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 ABSTRACT 

 

 

 

UTILIZATION OF CONVOLUTIONAL NEURAL NETWORKS IN THE CLASSIFICATION 

OF SNOWFLAKES BASED ON IMAGES BY A MULTI-ANGLE SNOWFLAKE CAMERA 

 

 

 

Recent developments in machine learning are applied to in-situ data collected by a Multi-

Angle Snowflake Camera (MASC), incorporating convolutional and residual networks in big data 

environments. These networks provide the following benefits: require little initial preparation and 

automatic feature extraction, high accuracy and through transfer learning techniques, and relatively 

small training sets. The networks have large supporting communities and are popular for image 

processing and classification tasks specifically. In this paper, a convolutional neural network 

(CNN) is adapted and tasked with classifying images captured from two storm events in December 

2014 and February 2015 in Greeley, Colorado. A training data set containing 1400 MASC images 

was developed by visual inspection of recognizable snowflake geometries and sorted into six 

distinct classes. The network trained on this data set achieved a mean accuracy of 93.4% and 

displayed excellent generality. A separate training data set was developed sorting flakes into three 

classes showcasing distinct degrees of riming. The network was then tasked with classifying 

images and estimating where flakes fell within this riming scale. The riming degree estimator 

yields promising initial results but would benefit from larger training sets. Future applications are 

discussed. 
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1. Introduction 
 

 

 

The advent of dual polarimetric radar for weather observation and research has increased 

researchers’ capabilities to access and log vital data points within a given weather event. With 

excellent temporal and spatial resolution, researchers can accurately characterize shapes of the 

hydrometers that compose a storm [1]. Polarimetric radar provide the horizontal reflectivity, 𝑍ℎ, differential reflectivity, 𝑍𝑑𝑟 , and correlation coefficient,𝜌ℎ𝑣, of a field the radar is directed 

towards. This information gives insight to shape and type of hydrometeor within a storm and is 

calculated based on models developed by past observation. Scattering models fall short when left 

to spheroid approximations for frozen hydrometeors [2]. This is especially true at higher 

frequencies or for larger particles [3] and increases the need for accurate accounting of the varying 

macro-characteristics of snow within a storm.  Atmospheric scientists have drawn strong 

correlation between the environmental conditions present and the shape snow takes as it forms 

within a storm [4]. Conditions within a storm are not homogenous, resulting in a wide variety of 

shapes that continue to change on their path to the ground. While polarimetric radar provides 

excellent coverage, utilizing ground based (in-situ) devices in tandem with radar has proven more 

effective in understanding storm composition [5]. One such in-situ device developed specifically 

to sample snowflakes in free fall is the Multi-Angle Snowflake Camera (MASC). The MASC can 

capture high resolution images of individual snowflakes, which provides researchers an avenue to 

study the macro-physical characteristics and make statistical predictions concerning a storm’s 

composition. A deployed MASC is capable of capturing thousands of images an hour, and with 

typical storms lasting several hours, a fast, accurate and automatic method to organize and process 
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image data based on shared characteristics is crucial to increased understanding. There exist 

several classification algorithms known to atmospheric research communities [e.g. 6, 7] but they 

are limited to large swaths of a storm and not local sampled images.  

 Machine learning algorithms have made huge strides in the past decade [8] and have a 

massive community invested in improving and expanding existing algorithms. Previous attempts 

have been made to apply machine learning to snowflake classification with varying degrees of 

success. Early backpropagation neural networks were used in [9] and multinomial logistic 

regression (MLR) in [10]. Praz et al. set the standard for expert research into hydrometeor 

classification with a separate algorithm for feature extraction and optimization. Convolutional 

neural networks (CNN) provide several advantages that other algorithms may not include with 

comparable or better results. CNNs were developed with image processing in mind, which makes 

them computationally more efficient when compared to other multilayer back-propagation neural 

networks. They automatically extract features during training, which simplifies any system they 

are integrated into. CNNs can store these features, which increases their versatility as they are 

capable of transferring learning from one data set to another and are not limited to specific 

parameters inherent either to the data set (e.g. resolution, color, or size.) or capturing method (e.g. 

hardware imperfections transferred into data).  Research into deep learning has extended their 

ability to process complex data without major changes to the algorithm. Finally, CNNs are well 

understood algorithms that are extremely popular for image processing with a wealth of resources 

available for implementation. In this paper, the steps needed to develop a hydrometeor classifier 

using CNNs are presented and advantages to in-situ research are highlighted. 

This paper is organized as follows. The method and location for data acquisition is 

introduced and classification scheme presented in section 2. A brief introduction to the machine 
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learning algorithms used is discussed in section 3, with key concepts covered for those unfamiliar. 

The software implementation is also covered in this section for interested parties. Results of 

training the two networks are presented and implications discussed in section 4. A future 

perspective in section 5 allows for continued discussion of the results presenting potential avenues 

of research and is followed by a brief summary in the conclusion. 

 

2. Data Description 
 

 

 

This section describes how and under what conditions data was collected. Steps required 

in preprocessing of image data are covered.  The classification criteria for geometric shapes and 

riming degree estimation are discussed.  

