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ABSTRACT  

 

ROLE OF MECHANISTIC TARGET OF RAPAMYCIN (mTOR) SIGNALING IN THE 

CRUSTACEAN MOLTING GLAND 

Regulation of the molt cycle in decapod crustaceans is mainly controlled by the X-

organ/sinus gland complex (XO/SG) and the Y-organ (YO). Molt-inhibiting hormone (MIH), 

secreted by the XO/SG complex, suppresses production of molting hormone (ecdysteroids) by a 

pair of YOs. In the blackback land crab, Gecarcinus lateralis, molting can be induced by 

eyestalk ablation (ESA) or autotomy of 5 or more walking legs (multiple leg autotomy or MLA). 

During the molt cycle, the YO transitions through four physiological states: “basal” state at 

postmolt and intermolt; “activated” state at early premolt; “committed” state at mid premolt and 

“repressed” state at late premolt. The basal to activated state transition is triggered by a transient 

reduction in MIH; the YOs hypertrophy, but remain sensitive to MIH. The main hypothesis is 

that up-regulation of mechanistic Target of Rapamycin (mTOR) signaling, which controls global 

translation of mRNA into protein, is necessary for YO hypertrophy and ecdysteroidogenesis. 

cDNAs encoding mTOR, Rheb, Akt (protein kinase B) and p70 S6 kinase (S6k) were cloned 

from blackback land crab, G. lateralis, and green shore crab, Carcinus maenas. All four genes 

were expressed in all tissues examined. mTOR appears to be involved in YO activation in early 

premolt, as rapamycin inhibited YO ecdysteroidogenesis in vivo and in vitro. In addition, the 

expression of Gl-elongation factor 2 (EF2), Gl-mTOR, and Gl-Akt increased significantly in YOs 

from premolt, suggesting that an increase in protein synthetic capacity is necessary for YO 

activation. A putative transforming growth factor-beta (TGFβ) appeared to be involved in the 

transition of the YO from the activated to committed state, as SB431542, an Activin receptor 
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antagonist, lowered hemolymph ecdysteroid titers in mid premolt animals and abrogated the 

premolt increases in Gl-EF2, Gl-mTOR, and Gl-Akt mRNA levels. By contrast, molting had no 

effect on Cm-EF2, Cm-mTOR, Cm-Rheb, Cm-Akt, and Cm-S6k expression in C. maenas YOs. 

Unlike G. lateralis, adult C. maenas was refractory to ESA. ESA caused a small increase in 

hemolymph ecdysteroid titers, but animals did not immediately enter premolt. Some ES-ablated 

animals molted after many months, but most failed to molt at all. We hypothesized that other 

regions of the nervous system, specifically the brain and/or thoracic ganglion, were secondary 

source(s) of MIH. Nested endpoint RT-PCR showed that MIH transcript was present in brain and 

thoracic ganglion of intermolt crabs. Sequencing of the PCR product confirmed its identity as 

MIH. Real time PCR was used to quantify the effects of ESA on MIH expression in brain and 

thoracic ganglion on C. maenas red and green color morphs. ESA had little effect on MIH 

transcript levels, indicating that MIH was not regulated transcriptionally by the loss of the 

eyestalks. The data suggest that MIH secreted by neurons in the brain and thoracic ganglion is 

sufficient to prevent molt induction when the primary source of MIH is removed by ESA. There 

was also no effect of ESA on the expression of Gl-EF2 and mTOR signaling components in C. 

maenas YOs. 
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CHAPTER ONE 

 

INTRODUCTION 

A brief background on the crustacean molt cycle: 

Decapod crustaceans grow by periodic molting that is essential for growth, reproduction 

and metamorphosis (Skinner, 1962). According to Drach (1939), the molt cycle is divided into 

five stages, A to E based on the structure and hardness of the exoskeleton. In land crab, 

Gecarcinus lateralis, the duration of the molt cycle is four to six months in juveniles and one or 

two years in adults. After ecdysis stage E comes stage A, which lasts one to two days. During 

this stage, gastroliths are dissolved and epidermal cell size is decreased. In stage B the muscle in 

chela grows and the endocuticle layer is formed. Stages C1 to C4 comprises all of the cycle 

except for a 30-day premolt stage, D0 through D4 and a brief postmolt stage (A and B) (Skinner, 

1962). In the stages C1 and C2 the endocuticle layers are calcified and thickened. At the end of 

stage C3 the membranos layer of exoskeleton is formed, which completes the synthesis of the 

exoskeleton. Intermolt, or stage C4, is the longest period in the molting cycle. In response to 

internal and external cues, the animal enters premolt, which is divided to 5 substages D0 to D4. In 

stage D0 claw muscle atrophies and gastrolithes begin forming. In stage D1 the epidermis 

separates from the old exoskeleton (apolysis), thickens and begins secretion of the outer layers of 

the exoskeleton. Through stage D2 hemolyph ecdysteroid concentrations increase and the 

epidermis secretes new epicuticle and exocuticle. During stage D3 hemolyph ecdysteroid 

concentrations reach a peak and the hemolymph turns pink in stage D4, due resorption of 

astaxanthin from the old exocuticle. Actual ecdysis, or shedding of the old exoskeleton, occurs at 

stage E and lasts up to 1 day (Skinner, 1985). 
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Environmental conditions can affect the molt cycle. Many factors such as feeding, 

migration, and reproduction are known to have close links with the molt cycle of crustaceans 

(Caddy, 1987). Temperature and salinity can affect the timing and frequency of molting in 

crustaceans (Hughes et al., 1972; Dall and Barclay, 1977; Chang; Bruce, 1980; Skinner, 1985). 

The shrimp Macrobrachium rosenbergii has a protracted post-molt period under nutrient-poor 

conditions (Peebles, 1977). In American lobster, Homarus americanus, higher temperature 

shortens the molt cycle, while lower temperature delays molting in the fiddler crab, Uca pugnax 

(Passano, 1960). Studies on other types of crustaceans reported that larger crustaceans have a 

longer intermolt period than smaller ones of the same spices under a given conditions (Small and 

Habard, 1967). In several different euphausiid crustaceans under controlled conditions, both 

temperature and body size act to adjust the length of the intermolt period in the molting cycle 

(Fowler et. al., 1971). 

Endocrine control of the molting cycle in decapod crustaceans: 

  In decapod crustaceans, molting is controlled by the X-organ/sinus gland complex, a 

neurosecretory center in the eyestalks (ES). The complex secretes molt-inhibiting hormone 

(MIH), a neuropeptide that suppresses production of molting hormone (ecdysteroids) by a pair of 

molting glands (Y-organs or YOs) located in the anterior of the body (Fig. 1.1) (Spaziani et al., 

2001; Covi et al., 2009).  Molt-inhibiting hormone (MIH) represses YO ecdysteroidogenesis by 

increasing intracellular cAMP and cGMP (Covi et al., 2009; Nakatsuji et al., 2009). The data 

support the organization of the signaling pathway into a cAMP/Ca2+-dependent “triggering” 

phase and a NO/cGMP-dependent “summation” phase linked by calmodulin (CaM) (Mykles et 

al., 2010; Lee and Mykles, 2006; Covi et al., 2011) (Fig. 1. 2). This is similar to the signaling 

mechanism that stimulates fluid secretion in Drosophila Malpighian tubules by the decapeptide 
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cardioacceleratory peptide 2b (Kean et al, 2002; Cazzamali et al., 2003). YOs express a 

Ca2+/CaM-dependent NO synthase (NOS) and a NO-sensitive guanylyl cyclase (GC-I) (Kim et 

al., 2004 and Lee et al., 2007), and GC-I agonists (NO donors and YC-1) can inhibit YO 

ecdysteroidogenesis (Covi et al., 2008; Mykles et al., 2010). Phosphorylation of mammalian 

NOS reduces its activity; dephosphorylation by calcineurin enhances activity (Kone, 2001).  

NOS is phosphorylated in the activated YO, which is consistent with inactivation of NOS by 

protein kinases in the absence of MIH (Lee and Mykles, 2006).  

The YO is a dynamic organ that changes over the molt cycle. The YO goes through four 

physiological states during the molt cycle (Fig. 1. 4), that are mediated by endocrine and 

autocrine factors. A reduction in MIH triggers the transition from the basal state in intermolt to 

the activated state in early premolt. TGFβ factor triggers the transition from the activated state to 

the committed state in mid premolt and high ecdysteroids trigger the transition from the 

committed state to the repressed state in late premolt (Chang and Mykles, 2011).  

MIH suppresses ecdysteroidogenesis by the YO during intermolt (Fig. 1. 5), but the YO 

becomes refractory to MIH during premolt. In Carcinus maenas and Procambarus clarkii, the 

sensitivity to MIH declines during premolt and is least sensitive to MIH by the end of mid 

premolt and late premolt (Chung and Webster, 2003; Nakatsuji and Sonobe,  2004). In G. 

lateralis and C. maenas YOs, expression of NOS and GC-Iβ is up-regulated in response to an 

acute and chronic withdrawal of MIH and other neuropeptides by Eyestalk ablation (ESA) 

(McDonald et al., 2011). 

Ecdysteroids are polyhydroxylated steroids synthesized from cholesterol by the YO. 

