to operate at 363K with a variation range of ±10K. MRs 

employ thermal tuning and electrical trimming when they are operated below and above their 

designed temperatures respectively. Similarly, MRs in other islands are designed to operate at the 

respective temperatures. For PNoCs of other sizes (e.g. 16-core, 25-core, 36-core, 12κ-core, 256-
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core), there can be slight variations in the number of islands and their respective temperature zones. 

Accordingly, the numbers of islands and their temperatures can be fixed at design time.  

 

               

                                (a)                                                                      (b)  
 

Figure 54 (a) MR with adaptive heater (b) Thermal tuning of MR 

 

Algorithm 2 Thermal management of MR 

Input: Temperature (T) around the MR detected by thermal sensor 

//Controller converts T to appropriate heater current as follows: 

1:     dT = |Tisland -T|       

2:     PHeat = × Heff 

3:     if (T ≤ Tisland) then   iHeat = iMax-√ � �� �  

4:     else     iHeat = iMax+√ � �� �  

Output: current (iHeat) to be fed to heater 

 

To manage localized temperature variation below designed temperature, each MR is 

integrated with a PID controller [15] based heater as shown in Figure 54(a). The PID controller is 

tuned with proportional band Kp=50, integral cycle-time Ki=1 millisecond (ms), and derivative 

coefficient Kd=0. An open source PID tuning software [135] is used to determine optimal values 

of Kp, Ki, and Kd.  

Algorithm 2 depicts the control algorithm for the heater in each MR to stabilize thermal 

variations. In the algorithm, T represents the temperature across an MR as detected by the 
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corresponding thermal sensor, Tisland is the fixed temperature of the island in which the MR resides 

(Tisland = TISi), PHeat is the heater power, iHeat represents heater current, and Heff stands for the 

transfer function of the heater. With any local temperature change dT, there is an equivalent shift 

in resonance for the MR. To undo this resonance shift in an MR, an equivalent amount of heat 

must be radiated by the heater integrated with that MR. As per the algorithm, the controller collects 

temperature data T from the local thermal sensor as input. In step 1, the absolute value of the 

difference between T and Tisland is calculated followed by determining the required heater power 

PHeat in step 2. T is compared with Tisland in step 3 and accordingly the required heater current iHeat 

is computed either in steps 3-4. The evaluated value of iHeat is fed to the heater coil. This amount 

of current is needed by the heater to maintain the fixed temperature Tisland around the MR. Our 

analysis shows that a maximum of 1 ms of time is needed for the heater element to bring the 

surrounding temperature to the desired value of Tisland. We account for this time delay in our 

simulations. Figure 54(b) shows the tuning process of an MR with injected heater current as 

explained in the algorithm. The control algorithm is invoked after every 1ms for each MR. 

This heater-based technique helps to stabilize thermal fluctuations in each temperature island 

with reduced tuning power. However, if the power footprint of a workload on a core associated 

with a 363K-island is very low, its core temperature may fall below the lower thermal limit (i.e. 

smaller than 353K). This thermal gradient can significantly increase tuning power consumption of 

an associated MR. Similarly, if the power footprint of a workload on a core associated with a 323K-

island keeps increasing beyond a threshold, then its core temperature might reach beyond the 

control of the MR-trimmer (i.e. greater than 333K). This will in turn permanently shift the 

resonance of the MR, inducing errors during communication. To address these issues, we propose 

a system-level temperature-aware thread migration (TATM) technique that performs thread 
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migration to idle cores to maintain temperatures of corresponding MRs close to the design-

temperatures of their respective islands. By intelligently migrating threads, this technique reduces 

device-level tuning/trimming power in MRs. TATM also aims to proactively reduce thermal 

hotspots, which in turn will reduce instances of irrecoverable drift in MRs. 

 

Table 19 List of TATM parameters and their definitions 

 

Symbol Definition 

IPCi Instructions per cycle of ith core 

Ti Current temperature of ith core 

TNi Average temperature of immediate neighboring cores of ith core; 

if this core is on chip periphery and missing neighbors, then we 

consider virtual neighbor cores at ambient temperature in lieu of 

the missing cores 

PTi Predicted temperature of ith core 

Ttj Thermal threshold of TISj-island 

Tlj Thermal limit of TISj-island 

IEICtj Inter-island cores for TISj-island whose island MRs design 

temperature is greater than TISj 

IEIClj Inter-island cores for TISj-island whose island MRs design 

temperature is smaller than TISj 

IAICj Intra-island cores for TISj-island 

C Regularization parameter 

W Weight vector for regression 

xi and yi  Input and outputs in training and test data 

ξi Slack variables 

 Error function 

b Bias for cost function 

 

8.2.2. TEMPERATURE-AWARE THREAD MIGRATION SCHEME (TATM) 

8.2.2.1. OBJECTIVE 

 The primary goal with TATM is to maintain the temperature of all the cores in an island on 

a die below a specified thermal threshold (Tt) and above a thermal limit (Tl), i.e., for a core i in the 

TISj-island, Tlj ≤ Ti ≤ Ttj where Ti is the temperature of core i, Ttj is threshold temperature of TISj-

island, and Tlj is thermal limit of TISj-island. TATM maintains the core temperatures such that the 
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temperature of all the MRs within an island is close to their design temperature, to reduce tuning 

power consumption in adaptive heaters as explained in the previous section.  

We utilize support vector based regression (SVR) to predict the future temperature of a core. 

This predicted temperature of a core is compared with the corresponding island’s thermal threshold 

(upper limit) and thermal limit (lower limit) to determine the potential for a thermal emergency. If 

such a potential exists, then TATM initiates thread migration. Inter-island thread migration (Inter-

island cores (IEIC)) is preferred over intra-island thread migration (Intra-island cores (IAIC)). This 

step has a twofold benefit. Firstly, by moving the thread away from a core that could suffer a 

thermal emergency, we avoid instances of irrecoverable drift in the MR groups of that core. 

Secondly, by moving the thread to a core in different island, we ensure that the temperature of the 

island and its corresponding ring blocks remains between the island’s thermal threshold (Tt1, Tt2, 

and Tt3) and thermal limit (Tl1, Tl2, and T13) to conserve trimming/tuning power. If a thermal 

emergency occurs due to exceeding the thermal threshold, then it is preferred that the thread is 

migrated to a core in an island whose MR design temperature is higher. If a thermal emergency 

occurs due to temperature falling below the thermal limit then it is preferred that the thread is 

migrated to a core in an island whose MR design temperature is lower. The parameters used to 

describe TATM in this section are shown in Table 19. 

 

 
 

Figure 55 Non-linear support vector based regression prediction model. 
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8.2.2.2. TEMPERATURE PREDICTION MODEL  

We designed a support vector regression (SVR) based temperature predictor that accepts 

input parameters reflecting the workload for a core i, in terms of instructions per cycle (IPCi), 

temperature (Ti), and surrounding core temperatures (TNi), and predicts the future temperature for 

core i. 

Architecture: A typical SVR [136], [137] relies on defining a prediction model that ignores errors 

that are situated within the ε range of the true value. This type of a prediction model is called an ε-

insensitive prediction model. Figure 55 shows an example of a one-dimensional non-linear SVR 

based prediction model with an ε-insensitive band. The variables (ξ and ε) measure the cost of the 

errors on the training points. These are zero for all points that are inside the ε-insensitive band.  

SVR is primarily designed to perform linear regression. To handle non-linearity in data, SVR 

first maps the input xi onto an m-dimensional space using some fixed (non-linear) mapping notated 

as Φ, and then a linear model is constructed in this high-dimensional space as shown in Eq. (57) 

and (58) below. Thus, it overcomes drawbacks of linear and logistic regression towards handling 

non-linearity in data. This class of SVRs is called kernel based SVRs which use kernel  as shown 

in Eq. (59) for implicit mapping of non-linear training data (as shown in Figure 55) into a higher 

dimensional space.  

    =   � .� + ∑ � + � ∗=                     (56) 

Subject toμ    − � �  −  + �   � , = , , … ,             (57) � �  + −  + � ∗ � ∗ , = , , … ,           (58) ( ,  ) = � �                                         (59) 
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SVR performs linear regression in this high-dimension space using ε-insensitive loss and, at 

the same time, tries to reduce model complexity by minimizing WT.W. This can be described by 

introducing (non-negative) slack variables ξi and ξi
* (i = 1 to n), to measure the deviation of training 

samples outside the ε-insensitive band. Thus SVR is formulated as minimization of the cost 

function (CF) in Eq. (56) with constraints shown in Eq. (57) and (58).  

As on-chip temperature variation data is non-linear in the original space, our SVR model 

employs a kernel based regression which uses a Radial Basis Function (RBF) [13κ] (Gaussian 

kernel) as shown in Eq. (60). The RBF kernel improves the accuracy of SVR when data has non-

linearity in the original space. We performed a sensitivity analysis (SA) to determine regularization 

parameter (C) and ‘gamma’ (γ) values of the kernel based SVR (see Section κ.3.1 for chosen 

values). This SA overcomes the possibility of over fitting of training data and improves accuracy 

further.  ,  = � � − | −  |                                           (60) 

Training and Accuracy: We trained our SVR model using a set of multi-threaded applications from 

the PARSEC [43] and SPLASH-2 [131] benchmark suites, specificallyμ blackscholes (BS), 

bodytrack (BT), vips (VI), facesim (FS), fluidanimate (FA), swaptions (SW), barnes (BA), fft 

(FFT), radix (RX), radiosity (RD), and raytrace (RT) with different thread countsμ 2, 4 and κ. We 

considered different combinations of thread mappings on a λ-core (3×3) floorplan, to train our 

predictor to determine the temperature of the center (target) core. The threads mapped to a λ-core 

floorplan represents a generic mapping and can be applied to 64-core, 12κ-core, and 256-core 

floorplans.  

As the future temperature of a target core is dependent on the average temperature of its 

immediate neighboring cores, we trained our SVR model with temperature inputs from the target 
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core running a single thread, as well as its surrounding cores running a variable number of threads. 

Simulations with various mappings of these threads allowed us to obtain data to train our SVR 

model. This data included temperature for the target core and its neighboring core temperatures, 

as well as instructions per cycle (IPC) for the target core. IPC is very useful to determine if there 

is a phase change in an application and plays a crucial role in maintaining future temperature 

prediction accuracy especially when temperatures of a target core and its neighbors are similar at 

a given time. Our training algorithm involved an iterative process that adjusts the weights and bias 

values in the SVR (Eq. (56)-(58)) to fit the training set. 

 

 

                                                (a)                                                (b) 
 

Figure 56 Actual and predicted maximum temperature variation with execution time for (a) 
fluidanimate (FA) and (b) radiosity (RD) benchmarks run on a 64-core platform executing 32-
threads. 
 

We verified the accuracy of our SVR model for multi-threaded benchmark workloads (we 

considered 6000 floorplans, with 70% of input data for training and 30% for testing) and found 

that it has an accuracy of over λ5%. Figure 56(a) and (b) show actual and predicted on-chip 

temperature variations for a 64-core platform executing 32 threads of the FA and RD benchmarks. 

From these figures it can be seen that our temperature predictor tracks temperature quite accurately. 
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When predicted temperature is beneath thermal limit or exceeds the thermal threshold our thread 

migration mechanism (which is discussed next) migrates threads between cores to reduce 

tuning/trimming power and keep overall peak temperature below the threshold.  

 

 
 

Figure 57 Overview of TATM technique with support vector regression (SVR) based temperature 
prediction model. 
 

8.2.2.3. THERMAL MANAGEMENT ALGORITHM 

Figure 57 illustrates the entire TATM technique. For each core, we periodically monitor the 

IPC value from performance counters and temperature from thermal sensors. If a thermal 

emergency is predicted for a core by the SVR predictor, then TATM initiates a thread migration 

procedure, otherwise no action is taken. In this chapter we have considered the thermal threshold 

of an island to be equal to maximum allowable temperature in that island i.e. Ttj = TISj + 10K to 

avoid instances of irrevocable drift in MRs and thermal limit of an island is minimum allowable 

temperature in that island i.e. Tlj = TISj - 10K to reduce tuning power. 
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Algorithm 3 TATM thread migration algorithm 

Inputs: Current core temperature (Ti), average neighboring core temperature (TNi), current core 

IPC (IPCi) 

1:      for each core i do  // Loop that predicts future temperature       

2:            PTi = SVR_predict_future_temperature (Ti, TNi, IPCi) 

3:      for each core i do // Loop that checks for free IAICs  

4:            j = Find island of core (i) 

5:            if IPCi == 0 then  List_IAICj = Push i  //add core to IAICj list 

6:      for each island j do // Loop that create IEIC list for TISj-island 

7:           for all islands m do 

8:                 if TIsm > TIsj then IEICtj = push IAICm     

9:                 else if TIsm < TIsj then IEIClj = push IAICm     

10:    for each core i do   // Loop that performs thread migration (TM) 

11:            j = Find island of core (i) 

12:         if PTi > Ttj then // Check predicted temp exceed thermal threshold     

13:               if List_IEICtj ≠ {} // Do inter-island TM  
14:                   Migrated_core = Find_lowest_TIS_core(List_ IEICtj) 

15:                   Thread_migration(core_i → Migrated_core)  

16:                   n = island of Migrated_core 

17:                   List_ IAICn and List_IEICtj = Pop Migrated_core 

18:               else if List_ IAICj ≠ {} then // Do intra-island TM  
19:                   Migrated_core = Find_min_temp_core(List_ IAICj) 

20:                   Thread_migration( core_i → Migrated_core) 

21:                   List_ IAICj and List IEIC = Pop Migrated_core 

22:         else if PTi < Tlj then // if predicted temp is below thermal limit 

23:               if List_IEIClj ≠ {} // Do inter-island TM  
24:                   Migrated_core = Find_highest_TIS_core(List_ IEIClj) 

25:                   Thread_migration(core_i → Migrated_core)  

26:                   n = island of Migrated_core 

27:                   List_ IAICn and List_IEIClj = Pop Migrated_core 

28:               else if List_ IAICj ≠ {} then // Do intra-island TM  
29:                   Migrated_core = Find_min_temp_core(List_ IAICj) 

30:                   Thread_migration( core_i → Migrated_core) 

31:                   List_ IAICj and List IEIC = Pop Migrated_core 

 

Output: Thread migration to IAIC or IEIC cores 

 

Algorithm 3 shows the pseudo-code for the TATM thread migration procedure. Firstly, future 

temperature (PTi) of the ith core is predicted using the SVR based predictor with inputsμ core 

temperature (Ti), core IPC (IPCi), and temperature of neighboring cores (TNi) in steps 1-2. The list 

of available free cores (IAICj) in TISj-island (i.e., those that are not currently executing any thread) 

is obtained in steps 3-5. In steps 6-λ, a loop iterates over islands to generate a list of free cores 

IEICtj and IEIClj in other islands whose TIS is higher and lower than current island respectively. In 

step 10, a loop iterates over all cores to perform thread migration. Step 12 and 22 checks for 
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possible thread migration conditions (i.e., thermal emergency cases where current core predicted 

temperature (PTi) in TISj-island is greater than thermal threshold (Ttj) or smaller than thermal limit 

(Tlj)). If a thread migration is required as PTi > Ttj, then in steps 13-21, we check for free IEICtj, 

and if they are available then we migrate the thread from the current core to the IEICtj core with 

the lowest TIS (inter-island migration), else we migrate the thread to a free IAICj with the lowest 

temperature (intra-island migration). On the other hand, if a thread migration is required as PTi < 

Tlj, then in steps 23-31, we check for free IEIClj, and if they are available then we migrate the 

thread from the current core to the IEIClj core with the highest TIS (inter-island migration), else we 

migrate the thread to a free IAICj with the lowest temperature (intra-island migration). This TATM 

thread migration technique is invoked at every 1ms (epoch) and the sample frequency of SVR is 

considered as 0.1 ms (10 times lower compared to the epoch for thread migration). This sampling 

frequency is sufficient to monitor on-chip temperature variations [13λ]. 

 

8.3. EXPERIMENTS, RESULTS, AND ANALYSIS 

8.3.1. EXPERIMENT SETUP 

The IPKISS [140] tool was used for the design and simulation of heaters, MRs, and other 

silicon photonic components. This tool allows photonic component layout design, virtual 

fabrication of components in different technologies, physical simulation of components, and 

optical circuit design and simulation. The circuit-level results obtained from IPKISS were used for 

system-level simulation. 

We target a 64-core CMP system for evaluation of our IHDTM framework. Each core has a 

Nehalem xκ6 [141] microarchitecture with 32 KB L1 instruction and data caches and a 256 KB 

L2 cache, at 32nm and running at 5GHz. We evaluate our framework on two well-known PNoC 
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architecturesμ Corona [67] and Flexishare [13]. Corona uses a 64×64 multiple write single read 

(MWSR) crossbar with token slot arbitration. Flexishare uses 32 multiple write multiple read 

(MWMR) waveguide groups with a 2-pass token stream arbitration. Each MWSR waveguide in 

Corona and each MWMR waveguide in Flexishare is capable of transferring 512 bits of data from 

a source node to a destination node. 

We modeled and simulated these architectures with the IHDTM framework for multi-

threaded applications from the PARSEC [43] and SPLASH-2 [131] benchmark suites (Section 

κ.2.2). Simulations were performed with an execution period of one billion cycles. Power and 

instruction traces for the benchmark applications were generated using the Sniper 6.0 [141] 

simulator and McPAT [142]. We used the 3D-ICE tool [130] for thermal analysis. We considered 

a three layered 3D-stacked CMP system as advocated in existing PNoC architectures [11], [13] 

with a planar die area footprint of 400mm2, where the top layer is the core-cache layer, the middle 

layer is the analog electronic layer [67] which contains control circuits for modulator and 

photodetector and also the trans-impedance amplifiers of detectors, and the bottom layer is the 

photonic layer with MRs, waveguides, ring heaters, and ring trimmers for carrier injection. Some 

of the key materials used in the construction of the 3D-stack in the 3D-ICE tool and their properties 

are shown in Table II. We used a heat sink adjacent to the core-cache layer for heat dissipation to 

the ambient environment. 

 

Table 20 Properties of materials used by 3D-ICE tool [130], [143] 
 

Material Thermal Conductivity Volumetric Heat Capacity 

Silicon 1.30e-4 W/µm K 1.628e-12 J/µm3 K 

Silicon dioxide 1.46e-6 W/µm K 1.628e-12 J/µm3 K 

BEOL 2.25e-6 W/µm K 2.175e-12 J/µm3 K 

Copper 5.85e-4 W/µm K 3.45e-12 J/µm3 K 

BEOLμ Back end of line fabrication material 
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(a) 

 

(b) 
 

Figure 58 Maximum temperature comparison of IHDTM with RATM and PDTM for (a) 4κ and 
(b) 32 threaded PARSEC and SPLASH-2 benchmarks executed on 64-core CMP with Corona 
PNoC. 
 

The MR thermal sensitivity was assumed to be 0.11nm/K [1λ]. For PNoCs, we considered 

64 dense-wavelength-division-multiplexing (DWDM) waveguides sharing the working band 

1530-1625 nm. The MR trimming power is set to 130µW/nm [1κ] for current injection (blue shift) 

and tuning power is set to 240µW/nm [1λ] for heating (red shift). To compute laser power, we 

considered detector responsivity as 0.κ A/W [26], MR through loss as 0.02 dB, waveguide 

propagation loss as 1 dB/cm, waveguide bending loss as 0.005 dB/λ00, and waveguide 

coupler/splitter loss as 0.5 dB [26]. We calculated photonic loss in components using these values, 
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which sets the photonic laser power budget and correspondingly the electrical laser power. For 

energy consumption of photonic devices, we adapt parameters from [31], with 0.42pJ/bit for every 

modulation/detection, and 0.1κpJ/bit for modulator/detector driver circuits.  

The ambient temperature was set to 303K for our analysis and the for TIS1-island, TIS2-island, 

and TIS3-island thermal thresholds were set to 373K, 353K, and 333K respectively and the thermal 

limits were set to 353K, 333K, and 313K respectively. Based on our sensitivity analysis we get the 

best accuracy for our SVR-based temperature predictor when parameters C and γ are set to 1000 

and 0.1 respectively. We also considered thread migration overhead in our simulations that ranged 

from 500-1000 cycles to account for startup latency (extra cache misses, branch miss predictions) 

in the migrated core. Further, in the simulation we considered a 250-500 cycles overhead towards 

migration of threads for writing dirty cache lines from the write back caches, flushing the pipeline 

in the source core, and also PNoC latency to transfer data from architectural registers from the 

source core to the migrated core. 