 

2.1 Data Collection Site 

The images that compose the training set were taken primarily from two winter weather 

events using a modified MASC system located at a surface instrumentation field site that was 

established as part of MASCRAD (MASC + RADar) project [11,12,13,14]. The MASCRAD field 

site, Figure 1, is located at the Easton Valley View Airport, in La Salle, outside of Greeley, 

Colorado. This site includes a modified MASC system, a two-dimensional video disdrometer 

(2DVD), a PLUVIO all-weather precipitation gauge, and a VAISALA weather station, amongst 

other advanced in-situ measurement instruments. These devices are situated within a double fence 

intercomparison reference (DFIR) and operate under the umbrella of the CSU-CHILL Radar, a 

state-of-the-art polarimetric weather radar located 12.92 km away.  
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Figure 1. Field Site: MASCRAD Snow Field site at Easton Valley Airport, near Greely, Colorado. 

In this image: 2/3-scaled double fence intercomparison reference (DFIR) containing surface 

instrumentation: MASC (top right), 2DVD (top left), Pluvio all-weather precipitation gauge 

(bottom right) and a meterological particle spectrometer (MPS) (bottom left). 

 

The image data was collected during two events in the 2014-2015 deployment season of 

the MASCRAD project. The first took place from December 23rd to 31st in 2014, with the highest 

density of particles falling during the early morning hours of December 26th. To include enough 

graupel images, a second weather event was required [15]. This event took place on February 21st 

– 22nd in 2015.  

 

2.2 Data Collection Device 

The Multi-Angle Snowflake Camera, or MASC is the centerpiece of the MASCRAD 

project. The system was developed by Tim Garrett et al. and the finer details of the system are 

covered in [16]. For the purposes of this paper, a summary and brief description follows. The 
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original MASC system is an instrument used to capture high-resolution images and fall speeds of 

hydrometeors in freefall from three different coplanar perspectives. These cameras are 5 

Megapixel (MP) Unibrain Fire-I 980b digital cameras with identical 12.5mm Fujinon lenses. The 

cameras are spaced on a horizontal ring with 36° separation between cameras with camera-to-

common focal center distances of 10 cm.  The system used at Colorado State University, Figure 

2, has been modified to include two additional cameras at an elevated angle of 55° above the 

horizon.  

 

 

Figure 2. MASC system with example images: Multi-angle snowflake camera (MASC), with 

three cameras in the horizontal plane for capturing high-resolution photographs of winter 

precipitation (top left); The CSU MASC system has been modified to included two cameras 

situated on an elevated plane, poised at 55° above the horizon to aid in the Visual Hull Project (top 

right); Example images from each camera, the first three columns are from the horizontal cameras 

and the final two are from the lower resolution raised cameras (bottom two rows, from left to 

right). 

 

These cameras are 1.2 MP Unibrain Fire-I 785b with 12.5 mm lenses and were included to improve 

the 3D virtual reconstruction using the visual hull method [17,18]. The system has a horizontal 
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resolution of 35 μm for the three horizontal cameras and a vertical resolution of 40 μm at 1-m/s 

fall speed. As hydrometeors fall through the horizontal ring, a near-IR emitter-detector pair sensor 

array (located on the top rim of the capture volume within the ring) simultaneously triggers the 

cameras and a flash (LEDs). The cameras have a maximum triggering rate of 2 Hz, a hardware 

limitation within the cameras, not set by the emitter-sensor pair array. To calculate fall speed, the 

time between upper near-IR emitter-sensor trigger and lower near-IR emitter-sensor is calculated 

then divided into the distance between the two sensor planes. 

 

2.3 Image Pre-Processing 

As a CNN automatically extracts features (numerical descriptors common between classes) 

during training that are to be used in classification, the image data base requires minimal 

preprocessing. A simple brightness thresholding is utilized to remove the majority of blank, dim 

or blurry images. Generally, a MASC is deployed during storming conditions, those with heavy 

wind or flurried snow, which can cause the MASC to trigger without a flake in the focal area, 

making the need for thresholding crucial to processing. After thresholding to remove poor quality 

images, the creation of a training set requires a one-to-one correlation between an image of a flake 

and the class the image is being assigned to, i.e. there can only be one flake per image. The task 

of separating images was automatically performed using a cropping script developed to find the 

brightest point of an image, locate the surrounding edges through their calculated standard 

deviations, and remove the flake to be saved in another location. The script then performs this 

action again until all independent bright spots have been cropped in a given image. It isn’t perfect 

(~10% of flakes need repairs) but is exceptionally more efficient than cropping images by hand.  
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2.4 Classification Scheme  

With machine learning algorithms, there are two categories of how learning is conducted: 

supervised or unsupervised. CNNs are supervised learning algorithms, therefore they require the 

development of a labeled data set, referred to as the training set. This training set allows a human 

operator to dictate how the network makes decisions, by providing desired data for the network to 

make comparisons against. This contrasts unsupervised learning, where a network runs until it 

converges on a pattern or an end condition is reached. It is no surprise that supervised learning is 

more efficient.  