Hydroxylations at C25, C22, C2, and C20 are catalyzed by cytochrome P-450 mono-oxygenases, 

which are encoded by the Halloween genes Phm, Dib, Sad, and Shd, respectively, in insects 
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(Gilbert and Rewitz, 2009; Hopkins, 2009; Mykles, 2010). Orthologs of Phm, Dib, Sad, and Shd 

occur in the D. pulex genome (Rewitz and Gilbert, 2008; Markov et al., 2009; Niwa et al, 2010), 

and a cDNA encoding Phm (Mj-Phm) has been cloned from prawn, M. japonicas (Asazuma et 

al., 2009). Mj-Phm is a target of eyestalk neuropeptides, as its expression in the YO is increased 

as much as 7-fold during premolt and is decreased about 2.5-fold by sinus gland extract and 

rMIH (Asazuma et al., 2009). Inactivation involves conversion of ecdysteroids to polar 

metabolites and conjugates, which are eliminated in the urine and feces. The antennal gland is 

the major route for excretion of ecdysteroids synthesized by the YO (Mykles, 2010). 

The mechanistic Target of Rapamycin (mTOR) signaling and its role in molting in 

arthropods: 

The mechanistic target of rapamycin (mTOR) is now the center of substantial research in 

regulation cell growth, in mTOR signal are linked to human diseases, including some types of 

cancer (Albanella et al., 2007). The mTOR pathway is highly conserved among all metazoans 

and functions as a nutrient sensor for cellular growth (Proud, 2009). mTOR is crucial for growth, 

aging, development, reproduction, and metamorphosis in insects (Layalle et al., 2008; Grewal, 

2009; Bjedov et al., 2010; Teleman, 2010). mTOR increases the ecdysteroid biosynthetic 

capacity of the prothoracic gland (PG) during premolt. Nutrients and insulin-like peptides (ILPs) 

activate mTOR, which phosphorylates components of the protein synthetic machinery, such as 

p70-S6 kinase (S6k) and eIF4E-binding protein (4EBP1) to increase translation of mRNA (Fig. 

1. 6) (Proud, 2009; Teleman, 2010). Insulin stimulates ecdysteroidogenesis in the PG of Bombyx 

mori (Gu et al., 2009). Binding of ILP to an insulin receptor activates a signal transduction 

cascade involving PI3K, PDK1, and Akt protein kinases. mTORC1 is activated by the Rheb 

GTP-binding protein, and is inactivated when Rheb-GTPase activating protein (Rheb-GAP or 
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TSC1/2) stimulates the hydrolysis of GTP to GDP by Rheb (Fig. 1. 3). Rheb-GAP is inhibited 

when phosphorylated by Akt. Insulin-like peptide signaling prevents the hydrolysis of GTP by 

Rheb through the inhibition of Rheb-GAP, thus keeping mTOR in the active state (Fig. 1. 3) 

(Teleman, 2010). Genetic studies on Drosophila melanogaster have shown that the ILP/mTOR 

pathway controls PG size and ecdysteroidogenic capacity (Colombani et al., 2005; Mirth et al., 

2005; Layalle et al., 2008). Over-expressing Rheb-GAP inhibits PG growth (Colombani et al., 

2005; Mirth et al., 2005; Layalle et al., 2008). Conversely, over-expressing PI3K, an upstream 

activator of Akt, stimulates PG growth (Colombani et al., 2005; Mirth et al., 2005).  

There is little information on the mTOR pathway in crustaceans. Shrimp nervous tissue and 

lobster hepatopancreas produce peptides with insulin-like properties (Hatt et al., 1997; Gallardo 

et al., 2003), while an IGF is expressed in the androgenic gland of crayfish and prawn (Manor et 

al., 2007; Ventura et al., 2009). An insulin receptor tyrosine kinase and a phosphotyrosyl protein 

phosphatase have been characterized in crustacean tissues (Lin et al., 1993; Chuang and Wang, 

1994; Kucharski et al., 1999). A cDNA encoding S6k was cloned from Artemia and is up-

regulated during embryonic development (Santiago and Sturgill, 2001).  

Two methods can induce molting: ES ablation (ESA) and multiple leg autotomy (MLA). 

MLA resembles “natural” molting, as animals successfully completing ecdysis. Regenerating 

limbs in MLA provide measure of the progress events in the crabs. The measure is defined as the 

R index (calculated as the length of the regenerate x 100/carapace width), which increases from 0 

to ~23 prior to ecdysis (Fig. 1. 7) ESA is an effective and convenient method, as the XO/SG 

complex is the primery source of MIH (Skinner and Graham, 1972; Yu et al., 2002).  

The goal of this project is to examine the role of mTOR signaling in the regulation of the 

molting gland (Y-organ). We hypothesize that a major target of MIH and TGFβ pathways is the 



6 
 

mTOR complex, which controls global translation of mRNA into protein in animal cells. This 

dissertation is organized into five chapters. Chapter one is an introduction. Chapter two reports 

the cloning and characterization of cDNAs encoding four mTOR signaling components in 

decapod crustaceans. Chapter three describes the role of the mechanistic target of rapamycin 

(mTOR) and TGFβ signaling in the crustacean Y-organ during the molt cycle. Chapter four 

reports how C. maenas, is refractory to molt induction by eyestalk ablation and multiple leg 

autotomy. Chapter five is a summary and suggests future areas of investigation. 
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Figure 1. 1. Blackback land crab, G. lateralis. The molting gland, or Y-organ, is located in the 
cephalothorax, anterior to the branchial chamber. 
 

 

 

 

 

 

 

 

Y-organ 
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Figure 1. 2. Proposed MIH signaling pathway regulating ecdysteroidogenesis in decapod 
crustacean molting gland. The ‘‘triggering’’ phase is initiated by binding of MIH to a G 
protein-coupled receptor (MIH-R) and activation of adenylyl cyclase (AC); cAMP increases 
intracellular Ca2+ via cAMP-dependent protein kinase (PKA) phosphorylation of Ca2+ channels. 
Sensitivity to MIH is determined by phosphodiesterase 1 (PDE1) activity, which varies during 
the molting cycle. The ‘‘summation’’ phase is mediated by NO and cGMP. Calmodulin (CaM) 
links the two phases by activating NO synthase (NOS) directly and indirectly via calcineurin 
(CaN). Dephosphorylation of NOS by CaN can potentially prolong the response to MIH. CaM 
can also activate PDE1 to inhibit the triggering phase (PDE1 can also hydrolyze cGMP, thus 
inhibiting the summation phase). cGMP dependent protein kinase (PKG) inhibits 
ecdysteroidogenesis. Chronic activation of PKA may directly inhibit ecdysteroidogenesis. 
Chronic elevated intracellular cAMP can inhibit ecdysteroidogenesis directly, perhaps by 
inhibiting protein synthesis. Other abbreviations: G, G protein; GC-I, NO-sensitive guanylyl 
cyclase; PDE5, cGMP PDE (Chang and Mykles, 2011). 
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Figure 1. 3. Regulation of mTORC signaling pathway. Rheb-GAP (TSC1/2) inactivates 
mTORC1 by promoting the hydrolysis of GTP to GDP. Rapamycin inhibits mTORC1 via 
binding to FKBP12. Insulin/IGF signaling (PI3K, PDK1, & Akt) activates mTORC1 by 
inhibiting Rheb-GAP. We hypothesize that Mstn/Smad signaling inhibits mTORC1 by altering 
expression and subsequent phosphorylation of insulin/IGF signaling components, either through 
up-regulation of PTEN (A) and/or Rheb-GAP (D), down-regulation of PDK1 (B), Akt (C), 
and/or Rheb (E), or a combination of any or all (Wullschleger et al., 2006; Proud, 2009). 
 
                          



10 
 

 

 

 
Figure 1. 4. Hormonal regulation of molting. YO transitions through four physiological states 
(basal, activated, committed, and repressed) during the molt cycle. Diagram shows the 
relationship between molt stage, YO state (transitions indicted by vertical red lines), YO 
sensitivity to MIH, limb regeneration (R index), YO ecdysteroidsynthetic capacity (black line), 
and hemolymph ecdysteroid titer (blue line). YO activation is triggered by a reduction in MIH 
(▼ MIH); YO commitment involves a putative TGFβ factor (▲ TGFβ) (from Chang and 
Mykles, 2011).  
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Figure 1. 5. Signaling pathways controlling YO ecdysteroid synthesis. MIH inhibits YO 
during intermolt. At mid premolt a putative TGFβ factor produced by the activated YO 
stimulates mTOR and “commitment” genes that inhibit MIH signaling and stimulate ecdysteroid 
biosynthetic enzymes. Rapamycin inhibits mTOR and SB431542 inhibits TGFβ.   
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Figure 1. 6. Hypothetical control of mTOR by MIH and TGFβ in the crustacean YO. The 
mTORC1, composed of mTOR, Raptor, and GβL, regulates translation by phosphorylating S6K 
and 4E-BP1. mTORC is activated by Rheb-GTP; Rheb-GAP inactivates mTORC1 by promoting 
the hydrolysis of GTP. Rapamycin inhibits mTORC1 via binding to FKBP12. MIH signaling 
may inhibit mTOR by inhibiting Akt or Rheb and/or activating Rheb-GAP or FKBP12. TGFβ 
signaling may stimulate mTOR by having the opposite effects on Akt, Rheb-GAP, Rheb, and/or 
FKBP12. 
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Figure 1. 7. Blackback land crab Gecarcinus lateralis, showing autotomized limbs on the 
left side, and limb buds on the right side. The formula for calculating the Regeneration value  
(R-value) is shown. 
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X 100 = 15.1  8  
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CHAPTER TWO 

 

CLONING AND CHARACTERIZATION OF CDNAS ENCODING MECHANISTIC 

TARGET OF RAPAMYCIN (mTOR) SIGNALING COMPONENTS IN DECAPOD 

CRUSTACEANS 

 