 

8.3.2. EXPERIMENTAL RESULTS 

We compared the performance of our IHDTM framework with two prior works on multicore 

thermal managementμ a ring aware policy (RATM) [133] and a predictive dynamic thermal 

management (PDTM) framework [13λ]. To compare these frameworks, we consider Corona and 

Flexishare PNoC architectures. RATM distributes threads uniformly across cores that are closer to 

PNoC nodes first and then distributes the remaining threads in a regular pattern from outer cores 

to inner cores. PDTM uses a recursive least square based temperature predictor to determine if the 

predicted temperature of a core exceeds a thermal threshold, and if so then thread migration is 

performed from that core to the coolest free core.  
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(a) 

 

(b) 
 

Figure 59 Normalized power (Laser Power (LP), Trimming and tuning power (TP) and 
modulating and detecting Power (MDP)) comparison of IHDTM with RATM and PDTM for (a) 
4κ and (b) 32 threaded applications of PARSEC and SPLASH-2 suites executed on Corona PNoC 
architectures for a 64-core multicore system. Results shown are normalized w.r.t RATM. 
 

 

Figure 58 shows the maximum temperature obtained with the three frameworks across 

eleven applications from the PARSEC and SPLASH-2 benchmarks suites with 4κ and 32 thread 

counts executed on a 64-core system with the Corona PNoC architecture. From Figure 58(a) it can 

be observed that for the IHDTM framework the FFT application with 4κ threads exceeds the 

threshold (363K) by 0.4K as there are insufficient number of free cores in the 363K-island on the 

chip whose temperature is below the thermal threshold to migrate threads. However, in Figure 
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58(b) our IHDTM framework avoids violating thermal thresholds for all the benchmark 

applications with 32 threads. On average, IHDTM has 13.27K and 13.72K lower maximum 

temperature compared to the RATM policy for 4κ and 32 threads, respectively. Along with local 

thermal stabilization by PID controlled heaters, IHDTM migrates threads from hotter cores to 

cooler cores to control maximum temperature, whereas RATM does a simple thread allocation that 

is unable to appropriately control maximum temperature. For most of the cases, maximum 

temperatures with PDTM and IHDTM are below the thermal threshold. On average, IHDTM has 

2.37K and 1.56K lower maximum temperature compared to the PDTM policy for 4κ and 32 

threads, respectively. IHDTM prefers to migrate threads within islands (inter-island) of cores based 

on the power consumption of running thread, which facilitates reduction in its peak temperature 

compared to PDTM. 

 

 

                                               (a)                                                                   (b) 
 

Figure 60 Normalized average power (laser power (LP), trimming and tuning power (TP) and 
modulating and detecting power (MDP)) comparison of IHDTM with RATM and PDTM for (a) 
4κ and (b) 32 threaded applications of PARSEC and SPLASH-2 suites executed on Flexishare 
PNoC for a 64-core system. Power results are normalized wrt RATM results. Bars represent mean 
values of power dissipation; confidence intervals show variation in power across PARSEC and 
SPLASH-2 benchmarks. 
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(a) 

 

(b) 
 

Figure 61 Normalized execution time comparison of IHDTM with RATM and PDTM for (a) 4κ 
and (b) 32 threaded applications of PARSEC and SPLASH-2 suites executed on Corona PNoC for 
a 64-core system. Results shown are normalized w.r.t RATM. 

 

IHDTM saves considerable thermal tuning and trimming power to ultimately reduce total 

power. From the power analysis in Figure 59 and Figure 60, it can be observed that IHDTM with 

Corona running 4κ threads has 45.5% and 46.κ%; and IHDTM with Corona running 32 threads 

has 51.6% and 52.3% lower total power consumption compared to Corona with RATM and PDTM 

respectively. Further, Flexishare with IHDTM running 4κ threads has 55.λ% and 57.2%; and 32 

threads has 63.5% and 64.1% lower power consumption compared to Flexishare with RATM and 

PDTM respectively. 
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                                             (a)                                                         (b) 

 

Figure 62 Normalized average execution time comparison of IHDTM with RATM and PDTM for 
Flexishare PNoC running (a) 4κ; and (b) 32 threaded applications from PARSEC and SPLASH-2 
suites executed on 64-core system. Results are normalized wrt RATM results. Bars represent mean 
values of execution time; confidence intervals show variation in execution time across PARSEC 
and SPLASH-2 benchmarks. 
 

Figure 61 shows the average execution time comparison between the three frameworks 

across the 11 4κ-threaded and 32-threaded applications from the PARSEC and SPLASH-2 suites, 

for the Corona PNoC architectures respectively. From Figure 61(a) and (b) it can be seen that 

Corona with IHDTM running 4κ and 32 threads has 12.κ% and 7.4% higher execution time 

respectively compared to Corona with RATM. Corona with IHDTM needs extra execution time to 

migrate threads between cores whereas the RATM policy simply schedules threads without any 

migration, and thus does not possess such overheads. The execution time overhead of Corona with 

IHDTM running 32 threads is lower compared to 4κ-threaded version, as it lowers traffic 

congestion in the Corona PNoC which in turn reduces overall latency. Further, Corona with 

IHDTM running 4κ and 32 threads has 2.6% and 4.3% higher execution time respectively 

compared to PDTM. IHDTM has more number of thread migrations compared to the number of 

thread migrations in PDTM, as IHDTM performs intra-island and inter-island thread migrations 

when the thermal emergencies are predicted by the SVR predictor. Similarly, from Figure 62(a) 

and (b), the Flexishare with IHDTM running 4κ and 32 threads has λ% and 5.λ% higher execution 

time compared to RATM and 3.4% and 4.4% higher execution time compared to Flexishare with 
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PDTM. From the execution time results it can be seen that Flexishare has lower execution time 

overhead compared to Corona as it uses a faster MWMR crossbar instead of slower MWSR 

crossbar in Corona. 

Lastly, from the power consumption and execution time results, we can obtain energy 

consumption results for the three frameworks. On an average, for Corona, energy consumption of 

IHDTM running 4κ threads is 3κ.5% and 45.4% lower compared to RATM and PDTM, 

respectively. Further energy consumption of Corona with IHDTM running 32 threads is 4κ.1% 

and 50.3% lower compared to RATM and PDTM, respectively. On the Flexishare architecture, 

IHDTM running 4κ threads has 52.2% and 56% lower energy consumption compared to RATM 

and PDTM respectively; and IHDTM running 32 threads has 61.4% and 62.6% lower energy 

consumption compared to RATM and PDTM, respectively. From the energy consumption results 

IHDTM has better energy savings for the optimized Flexishare compared to the Corona. 

 

8.4. CONCLUSIONS 

We have presented the IHDTM framework that exploits device-level on-chip thermal islands 

and system-level dynamic thread migration scheme TATM for the reduction of maximum on-chip 

temperature and also conserves trimming and tuning power of MRs in DWDM-based PNoC 

architectures. The proactive thermal management scheme used in IHDTM results in interesting 

trade-offs between performance and power/energy across two different state-of-the-art crossbar-

based PNoC architectures. Our experimental analysis on the well-known Corona and Flexishare 

PNoC architectures has shown that IHDTM can notably conserve total power by up to 64.1% and 

thermal tuning power by up to 70%. 
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9. LIBRA: THERMAL AND PROCESS VARIATION AWARE RELIABILITY 

MANAGEMENT IN PHOTONIC NETWORKS-ON-CHIP 

 

 

PNoCs operation is very sensitive to on-chip temperature and process variations. These 

variations can create significant reliability issues for PNoCs. For example, a microring resonator 

(MR) may resonate at another wavelength instead of its designated wavelength due to thermal 

and/or process variations, which can lead to bandwidth wastage and data corruption in PNoCs. 

This chapter proposes a novel run-time framework called LIBRA to overcome temperature- and 

process variation- induced reliability issues in PNoCs. The framework consists of (i) a device-

level reactive MR assignment mechanism that dynamically assigns a group of MRs to reliably 

modulate/receive data in a waveguide based on the chip thermal and process variation 

characteristics; and (ii) a system-level proactive thread migration technique to avoid on-chip 

thermal threshold violations and reduce MR tuning/ trimming power by dynamically migrating 

threads between cores. Our simulation results indicate that LIBRA can reliably satisfy on-chip 

thermal thresholds and maintain high network bandwidth while reducing total power by up to 

61.3%, and thermal tuning/trimming power by up to 76.2% over state-of-the-art thermal and 

process variation aware solutions.   

 

9.1. INTRODUCTION 

As advocated by prior works [11], [12], PNoCs are expected to be 3D-stacked on top of their 

respective manycore chips. Therefore, the MRs of PNoCs will be placed on top of, and hence in 

close proximity to, processing cores. Variations in core workloads lead to variations in their power 

dissipation, which in turn can alter the temperatures of the cores and MRs in their vicinity. For 
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instance, the temperature on a typical manycore chip can easily vary by as much as λ00C [144]. 

Unfortunately, MRs are very sensitive to these on-chip thermal variations (TV)μ their effective 

refractive indices, and hence their resonance wavelengths are altered if their operating 

temperatures change. Therefore, in a typical PNoC, the resonance wavelengths of the utilized 

modulator MRs may not align with, and hence may not modulate their assigned carrier 

wavelengths [1λ]. This may result in bandwidth wastage, or worse, data corruption when detector 

MRs are unable to read from their assigned carrier wavelengths [33].  

In addition to TV, MRs are also susceptible to fabrication process variations. Process 

variations (PV) induce variations in the width, thickness, and doping concentration of MRs (see 

Section λ.3.2), causing resonance wavelength shifts in MRs [21], [22]. PV measurements of 

fabricated MR devices indicate a standard deviation (σ) of 1.3 nm in width, which translates to a 

0.76nm shift in an MR’s resonance wavelength [23]. These PV-induced resonance wavelength 

shifts in MRs also cause bandwidth wastage and data corruption. 

The adverse effects of PV and TV related to resonance shifts in MRs, and their performance 

and reliability impacts, can be redressed by realigning the resonant wavelengths of MRs with their 

assigned carrier wavelengths using localized trimming [1κ] and thermal tuning [1λ] mechanisms. 

Trimming alters the free-carrier concentration in an MR core, whereas thermal tuning uses 

integrated micro-heaters to alter local temperatures at MRs. But these mechanisms come with high 

power and performance overhead [1λ]. Hence, it is essential to intelligently manage thermal and 

process variations in PNoC-based manycore systems, to achieve reliable communication with 

minimal trimming and tuning costs. 

In this chapter, we aim to minimize the need for (and overheads of) localized thermal tuning 

and trimming in PNoCs while coping with process and thermal variations, thereby easing the 



206 

adoption of PNoCs in future manycore systems. We propose a novel thermal and process variation 

aware dynamic reliability management framework called LIBRA that integrates adaptive MR 

assignment at the device-level and dynamic thread migration at the system-level for PNoC-based 

manycore systems. Our novel contributions as part of the LIBRA framework are summarized 

belowμ 

• We design a novel thermal and process variation aware MR assignment (TPMA) mechanism at 

the device-level, which dynamically assigns a set of MRs to the utilized set of carrier 

wavelengths at run-time. TPMA enables reliable modulation and reception of data with minimal 

overheads, while maintaining the maximum possible bandwidth; 

• We propose a novel PV-aware anti wavelength-shift dynamic thermal management (VADTM) 

mechanism at the system-level, which uses support vector regression (SVR) based temperature 

prediction (see section κ.2.2.2 of chapter κ)and dynamic thread migration to avoid on-chip 

thermal threshold violations and reduce trimming/tuning power for MRs; 

• We evaluate our LIBRA (TPMA+VADTM) framework on a 64-core chip, and compare it with 

four state-of-the-art thermal management solutionsμ an MR-aware thermal management 

(RATM) framework [133], an MR PV-aware thermal management (FATM) framework [145], a 

predictive dynamic thermal management (PDTM) framework [13λ], and an MR-aware thermal 

management (SPECTRA) framework [33]; and show significant reduction in maximum 

temperature and trimming/tuning power costs compared to these solutions. 

 

9.2. RELATED WORK 

Traditional electrical NoC communication fabrics are projected to suffer from cripplingly 

high power dissipation and severely reduced performance in future manycore systems [7]. The 
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higher bandwidth density and lower power dissipation possible with silicon-photonic links, 

compared to electrical wires, has made them an attractive option for manycore systems. Recent 

research has thus focused on exploring a wide spectrum of network topologies and protocols to 

enable efficient PNoC architectures [25], [67]. 

PV and TV in silicon-photonic links represent important challenges for the widespread 

adoption of PNoC architectures. Several techniques have been proposed to reduce thermal hotspots 

and gradients using DVFS [146], [147], [14κ], [14λ], workload migration [13λ], [150], [151] and 

liquid cooling [152], [153], [154], [155]. A few PV-aware application mapping frameworks have 

also been proposed [156], [157] that optimize performance and energy in manycore systems. In 

[156] a run-time application-mapping strategy was presented, which considers the variation profile 

of a manycore processor to maximize performance and reduce leakage-power for a given fixed 

power budget. In [157] a framework was presented that integrates reliability and variation-

awareness in a run-time variable degree-of-parallelism (DoP) application-scheduling methodology 

to enhance manycore performance. However, these techniques do not consider the unique 

challenges (e.g., MR resonance wavelength shifts) and constraints (e.g., wavelength match 

between sender and receiver MR pairs) that exist in PNoCs.  

A few prior works have analyzed the impact of TV and PV on PNoCs at the device-level, 

link-level, and system-level, and proposed solutions to remedy these variations. The device-level 

efforts have mainly proposed various athermal photonic devices to reduce localized 

tuning/trimming power in MRs. These design-time solutions include using materials such as 

cladding to reduce thermal sensitivity [132], [15κ], and using heaters and temperature sensors for 

thermal control [15λ]. An electrical backend capable of bit re-shuffling was proposed in [160] to 

enhance photonic link robustness against TV and PV with lower MR tuning power. While these 
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device- and link-level techniques are promising, they either possess a high power overhead or 

require costly changes in the manufacturing process (e.g., larger device areas) that would decrease 

bandwidth density and area efficiency.     

At the system-level, the overhead associated with localized tuning of MRs was reduced in 

[1λ] using the group shift property of co-located MRs as part of a method to trim a group of rings 

at the same time. In [133], a ring-aware thread scheduling policy was proposed to reduce on-chip 

thermal gradients in a PNoC. In [161], a thread migration mechanism was proposed to minimize 

on-chip thermal gradients within a PNoC. In [34], an island of heater based thermal management 

framework was proposed to adapt groups or islands of MRs within PNoCs to on-chip thermal 

variations. A few prior works have also explored the impact of PV on DWDM-based photonic 

links at the system-level [105], [162], [163]. A reliability-aware design flow to address variation 

induced reliability issues is proposed in [162], which uses athermal coating at fabrication-level, 

voltage tuning at device-level, as well as channel hopping at the system-level. In [105], a 

methodology to salvage network-bandwidth loss due to PV-shifts is proposed, which reorders MRs 

and trims them to nearby wavelengths. In [163], power-efficient techniques are proposed, based 

on inter-channel hopping and variation-aware routing to compensate for PV effects at runtime. A 

few system-level works [23], [145], [164] also consider the impact of both TV and PV on optical 

links. In [23], a thermal-tuning approach is presented that adjusts chip temperature using DVFS to 

compensate for chip-wide thermal and process variation induced resonance shifts in MRs and 

improve system performance. In [145], a PV aware workload allocation policy is presented to 

reduce the thermal tuning power of PNoCs. In [164], a tunable laser source design is demonstrated, 

in which the signal power at the source is adapted to compensate for signal losses due to TV and 
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PV across optical interconnects. None of these system-level solutions for PNoCs considers the 

impact of the relationship between thermal hotspots and transmission reliability.  

To address these shortcomings of prior work, we proposed the SPECTRA framework in our 

prior work [33]. SPECTRA is a cross-layer framework that combines two dynamic thermal 

management mechanisms to reduce maximum on-chip temperature and conserve trimming and 

tuning power of MRs in DWDM-based PNoC architectures. Our proposed LIBRA framework in 

this chapter improves upon SPECTRA, by (i) considering the impact of PV on dynamic thermal 

management; (ii) utilizing a new device-level TV and PV aware ring assignment mechanism; and 

(iii) utilizing a new system-level PV-aware thread migration mechanism. Sections 4-6 describe our 

proposed framework which is then evaluated in Section 7 against prior work. 

 

9.3. IMPACT OF TV AND PV ON DWDM BASED PNOCS 

In this section, we explain the key impacts of PV and TV on DWDM based PNoCs. Although 

most silicon-based photonic devices exhibit some susceptibility to temperature and process 

variations, the high wavelength selectivity of MRs makes them especially susceptible to these 

variations. Therefore, we primarily focus on the impacts of TV and PV on MRs. 

 

 
 

Figure 63 Impact of temperature increase on an MR bank 
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9.3.1. IMPACT OF TV ON DWDM BASED PNOCS 

In a DWDM PNoC, the temperatures of the individual compute nodes and their associated 

MR banks follow the workload-dependent temperatures of the processing cores in the nodes. As 

the application workload of each core in a manycore system usually differs from that of other cores 

and also varies with time, the temperatures of the cores (and thus nodes) of the system differ from 

one-another and vary with time. As a result, the temperatures of different MR banks of the PNoC 

also differ from one another and vary with time. 

Typically, the MR banks of each PNoC node are designed to resonate with and operate upon 

their assigned carrier wavelengths at a specific temperature, e.g., room temperature. But due to the 

time- and workload-dependent temperature variations, the resonances of different MR banks shift 

away from their assigned carrier wavelengths by different amounts. 

For example, Figure 63 depicts an MR bank with MRs R1-Rn that are designed to resonate 

with their assigned carrier wavelengths 1- n, respectively, at temperature T1. As the temperature 

increases to T2, the resonance wavelength of each MR shifts away from its assigned carrier 

wavelength towards the red end of the spectrum (i.e., red-shift). This red-shift is shown in the 

figure where, at temperature T2 (T2>T1), the resonance wavelength λi of MR Ri is in line with the 

carrier wavelength λi-1. Consequently, the carrier wavelength λn is not assigned to any of the MRs. 

This results in bandwidth wastage if the MR bank is a modulator MR bank, as λn cannot be 

modulated by any modulator MR now. This example scenario can also result in data corruption if 

the MR bank is a detector MR bank, as λn cannot be received by any detector MR. Similarly, if T2 

< T1, the resonance wavelength λi of each Ri shifts towards the blue end of the spectrum (i.e., blue-

shift), which may leave λ1 unassigned, causing bandwidth wastage or data corruption. Thus, during 
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the runtime of a PNoC, an increase in an MR bank’s temperature red-shifts the resonances of all 

its MRs, whereas a decrease in an MR’s temperature blue-shifts the resonances of all its MRs. 

The amount of shift in an MR’s resonance not only depends on the magnitude of temperature 

change, but also on the MR’s structure and geometry manifested as its effective refractive index 

neff. Typically, an MR is a looped waveguide with a silicon (Si) core and silicon dioxide (SiO2) 

cladding, irrespective of whether it is used as a modulator or a detector. The change λr in the 

resonance wavelength λr of an MR due to an arbitrary change ΔT in its local temperature is given 

by the following equation [113]μ 

 = = ( + ) , (61) 

Here, ng is the group refractive index (ratio of speed of light to group velocity of all wavelengths 

traversing the waveguide) of the MR waveguide. ΓSi and ΓSiO2 are the modal confinement factors 

of the MR’s core (Si) and cladding (SiO2), respectively. δnSi/δT and δnSiO2/δT are the thermo-optic 

coefficients of Si (MR’s core) and SiO2 (MR’s cladding) materials, with values of 1.κ6×10-4 K-1 

and 1×10-5 K-1, respectively [113]. As the thermo-optic coefficient of Si is an order of magnitude 

greater than that of SiO2, and as ΓSi is also greater than ΓSiO2 for a typical MR, the contributions 

from the MR’s cladding (SiO2) in Eq. (61) can be ignored. Consequently, Eq. (61) reduces toμ 

= . . . , (62) 

Note that the MRs used in this study are looped channel waveguides with a cross section of 

450nm×220nm. We model these MRs using a commercial-grade eigenmode solver [122], based 

on which the values of ΓSi and ng at 1550nm are calculated to be 0.7κ and 4.16, respectively. 
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Figure 64 Impact of PV on DWDM based PNoCs 

 

9.3.2. IMPACT OF PV ON DWDM BASED PNOCS 

Ideally, without any fabrication-induced PV, a sender or a receiver node can modulate and 

detect all of the carrier wavelengths available in the waveguide without any bandwidth loss or 

error. But in reality, similar to deep submicron electronic devices, photonic devices such as MR 

modulators, MR detectors, grating couplers, splitters etc. also suffer from significant PV [165]. In 

this chapter, we mainly focus on the severe PV effects in MRs. The MR structure is very sensitive 

to PV, much like it is to TV. Due to PV effects, the widths, heights, and side wall roughness of 

MRs can deviate from desired values after fabrication. Consequently, the resonance wavelengths 

(  of the MRs also deviate from their designed values. For example, 1nm of variation in width 

and height of an MR can lead to 0.5κ~1nm and ~2nm shift in its resonance wavelength, 

respectively [22]. 