The training set is developed by human inspection following a predetermined classification 

scheme. The idiom is that every snowflake is unique, therefore it is no surprise that there are a 

variety of attempts to classify them [19,20], with little commonality between schemes. The scheme 

used in this paper was adopted from Praz et al., who developed a snowflake classifier using 

Multinomial Logistic Regression (MLR) and will be summarized in this section.  

The scheme utilizes the nine categories of snowflakes detailed in [21], with some changes 

due to data availability and simplification. They introduce the category of Aggregate particles, 

which are single snowflakes that are the result of the in-air collision of two or more particles and 

Small Particles, snowflakes whose feature characteristics are too small to categorize. They also 

combine the category of needle and column type snowflakes, as they share similar characteristics. 

Their result was 10 individual categories that include Aggregate (AG), Small Particle (SP), 

Columnar Crystal (CC; the resulting combination of needle and column particulates), Planar 

Crystal (PC), a combination of columnar crystals, a combination of planar crystals, combination 

of columnar and planar crystals, graupel (GR), irregular snow crystal and germ of snow. Due to 

limited sample representation, the training set used in this paper includes only the most populated 
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five classes (AG, CC, PC, SP, and GR) seen in Figure 3, although more classes may be added to 

the classifier as sample data is accrued. A different training set is used for each classifier, and 

therefore their development considerations are unique to each set.  

 

 

Figure 3. Classification Examples: Examples of MASC images characterizing the geometric 

classes (top row) and riming degree estimations (bottom row). 

   

2.4.1 Geometric Training Set 

 At the heart of supervised learning is the comparison between the ideal value (established 

in the training set) and a value calculated by the network, that is later refined through the learning 

process. This is an oversimplification, with more in-depth analysis provided in section 3, but it is 

important to understand that the more unique the classes within a training set are from each other, 

the better the network will perform, given a limited training set (which seems obvious but cannot 

be over-stated). The training set for geometric classification was developed by selecting individual 

images of the flakes that best represented their respective classes, with decision emphasis placed 

on discernable flake silhouettes. The result is a training set of ~1450 samples. 
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2.4.2 Riming Degree Estimation Training Set 

 Riming degree estimations attempt to calculate the amount of cloud frozen droplets that 

accrue on a snowflake’s surface as the flake falls through the atmosphere. The MASC system 

captures images with enough detailed resolution that the degree of riming can be considered a 

feature of the image. There are two approaches to riming degree estimation considered in this 

paper. The first approach divides riming degree into 5 classes utilizing the classification scheme 

adapted by Praz et al. The second approach is a proposal that capitalizes on the unique nature of 

CNNs and warrants further exploration.  

Praz et al. classify riming degree based on the image criteria summarized in Table 1. These 

five degrees of riming, 𝑅𝑑 are discrete classes between [1,5] as developed by [22] and are then 

mapped by Praz et al. to a continuous index, 𝑅𝑐 between [0,1], using the sinusoidal function   

𝑅𝑐 = 12 (sin (𝜋4 (𝑅𝑑 − 3)) + 1). 
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Table 1. Riming Degree Characteristics: A physical description characterizing the degree of the 

riming on a given flake, with numerical representations as described by Mosimann et al, in column 

2. Column 1 is degree estimations utilized by Praz et al. Column 3 is the probability estimates used 

in this paper. 𝑅𝑐∈ [0,1] 𝑅𝑑∈ [1,5] 𝑅𝑙 ∈ [1,5] Coverage of 

the surface 

Description 

0 1 (none) 1.0   (𝑅𝑙,𝑐1  ≥ 99%) 

0% No cloud droplets on the surface. Flakes 

are detailed and delicate in appearance. 

0.15 2 (rimed) 1.01 to 2.99 (𝑅𝑙,𝑐1 , 𝑅𝑙,𝑐3  > 𝑅𝑙,5) 

−̃  50% Up to half of the surface is covered with 

cloud droplets. There may be delicate 

features, but some clumping has occurred. 

0.5 3 

(densely 

rimed) 

3.0 (𝑅𝑙,𝑐3 ≥ 99%) 

 −̃ 100% The entire flake is covered with cloud 

droplets, but the general shape is 

conserved.  

0.85 4 

(graupel-

like) 

3.01 to 4.99 (𝑅𝑙,𝑐5 , 𝑅𝑙,𝑐3 > 𝑅𝑙,𝑐1) 

> 100% The entire flake is heavily covered with 

cloud droplets, to the point where the 

original shape is barely recognizable 

1.0 5 

(graupel) 

5.0  (𝑅𝑙,𝑐5 ≥ 99%) 

≫ 100% The entire flake is heavily covered with 

cloud droplets. Original shape is no longer 

distinguishable and has entered the class 

of graupel.  

