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ABSTRACT  
 

MODELING THE SPATIAL AND TEMPORAL DYNAMICS OF THE AMBER-

MARKED BIRCH LEAF MINER INFESTATION IN ANCHORAGE, ALASKA 

 

Since 1998, the invasive insect amber-marked birch leaf miner (Profenusa thomsoni 

Konow.) has been an issue for the birch trees in Alaska’s Anchorage Bowl.  P. thomsoni is native 

to Europe and an invasive defoliator of birch trees; its impacts are considered aesthetically 

unpleasing to Anchorage residents.  In this study, a spatial and temporal model was constructed 

using a cellular automata (CA) method.  Employing the statistical program R (R Development 

Core Team 2008), coupled with a custom library called RandomFields (Schlather 2012) and 

linear regression techniques, a CA model was created.  Using five years of field data gathered 

between 2006 and 2010 (Lundquist et al. 2012), the CA model mimics the observed change in 

severity of the infestation based upon the severity in the previous year and if the region was in an 

area that increased or decreased in severity.  A voracity test was used to compare the CA model 

output for the time period of the observed field data; a sensitivity analysis on various input 

parameters was also implemented.  The CA model simulated results were analyzed for the time 

period 1998 to 2018 and indicated that P. thomsoni may follow three primary phases:  1) 

expansion, 2) decline, and 3) equilibrium.  The expansion phase demonstrated a six-year spatial 

spread cycle, which can be described as random, disjointed regions of high infestation that move 

about the landscape.  The expansion phase may be the result of an abundance of host, lack of 

natural enemies, and no density-dependent factors.  The declining phase is depicted as a decrease 

in severity at an increase rate.  The declining phase is possibly due to the combination of density-

dependent factors and natural enemies.  The equilibrium phase is a possible product of long-term 

plant defenses.  The development of this spatial and temporal predictive CA model will allow 

resource managers to be proactive in order to mitigate and manage the P. thomsoni infestation.  In 
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addition, this modeling method can be used to simulate other forest pests and pathogens at the 

landscape level. 
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INTRODUCTION 
 

Outbreaks of the amber-marked birch leaf miner (Profenusa thomsoni Konow.), an 

invasive forest insect from Europe, has infested the urban birch forest of Anchorage, Alaska   

(Goldstein et al. 2005).  It is believed P. thomsoni was first introduced into North America 

(New England) circa 1920 (Benson 1959, Soper et al. 2009, MacQuarrie et al. 2010).  This 

introduction is likely the result of humans transporting live, infested birch trees from Europe 

(Digweed and Langor 2004).  P. thomsoni subsequently infested Vermont, Massachusetts and 

Maine, as well as most provinces and territories in Canada (Quebec, Manitoba, and Northwest 

Territories) (Soper et al. 2009).  In the 1970s, P. thomsoni (Digweed and Langor 2004) was 

discovered in the Canadian province of Saskatchewan.  P. thomsoni was first confirmed in 

Anchorage, Alaska, in 1996 (Snyder et al. 2007).  Since 2006, two additional invasive sawflies 

that caused considerable damage to birch trees were identified in Anchorage: 1) the late birch 

leaf edge miner (Heterarthrus nemoratus Fallén.), and 2) the birch leaf miner (Fenusa pumila 

Leach.). 

P. thomsoni is a defoliator and feeds exclusively on birch trees (Betula spp.). It is 

native to Europe where it does not present a threat to the birch forest (Digweed et al. 2003).  

The low population levels of P. thomsoni in European forests are thought to be caused by 

indirect competition for resources with other sawflies (F.  pumila or H. nemoratus) and 

predation (Digweed 2006).   

P. thomsoni is univoltine (MacQuarrie et al. 2010).  The insect overwinters in the forest 

duff as prepupae, which emerge in late May to early July when leaves form on birch trees.  

However, depending on temperature and humidity, adult insects continue to emerge for most of 

the summer.  Adults are 0.31 to 0.63 cm long, black in color, and are almost always females.  

Oviposition peaks in late June. The larvae that emerge from eggs after 12 days feed on the leaf 

tissue between the epidermal layers, forming blotch mines that enlarge as sawfly larvae 
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develop, often coalescing when larvae are crowded (Digweed et al. 2009).  The larvae pass 

through six instars, the last of which cuts a hole in the leaf, drops to the litter below, burls into 

the duff, and pupates (Digweed et al. 2009).  Impacts to trees are limited primarily to decreased 

aesthetic values due to browning, distortion, or premature loss of foliage.  For a detailed 

description of the P. thomsoni life cycle, see Snyder et al. (2007) or MacQuarrie et al. (2010).   

Lundquist et al. (2012)  describes the spatial and temporal dynamics of the P. thomsoni 

infestation in Anchorage as a patchy landscape pattern.  Over time, it has been observed that 

areas of increased infestation levels move about the landscape in the form of disjoint regions, 

encompassing the entire city of Anchorage in approximately six years.  A similar spatial pattern 

was described by Petrovskii et al. (2002) in a predator-prey environment. 

Modeling the temporal and spatial movements of insect invasion over the landscape 

can be a complex and a time-consuming process (Sharov 1996).  At the beginning of most 

invasion some kind of population front is formed (Petrovskii et al. 2002).  The spread of the 

invasion over the landscape may form into a wave- like pattern (Yemshanov et al. 2009) or be 

sculpted by predators into irregular patches (Petrovskii et al. 2002).  Many types of invasion 

waves are described in the literature.  Some examples of these waves are:  1) a simple traveling 

wave front (Huang et al. 2008), 2) oscillating wave (Liebhold and Kamata 2000, Haynes et al. 

2009),  and 3) a reaction-diffusion wave (Fisher 1937, Schofield 2002, Richter et al. 2012).  

Each of these wave types has some similarities and differences that involve different levels of 

modeling efforts. 

A simple traveling wave front is the simplest form of spread across the landscape 

where insects originating from an infestation point or region spread into new areas in all 

directions in a linear pattern at a uniform rate (e.g. 1km/year).  Often, many infestation points 

or foci occur simultaneously in a traveling wave front.  The infestation points radiate outward, 

eventually coalescing into a single wave front that travels across the landscape at relatively 
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uniform rates as a single unit.  Due to the uniformity of spread rates and patterns, the traveling 

wave front is one of the simplest to model.   

An oscillating wave front is similar to the simple traveling wave front, except for some 

temporal and spatial variations in spread rate that can be influenced by many factors.  For 

example, bivoltine insects have a two-year temporal oscillation in population numbers.  

Liebhold and Kamata (2000) term this as periodic oscillating.  Also, some insects prefer host 

trees under stress due to drought or disease (Mercader et al. 2011).  These stressed trees are 

often dispersed throughout the forests in a patchy landscape, producing a spatial variation in 

insect infestation.  Finally, temporal and spatial oscillation may occur in tandem.  Case in point, 

temperature is an influential factor on insect fecundancy.  Increases in average annual 

temperatures may cause some insects to transition from bivoltine to univoltine.  In addition, 

under drought conditions temperature is often increased, which can influence both spatial and 

temporal variations and produce an oscillating wave front.  Because of the above factors, 

modeling an oscillating wave front adds an additional layer of complexity when compared to 

the simple traveling wave front.  The application of trigonometric functions in the construction 

of these type of spread models can be used to capture the temporal oscillation.  Spatial data 

depicting the distribution or quality of host species may address the spatial variability (Morin et 

al. 2009).   

A reaction-diffusion wave is different from the simple or oscillating wave because of 

the application of differential equations to solve for non-linear spread rates (Richter et al. 

2012).  Some factors that may drive the non-linear spread rates are fecundancy and 

environmental.  One of the first reaction-diffusion equations was developed by Fisher (1937) in 

his work on favorable mutations on advantageous gene and how these gene were distribute in a 

population.  Another component that can be accounted for in the reaction-diffusion model is the 

Allee effect (Allee 1927, Petrovskii et al. 2002, Schofield 2002, Taylor and Hastings 2005, 

Liebhold and Tobin 2008, Richter et al. 2012), which has been described as some critical lower 
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population value at which the insect population must be above to remain viable and spreading 

(Liebhold and Tobin 2008).  Due to the potential number of environmental factors coupled with 

the differential equations, the reaction-diffusion spread models are some of the most complex 

and difficult to create.   

The P. thomsoni infestation in Anchorage does not mirror any of the typical wave type 

invasions.  This infestation produces groups of trees that illustrate cyclic eruptions in severity.  

These cyclic eruptions vary in size, shape and intensity and are randomly move over the 

landscape.  A similar  type of landscape infestation is described by Petrovskii et al. (2002).  

Petrovskii et al. (2002)  describes an invasion front breaking up into separate irregular patches 

over the landscape in a predator-prey system.  

Early insect spread models used the following equation (Varley et al. 1973) 

Nt = N0 e
rt
      [1] 

where Nt is the number of individuals at time t and r is the intrinsic rate of growth (i.e. birth rate 

– death rate), with no consideration of carrying capacity and assumes the spread was isotropic 

in nature.  Other insect spread models use historical data coupled with ancillary variables (e.g. 

temperature or host distribution) to create spread models (Liebhold et al. 1992).  It appears that 

many spread models follow a general stochastic approach (Rasmussen and Hamilton 2012).  A 

simple stochastic spread model could take the form of a series of variables, with random values 

funneled into some mathematical function and simulated hundreds of times to produce an 

outcome.  Summary statistics (e.g. mean, maximum, and variance) from these simulations can 

be assessed and compared to observed data.   

Hartley et al. (2010) succeeded in predicting suitable habitat for Argentine ants 

(Linepithema humile Mayr.) in Hawaii using a single variable (i.e. temperature) in the form of 

degree days, coupled with a Geographic Information System (GIS).  Climate can impact 

potential habitats by simultaneously affecting host and insect population dynamics by directly 
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killing the pest due to temperature extremes or indirectly by influencing host phenology and 

general tree health (Liebhold et al. 1992).   