SUMMARY 

 The mechanistic Target of Rapamycin (mTOR) is a highly conserved protein kinase controlling 

cell growth in multicellular animals. It controls the rate of translation of mRNA into protein by 

phosphorylating p70 S6 kinase (S6k) and eIF4E-binding protein-1. Rheb (Ras homolog 

expressed in brain) and Akt (protein kinase B) are important regulators of mTOR. Growth in 

crustaceans requires the periodic shedding of the exoskeleton, a process known as molting or 

ecdysis. Thus, tissue growth is linked to molting, which is regulated by ecdysteroids produced by 

a pair of molting glands (Y-organs, YO) located in the cephalothorax. During premolt, YOs 

hypertrophy and increase production of ecdysteroids. We hypothesize that up-regulation of 

mTOR signaling is necessary for the growth of the YO and other tissues associated with molting. 

cDNAs encoding mTOR, Rheb, Akt, and S6k were cloned from the blackback land crab, 

Gecarcinus lateralis and green shore crab, Carcinus maenas. The G. lateralis cDNA sequences 

were obtained by reverse transcriptase-polymerase chain reaction and rapid amplification of 

cDNA ends. The C. maenas cDNA sequences were obtained from expressed sequence tags 

(ESTs). Partial cDNAs encoded Gl-mTOR (3705 bp), Cm-mTOR (4031 bp), Gl-Rheb (983 bp), 

Gl-Akt (1461 bp), Cm-Akt (855 bp), Gl-S6k (1116 bp), and Cm-S6k (918 bp). A complete 

cDNA encoded Cm-Rheb (1543 bp). Identity/similarity of the deduced amino acid sequences of 
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the G. lateralis cDNAs to human orthologs were 69%/80% for mTOR, 64%/83% for Rheb, 

62%/78% for Akt, and 75%/86% for S6k. Identity/similarity of the deduced amino acid sequence 

of the C. maenas cDNAs to human orthologs were 72%/81% for mTOR, 66%/81% for Rheb, 

58%/73% for Akt, and 77%/88% for S6k. The four genes were expressed in all tissues examined, 

indicating the importance of this pathway in regulating protein synthesis in all cells. 

 

INTRODUCTION 

The mechanistic Target of Rapamycin (mTOR) pathway is highly conserved among all 

metazoans; it functions as a nutrient sensor for cellular growth and is up-regulated in mammalian 

cancers (Proud, 2009; Zoncu et al., 2011; Dodd and Tee, 2012; Gentzler et al., 2012; Laplante 

and Sabatini, 2012; Zhou et al., 2012).  mTOR is crucial for growth, aging, development, 

reproduction, and metamorphosis in insects (Bjedov et al., 2010; Gibbens et al., 2011; Gu et al., 

2012; Mirth and Shingleton, 2012). mTOR increases the ecdysteroid biosynthetic capacity of the 

insect molting gland (prothoracic gland or PG). Nutrients and insulin-like peptides (ILPs) 

activate mTOR, which phosphorylates components of the protein synthetic machinery, such as 

p70-S6 kinase (S6k) and eIF4E-binding protein-1 (4E-BP1) to increase translation of mRNA 

(Proud, 2009; Teleman, 2010). Binding of ILP to an insulin receptor activates a signal 

transduction cascade involving phosphoinositide 3-kinase (PI3K), 3'-phosphoinositide-dependent 

kinase-1 (PDK1), and Akt (Teleman, 2010).  

mTOR is activated by the Rheb GTP-binding protein. mTOR is inactivated when Rheb-

GTPase activating protein (Rheb-GAP or TSC1/2) stimulates the hydrolysis of GTP to GDP by 

Rheb-GAP is inhibited when phosphorylated by Akt. Insulin and ILP signaling prevents the 

hydrolysis of GTP by Rheb through the inhibition of Rheb-GAP, thus keeping mTOR in the 
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active state (Teleman, 2010). The ILP/mTOR pathway controls PG size and ecdysteroidogenic 

capacity (Teleman, 2010; Mirth and Shingleton, 2012). Overexpression of Rheb stimulates cell 

growth while knockdown of Rheb expression inhibits protein synthesis and cell growth in insects 

(Hall et al., 2007; Patel et al., 2003). Conversely, over-expressing PI3K, an upstream activator of 

Akt, stimulates PG growth (Colombani et al., 2005; Mieth et al., 2005). In addition, PI3K and 

mTOR inhibitors block PTTH-induced increases in ecdysteroid secretion in the PG (Gu et al., 

2011; Gu et al., 2012).  

Little is known about the insulin/mTOR pathway and its role in growth and development in 

crustaceans.  Insulin-like peptides were reported in shrimp and lobster hepatopancreas (Hatt et 

al., 1997; Gallardo et al., 2003). An IGF is expressed by androgenic gland of crayfish and prawn 

(Manor et al., 2007; Ventura et al., 2009). Insulin receptor tyrosine kinase and phosphotyrosyl 

phosphatase are present in crustacean tissues (Lin et al., 1993; Chuang and Wang, 1994; 

Kucharski et al., 1999; Kucharski et al., 2002). A single study examined p70 S6 kinase in the 

brine shrimp, Artemia franciscana; it showed that S6k activity is present, and increases, in early 

preemergence development after quiescence, when protein synthesis is restored (Santiago and 

Sturgill, 2001).  

The purpose of this study was to clone and characterize cDNAs encoding four key 

components of the mTOR signaling pathway (mTOR, Rheb, Akt and S6k) from the blackback 

land crab, Gecarcinus lateralis, and green shore crab, Carcinus maenas. cDNAs were obtained 

by reverse transcriptase-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA 

ends (RACE). The tissue expression of the four genes was determined by endpoint RT-PCR.  
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MATERIALS AND METHODS 

Animals  

Adult blackback land crabs (Gecarcinus lateralis) were collected in the Dominican 

Republic and shipped via commercial air cargo to Colorado, USA.  Animals were maintained at 

27 ºC in 75-90% relative humidity with intermolt individuals kept in communal plastic cages 

lined with aspen bedding wetted with 5 p.p.t. Instant Ocean (Aquarium Systems, Mentor, OH).  

The crab environmental chamber was maintained in 12 h: 12 h light: dark cycle with twice-

weekly animal feedings of carrots, iceberg lettuce, and raisins (Covi et al. 2010). These crabs 

molt approximately once a year. European green shore crabs (Carcinus maenas) were collected 

from the harbor at Bodega Bay, California. They were maintained under ambient conditions in 

the facilities of Bodega Marine Laboratory or were shipped to Colorado.  In Colorado, animals 

were kept in aerated 30 ppt Instant Ocean at 20 °C and fed cooked chicken liver once a week.  

Instant Ocean was changed twice a week (or more if water became cloudy or there was a death in 

the cage) (Lee et al., 2007). 

RNA purification and cDNA synthesis 

Total RNA was isolated from land crab and green crab tissues using TRIzol reagent (Life 

Technologies, Carlsbad, CA) as described previously (Covi et al., 2010).  Briefly, tissues (claw 

muscle, thoracic muscle, and gill) (50-200 mg) were homogenized in 1-2 ml TRIzol and 

centrifuged at 12,000 × g for 15 min at 4 ºC.  Supernatants were phenol-chloroform extracted 

and RNA in the aqueous phase was precipitated using isopropanol (0.75 ml per 1 ml TRIzol 

reagent). RNA was treated with DNase I (Life Technologies), extracted twice with 

phenol:chloroform:isoamyl alcohol (25:24:1), precipitated with isopropanol, washed twice with 

75% ethanol in DEPC water, and resuspended in nuclease-free water.  First-strand cDNA was 
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synthesized using 1 µg total RNA in a 20 µl total reaction with SuperScript III reverse 

transcriptase (Life Technologies) and oligo-dT(20)VN primer (50 µM; IDT, Coralville, IA) as 

described (Covi et al., 2010).  RNA was treated with RNase H (Fisher Scientific, Pittsburgh, PA) 

and stored at -80 ºC. 

Cloning of cDNA encoding mTOR, Rheb, Akt, and S6k 

RT-PCR and RACE were used to clone cDNAs encoding Cm-mTOR, Cm-Rheb, Cm-Akt, 

and Cm-S6k on the basis of sequence determined by multiple sequence alignment of several 

ESTs from each organism, courtesy of the Mount Desert Island Biological Laboratory (Towle 

and Smith, 2006).  Sequence for each open reading frame was verified by RT-PCR using cDNA 

prepared as above.  All primers were synthesized by IDT. 

RT-PCR and RACE were used to clone the Gl-mTOR, Gl-Rheb, Gl-Akt, and Gl-S6k 

cDNAs.  cDNAs synthesized from claw muscle, thoracic muscle, and gill RNA were pooled and 

used for PCR.  PCR was conducted using 0.5 µl of the first strand cDNA as template and 

forward (10 pmol) and reverse (10 pmol) primers shown in Table 2. 1.  For Rheb, specific 

primers directed against the green crab (C. maenas) were used.  All the other genes used 

degenerate primers (Table 2. 1) designed using iCODEHOP (Boyce et al., 2009) or by hand 

using multiple sequence alignments of homologous proteins and a codon chart. PCR reactions 

used GoTaq Green master mix (Promega, Madison, WI).  After denaturing the cDNA at 96 ºC 

for 3 min, 35 cycles of PCR were completed with the following program:  96 ºC for 30 s, lowest 

annealing temperature of a primer pair (see Table 2. 1) for 30 s, and 72 ºC for 30 s to 1 min.  

Final extension was for 7 min at 72 ºC.   Amplified fragments, verified as single bands by 1% 

agarose gel electrophoresis, were purified using the GeneJet PCR Cloning Kit (Fermentas), 

ligated into the pJET1.2 vector using the CloneJet PCR Cloning Kit (Fermentas), and, after insert 
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verification by PCR with vector primers, sequenced using a T7 primer (Davis Sequencing, 

Davis, CA).  