 

 The degree label decisions are based on educated opinion through the observation of a 

captured image. Questions arise when pondering the level of accuracy that a human observer can 

achieve in their estimation. For example, the difference between a riming degree estimation of 3.1 

and 3.2 is often arbitrary and a matter of opinion. To address this concern, it is proposed to utilize 

the posterior distribution that a CNN uses to make classification decisions as the deciding factor 

in riming degree estimation.  

Developing the training set for this approach, the classification scheme focuses on the three 

easily identified classes for riming estimation, then allows the network to assign probability 

estimations (clarified at the end of section 3.2) for how closely a flake resembles those classes, 

labeled 𝑅𝑙,𝑐 and characterized in Table 1. The estimate training classes are class 1, where flakes 

are the least rimed (no riming present), class 3, where a flake is rimed but geometric shape is 

preserved, and class 5, where the flake is fully rimed (graupel). This simplifies the classification 
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process and increases the consistency in decision making when applying labels while developing 

the training set. The result after classification is flakes that don’t fall directly within these three 

classes are weighted somewhere between.  For example, if a flake’s riming degree estimation is 𝑅𝑙,𝑐1 = 32% 𝑅𝑙,𝑐3 = 58% 𝑅𝑙,𝑐5 = 10%, the estimation on Praz et al.’s scale is akin to ~2.78. The 

numerical values are used as an example, with a simple linear mapping. As more images are 

processed, a more accurate mapping can be developed if desired. This provides a continuous 

riming degree estimation and the opportunity for greater accuracy in estimation. Attention must 

be paid to the number of geometric classes represented in each riming category, as it is important 

to have uniform representation. This restriction limits the size of training set available, but the 

approach looks promising and will warrant further testing as processed data becomes available.  

 

3. Method 

 

 

 

A brief discussion of the network architecture is presented in this section. An overview of 

key concepts pertaining to CNNs and deep learning is provided. The software implementation and 

input parameters outlined before results of the network training is discussed. 

 

3.1 Neural Network Architecture 

The organic brain has an amazing ability to process information very quickly. Consider, 

for example, the act of driving a car or the simple act of walking down the street. The fact that 

these actions require little conscious thought highlights the ability of the brain to rapidly take 

incoming information, assign meaning, and make decisions. This is accomplished through a 
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complex interconnected system of neurons that process information in parallel. It is no surprise 

then that considerable effort has been made to mimic the complex way the brain processes 

information with machine learning algorithms. 

 

Figure 4. Feed Forward Network Architecture: (a) Feed Forward Network architecture 

demonstrating how each neuron is connected to every neuron in the previous layer. (b) Algorithm 

for feed forward learning process within the network. 

 

With artificial neural networks, more commonly known as “neural networks,” the basic 

architecture of the brain is recreated in a logical algorithm. The basis for the network architecture 

used in this paper is called the “Multi-Layer Perceptron (MLP),” which is a feed forward neural 

network with back-propagation and general structure is represented in Figure 4a, and as an 

algorithm in Figure 4b. In general, there is an input signal which is passed to the hidden layers for 

processing, with final decision making the result of the output layer.  The algorithm is “feed 

forward” in reference to the direction of information and the “back-propagation” describes the 

learning process, which is detailed below.  
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Referring to Figure 4b, the forward pass of the learning algorithm applies the input value 𝑥1…𝑁  of training sample p with a weighted bias of w𝑘𝑗(1)(𝑝) . This bias serves to both connect the 

input j to neuron k and to refine the error estimation of the classifier, 𝐸𝑝 and are generally random 

values between a range loosely defined by the number of inputs [23]. The potential of neuron k is 

represented by  

𝑢𝑘(1)(𝑝) = ∑ w𝑘𝑗(1)𝑁+1
𝑗=1 (𝑝)𝑥𝑗(𝑝), ∀𝑘𝜖[1, 𝐾] 

𝑓(∙) is a non-linear activation function, commonly the logistic function [24] or more recently (and 

in the case of this paper), the Rectified Linear Unit (ReLU). 

𝑓(𝑢) = 11 + exp (−𝑢)  𝑜𝑟 𝑅𝑒𝐿𝑈(𝑢) = 𝑚𝑎𝑥 (0, u) 

This activation function determines the output of the current neuron, which in turn becomes the 

input of the next layer within the network.  𝑜𝑘(1)(𝑝) = 𝑓 (𝑢𝑘(1)(𝑝)) , ∀𝑘𝜖[1, 𝐾] 
This process is repeated until the final layer of the network is reached, labeled “Output” in Figure 

4b. It is at this point the sum squared error of the classifier can be calculated. 