DeRose and Long (2012) used a general linear model (glm) to identify the factors 

driving Englemann spruce (Picea englemannii Parry ex Engelm.) mortality in Utah due to the 

spruce beetle (Dendroctonus rufipennis Kirby.) infestation.  Focusing their attention on the 

host, they found that slope, tree diameter, tree density, and  forest stand structure coupled with 

ancillary environmental factors identified susceptible forest stands.  DeRose and Long (2012) 

illustrated that spruce beetle spread did not originate from a single epicenter; rather, it spread in 

a simple wave-like pattern across the landscape.  They concluded that the decline in the spruce 

beetle population was the result of host depletion.   

Complex stochastic models have been used to evaluate the spread of invasive insects.  

Mercader et al. (2009) for example, measured the dispersal rate over one generation of emerald 

ash borer (Agrilus planipennis Fairmaier.).  These data were then fitted to a negative 

exponential function.  Results of this experiment showed that insects dispersed 100 m per year 

from infested trees in all directions.  

Many spread models make the assumption that if the host is uniformly distributed 

across the landscape, then the spread will also be uniform.  Morin et al. (2009) investigated the 

directional spread of hemlock wooly adelgid (Adelges tsugae Annand.) in the eastern United 

States from 1951 to 2006.  Results indicated that the spread was anisotropic due to the 

variability in climate and the abundance of host species.  In addition, the magnitude of 

anisotropy varied over time. 

Yemshanov et al. (2009) used a stochastic process to model the introduction and spread 

of an invasive wood wasp (Sirex noctilio Fabricius.) in the eastern United States and Canada.  

They modeled the probability that an introduction of the wasp could occur based upon the 

amount of cargo a particular area was receiving and if that cargo originated from countries 

where the wood wasp resided.  Using host distribution data Yemshanov et al. (2009) generated 
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a series of scenarios to illustrate where and how fast the infestation would occur coupled with a 

level of uncertainty.   

Schofield (2002) investigated the use of reaction-diffusion equations to model the 

spatial-temporal spread of a parasite (Wolbachia) infecting the fruit fly (Drosophila simulans) 

population in California.  This stochastic model produced results termed as a traveling wave 

invasion.  A key finding indicated that a minimum density value of infected fruit flies was 

required to sustain a traveling wave invasion of parasites in the population.  However, this 

wave invasion may reverse (decline) if, and only if, the population of infection fruit flies 

reaches some critical lower population level.  The parasite will become locally extinct if the 

number of infected fruit flies drops below some critical minimum density (i.e. Allee effect).  

Recently, the use of network models for predicting spread of infectious diseases are 

showing promise, particularly in systems where anthropogenic transportation vectors are 

plentiful (Bian and Liebner 2005, Jeger et al. 2007).  Network models or neural networks are an 

artificial means to emulate the decision system in the human brain.  The network consists of 

three main layers: input layers, hidden layers, and output layers.  At the transition to a new 

layer are nodes where decisions are made.  The decisions are a Boolean function and are stored 

in the hidden layer that can be trained by the user.  As input data are fed into the model, the 

outputs are inspected by the user.  The results of the output are fed back to the hidden layer, 

illustrating a correct or incorrect answer.  The hidden layer learns by this feedback from the 

user, thereby becoming “intelligent” and capable of making independent decisions.  Some 

authors have termed this process as artificial intelligence (Perez and Dragicevic 2012).  

Therefore, no decision rules per se  are required by the user (Atkinson and Tatnall 1997).   

Most of the current research in neural networks is focused on the spread of infectious 

disease in animals (Jeger et al. 2007) and the classification of remotely sensed data.  Some 

specific examples of network models are: food webs, electrical power grids, and the spread of 

diseases in animal populations (Jeger et al. 2007).  These network examples use input layers 
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depicting organisms, power generating stations, or infected individuals, respectively.  The 

hidden layer stores the decision-making components that subsequently comprise the output 

layer and answers the questions of who is going to be consumed, where the power will go, and 

who will become ill.  In addition, these network examples are directional: 1) heterotrophic 

animals eat autotrophic animals, 2) power moves from where it is generated to where it is 

consumed, and 3) healthy animals become ill by coming in contact with infected animals. 

Agent-Base Models (ABM) or multi-agent systems are another class of models that has 

been used to model spread and outcomes of many natural and anthropogenic situations (Chan et 

al. 2010, Perez and Dragicevic 2012).  For example, ABM has been employed to model the 

spread of infectious disease in humans, wildfire spread (Bauer et al. 2009), and for decision 

making under landuse change scenarios (Deadman et al. 2004).  ABM contains three main 

components: 1) agents, 2) rules that drive the agents, and 3) interactions between agents via the 

rules (Sudhira et al. 2005).  The agents are a set of autonomous objects such as trees or animals, 

and have the ability to learn via artificial intelligence (Sudhira et al. 2005, Perez and Dragicevic 

2012), analogous to the hidden layer in the neural networks model.  The rules and interactions 

are often encapsulated into one element or process.   

These rules and interactions that drive the agents are pre-defined and can be simple or 

complex.  Chan et al. (2010) discuss the Boids (bird-like objects) (Reynolds 1987) ABM, 

which simulates flocking behavior in birds or schooling behavior in fish.  The Boids ABM uses 

either fish or birds as agents and has three simple rules and interactions: 1) Separation: steer to 

avoid crowding local individuals, 2) Alignment: steer towards the average heading of local 

individuals, and 3) Cohesion: steer towards the average position of local individuals.  The 

Boids model starts with a finite set of agents (e.g. fish or birds) randomly distributed in finite 

space and simulated in discreet steps thousands of times.  The results of Boids model 

simulation produces groups or clusters of agents over the finite space (Chan et al. 2010).  ABM 
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is also considered a bottom-up modeling method (Sudhira et al. 2005, Perez and Dragicevic 

2012), which means the smallest element (agent) drives the final outcome.   

Cellular automata (CA) is another modeling method used to model the spread of 

organisms over the landscape (Campos et al. 2008, Huang et al. 2008, Mathey et al. 2008, Chan 

et al. 2010, Perez and Dragicevic 2012, Rasmussen and Hamilton 2012).  Introduced by von 

Neumann (1951), the CA model has been described as a mathematical model consisting of 

simple and identical components that act together to form a complex behavior (Han et al. 

2012).  Zhou and Liebhold (1995) offer additional context for the CA definition: “a model 

acting upon a multi-dimensional matrix of cells, a cell may exists in only one possible state at a 

discrete time period, cell states are updated at every time step via simulation.”  CA is 

considered a bottom up modeling technique in which cells make neighborhoods, rules change 

neighborhoods in discrete time steps, and cells interact with rules and neighborhoods (Perez 

and Dragicevic 2012).  

CA contains three main components: 1) the cell or lattice as the primarily modeling 

element, 2) a finite number of cells comprising a neighborhood of cells, and 3) cell transition 

rules (Sudhira et al. 2005, Huang et al. 2008).  A cell can be a soil type, forest cover type, or 

animal population values.  A simple example of a CA model is Conway’s game of life model 

(Berlekamp et al. 2003), where a set of finite number of cells are randomly distributed across 

the landscape and have one, and only one, of two states (i.e. alive or dead).  Each cell changes 

its state at each discrete time step based upon three rules: 1) a live cell with at least three live 

adjacent neighbors will remain alive in the next time step, 2) a dead cell with at least three live 

adjacent neighbor will come to life in the next time step, and 3) if rule number 1 and 2 are false, 

then the cell dies in the next time step (Chan et al. 2010).  The results from thousands of 

simulations of Conway’s game of life produces a diverse set of aggregated cells 

(neighborhoods) based upon their state.  
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Zhou and Liebhold (1995) used CA in modeling the spatial dynamics of gypsy moths 

(Lymantria dispar L.) in Massachusetts.  Input data was gathered from historical maps (1961 – 

1991), depicting the movement of gypsy moths across the landscape.  The CA models were 

tested using eight different rules (transitional states): 1) simple Markov chain, 2) rook’s move, 

3) queen’s move, 4) weighted means, 5) weighted means in susceptible areas, 6) weighted 

means with frequency models, 7) weighted means with egg mass counts, and 8) weighted 

means with egg counts and only in susceptible areas.  In conclusion, models 6, 7, and 8 (above) 

closely followed the observed data. 

 CA and ABM share some general commonalities (Sudhira et al. 2005, Chan et al. 

2010, Perez and Dragicevic 2012), which are: 1) stochastic in nature, 2) spatially explicit, 3) 

depicting spread or movement over time, 4) modeling of an individual entity (e.g. a cell or 

agent), 5) bottom up modeling and 6) following user defined rules.  Both CA and ABM also 

require a programming language (e.g. C
++

, Python, or R), a mathematical algorithm, 

methodology, and rules.  In contrast, CA and ABM differ on three key elements.  CA uses cells 

and neighborhoods, whereas ABM uses agents.  CA implements an action on all the cells at a 

single time step, while ABM can selectively act upon individual agents at differ time periods.  

Finally, CA cells are not autonomous, while ABM agents are (Sudhira et al. 2005, Chan et al. 

2010).   

As a general rule, ABM is more complex than CA due to the ability to selectively act 

upon individual agents, at different time periods, coupled with the agent autonomy (Sudhira et 

al. 2005, Perez and Dragicevic 2012).  ABM has not been widely applied to modeling the 

spread of forest pests because many agents and interactions of a pest invasion are poorly 

understood, which creates a significant challenge when attempting to assemble data and 

programming the model.  In addition, ABM can require vast amounts of detailed information 

with respect to forest agents, such as trees, soils, or hydrology.  These agents may have unique 

parameters. For example, a tree can have diameter, height, health, and vigor.  Soils can contain 
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chemical constituents, texture, and depth.  Hydrology may be composed of water quality, 

volume, and temperature.  The collection of the forest agent parameters can be expensive and 

time consuming.  Moreover, modeling a forest landscape using ABM with detailed information 

requires complex, agent-based interactions that may necessitate a great deal of time to compute, 

as well as extensive computing power (Perez and Dragicevic 2012).  Therefore, ABM is 

typically applied to extremely small areas (e.g. 1 hectare) (Bauer et al. 2009, Perez and 

Dragicevic 2012). 