The FirstChoice RLM-RACE Kit (Applied Biosystems, Austin, TX) was used according to 

the manufacturer’s instructions to amplify additional parts of the Gl-mTOR, Gl-Rheb, Gl-Akt, 

and Gl-S6k coding sequence using nested 5’ and 3’ RACE and primers shown in Table 2. 1.  

RACE conditions were as follows:  0.4 µl RACE template cDNA was used in each reaction, with 

8 pmol of each gene specific (Table 2. 1) and kit primer and other components identical to the 

initial PCR reactions (see above).  After denaturation at 94 ºC for 3 min, 35 cycles of 94 ºC for 

30 s, lowest annealing temperature of a primer pair (Table 2. 1) for 30 s, and 72 ºC for 30 s to 1 

min, were completed.  Final extension was for 7 min at 72 ºC. Most of nested and 3’ and 

5’RACE PCR products were separated by 1% agarose gel electrophoresis, purified using the Gel 

Extraction Kit (QIAEX II, Qiagen), and sequenced by direct sequencing with sequence-specific 

primers (Davis Sequencing). 

Tissue expression of EF2, mTOR, Rheb, Akt, and S6k mRNAs  

End-point PCR was used to qualitatively assess the tissue distribution of Gl-elongation 

factor 2 (EF2; GenBank AY552550), Gl-mTOR (GenBank HM989973), Gl-Rheb (GenBank 

HM989971), Gl-Akt (GenBank HM989974), Gl-S6k, (GenBank HM989975), Cm-EF2 

(GenBank GU808334; McDonald et al., 2011), Cm-mTOR (GenBank JQ864248), Cm-Rheb 

(GenBank HM989970), Cm-Akt (GenBank JQ864249), Cm-S6k (GenBank JQ864250).  The 

Rheb sequences were reported in a recent publication (MacLea et al., 2012; see Appendix 1). 

Total RNA was purified from eyestalk ganglia, thoracic ganglion, YO, hepatopancreas, heart, 

claw muscle, thoracic muscle, midgut, hindgut, and testis as described above. All tissues were 

collected from intermolt adult male animals.  Reactions contained 1 µl template cDNA and 5 
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pmol each of the appropriate expression primers (Table 2. 1) in GoTaq Green master mix 

(Promega).  After denaturation at 94 ºC for 3 min, 30 or 35 cycles of 94 ºC for 30 s, lowest 

annealing temperature of a primer pair (see Table 1) for 30 s, and 72 ºC for 30 s, were 

completed.  Final extension was for 7 min at 72 ºC. Cm-EF2 and Gl-EF2 used 30 cycles.  After 

PCR was terminated, products were separated on a 1% agarose gel containing TAE (40 mM Tris 

acetate and 2 mM EDTA, pH 8.5).  The gels were stained with ethidium bromide and visualized 

with a UV light source.   

Analyses and software 

 Multiple sequence alignments were produced with ClustalX version 2.0.12 (Thompson 

et al., 1997) using deduced amino acid sequences. Illustrator 10 (Adobe Systems, San Jose, CA) 

was used for constructing/annotating graphs and figures.   

 
RESULTS 

Cloning and characterization of crustacean mTOR cDNAs 

RT-PCR and 3’ RACE were used to clone cDNAs encoding of the mTOR from G. lateralis 

and C. maenas. Initial RT-PCR using degenerate primers targeted to the kinase domain (Fig. 2. 

1) produced a 664-bp product for Gl-mTOR that was ligated into a plasmid vector and used to 

transform E. coli cells. Plasmids were purified and sequenced. A ~779-bp product from 3’ 

RACE using sequence-specific forward primers (Table 2. 1) encoded the 3’ end of the open 

reading frame (ORF) and part of the 3’ untranslated region (UTR). Nested RT-PCR was used to 

extend the 5’ end for Gl-mTOR using Cm-mTOR forward primers with Gl-mTOR reverse 

primers (Table 2. 1). Two partial sequences (1543 bp and 1624 bp) for Cm-mTOR were obtained 

using sequence-specific primers (Table 2. 1) derived from an EST (GenBank DV642891). 

Nested RT-PCR was used to fill the gap between the two partials and 3’ RACE was used to 
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obtain the 3’ end of the ORF and part of the 3’ UTR (Fig. 2. 1, 2. 3). Gel-purified PCR products 

were sequenced by direct sequencing (see Materials and methods).  

The consensus DNA and deduced amino acid sequences for Gl-mTOR and Cm-mTOR are 

presented in Figs. 2. 2 and 2. 3, respectively. The cDNAs encoded the 3’ part of the ORF 

containing the HEAT repeat, FKBP12-rapamycin-binding (FRB), FAT, serine-threonine protein 

kinase, and FATC domains (Fig. 2. 1; Table 2. 2). As human mTOR is 2549 amino acids, we 

estimate that about 43% of the Gl-mTOR ORF and about 44% of the Cm-mTOR ORF was 

obtained (Fig. 2. 1). The deduced sequences shared high degrees of identity and similarity to the 

human ortholog at the protein level (Table 2. 2), with even higher identity and similarity to insect 

orthologs. Multiple alignments of the deduced amino acid sequences from crustacean and insect 

species indicated high sequence identities in the HEAT repeat, FRB, FAT, kinase, and FATc 

domains (Fig. 2. 4). 

Cloning and characterization of crustacean Rheb cDNAs 

cDNAs containing the complete ORF of Gl-Rheb and Cm-Rheb were obtained from RT-

PCR and RACE (MacLea et al., 2012). Cm-Rheb was cloned on the basis of sequence alignment 

of several ESTs (GenBank DV467211, DV944345, DV943723, DV642713 and DV642936) 

using RT-PCR with specific primers (Table 2. 1). The Gl-Rheb sequence was obtained by RT-

PCR using primers designed from the Cm-Rheb sequence (Table 2. 1). The sequences contained 

the 5’ UTR, ORF, and 3’ UTR (Fig. 2. 5-2. 7; Table 2. 2). The DNA and deduced amino acids 

sequences for Gl-Rheb and Cm-Rheb are presented in Figs. 2. 6 and 2. 7, respectively. 

Multiple sequence alignment of Rheb protein from crustacean and insect species indicated a 

high level of sequence identity. An EST encoding the Rheb protein in American lobster, 

Homarus americanus (Ha-Rheb; MacLea et al., 2012), was included in the analysis. The Rheb 
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cDNAs encoded 182 amino acid proteins with estimated masses of 20.2 kDa for Gl-Rheb, and 

20.4 kDa for Cm-Rheb and Ha-Rheb. Sequence identity was particularly high within the G box 

motifs (G1–G5) in all the Rheb proteins (Fig. 2. 8). The lipid modification site at the C-terminus 

was also conserved in the arthropod Rheb proteins.  

Cloning and characterization of crustacean Akt cDNAs 

cDNA encoding Gl-Akt was obtained with RT-PCR using degenerate primers directed to 

conserved sequences in the kinase domain (Fig. 2. 9), which were identified from multiple 

sequence alignments of Akts from vertebrate and invertebrate species. An initial PCR product 

(~540 bp) was ligated into a plasmid vector and sequenced. 3’ RACE and 5’ RACE using 

sequence-specific primers to the initial PCR product (Table 2. 1) extended the ORF 5’ to the 

initiation codon and 3’ into the regulatory C-terminal domain (Fig. 2. 9). The Cm-Akt sequence 

was derived from ESTs using RT-PCR and 5’ RACE.  Attempts to obtain more of the 5’ and 3’ 

sequences by RACE were unsuccessful.  The DNA and deduced amino acids sequences for Gl-

Akt and Cm-Akt are presented in Figs. 2. 10 and 2. 11, respectively. 

Multiple sequence alignment of crustacean and insect Akts indicate high levels of sequence 

identity. Identity/similarity to human Akt was 62%/78% for Gl-Akt and 58%/73% for Cm-Akt 

(Table 2. 2). Akt proteins from five arthropod species were highly conserved, showing high 

identity and similarity to each other, including the activation loop in the kinase domain (Fig. 2. 

12).  

Cloning and characterization of crustacean S6k cDNAs 

cDNAs encoding S6k from G. lateralis and C. maenas were obtained from RT-PCR and 

RACE or from EST clones, respectively (Fig. 2. 13). For Gl-S6k, an initial RT-PCR product 

(678 bp) was obtained with nested degenerate primers targeted to conserved sequences in the 
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kinase domain (Fig. 2. 13), based on sequence alignments of S6k proteins from vertebrate and 

invertebrate species. The RT-PCR product was ligated into a plasmid vector and sequenced. 5’ 

RACE and 3’ RACE yielded additional 5’ and 3’ sequences, but the RACE products did not 

extend to the UTRs. Further attempts to obtain the 5’ and 5’ UTRs were unsuccessful. The Cm-

S6k sequence was obtained by RT-PCR using sequence-specific primers, based on sequence 

alignments of several ESTs. The Gl-S6k cDNA encoded the N-terminal domain (NTD), kinase 

domain (KD) with kinase extension region (KE), and C-terminal domain (CTD) (Figs. 2. 13, 2. 

14). The Cm-S6k cDNA encoded the kinase domain and portions of the NTD and KE domains 

(Figs. 2. 13, 2. 15). 

The deduced amino acid sequences of the crustacean S6ks showed high degrees of identity 

and similarity to the human ortholog of each sequence (75%/86% identity/similarity for Gl-S6k 

and 77%/88% identity/similarity for Cm-S6k; Table 2. 2). A multiple sequence alignment of the 

two decapod S6k proteins with D. pulex S6k and two insect S6k proteins showed high sequence 

identity, including the activation loop and phosphorylation site within the catalytic domain.  