𝐸𝑝 = 12 ∑ (𝑑𝑚(𝑜𝑢𝑡𝑝𝑢𝑡)(𝑝) − 𝑜𝑚𝑜𝑢𝑡𝑝𝑢𝑡(𝑝))2𝑀
𝑚=1  

Our goal is to minimize 𝐸𝑝, such that the desired output, 𝑑𝑚(𝑜𝑢𝑡𝑝𝑢𝑡)(𝑝), is as close to the calculated 

output, 𝑜𝑚𝑜𝑢𝑡𝑝𝑢𝑡(𝑝), as possible. It is unlikely that 𝐸𝑝 is within acceptable parameters on the first 

pass of learning, therefore there needs to be some method to refine the weights to approach 

convergence. This requires the calculating the partial derivative of 𝐸𝑝 with respect to the weight 

in the final layer, in Figure 4b that is w𝑚𝑙(𝑜𝑢𝑡𝑝𝑢𝑡)
. The full derivation falls outside the scope of this 
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paper but can be found in various forms in [24,25,26]. The eventual result for this three-layer 

network is 

∆w𝑚𝑙(𝑜𝑢𝑡𝑝𝑢𝑡) = −𝜇∇𝐸𝑝(𝑝) = 𝜇𝑒𝑚𝑜𝑢𝑡𝑝𝑢𝑡(𝑝)𝑓′ (𝑢𝑚(𝑜𝑢𝑡𝑝𝑢𝑡)(𝑝)) 𝑜𝑙𝐻−1(𝑝),  ∀𝑚 ∈ [1, 𝑀] 𝑎𝑛𝑑 𝑙 ∈ [1, 𝐿] 
where 𝑒𝑚𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑑𝑚(𝑜𝑢𝑡𝑝𝑢𝑡)(𝑝) − 𝑜𝑚𝑜𝑢𝑡𝑝𝑢𝑡(𝑝) 

And 𝜇 = 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 

 

Repeating this derivation for weight updates within the hidden layers shows that the calculated 

layer from the output is back propagated through the network. 

∆w𝑚𝑙(𝑜𝑢𝑡𝑝𝑢𝑡) = 𝜇𝑒𝑚𝑜𝑢𝑡𝑝𝑢𝑡(𝑝)𝑓′ (𝑢𝑚(𝑜𝑢𝑡𝑝𝑢𝑡)(𝑝)) 𝑜𝑙𝐻−1(𝑝),  
 ∆w𝑚𝑙(𝑜𝑢𝑡𝑝𝑢𝑡) = w𝑚𝑙(𝑜𝑢𝑡𝑝𝑢𝑡)(𝑝 + 1) − w𝑚𝑙(𝑜𝑢𝑡𝑝𝑢𝑡)(𝑝), 𝑎𝑛𝑑 𝑚 ∈ [1, 𝑀] 

∆w𝑙𝑘(𝐻−1) = 𝜇𝑓′ (𝑢𝑙(𝐻−1)(𝑝)) 𝑜𝑘1(𝑝) ∑ w𝑚𝑙(𝑜𝑢𝑡𝑝𝑢𝑡)(𝑝)𝑒𝑚𝑜𝑢𝑡𝑝𝑢𝑡(𝑝)𝑓′ (𝑢𝑚(𝑜𝑢𝑡𝑝𝑢𝑡)(𝑝))𝑀
𝑚=1 ,  

∆w𝑙𝑘(𝐻−1) = w𝑙𝑘(𝐻−1)(𝑝 + 1) − w𝑙𝑘(𝐻−1)(𝑝), 𝑎𝑛𝑑 ∀𝑙 ∈ [1, 𝐿] 
∆w𝑘𝑗(1) = 𝜇𝑓′ (𝑢𝑘(1)(𝑝)) 𝑥𝑗(𝑝) ∑ w𝑙𝑘(𝐻−1)(𝑝)𝐿

𝑙=1 𝑓′ (𝑢𝑙(𝐻−1)(𝑝)) [ ∑ w𝑚𝑙(𝑜𝑢𝑡𝑝𝑢𝑡)(𝑝)𝑒𝑚𝑜𝑢𝑡𝑝𝑢𝑡(𝑝)𝑓′ (𝑢𝑚(𝑜𝑢𝑡𝑝𝑢𝑡)(𝑝))𝑀
𝑚=1 ]  

∆w𝑘𝑗(1) = w𝑘𝑗(1)(𝑝 + 1) − w𝑘𝑗(1)(𝑝), 𝑎𝑛𝑑 ∀𝑘 ∈ [1, 𝐾] 
 

 This back and forth is continued until the error stops dropping or an acceptable value is reached. 

 

3.2 Convolutional Neural Networks 

 With image classification, the input value of 𝑥1…𝑁 is a pixel of the image in the training 

set and this presents a major limitation to typical MLP architectures. Each input has an individual 

weight value per neuron in the network, so for even a moderately deep network (the number of 
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hidden layers in the network refers to how deep a network is), the result is upwards of hundreds of 

thousands of weights that require refinement, or even millions for very high resolutions, making 

this computationally inefficient for modern practical purposes. CNNs solve many of the problems 

MLPs experience for image processing and have proven useful with other data types [e.g. 27,28]. 

A visual representation of the CNN architecture is seen in Figure 5.  

 

 

Figure 5. Convolutional Neural Network Architecture (simplified): Highlights the key steps 

within a typical convolutional neural network; The input layer is scanned with a [i,j] weight matrix 

to create the feature map; The feature map is averaged or maxed to increase network efficiency in 

the pooling layer; Decision making occurs at the final fully connected layer.  