As discussed earlier, PNoCs employ DWDM-based photonic links with cascaded MRs (i.e., 

MR banks) in their sending and receiving nodes. Unlike TV that induces systematic red or blue 

shifts in all the MRs of an MR bank, PV can incur random shifts in the resonance wavelengths of 

the MRs of a single bank, as shown in Figure 64. From this figure, MRs R1, R4, …, Rn-1 have blue 

shift in their resonance wavelengths and MRs R2, R3, …, Rn have red shift in their resonance 

wavelengths. Much like with TV, PV can also throw the resonances of the MRs out of alignment 
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with their assigned carrier wavelengths, which can ultimately lead to bandwidth wastage and/or 

data corruption. 

In summary, to enable reliable photonic communication, there is a need to mitigate the 

combined impact of TV and PV on PNoCs. This chapter presents a cross-layer framework that 

uses device-level and system-level enhancements to remedy the combined impact of TV and PV. 

Before discussing our proposed framework, we present our performance, power, and thermal setup 

for modeling manycore systems with PNoCs in the next subsection. We also present a 

characterization of the impact of TV and PV on the MRs of a typical DWDM PNoC based 

manycore system, in this next subsection. 

 

9.3.3. MODELING TV AND PV IN PNOC ARCHITECTURES 

To model and characterize TV and PV in a manycore system with a PNoC, we developed a 

simulation framework, which integrates performance, power, thermal, and variation simulators, as 

shown in Figure 65. We considered a three layered 3D-stacked 64-core system as advocated in 

existing PNoC architectures [11], [12] with a planar die area footprint of 400mm2. The top layer 

is the core-cache layer, the middle layer is the conversion layer with digital and analog circuits that 

support electrical-to-optical (E/O) and optical-to-electrical (O/E) conversion of data, and the 

bottom layer is the photonic layer with photonic components and devices (e.g., MRs, waveguides, 

ring heaters, etc.) that comprise a PNoC. 

We use Sniper [141] to simulate the performance of the manycore system while it executes 

multithreaded applications from SPLASH-2 [131] and PARSEC [43] benchmark suites. To factor 

in the varying system utilizations as a contributor to the dynamic TV in the processing cores and 

its impact on the associated photonic devices (e.g., MRs), we run each application on a target 64-
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core system (see Section λ.7) with κ, 16, 32, 4κ, and 64 threads. To capture runtime behavior of an 

application, we generate performance traces using Sniper, which are fed to MCPAT [142] to 

generate power traces at core-level granularity. We use published power dissipation data from 

Intel’s Single-Chip Cloud Computer (SCC), scaled to 32 nm, to calibrate our dynamic power data. 

The power traces generated by McPAT are given as inputs to the 3D-ICE tool [130] for transient 

thermal simulations (see Figure 65). Some of the key materials used in the construction of the 3D-

stack in the 3D-ICE tool and their properties are shown in Table 21. Additionally, we consider a 

heat sink adjacent to the core-cache layer for dissipation of heat in the environment. 

 

 
 

Figure 65 Simulation framework to analyze TV and PV in a manycore system with a PNoC 
architectures; the framework integrates performance, power, thermal, and variation simulators. 
 

Table 21 Properties of materials used by 3D-ICE Tool [130], [143] 
 

Material Thermal Conductivity Volumetric Heat Capacity  

Silicon 1.30e-4 W/µm K 1.628e-12 J/µm3 K 

Silicon di oxide 1.46e-6 W/µm K 1.628e-12 J/µm3 K 

BEOL 2.25e-6 W/µm K 2.175e-12 J/µm3 K 

Copper 5.85e-4 W/µm K 3.45e-12 J/µm3 K 
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We analyzed the spatial variation in the peak temperatures of various tiles (at core-level 

granularity) of the photonic layer. For the 64-core system each tile has an estimated area of 6.25 

mm2 (i.e. 2.5×2.5 mm2). We executed 64-threaded versions of the blackscholes (BS), bodytrack 

(BT), vips (VI), facesim (FS), fluidanimate (FA), swaptions (SW), barnes (BA), fft (FFT), radix 

(RX), radiosity (RD), and raytrace (RT) applications from the PARSEC and SPLASH2 benchmark 

suites on the 64-core system with one application running at a time. We monitored the peak 

temperature of each part of the photonic layer for every application and plotted the maximum peak 

temperature of each part across all the applications, as shown in Figure 66(a). From this figure, we 

can observe the maximum possible temperature-rise (above the room temperature) for any part of 

the layer, which caps all possible dynamic TV values for that part. From Fig. 4(a), higher peak 

temperatures are obtained at the center of the chip while relatively lower peak temperatures are 

achieved at the periphery of the chip. The main reason for the higher temperature at the center of 

the chip is the inefficiency of the heat sink to remove heat from the center of the chip. Furthermore, 

using Eq. (61) and (62), we determined the resonance wavelength shifts because of the peak 

temperature-rises, which are presented as a histogram in Figure 66(b). As evident from this figure, 

TV can induce up to a 7.4nm shift in MR resonances. 

In addition to TV, we also analyzed PV in PNoCs with the simulation setup presented in 

Figure 65. We adapted the VARIUS tool [112] to model die-to-die (D2D) as well as within-die 

(WID) process variations in MRs for the PNoC. VARIUS uses a normal distribution to characterize 

on-chip D2D and WID process variations. The key parameters are mean (µ), variance (σ2), and 

density (α) of a variable that follows the normal distribution. As wavelength variations are 

approximately linear to the dimension variations of MRs, we assume they follow the same 

distribution. The mean (µ) of wavelength variation of an MR is its nominal resonance wavelength. 
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For PNoCs, we considered waveguides with 32 DWDM degree sharing the working band 1530–

1625nm (i.e., C and L bands) with a wavelength channel spacing of 1.4κnm. Hence, those 

wavelengths are the means for each MR modeled. The variance (σ2) of wavelength variation is 

determined based on laboratory fabrication data [22] and our target die size. For a 64-core chip 

with 400mm2 size at 32nm node, we consider a WID and D2D standard deviations of σWID = 

0.61nm σD2D = 1.01nm, respectively [105]. We also consider a density (α) of 0.5 [105] for this 

die size. With these parameters, we use VARIUS to generate 100 process variation maps. 

 

 
(a)                                                            (b) 

 

Figure 66 (a) spatial variation in peak temperatures (b) histogram of peak TV-induced resonance 
wavelength variation across a chip of size 400mm2 using 3D ICE tool while executing 64 threaded 
PARSEC and SPLASH2 benchmark applications on a 64-core CMP. 
 

We depict a PV map in Figure 67(a), which shows a spatial variation in PV-induced 

resonance wavelength shifts on the photonic die. Each PV map contains over one million points 

indicating the PV-induced shifts in MR resonances. The total number of points picked from these 

maps equal the number of MRs in the PNoC. We also present these points as a histogram in Fig. 

5(b). As evident from the histogram, PV can induce resonance wavelength shifts in the range of -
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1.κnm to 1.6nm. However, we observed that this range can increase up to -3nm to 3nm for other 

PV maps. 

 

 
                                                   (a)                                                              (b) 

 

Figure 67 (a) PV-induced resonance wavelength variation (b) histogram of resonance wavelength 
variation across a chip of size 400 mm2. 

 

9.4. OVERCOMING PV/TV INDUCED RESONANCE WAVELENGTH SHIFTS 

The adverse effects of PV and TV, i.e., resonance shifts in MRs and their performance and 

reliability impacts, can be overcome by realigning and locking the resonance wavelengths of the 

individual MRs with the utilized carrier wavelengths. As PV is a static phenomenon, the PV-

induced resonance shifts need to be overcome only once at system initialization. In contrast, due 

to the dynamic nature of TV, the TV-induced resonance shifts require runtime thermal stabilization 

of MRs. A stable locking of MR resonances with the utilized carrier wavelengths can be achieved 

using device-level (MR-level) mechanisms, such as localized trimming [1κ] and/or thermal tuning 

[1λ], with a dithering signal based feedback control [113]. However, the localized trimming and 

thermal tuning mechanisms proposed in prior work come with several challenges, which must be 

overcome to ease the adoption of PNoCs for future manycore systems. 
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First, thermal tuning and localized trimming mechanisms cannot provide sufficient tuning 

range to remedy PV/TV-induced resonance shifts in MRs. For instance, from Section λ.3, TV and 

PV together can induce shifts in MR resonance wavelengths of up to 10.4nm, i.e., 7.4nm for TV 

and ±3nm for PV. Therefore, compensating these TV/PV-induced resonance shifts would require 

a net tuning range of 10.4nm. But localized trimming can provide a tuning range of only 1.5nm at 

most [162]. In contrast, thermal tuning can provide a tuning range of about 6.6nm corresponding 

to the temperature range of up to 60K [113] at 0.11nm/K sensitivity [1λ]. Thus, even the thermal 

tuning and localized trimming together (i.e., 6.6nm+1.5nm tuning range) cannot provide the 

required tuning range of ~10.4nm. Another challenge for these mechanisms is their significant 

power overhead. A typical MR may consume 130 W of trimming power or 240 W of thermal 

tuning power to remedy 1nm shift in its resonance wavelength, depending on its size, structure, 

and integration feasibility. To remedy a larger shift of ~10.4nm, a single MR may consume as 

much as ~1.35mW of trimming power or ~2.5mW of thermal tuning power. As a DWDM PNoC 

may have thousands of MRs, the total power overhead of PV/TV remedy can easily be in the range 

of a few tens of watts, which is a prohibitively high power overhead for chip-scale systems and 

must be minimized to make the total power costs of large-scale DWDM PNoCs manageable. 

Fortunately, due to the periodicity of MR resonances, the resonance of none of the MRs in a 

PNoC needs to be tuned for more than a single channel gap [160]. This makes the required tuning 

range and the total tuning power more manageable. To understand this, consider Fig. 6. The 

periodic resonances (R1-R4) of an example bank of four MRs and their assigned carrier 

wavelengths ( 1- 4) for an ideal case with no PV or TV are shown in Figure 68(a). Due to the 

absence of PV/TV, the resonances of all MRs are aligned with their assigned carrier wavelengths. 

Figure 68(b) shows systematic blue-shifts of over two channel gaps in the resonances of all four 
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MRs. In this case, the MR resonances can be re-aligned to their nearest carrier wavelengths 

followed by electrical repositioning of bits using backend barrel-shifters or pipelined shift registers 

[160]. In case the random PV throw the MR resonances out of order (Figure 68(c)), use of bit 

reordering multiplexers at the backend can still allow the MR resonances to be re-aligned to their 

nearest carrier wavelengths. Thus, due to the periodicity of MR resonances, and the use of bit 

reordering/repositioning techniques, the necessary tuning distance for the individual MRs reduces 

to less than one channel gap. 

 

 
(a) 

 
(b) 

 

(c) 
 

Figure 68 Periodic resonances (R1-R4) of an example bank of four MRs and their assigned carrier 
wavelengths (λ1-λ4) for (a) an ideal case with no resonance shifts, (b) a case with systematic blue-
shifts in resonances, (c) a case with random red-shifts in resonances. 
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Our previously proposed SPECTRA framework [33] uses a different approach to reduce the 

required tuning distance and power overhead of PV/TV remedy. It integrates one system-level and 

two device-level optimizations. At the device-level, the SPECTRA framework utilizes three more 

MRs than the number of utilized carrier wavelengths, and thus, increases the available tuning range 

by three channel gaps. This mechanism reassigns the extra MRs to operate on nearby carrier 

wavelengths in the case when the resonances shift by less than three channel gaps. The need for 

remedying resonance shifts of more than three channel gaps is eliminated by reducing the range 

of temperature swings of the individual cores below the threshold levels that can induce resonance 

shifts of greater than three channel gaps. For that, an adaptive thread migration policy is used at 

the system level, which also eliminates the need of bit-shifting. Moreover, SPECTRA adaptively 

chooses the least power-consuming method from thermal tuning and localized trimming as the 

preferred method for PV/TV remedy. Thus, SPECTRA conserves the total power required for 

PV/TV remedy with low latency overhead. However, the SPECTRA framework does not deal with 

PV and its benefits come with the area and power overheads of the extra MRs and bit-reordering 

multiplexers [160]. To address these shortcomings of the SPECTRA framework, we propose a new 

TV and PV aware reliability management framework called LIBRA, which is described next. 

 

9.5. LIBRA FRAMEWORK: OVERVIEW 

Our LIBRA framework enables reliability-aware run-time PNoC management while 

rectifying TV and PV in MRs by integrating device-level and system-level enhancements. Figure 

69 gives a high-level overview of our framework. The thermal and process variation aware 

microring assignment (TPMA) mechanism dynamically assigns each MR to the nearest available 

carrier wavelength, which enables reliable modulation and reception of data while maintaining the 
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maximum possible bandwidth. This device-level mechanism also adaptively chooses the least 

power-consuming method from thermal tuning and localized trimming as the preferred method for 

PV/TV remedy, and thus, reduces the total power for PV/TV remedy in the PNoC. However, 

limiting the peak temperature swings below threshold levels is critical to further reduce the total 

power for PV/TV remedy. To achieve this, we devise a PV-aware anti-wavelength-shift dynamic 

thermal management (VADTM) scheme that uses support vector regression (SVR) based 

temperature prediction and dynamic thread migration, to avoid on-chip thermal threshold 

violations, minimize on-chip thermal hotspots, and reduce thermal tuning power for MRs. The 

next two sections present details of the TPMA and VADTM schemes. 

 

 
 

Figure 69 Overview of LIBRA framework that integrates a device-level thermal and process 

variation aware microring assignment mechanism (TPMA) and a system-level variation aware anti 

wavelength-shift dynamic thermal management (VADTM) technique. 

 

9.6. TV AND PV VARIATION AWARE MICRORING ASSIGNMENT (TPMA) 

9.6.1. THERMAL VARIATION AWARE MR ASSIGNMENT (TMA) 

As discussed in Section 3.1, TV shifts MR resonances, which can prevent MRs from reading 

or writing to their assigned carrier wavelengths. Fortunately, there is a linear dependency between 

temperature increase and resonance wavelength shift [162], which we exploit in our TV-aware 
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microring assignment (TMA) mechanism that dynamically assigns each MR to the nearest 

available carrier wavelength. 

 

 
 

Figure 70 Red shift of MR with increase in temperature from IRTs Ti to Ti+1 with trimming and 
tuning range of temperatures between these IRTs. 

 

Figure 70 shows how at temperatures Ti and Ti+1 (Ti+1> Ti), an MR resonance is in exact 

alignment with the available wavelengths λk and λk+1, respectively. These temperatures are called 

ideal resonant temperatures (IRTs). When the MR temperature is in between IRTs Ti and Ti+1, as 

shown in Fig.κ, the MR needs to be either trimmed to resonate to λk (which is the resonance 

wavelength of an MR at temperature Ti) or thermally tuned to resonate to λk+1  (which is the 

resonance wavelength of an MR at temperature Ti+1). To adaptively choose the least power 

consuming method from trimming and thermal tuning, we divide the temperature range between 

IRTs Ti and Ti+1 into two partsμ trimming temperature range ( tr) and tuning temperature range 

( tu). For an MR at temperature T, if (Ti + tr) > T > Ti we perform trimming as it takes the least 

power, else if (Ti + tr) < T < Ti+1 we perform tuning as it takes the least power (see Figure 70). At 

the boundary of the trimming and tuning temperature ranges, where Ti+1- tu = Ti+ tr, both 

trimming and tuning consume equal power, and hence, an MR can be either trimmed or tuned. 
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This temperature is called the boundary temperature (BTi). It has been shown that for a small 

resonance wavelength shift (<1nm), thermal tuning power is higher compared to trimming power 

to mitigate the same amount of TV-induced shift [1λ]. Thus, our TMA approach considers a higher 

trimming temperature range compared to tuning temperature range ( tr> tu), to minimize total 

trimming and tuning power. 

 

 

(a)                                                             (b) 

 

(c)                                                            (d) 
 

Figure 71 Thermal aware assignment of microrings (R1-n) to wavelengths (λ1-n) at four successive 
IRTs T1, T2, T3, and T4 in TMA mechanism. 

 

In TMA, MRs are dynamically shifted (trimmed or tuned) to an appropriate IRT for correct 

operation based on their current temperature. Figure 71(a)-(d) show four different MR wavelength 

assignment configurations at successive IRTs T1, T2, T3, and T4, where T4>T3>T2>T1. If the MR 

group temperature T is such that (T1 – tu) < T < (T1+ tr) then the assignment in Fig. λ(a) is chosen, 

otherwise if (T2 – tu) < T < (T2+ tr), (T3 – tu) < T < (T3+ tr), or (T4 – tu) < T < (T4+ tr) then 

the assignment in Figure 71(b), Figure 71(c), or Figure 71(d) is chosen, respectively. One critical 
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observation in the assignment shown in Figure 71(a) is that MRs R1-Rn are in resonance with λ1- 

λn within the same Free Spectral Range (FSRi), whereas, in Figure 71(b) at IRT T2, MRs R2-Rn are 

in resonance with λ1-λn-1, respectively in FSRi and MR R1 is in resonance with λn of the next FSR 

(i.e., FSRi+1).  In this assignment and the ones shown in Figure 71(c) and Figure 71(d), as explained 

in Section 4, there is a need to reposition bits in electrical domain using backend barrel-shifters or 

pipelined shift registers. The assignments shown in Figure 71(b), Figure 71(c), and Figure 71(d) 

require one, two, and three bit shifts, respectively, to retrieve the original data.  

TMA represents a powerful reactive technique to adapt to on-die thermal variations with low 

overhead while ensuring reliable and high-bandwidth communication in MR based PNoCs. But 

there is scope for three further enhancements. First, TMA does not consider the impact of PV on 

MRs, thus there is a need to readapt TMA to address the impact of PV on MRs, which is discussed 

in subsection λ.6.2. Second, there is a need to proactively control the peak on-chip temperature to 

reduce the range of on-chip temperature swings, which ultimately limits the number of required 

bit shifts (this work caps the number bit shifts to three as shown Figure 71(d)) and reduces the 

latency to retrieve the original data. Third, at the BT temperature (Figure 70), maximum trimming 

or tuning power is required to realign the MR resonances to their nearest carrier wavelengths. Thus, 

avoiding BT temperatures at MRs can reduce trimming and tuning power overhead. As shown in 

Figure 70, we define a boundary temperature zone (BTZ) around each BTi. This zone includes 

temperatures T such that BTi- Ztr < T < BTi+ Ztu where Ztr and Ztu are designer specified 

parameters. Cores with corresponding MR bank temperatures that are within BTZs are called 

boundary temperature cores (BTCs). As BTCs possess the highest trimming and tuning power 

overhead for their corresponding MR bank, a mechanism that reduces the number of BTCs can 
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save trimming and tuning power. Section λ.7 describes such a mechanism, which also controls the 

range of on-chip temperature swings within allowable limits. 

 

9.6.2. READAPTING TMA FOR PROCESS VARIATIONS (PMA) 

In this subsection, we readapt the TMA mechanism to address the impact of PV on MR 

resonances. When using the TMA mechanism, PV-induced red or blue shift (  ) alters the 

resonance wavelength (λBTi) of an MR at BTi to λBTR or λBTB, respectively, as shown in Figure 72. 

This violates the actual definition of BT, which is the temperature from which either trimming to 

λk (which is the resonance wavelength of an MR at temperature Ti) or tuning to λk+1 (which is the 

resonance wavelength of an MR at temperature Ti+1) dissipates equal power. For example, in case 

of a PV-induced blue shift, tuning λBTB to λk+1 would consume more power than trimming it to λk, 

as λBTB is shifted towards λk from λBTi. Therefore, in the TMA that is readapted for process variations 

(PMA mechanism), we propose to either increase or decrease the BTs in line with the PV-induced 

red or blue shifts in MR resonances, respectively.  

 

 
 

Figure 72 Impact of PV-induced red and blue shift on boundary temperature on TMA. 
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In our PMA mechanism, first, the PV-induced resonance shifts in MRs are gauged in situ at 

system initialization by using a dithering signal based control system [113]. The overhead of this 

in-situ PV detection technique is considered in our results section as dithering power. In our 

analysis, we model and estimate PV in MRs using the VARIUS tool [112], a description of which 

is already given in Section λ.3.3. Once PV-induced red or blue shifts of MRs are determined, we 

estimate the average resonance shift (in nm) across all MRs of each MR bank. We use each average 

shift value ( λPV,ave) to determine the shift in BT (i.e., BTi) for all the MRs of the corresponding 

MR bank using Eq. (63), where TS is the MR thermal sensitivity obtained from Eq. (62) as λr/ T. 

= ,� , (63) 

 

Once the BTi values for all MR banks of the PNoC are obtained, we revise the BTs of each 

MR bank by either adding or subtracting the corresponding BTi value from the original BT. 

Similar to the TMA mechanism, we then build BTZs around these updated BTs. Note that we 

cannot shift the original BT beyond a particular temperature range (i.e. >  and <− ), especially when the PV-induced resonance wavelength shifts are greater than one channel 

gap (CG). Unfortunately, for state-of-the-art fabrication processes, the maximum PV-induced 

wavelength shifts are around ± 3nm (> one channel gap of 1.4κnm). Shifting BT beyond a certain 

range to compensate for larger PV-induced shifts will also lead to higher tuning and trimming 

power dissipation. 