Perez and Dragicevic (2012) modeled a forest disturbance due to an infestation of 

mountain pine beetle (MPB) (Dendroctonus pondersae Hopkins.) in the native forests of 

Canada using a hybrid model.  This hybrid MPB model uses ABM, CA, and GIS.  The ABM 

components (i.e. the agents) were the insects interacting with the forest environment (e.g. tree 

species, tree height, tree diameter), which produced a surface of dead trees.  There were three 

CA components: 1) elevation, 2) aspect, and 3) a surface of dead trees derived from the ABM 

component coupled with a series of CA rules in a GIS.  The model was simulated over time and 

the output was a surface depicting tree health at some future time period.  Due to ABM 

complexity and computer limitations, the model could not be simulated at the landscape level.   

CA modeling structure, rules, and interactions with cells, rather than interactions at the 

agent level, offer advantages that make CA the preferred choice for modeling the spread of P. 

thomsoni over the landscape when compared to the ABM counterpart.  Therefore, CA is the 

modeling method employed for this study.  The objective of this study is to: 1) develop a CA 

model that simulates the spatial and temporal dynamics of P. thomsoni observed from 2006 to 

2010 in the Anchorage bowl, 2) conduct a sensitivity analysis on the model, and 3) adapt the 

model to predict historical and future trends in severity of P. thomsoni. 
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MATERIALS AND METHODS 

 

Study Area 

The entire city of Anchorage, Alaska as defined by the United States Census Bureau is 

450,850 ha (Figure 1) (ESRI 2007).  However, the study area called the Anchorage Bowl is 

20,807 ha in size and a subset of the 450,850 ha.  The Anchorage Bowl is the location where 

most residents in Anchorage reside and is the bounding region of the study area.  Birch trees 

(host) are present at some level throughout study area. 

In 2006, the US Forest Service (USFS) identified sites for a long-term monitoring 

network to study the distribution, spread, and severity of P. thomsoni in the Anchorage Bowl.  

The three primary objectives of the study were: 1) examine the trends in severity of P. thomsoni 

in the Anchorage Bowl using various methods to characterize the global averages, 2) generalize 

the spatial models of the distribution of P. thomsoni , and 3) compare and contrast spatial 

distributions across years (Lundquist et al. 2012) .   

Six years of field data (2006 – 2011, inclusively) were collected in the study area; 

however, only five years of field data were used for model development (2006 – 2010).  These 

data include the intensity (number of lesions on tree leaves) from the P. thomsoni larva in the 

study area.  Tree selection was somewhat subjective and limited to public property (i.e. parks, 

road rights of way, and open spaces).  The same trees were resampled from year-to-year 

whenever possible and the samples were spread throughout the study area.  On each tree, 

technicians selected and pruned a branch from the outer canopy.  Fifty leaves were randomly 

selected from the pruned branch, and the number of leaves with at least one lesion was counted.  

The results from this technique produced severity values ranging from 0 – 50, where 50 is 

100% infested (Lundquist et al. 2012) . 
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The Model 

A CA model was developed to describe the spatial-temporal dynamics of the severity 

of P. thomonsi in the study area, using the statistical programming language R (R Development 

Core Team 2008) coupled with a library called RandomFields (Schlather 2012). Assume that S0 

represents the severity of the infestation in some region D in time period t = 0. The severity in 

the next time period (S1) was modeled using the following relationship: 

ttt SSS  1   

 tttt tISfS ,,,1      [2]

  

where tS is the change in severity observed in time period t, which is a function of St-1 the 

severity of the infestation in the previous time period, It an indicator variable identifying if the 

area of interest is associated with an increase or decrease in severity and ε represents an error 

term. A flow chart of the model is provided in Figure 2. 

Areas of Random Size and Shape 

Following is a brief description of the algorithm used to generate areas of random size 

and shape. The function GaussRF in the R library RandomFields was used to generate a 

spatially correlated surface with mean zero and variance = 1 (Figure 3A).  A Matern covariance 

function (nugget = 0, range = 1134 m (3685 ft), smoothness = 6) was used to define the spatial 

structure of the simulated surface. Using these parameters, the function GaussRF generated 

three-dimensional surfaces with z-values ranging over the interval [-3, 3]. Next, all negative z-

values were set to zero (Figure 3B).  Finally, the size and shape of the random area was defined 

as those areas of the truncated surface in which the z-value exceeds some threshold value 

(Zcut) selected at random. The equation: Zcut = 1.49 - 2.78*R, where R is a random number 

selected uniformly over the interval [0.1, 0.5] was used to define a threshold such that the 
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resulting area (Parea) was proportional to the random number (Figure 4).  The Zcut equation 

was empirically derived from a series of model simulations.  In the example depicted in Figure 

3C, the random number 0.43 (Zcut = 0.30) generated an area that covered 27% of the study area 

(Figure 3C), while the random number 0.14 (Zcut = 1.10) generated an area that covered 4% of 

the study area. The algorithm generates areas that cover anywhere from 3% to 69% of the study 

area, with an average of 26.7% (Figure 5).   

Calibration 

To evaluate the algorithm for generating areas of random size and shape, the areas of 

overlap between successive areas generated at random were examined. Let A and B represent 

two areas generated at random with areas A (A) and A (B), respectively. It is also assumed that 

the process is restricted to a particular region D with area A (D).  Then, A and B are 

independently and identically distributed (iid) uniformly on D, i.e. 

P (A D, BD) = P (AD) P (BD)

 

 

 

 

 

A B

D D


A A

A A
   [3] 

 Uniformity refers to the fact that events in question exhibit no tendency to occupy 

particular regions of the study area, while independence suggests that the location of a given 

event is determined without reference to any other event. Under these conditions, the 

conditional probability of observing A given B (i.e. area B overlaps area A) is given by: 

   
 

 
 

 

 

,
|

P A D B D A
P A B P A

P B D D

 
  



A

A    [4]

 

This suggests that the proportion of overlap of areas generated at random should equal the area 

of the random shapes expressed as a proportion of the total area.  

 Empirical evidence provided five estimates of the overlap of regions experiencing an 

increase in severity. Depending on the number of years separating these random events, the 
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amount of overlap varies. If there is at least two years separating the random events, the amount 

of overlapping area observed was 19%, 22% and 24%. The algorithm generates areas of 

random size and shape with an overlap ranging from 0% to 65%, with an average overlap of 

26.9% (Figure 6).  The areas of overlap generated by the algorithm are in close agreement with 

the empirical data, indicating that the areas generated by the algorithm to identify areas in 

which the severity of P. thomsoni increases are of the appropriate size. The similarity of the 

distribution of the area of overlap with the distribution of the relative size of the random areas 

(Figure 6) is supported by the relationship expressed in Equation 4.  

 If the random events were sequential in time, the observed overlap for three years was 

10%, 10% and 11%. To account for this difference, Zcut was multiplied by 1.85. This 

generated areas of random size and shape that are sequential in time and with an overlap 

ranging from 3% to 62%, with an average of 12.2% (Figure 7).  

Trend Surface Model 

 Regression analysis was used to describe the change in severity of individual sample 

trees in each time period using the model: 

   tttt ISS    2110      [5]

  

where It is an indicator variable that takes on the value of zero if the severity of the sample tree 

decreased and one if the severity increased in time period t, 0 and 2  are the intercepts and 

1  is the slope, and where the other variables are as previously defined. 

 Regression analysis was used to test the null hypothesis that the regression coefficients 

in Equation 5 are independent of time. If the null hypothesis was rejected, regression models 

were developed to describe how the regression coefficient changed with time. Regression 

models with different functional forms (i.e., linear, quadrate, log, cosine, etc.) were evaluated. 
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 The error component of the trend surface model (Equations 2 and 5) was simulated 

using the function GaussRF to generate a spatially correlated surface, with mean zero and 

variance of 4. A Matern covariance function (nugget = 0, range = 1134 m (3685 ft), smoothness 

= 3) was used to define the spatial structure of the simulated surface of the errors. The error 

surface was added to the trend surface model to represent the variability in severity across the 

bounded region D in a given time period. 

Model Evaluation 

 Monte Carlo simulations were used to evaluate the model in estimating the change in 

severity during 2006-2011. The model requires a surface representing the severity in the base, 

or starting year (2006). The function GaussRF used in generating the random groups was used 

to generate a spatially correlated surface, with a mean severity of 26.9 and variance of 3. A 

Matern covariance function (nugget = 0, range = 1134 m (3685 ft), smoothness = 3) was used 

to define the spatial structure of the simulated surface of the severity in 2006.  The model was 

simulated 100 times per time period and information on the minimum, maximum, and average 

severity in each time period was recorded. The information on the minimum and maximum 

values were used to construct a 99% simulation envelop around estimates of the average 

severity. If the observed severity values were contained within the simulation envelops, there 

was not enough evidence to reject the null hypothesis that the model adequately described the 

changes in severity of P. thomsoni over the time period of interest.  

Sensitivity Analysis 

 Sensitivity analysis was performed to evaluate the impact of changing key input 

parameters about which there is some uncertainty on estimates of the average severity of the P. 

thomsoni infestation over the time period 2006-2018. The results of the sensitivity analysis 

were presented in the form of graphs. 
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Base model (2006): μ = 26.9, σ
2
 = 3, CV =  = 0.064. 