 

The defining features of the CNN architecture are the inclusion of the convolution layer, a pooling 

layer and the fully connected layer. The convolution operator introduces several advantages to the 

architecture, namely sparse interactions, parameter sharing and equivariance to translation [29]. 

As is depicted in Figure 5, the convolution layer creates a series of feature maps by scanning a 

weight matrix of size [i,j] over the surface of the input data. This reduces the number of parameters 

the network must consider and introduces weigh sharing. Comparing to Figure 4b, the inputs are 
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blocked or shared between units with shared weights. The result is a reduction in memory 

requirements and an improvement of statistical efficiency [29]. After the convolution is performed, 

the linear activations that result are then passed through a non-linear activation function, like the 

ReLU which has largely replaced other activation functions, as it improves efficiency without a 

reduction in accuracy [29]. The convolution layer can be repeated with different sized weight 

matrices to extract more and more abstract features. Yann Le Cun and colleagues introduced the 

pooling, or subsampling layer to their model LeNet5 to achieve shift invariance [24]. This is 

accomplished by either averaging or producing a max over a small window of the convolution 

layer. This step is especially vital for image classification, as it allows the network to extract 

features without caring exactly where the features are located [29]. An additional benefit of this 

property is that it makes transfer learning with pretrained networks possible [30], which 

significantly reduces the size of training set necessary for new classification schemes. LeNet5 

followed every convolution with a pooling layer, but this is unnecessary. It has been shown that 

the best results for complex data sets apply a few pooling layers after the first series of convolution 

layers and a final pooling layer after the next to last convolution layer [31]. The final few layers 

of the network will consist of fully connected layers which are akin to regular neural networks. 

The output of these layers after activation are passed to a softmax operator 𝜎(∙) where high-level 

decisions are made, and after several passes, a class label is applied. The learning process is 

summarized below. 

𝑦𝑗 = 𝜎(𝑜)𝑗 = exp (𝑧𝑗)∑ exp (𝑧𝑘)𝐾𝑘=1  ∀𝑗 ∈ [1, 𝐾] 
Where 𝑦𝑗 = 𝑝(𝐶𝑗|𝑥), a posterior distribution over the available classes, where 𝐶𝑗 is the class and 𝑥 is the input vector. In section 2.4.2, a term “likelihood” is used to provide a label to the degree 

of riming present for a given flake, for added clarity 𝑦1 = 𝑅𝑙,𝑐1, 𝑦3 = 𝑅𝑙,𝑐3and 𝑦5 = 𝑅𝑙,𝑐5.    If 𝒲 
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is the set of all parameters for the network, and the set of training samples is {𝑥𝑝, 𝑑𝑝}𝑝−1𝑃 , then 

using 𝑦𝑗 as an input to a cost function 𝜀(∙), whose minimization is achieved through a modified 

error backpropagation [23].  

𝜀(𝒲) = 1𝑁 ∑ ||𝑑𝑝 − 𝑦(𝑥𝑝; 𝒲)||2𝑃
𝑝=1  

 

3.3 Residual Networks 

For complicated data sets, network comparisons have shown that increased depth improves 

network accuracy [32,33]. Deep networks have more capacity for different level (low/mid/high) 

features [34] and the top performing networks on the ImageNet dataset employed deep models 

[35]. The tradeoff is that the deeper the network becomes, the more the accuracy saturates and 

begins to quickly decline [35]. To combat this, a group of researchers from Microsoft Research, 

He et al., developed the residual network architecture. A residual network architecture is very 

similar to a convolutional neural network, with one addition. Every few convolution layers, a short 

cut identity is included Figure 6, which fits the layers to a residual mapping, instead of hoping they 

come to a desired mapping naturally [35]. 
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Figure 6. Residual Learning Block diagram: Represents the additional step introduced to a 

typical neural network architecture. 

 

3.4 Software Implementation 

A major benefit to utilizing convolutional neural networks is their widespread popularity 

for image classification. There are extensive software toolboxes available, both commercial and 

open source, with detailed walkthroughs for a variety of tasks and applications. Due to the 

automatic feature extraction inherent to their algorithm, CNNs can be applied and operated by 

non-expert technicians, increasing their functionality as a post-processing front end for big data 

tasks. The toolboxes and set up utilized in this paper are described in the section below. 

The same network architecture is used for geometric classification and riming degree 

estimation and can be run in parallel. The network was implemented using Matlab™ 2018b, with 

the Deep Learning and Machine Learning Toolboxes at Colorado State University. The network 

architecture is the ResNet-50, which was chosen over AlexNet [36] or GoogleNet[33] due to its 

balance between accuracy and speed [37] and has been pretrained on the ImageNet database [38] 

to reduce the size of the training set data necessary to be an effective classifier. The more 
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complicated the classification task, the larger the data set needed to extract relevant features [35]. 