Figure 73 shows an example of a larger PV-induced blue shift, which alters the resonance 

wavelength ( BTi) of an MR at BT to BTB. One possible solution is to bring back the resonance 

wavelength to BTi. But this is not always possible especially when the chip is operating at lower 

temperatures. Therefore, we propose to shift this BTB to BTi-1 instead of BTi, i.e., instead of 
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decreasing BT by a larger amount here we increase BT by a smaller amount. In order to facilitate 

this shifting, similar to TMA, we perform ring assignment along with extra bit shifts. At a channel 

spacing of 1.4κnm, to compensate for peak PV-induced resonance shift of ± 3nm, two extra bit 

shifts (forward and backward bit shifts to compensate positive and negative PV induced resonance 

shift) are needed. 

 

 
 

Figure 73 Boundary temperature adaptation for larger PV-induced blue shifts in PMA. 

 

Overheads: Our proposed TPMA scheme is a combination of the two previously proposed 

techniquesμ TMA (Section λ.6.1) and PMA (this subsection). TPMA requires a maximum of five 

bit shifts, which include three for TMA and two for PMA. These additional bit shifts in TPMA incur 

latency overhead. This latency overhead is quantified in more detail in Section λ.κ. Furthermore, 

with TPMA each MR bank requires a Read Only Memory (ROM) to store its corresponding three 

BT values, which are determined using PV profiling at design time, as discussed earlier. This ROM 

also stores beginning and ending temperatures of three BTZs in each MR bank. We have 

considered 16-bits to store each temperature value. As there is a need to store nine different 

temperature values (three BTs, three BTZ start temperatures, three BTZ end temperatures) for each 

MR bank, we need a ROM that can store 144-bits. Moreover, a 16-bit comparator circuit is needed 
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for each MR bank to determine the range of operation of MRs (i.e., trimming or tuning temperature 

range). This comparator is also used to determine whether an MR bank is in BTZ or not. Therefore, 

one input for this comparator comes from a thermal sensor (i.e., information on current 

temperature) and the other input is from the ROM. The area and power overhead of the ROM and 

comparator is quantified in detail in Section λ.κ. 

 

9.7. VARIATION AWARE ANTI WAVELENGTH-SHIFT DYNAMIC THERMAL 

MANAGEMENT (VADTM) 

To proactively reduce thermal hotspots (which in turn will reduce instances of ‘irrecoverable 

shift’) and control on-die temperature (to reduce the number of BTCs), we propose a system-level 

variation aware anti wavelength-shift dynamic thermal management (VADTM) technique, 

described below.  

 

9.7.1. OBJECTIVE 

The primary goals with VADTM is to maintain the temperature of all of the cores on a die 

below a specified thermal threshold, i.e., for all cores 1 ≤ i ≤ N, Ti < Tt where Ti is the temperature 

of core i and Tt is threshold temperature. We utilize support vector based regression (SVR) to 

predict the future temperature of a core (for more details about this prediction model refer to 

Section κ.2.2.2). This predicted temperature is compared with a thermal threshold to determine the 

potential for a thermal emergency. If such a potential exists, threads are migrated to available BTCs. 

These BTCs are determined based on the PV profile of MRs and ring blocks that are used to send 

and receive data from these cores. Migration to a BTC has a twofold benefit. First by moving the 

thread away from a core that could suffer a thermal emergency, we avoid instances of irrecoverable 
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shift in the MR groups of that core. Second, by moving the thread to a BTC, the temperature of 

the BTC will increase resulting in that core no longer being a BTC (consequently the temperature 

of the core’s MR groups will also increase, taking them outside of their BTZ and closer to IRTs, 

which will reduce trimming/tuning power). The parameters used to describe VADTM are shown in 

Table 22. 

 

Table 22 List of VADTM parameters and their definitions 

 

Symbol Definition 

IPCi Instructions per cycle of ith core 

CTi Current temperature of ith core 

TNi Average temperature of immediate neighboring cores 
of ith core; if this core is on chip periphery and missing 
neighbors, then we consider virtual neighbor cores at 

ambient temperature in lieu of the missing cores 

PTi Predicted temperature of ith core 

Tt Thermal threshold 

BTCs Boundary temperature cores 

NBTCs Non-boundary temperature cores 

 

 
 

Figure 74 Overview of VADTM in LIBRA framework with support vector regression (SVR) based 
temperature prediction model. 
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9.7.2. THERMAL MANAGEMENT FRAMEWORK 

Figure 74 illustrates the entire VADTM technique. For each core, we periodically monitor 

the IPC value from performance counters and temperature from on-chip thermal sensors. If a 

thermal emergency is predicted for a core by the SVR predictor, then VADTM initiates a thread 

migration procedure, otherwise no action is taken. 

 

Algorithm 4 VADTM thread migration algorithm 

Inputs: Current core temperature (CTi), average neighboring core temperature (TNi), 

current core IPC (IPCi) 

1:     for each core i do  // Loop that predicts future temperature       

2:            PTi = SVR_predict_future_temperature (CTi, TNi, IPCi) 

3:     end for 

4:     for each core i do // Loop that checks for free BTCs and NBTCs 

5:            if CTi in BTZ and IPCi == 0 then 

6:                 List_BTC = Push i  //add core to BTC list 

7:            else if IPCi == 0 then 

8:                 List_NBTC = Push i //add core to NBTC list 

9:           end if 

10:    end for 

11:    for each core i do   // Loop that performs thread migration 

12:          if PTi ≥ Tt then       

13:               if List_BTC ≠ {} then 

14:                   Migrated_core = Find_min_temperature_core(List_BTC) 

15:                   Do_thread_migration( core_i → Migrated_core) 

16:                   List_BTC = Pop i 

17:               else if List_NBTC ≠ {} then 

18:                   Migrated_core = Find_min_temperature_core(List_NBTC) 

19:                   Do_thread_migration( core_i → Migrated_core)  

20:                   List_NBTC = Pop i 

21:               end if 

22:          end if 

23:     end for 

 

Output: Thread migration to BTC or NBTC cores 

 

Algorithm 4 shows the pseudo-code for the VADTM thread migration procedure. First, the 

future temperature (PTi) of the ith core is predicted using the SVR based predictor with inputsμ core 

temperature (CTi), core IPC (IPCi), and temperature of neighboring cores (TNi) in steps 1-3. The 

list of available BTCs (i.e., those that are not currently executing any thread) and available NBTCs 

is obtained in steps 4-10. In steps 11-12, a loop iterates over all cores and checks for possible thread 
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migration conditions (i.e., thermal emergency cases where current core predicted temperature (PTi) 

is greater than thermal threshold (Tt)). If a thread migration is required, then in steps 13-21, we 

check for free BTCs, and if they are available then we migrate the thread from the current core to 

the BTC with lowest temperature, else we migrate the thread to a free NBTC with lowest 

temperature. This VADTM thread migration procedure is invoked at every epoch (1ms). 

 

9.8. EXPERIMENTAL RESULTS 

9.8.1. EXPERIMENT SETUP 

We target a 64-core manycore system to evaluate our LIBRA (TPMA+VADTM) framework. 

Each core has a Nehalem xκ6 [141] micro-architecture with 32KB L1 instruction and data caches 

and a 256KB L2 cache, at 32nm and running at 5GHz. We evaluate LIBRA on two well-known 

PNoC architecturesμ Corona [11] and Flexishare [13]. Corona uses a 64×64 multiple write single 

read (MWSR) crossbar with token slot arbitration. Flexishare uses 32 multiple write multiple read 

(MWMR) waveguide groups with a 2-pass token stream arbitration. Each MWSR waveguide in 

Corona and MWMR waveguide in Flexishare is capable of transferring 512 bits of data from a 

source node to a destination node.  

We modeled and simulated these architectures with the LIBRA framework for multi-threaded 

applications from the SPLASH-2 [131] and PARSEC [43] benchmark suites as explained in 

Section κ.2.2.2. Simulations were performed with a “warm-up” period of 100-million instructions 

and execution period of one billion cycles. Power and instruction traces for the benchmark 

applications were generated using the Sniper 6.0 [141] simulator and McPAT [142]. We used the 

3D-ICE tool [130] for thermal analysis. The ambient temperature was set to 303K and the thermal 

threshold (Tt) was set to 353K. 

https://en.wikipedia.org/wiki/X86
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We model and consider area, power, and performance overheads for our framework in our 

analysis. LIBRA with both Corona and Flexishare PNoCs has an electrical area overhead of 0.34 

mm2 and a power overhead of 57 mW using gate-level analysis and the CACTI 6.5 [114] tool for 

memory and comparators. The MR trimming power is set to 130 W/nm [1κ] for current injection 

(blue shift) and tuning power is set to 240 W/nm [1λ] for heating (red shift). To compute laser 

power, we considered detector responsivity as 0.κ A/W [74], MR through loss as 0.02 dB, 

waveguide propagation loss as 0.274 dB/cm, waveguide bending loss as 0.005 dB/λ00, and 

waveguide coupler/splitter loss as 0.5 dB [74]. We calculated photonic loss in components using 

these values, which sets the photonic laser power budget and correspondingly the electrical laser 

power. For energy consumption of photonic devices, we adapt parameters from [74], with 

0.42pJ/bit for every modulation and detection event, and 0.1κpJ/bit for the driver circuits of MR 

modulators and photodetectors.   

We also considered thread migration overhead in our simulations that ranged from 500-1000 

cycles to account for startup latency (extra cache misses, branch mispredictions) in the migrated 

core. Further, our simulations considered PNoC latency to transfer data from architectural registers 

from the source core to the migrated core. This latency depends on locations of the cores and traffic 

conditions. As presented in Section λ.6, to minimize trimming and tuning power consumption, for 

a fixed channel gap of 1.4κnm trimming temperature range ( tr) and tuning temperature range ( tu) 

for TPMA are calculated as κ.73K and 4.72K respectively. To minimize trimming and tuning power 

consumption further with lower performance overhead, there is a need to optimize Ztr and Ztu 

for TPMA. Therefore, we performed a sensitivity analysis to determine Ztr and Ztu values, as 

discussed in the next subsection. 
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9.8.2. SENSITIVITY ANALYSIS 

Our first set of experiments involves a sensitivity analysis to explore the impact of the Ztr 

and Ztu parameters on LIBRA. We analyzed trimming and tuning power dissipation and execution 

time of the Flexishare PNoC with different values of these parameters. To be consistent with tr 

and tu, we consider the ratio of Ztr and Ztu to be equal to the ratio of tr and tu. For a fixed 

channel gap (i.e., 1.4κnm), as presented above, the ratio of tr and tu is constant. Therefore, we 

determine the optimal Ztu with a sensitivity analysis and then we use that value to determine Ztr.  

 

 
 

Figure 75 Percentage of decrease in trimming/tuning power (TP) and percentage of increase in 
execution time (ET) comparison across different Ztu values for LIBRA framework implemented 
on Flexishare PNoC in a 64-core CMP executing blackscholes (BS), Facesim (FS), and 
Fluidanimate (FA). Presented results are averaged across 100 PV maps. All percentage 
increments/decrements are calculated w.r.t baseline Flexishare PNoC employing frequency align 
scheduling policy (FATM). 
 

We considered 4κ-threaded FS, FA, and BS benchmark applications for our sensitivity 

analysis. Figure 75 shows the decrease in trimming and tuning power (TP) and increase in 

application execution time (ET) for the LIBRA framework while executing three benchmark 

applications on the Flexishare PNoC, with Ztu varying from 0.4K to 4K. We computed the 

decrease in TP and increase in ET with respect to baseline Flexishare PNoC architecture employing 

the FATM thread scheduling policy [145]. In this analysis, we presented results that are averaged 
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across 100 PV maps. The three benchmarks were chosen as they resulted in high (FS), medium 

(FA), and low (BS) peak temperatures, which allowed us to explore the impact of thread migration 

overheads on Ztu. At a particular Ztu, this figure shows higher TP savings for high peak 

temperature workloads (i.e., FS) compared to low peak temperature workloads (i.e., BS), as LIBRA 

effectively controls peak temperature and thereby reducing overall TP. Also the percentage of 

increase in application execution time is higher for high peak temperature workloads (i.e., FS) 

compared to low peak temperature workloads (i.e., BS), as LIBRA incurs more number of thread 

migrations for these workloads, which ultimately increases ET. 

A careful observation of Figure 75 shows that for all the benchmark applications, LIBRA’s 

TP decreases with initial increase in Ztu and increases with further increase in Ztu. The main 

reason for this behavior is that at smaller values of Ztu LIBRA benefits by increasing temperature 

of BTCs, which ultimately reduces the number of MR groups within BTZs. Furthermore, larger 

values of Ztu increase BTZ size and the number of BTCs within it, so there is more chance that 

threads are migrated to cores whose temperatures are away from their BTs, which reduces the 

percentage of decrease in trimming and tuning power (TP; see Figure 75). Moreover, with increase 

in Ztu the number of thread migrations increase as more number of BTCs are available, which 

ultimately increases total execution time of the application (TP; see Figure 75). Thus, we set Ztu 

to 2K, to achieve higher TP savings with lower ET overhead.  Using Ztu, as explained above, we 

determined Ztr as 3.7K. We used these values of the Ztu and Ztr parameters for our LIBRA 

framework in the rest of our analysis. 
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(a) 

 

(b) 
 

Figure 76 Maximum temperature comparison for LIBRA with RATM [133], FATM [145], PDTM 
[13λ] and SPECTRA [33], for (a) 4κ thread, and (b) 32 thread PARSEC and SPLASH-2 
benchmarks executing on 64-core manycore system with Corona PNoC. Bars show mean values 
of maximum temperature across 100 PV maps; confidence intervals show variation in maximum 
temperature. 

  

9.8.3. COMPARISON RESULTS 

We compared the performance of our LIBRA framework with four prior works on manycore 

thermal managementμ a ring aware policy (RATM) [133], frequency align policy (FATM) [145], a 

predictive dynamic thermal management (PDTM) framework [13λ], and the SPECTRA 

framework from our prior work [33]. RATM distributes threads uniformly across cores that are 

closer to PNoC nodes first and then distributes the remaining threads in a regular pattern from 

outer cores to inner cores. FATM distributes threads across cores based on the process variation 

profile of ring blocks that are in the proximity of these cores. PDTM uses a recursive least square 
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based temperature predictor to determine if the predicted temperature of a core exceeds a thermal 

threshold, and if so then thread migration is performed from that core to the coolest core that is not 

executing any threads. SPECTRA performs ring assignment at the device-level and SVR 

prediction based proactive thread migration at the system-level for thermal reliability management 

in PNOCs. 

Figure 76(a)-(b) show the maximum temperature obtained with the five frameworks across 

eleven applications from the PARSEC and SPLASH-2 benchmarks suites with 4κ and 32 thread 

counts executing on a 64-core system with the Corona PNoC [67] architecture. As LIBRA and 

FATM perform thread management based on the PV profile of MRs, only these frameworks have 

confidence intervals in Figure 76.  From Figure 76(a) it can be observed that some applications 

(e.g., FA, SW) with 4κ threads exceed the threshold (353K) for all frameworks, as there are 

insufficient number of free cores on the chip whose temperature is below the thermal threshold to 

migrate threads. However, with a more manageable number of threads, the situation improves. In 

Figure 76(b), for the case with 32 threads, our LIBRA framework avoids violating thermal 

thresholds for very small number of benchmark applications with 32 threads. On average, LIBRA 

has 14.6K and 17.5K lower maximum temperature compared to the RATM policy for 4κ and 32 

threads, respectively. In addition, on average LIBRA has 13.5K and 16.λK lower maximum 

temperature compared to the FATM policy for 4κ and 32 threads, respectively. LIBRA migrates 

threads from hotter cores to cooler cores to control maximum temperature, whereas no thread 

migration is performed in both RATM and FATM when the on-chip thermal threshold temperature 

(i.e., 353K) is reached, as these mechanisms are simple thread allocation policies without control 

on peak temperature. For most of the benchmarks, maximum temperatures with PDTM, 

SPECTRA, and LIBRA are below the thermal threshold. However, on average LIBRA has 3.2K 
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and 3.5K lower maximum temperature compared to PDTM for 4κ and 32 threads, respectively. 

This is because LIBRA employs a more accurate SVR based prediction approach which reduces 

the increase in peak temperature due to mispredictions, compared to the low accuracy of the least 

square regression mechanism in PDTM.  Lastly, LIBRA has a 0.κK and 1.λK lower maximum 

temperature compared to SPECTRA for 4κ and 32 threads, respectively. Even though both LIBRA 

and SPECTRA prefer to migrate threads to BTCs, the maximum temperatures with LIBRA are 

sometimes lower compared to SPECTRA, as LIBRA is able to perform thread migrations more 

often to lower temperature BTCs compared to SPECTRA.  

In the interest of brevity, we do not show maximum temperature results for the Flexishare 

PNoC architecture. We observed a similar trend in maximum temperature variations for Flexishare 

as we did for Corona (Figure 76). 

Figure 77 shows the power dissipation comparison for the five frameworks across multiple 

4κ-threaded applications for the Corona and Flexishare PNoC architectures, respectively. One of 

the main reasons why LIBRA has lower power dissipation than RATM, FATM, and PDTM is that 

it more aggressively reduces trimming and tuning power in both Corona and Flexishare PNoCs. 

From Figure 77(a), LIBRA has 74.5%, 67.4%, and 70.κ% lower trimming and tuning power on 

average compared to RATM, FATM, and PDTM for Corona. Furthermore, from Figure 77(a), 

LIBRA also has 76.2%, 6κ.3%, and 72.5% lower trimming and tuning power on average compared 

to RATM, FATM, and PDTM for Flexishare. The TPMA technique in LIBRA intelligently 

conserves trimming and tuning power compared to RATM, FATM, and PDTM by performing 

process variation aware MR reassignment with increase in temperature, while our VADTM further 

improves trimming and tuning power savings with its intelligent thread migration to BTCs. Lastly, 

the TPMA mechanism in LIBRA adapts intelligently to the PV profiles of MRs, reducing it’s 
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trimming and tuning power dissipation by 46.3% and 4κ.1%, compared to SPECTRA for the 

Corona and Flexishare architectures, respectively.   

 

 

(a) 

 

(b) 
 

Figure 77 Normalized power dissipation (Laser Power, Dithering Power, Trimming/Tuning 
power, and Modulating and Detecting (Tx/Rx) Power) comparison for LIBRA with RATM [133], 
FATM [145], PDTM [13λ] and SPECTRA [33] for 4κ threaded applications of PARSEC and 
SPLASH-2 suites executed on (a) Corona (b) Flexishare PNoC architectures for a 64-core 
manycore system. Results shown are normalized w.r.t RATM, therefore, RATM does not have 
confidence intervals. Bars show mean values of power dissipation across 100 PV maps; confidence 
intervals show variation in power dissipation. 

 

Figure 77 also shows the laser power comparison of the five frameworks for the Corona and 

Flexishare architectures. It can be observed that Corona and Flexishare with LIBRA need similar 

laser power as Corona and Flexishare architectures with RATM, FATM, and PDTM. Furthermore, 
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LIBRA requires 12.λ% and 6.4% lesser laser power compared to SPECTRA for Corona and 

Flexishare. The extra MRs used in SPECTRA to compensate for TV-induced resonance shifts 

contribute to the increase in laser power compared to LIBRA for both architectures. From these 

results it can also be observed that the laser power saving in Corona is higher than for the better 

performance optimized architecture of Flexishare. 

 

 

(a) 

 

(b) 
 

Figure 78 Normalized average execution time comparison of LIBRA with RATM [133], FATM 
[145], PDTM [13λ] and SPECTRA [33] for (a) Corona; and (b) Flexishare PNoCs for 4κ threaded 
applications from PARSEC and SPLASH-2 suites executed on 64-core system. Results shown are 
normalized wrt RATM.  

 

In summary, LIBRA saves considerable trimming/tuning power to ultimately achieve overall 

power reduction. From the power analysis in Figure 77(a), LIBRA with Corona has 40.κ%, 34.1%, 

37.2%, and 21.4% lower total power dissipation compared to Corona with RATM, FATM, PDTM, 

and SPECTRA, respectively. Further from Figure 77(b) it can be seen that Flexishare with LIBRA 
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has 61.3%, 52.λ%, 57.4%, and 32.κ% lower power dissipation compared to Flexishare with 

RATM, FATM, PDTM, and SPECTRA, respectively. 