Tissue expression of mTOR signaling components 

Endpoint RT-PCR was used to determine the expression of mTOR, Rheb, Akt, and S6k in 

tissues from G. lateralis and C. maenas. EF2 was included as a constitutively expressed gene to 

assess RNA isolation and cDNA synthesis. All five genes were expressed in all tissues, including 

Y-organ, heart, skeletal muscle (claw and thoracic muscles), eyestalk ganglia, thoracic ganglion, 

hepatopancreas, midgut, hindgut, and testis (Fig. 2. 17). 
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DISCUSSION 

The highly conserved insulin/IGF/mTOR signaling pathway is found in all metazoans and 

has an important role as a nutrient sensor (Proud, 2009) critical for growth and development in 

insects (Hietakangas and Cohen, 2009; Layalle et al., 2008; Maestro et al., 2009; Montagne et 

al., 2010; Walkiewicz and Stern, 2009) and other invertebrates (Soulard et al., 2009).  Before this 

project, it was not clear whether components of this pathway would be regulated during the molt 

cycle of crustaceans, as is the case in insects, although a study of Artemia did demonstrate the 

increased expression of p70S6 kinase in emergence from quiescence (Santiago and Sturgill, 

2001). In order to determine its function in crustaceans, we cloned mTOR pathway components 

representing four different genes from two crustacean species, G. lateralis, and C. maenas (Table 

2.  2). All four genes were expressed in all tissues that were examined, indicating that the mTOR 

pathway is important in growth regulation in all cells. 

The domain organization of mTOR is well conserved across animal phyla. It has a C-

terminal catalytic domain bounded by the FRB (FKBP12 rapamycin binding) domain, FAT 

(FRAP, ATM, and TRRAP) domain, and protein HEAT repeats (Huntington, Elongation Factor 

3, a subunit of PP2A and TOR) domain (Fig. 2. 1). The C-terminus of mTOR consists of the 

FATC (FRAP, ATM and TRRAP C-terminal) domain (Bosotti et al., 2000; Perry and Kleckner, 

2003; Veverka et al., 2008). 

The cDNAs of mTOR cloned from G. lateralis and C. maenas showed high levels of 

sequence relatedness when compared with the human protein (Table 2. 2).  This level of 

relatedness was even higher when compared by BLASTX against top hits among arthropod 

sequences in the database (Fig. 2. 4).  Gl-mTOR and Cm-mTOR contain all the important 

domains found in other mTOR proteins. The rapamycin binding domain, which is a key target 
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for FKBP12/rapamycin inhibition of inhibits kinase activity (Sonja et al., 2005). The kinase 

domain functions by phosphorylating serine and threonine residues on target proteins (Harris and 

Lawrence, 2003; Jacinto and Hall, 2003). The FAT domain consists of HEAT repeat-like α-

helical structures and may function as a protein interaction platform (Perrt and Klechkner, 2003). 

The C-terminal FATC domain, which consists of an α-helix and a disulfide bonded loop, may 

regulate mTOR activity (Sonja et al., 2005).  

mTOR associates with other proteins to form two complexes that differ in function. mTOR 

complex 1 (mTORC1) is composed of raptor, mLST-8, and other proteins (Dibble et al., 2009; 

Treins et al., 2009) and is regulated by growth factors, energy status, nutrients, and stress 

(Laplante and Sabatini, 2009). mTORC1 activates proteins that regulate translation initiation and 

elongation. Activation of protein biosynthesis by mTORC1 occurs via phosphorylation of 

ribosomal protein S6 kinase (S6k) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) 

(Zoncu et al., 2001). mTOR complex2 plays a role in actin cytoskeleton reorganization. 

mTORC2 phosphorylates Akt that is induced by stimuli such as growth factors and hormones 

(Won and Estele, 2011). 

Rheb is an important activator of mTOR and is highly conserved across phyla. Gl-Rheb and 

Cm-Rheb share the same functional domains with Rheb proteins from insects (Fig. 2. 5). The 

Rheb sequences contained the five G boxes necessary for GTP-binding and GTPase activity 

(MacLea et al., 2012). The lipid modification site (CAAX, where C = Cys, A = aliphatic residue, 

and X = any residue; reviewed in Wennerberg et al., 2005) is required for proper targeting to 

membranes and for the downstream effects of Rheb (Castro et al., 2003).  The effector domain, 

or “switch I”, includes the G2 box and surrounding residues and is important for Rheb activation 

of mTOR (Ma et al., 2008).  The effector domain mediates binding of Rheb to FKBP38, an 
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inhibitor of mTOR that is thought to reduce mTOR activity under nutrient or growth factor-poor 

conditions (Ma et al., 2008; Dunlop et al., 2009).  However, there is contradictory evidence of 

the role of FKBP38 in the modulation of Rheb activity (Wang et al., 2008).  

Akt is the central mediator of mTOR-dependent protein synthesis in response to growth 

factors (Marte and Downward, 1997; Toker and Newton, 2000; Xin et al., 2003). Akt belongs to 

the AGC kinase family, which is related to AMP/GMP kinases and protein kinase C (Masahito et 

al., 2004). Akt activates mTOR by phosphorylating TSC1/2, a GTPase-activating protein that 

inactivates Rheb (Laplante and Sabatini, 2012). It consists of an N-terminal pleckstrin homology 

(PH) domain, kinase domain (KD), and regulatory C-terminal (RC) domain (Chandra and 

Vincent, 2005). Gl-Akt and Cm-Akt share the same domain organization with Akt proteins from 

other species (Fig. 2. 9). The PH domain interacts with phosphatidylinositol (3, 4, 5) 

trisphosphate produced by phosphatidylinositol 3-kinase (PI3-kinase). Membrane binding allows 

phosphorylation by PDK1.  

S6k is downstream effector of the mTOR signaling pathway involved in cell growth and cell 

proliferation (Laplante and Sabatini, 2012). S6k is also member of the AGC family of serine-

threonine kinases that share high homology in the kinase domain (Grove et al., 1991; Zhao et 

al., 2007). Gl-S6k and Cm-S6k share the same domain organization as S6k proteins from other 

species (Fig. 2. 13). S6k activity is highly sensitive to rapamycin in the kinase extension (KE) 

domain in a conserved sequence called the hydrophobic motif (Alessi et al., 1988; Pullen et al., 

1998). The rapamycin-sensitive phosphorylation is mediated by mTORC1, a complex consisting 

of mTOR, raptor and mLST-8 (Dibble et al., 2009; Treins et al., 2009). S6k has important role as 

mediator of negative feedback loops in the PI3K signaling network. Moreover, recent studies 
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have revealed that S6k impacts on Akt activation by phosphorylating the mTORC2 component, 

Rictor (Dibble et al., 2009; Treins et al., 2009; Julien et al., 2010; Tim and Ivan, 2011). 

 

CONCLUSIONS 

cDNAs encoding Rheb, mTOR, Akt, and S6k were cloned from the blackback land crab, 

G. lateralis, and green shore crab, C. maenas. The sequences were highly conserved with 

orthologs from insects and human and the genes were expressed in all tissues examined. The data 

indicate that the genes function in controlling tissue growth in decapod crustaceans. Now that 

these key components of the mTOR signaling pathway have been identified, future studies can 

be directed at gaining a mechanistic understanding of the interactions between ecdysteroids and 

the signaling pathways that control protein synthesis in the crustacean molting gland.  
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Table 2. 1. Oligonucleotide primers used in the cloning of mTOR signaling components 

from G. lateralis (Gl) and C. maenas (Cm). Abbreviations: deg, degenerate; F, forward; R, 

reverse; EF2, elongation factor 2; mTOR, mechanistic Target of Rapamycin; Rheb, Ras homolog 

expressed in brain; Akt, protein kinase B; S6k, p70 S6 kinase; IF, inner forward; IR, inner 

reverse; OF, outer forward and OR, outer reverse. 

Primer 
 Sequence (5’-3’) 