Geometric classification, however, is a common problem in image classification, and therefore it 

is an ideal candidate for pretraining. A network pretrained for image classification can reuse 

many of the features extracted and made task specific on a reduced training data set [39]. Each 

class in the training set is limited to the smallest populated class, for instance, the Planar Crystal 

class is the least populated and has 290 images, this sets an upper limit of 290 on all classes. This 

is done so overrepresentation does not occur in the training phase. The entire training data set is 

divided into two categories, “training” and “validation”. As is customary, 70% of the entire 

training data set is randomly selected and stored in the “training” category, with the remaining 

30% saved for validation of the network performance. This separation reduces the likelihood of 

the network overfitting to data and allows for an accurate test for generalization. The training 

images are randomly reflected, translated and scaled within a defined range to improve the 

networks invariance to small changes [24].  Dropout [40] is employed on the pretrained network 

weights to further reduce any overfitting that may occur. The network performance is determined 

by mean square and the loss function is calculated as stochastic gradient descent. Validation 

occurs every three iterations over 10 epochs, although experimentation has shown that 6 epochs 

are enough to improve training time without loss of performance as is adopted for later tests. The 

learning rate for both networks is 0.0003.  

 

4. Results 
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 This section is reserved to discuss the results of the geometric classification and riming 

degree estimation. The learning curves for each network are presented with confusion matrices to 

show each networks generalization.  

 

4.1 Geometric Classification 

The results of network training for geometric classification are shown in Figure 7. The training 

data set included ~1450 images and training occurred over 900 iterations. The network achieves a 

mean accuracy of 93.4% with a loss function of ~0.2 and little variance between runs. Training 

time was 13 minutes and 23 seconds. This is very good accuracy given the size of the data set and 

the training time is reduced when limited to 6 epochs (from ~13 min. to ~8 min.).  

  

Figure 7. Learning Curve for CNN trained on Geometric Training Set: A mean average is 

validated every three iterations (black dots) over 10 epochs with a mean average of 93.4% (top), 

the same parameters are shared by the loss function evaluation with a final value of ~0.2 (bottom). 
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 To test the generalization of the network, it is then used to classify ~400 flakes not included 

in training, the results of which are shown in Figure 8. 

Figure 8. Confusion Matrix of Geometrically Trained CNN: The network was tasked with 

classifying 395 flakes to test generalization. The left axis is what the network labeled the input 

data to as, and the bottom axis is what the input data was. Green boxes represent correctly classified 

images, with total number in bold and percentage of total immediately below. Green text represents 

a correct classification, while the red percentage is the misclassification of the network. The overall 

network accuracy is shown in the bottom right corner. 

 

 The relevant information from the confusion matrix can be seen in the bottom row and 

right-most column. The bottom row is the percentage value of when the network was presented 

with an image and correctly classified it on a per class basis. The right-most column is out of 

class accuracy, i.e. how often the network confused an image within a class for something else. 
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The confusion matrix shows that the network has some issues making decisions between planar 

crystal and aggregate flakes. This is consistent with established reasoning, as the planar crystal 

class is most visibly similar to aggregate flakes and was also the smallest represented class for 

training which limited the diversity of available samples. Increasing the number of samples 

should increase the network’s ability to differentiate between the two classes.  

 

4.2 Riming Degree Estimation 

 With riming degree estimation, two networks were trained for comparison. One of the 

networks kept the discrete five classes determined using Praz et al’s [1,5] classification scheme 

(Table 1), while the other network removes the two classes labeled 2 and 4, relying instead on the 

posterior distribution, or “likelihood” estimation, to assign a continuous label to flakes that fall 

within the edge cases.  Comparing the learning curves of the two networks (Figure 9), it is clear 

that classes 2 and 4 are difficult for the network to analyze. 
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Figure 9. Learning Curve for CNN trained on Riming Degree Training Set: (a) A network 

was trained using classes composed of images representing the five discrete riming degree values 

[1,5] described in Table 1;(b) A separate network was trained using the same image data, only 

removing the images compromising class 2 and 4. 

 

The result of training is a mean accuracy of 68.8% and a loss of ~1 for the network trained 

on five classes (Figure 7a) and a mean accuracy of 92.4% with a loss of <0.3 for the network with 

only three classes (Figure 7b). The second network is then tasked with classifying a data set that 

includes samples from all five classes. Results of the applied “likelihood” percentage, 𝑅𝑙,𝑐#, can 

be seen in the following Figure 10. Here is shown the network’s capability to apply a riming degree 

estimation determined by features found in the edge case classes used in training. In Figure 10, 

examples of individual degree estimations are shown in the top-most row, while the network’s 

capability to distinguish between flakes with similar characteristics is showcased on the bottom.   
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Figure 10. Riming Degree Estimation Examples: The values represent the output of the riming 

degree estimation network, the top row highlights the networks range, while the bottom most 

demonstrates its ability to differentiate between similar flakes. 

An inherent benefit of this estimator is that it removes some of the guess-work involved when a 

human user classifies flakes individually. While the human processor may introduce error through 

fatigue or the result of an immediacy bias, a network will not suffer from these potential pitfalls 

and may catch misclassified images (Figure 11). 
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Figure 11. Human Error Examples: Utilizing a neural network for riming degree estimation has 

the advantage of quantified data driven decision making. 