1. Increase the mean severity in the base year: μ = 40; σ
2
 = 3, CV = 0.043. 

2. Decrease the mean severity in the base year: μ = 10; σ
2
 = 3, CV = 0.173. 

3. Increase the mean severity and variance in the base year: μ = 40; σ
2
 = 6.6, CV = 0.064. 

4. Decrease the mean severity and variance in the base year: μ = 10; σ
2
 = 0.41, CV = 0.064. 

Error surface associated with the trend surface model: μ = 0; σ
2
 = 4. 

5. Increase variability in the error surface: σ
2
 = 8. 

6. Decrease variability in the error surface: σ
2
 = 2. 

Change the parameters of the regression model used to predict the intercept of the trend surface 

model describing the change in severity of trees in an area of decreasing severity. 

  tot tf   10
ˆ . 

7. Decrease the value of the intercept: -6.0  

8. Decrease the value of the intercept: -8.0 

9. Reduce the slope: 0.7  

Change the parameters of the regression model used to predict the intercept of the trend surface 

model describing the change in severity of trees in an area of increasing severity. 

  tt tf   1002
ˆ . 

10. Decrease the value of the intercept: 12  

11. Increase the value of the intercept: 25 

Change the parameters of the regression model used to predict the slope of the trend surface 

model.    tt tf   101
ˆ . 

12. Increase the value of the intercept:  -0.1 
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13. Decrease the value of the intercept: -0.4 

 Results of the sensitivity analysis were used to identify key parameters that could be 

modified to simulate the start of the infestation as close to the first sighting of P. thomsoni and 

to match with the observed data in 2006.  A Chi-squared type of goodness-of-fit statistics was 

used to evaluate the fit of the different scenarios evaluated.   
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Figure 1.  Study area for modeling the spatial and temporal change in severity of P. thomsoni 

in the Anchorage Bowl, Alaska. 
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Generate spatially correlated 

surface    with constant mean to 

represent the   severity in the 

base year 2006 (S0). 

,3,2,1,1   tSSS ttt

  STEP 1 

STEP 2 

Estimate severity in subsequent years  

 ,,1 ttt ISfS 

The severity in previous year (St-1) influences the 

change in severity in the current year (St) 

It - The change in severity depends on if the 

change is in an area of increase or decrease in 

severity  

Each year an area of random size and shape is 

generated to represent the area in which the 

severity will change 

ε - Surface of spatially correlated errors with mean of zero 

 

Figure 2.  A model flow chart illustrating the various steps and processes used for modeling the 

severity of P. thomsoni in the Anchorage Bowl, Alaska.  The model consists of two main 

components. The first component is an algorithm that generates areas of random size and shape 

(e.g. random groups) within some bounded region D to represent areas in which the severity will 

increase. The second component of the model is a trend surface model that describes how the 

severity changes over time depending on if the change in severity is associated with an area in 

which the severity increases or decreases. 
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Figure 3.  Scatter plot depicting the relationship between the random number (R) and the area of 

the random shapes expressed relative to the total study area (Parea). The solid line has a slope of 

one, while the dashed line is the line of best fit. The data is from 1,000 simulations of the 

algorithm used to generate areas of random size and shape for the P. thomsoni spread model in 

the Anchorage Bowl, Alaska. 
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Figure 4.  Steps used to generate areas of random size and shape to identify areas in which the 

severity of P. thomsoni increases or decreases in the Anchorage Bowl, Alaska. A) Step 1 – 

Generate a spatially correlated random field (parameters: μ = 0, σ
2 
= 1, θ (smoothness) = 6, range 

= 3685 ft, nugget = 0, model = Matern); B) Step 2 – truncate negative values (Z-scale) to zero; c) 

Step 3 – generate a random number uniformly over the interval 0.1 to 0.5 (Zcut) to create a binary 

surface from B. Values greater than Zcut represents the area of random size and shape associated 

with an increase in severity (1 = white), while values less than Zcut represent areas associated 

with a decrease in severity (0 = black). The variable Parea is the proportion of the total area 

associated with the area delineated as an increase in severity. 
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Figure 5.  Histogram of 1000 areas, expressed as a proportion of the total area (Parea) in the 

Anchorage Bowl, Alaska, study area for P. thomsoni infestation.  This histogram was created 

using the algorithm to generate areas of random size and shape. The algorithm generated areas 

that covered anywhere from 3% to 69% of the study area, with an average of 26.7% (solid 

vertical line).   

 

 

Area (Proportion)

F
re

q
u

e
n

cy

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0
5

0
1

0
0

1
5

0



23 
 

 

Figure 6.  Histogram of 1,000 areas of overlap, expressed as a proportion, of two independent 

areas created using the algorithm to generate areas of random size and shape in the Anchorage 

Bowl, Alaska, study area for P. thomsoni infestation.  The algorithm generated areas of overlap 

that covered anywhere from 0% to 65% of the second random area, with an average of 26.9% 

(solid vertical line). 
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Figure 7.  Histogram of 1,000 areas of overlap, expressed as a proportion of two independent 

areas created using the algorithm to generate areas of random size and shape in the Anchorage 

Bowl, Alaska, study area for P. thomsoni infestation.  The algorithm generated areas of overlap 

that are sequential in time and covered anywhere from 3% to 62% of the second random area, 

with an average of 12.2% (solid vertical line). 
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RESULTS 

Trend Surface Model 

 The fitted regression models used to describe the change in severity of P. thomsoni in 

each of the four time periods are summarized in Table 1.  The regression models had R
2 
values 

ranging from 0.58 (T2) to 0.66 (T3).  A plot of the fitted model for the 2006 – 2007 time period 

(T1) is displayed in Figure 8 and depicts how the average severity changed in areas that showed 

an increase in severity (solid line) and in areas that showed a decrease in severity (dashed line) as 

a function of the severity in the previous time period.  In areas experiencing an increase in the 

severity of the infestation, heavily infested trees were unable to increase in severity as much as 

the lightly infested trees.  This could be thought of as a density-dependent factor influencing the 

ability of the infestation to exceed some upper limit on the severity of the infestation.  In contrast, 

heavily infested trees were able to substantially reduce the severity of their infestation compared 

to lightly infested trees.  This could be thought of as a plant defense mechanism.   

 The next step in the analysis was to develop models to describe how the regression 

coefficients in Table 1 change over time.  Various regression models were evaluated to select a 

functional form (i.e. linear, quadratic, log, and cosine) that best fit the data and had good 

asymptotic and harmonic properties when the model was used to simulate the infestation into the 

future.  The two intercepts terms, 0̂ and 02̂  were modeled using a natural log function while 

the slope, 1̂ was modeled using a cosine function (Table 2).  It was observed that a stronger 

temporal correlation existed between 02̂  than with the coefficient 2̂ .  As a result, estimates of 

2̂  
were obtained by subtraction ( 2̂ = 02̂

 
- 0̂ ).  While the log models did not necessarily have 

the best fit, they asymptotically approached an upper or lower limit unlike other functional forms 

evaluated.  Both log models had R
2
 values around 0.90.  A cosine model was selected to describe 

the change in the slope coefficient 1̂  
over time to mimic the harmonic or cyclic changes 
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associated with some insect populations (Haynes et al. 2009).  A six-year cycle best described the 

data centered on year three of the study.  These harmonic changes can be driven by predation 

from natural enemies, environmental changes, or density-dependent factors.  The fitted models 

accounted for 76% of the variability observed in the estimated regression coefficients. 

 Plots of the fitted models are displayed in Figures 9 through 11.  Perspective plots of the 

full model are displayed in Figures 12 and 13, which show how the changes in severity (ΔSt) 

varied over time and the influence of the severity in the previous year for the areas associated 

with a decrease and increase in severity, respectively. 

Model Evaluation 

The results of running the model 100 times simulate the changes in the severity of the 

infestation of P. thomsoni from 2006 – 2011 is shown in Figure 14.  The observed changes in 

severity fell within the 99% simulation envelop and closely followed the predicted mean severity 

over this time period, thereby validating the model.  In 2011, the predicted mean severity equaled 

the observed mean severity of nine.  This latter estimate of severity was not used in developing 

the model; moreover, it provides additional evidence to evaluate the overall fit of the model.   

 To further evaluate the model, comparisons were conducted to determine how the 

severity changed over time in areas exhibiting an increase (Figure 15) or a decrease (Figure 16) in 

severity.  The simulated trend closely resembled the observed trend over time.  The simulated 

model tended to overestimate the increase in severity in all the time periods.  An important 

consideration was that the model mimicked the observed trends in the data and not necessarily the 

absolute differences between the estimates of the severity from the simulation model and the field 

data. 
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Sensitivity Analysis 

The sensitivity analysis was conducted on selected model parameters.  All sensitivity 

analysis was done for a 12-year period (2006 – 2018) and 100 iterations.  Results were 

summarized for each analysis in the form of a graph. 

Changes in the base model 

Changes in base model were implemented by changing the mean (μ) and variance (σ
2
) 

(Figure 17).  This addresses how sensitive the model was to changes in these two variables of the 

base input model.  Through inspection, it was observed that changing μ from the base values of 

26.9 to 10 or 40 made a significant change in the level of severity in the first three years (t = 1 to t 

= 3) of the simulations (Figure 17 lines B, C, D, and E).  This was intuitive and expected.  

Beginning a simulation with a different mean value will indeed produce results reflecting the 

differences in the mean over time.  Changing σ
2 
from a base value of 3 to either 6.6 or 0.41 (lines 

C and E Figure 17, respectively) had little effect on the predicted mean severity; however, 

changing the variance influenced the width of the simulation envelop.  As the variability in the 

severity in the base year increased, the width of the simulation envelop also increased.  An 

interesting observation of Figure 17 illustrates that after four years, regardless of μ or σ
2
, the 

predicted mean severity begins to converge (line A Figure 17) and, after ten years, the estimates 

of the mean severity are nearly identical. 