Figure 78 shows the average execution time comparison between the five frameworks across 

the 11 4κ-threaded applications from PARSEC and SPLASH-2 suites, for the Corona and 

Flexishare PNoC architectures, respectively. As only LIBRA performs thread migration based on 

the PV profile of MRs, therefore, this framework has confidence intervals on execution time shown 

in Figure 78. From Figure 78(a) it can be seen that Corona with LIBRA has 12.4% higher execution 

time compared to Corona with RATM and FATM. Corona with LIBRA needs extra execution time 

to migrate threads between cores and to reorder bits using shift registers whereas the RATM and 

FATM policies simply schedule threads without any thread migration and bit reorder, and thus do 

not possess such overheads. Further, Corona with LIBRA has 3.2% higher execution time 

compared to PDTM. Despite LIBRA using a faster SVR based temperature predictor compared to 

a more complex recursive least square based regression predictor in PDTM, the higher number of 

thread migrations (to adapt to PV profiles of MRs) and bit reordering operations in LIBRA 

contribute to an increase in execution time. Similarly, from Figure 78(b) Flexishare architecture 

with LIBRA has 10.6% higher execution time compared to Flexishare with RATM and FATM. In 

addition, LIBRA also has 2.κ% higher execution time compared to Flexishare with PDTM. The 

figures also indicate that the execution time overheads for LIBRA are lower when utilizing the 

faster Flexishare architecture compared to the slower Corona architecture. Moreover, the bit-

shifting overhead in LIBRA increases its execution time by 4.2% and 3.2% compared to the 

SPECTRA framework with Corona and Flexishare PNoCs, respectively. From the execution time 

results, it can be summarized that the significant power benefits achieved with LIBRA come at 

some costμ an increase in execution time. 
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(a) 

 

(b) 
 

Figure 79 Normalized energy consumption comparison of LIBRA with RATM [133], FATM [145], 
PDTM [13λ] and SPECTRA [33] for (a) Corona; and (b) Flexishare PNoCs for 4κ threaded 
applications from PARSEC and SPLASH-2 suites executed on a 64-core system. Results shown 
are normalized wrt RATM, therefore, RATM does not have confidence intervals. Bars show mean 
values of energy consumption across 100 PV maps; confidence intervals show variation in energy 
consumption. 
 

Lastly, from the power dissipation and execution time results, we obtain energy consumption 

results for the five frameworks, as shown in Figure 79. On average, for Corona, energy 

consumption with LIBRA is 34.5%, 25%, 35.4%, and 1κ.7% lower compared to RATM, FATM, 

PDTM and SPECTRA, respectively. For the Flexishare architecture, LIBRA has 57.3%, 47.λ%, 

55.6%, and 31.1% lower energy consumption compared to RATM, FATM, PDTM, and SPECTRA 

respectively. 

In summary, from the above results, it is apparent that our proposed PV-aware LIBRA 

framework outperforms previously proposed approaches for thermal management in manycore 
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systems with PNoCs by combining a novel reactive device-level technique (TPMA) that improves 

waveguide channel utilization with a novel system-level proactive thread migration technique 

(VADTM). The excellent power and energy savings compared to previous approaches strongly 

motivate the use of our thermal management framework in future manycore architectures. 

 

9.9. CONCLUSIONS 

In this chapter, we have presented the LIBRA framework that combines two novel dynamic 

thermal management mechanisms for the reduction of maximum on-chip temperature and 

conservation of trimming and tuning power of MRs in DWDM-based PNoC architectures. These 

techniques (TPMA at the device-level, VADTM at the system-level) constitute a hybrid reactive-

proactive management framework that demonstrated interesting trade-offs between performance 

and power/energy across two different state-of-the-art crossbar-based PNoC architectures. Our 

experimental analysis on the well-known Corona and Flexishare PNoC architectures has shown 

that LIBRA can notably conserve total power by up to 61.3% (trimming and tuning power by up 

to 76.2%) and total energy by up to 57.3%. 
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10. ANALYZING VOLTAGE BIAS AND TEMPERATURE INDUCED AGING EFFECTS 

IN PHOTONIC INTERCONNECTS FOR MANYCORE COMPUTING 

 

 

To enable MRs to modulate and detect DWDM photonic signals, carrier injection in MRs 

through their voltage biasing is essential. But long-term operation of MRs with constant or time-

varying temperature and voltage biasing causes aging. Such voltage bias temperature induced 

(VBTI) aging in MRs leads to resonance wavelength drifts and Q-factor degradation, which 

increases signal loss and energy delay product in photonic NoCs (PNoCs) that utilize photonic 

interconnects. This chapter explores VBTI aging in MRs and demonstrates its impacts on PNoC 

architectures for the first time. Our system-level experimental results on two PNoC architectures 

indicate that VBTI aging increases signal loss in these architectures by up to 7.6dB and increases 

EDP by up to 26.8% over a span of 5 years.   

 

10.1. INTRODUCTION 

MRs can be either in-resonance or out-of-resonance with respect to the utilized DWDM 

wavelengths. In resonance mode, an MR couples/removes light of the resonant wavelength from 

the waveguide, and hence, modulates logic “0” (represented by the absence of light in the 

waveguide) on the resonant wavelength. In contrast, in the out-of-resonance-mode, an MR does 

not couple any light from the waveguide, and hence, modulates logic “1” (represented by the 

presence of light in the waveguide) on the resonant wavelength. Thus, a particular sequence of 1s 

and 0s can be modulated on a wavelength by switching the corresponding MR off and on resonance 

with the wavelength in the same sequence. MRs can employ either voltage biasing [1κ] or heating 

[1λ] to switch from resonance-mode to out-of-resonance-mode or vice versa. However, voltage 



244 

biasing is preferred over heating [1λ] to switch resonance-modes of MRs, as it is faster and 

dissipates lower power.  

To facilitate switching of resonance-modes of an MR with voltage biasing, a PN junction is 

created in the silicon (Si) core of the MR surrounded by silicon-di-oxide (SiO2) cladding. A 

positive/negative voltage bias is applied to this PN-junction to inject/remove free carriers into/from 

the MR’s Si core. For high frequency operation and lower power consumption, an MR’s PN-

junction is typically operated under a negative voltage bias or reverse bias [24] (otherwise known 

as carrier depletion mode of an MR). The application of this voltage bias generates an electric field 

across the MR’s Si (core) and SiO2 (cladding) boundary. Similar to MOSFETs, this electric field 

generates voltage bias temperature induced (VBTI) traps at the Si-SiO2 boundary of the MR over 

time (i.e., VBTI aging). Our analysis has shown that these VBTI aging induced traps alter carrier 

concentration in the Si core of MRs, which incur resonance wavelength drifts and increase optical 

scattering loss in MRs to decrease Q-factor of MRs. 

In this chapter, for the first time, we study the VBTI aging in MRs and its impact on PNoC 

architectures. At the device-level, we carefully developed analytical models for trap generation 

with VBTI aging in MRs. We also devise analytical models that determine variations of MR 

resonance wavelength shifts and Q-factor with aging-induced traps. These models are further 

extended to examine the impact of different operating temperatures and bias voltages, as well as 

process variations. From those models, we follow a mathematical bottom–up approach to analyze 

the system-level impact of aging on different PNoC architectures. We present our aging analysis 

on well-known Corona [11] and Clos [60] PNoCs running real-world multi-threaded PARSEC [43] 

benchmarks. 

 



245 

10.2. RELATED WORK 

Recent research on silicon photonics for manycore computing has focused on exploring a 

wide spectrum of network topologies and protocols to enable efficient PNoC architectures [11], 

[13]. PNoCs utilize several photonic devices such as MRs as modulators and detectors, waveguides, 

splitters, and trans-impedance amplifiers (TIAs). The reader is directed to [2κ], [40] for more 

discussion on these devices. 

Fabrication-induced process variations (PV) impact the cross section, i.e., width and height, 

of photonic devices such as MRs and waveguides [22], [166]. In MRs, PV causes resonance 

wavelength drifts, which can be counteracted by using device-level techniques such as voltage 

biasing (aka localized trimming) and heating (aka thermal tuning). On the other hand, thermal 

variations (TV) also alter the resonance wavelength of MRs, because of variations in refractive 

index of the core of MRs due to thermo-optic effects. Similar to PV, resonance wavelength drifts 

due to PV are compensated by voltage biasing and heating [1λ]. A few prior works have explored 

the impact of PV and TV on photonic links at the system-level [23], [105], [164]. In [23], a 

methodology to salvage network-bandwidth loss due to PV-drifts is proposed, which reorders MRs 

and trims them to nearby wavelengths. In [23], a thermal tuning based approach is presented that 

adjusts chip temperature using dynamic voltage and frequency scaling (DVFS) to compensate for 

chip-wide PV-induced resonance shifts in MRs. In [164] a tunable laser source design is 

demonstrated, in which the signal power at the source is adapted to compensate for signal losses 

due to temperature and process variations across photonic interconnects. All of these works ignore 

the harmful effects of PV and TV remedies on aging in MRs. 

Aging has become an important reliability concern for ultra-scaled semiconductor devices 

with significant implications for both analog and digital circuit design. The most important aging 
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mechanisms in CMOS devices include bias temperature instability (BTI) aging and hot carrier 

injection (HCI) aging. BTI causes a threshold voltage increase in MOSFETs due to trap generation 

at the Si-SiO2 interface [167]. Negative BTI (NBTI) is observed in pMOSFETs, and it usually 

dominates the positive BTI (PBTI) observed in nMOSFETs [167]. A few prior works have 

analyzed the impact of NBTI aging mechanisms on MOSFET devices at the device-level. Different 

hydrogen diffusion models are proposed in [16κ] to determine trap generation at the Si-SiO2 

interface of pMOSFETs. In [16λ] models for trap generation in the Si-SiO2 interface of reduced 

cross-section MOSFETs (e.g., narrow-width planar MOSFET, triple gate MOSFET, surround-gate 

MOSFET) are presented. However, none of these works considers the impact of aging on MRs and 

its implications on DWDM-based PNoCs.   

In view of the shortcomings of prior work, in this chapter we aim to analyze VBTI aging in 

MRs, quantify its dependence on temperature and bias voltage, and explore its impact at the PNoC 

architecture level. 

 

10.3. TRIMMING (VOLTAGE BIAS) INDUCED MR AGING 

10.3.1. OVERVIEW OF VOLTAGE BIAS INDUCED TRAP GENERATION IN MRS 

MRs, waveguides, splitters, couplers, and TIAs are basic building blocks of PNoCs [λ], 

[170]. MRs are essentially looped photonic waveguides with a small diameter (~a few µm), and 

these MRs serve as modulators to write data and detectors to read data. MRs when coupled to a 

waveguide in resonance-mode remove specific (resonant) wavelengths from the waveguide, 

whereas in the non-resonance-mode they let wavelengths simply pass through without removing 

them. MRs employ voltage biasing via carrier injection or removal to shift between resonance and 

non-resonance modes. To enable carrier injection into and removal from an MR, as shown in 
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Figure 80, a PN junction is created in an MR’s Si core surrounded by SiO2 cladding. To switch 

resonance modes at high frequency with low power dissipation using voltage biasing, an MR’s PN 

junction needs to be reverse biased [24], which is accomplished by applying higher voltage on the 

n side of the PN junction (Figure 80). 

 

 
 

Figure 80 Cross-section of a tunable MR with PN junction in its core to facilitate carrier injection 

into and removal from core with voltage biasing. 

 

                
(a)                                                                             (b) 

 

Figure 81 Distribution of electric field (E) across (a) MR waveguide; (b) Si-SiO2 boundary B2 

when -4V bias voltage is applied across PN junction. 

 

When a negative voltage is applied across the PN junction of an MR, an electric field ‘E’ is 

generated from right to left across the Si-SiO2 boundaries B1, B2, B3, and B4 (Figure 80). We used 
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the Lumerical Solutions DEVICE [122] tool to construct and model the PN junction of an MR. 

For our preliminary analysis, we consider an MR waveguide similar to the one reported in [110] 

with a radius of 2µm, fabricated using standard Si-SiO2 material with a core cross-section of 

450nm × 250nm. We then simulated the MR, using the charge transport solver in the DEVICE tool 

with a solver geometry of 2D y-normal, and then obtained the distribution of electric field as shown 

in Figure 81(a) across the MR waveguide with a bias voltage of -4V. The results from the DEVICE 

tool in Figure 81(a) demonstrate the presence of electric field E across all the Si-SiO2 boundaries 

(i.e., B1, B2, B3, and B4). This electric field present across the Si-SiO2 boundaries B2 (Figure 81(b)) 

and B4 attracts holes towards them (Figure 80) and generates traps across these boundaries similar 

to pMOSFETs [167]. However, only the traps on the B2 boundary change the electro-optic 

dynamics of the MR core as it is a boundary of the MR core. Thus in this chapter we focus on 

analyzing trap generation on the B2 boundary. 

 

10.3.2. TRAP GENERATION ANALYTICAL MODEL FOR MRS 

The trap generation model on the B2 boundary of an MR is based on Si-SiO2 boundary 

related hydrogen dynamics [171]. The trap generation takes place at the Si-SiO2 boundary which 

is a rough surface where the highly ordered Si core and the amorphous SiO2 cladding meet. At the 

junction of these dissimilar materials, some of the Si atoms from the core remain dangling without 

satisfied chemical bonds, thus forming boundary traps. The traps generated at the Si-SiO2 

boundary of an MR are similar to the traps generated at the Si-SiO2 boundary of a MOSFET [171]. 

To improve MR performance, there is a need to reduce these boundary traps. So similar to 

MOSFETs, MRs are annealed in ambient hydrogen during the manufacturing process. In the 

presence of an electric field and thermal variations across the Si-SiO2 boundary, the Si−H bond 
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breaks and the hydrogen gas diffuses into the MR’s SiO2 cladding, thereby yielding passivated Si 

bonds (Si*) that act as traps. Furthermore, the direction of electric field (see Figure 80) across the 

MR’s Si-SiO2 boundary is similar to the direction of electric field across the MOSFET’s Si-SiO2 

boundary. Therefore, at a particular temperature both MRs and MOSFETs are have a similar trap 

generation behavior at their respective Si-SiO2 boundaries. 

Several prior works (e.g., [167]- [16λ]) use reaction-diffusion (RD) models to characterize 

boundary trap generation at the MOSFET Si-SiO2 boundary. As boundary traps in MR’s are similar 

to boundary traps in MOSFETs, we use the same RD model to model the boundary trap generation 

at the MR’s Si-SiO2 boundary. This trap generation mechanism is represented as a chemical 

reaction in Eq. (64), where holes (h+) in the MR’s Si core weaken a Si−H bond and hydrogen (H) 

is detached [16κ] in the presence of electric field and thermal variationsμ  

Si−H + h+ ↔ Si* + H                                                       (64) 

The generated Si dangling bond (Si*) acts as a donor-like boundary trap. The H ion released 

from the bond can diffuse away from the Si-SiO2 boundary or anneal an existing trap. The 

boundary trap density (NBT), increases with the net rate of the reaction given in Eq. (65)μ 

NB = kF[N − N ] − k N NH                                      (65) 

where kF, kR, N0, and  are bond-breaking rate, bond-annealing rate, Si–H bond density available 

before stress, and hydrogen density at the MR’s Si-SiO2 boundary, respectively. From Eq. (65) it 

can be obserevd that the boundary trap generation rate increases with decrease in H ion density 

( ) at the Si-SiO2 boundary. The diffusion of H ions away from the traps removes hydrogen from 

the boundary, so the boundary trap generation rate becomes limited to the diffusion rate of 

hydrogen. The diffusion rate of hydrogen obeys Eq. (66) [16λ]μ 

NH = DH NHy                                                         (66) 
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where DH is the diffusion constant of hydrogen, dt is the change in time, and dy is the change in 

difussion distance. During the diffusion-dominated regime, the dNBT/dt term is negligible 

compared to the other two terms in Eq. (65) and NBT is significantly smaller than N0 [16λ], 

therefore Eq. (65) can be simplified asμ N NH = FN                                                                   (67) 

Further, the dependence of the rate of boundary trap generation on the electric field across 

the boundary is included in the kF term and the temperature dependence of trap generation is 

incorporated via the activation energies of kF , kR and DH (see Sections 10.4, 10.5). 

 

 

                                                (a)                                       (b) 
 

Figure 82 (a) Microring resonator 3D-view with Si-core, SiO2-cladding, and metal contacts for 
voltage biasing; (b) top view of MR which shows hydrogen diffusion length ( D) across its 
cladding. 
 

From the RD model presented above, the number of traps generated at the Si-SiO2 boundary 

is equal to the number of hydrogen ions diffused away from the boundary. But this hydrogen 

diffusion depends on the geometry of the boundary. The effect of the geometry of hydrogen 

diffusion on the trap generation rate can be analyzed with the concept of the diffusion length D, 

which is the distance travelled by hydrogen ion into SiO2. As outer boundary (i.e. B2) of an MR is 
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similar to the surround-gate cylindrical MOSFET [16κ], the D of an MR is similar to this 

MOSFET. Therefore, based on estimations from prior works [16κ], [16λ] using Eq. (64) this 

diffusion length D is estimated to be (DH*t)0.5. For the MR with outer boundary (i.e. B2) radius R 

and height or thickness L depicted in Figure 82, the hydrogen diffusion is confined within the 

distance R < r < R+ D, as shown in Figure 82(b). To determine the total hydrogen ions available 

within R < r < R+ D, there is a need to integrate all the hydrogen ions between R and R+ D. Thus 

the hydrogen profile is expressed in cylindrical coordinates and the integral becomesμ 

N  t = π L∫ NH+λD ( − −√DH ) πrL dr                               (68) 

Solving Eq. (68) and substituting NH from Eq. (67), the interface-trap density is calculated 

from the geometry-dependent R–D relation asμ 

N  t = √ FN λD + λD R + λD − + +λD + +λD .
(69) 

From the above model it is clear that trap generation on an MR’s Si-SiO2 boundary not only 

depends on the operational time but also on the geometry of the boundary. These traps are the 

main cause of aging in MRs. In the next subsection, we analyze how such boundary trap-induced 

aging impacts MR optical properties. 

 

10.3.3. AGING IMPACT ON MR RESONANCE WAVELENGTH AND Q-FACTOR 

As discussed in the previous subsection, each trap generated on the core-cladding boundary 

of an MR consumes a hole from the P side of the MR core (Eq. (64)). Therefore, number of holes 

consumed in the silicon core is equal to number of boundary traps generated, which is otherwise 

NBT ≈ −Δ ℎ, where Δ ℎ is the increase in free hole concentration and the negative sign represents 

decrease in free hole concentration. The removal of holes increases the refractive index of the core 
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( ) of a circular MR waveguide, which induces a red shift in an MRs’ resonance. The increase 

in the MR’s core refractive index also increases refractive index contrast between the core and 

cladding (nSi – nSiO2), which in turn increases the scattering related optical loss in the MR 

waveguide [172]. The increase in optical loss causes a decrease in MR Q-factor, which increases 

MR insertion loss. We quantify and model these phenomena in the rest of this section. 

The change in hole concentration in an MR’s core due to an MR aging induces refractive 

index change of  at around 1550nm wavelength, which can be quantified as follows [111]μ                 Δ = − . × − Δ − . × − 8 Δ ℎ .8,                          (70) 

where, Δ  and Δ ℎ are the increase in free electron concentration and free hole concentration, 

respectively. Then, the increase in refractive index (positive   as a result of aging-induced 

negative Nh) incurs resonance wavelength red shift ( ) as per the following equation [111]μ = ∗ ∗� ,                                                             (71) 

where,  is the initial resonance wavelength of the MR, ng is the group refractive index (ratio of 

speed of light to group velocity of all wavelengths traversing the waveguide) of the MR, and  is 

the confinement factor describing the overlap of the optical mode with the MR waveguide’s silicon 

core. The value of  and  for MR considered in our analysis are set to 0.7 and 4.2 respectively 

[110]. From [111],   accounts for refractive index dispersion and change in free carrier 

concentration (and hence, aging) does not significantly affect it. 

An increase in the MR core’s refractive index (  ) also increases its scattering loss 

coefficient. The scattering loss coefficient (that causes a fractional loss in signal amplitude) of an 

MR’s circular waveguide is proportional to the size of the surface roughness σ, and is given by the 

following equation [11λ] [126]μ 
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α a = � �� . ( √ � −√ � − + )                  (72) 

where, k0 is the free-space wave number at 1550nm, n1 =nSi=3.5 is MR core’s refractive index, 

n2=nSiO2=1.5 is MR cladding’s refractive index, L=250nm is the MR thickness, and θ=26.51 is 

the propagation angle for the fundamental mode in the MR. � �  corresponding to an increase 

in the MR core’s refractive index ( nSi) can be evaluated from Eq. (72) by putting n1=nSi + nSi 

in it. 

The Q-factor of an MR with resonance wavelength ( ) depends on this scattering loss 

coefficient. The relation between the Q-factor and Δ� � , assuming critical coupling of MRs, 

is given by the following equation [110], where QA is the loaded Q-factor of the aged MRμ Q = Q + ΔQ = π gλ α+Δα ca e ,                                             (73) 

where, Δ  is the change in Q-factor and � is the original loss coefficient, which is the sum 

of three componentsμ (i) intrinsic loss coefficient due to material loss and sidewall roughness 

induced scattering loss; (ii) bending loss coefficient, which is a result of the curvature in the MR; 

and (iii) the absorption effect factor that depends on the original free carrier concentration in the 

waveguide core. As explained above, aging increases the scattering loss coefficient (positive Δ� � ). As evident from Eq. (73), a positive value of Δ� �  results in a decrease in Q-factor. 