Use Annealing 
Temperature 

    
Gl-mTOR degF CCGCCAGTTCAGCARNGGRTCRTA PCR 53 ºC 
Gl-mTOR degR GCAGGACGAGCGGBTNATGSARYT PCR 53 ºC 
Gl-Akt degF2 TGAACAACTTCACCGTGAARCARTGYCA PCR 51 ºC 
Gl-Akt degR1 TCGCCGCCGTTCACRTAYTCCAT PCR 51 ºC 
Gl-s6k degF2 TCGTGGACCTGGTGTAYGCNTTYCA PCR 50 ºC 
Gl-s6k degR1 TCTGCTTGGTGAACTTGSWRTCRAAYTG PCR 50 ºC 
Gl-Rheb deg OF1 ATGCCTCCMAARGAYAG Nested PCR 45 ºC 
Gl-Rheb deg IF2 AAAGTRGCCGTWATGGGC Nested PCR 48 ºC 
Gl-Rheb deg OR1 CTCRATCTCSAGGATGRCTC Nested PCR 45 ºC 
Gl-Rheb deg IR2 GATGRCTCKTGTGAAGATGTC Nested PCR 48 ºC 
Gl-mTOR 3’ F1 TGCTGTGGTTCAAGAGTCCCT 3’RACE 58ºC 
Gl-mTOR 3’ F2 GCAAGATCATCCACATCGACTT 3’RACE 55ºC 
Gl-Rheb 3’ F1 CATCTACGACAAGATTCTCGAC 3’RACE 53 ºC 
Gl-Rheb 3’ F2 GCAAAGTCACAGTTCCTGTAG 3’RACE 53 ºC 
Gl-Akt 3’ F1 TGTCGTGAAAAGAGTAGCAACCAT   3’RACE 56 ºC 
Gl-Akt 3’ F2 CCTCAAGTATTCCTTCCAAACCAA 3’RACE 55ºC 
Gl-Akt 3’ F1 TTGCACTGGGTTACTTACACGAA 3’RACE 59ºC 
Gl-Akt 3’ F2 GAAGACATCTCCTACGGCTCA 3’RACE 60 ºC 
Gl-Akt 3’ F1 GCC TTG CAC TGG GTT ACT TAC ACG      3’RACE 56ºC 
Gl-Akt 3’ F2 TTC CAA ACC AAT GAC CGA CTC TGC     3’RACE 56ºC 
Gl-S6k 3’ F1 TGATGATGATGTGAGCCAATTCGA       3’RACE 56ºC 
Gl-S6k 3’ F2 ACA CAT GCC TTT CAC TCG TAA TTG        3’RACE 55ºC 
Gl-S6k 3’ F1 AACCTTCCACCCTACCTGACT 3’RACE 57ºC 
Gl-S6k 3’ F2 GTGGTGATGATGATGTGAGCCAAT 3’RACE 57 ºC 
Gl-Rheb 5’ R1 ACCTGCCGTGTCCACCAGCTC 5’RACE 60 ºC 
Gl-Rheb 5’ R2 GATCATAGCTGTCCACAAAC 5’RACE 60 ºC 
Gl-Akt 5’ R1 CTGGAGTACTTGAGTTGGATGTGC 5’RACE 57 ºC 
Gl-Akt 5’ R2 TTCCATCCATTCTTCCCTGTCACT 5’RACE 57 ºC 
Gl-S6k 5’ R1 TGATGCCCTCAGAGTGAAGATGTT 5’RACE 58 ºC 
Gl-S6k 5’ R2 AGTAGCTGAAAGTCTGATGGA 5’RACE 51ºC 
Gl-S6k 5’ R1 TGCCTGGGTTGACTGTACTGT 5’RACE 53ºC 
Gl-S6k 5’ R2 CAGGATGAGATATAGCTTACCA 5’RACE 58 ºC 
Cm-mTOR OF1 AACGGTGGCATGAGAAGC Nested PCR 55ºC 
Gl-mTOR OR1 CGAGTTGGTAGACAGCGGAAT Nested PCR 56ºC 
Cm-mTOR IF2 ATGTGCGTGCTCAGATGG   Nested PCR 55ºC 
Gl-mTOR IR2 TGATGAGCAGCGTGTTGACC Nested PCR 58 ºC 
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Cm-mTOR OF1 AGAGATTACACAGACGCTCC Nested PCR 53ºC 
Gl-mTOR OR1 AACCAAACAGTCAGCAGG Nested PCR 52 ºC 
Cm-mTOR IF2 TCTGCACTACAAGGAGGAGG Nested PCR 56 ºC 
Gl-mTOR IR2 GAGATGGAGCGGATGAAC Nested PCR 52 ºC 
Cm-mTOR F1 CTTGGCAGAGTTCATGGAGC PCR 56 ºC 
Cm-mTOR R1 ACAGGTCATGCGATACGTGC PCR 57 ºC 
Cm-Rheb F1 ATGGGCAAAGTCACAGTTCC PCR 62 ºC 
Cm-Rheb R1 GTCAGGAAGATGGTGGCAAT PCR 62 ºC 
Cm-Akt F1 GATGATGCTCAACCTTAACGTG PCR 54ºC 
Cm-Akt R1 CACGTTAAGGTTGAGCATC PCR 51ºC 
Cm-S6k F1 GAAGGCGAAAGAAGAGTTCG PCR 54ºC 
Cm-S6kR1 ACGTCCGTCCCTTGACTCTC  PCR 58ºC 
Cm-mTOR OF1 ACGAGAGCTGCTACAAGG Nested PCR 54ºC 
Cm-mTOR OR1 GTCTCTCCCATTACTACCCTTG Nested PCR 53ºC 
Cm-mTOR IF2 GAACTTTGAGGCAATAC   Nested PCR 44ºC 
Cm-mTOR IR2 ATCCTGCCTCAAGTCCTC  Nested PCR 54ºC 
Cm-mTOR 3’F1 AAAGCGTTCTGTGGTGGGTGAG 3’RACE 59ºC 
Cm-mTOR 3’F2 TCCTGACCTGCTATTGACACTGCC 3’RACE 54ºC 
Cm-Akt 3’F1 GCGTAAAGATGTGATTATTGAGCG 3’RACE 54ºC 
Cm-Akt 3’F2 TGATGGAGTATGTCAATGGTGGAG 3’RACE 56ºC 
Cm-S6k 3’F1 TCTTGGGTAGTTCTCCGTAGACAA 3’RACE 57ºC 
Cm-S6k 3’F2 ACTCACCACTACTACTACACTCGG 3’RACE 57ºC 
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Table 2. 2. cDNA clones encoding mTOR signaling components from G. lateralis (Gl) and 

C. maenas (Cm). Abbreviations: mTOR, mechanistic Target of Rapamycin; Rheb, Ras homolog 

expressed in brain; Akt, protein kinase B; S6k, p70 S6 kinase. 

 

  

Clone Accession 
number 

Source Completeness Size 
(bp) 

Protein domain(s) Identity 
(Similarity) to 

human ortholog 

Cm-mTOR JQ864248 EST Partial 4031 
Portion of HAET 

repeat, FAT, FRB, 
Kinase and FARC 

72% (81%) 

Cm-Rheb HM989970 EST Complete 1543 Complete ORF 66% (81%) 

Cm-Akt JQ864249 EST Partial 855 PH and kinase  58% (73%) 

Cm-S6k JQ864250 EST Partial 918 Kinase 77% (88%) 

Gl-mTOR HM989973 RT-PCR Partial 3705 
Portion of HAET 

repeat, FAT, FRB, 
Kinase and FARC 

69% (80%) 

Gl-Rheb HM989971 RT-PCR 
Complete  

except partial 
3’UTR 

983 Complete ORF 64% (83%) 

Gl-Akt HM989974 RT-PCR Partial 1461 PH, kinase and RC 62% (78%) 