Changes in the error surface model  

Changing the variability in the random error surface had little influence on the estimates 

of the mean severity over time (Figure 18).  It did, however, influence the width of the simulation 

envelop: the more variability in the error surface, the wider the simulation envelops.   

Changes in the ability of a tree to recover 

Changes in the intercept and slope of the log model used to describe the change in the 

intercept term 0̂  
in the trend surface model are displayed in Figure 19.  Increasing the rate (i.e. 
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0̂  
becoming more negative) at which a lightly infested tree recovers from an infestation reduces 

the predicted mean severity over the period of the simulation (Figure 20).  Reducing the rate at 

which the intercept decrease over time also led to a decreased in the predicted mean severity.  A 

tree can retain its ability to recover from an infestation, thereby lowering the overall level of 

severity. 

Changes in the ability of a tree to become infested 

Changes in the intercept ( 02̂ ) of the log model are provided in Figure2.  The 02̂  

intercept represents the susceptibility of the tree to become infested.  Increasing the sensitivity of 

a tree to infestation increases the predicted mean severity, while a decrease in sensitivity 

decreased the predicted mean severity (Figure 22).  Sensitivity as used here refers to a tree’s 

ability to defend itself against an infestation. 
  

Changes in the slope of the trend surface model 

Changes in the intercept of the cosine model describing how the slope ( 1̂ ) of the trend 

surface model changed over time are depicted in Figure 23.  As the rate of decrease increased, the 

predicted mean severity decreased (Figure 24).  As the slope of the trend surface model became 

more negative, density-dependent factors limited the ability of P. thomsoni to increase the 

severity of the infestation and increased a tree’s ability to recover from an infestation.  The net 

result was an overall decrease in the level of severity. 

Hindcasting and Forecast the Severity of the P. thomsoni Infestation 

The model was modified to simulate the initial phase of the simulation and to identify the 

year the infestation started (i.e. hindcasting).  The sensitivity analysis identified the parameters of 

the trend surface model associated with a trees susceptibility to become infested 02̂ as the most 

responsive to simulate the rapid increase in the initial phase of the infestation.  Three simulations 

were run for a 20-year time period (1998 – 2018) during which the parameter 02̂  was multiplied 
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by an expansion factor of 2.5, 2.75, and 3.  A plot of the predicted mean severity over the 20-year 

time period was evaluated for correspondence to the observed severity levels (2006 – 2010).  A 

Chi-square type goodness-of-fit was calculated to select the best fitting scenarios.  Results of this 

analysis are summarized in Table 3 and the final model is presented in Figure 25. 

The results from the simulation from the time period 1998 to 2018 indicated that the 

expansion factor of 2.75 provided the best model.  The expansion factor allowed the change in 

mean severity of P. thomsoni to increase from 1998 until at least 83% of the study area was 

infested.  At this point, the model parameters were allowed to proceed as usual and the expansion 

factor was removed.   

 The results of the modeling indicate the infestation began in 1998, at which time it was 

assumed the average severity was near zero.  The severity of the infestation increased rapidly, 

reaching a peak in 2004 with an average severity of 37.2.  During this time period, the trees were 

assumed to have no defenses against P. thomsoni.  Density-dependent factors were in play by 

limiting the rate in which heavily infested trees could increase in severity.  It took on average six 

years for the infestation to spread throughout the Anchorage Bowl.  After six years, there was 

very little area available for new infestations.  As a result, P. thomsoni must begin to reinfest 

areas.  At this point, plant defenses began to limit the ability of P. thomsoni to heavily infest a 

tree.  Increased population sizes of local parasitoids may also play a role in the decreased trend in 

severity.  The severity continued to decrease until the 2010 – 2011 time period, at which time the 

severity leveled off. 
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Table 1.  Regression models coefficients predicting the change in the severity (ΔSt) of P. 

thomsoni in the time period t as a function of the severity of the infestation in the previous time 

period (St-1) and if the trees are located in an area associated with an increase (It = 1) or decrease 

(It = 0) in severity in time period t.  The numbers in parentheses are the estimated standard errors. 

Coefficient 
Time Period 

T1 T2 T3 T4 

β0 
-4.723 
(1.967) 

-3.208 
(1.725) 

-2.619 
(1.411) 

-2.735 
(1.043) 

β1 
-0.206 
(0.056) 

-0.342 
(0.054) 

-0.418 
(0.055) 

-0.291 
(0.046) 

β2 
22.244 
(1.802) 

16.891 
(1.946) 

17.387 
(1.653) 

15.646 
(1.173) 

R2 0.630 0.580 0.657 0.635 

sxy 9.020 9.020 8.962 7.068 

 n 132 132 150 150 
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Table 2.  Regression models predicting how the regression coefficients of the model describing 

the change in the severity ttt ISS 2110
ˆˆˆ    of P. thomsoni in a given time period (t = 1, 

2, 3,…) changes with time.  The numbers in parentheses are the estimated standard errors.   

Note 2̂  = 02̂
 
- 0̂ .

 
  

Variable 
0̂  

1̂  02̂
 

Intercept 
-4.538 
(0.332) 

-0.255 
(0.022) 

17.055 
(1.098) 

ln(t) 
1.532 
(0.349) 

 
-2.930 
(1.156) 

cos(t-3)  
-0.142 
(0.033) 

 

R2 0.910 0.900 0.760 

sxy 0.364 0.034 1.203 

 n 4 4 4 
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Table 3.  Expansion factor – The factor used to increase the rate of infestation relative to that 

observed in 2006.  Chi-square measure of the goodness-of-fit (GOF) of the observed and 

expected severity over the time period: 2006-2011.  The observed severity in 2006 was equal to 

26.9. 

   

Expansion 
Factor 

Start of 
Infestation 

Maximum 
Severity 

Year of 
Maximum 

severity 

Severity 
in 2006 

Chi-
square 

GOF 

2.5 1999 33.3 2005 27.6 1.58 

2.75 1998 37.2 2004 28.5 1.11 

3.0 1998 42.7 2004 31.1 1.48 
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Figure 8.  The output results for a single year of the trend surface model. The graph shows 

changes in the severity of P. thomsoni in the Anchorage Bowl, Alaska. 

ttt ISS 2110
ˆˆˆ    where ΔSt = change in severity for current year, and 0̂ = Intercept, 

1̂ = slope, 2̂  = intercept, st – 1 = change in severity previous year.  The upper graph shows areas 

with increasing severity ((It = 1) .  The lower graph shows areas with decreasing severity (It = 0) 

and the middle graph shows areas of no change. 0̂ , 1̂ , and 2̂  are separate regression 

equations: 2̂  
=

 02̂ - 0̂ . 
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Figure 9.  The change over time of the regression coefficient 0̂  in the trend surface model 

describing the changes in severity (Δ Si ) of P. thomsoni in the Anchorage Bowl, Alaska, from 

2006 - 2010.  The solid line represents observed regression line and the dotted line represents the 

fitted log model, where T1 = change in time from 2006 – 2007.   
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Figure 10.  The change over time of the regression coefficient 02̂  in the trend surface model 

describing the changes in severity (Δ Si ) of P. thomsoni in the Anchorage Bowl, Alaska, from 

2006 - 2010.  The solid line represents observed regression line and the dotted line represents the 

fitted log model, where T1 = change in time from 2006 – 2007.  
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Figure 11.  The change over time of the regression coefficient 1̂  in the trend surface model 

describing the changes in severity (Δ Si ) of P. thomsoni in the Anchorage Bowl, Alaska, from 

2006 - 2010.  The solid line represents observed regression line and the dotted line represents the 

fitted log model, where T1 = change in time from 2006 – 2007.   
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Figure 12.  Perspective plot of areas of decrease It = 0, showing how the change in severity (ΔSt ) 

is influenced by the year and the severity lagged by one year (st – 1) for the severity of P. thomsoni 

in the Anchorage Bowl, Alaska, when year = 6 = actual year 2006.   
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Figure 13. Perspective plot of areas of increase It = 1, showing how the change in severity (ΔSt ) 

is influenced by the year and the severity lagged by one year (st – 1) for the severity of P. thomsoni 

in the Anchorage Bowl, Alaska, when year = 6 = actual year 2006. 
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Figure 14.  Observed (solid thick line) and predicted (dashed line) changes in the severity of the 

P. thomsoni infestation in the Anchorage Bowl (study area), Alaska, from 2006 to 2011.  The 

dashed line represents the average prediction severity while the dotted lines represent the upper 

and lower 99% simulation envelop from 100 realized of the simulated model.  The triangle 

symbol at the 2011 time period is the mean observed severity for 2011.  This observed data point 

for the year 2011 was not used for model generation, when year = 6 = actual year 2006. 
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Observed 

 

Simulated 

Figure 15.  Severity of areas with increasing severity (It = 1) for observed and simulated data.  

The graph on the top depicts the change of severity of P. thomsoni in the Anchorage Bowl, 

Alaska, with increasing severity of the observed field data from 2006 to 2010.  The graph on the 

bottom depicts the change of severity with increasing severity of the simulated data from 2006 to 

2011.  Severity is equal to the number of infested leaves out of 50 total leaves examined 

(Lundquist et al. 2012) , when year = 6 = actual year 2006. 
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Observed 

 

Simulated 

Figure 16.  Severity of areas with decreasing severity (It = 1) for observed and simulated data.  