This causes a broadening of the MR passband, which results in increased insertion loss.  

For our VBTI aging analysis with MRs, we have considered initial original Q-factor of 

λ000 and loss coefficient α of λ.5cm-1. As mentioned earlier, α is the sum of the scattering loss 

coefficient αscatter, bending loss coefficient αb, and absorption loss coefficient αa, the initial values 

of which, in this case (for α=λ.5cm-1), are 3.5cm-1, 3cm-1, and 3cm-1 respectively. Note that 

αscatter=3.5cm-1 corresponds to σ=5nm in Eq. (72). 
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10.4. TEMPERATURE INDUCED MR AGING 

Aging in MRs is also dependent on the operating temperature (T) of the devices. As 

temperature alters activation energy for the Si–H bond breaking and bond annealing, it alters the 

bond-breaking rate (kF) and bond-annealing rate (kR) of the reaction shown in Eq. (64). We use the 

Arrhenius equation [173] to determine variation in activation energies with temperature. Eq. (74) 

and Eq. (75) present the temperature dependence of kF and kR respectivelyμ     

� = � �−�                                                                (74) 

= �−�                                                      (75) 

where, EF and ER are activation energies of forward dissociation and reverse annealing 

respectively, and KB is the Boltzmann constant. The activation energy (ED) of diffusion of 

hydrogen into the cladding of MRs also depends on temperature, which in turn alters the diffusion 

constant of hydrogen (DH) as per the following equationμ 

= �−�                                                             (76) 

Figure 83 shows the variation of resonance wavelength red shift ( ) and QA with aging 

in MRs at different temperatures. We analyze   and QA across different operating 

temperaturesμ 300K, 350K, and 400K. From the figure it can be observed that at a particular 

temperature, with the increase in MR aging (i.e., increase in usage time) Δλ W  increases and QA 

decreases. With MR aging, the traps on the Si-SiO2 boundary increase, which is evident from Eq. 

(69). Furthermore, change in temperature also alters kF, kR, and DH as per Eq. (74), (75), and (76), 

respectively. These rate constants ultimately change the number of traps generated at the Si-SiO2 

boundary as per Eq. (69). An increase in number of traps incurs an increase in refractive index of 

an MR (see Eq. (70)), which in turn increases the MR’s Δλ W  (see Eq. (71)) and scattering loss 
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(αscatter) (see Eq. (72)). Increase in αscatter decreases an MR’s QA as per Eq. (73). From the figure 

we can also observe a higher increase in  and higher decrease in QA with an increase in 

MR’s operating temperature. As the temperature increases, the activation energy (ED) of diffusion 

of hydrogen (see Eq. (76)) in the cladding of an MR decreases, which increases the diffusion rate 

of hydrogen and further increases trap generation at the MR core-cladding boundary. This increase 

in number of traps ultimately leads to higher increase in RMRS and higher decrease in QA. 

 

 
 

Figure 83 Variation of resonance wavelength red shift (� � ) and QA with operation time at 

three operating temperatures 300K, 350K, and 400K.  

 

10.5. IMPACT OF PROCESS VARIATIONS ON MR AGING 

Variations in an MR’s width and thickness due to process variations (PV) cause a “shift” in 

the resonance wavelength of the MR. As discussed earlier, voltage biasing (aka localized 

trimming) is essential to deal with PV-induced resonance shifts in MRs. There are other techniques 

such as thermal tuning that used to compensate PV-induced resonance drifts. However, thermal 

tuning has higher power overhead (240 W/nm) to compensate 1nm PV-induced drift compared 

to localized trimming (130 W/nm) [1λ]. Therefore, voltage biasing or trimming is preferred to 

compensate PV-induced resonance drifts over thermal tuning. Voltage biasing incurs blue shift/red 
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shift in an MR’s resonance wavelength via carrier injection/removal. To enable localized trimming 

in MRs to counteract PV-induced blue shifts, the negative bias voltage needs to be increased across 

the MR’s reverse-biased PN junction. Unfortunately, this PV-induced increase in negative bias 

voltage results in an increase in the electric field across the MR core-cladding boundary and this 

electric field aggravates MR aging. 

The forward dissociation constant (kF) in Eq. (65) will depend on the electric field across 

core-cladding boundary (EOX). Thus the equation for kF shown in Eq. (74) is updated as per the 

following equation [167]μ 

� = �   � �−�                                            (77) 

where exp(EOX/E0) is the field dependent tunneling of holes into SiO2 cladding, �0 is the capture 

cross-section of the Si–H bonds, and B determines field dependence of the Si–H bond dissociation. 

 

 
 

Figure 84 Variation of QA and resonance wavelength red shift (� � ) with operation time at 

four bias voltages -2V, -4V, -6V, and -8V.  

 

Figure 84 illustrates the impact of variation in bias voltage on  and QA of MR with 

aging (i.e., usage time). We analyze negative voltage biases of 2V, 4V, 6V, and κV, and the MR is 

assumed to be operated at 350K temperature. As explained Section 10.3.1, the charge transport 
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solver in the DEVICE tool is used to determine electric field (EOX) across the core-cladding 

boundary for each bias voltage across the PN junction of the MR. This tool uses MR device 

dimensions such as width, height and radius to determine EOX at the boundary. From the figure it 

can be observed that with the increase in negative bias voltage, MRs incur higher  increase 

(see Eq. (71)) and higher QA decrease (See Eq. (72)). As the negative bias voltage across the PN 

junction of the MR increases, the EOX across the core-cladding boundary of the MR increases. This 

increase in EOX increases kF as per Eq. (77), which in turn increases trap generation across the core-

cladding boundary as per Eq. (69). This increase in trap generation increases  and QA of 

an MR, as also highlighted by the Eq. (70)-(73) presented in Section 10.3.3. 

 

Table 23 Notations for photonic power loss and model parameters [28] 

 
Notation Parameter type Parameter value (in dB) 

LP  Propagation loss  -0.274 per cm 

LB  Bending loss  -0.005 per 90o 

LS12  1X2 splitter power loss  -0.2 

LS14  1X4 splitter power loss  -0.2 

LS17  1X7 splitter power loss  -0.2 

L  Photonic path length in cm 

B  Number of bends in photonic path 

j  Resonance wavelength of MR 

RS12  Splitting factor for 1X2 splitter 

RS14  Splitting factor for 1X4 splitter 

RS17  Splitting factor for 1X7 splitter 

 

10.6. IMPACT OF MR VBTI AGING ON PNoCs 

10.6.1. MR AGING ANALYSIS FOR CORONA AND CLOS PNOCS 

We characterize the impact of VBTI aging on two popular PNoC architecturesμ Corona [11] 

and Clos [60], both of which use DWDM-waveguides for data communication. We have 

considered Corona PNoC with token-slot arbitration [67] and an κ-ary 3-stage Clos PNoC [60] for 

our analysis. In DWDM-based waveguides, data transmission requires modulating light using a 
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group of MR modulators equal to the number of wavelengths supported by DWDM. Similarly, 

data detection at the receiver requires a group of detector MRs equal to the number of DWDM 

wavelengths. We present analytical equations to model the impact of aging on maximum signal 

power loss in each architecture. Before presenting relevant equations, we provide notations for the 

parameters used in the equations, in Table 23. 

We first model the MR transmission spectrum at a device-level and then extend these models 

to the system-level to determine the impact of aging on signal losses for PNoC architectures. We 

model the MR transmission spectrum using a Lorentzian function [124]. In Eq. (78), this function 

is used to represent coupling factor � between wavelength i and an MR with resonance 

wavelength j. Further, using the same function, we determined loss factor  in Eq.  (79), which is 

the factor by which signal power of a wavelength i is reduced when it passes through an MR 

whose resonance wavelength is j. Through loss of a wavelength in a waveguide, when it passes 

through an MR, is defined as  times the signal power of the wavelength before it passes through 

the MR. From Eq. (72) and (73), it can be inferred that an MR’s loaded Q-factor (QA) decreases 

with aging in MRs. This in turn decreases � and increases  as per Eq. (78) and  (79), respectively. 

Furthermore, as per Eq. (78) and (79) increase in   with aging (i.e., Δ RWRSAi) further 

decreases � and increases , respectively. �(λ , Δλ , λ , Q  ) = + λ +Δλ −λλ − ,                 (78) 

(λ , Δλ , λ , Q ) = + λ +Δλ −λλ − − ,               (79) 

Corona PNoC: This PNoC is designed for a 256 core single-chip platform, where cores are 

grouped into 64 clusters, with 4 cores in each cluster. A photonic crossbar topology with 64 data 

channels is used for communication between clusters. Each channel consists of 4 multiple-write-
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single-read (MWSR) waveguides with 64-wavelength DWDM in each waveguide. As modulation 

occurs on both positive and negative edges of the clock in Corona, 512 bits (cache-line size) can 

be modulated and inserted on 4 MWSR waveguides in a single cycle by a sender. A data channel 

starts at a cluster called ‘home-cluster’, traverses other clusters (where modulators can modulate 

light and detectors can detect this light), and finally ends at the home-cluster again, at a set of 

detectors (optical termination). A power waveguide supplies optical power from an off-chip laser 

to each of the 64 data channels at its home-cluster, through a series of 1X2 splitters. In each of the 

64 home-clusters, optical power is distributed among 4 MWSR waveguides equally using a 1X4 

splitter with splitting factor RS14. As all 1X2 splitters are present before the last (64th) channel, this 

channel suffers the highest signal power loss. Thus, the worst-case signal loss exists in the detector 

group of the 64th cluster node, and this node is defined as the worst-case power loss node (NWCPL) 

in the Corona PNoC. For this NWCPL node, signal power (Psignal( j)) on each detector with resonance 

wavelength j is shown in Eq. (80). K( i) in Eq. (82) represents signal power loss of i before the 

detector group of NWCPL (see Table 1 for notations of different parameters). �( i, j) in Eq. (81) 

represents signal power loss of i before the detector with resonance wavelength j in the detector 

group of NWCPL.     � (λ ) = λ �(λ , λ ) �(λ , Δλ , λ , Q × +  ) ,    (80) 

�(λ , λ ) =   ∏ λ , Δλ , λ , × +− <= ,            (81) 

λ = R L L ∏ ∏ λ , Δλ , λ , Q ( − × )+== (82) 

Clos PNoC: An κ-ary 3-stage Clos topology is considered for a 256-core system, with κ clusters 

(C1-Cκ) and 32 cores in each cluster. Within each cluster, a group of four cores are connected to a 

concentrator. Thus each cluster has κ concentrators and the concentrators are connected electrically 

through a router for inter-concentrator communication. The Clos PNoC uses photonic signals for 
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inter-cluster communication. Unlike the MWSR waveguides used in the Corona crossbar, the Clos 

uses point-to-point photonic links for data communication. Each point-to-point photonic link uses 

either forward or backward propagating wavelengths depending on the physical location of the 

source and destination clusters.  Each photonic link in the Clos PNoC use 12κ DWDM, with 64 

wavelengths for forward communication and the remaining 64 wavelengths for backward 

communication. Thus the Clos PNoC uses only 56 waveguides with 256 MRs on each waveguide. 

This PNoC uses 2 laser sources to enable forward and backward communication. To power the 56 

waveguides, it is assumed that the PNoC employs a series of 1X2, 1X7, and 1X4 splitters. In our 

implementation of the Clos PNoC, the worst-case power loss occurs when C1 sends data to Cκ, as 

this involves the longest photonic path for data traversal. Thus the node Cκ is the worst-case power 

loss node (NWCPL) in the Clos PNoC. We use Eq. (80) to determine worst-case power loss in the 

Clos PNoC. But as the Clos network has lower number of waveguides and fewer number of MRs 

on each waveguide, this in turn changes the signal power losses. Thus we modify Eq.(82) for the 

Clos PNoC asμ λ = R L L ∏ ∏ λ , Δλ , λ , Q ( − × )+== (83) 

 

10.6.2. MODELING PV OF MR DEVICES IN CORONA AND CLOS PNOCS 

We adapt the VARIUS tool [112] to model die-to-die (D2D) as well as within-die (WID) 

process variations in MRs for the Corona and Clos PNoCs. VARIUS uses a normal distribution to 

characterize on-chip D2D and WID process variations. The key parameters are mean (µ), variance 

(σ2), and density (α) of a variable that follows the normal distribution. As wavelength variations 

are approximately linear to dimension variations of MRs, we assume they follow the same 

distribution. The mean (µ) of wavelength variation of an MR is its nominal resonance wavelength. 
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We consider a DWDM wavelength range in the C and L bands [104], with a starting wavelength 

of 1550nm and a channel spacing of 0.κnm. Hence, those wavelengths are the means for each MR 

modeled. The variance (σ2) of wavelength variation is determined based on laboratory fabrication 

data [14] and our target die size. We consider a 256-core chip with die size 400 mm2 at a 22nm 

process node. For this die size we consider a WID standard deviation (σWID) of 0.61nm [105] and 

D2D standard deviation (σD2D) of 1.01 nm [105]. We also consider a density (α) of 0.5 [105] for 

this die size. With these parameters, we use VARIUS to generate 100 PV maps, each containing 

over 1 million points indicating the PV-induced resonance shift of MRs. The total number of points 

picked from these maps equal the number of MRs in the Corona and Clos PNoCs. 

 

10.7. EXPERIMENTS 

10.7.1. EXPERIMENT SETUP 

We evaluate the impact of VBTI aging on PNoCs on the Corona and Clos PNoC 

architectures. We modeled and performed simulation based analysis of the Corona and Clos PNoCs 

using a cycle-accurate NoC simulator, for a 256 core single-chip architecture at 22nm. As 

explained in Section 10.6.2, we generated 100 PV maps to evaluate MR aging impact on these 

PNoCs for different PV profiles. We used real-world traffic from applications in the PARSEC 

benchmark suite [43]. GEM5 full-system simulation [72] of parallelized PARSEC applications 

was used to generate traces that were fed into our cycle-accurate NoC simulator. We set a “warm-

up” period of 100 million instructions and then captured traces for the subsequent 1 billion 

instructions. We performed geometric calculations for a 20mm×20mm chip size, to determine 

lengths of MWSR waveguides in the Corona PNoC and photonic links in the Clos PNoC. We 
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consider a 5 GHz clock frequency of operation for the cores. A 512-bit packet size is utilized for 

both Corona and Clos PNoCs. 

The static and dynamic energy consumption of electrical routers and concentrators in the 

Corona and Clos PNoCs is based on results from the open source DSENT tool [75]. For energy 

consumption of photonic devices, we adapt model parameters from recent work [73], [74], with 

0.42pJ/bit for every modulation and detection event and 0.1κpJ/bit for the driver circuits of 

modulators and photodetectors. We used optical loss in photonic components (Table 23) to 

estimate the photonic laser power budget and correspondingly the electrical laser power [3λ]. 

 

 
                                    (a)                                               (b) 

 

Figure 85 Worst-case signal power loss analysis of (a) Corona PNoC and (b) Clos PNoC, with 1 

Year, 3 Years, and 5 Years of aging across 100 PV maps. 

 

10.7.2. EXPERIMENT RESULTS 

Our first set of experiments compares the worst-case signal losses of the baseline Corona 

and Clos PNoCs with their variants with 1 Year, 3 Years, and 5 Years of VBTI aging. We have 

performed this aging analysis across 100 PV maps as explained in Section 10.6.2. The presented 

results are averaged across the PV maps. Furthermore, as we are determining worst-case signal 
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loss for Corona and Clos PNoCs with VBTI aging, therefore we performed this analysis at the 

peak on-chip temperature, which is estimated to be 357 K [174]. 

    

 

(a) 

 

(b) 
 

Figure 86 EDP comparison of (a) Corona and (b) Clos PNoCs with 1 Year, 3 Years, and 5 Years 

of aging considering 100 process variation maps. 

 

Utilizing the models presented in Section 10.6, we calculate the signal power loss at the last 

detector of the NWCPL nodes of Corona and Clos PNoCs, which corresponds to the last MR detector 

of the cluster 64 and cluster κ for the Corona and Clos PNoCs respectively. Figure 86(a) and (b) 
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compare the worst-case signal loss of baseline Corona and Clos PNoCs with three variants of these 

PNoCs that undergo 1 Year, 3 Years and 5 Years of VBTI aging. The confidence intervals represent 

the variation in signal loss across the 100 PV maps considered. From Figure 86(a), it can be 

observed that compared to their respective baselines, the Corona PNoC with 1 Year, 3 Year, and 5 

years of VBTI aging has 2.κdB, 5.5dB, and 7.6dB higher signal losses, and the Clos PNoC has 1.1 

dB, 2.1dB, and 2.6dB higher signal losses. The increase in resonance wavelength red shift 

( ) and degradation in Q-factor with VBTI aging in MRs leads to increase in MR loss factor 

( ) (see Eq.  (79)) and decrease in MR coupling factor (�) (see Eq. (78)), which ultimately 

increases signal losses in these PNoCs. Also, the increase in signal loss in the Corona PNoC with 

VBTI aging is on the higher side compared to the Clos PNoC. Corona has 16× higher number of 

MRs on its waveguides compared to the Clos PNoC, which in turn incurs higher signal losses on 

Corona’s waveguides.  

Figure 86(a) and (b) present detailed simulation results that quantify the energy-delay 

product (EDP) for the four configurations of Corona and Clos PNoCs respectively. Results are 

shown for twelve multi-threaded PARSEC benchmarks. From Fig. 7(a) it can be seen that on 

average, Corona PNoC with 1 Year, 3 Year, and 5 years of VBTI aging has 4.1%, 14.3%, and 

26.κ% and Clos PNoC has 3.7%, 7.5%, and 10.6% higher EDP compare to their respective 

baselines. Increase in worst-case signal loss with increase in VBTI aging (see Figure 85) 

contributes to an increase in the PNoCs laser power, which increases total laser energy 

consumption in these PNoCs. Additionally, VBTI aging in MRs has positive effects on MR 

trimming energy consumption, as MR aging incurs red shift in resonance wavelength which 

naturally reduces PV-induced blue shifts in MRs and reduces total trimming energy consumption 
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in the PNoCs. However, these trimming energy savings are relatively on the lower side compared 

to the increase in laser energy, which ultimately increase total energy and hence the EDP. 

From the results presented in this section, we can summarize that in Corona and Clos PNoCs, 

VBTI aging in MRs increases signal losses by up to 7.6dB. Despite the decrease in tuning energy 

consumption of the Corona and Clos PNoCs with VBTI aging, the increase in their laser energy 

consumption increases EDP in these architectures by up to 26.κ%. The signal loss and EDP 

increase due to VBTI aging are much lower in architectures optimized for physical-layouts such 

as the Clos PNoC, than in non-optimized architectures such as Corona. PNoC architectures with 

more MRs per waveguide (e.g., Corona) have higher VBTI aging degradation compared to PNoC 

architectures with less MRs per waveguide (e.g., Clos). Thus, to reduce aging effects in a PNoC, 

designers should reduce the number of MRs per waveguide and increase the number of these 

waveguides to maintain high bandwidth.  

 

10.8. CONCLUSIONS 

This chapter analyzed VBTI aging in MRs used in photonic interconnects, and the 

dependence of this aging on voltage bias and temperature. We presented an analytical model for 

trap generation on the MR core-cladding boundary with VBTI aging in MRs. We also consider the 

impact of process variations on aging. Our device-level results indicate that MR aging causes 

significant degradation in MR Q-factor and incurs notable resonance wavelength red shift. We 

extended our MR aging analysis to the system-level for the Corona and Clos PNoCs. The system-

level analysis on these PNoCs clearly shows the damaging effects of MR aging, with worst signal 

loss increase by up to 7.6dB and EDP increase by up to 26.8%. 
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11. SOTERIA: EXPLOITING PROCESS VARIATIONS TO ENHANCE HARDWARE 

SECURITY WITH PHOTONIC NOC ARCHITECTURES 

 

 

A Hardware Trojan in a PNoC can manipulate the electrical driving circuit of its MRs to 

cause the MRs to snoop data from the neighboring wavelength channels in a shared photonic 

waveguide. This introduces a serious security threat. This chapter presents a novel framework 

called SOTERIA that utilizes process variation based authentication signatures along with 

architecture-level enhancements to protect data in PNoC architectures from snooping attacks. 

Evaluation results indicate that our approach can significantly enhance the hardware security in 

DWDM-based PNoCs with minimal overheads of up to 10.6% in average latency and of up to 

13.3% in energy-delay-product (EDP).   

 

11.1. INTRODUCTION 

To cope with the growing performance demands of modern Big Data and cloud computing 

applications, the complexity of hardware in modern chip-multiprocessors (CMPs) has increased. 