Gl-S6k HM989975 RT-PCR Partial 1116 NTD, kinase and 
KE 75% (86%) 
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Figure 2. 1. Domain organization of mTOR. The complete mTOR protein from human (Hs-
mTOR) is compared to the partial mTOR sequences from G. lateralis (Gl-mTOR) and C. 
maenas (Cm-mTOR). All share highly conserved HEAT repeats (Huntington, Elongation Factor 
3, a subunit of PP2A and TOR), FAT (FRAP, ATM, and TRRAP), FRB 
(FKBP12 rapamycin binding), KD (kinase domain) and FATC (FRAP, ATM and TRRAP C-
terminal) domains, indicated by red, orange, green, blue, and orange shading, respectively. 
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gtcctggagcacctcatctccatcaacaacaagcttggacagaaggaggctgctgctggg 60 
 V  L  E  H  L  I  S  I  N  N  K  L  G  Q  K  E  A  A  A  G  20 
ttgctggaatatgcccgcaagaacaaccgcactgacatgaaggtgcaggagcggtggcat 120 
 L  L  E  Y  A  R  K  N  N  R  T  D  M  K  V  Q  E  R  W  H  40 
gagaagttgcacgactgggaccaggccctccaggcatactccaccaagctggagacgcaa 180 
 E  K  L  H  D  W  D  Q  A  L  Q  A  Y  S  T  K  L  E  T  Q  60 
cctgatgaccttgccctcgtcctgggtcagatgaggtgtttggaggccctgggggaatgg 240 
 P  D  D  L  A  L  V  L  G  Q  M  R  C  L  E  A  L  G  E  W  80 
ggagagctgtacagtgtgtcatgcgagcgatggatgggaacgatgccagaggaggtgcgt 300 
 G  E  L  Y  S  V  S  C  E  R  W  M  G  T  M  P  E  E  V  R  100 
gctcagatgtcccgagtggctgcagcatcagcctgggggctgggggagtggagcatgatg 360 
 A  Q  M  S  R  V  A  A  A  S  A  W  G  L  G  E  W  S  M  M  120 
gaggagtacagccgctgcattccccgtgacaccaatgagggggccttctaccgtgctgtg 420 
 E  E  Y  S  R  C  I  P  R  D  T  N  E  G  A  F  Y  R  A  V  140 
ctggctgtacataaggaccaacatcacgtggcccagcagtatattgacacagcgagggat 480 
 L  A  V  H  K  D  Q  H  H  V  A  Q  Q  Y  I  D  T  A  R  D  160 
cttctggacaccgagctcactgccatggtaggagaaagttaccagcgtgcttacaactcc 540 
 L  L  D  T  E  L  T  A  M  V  G  E  S  Y  Q  R  A  Y  N  S  180 
atggtggcagtacagatgctggctgagctggaggaggtgattcagtacaagctggtgcct 600 
 M  V  A  V  Q  M  L  A  E  L  E  E  V  I  Q  Y  K  L  V  P  200 
gagcggaggccgcccattatacagatctggtgggagaggctgcaggggtgccaacgtgtg 660 
 E  R  R  P  P  I  I  Q  I  W  W  E  R  L  Q  G  C  Q  R  V  220 
gtggaggactggcagaagattctgcaggtgcgctcccttgtgttgtctcctcaggaggac 720 
 V  E  D  W  Q  K  I  L  Q  V  R  S  L  V  L  S  P  Q  E  D  240 
atgcggccgtggcttaagtttgcctcattgtgccgtaagtcaggtcgccttgccctctcc 780 
 M  R  P  W  L  K  F  A  S  L  C  R  K  S  G  R  L  A  L  S  260 
cacaagacactggtgcgtctccttggctgtgacccatccctcagcccctcccagcccctg 840 
 H  K  T  L  V  R  L  L  G  C  D  P  S  L  S  P  S  Q  P  L  280 
cccatcagccacccccacgtcacctaccagtactgcaaacacatctacacctacccacac 900 
 P  I  S  H  P  H  V  T  Y  Q  Y  C  K  H  I  Y  T  Y  P  H  300 
aggcgccaggaggcttatgggcgactgcagaagttcctccagttcttggctccggctgtg 960 
 R  R  Q  E  A  Y  G  R  L  Q  K  F  L  Q  F  L  A  P  A  V  320 
gttgtagtgggtggaggcaaccagaatggggacaacaagctacgtaaactagtttctcgt 1020 
 V  V  V  G  G  G  N  Q  N  G  D  N  K  L  R  K  L  V  S  R  340 
gtctacctcaagctgggtgaatggtatgagcagctacatggcttgaatgaagagaacatt 1080 
 V  Y  L  K  L  G  E  W  Y  E  Q  L  H  G  L  N  E  E  N  I  360 
gccaacatcctgacctactacactcacgccaaggacacagatgaaacctgctacaaggct 1140 
 A  N  I  L  T  Y  Y  T  H  A  K  D  T  D  E  T  C  Y  K  A  380 
tggcatgcctatgcctacatgaactttgaggcaatactcttctataaagggaagatggat 1200 
 W  H  A  Y  A  Y  M  N  F  E  A  I  L  F  Y  K  G  K  M  D  400 
gtcaagggagaggcacccaccacacctggggaggattcagcatcaggggcagctgctgtt 1260 
 V  K  G  E  A  P  T  T  P  G  E  D  S  A  S  G  A  A  A  V  420 
gtcacccccagcaagaagaggtcagctggggactttgcagtggcagcagtgaaagggttc 1320 
 V  T  P  S  K  K  R  S  A  G  D  F  A  V  A  A  V  K  G  F  440 
atccgctccatctccctgagtgacggcaacagcctgcaggacacactccgcctgctgact 1380 
 I  R  S  I  S  L  S  D  G  N  S  L  Q  D  T  L  R  L  L  T  460 
gtttggtttgagcatggtcaccagtctggggtgtatgaggctctggtggatggactcaag 1440 
 V  W  F  E  H  G  H  Q  S  G  V  Y  E  A  L  V  D  G  L  K  480 
accatacagattgacacctggctgcaggtcattcctcagttaattgctcggattgacacc 1500 
 T  I  Q  I  D  T  W  L  Q  V  I  P  Q  L  I  A  R  I  D  T  500 
cctcgttctctggtgtccaagctcatccaccagctgcttatggacatcggcaagcaccac 1560 
 P  R  S  L  V  S  K  L  I  H  Q  L  L  M  D  I  G  K  H  H  520 
cctcaggccctcatctaccccctcactgtagcagctaagtcctcagtggctgctcgttct 1620 
 P  Q  A  L  I  Y  P  L  T  V  A  A  K  S  S  V  A  A  R  S  540 
caggctgctgagaagatcctgaagaacatgagagaacactcagccaaccttgtacagcag 1680 
 Q  A  A  E  K  I  L  K  N  M  R  E  H  S  A  N  L  V  Q  Q  560 
gccatgatggtctcagaggaactgatccgcgtggctatcctgtggcatgagacatggcat 1740 
 A  M  M  V  S  E  E  L  I  R  V  A  I  L  W  H  E  T  W  H  580 
gagggtctggaggaggccagtcggctctactttggggaacgcaatgagtcagggatgttc 1800 
 E  G  L  E  E  A  S  R  L  Y  F  G  E  R  N  E  S  G  M  F  600 
cgcacactggagccgctgcatgccatgatggcacggggcccacagacactcaaggagatg 1860 
 R  T  L  E  P  L  H  A  M  M  A  R  G  P  Q  T  L  K  E  M  620 
tccttcaaccaggcctttgggcgggacctgaacgaggcgctggagtggtgtcgtcgctac 1920 
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 S  F  N  Q  A  F  G  R  D  L  N  E  A  L  E  W  C  R  R  Y  640 
caacgctcgggcaacgtgcgcgagctgaaccaggcgtgggacctctactaccacgtgttt 1980 
 Q  R  S  G  N  V  R  E  L  N  Q  A  W  D  L  Y  Y  H  V  F  660 
cgccgaatctcccgcacgctgccgcaactcacctcccttgagctgcagagcgtctctccg 2040 
 R  R  I  S  R  T  L  P  Q  L  T  S  L  E  L  Q  S  V  S  P  680 
cggctgctccagtgtcgagacttagacatcgccgtaccgggctcctacgcgcctggccaa 2100 
 R  L  L  Q  C  R  D  L  D  I  A  V  P  G  S  Y  A  P  G  Q  700 
cccgtcatctgcatcagccaggtgcagtcctcgctccaggtgctcacctccaaacagcgg 2160 
 P  V  I  C  I  S  Q  V  Q  S  S  L  Q  V  L  T  S  K  Q  R  720 
ccyaggaagttatgtatccgcggcagcaatggcaggaacttcgtgttcttactgaagggc 2220 
 P  R  K  L  C  I  R  G  S  N  G  R  N  F  V  F  L  L  K  G  740 
Cacgaggacctgcgtcaggacgagcgcgtgatgcagctgttcgggctggtcaacacgctg 2280 
 H  E  D  L  R  Q  D  E  R  V  M  Q  L  F  G  L  V  N  T  L  760 
ctcatcagtaacccagacactttccgccgcaacccgaccatccagcggttcgccgtcatt 2340 
 L  I  S  N  P  D  T  F  R  R  N  P  T  I  Q  R  F  A  V  I  780 
ccgctgtctaccaactcgggcctgattgggtgggtgccgcactgcgacacgctgcacgcc 2400 
 P  L  S  T  N  S  G  L  I  G  W  V  P  H  C  D  T  L  H  A  800 
ctcatccgggactggcgcgagaagaagaagatcctgctgaacatcgagcaccgcatcatg 2460 
 L  I  R  D  W  R  E  K  K  K  I  L  L  N  I  E  H  R  I  M  820 
ctgcggatggcccaggacttggaccatctcactctcatgcagaaggtggaggtgttcgag 2520 
 L  R  M  A  Q  D  L  D  H  L  T  L  M  Q  K  V  E  V  F  E  840 
cacgcgctggagcacacgcatggcgatgatctgtcgcggctgctgtggttcaagagtccc 2580 
 H  A  L  E  H  T  H  G  D  D  L  S  R  L  L  W  F  K  S  P  860 
tcctccgaggtgtggtttgaccggcgcaccaactactcccgctcgttggccgtcatgtcc 2640 
 S  S  E  V  W  F  D  R  R  T  N  Y  S  R  S  L  A  V  M  S  880 
atggtgggctatgtgcttggcctcggcgaccgccacccctccaacctcatgctagaccag 2700 
 M  V  G  Y  V  L  G  L  G  D  R  H  P  S  N  L  M  L  D  Q  900 
ctctccggcaagatcatccacatcgacttcggtgactgcttcgaagtggcgatgatgcgc 2760 
 L  S  G  K  I  I  H  I  D  F  G  D  C  F  E  V  A  M  M  R  920 
gagaaattccctgagaagatcccgttccggttgacgcgcatgttgatccacgccatggaa 2820 
 E  K  F  P  E  K  I  P  F  R  L  T  R  M  L  I  H  A  M  E  940 
gtgacgggcatcgacggcacgtaccgcatgacctgcgagtccgtcatggccctgatccgc 2880 
 V  T  G  I  D  G  T  Y  R  M  T  C  E  S  V  M  A  L  I  R  960 
cgcaacaaggactccctcatggccatgctggaggcctttgtgcccaacctgctgttctat 2940 
 R  N  K  D  S  L  M  A  M  L  E  A  F  V  P  N  L  L  F  Y  980 
tggggccacagggaaaataaacattctaaagggaaggggtctgtgggggccgacggggag 3000 
 W  G  H  R  E  N  K  H  S  K  G  K  G  S  V  G  A  D  G  E  1000 
acggggccgtccgcgccggtctctacctctgccattgccccggacccctctttggacccc 3060 
 T  G  P  S  A  P  V  S  T  S  A  I  A  P  D  P  S  L  D  P  1020 
gctccggcacacaccctcaccccgacctccgtggggcctcacagccaggcacgggaggac 3120 
 A  P  A  H  T  L  T  P  T  S  V  G  P  H  S  Q  A  R  E  D  1040 
ggcggcgtgtcagaagccctcaacaagaaggcagtggccatcgtgcatcgcgtgcgagat 3180 
 G  G  V  S  E  A  L  N  K  K  A  V  A  I  V  H  R  V  R  D  1060 
aaactgactggccgggacttctgcaccgaggagtcgctggacgttcatcgccaagtggag 3240 
 K  L  T  G  R  D  F  C  T  E  E  S  L  D  V  H  R  Q  V  E  1080 
ctgctcatcgctcatgccaccttacacgagaacctctgccagtgctacatcggctggtgt 3300 
 L  L  I  A  H  A  T  L  H  E  N  L  C  Q  C  Y  I  G  W  C  1100 
cccttctggtgaacacactacttcataaccgcttgcactaaccacagccgccccgaccat 3360 
 P  F  W  *                                                  1103 
gctctacacactacttcataaccgcttgcactaaccacagccgccccgaccatgctcttc 3420 
taaggtgtagagtgtggaaaggaacattgctgagggttggtggtagcgtgacacaccctg 3480 
ttgcggcgggagtgttgttgtatgttgtttgttgtttgttgttcttgttgttacagtgtt 3540 
Cgctgcgccgcagggattccggtaaaatctggaggaaggtcggtctgcgtgtgtggtgta 3600 
ttgacagaagaggaggagcggggggaggggcagctaaaaccacctcaggccatattaaaa 3660 
aacacacacacacggggacactagctaaactaattcaacttcagcccccgaaaaggaatc 3720 
cgtcaaaggggaggagagagagagagggggggagagtg                       3758 
 