The graph on the top depicts the change of severity of P. thomsoni in the Anchorage Bowl, 

Alaska, with decreasing severity of the observed field data from 2006 to 2010.  The graph on the 

bottom depicts the change of severity with decreasing severity of the simulated data from 2006 to 

2011.  Severity is equal to the number of infested leaves out of 50 total leaves examined 

(Lundquist et al. 2012), when year = 6 = actual year 2006. 
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Figure 17.  Influence of changing the mean severity and variance in the base year (2006) on the 

change in severity of P. thomsoni from 2000 to 2018 in Anchorage Bowl, Alaska: A) Base Model 

μ = 26.9, σ
2
 = 3, and CV =  = 0.064, B) Mean = 40, σ

2
 = 3, and CV = 0.043, C) μ = 40; σ

2
 = 

6.6, and CV = 0.064, D) μ = 10; σ
2
 = 3, and CV = 0.173, and E) μ = 10; σ

2
 = 0.41, and CV = 

0.064, when year = 6 = actual year 2006. 
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Figure 18.  Sensitivity analysis of the random error surface applied to the trend surface model for 

P. thomsoni spread from 2006 -2018 in the Anchorage Bowl, Alaska: A) Simulated Mean (σ
2
 = 

4), B) σ
2
= 8, and C) σ

2
 = 2, when year = 6 = actual year 2006. 
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Figure 19.  Sensitivity analysis of the trend surface model coefficient 0̂  for P. thomsoni from 

2006 -2018 in the Anchorage Bowl, Alaska: A) Base model 0̂  = -4.538418943 + 1.532291784 * 

ln(t) , B) 0̂  = -6.0 + 1.532291784 * ln(t), C) 0̂  = -8.0 + 1.532291784 * ln(t), and D) 0̂  = -

4.538418943 + 0.7 * ln(t); where ln is the natural log, t = time in years, and when year = 6 = 

actual year 2006; t = 1.  
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Figure 20.  Sensitivity analysis of the trend surface model coefficient 0̂  for P. thomsoni from 

2006 -2018 in the Anchorage Bowl, Alaska: A) Simulated Mean, B) 0̂ = -6.0 + 1.532291784 * 

ln(t), C) 0̂  = -8.0 + 1.532291784 * ln(t), and D) 0̂  = -4.538418943 + 0.7 * ln(t); where ln is 

the natural log, t = time in years, and when year = 6 = actual year 2006; t = 1.  
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Figure 21.  Sensitivity analysis of the trend surface model coefficient 02̂ for P. thomsoni from 

2006 -2018 in the Anchorage Bowl, Alaska: A) Base model 02̂  = 17.04998835 - 2.93085669 * 

ln(t), B) 02̂  = 12.0 - 2.93085669 * ln(t), C) 02̂  = 25.0 - 2.93085669 * ln(t), where 2̂  
= 02̂

 
- 

0̂  and ln is the natural log, t = time in years, and when year = 6 = actual year 2006; t = 1.  
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Figure 22.  Sensitivity analysis of the trend surface model coefficient 02̂ for P. thomsoni from 

2006 -2018 in the Anchorage Bowl, Alaska: A) Simulated Mean, B) 02̂ = 12.0 + 2.93085669 * 

ln(t), C) 02̂  = 25.0 + 2.93085669 * ln(t), where 2̂  
= 02̂

 
- 0̂ .   
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Figure 23.  Sensitivity analysis of the trend surface model coefficient 1̂  for P. thomsoni spread 

from 2006 - 2018 in the Anchorage Bowl, Alaska: A) Base model 1̂  = -0.255196006– 

0.142286324 * cos (t-3), B) 1̂  = -0.1 – 0.142286324 * cos (t-3), and C) 1̂  = -0.4 – 

0.142286324 * cos (t-3) , where cos = cosine and t = years (e.g. 2006 = 0 and 2020 = 14).   
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Figure 24.  Sensitivity Analysis of the trend surface model coefficient 1̂ for P. thomsoni from 

2006 -2018 in the Anchorage Bowl, Alaska: A) Simulated Mean, B) 1̂  = -0.1 – 0.142286324 * 

cos (t-3), and C) 1̂ = -0.4 – 0.142286324 * cos (t-3). 
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Figure 25.  Using hindcasting and forecasting methods to emulate the P. thomsoni infestation 

from the first sighting to 2018.  The three scenarios were designed to mimic the first sighting of 

P. thomsoni in 1996 and to match with the observed data in 2006. The three scenarios use a 2.5, 

2.75 or 3.0 expansion factor.  This graph is the result of 20 simulations. 
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DISCUSSION 

 Lundquist et al. (2012) discussed six elements that might help explain the observed 

spatial and temporal patterns: 1) density-dependent forces, 2) natural enemies, 3) induced 

resistance, 4) dispersal, 5) spatial heterogeneity and distribution, and 6) multiple causes (a 

combination of the previously mention factors). 

Density-dependent forces could cause areas with high density larval populations to be 

crowded, such that larvae may compete with each other or become cannibalistic, increasing 

mortality while decreasing birth rates (MacQuarrie 2008). It is common, especially late in the 

season, to find two or more larvae sharing a lesion formed when two or more individual blotches 

coalesced (MacQuarrie 2008). Although P. thomsoni has been dominant since birch leaf miners 

were first monitored in 2006.  In 2011 the abundance of  H. nemoratus, which can often reside on 

the same leaf, has surpassed P. thomsoni abundance (USFS 2011). The role of H. nemoratus, and 

if and how it interacts with P. thomsoni may offer insight into the relative importance of density-

dependent forces.  

Anderson and May (1980, 1981) suggested that cyclic fluctuations of insect populations 

could be driven by natural enemies. Impacts of fluctuating native predator populations could 

affect the distribution of P. thomsoni. The roles of natural enemies of urban forest insects are 

considered by many to be significant factors controlling fluctuations and stability of host insect 

populations (Elton 1927, Andrewartha and Birch 1954). Reeve (1988) coins the term 

“equilibrium theory” as “the regulation of insect populations about an equilibrium point, by the 

density-dependent coupling between the insect and its natural enemies…” A massive body of 

literature has focused on this subject (Dwyer et al. 2000, Dwyer et al. 2004).  

The city of Edmonton, Alberta experienced a similar problem with the P. thomsoni 

during the 1970s and 1980s.  This nearly 20-year infestation ended with the emergence of a 

native parasitoid, Lathrolestes luteolator (Gravenhorst.), which switched hosts and became 

parasitic to P. thomsoni (Digweed 1998). This parasitoid is credited with decreasing the 
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population of P. thomsoni in Edmonton (Snyder et al. 2007).  In 2003, a cooperative consisting 

of: USDA Forest Service, Canadian Forest Service, and the University of Alberta, began a  

biological control program featuring the parasitoid Lathrolestes thomsoni in Anchorage (Soper 

2011).  

Changes in tree physiology, which influence susceptibility, could result in delayed 

induced resistance.  Plants defend themselves against herbivory in many ways. These plant 

defense mechanisms can be classified as constitutive or induced (Lundquist  et al. 2012). 

Constitutive mechanisms are pre-existing chemical or structural barriers that prevent, reduce, or 

otherwise minimize the impact of a plant feeding insect. Induced mechanisms are stimulated by 

non-lethal ingress of an herbivore or other source of damage or injury (Karban and Baldwin 1997, 

Tollrian and Harvell 1998, Agrawal et al. 1999). The induced resistance hypothesis states that 

plants attacked by insect herbivores are stimulated to produce chemicals that negatively impact 

the development and growth of the insects. This phenomenon has been examined in several host-

insect herbivore systems (Ohgushi 2005), especially birch species (Neuvonen and Niemelä 1991). 

According to Bryant et al. (1993), delayed induce response is expressed in Alaska paper birch as 

a prolonged condition of decreased leaf food quality for early instar insect defoliators, smaller 

leaf size, declining nitrogen levels in leaves, and increasing concentrations of phenolics and other 

secondary compounds. 

One way that insects respond to plant defense mechanisms is to modify feeding behavior 

(Stamp and Casey 1993) by dispersing to different locations, which could be reflected in the 

changing spatial distribution of P. thomsoni.  Dispersal is important for all insect populations at 

all spatial scales (Sharov 1996).  Generally, insect herbivores occupy hosts growing in habitats in 

which insects and plants are adapted for growth and reproduction. Often, the factors that drive 

dispersal and the resulting patterns of distribution are difficult to determine. Habitat selection 

theories (Rosenzweig 1991) and the dynamics of insect populations have been the focus of 
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countless studies (Sharov 1996), and many population dynamics models have been developed 

specifically for forest and tree insects (Berryman 1986, Liebhold 1994). 

Many studies have found that spatial variation and environmental heterogeneity are 

significant factors in determining pest distributions (Garvie and Golinski 2010).  The application 

of metapopulation principles to forest entomology is relatively new; however, there seems to be 

increasing interest in this approach from modelers (Burton and Travis 2008, Goodnight et al. 

2008, Sun et al. 2008, Cronin 2009, Han et al. 2009, Mistro et al. 2009, Soubeyrand et al. 2009, 

Garvie and Golinski 2010). According to Cronin (2009), “movement, and particularly the 

colonization of new habitat patches, remains one of the least known aspects of the life history and 

ecology of a vast majority of species.” 

Natural enemies and plant quality may keep the herbivore population in check.  

According to Ylioja et al. (1999), “many factors that affect population abundance… can act in 

either a density dependent or density independent fashion, but the relative contribution of 

exogenous and endogenous effects remains an open question …” According to Hunter  and Price 

(1992), “The real issue is whether or not we can accept the fact that many ecological factors 

simultaneously determine the patterns we observe in natural communities (Southwood 1975, 

1977b, Quinn and Dunham 1983, Courtney 1988, Leibold 1989), that the dominant forces will 

vary within and among systems (Karr et al. 1992), and that incorporating and measuring that 

variability will increase our understanding of population and community ecology.” 

The spatial heterogeneity expressed by P. thomsoni emphasizes the need for spatially 

explicit studies (Sun et al. 2008). According to Soubeyrand et al. (2009), “…we are usually 

limited in our ability to investigate the numerical dynamics of natural populations across large 

spatial scales and over long periods of time.”  The dynamics that result from interactions between 

the P. thomsoni and its host (Strong et al. 1984), and potential natural enemies (Reeve 1988; 

1990), are greatly influenced by this patchy landscape pattern (Comins et al. 1992). Many studies 

have shown and discussed the importance of patchy environments in promoting sustainable host 
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populations (Hassell et al. 1991). Reeve (1988) described one possible mechanism for stability in 

patchy environments: “…insect populations persist because they are divided into a large number 

of subpopulations, weakly linked by migration; because the subpopulations experience different 

environments, they are to some extent asynchronous, making the simultaneous extinction of all 

subpopulations unlikely.”  From an insect’s point of view, spatially asynchronous changes in 

population density ensure that vulnerable trees are available. 