To reduce the hardware design time of these complex CMPs, third-party hardware IPs are 

frequently used. But these third party IPs can introduce security risks [175]- [176]. For instance, 

the presence of Hardware Trojans (HTs) in the third-party IPs can lead to leakage of critical and 

sensitive information from modern CMPs [177]. Thus, security researchers that have traditionally 

focused on software-level security are now increasingly interested in overcoming hardware-level 

security risks. 

Many CMPs today use electrical networks-on-chip (ENoCs) [17κ] for inter-core 

communication. ENoCs use packet-switched network fabrics and routers to transfer data between 
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on-chip components [17λ]. Recent developments in silicon photonics have enabled the integration 

of photonic components and interconnects with CMOS circuits on a chip. Photonic NoCs (PNoCs) 

provide several prolific advantages over their metallic counterparts (i.e., ENoCs), including the 

ability to communicate at near light speed, larger bandwidth density, and lower dynamic power 

dissipation [1κ0], [1κ1]. These advantages motivate the use of PNoCs for inter-core 

communication in modern CMPs [21], [1κ2].  

Several PNoC architectures have been proposed to date (e.g., [11], [13], [1κ3], [1κ4], [1κ5]). 

These architectures employ on-chip photonic links, each of which connects two or more gateway 

interfaces. A gateway interface (GI) connects the PNoC to a cluster of processing cores. Each 

photonic link comprises one or more photonic waveguides and each waveguide can support a large 

number of dense-wavelength-division-multiplexed (DWDM) wavelengths. A wavelength serves 

as a data signal carrier. Typically, multiple data signals are generated at a source GI in the electrical 

domain (as sequences of logical 1 and 0 voltage levels) which are modulated onto the multiple 

DWDM carrier wavelengths simultaneously, using a bank of modulator MRs at the source GI. The 

data-modulated carrier wavelengths traverse a link to a destination GI, where an array of detector 

MRs filter them and drop them on photodetectors to regenerate electrical data signals.  

In general, each GI in a PNoC is able to send and receive data in the optical domain on all 

of the utilized carrier wavelengths [1κ6]. Therefore, each GI has a bank of modulator MRs (i.e., 

modulator bank) and a bank of detector MRs (i.e., detector bank). Each MR in a bank resonates 

with and operates on a specific carrier wavelength. Thus, the excellent wavelength selectivity of 

MRs and DWDM capability of waveguides enable high bandwidth parallel data transfers in PNoCs.  

Similar to CMPs with ENoCs, the CMPs with PNoCs are expected to use several third party 

IPs, and therefore, are vulnerable to security risks [1κ7]- [1κκ]. For instance, if the entire PNoC 
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used within a CMP is a third-party IP, then this PNoC with HTs within the control units of its GIs 

can snoop on packets in the network. These packets can be transferred to a malicious core (a core 

running a malicious program) in the CMP to determine sensitive information. 

Unfortunately, MRs are especially susceptible to security threatening manipulations from 

HTs. In particular, the MR tuning circuits that are essential for supporting data broadcasts and to 

counteract MR resonance shifts due to process variations (PV) make it easy for HTs to retune MRs 

and initiate snooping attacks. To enable data broadcast in PNoCs, the tuning circuits of detector 

MRs partially detune them from their resonance wavelengths [12], [71], such that a significant 

portion of the photonic energy in the data-carrying wavelengths continues to propagate in the 

waveguide to be absorbed in the subsequent detector MRs. On the other hand, process variations 

(PV) cause resonance wavelength shifts in MRs [22]. Techniques to counteract PV-induced 

resonance shifts in MRs involve retuning the resonance wavelengths by using carrier 

injection/depletion or thermal tuning [21], implemented through MR tuning circuits. An HT in the 

GI can manipulate these tuning circuits of detector MRs to partially tune the detector MR to a 

passing wavelength in the waveguide, which enables snooping of the data that is modulated on the 

passing wavelength. Such covert data snooping is a serious security risks in PNoCs. 

In this chapter, we present a framework that protects data from snooping attacks and 

improves hardware security in PNoCs. Our framework has low overhead and is easily 

implementable in any existing DWDM-based PNoC without major changes to the architecture. To 

the best of our knowledge, this is the first work that attempts to improve hardware security for 

PNoCs. Our novel contributions areμ   

• We analyze security risks in photonic devices and extend this analysis to link-level, to 

determine the impact of these risks on PNoCs; 
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• We propose a circuit-level PV-based security enhancement scheme that uses PV-based 

authentication signatures to protect data from snooping attacks in photonic waveguides;  

• We propose an architecture-level reservation-assisted security enhancement scheme to 

improve security in DWDM-based PNoCs; 

• We combine the circuit- and architecture-level schemes into a holistic framework called 

SOTERIA; and analyze it on the Firefly [12] and Flexishare [13] PNoC architectures. 

 

11.2. RELATED WORK 

Several prior works [1κκ], [1κλ], [1λ0], [1λ1] discuss the presence of security threats in 

ENoCs and have proposed solutions to mitigate them. In [1κκ], a three-layer security system 

approach was presented by using data scrambling, packet certification, and node obfuscation to 

enable protection against data snooping attacks. In [1κλ], a Hardware Trojan threat model was 

presented that covertly performs deep packet inspection and injects faults on links to develop a 

denial-of-service (DoS) attack. A symmetric-key based cryptography design was presented in 

[1λ0] for securing the NoC. In [1λ1], a framework was presented to use permanent keys and 

temporary session keys for NoC transfers between secure and non-secure cores. However, no prior 

work has analyzed security risks in on-chip photonic devices and links; or considered the impact 

of these risks on PNoC architectures. 

Fabrication-induced process variations (PV) impact the cross-section, i.e., width and height, 

of photonic devices, such as MRs and waveguides. In MRs, PV causes resonance wavelength drifts, 

which can be counteracted by using device-level techniques such as thermal tuning or localized 

trimming [21]. Trimming can induce blue shifts in the resonance wavelengths of MRs using carrier 

injection into MRs, whereas thermal tuning can induce red shifts in MR resonances through 



270 

heating of MRs using integrated heaters. To remedy PV, the use of device-level trimming/tuning 

techniques is inevitable; but their use also enables partial detuning of MRs that can be used to 

snoop data from a shared DWDM-based photonic waveguide.  

Our proposed framework in this chapter is novel as it enables security against snooping 

attacks in PNoCs for the first time. Our framework is network agnostic, mitigates PV, and has 

minimal overhead, while improving security for any DWDM-based PNoC architecture. 

 

11.3. HARDWARE SECURITY CONCERNS IN PNOCS 

11.3.1. DEVICE-LEVEL SECURITY CONCERNS 

Process variation (PV) induced undesirable changes in MR widths and heights cause “shifts” 

in MR resonance wavelengths, which can be remedied using localized trimming and thermal 

tuning methods. The localized trimming method injects (or depletes) free carriers into (or from) 

the Si core of an MR using an electrical tuning circuit, which reduces (or increases) the MR’s 

refractive index owing to the electro-optic effect, thereby remedying the PV-induced red (or blue) 

shift in the MR’s resonance wavelength. In contrast, thermal tuning employs an integrated micro-

heater to adjust the temperature and refractive index of an MR (owing to the thermo-optic effect) 

for PV remedy. Typically, the modulator MRs and detectors use the same electro-optic effect (i.e., 

carrier injection/depletion) implemented through the same electrical tuning circuit as used for 

localized trimming, to move in and out of resonance (i.e., switch ON/OFF) with a wavelength [1κ].  

A Hardware Trojan can manipulate this electrical tuning circuit, which may lead to malicious 

operation of modulator and detector MRs, as discussed next. 

Figure 87(a) shows the malicious operation of a modulator MR. A malicious modulator MR 

is partially tuned to a data-carrying wavelength (shown in purple) that is passing by in the 



271 

waveguide. The malicious modulator MR draws some power from the data-carrying wavelength, 

which can ultimately lead to data corruption as optical ‘1’s in the data can lose significant power 

to be altered into ‘0’s. Alternatively, a malicious detector (Figure 87(b)) can be partially tuned to 

a passing data-carrying wavelength, to filter only a small amount of its power and drop it on a 

photodetector for data duplication. This small amount of filtered power does not alter the data in 

the waveguide so that it continues to travel to its target detector for legitimate communication [71]. 

Thus, malicious detector MRs can snoop data from the waveguide without altering it, which is a 

major security threat in photonic links. Note that malicious modulator MRs only corrupt data 

(which can be detected) and do not covertly duplicate it, and are thus not a major security risk. Our 

analysis in Section 11.3.2 presents the impact of malicious modulator and detector MRs on 

photonic links. 

 

 

                                              (a)                                              (b) 
 

Figure 87 Impact of (a) malicious modulator MR, (b) malicious detector MR on data in DWDM-
based photonic waveguides. 
 

11.3.2. LINK-LEVEL SECURITY CONCERNS  

Typically, a photonic link is comprised of one or more DWDM-based photonic waveguides. 

A DWDM-based photonic waveguide uses a modulator bank (a series of modulator MRs) at the 
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source GI and a detector bank (a series of detector MRs) at the destination GI. DWDM-based 

waveguides can be broadly classified into four typesμ single-writer-single-reader (SWSR), single-

writer-multiple-reader (SWMR), multiple-writer-single-reader (MWSR), and multiple-writer-

multiple-reader (MWMR). As SWSR, SWMR, and MWSR waveguides are subsets of an MWMR 

waveguide, and due to limited space, we restrict our link-level analysis to MWMR waveguides. 

 

 

 

(a) 

 

(b) 
 

Figure 88 Impact of (a) malicious modulator (source) bank, (b) malicious detector bank on data 
in DWDM-based photonic waveguides. 
 

An MWMR waveguide typically passes through multiple GIs, connecting the modulator 

banks of some GIs to the detector banks of the remaining GIs. Thus, in an MWMR waveguide, 

multiple GIs (referred to as source GIs) can send data using their modulator banks and multiple 

GIs (referred to as destination GIs) can receive (read) data using their detector banks. Figure 88 
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presents an example MWMR waveguide with two source GIs and two destination GIs. Figure 

88(a) and Figure 88(b), respectively, present the impact of malicious source and destination GIs 

on this MWMR waveguide. In Figure 88(a), the modulator bank of source GI S1 is sending data to 

the detector bank of destination GI D2. When source GI S2, which is in the communication path, 

becomes malicious with an HT in its control logic, it can manipulate its modular bank to modify 

the existing ‘1’s in the data to ‘0’s. This ultimately leads to data corruption. For example, in Figure 

88(a), S1 is supposed to send ‘0110’ to D2, but because of data corruption by malicious GI S2, ‘0010’ 

is received by D2. Nevertheless, this type of data corruption can be detected or even corrected 

using parity or error correction code (ECC) bits in the data. Thus, malicious source GIs do not 

cause major security risks in DWDM-based MWMR waveguides. 

 

 
 

Figure 89 Overview of proposed SOTERIA framework that integrates a circuit-level PV-based 
security enhancement (PVSC) scheme and an architecture-level reservation-assisted security 
enhancement (RVSC) scheme. 

 

Let us consider another scenario for the same data communication path (i.e., from S1 to D2). 

When destination GI D1, which is in the communication path, becomes malicious with an HT in 

its control logic, the detector bank of D1 can be partially tuned to the utilized wavelength channels 

to snoop data. In the example shown in Figure 88(b), D1 snoops ‘0110’ from the wavelength 

channels that are destined to D2. The snooped data from D1 can be transferred to a malicious core 
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within the CMP to determine sensitive information. This type of snooping attack from malicious 

destination GIs is hard to detect, as it does not disrupt the intended communication among CMP 

cores. Therefore, there is a pressing need to address the security risks imposed by snooping GIs in 

DWDM-based PNoC architectures. To address this need, we propose a novel framework SOTERIA 

that improves hardware security in DWDM-based PNoC architectures. 

 

11.4. SOTERIA FRAMEWORK: OVERVIEW 

Our proposed multi-layer SOTERIA framework enables secure communication in DWDM-

based PNoC architectures by integrating circuit-level and architecture-level enhancements. Figure 

89 gives a high-level overview of this framework. The PV-based security enhancement (PVSC) 

scheme uses the PV profile of the destination GIs’ detector MRs to encrypt data before it is 

transmitted via the photonic waveguide. This scheme is sufficient to protect data from snooping 

GIs, if they do not know about the target destination GI. With target destination GI information, 

however, a snooping GI can decipher the encrypted data. Many PNoC architectures (e.g., [14], 

[1κκ]) use the same waveguide to transmit both the destination GI information and actual data, 

making them vulnerable to data snooping attacks despite using PVSC. To further enhance security 

for these PNoCs, we devise an architecture-level reservation-assisted security enhancement 

(RVSC) scheme that uses a secure reservation waveguide to avoid the stealing of destination GI 

information by snooping GIs. Next two sections present details of our PVSC and RVSC schemes. 

 

11.5. PV-BASED SECURITY ENHANCEMENT 

As discussed earlier (Section 11.3.2), malicious destination GIs can snoop data from a shared 

waveguide. One way of addressing this security concern is to use data encryption so that the 

malicious destination GIs cannot decipher the snooped data. For the encrypted data to be truly 
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undecipherable, the encryption key used for data encryption should be kept secret from the 

snooping GIs, which can be challenging as the identity of the snooping GIs in a PNoC is not known. 

Therefore, it becomes very difficult to decide whether or not to share the encryption key with a 

destination GI (that can be malicious) for data decryption. This conundrum can be resolved using 

a different key for every destination GI so that a key that is specific to a secure destination GI does 

not need to be shared with a malicious destination GI for decryption purpose. Moreover, to keep 

these destination specific keys secure, the malicious GIs in a PNoC must not be able to clone the 

algorithm (or method) used to generate these keys.  

To generate unclonable encryption keys, our PV-based security (PVSC) scheme uses the PV 

profiles of the destination GIs’ detector MRs. As discussed in [22], PV induces random shifts in 

the resonance wavelengths of the MRs used in a PNoC. These resonance shifts can be in the range 

from -3nm to 3nm [22]. The MRs that belong to different GIs in a PNoC have different PV profiles. 

In fact, the MRs that belong to different MR banks of the same GI also have different PV profiles. 

Due to their random nature, these MR PV profiles cannot be cloned by the malicious GIs, which 

makes the encryption keys generated using these PV profiles truly unclonable. Using the PV 

profiles of detector MRs, PVSC can generate a unique encryption key for each detector bank of 

every MWMR waveguide in a PNoC. 

Our PVSC scheme generates encryption keys during the testing phase of the CMP chip, by 

using a dithering signal based in-situ method [1λ2] to generate an anti-symmetric analog error 

signal for each detector MR of every detector bank that is proportional to the PV-induced resonance 

shift in the detector MR. Then, it converts the analog error signal into a 64-bit digital signal. Thus, 

a 64-bit digital error signal is generated for every detector MR of each detector bank. We consider 

64 DWDM wavelengths per waveguide, and hence, we have 64 detector MRs in every detector 
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bank and 64 modulator MRs in every modulator bank. For each detector bank, our PVSC scheme 

XORs the 64 digital error signals (of 64 bits each) from each of the 64 detector MRs to create a 

unique 64-bit encryption key. Note that our PVSC scheme also uses the same anti-symmetric error 

signals to control the carrier injection and heating of the MRs to remedy the PV-induced shifts in 

their resonances. 

To understand how the 64-bit encryption key is utilized to encrypt data in photonic links, 

consider Figure 90 which depicts an example photonic link that has one MWMR waveguide and 

connects the modulator banks of two source GIs (S1 and S2) with the detector banks of two 

destination GIs (D1 and D2). As there are two destination GIs on this link, PVSC creates two 64-

bit encryption keys corresponding to them, and stores them at the source GIs. When data is to be 

transmitted by a source GI, the key for the appropriate destination is used to encrypt data at the 

flit-level granularity, by performing an XOR between the key and the data flit. This requires that 

the size of an encryption key match the data flit size. We consider the size of data flits to be 512 

bits. Therefore, the 64-bit encryption key is appended eight times to generate a 512-bit encryption 

key. In Figure 90, every source GI stores two 512-bit encryption keys (for destination GIs D1 and 

D2) in its local ROM, whereas every destination GI stores only its corresponding 512-bit key in its 

ROM. Note that we store the 512-bit keys instead of the 64-bit keys as this eliminates the latency 

overhead of affixing 64-bit keys to generate 512-bit keys, at the cost of a reasonable area/energy 

overhead in the ROM. As an example, if S1 wants to send a data flit to D2, then S1 first accesses 

the 512-bit encryption key corresponding to D2 from its local ROM and XORs the data flit with 

this key in one cycle, and then transmits the encrypted data flit over the link. As the link employs 

only one waveguide with 64 DWDM wavelengths, therefore, the encrypted 512-bit data flit is 

transferred on the link to D2 in eight cycles. At D2, the data flit is decrypted by XORing it with the 
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512-bit key corresponding to D2 from the local ROM. In this scheme, even if D1 snoops the data 

intended for D2, it cannot decipher the data as it does not have access to the correct key 

(corresponding to D2) for decryption. Thus, our PVSC encryption scheme protects data against 

snooping attacks in DWDM-based PNoCs. 

 

 
 

Figure 90 Overview of proposed PV-based security enhancement scheme. 

 

Limitations of PVSC: The PVSC scheme can protect data from being deciphered by a snooping 

GI, if the following two conditions about the underlying PNoC architecture hold trueμ (i) the 

snooping GI does not know the target destination GI for the snooped data, (ii) the snooping GI 

cannot access the encryption key corresponding to the target destination GI. As discussed earlier, 

an encryption key is stored only at all source GIs and at the corresponding destination GI, which 

makes it physically inaccessible to a snooping destination GI. However, if more than one GIs in a 

PNoC are compromised due to HTs in their control units and if these HTs launch a coordinated 

snooping attack, then it may be possible for the snooping GI to access the encryption key 

corresponding to the target destination GI.  

For instance, consider the photonic link in Figure 90. If both S1 and D1 are compromised, 

then the HT in S1’s control unit can access the encryption keys corresponding to both D1 and D2 
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from its ROM and transfer them to a malicious core (a core running a malicious program). 

Moreover, the HT in D1’s control unit can snoop the data intended for D2 and transfer it to the 

malicious core. Thus, the malicious core may have access to the snooped data as well as the 

encryption keys stored at the source GIs. Nevertheless, accessing the encryption keys stored at the 

source GIs is not sufficient for the malicious GI (or core) to decipher the snooped data. This is 

because the compromised ROM typically has multiple encryption keys corresponding to multiple 

destination GIs, and choosing a correct key that can decipher data requires the knowledge of the 

target destination GI. Thus, our PVSC encryption scheme can secure data communication in 

PNoCs as long as the malicious GIs (or cores) do not know the target destinations of the snooped 

data.  

Unfortunately, many PNoC architectures, e.g., [14], [1κκ], that employ photonic links with 

multiple destination GIs utilize the same waveguide to transmit both the target destination 

information and actual data. In these PNoCs, if a malicious GI manages to tap the target destination 

information from the shared waveguide, then it can access the correct encryption key from the 

compromised ROM to decipher the snooped data. Thus, there is a need to conceal the target 

destination information from malicious GIs (cores). This motivates us to propose an architecture-

level solution, as discussed next. 

 

11.6. RESERVATION-ASSISTED SECURITY ENHANCEMENT 

In PNoCs that use photonic links with multiple destination GIs, data is typically transferred 

in two time-division-multiplexed (TDM) slots called reservation slot and data slot [14], [1κκ]. To 

minimize photonic hardware, PNoCs use the same waveguide to transfer both slots, as shown in 

Figure 91(a). To enable reservation of the waveguide, each destination is assigned a reservation 
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selection wavelength. In Figure 91(a), 1 and 2 are the reservation selection wavelengths 

corresponding to destination GIs D1 and D2, respectively. Ideally, when a destination GI detects its 

reservation selection wavelength in the reservation slot, it switches ON its detector bank to receive 

data in the next data slot. But in the presence of an HT, a malicious GI can snoop signals from the 

reservation slot using the same detector bank that is used for data reception. For example, in Figure 

91(a), malicious GI D1 is using one of its detectors to snoop 2 from the reservation slot. By 

snooping λ2, D1 can identify that the data it will snoop in the subsequent data slot will be intended 

for destination D2. Thus, D1 can now choose the correct encryption key from the compromised 

ROM to decipher its snooped data. 

 

 

(a) 

 

(b) 
 

Figure 91 Reservation-assisted data transmission in DWDM-based photonic waveguides (a) 
without RVSC, (b) with RVSC. 
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To address this security risk, we propose an architecture-level reservation-assisted security 

enhancement (RVSC) scheme. In RVSC, we add a reservation waveguide, whose main function is 

to carry reservation slots, whereas the data waveguide carries data slots. We use double MRs to 

switch the signals of reservation slots from the data waveguide to the reservation waveguide, as 

shown in Figure 91(b). Double MRs are used instead of single MRs for switching to ensure that 

the switched signals do not reverse their propagation direction after switching [32]. Compared to 

single MRs, double MRs also have lower signal loss due to steeper roll-off of their filter response.  