Developing a riming degree estimator relies almost entirely upon features that are unique 

to images of snowflakes. Best results will be derived from training sets where features unrelated 

to riming degree estimation are equally represented, so that they are effectively removed from the 

decision-making process. Without equal representation, the network can develop a bias based on 

which feature is more prevalent. An example of this bias can be seen in Figure 12 and is a result 

of columnar crystal images being overrepresented in the “no riming” category. In Figure 12a, the 

estimator gives an accurate prediction indicated by the 𝑅𝑙,𝑐# values, but the bias is evident in flakes 

Figure 12b and 12c, resulting in a severe under estimation and overestimation respectively. In the 

storms sampled, flakes demonstrating no degree of riming were relatively rare, which is why 

columnar crystal flakes compose the bulk of the data set.  To achieve equal representation of 
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unrelated flake features, a wider variety of storms from different season will need to be processed, 

which is discussed further in section 5. 

Figure 12. Feature Bias Examples: (a) An image of a correctly labeled image by the Riming 

degree estimator. (b) The network underestimates the degree of riming in the image due to feature 

bias present in the “no riming” class. Expected results for this image should be a higher value for 𝑅𝑙,𝑐3. (c) The network overestimates the degree of riming due to feature bias from the “graupel” 
class.  

 

5. Future Work 

 

 

 

 In this section, the future tasks and research projects related to snowflake classification are 

briefly discussed. The first task for the network will be to process the backlog of storms that have 

been recorded in the MASCRAD project. This will aid in related research projects, such as linking 

the macro-characteristics of snowflakes to the scattering properties through 3D modeling and 

numerical analysis [17,18]. Currently, the network is best equipped for small-batch processing 

(few hundred flakes per batch) due to the size of its training data set. By processing more data with 

diverse environmental conditions, the network will eventually be able to process bulk data that 

number in the thousands. With additional flake variety, sub-classes and rarer classes may be 

introduced to the network, expanding from the five classes currently utilized. It may prove 
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beneficial to explore methods to reduce the dependency are large data sets. Whether methods to 

introduce scarcity sampling into the input or more advanced dimensionality reducing techniques 

like wavelets.  

 The previous discussion in section 4.2 has shown the promising results of the riming degree 

estimation by using a CNN, but there remain developments to be made and tested before the 

network is relied upon in academic research. Additional data from the backlog of storms will serve 

riming degree estimation as well. Feature extraction requires a large number of images and features 

unique to snowflake images cannot be compensated for by pretraining.  More diverse flakes will 

help remove any bias the network develops. Looking for means to incorporate other data types 

into the network’s decision making might prove beneficial. Introducing features such as fall speed, 

volume of flake or mass would make riming degree estimations more legitimate to the research 

community. Processing data from different seasons may lead to additional classification tasks, like 

wet or dry snow, and will be considered as they arise.   

 

6. Conclusion 

 
  

 

In this paper, recent developments in machine learning are applied to the problem of 

hydrometeor classification. Utilizing convolutional neural networks, the task of classifying flakes 

based on geometric characteristics and riming degree is undertaken. Convolutional neural 

networks are ideal for image classification due to their efficient data handling, automatic feature 

extraction, versatility and relative ease of application. A training set is developed primarily from 

two winter precipitation events and consists of 1450 flakes. Six geometric classes are defined based 

on observable physical characteristics of the snowflakes. These classes are aggregate, columnar 
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crystal, planar crystal, small particle, graupel and a combination of columnar and planar (although 

the latter is discarded due to rarity until further data is processed). Geometric training focused on 

individual flakes that are easily identifiable as members of a single class. The result of training is 

a network with 93.4% classification accuracy. This performance is sufficient to begin processing 

the hours of recorded backlog data from the MASCRAD project and begin growing the training 

data set for continued network development.  

The riming degree estimator shows promise. The training set is composed of images from 

all geometric classes separated (where applicable) into three categories: no riming, rimed and 

graupel. The network achieves 92% accuracy when estimating flakes that fall into these categories 

of riming. The probabilistic estimation that results at the output layer of the CNN is then used to 

gauge where a flake falls within these three degrees of riming (classes 2 and 4 from Praz et al). 

The high degree of accuracy is maintained by the network in determining whether a flake is more 

rimed or less rimed (belonging in class 2 or 4) but more sample data must be developed to increase 

precision of estimation and remove the influence of feature bias. A method for mapping the 

estimation to fit Mosimann et al. must be developed as more output data becomes available.  

The network developed in this paper will be used in the processing of MASCRAD data, 

but the architecture is ideal for any solid hydrometeor classification task and is suitable as a post-

processing front end to any image-based particle recording device. The network is ideal for users 

with limited experience in image processing, machine learning or atmospheric research. Organized 

data by physical characteristics and accurate riming degree estimations will help further research 

into hydrometeor scattering. This will potentially improve propagation models as higher 

frequencies continue to be explored, whether for use in remote sensing of hydrometeors, 

communication or other related fields. 
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