Temporal scales strongly influence insect population distribution.  To be successful, 

short-lived insects that rely on long-lived host must adapt to seasonal variation in host availability 

(Mopper 2005).  The timing of insect life cycles (e.g. egg depositing and larval survival) are 

closely tied to host quality (Mopper 2005).  Therefore, any temporal change in host quality may 

alter insect populations.  Univoltine insects are particularly sensitive to temporal changes in host 

quality, which can be modified by stressing agents such as drought, extreme temperatures, 

nutrient depletion, or defoliation. 

Model 

 

A Cellular Automata (CA) model was developed to emulate the spatial and temporal 

spread of P. thomsoni in the Anchorage Bowl, Alaska.  The CA model contains implied density-

dependent factors, plant defenses, and natural enemies interacting. The density-dependent factors 

and plant defenses are stochastic processes influencing the severity and the spatial and temporal 

distribution of the areas of random size and shape.  Liebhold and Tobin (2008) and Schofield 

(2002) discuss two population bounds (i.e. a minimum and maximum).  The first bound is 

carrying capacity and it is a maximum population size.  The second bound is a minimum and is 

called the Allee effect (Allee 1927, Schofield 2002, Liebhold and Tobin 2008, Richter et al. 

2012).  When a population exceeds carrying capacity, it will decrease in size due to density-

dependent factors.  In addition, when a population approaches carrying capacity, the number of 

natural enemies may also increase, thereby increasing predation.  If the population decreases 
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below the minimum (Allee effect) value, the population will become extinct.  The Allee effect is 

such that a decrease in population is related to a decrease rate in the number of insects produced.  

Therefore, if the population is to remain viable, it must be greater than the Allee effect and less 

than carrying capacity.  The Allee effect can be the result of multiple causes, including the lack of 

cooperative feeding (Liebhold and Tobin 2008), natural enemies (Petrovskii et al. 2002), and 

plant defenses among others.   

Based on the results of this study, we hypothesize that three phases to the P. thomsoni 

infestation occurred in the Anchorage Bowl: 1) expansion, 2) decline, and 3) equilibrium.  From 

the years 1998 to 2004, P. thomsoni population expanded, during which time, plant defenses 

might have been low or nonexistent possibly because the trees had not previously been exposed 

to P. thomsoni.  From 2005 to 2011, P. thomsoni was in overall decline, possibly triggered first 

by density-dependent factors coupled with an abundance of natural enemies, followed by an 

increase in plant defenses.  From 2011 to 2018, the population of P. thomsoni stabilized and 

reached equilibrium. 

 

Expansion Phase 

 

During the expansion phase, disjointed regions with high severity levels of infestation 

were randomly moving about the landscape from year to year.   The expansion phase spanned 

approximately six years, during which most of the study area experiences some level of 

infestation. 

Insect invasions are regulated by available host, carrying capacity (density-dependent 

factors), and the existing predator population numbers.  Large quantities of host trees were 

available in the study area.  Also, P. thomsoni is an invasive insect in the Anchorage Bowl; 

hence, the likelihood of an existing natural predator within the study area was low.  In addition, 

the transportation of adult insects via automobile from heavily infested areas to new locations 
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possibly exacerbated the expansion (Snyder et al. 2007).    Consequently, the P. thomsoni 

infestation expanded throughout the study area.  

It is highly likely that during the six year expansion phase, plant defenses were building 

in intensity over the entire study area.  Furthermore, the population of P. thomsoni was most 

likely approaching carrying capacity.  A similar expansion phase of P. thomsoni was observed in 

Alberta, Canada in the early 1980’s (Snyder et al. 2007). 

 

Declining Phase 
 
   

   After the six year expansion phase, the declining phase began.  This phase can be 

described as the change in severity that decreases at an increasing rate.  The possible driving 

forces for this phase may be the combination of density-dependent factors, natural enemies, and 

to a lesser extent plant defenses.   

As the numbers of larvae infesting a single leaf at a single point in time increase, insect 

mortality due to competition for resources and or cannibalism may occur (Liebhold and Tobin 

2008, MacQuarrie et al. 2010, Lundquist  et al. 2012) .  Therefore, as the numbers of pupae die in 

the current year due to the density-dependent factors, the insect population numbers in the next 

year will subsequently be lower.   

Two other invasive sawflies late birch leaf edge miner (Heterarthrus nemoratus) and 

birch leaf miner (Fenusa pusilla Lepeletier) were found in the Anchorage Bowl.  These two 

sawflies directly compete with P. thomsoni for resources.  Snyder et al. (2007) measured the 

relative abundance of these two sawflies from 2003 to 2005.  The results indicated that abundance 

levels were very low for 2003 and 2004.  In 2005, the abundance of these two sawflies increased.  

In 2011 H. nemoratus  became the most abundant saw fly in Anchorage (USFS 2011) 

The parasitoid (L. luteolator) is a predator of P. thomsoni (Digweed 1998).  Some simple 

predator-prey relationships exhibit a simple harmonic function shifted by some uniform time 

period.  For example, as the prey population increases in an area, so does the population of 
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predators; however, the predator population growth rate usually lags by a time period.  As the 

prey population decreases due to predation, the predator population also declines with a temporal 

lag.  Moreover, predator-prey relationships often follow a Lotka-Volterra like model.  Essentially, 

the parasitoid population  can follow the infestation groups of P. thomsoni, which increased in 

severity over the landscape in the Anchorage Bowl with at least a one-year time lag.  Petrovskii et 

al. (2002) states that an insect invasion can take the form of irregular shaped patches distributed 

over the landscape under a predator-prey system.  

L. luteolator was introduced on an annual basis as a biological control method in the 

Anchorage Bowl from 2004 to 2006 (Snyder et al. 2007).  From 2006 to 2009 another parasitoids 

Lathrolestes thomsoni was released in Anchorage (Soper 2011).  The research by Soper (2011) 

showed that in 2006 and 2007 two other native parasitoids Lathrolestes soperi (Reshchikov et al. 

2010) and Aptesis segnis were identified as population regulators of P. thomsoni in Anchorage.  

Soper (2011) presumes that the decline of P. thomsoni in Anchorage from 2006 – 2011 is due in 

part to these parasitoids (L. soperi, L. thomson,  and A. segnis).       

After one season of heavy defoliation, the trees can produce defenses in the form of either 

constitutive, induced, or both. These plant defenses can influence overall host quality.  Many 

researchers have discussed host quality (Bryant et al. 1993, Hoch et al. 2000, Haukioja 2005, 

Sisterson 2008, Hatcher et al. 2012) and how it can influence insect population dynamics. 

A constitutive plant defense is an increase in the amounts of chemical compounds such as 

phenols, terenoids, and alkaloids in the leaf tissue in the following year after defoliation.  

Haukioja (2005) states that defoliation can change plant alleliochemistry, cell structure, and 

overall plant physiology.  The increase in these compounds may make the foliage unpalatable to 

pests.  Alternatively, the tree may produce lower levels of proteins and water in the foliage, which 

reduces the nutrient-resource content in the leaves.  This makes the foliage less nutritious and can 

negatively influence the insects population dynamics (Haukioja 2005).  Bryant et al. (1993) 

investigated delayed induce resistance in Alaska paper birch.  One finding of this Bryant et al. 
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(1993) experiment was that the plants respond to defoliation via a decline in the nutritional 

quality of leaves for immature insects for up to three years after defoliation.   

An induced process of defoliation can have cascading effects on soil chemistry (Kosola et 

al. 2001).  The reduction of leaf organic material due to insect herbivory affects soil carbon to 

nitrogen (C:N) ratios which regulate soil microbial activity and population size (Tisdale et al. 

1985).  Soil microbial activity influences the available nitrogen to plants.  Over time, most forest 

soils have developed a stable C:N ratio.  Generally, leaf materials from a tree in a forest 

landscape have a narrow C:N ratio (approximately 30: 1) (Brady 1974).  Therefore, defoliation of 

the forest canopy reduces leaf material and possibly widens the C:N ratio (i.e. 50:1) of soil litter 

inputs.  The net annual reduction of nitrogen inputs causes the soil microorganisms to deplete 

stores of nitrogen in the soil (i.e. nitrogen immobilization) and in tree roots (Tisdale et al. 1985).  

Depleting the soil nitrogen causes mortality of mycorrhizal fungi (Kosola et al. 2001), which 

causes the death or lack of growth of tree roots.  The reduction in tree root growth possibly 

lowers nutrients in next year’s leaf production, thereby reducing overall host quality. 

 

Equilibrium Phase 

 

After the declining phase has run its course, the equilibrium phase occurs.  This state can 

be described as the tree exerts just enough pressure via plant defenses to keep the insect 

population in check.  The insect population size is positioned such that it is slightly greater than 

the Allee effect point and much less than carrying capacity.  This point is also shown in the 

research done by Hatcher et al. (2012) where, as host quality decreases, the number of parasite 

feeding on that host also decreases.  It is also likely that parasitoids play a minor role in 

maintaining long term equilibrium.  It is also likely that low, stabilized population levels of P. 

thomsoni can be found in Alberta, Canada.   

In the birch forest of Europe, P. thomsoni populations exist in equilibrium.  No research 

has been done on P. thomsoni populations in Europe.  Therefore, it is not known if the population 
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of P. thomsoni ever exceeded carrying capacity at some point in the past and crashed.  However, 

it is known and documented that P. thomsoni reached large numbers in Alberta, Canada in the 

1980s (Snyder et al. 2007).  No study was conducted on the population densities or severity of P. 

thomsoni in Alberta during this time period.  In the early 1990s, the P. thomsoni population 

crashed in Alberta.   