The double MRs are switched ON only when the photonic link is in a reservation slot, 

otherwise they are switched OFF to let the signals of the data slot pass by in the data waveguide. 

Furthermore, in RVSC, each destination GI has only one detector on the reservation waveguide, 

which corresponds to its receiver selection wavelength. For example, in Figure 91(b), D1 and D2 

will have detectors corresponding to their reservation selection wavelengths 1 and 2, respectively, 

on the reservation waveguide. This makes it difficult for the malicious GI D1 to snoop 2 from the 

reservation slot as shown in Figure 91(b), as D1 does not have a detector corresponding to 2 on 

the reservation waveguide. However, the HT in D1’s control unit may still attempt to snoop other 

reservation wavelengths (e.g., λ2) in the reservation slot by retuning D1’s λ1 detector. But 

succeeding in these attempts would require the HT to perfect the timing and target wavelength of 

its snooping attack, which is very difficult due to the large number of utilized reservation 

wavelengths. Thus, D1 cannot identify the correct encryption key to decipher the snooped data.   

In summary, RVSC enhances security in PNoCs by protecting data from snooping attacks, 

even if the encryption keys used for data encryption are compromised. To implement RVSC on a 

data waveguide with multiple destination GIs, we need to add a reservation waveguide with 

multiple detector MRs, where each detector MR corresponds to a destination GI. A group of double 
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MRs, each of which corresponds to a reservation selection wavelength available in the waveguide, 

is also needed to switch the wavelength signals of reservation slots from the data waveguide to the 

reservation waveguide. The introduction of the additional reservation waveguide and the group of 

double MRs increases signal loss and laser power. We account for this overhead in our PNoC 

architecture level analysis. 

 

11.7. IMPLEMENTING SOTERIA FRAMEWORK ON PNOCS 

We characterize the impact of SOTERIA on two popular PNoC architecturesμ Firefly [12] 

and Flexishare [13], both of which use DWDM-based photonic waveguides for data 

communication. We consider Firefly PNoC with κ×κ SWMR crossbar [12] and a Flexishare PNoC 

with 32×32 MWMR crossbar [13] with 2-pass token stream arbitration. We adapt the analytical 

equations from [32] to model the signal power loss and required laser power in the SOTERIA-

enhanced Firefly and Flexishare PNoCs. At each source and destination GI of the SOTERIA-

enhanced Firefly and Flexishare PNoCs, XOR gates are required to enable parallel encryption and 

decryption of 512-bit data flits. We consider a 1 cycle delay overhead for encryption and 

decryption of every data flit. The overall laser power and delay overheads for both PNoCs are 

quantified in the results section. 

Firefly PNoC: Firefly PNoC [12], for a 256-core system, has κ clusters (C1-Cκ) with 32 cores in 

each cluster. Firefly uses reservation-assisted SWMR data channels in its κxκ crossbar for inter-

cluster communication. Each data channel consists of κ SWMR waveguides, with 64 DWDM 

wavelengths in each waveguide. To integrate SOTERIA with Firefly PNoC, we added a reservation 

waveguide to every SWMR channel. This reservation waveguide has 7 detector MRs to detect 

reservation selection wavelengths corresponding to 7 destination GIs. Furthermore, 64 double 
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MRs (corresponding to 64 DWDM wavelengths) are used at each reservation waveguide to 

implement RVSC. To enable PVSC, each source GI has a ROM with seven entries of 512 bits each 

to store seven 512-bit encryption keys corresponding to seven destination GIs. In addition, each 

destination GI requires a 512-bit ROM to store its own encryption key.     

Flexishare PNoC: We also integrate SOTERIA with the Flexishare PNoC architecture [13] with 

256 cores. We considered a 64-radix 64-cluster Flexishare PNoC with four cores in each cluster 

and 32 data channels for inter-cluster communication. Each data channel has four MWMR 

waveguides with each having 64 DWDM wavelengths. In SOTERIA-enhanced Flexishare, we 

added a reservation waveguide to each MWMR channel. Each reservation waveguide has 16 

detector MRs to detect reservation selection wavelengths corresponding to 16 destination GIs. To 

enable PVSC, each source GI requires a ROM with 16 entries of 512 bits each to store the 

encryption keys, whereas each destination GI requires a 512-bit ROM.  

Modeling PV of MR Devices in Firefly and Flexishareμ Similar to [32], we adapt the VARIUS 

tool [20] to model random and systematic die-to-die (D2D) as well as within-die (WID) process 

variations in MRs for the Firefly and Flexishare PNoCs. We consider a 256-core chip with die size 

400mm2 at a 22nm process node. For this die-size we consider a WID standard deviation (σWID) 

of 0.61nm [22] and D2D standard deviation (σD2D) of 1.01 nm [22]. We also consider a density (α) 

of 0.5 [22] for this die size. With these parameters, we use VARIUS to generate 100 PV maps, each 

containing over 1 million points indicating the PV-induced resonance shift of MRs. The total 

number of points selected from these maps equal the number of MRs used in the Firefly and 

Flexishare PNoC architectures. 
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11.8. EXPERIMENTS 

11.8.1. EXPERIMENT SETUP 

To evaluate our proposed SOTERIA (PVSC+RVSC) security enhancement framework for 

DWDM-based PNoCs, we integrate it with the Firefly [12] and Flexishare [13] PNoCs, as 

explained in Section 11.7. We modeled and performed simulation based analysis of the SOTERIA-

enhanced Firefly and Flexishare PNoCs using a cycle-accurate SystemC based NoC simulator, for 

a 256-core single-chip architecture at 22nm. We validated the simulator in terms of power 

dissipation and energy consumption based on results obtained from the DSENT tool [75]. We used 

real-world traffic from the PARSEC benchmark suite [43]. GEM5 full-system simulation [72] of 

parallelized PARSEC applications was used to generate traces that were fed into our NoC 

simulator. We set a “warmup” period of 100 million instructions and then captured traces for the 

subsequent 1 billion instructions. These traces are extracted from parallel regions of execution of 

PARSEC applications. We performed geometric calculations for a 20mm×20mm chip size, to 

determine lengths of SWMR and MWMR waveguides in Firefly and Flexishare. Based on this 

analysis, we estimated the time needed for light to travel from the first to the last node as κ cycles 

at 5 GHz clock frequency [25]. We use a 512-bit packet size, as advocated in the Firefly and 

Flexishare PNoCs. 

The static and dynamic energy consumption values for electrical routers and concentrators 

in Firefly and Flexishare PNoCs are based on results from DSENT [75]. We model and consider 

the area, power, and performance overheads for our framework implemented with the Firefly and 

Flexishare PNoCs as follows. SOTERIA with Firefly and Flexishare PNoCs has an electrical area 

overhead of 12.7mm2 and 3.4mm2, respectively, and power overhead of 0.44W and 0.36W, 

respectively, using gate-level analysis and CACTI 6.5 [114] tool for memory and buffers. The 
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photonic area of Firefly and Flexishare PNoCs is 1λ.κ3mm2 and 5.2mm2, respectively, based on 

the physical dimensions [104] of their waveguides, MRs, and splitters. For energy consumption of 

photonic devices, we adapt model parameters from recent work [25], [74], with 0.42pJ/bit for 

every modulation and detection event and 0.1κpJ/bit for the tuning circuits of modulators and 

photodetectors. The MR trimming power is 130 W/nm [21] for current injection (to remedy red 

shifts) and tuning power is 240 W/nm [21] for heating (to remedy blue shifts).  

 

 

(a) 

 

(b) 
 

Figure 92 Comparison of (a) worst-case signal loss and (b) laser power dissipation of SOTERIA 
framework on Firefly and Flexishare PNoCs with their respective baselines considering 100 
process variation maps. 
 

11.8.2. OVERHEAD ANALYSIS OF SOTERIA ON PNOCS 

Our first set of experiments compare the baseline (without any security enhancements) 

Firefly and Flexishare PNoCs with their SOTERIA enhanced variants. From Section 11.7, all κ 
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SWMR waveguide groups of the Firefly PNoC and all 32 MWMR waveguide groups of the 

Flexishare PNoC are equipped with PVSC encryption/decryption and reservation waveguides for 

the RVSC scheme. 

We adapt the analytical models from [32] to calculate the total signal loss at the detectors of 

the worst-case power loss node (NWCPL), which corresponds to router C4R0 for the Firefly PNoC 

[12] and node R63 for the Flexishare PNoC [13]. Figure 92(a) summarizes the worst-case signal 

loss results for the baseline and SOTERIA configurations for the two PNoC architectures. From 

the figure, Firefly PNoC with SOTERIA increases loss by 1.6dB and Flexishare PNoC with 

SOTERIA increases loss by 1.2dB on average, compared to their respective baselines. Compared 

to the baseline PNoCs that have no single or double MRs to switch the signals of the reservation 

slots, the double MRs used in the SOTERIA-enhanced PNoCs to switch the wavelength signals of 

the reservation slots increase through losses in the waveguides, which ultimately increases the 

worst-case signal losses in the SOTERIA-enhanced PNoCs. Using the worst-case signal losses 

shown in Figure 92(a), we determine the total photonic laser power and corresponding electrical 

laser power (using laser wall-plug efficiency of 3% [1λ3]) for the baseline and SOTERIA-enhanced 

variants of Firefly and Flexishare PNoCs, shown in Figure 92(b). From this figure, the Firefly and 

Flexishare PNoCs with SOTERIA have laser power overheads of 44.7% and 31.40% on average, 

compared to their baselines. 

Figure 93 presents detailed simulation results that quantify the average packet latency and 

energy-delay product (EDP) for the two configurations of the Firefly and Flexishare PNoCs. 

Results are shown for twelve multi-threaded PARSEC benchmarks. From Figure 93(a), Firefly 

with SOTERIA has 5.2% and Flexishare with SOTERIA has 10.6% higher latency on average 
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compared to their respective baselines. The additional delay due to encryption and decryption of 

data (Section 11.7) with PVSC contributes to the increase in average latency.  

 

 

(a) 

 

(b) 
 

Figure 93 (a) normalized average latency and (b) energy-delay product (EDP) comparison 
between different variants of Firefly and Flexishare PNoCs that include their baselines and their 
variant with SOTERIA framework, for PARSEC benchmarks. Latency results are normalized with 
their respective baseline architecture results.  

 

From the results for EDP shown in Figure 93(b), Firefly with SOTERIA has 4.λ% and 

Flexishare with SOTERIA has 13.3% higher EDP on average compared to their respective 

baselines. Increase in EDP for the SOTERIA-enhanced PNoCs is not only due to the increase in 

their average packet latency, but also due to the presence of additional RVSC reservation 
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waveguides, which increases the required photonic hardware (e.g., more number of MRs) in the 

SOTERIA-enhanced PNoCs. This in turn increases static energy consumption (i.e., laser energy 

and trimming/tuning energy), ultimately increasing the EDP. From the results presented in this 

section, we can conclude that our SOTERIA framework improves hardware security in PNoCs at 

the cost of additional laser power, average latency, and EDP overheads.  

 

11.8.3. ANALYSIS OF OVERHEAD SENSITIVITY 

Our last set of evaluations explore how the overhead of SOTERIA changes with varying 

levels of security in the network. Typically, in a manycore system, only a certain portion of the 

data that contains sensitive information (i.e., keys) and only a certain number of communication 

links need to be secure. Therefore, for our analysis in this section, instead of securing all data 

channels of the Flexishare PNoC, we secure only a certain number channels using SOTERIA. Out 

of the total 32 MWMR channels in the Flexishare PNoC, we secure 4 (FLEX-ST-4), κ (FLEX-ST-

κ), 16 (FLEX-ST-16), and 24 (FLEX-ST-24) channels, and evaluate the average packet latency 

and EDP for these variants of the SOTERIA-enhanced Flexishare PNoC.  

In Figure 94, we present average packet latency and EDP values for the five SOTERIA-

enhanced configurations of the Flexishare PNoC. From Figure 94(a), FLEX-ST-4, FLEX-ST-κ, 

FLEX-ST-16, and FLEX-ST-24 have 1.κ%, 3.5%, 6.7%, and λ.5% higher latency on average 

compared to the baseline Flexishare. Increase in number of SOTERIA enhanced MWMR 

waveguides increases number of packets that are transferred through the PVSC encryption scheme, 

which contributes to the increase in average packet latency across these variants. From the results 

for EDP shown in Figure 94(b), FLEX-ST-4, FLEX-ST-κ, FLEX-ST-16, and FLEX-ST-24 have 

2%, 4%, 7.6%, and 10.κ% higher EDP on average compared to the baseline Flexishare. EDP in 
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Flexishare PNoC increases with increase in number of SOTERIA enhanced MWMR waveguides. 

Increase in average packet latency and signal loss due to the higher number of reservation 

waveguides and double MRs increase overall EDP across these variants.  

 

 

(a) 

 

(b) 
 

Figure 94 (a) normalized latency and (b) energy-delay product (EDP) comparison between 
Flexishare baseline and Flexishare with 4, κ, 16, and 24 SOTERIA enhanced MWMR waveguide 
groups, for PARSEC benchmarks. Latency results are normalized to the baseline Flexishare 
results. 
 

11.8.4. SUMMARY OF RESULTS AND OBSERVATIONS 

From the results in the previous subsections, it can be concluded that our proposed SOTERIA 

framework secures data during unicast communications in PNoC architectures from snooping 
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attacks by leveraging the benefits of our circuit-level PVSC and architecture-level RVSC 

techniques. SOTERIA-enhanced PNoCs incur minimal overheads of up to 10.6% and as low as 

1.κ% in average packet latency and up to 13.3% and as low as 2% in EDP compared to the baseline 

insecure PNoCs. 

 

11.9. CONCLUSIONS 

We presented a novel security enhancement framework called SOTERIA that secures data 

during unicast communications in DWDM-based PNoC architectures from snooping attacks. Our 

proposed SOTERIA framework shows interesting trade-offs between security, performance, and 

energy overhead for the Firefly and Flexishare PNoC architectures. Our analysis shows that 

SOTERIA enables hardware security in crossbar based PNoCs with minimal overheads of up to 

10.6% in average latency and of up to 13.3% in EDP compared to the baseline PNoCs. Thus, 

SOTERIA represents an attractive solution to enhance hardware security in emerging DWDM-

based PNoCs. In the future, we plan to extend our SOTERIA framework to enhance data security 

during broadcast and multicast communications in PNoCs. 
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12. CONCLUSION AND FUTURE WORK SUGGESTIONS 

 

 

12.1. RESEARCH CONCLUSION 

We addressed several design challenges faced by PNoC architectures by proposing a 

framework which employs layer-specific solutions and cross-layer solutions that combine 

enhancements at the system-level, architecture-level, circuit-level, and device-level. Our proposed 

cross-layer framework utilizes various (i) system-level solutions such as application scheduling 

and thread migration, (ii) architectural-solutions such as application-specific, reconfigurable, and 

security-aware PNoC architecture designs, and (iii) device- and circuit-level solutions such as 

encoding and MR assignment, to optimize PNoC performance, energy efficiency, and reliability. 

Experimental results for our proposed cross-layer framework validate and motivate its deployment 

in future PNoC architectures, because it demonstrates significant improvement in energy 

efficiency with extensibility to adapt to new PNoC design concerns, such as crosstalk, thermal 

variations, process variations, security, and aging effects. Therefore, our proposed cross-layer 

framework has the potential to be applied as a general strategy for performance, reliability, power, 

and security management on DWDM-based PNoC architectures.   

Our first contribution is the development of the SwiftNoC photonic NoC architecture which 

is an improved version of the UltraNoC architecture, with more efficient channel sharing among 

cores with an aggressive concurrent token stream-based arbitration strategy and more efficient 

multicast support. SwiftNoC supports the ability to dynamically transfer bandwidth between 

clusters of cores and to re-prioritize multiple co-running applications to further improve channel 

utilization and adapt to time-varying application performance goals. SwiftNoC improves 
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throughput by up to 25.4× while reducing latency by up to 72.4% and EPB by up to 95% over 

other state-of-the-art solutions. SwiftNoC also scales well with increasing chip core counts. 

Our next contribution is the application-specific BiGNoC architecture that features master-

servant clusters with efficient utilization of SWMR and MWSR waveguides to improve 

performance while executing large-scale data analytics applications. BiGNoC exploits efficient 

multicasting in photonic waveguides to achieve high data rates. In particular, we showed how the 

BiGNoC-HET variant of BiGNoC, improves performance due to improved photonic channel 

utilization and its ability to adapt to time-varying application performance goals while co-running 

multiple large-scale data analytics applications. BiGNoC-HET improves throughput by up to 9.9×, 

packet latency by up to 88%, and energy-per-bit by up to 98% over traditional EMesh, broadcast-

optimized EMesh, and state-of-the-art photonic NoC architectures. These results corroborate the 

excellent capabilities of our proposed BiGNoC architecture towards executing large-scale data 

analytics applications. 

Heterodyne crosstalk mitigation techniques are presented in this dissertation for the 

reduction of crosstalk noise in the detectors of DWDM-based PNoC architectures with crossbar 

topologies. These techniques (PCTM5B, PCTM6B, WSP, PICO, HYDRA) show interesting trade-

offs between reliability, performance, and energy overheads across three different crossbar-based 

PNoC architectures. Our simulation based analysis shows that the proposed heterodyne crosstalk 

mitigation techniques improves worst-case OSNR by up to 5.3× compared to the baseline 

architectures. Thus, our proposed techniques are attractive solutions to enhance reliability in 

emerging DWDM-based PNoCs. 

We presented the IHDTM and LIBRA frameworks that combine novel dynamic thermal 

management mechanisms for the reduction of maximum on-chip temperature and approaches for 
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the conservation of trimming and tuning power of MRs in DWDM-based PNoC architectures. 

These techniques (TPMA and on-chip islands at the device-level, VADTM and TATM at the system-

level) constitute hybrid reactive-proactive management frameworks which demonstrated 

interesting trade-offs between performance and power/energy across two different state-of-the-art 

crossbar-based PNoC architectures. Our experimental analysis on state-of-the-art PNoC 

architectures has shown that the proposed frameworks can notably conserve total power by up to 

61.3% (trimming and tuning power by up to 76.2%) and total energy by up to 57.3%. 

VBTI aging in the MRs used in photonic interconnects, and the dependence of this aging on 

voltage bias and temperature was also analyzed in this dissertation. We presented an analytical 

model for trap generation on the MR core-cladding boundary with VBTI aging in MRs. We also 

considered the impact of process variations on aging. Our device-level results indicate that MR 

aging causes significant degradation in MR Q-factor and incurs notable resonance wavelength red 

shift. We extended our MR aging analysis to the system-level for two crossbar-based PNoCs. The 

system-level analysis on these PNoCs clearly shows the damaging effects of MR aging with a 

worst-case signal loss increase of up to 7.6dB and EDP increase of up to 26.8%. 

Lastly, a novel security enhancement framework called SOTERIA that secures data during 

unicast communications in DWDM-based PNoC architectures from snooping attacks was also 

presented in this dissertation. The SOTERIA framework shows interesting trade-offs between 

security, performance, and energy overheads for DWDM-based PNoC architectures. Our analysis 

shows that SOTERIA enables hardware security in crossbar based PNoCs with minimal overheads 

of up to 10.6% in average latency and up to 13.3% in EDP compared to the baseline PNoCs. Thus, 

SOTERIA represents an attractive solution to enhance hardware security in emerging DWDM-

based PNoCs.  
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12.2. SUGGESTION FOR FUTURE WORKS 

PNoC architecture design will continue to face new challenges as large number of photonic 

devices are expected to be integrated on CMPs in the near future. Therefore, we envision the 

following likely directions for future work: 

 

• Fault Tolerant PNoC: Faults are inevitable not only in electrical interconnects, but also in 

photonic interconnects. Faults in PNoCs include, photonic waveguide faults, MR faults, 

and splitter faults. There is a need to explore these faults in PNoCs and novel strategies are 

needed to reduce fault-induced performance penalties. A cross-layer approach combining 

architectural-level enhancements and system-level application scheduling will likely also 

be beneficial.   

• Aging in MRs: In this dissertation, we already explored VBTI aging in MR’s PN junctions 

(see chapter 10) and analyzed its impact on PNoC architectures. In addition to VBTI, MRs 

are prone to other aging mechanisms such as hot carrier injection (possible in PN junction 

of an MR) however these aging scenarios have not been explored yet. 

• Hardware Security in PNoCs: Security is expected to be a critical concern in CMPs that 

use DWDM-based PNoCs for inter-core communication. Mechanisms to mitigate snoop-

based attacks on PNoCs are already discussed in this dissertation (see chapter 11). 

Furthermore, novel strategies are needed to mitigate snoop-based attacks in multicast- and 

broadcast-enabled PNoC architectures. However, PNoCs are also vulnerable to Denial-of-

service (DoS) based attacks and data corruption based attacks. Therefore, solutions are 

needed to reduce the aforementioned security risks in PNoCs to further enhance their 

hardware security.  
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