 

Spread 

 

The spread of some insect populations is akin to a moving-wave front (Yemshanov et al. 

2009, Richter et al. 2012).  However, if the population is in a declining phase; thus, reducing in 

numbers, then the moving-wave front may reverse (Schofield 2002).  However, the P. thomsoni 

infestation is not a moving wave; rather, a series of random areas of size and shape, erupting in 

intensity within the study area.  The possible forces that drive the spatial distribution of the 

random areas of size and shape and the severity of the infestation in the Anchorage Bowl are 

density-dependent factors, plant defenses, and parasitoids.  Therefore, if the areas of random size 

and shape are reducing in severity as illustrated in the declining phase; then, the expansion phase 

may be reversed.   

The lack of density-dependent factors, plant defenses, and natural enemies may lead to 

the expansion phase.  The density-dependent factors, natural enemies, and to a lesser extent plant 

defenses are potential rapid response forces which may lead to the declining phase.  Finally, plant 

defenses are believed to be the primary long-term force; while, natural enemies are a weaker 

force in maintaining the equilibrium phase. 

  



60 
 

CONCLUSION 

 

A Cellular Automata (CA) model was developed to emulate the spatial and temporal 

spread of P. thomsoni in the Anchorage Bowl, Alaska from 1998 to 2018.  The CA model uses 

the severity in the previous year coupled with areas of random size and shape moving about the 

landscape to model future severity.   

The model closely mimics the observed data.  The population of P. thomsoni has been on 

a decline since 2006.  It is likely that the population of the P. thomsoni will remain at low, 

stabilized levels for an extended period of time in the Anchorage Bowl.  This level will be 

slightly above the Allee effect and well below carrying capacity.  This is possibly what occurred 

in the P. thomsoni native European forest and in Alberta, Canada. 

In summary, plant defenses are possible long-term cyclic force, manipulating the severity 

of P. thomsoni in the Anchorage Bowl.  In addition, density-dependent factors and the parasitoids 

are possible rapid, cyclic, and short-term modifiers of the P. thomsoni population in the 

Anchorage Bowl. 
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APPENDIX 1 

 

# Simulation model of P. thomsoni severity 

# 

library(RandomFields) 

Itr <- 100 

Yrs<-14 

 

#function to generate spatially correlated surfaces 

# 

surface<-function(x,y,model,mean,variane,nugget,scale,alpha,graph.I=F,graph.P=F,g.title="") { 

out<- GaussRF(x=x, y=y, model=model, grid=TRUE,param=c(mean, variance, nugget, scale, 

alpha)) 

if(graph.I) { 

windows() 

image(x, y, out) 

contour(x,y,out,add=T) 

title(g.title) 

} 

if(graph.P) { 

windows() 

persp(x,y,out, theta = -35,phi = 20,expand = 0.7,col = "lightblue",ltheta = 150, shade = 

0.55,ticktype ="detailed",xlab ="X",ylab = "Y",zlab = "Density",cex=.5) 

title(g.title) 

} 

out 

} 

 

#loop through simulations 

# 

for( i in 1:Itr) { 

cat("\n Itr = ",i) 

 

#predicted 06 

 

 model <- "matern"    

 mean <- -0.1121 

 variance <-  3  

 nugget <- 0 

 scale <- 3685 

 alpha <- 3    

 step <- 1000   

 x <- seq(1641272, 1685601, step)  

 y <- seq(2591899, 2642359, step) 

g.title<-"Predicted 06"      

f06 <- surface(x=x,y=y,model=model,mean, variance, nugget, scale, 

alpha,graph.I=F,graph.P=F,g.title) 

 

#add mean 
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mu<-26.9 

f06<-f06+mu 

 

#create new data set 

 

ablm.old<-list(x=x,y=y,z=f06) 

 

#set negative values to 0 

 

ablm.old$z[ablm.old$z<0]<-0 

mu06<-mean(as.vector(ablm.old$z)) 

 

#plot trimmed surface 

 

if(i ==1) { 

 

windows() 

persp(ablm.old, theta = -35,phi = 20,expand = 0.7,col = "lightblue",ltheta = 150, shade = 

0.55,ticktype ="detailed",xlab ="X",ylab = "Y",zlab = "Density",cex=.5) 

title("Predicted 06 - Trimmed") 

} 

 

nc<-ncol(f06) 

nr<-nrow(f06) 

delta0<-matrix(0,nrow=nr,ncol=nc) 

delta.cum<-delta0 

stat<-mu06 

 

#simulate the time periods 

 

for(j in 1:Yrs) { 

 

############################ 

#generate areas of random size and shape 10% to 50% of area 

# mean = 0 range = 3685 feet, variance = 1 

model <- "matern"    

mean <- 0 

 variance <- 1 

 nugget <- 0 

 scale <- 3685 

 alpha <- 6    

 step <- 1000   

 x <- seq(1641272, 1685601, step)  

 y <- seq(2591899, 2642359, step)  

g.title<-"Random Blob"      

delta1<- surface(x=x,y=y,model=model,mean, variance, nugget, scale, 

alpha,graph.I=F,graph.P=F,g.title) 

delta1s<-delta1 

 

rnd<-runif(1,min=0.10,max=0.5) 

zcut<-1.49-2.78*rnd 
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zcut.sub<-zcut*1.85 

 

delta1[delta1>zcut]<-1 

delta1[delta1!=1]<-0 

 

#create subset 

 

delta1s[delta1s>zcut.sub]<-1 

delta1s[delta1s!=1]<-0 

     

 

#create new data set 

 

#set excess overlap to zero 

 

delta1<-(1-delta0)*(delta1-delta1s)+delta1s 

 

#calculate cumulative area 

 

delta.cum<-delta.cum+delta1 

delta.cum[delta.cum>1]<-1 

 

 

if(i == 1) { 

} 

 

############################### 

#change model 

 

#random error 

model <- "matern"    

mean <- 0 

variance <- 4 

nugget <- 0 

scale <- 3685 

alpha <- 3    

step <- 1000   

x <- seq(1641272, 1685601, step)  

y <- seq(2591899, 2642359, step)      

g.title<-"Random Error"      

fd<- surface(x=x,y=y,model=model,mean, variance, nugget, scale, 

alpha,graph.I=F,graph.P=F,g.title) 

 

 

# trend surface 

# log model 

b0<- -4.538418943+1.532291784*log(j) 

b02<- 17.04998835-2.930385669*log(j) 

b2<- b02-b0 

#cos model 

b1<- (-0.255196006-0.142286324*cos(j-3)) 
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mu<- b0+b1*ablm.old$z+b2*delta1 

fd<-fd+mu 

 

################################# 

#predicted surface 

 

#create new data set 

 

ablm.new<-list(x=x,y=y,z=fd) 

 

#add change to predicted 06 surface 

 

ablm.new$z<-ablm.new$z+ablm.old$z 

 

#set negative values to 0 

 

ablm.new$z[ablm.new$z<0]<-0 

mu.new<-mean(as.vector(ablm.new$z)) 

 

#plot trimmed surface 

 

if(i ==1) { 

windows() 

persp(ablm.new, theta = -35,phi = 30,expand = 0.7,col = "lightblue",ltheta = 150, shade = 

0.55,ticktype ="detailed",xlab ="X",ylab = "Y",zlab = "Density",cex=.5) 

g.title<-paste("Year",j,sep=" ") 

title(g.title) 

} 

 

################################### 

#change stats 

 

#means of the two groups 

 

mu0<-mean(as.vector(ablm.new$z[delta1==0])) 

mu1<-mean(as.vector(ablm.new$z[delta1==1])) 

mu0.p<-mean(as.vector(ablm.old$z[delta1==0])) 

mu1.p<-mean(as.vector(ablm.old$z[delta1==1])) 

 

#calculate percent area associated with increase 

# 

parea<-sum(delta1)/(nrow(delta1)*ncol(delta1)) 

cum.area<-sum(delta.cum)/(nrow(delta1)*ncol(delta1)) 

 

#calculate overlap of two periods 

 

delta<-delta0*delta1 

parea.ovr<-sum(delta)/sum(delta1) 

######################## 

# generate statistics to evaluate fit 
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stat<-cbind(stat,mu.new,mu0.p,mu0,mu1.p,mu1,parea,parea.ovr,cum.area) 

 

delta0<-delta1 

ablm.old<-ablm.new 

 

#end year loop 

} 

 

if(i == 1) { 

stat.sim<-stat 

} 

else { 

stat.sim<-rbind(stat.sim,stat) 
 

} 

 

#end simulation loop 

} 

########################################### 

 

cat("\n summary Statistics\n") 

cat("Year 2006\n") 

summary(stat.sim[,1]) 

lb<-2 

ub<-9 

inc<-8 

for(j in 1:Yrs) { 

cat("Year ",j,"\n") 

print(summary(stat.sim[,lb:ub])) 

write.table(summary(stat.sim[,lb:ub]), "c:/temp/sim_run4.txt", col.name=T, row.name=T, 

append=T, sep="\t") 

lb<-ub+1 

ub<-ub+inc 

} 

k<-8*Yrs+1 

id<-seq(2,k,8) 

windows() 

par(mfrow=c(2,2)) 

hist(stat.sim[,1],main="Year 2006",xlab="Severity") 

abline(v=mean(stat.sim[,1]),col=2,lwd=2) 

j<-4 

for(i in 1:Yrs) { 

if(i == j) { 

windows() 

par(mfrow=c(2,2)) 

j<-j+4 

} 

h.title<-paste("Year",i,sep=" ") 

hist(stat.sim[,id[i]],main=h.title,xlab="Severity") 

abline(v=mean(stat.sim[,id[i]]),col=2,lwd=2) 

} 