 
Figure 2. 2. Nucleotide and deduced amino acid sequences of cDNA encoding Gl-mTOR. 
The cDNA encoded the 3’ end of the ORF and the incomplete 3’-UTR. Asterisk indicates stop 
codon. The font colors correspond to the colors of the domains in Fig. 2. 1. 
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gacataccagagattacacagacgctcctcaacttggcagagttcatggagcattgtgac 60 
 D  I  P  E  I  T  Q  T  L  L  N  L  A  E  F  M  E  H  C  D  20 
aagggtccgttgcccttggagctgcagctactcggggaaaaggccatggagtgccgggca 120 
 K  G  P  L  P  L  E  L  Q  L  L  G  E  K  A  M  E  C  R  A  40 
tatgccaaggctctgcactacaaggaggaggagttccacaaggggcctacctctgaggtc 180 
 Y  A  K  A  L  H  Y  K  E  E  E  F  H  K  G  P  T  S  E  V  60  
ttggagcacctcatctccatcaacaacaaactgggacagaaggaggcagctgctggtttg 240 
 L  E  H  L  I  S  I  N  N  K  L  G  Q  K  E  A  A  A  G  L  80 
ttggaatatgcacgcaagaacaaccgtacagacatgaaggtccaggaacggtggcatgag 300 
 L  E  Y  A  R  K  N  N  R  T  D  M  K  V  Q  E  R  W  H  E  100 
aagctgcacgactgggatcaggcactccaagcttactctaccaagctggagactcaacct 360 
 K  L  H  D  W  D  Q  A  L  Q  A  Y  S  T  K  L  E  T  Q  P  120 
gatgaccttgccctcgtactgggtcaaatgaggtgtctagaggctctgggagaatggggt 420 
 D  D  L  A  L  V  L  G  Q  M  R  C  L  E  A  L  G  E  W  G  140 
gagttatacagcgtggcttgtgaccgctggatgggcacaatggctgaggatgtgcgtgct 480 
 E  L  Y  S  V  A  C  D  R  W  M  G  T  M  A  E  D  V  R  A  160 
cagatggctcgcgtggcctcagcatctgcctgggccatgggggagtggagtatgatggag 540 
 Q  M  A  R  V  A  S  A  S  A  W  A  M  G  E  W  S  M  M  E  180 
gagtacagtcgatgcatcccaagagacaccaatgagggggctttctaccgtgctgtgctc 600 
 E  Y  S  R  C  I  P  R  D  T  N  E  G  A  F  Y  R  A  V  L  200 
tctgtacataaggatcaacatcacatggcccagcagtacatcgacacagcaagagattta 660 
 S  V  H  K  D  Q  H  H  M  A  Q  Q  Y  I  D  T  A  R  D  L  220 
ctagacacggagctcacagctatggttggggagagctaccagcgtgcctacaactccatg 720 
 L  D  T  E  L  T  A  M  V  G  E  S  Y  Q  R  A  Y  N  S  M  240 
gtggcggtgcagatgttggctgagctggaggaggtgattcagtacaagctggtgccagag 780 
 V  A  V  Q  M  L  A  E  L  E  E  V  I  Q  Y  K  L  V  P  E  260 
agaaggcgacccatcactcatatctggtgggagaggctgcaggggtgccagcgagtggtg 840 
 R  R  R  P  I  T  H  I  W  W  E  R  L  Q  G  C  Q  R  V  V  280 
gaagactggcagaagatcctacaggtgcgctccctggtgctgtcccctcaggaagacatg 900 
 E  D  W  Q  K  I  L  Q  V  R  S  L  V  L  S  P  Q  E  D  M  300 
cggccttggctcaagtttgcctcgctgtgtcgcaagtctggtcgcctggccctgtcccac 960 
 R  P  W  L  K  F  A  S  L  C  R  K  S  G  R  L  A  L  S  H  320 
aagaccctggtgcggctactgggatgcgacccttctctcagccccacccagccactccca 1020 
 K  T  L  V  R  L  L  G  C  D  P  S  L  S  P  T  Q  P  L  P  340 
gtcagtcacccccacgtcacttaccagtactgcaagcatatctacacctacccagacaga 1080 
 V  S  H  P  H  V  T  Y  Q  Y  C  K  H  I  Y  T  Y  P  D  R  360 
cggcaggaggcctatggtcggctgcagaagttcctccagttcttggcaccggcagtggtg 1140 
 R  Q  E  A  Y  G  R  L  Q  K  F  L  Q  F  L  A  P  A  V  V  380 
gtggtgggcggagggaaccaaaacggggacaacaagctgcgcaaactggtgtcccgtgtg 1200 
 V  V  G  G  G  N  Q  N  G  D  N  K  L  R  K  L  V  S  R  V  400 
tacctcaagctgggtgaatggtacgagcagctacatggattgaacgaggagaacattgcc 1260 
 Y  L  K  L  G  E  W  Y  E  Q  L  H  G  L  N  E  E  N  I  A  420 
aatatcctcacctactacacccacgccaaggatacagacgagagctgctacaaggcttgg 1320 
 N  I  L  T  Y  Y  T  H  A  K  D  T  D  E  S  C  Y  K  A  W  440 
cacgcatacgcttatatgaactttgaggcaatactcttctataagaagggcttcatccgt 1380 
 H  A  Y  A  Y  M  N  F  E  A  I  L  F  Y  K  K  G  F  I  R  460 
tcaatctccctgagtgacgggtacagcctgcaggacacccttcgccttctcaccgtctgg 1440 
 S  I  S  L  S  D  G  Y  S  L  Q  D  T  L  R  L  L  T  V  W  480 
ttcgaacacggccatcagtctggagtgtacgaggcgctggtggacggactcagaccatca 1500 
 F  E  H  G  H  Q  S  G  V  Y  E  A  L  V  D  G  L  R  P  S  500 
gatatcgacacttggcttcaggtcattcctcagctcatcgcgcgcattgacacccctcgc 1560 
 D  I  D  T  W  L  Q  V  I  P  Q  L  I  A  R  I  D  T  P  R  520 
tccctcgtgtccaagctcatccaccagctgctcatggacattgggaaacaccacccacag 1620 
 S  L  V  S  K  L  I  H  Q  L  L  M  D  I  G  K  H  H  P  Q  540 
gcactcatctaccctctcaccgtggcagccaagtcctcggtgccggcgcgctcccaggca 1680 
 A  L  I  Y  P  L  T  V  A  A  K  S  S  V  P  A  R  S  Q  A  560 
gccgagaagatcctgaagaacatgagggagcactcggccaacctcgtccagcaggccatg 1740 
 A  E  K  I  L  K  N  M  R  E  H  S  A  N  L  V  Q  Q  A  M  580 
atggtctccgaggaactgatccgagtggctattctgtggcacgagacttggcatgagggg 1800 
 M  V  S  E  E  L  I  R  V  A  I  L  W  H  E  T  W  H  E  G  600 
ttggaggaggccagtcgtttatactttggggaacgtaatgagtcaggcatgttccgcacc 1860 
 L  E  E  A  S  R  L  Y  F  G  E  R  N  E  S  G  M  F  R  T  620 
cttgacccactacacgctatgatggctcggggaccgcagaccctcaaagaaatgtccttc 1920 
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 L  D  P  L  H  A  M  M  A  R  G  P  Q  T  L  K  E  M  S  F  640 
aaccaggcttacgggcgtgacctgaacgaggcgcaggagtggtgccgccgctaccaacgt 1980 
 N  Q  A  Y  G  R  D  L  N  E  A  Q  E  W  C  R  R  Y  Q  R  660 
tcaggtaatgtacgggagctgaaccaagcctgggatctctactaccacgtgttccgccgc 2040 
 S  G  N  V  R  E  L  N  Q  A  W  D  L  Y  Y  H  V  F  R  R  680 
atctccagaacactaccgcagctcacctccctcgaactgcagagtgtgtccccgcgcctc 2100 
 I  S  R  T  L  P  Q  L  T  S  L  E  L  Q  S  V  S  P  R  L  700 
ctcaaatgcccgagatctggacatcgcagtaccgggttcctatgctcccggtatcccagt 2160 
 L  K  C  P  R  S  G  H  R  S  T  G  F  L  C  S  R  Y  P  S  720 
tatttgtattcatcaggtgcagtcctcgttacaggtcttgacttcaaacagcgacctagg 2220 
 Y  L  Y  S  S  G  A  V  L  V  T  G  L  D  F  K  Q  R  P  R  740 
aaactctgcatcaagggtagtaatgggagagactttgtgtttctgctcaagggccacgag 2280 
 K  L  C  I  K  G  S  N  G  R  D  F  V  F  L  L  K  G  H  E  760 
gacttgaggcaggatgaacgggtgatgcagctcttcgggttagtcaatactctgctcatt 2340 
 D  L  R  Q  D  E  R  V  M  Q  L  F  G  L  V  N  T  L  L  I  780 
agtaaccctgacaccttcagacgtaatcttaccattcagaggttcgccgtcatcccgctg 2400 
 S  N  P  D  T  F  R  R  N  L  T  I  Q  R  F  A  V  I  P  L  800 
tccactaactcgggtctcattgggtggatgcctcactgcgacactctacacgcactcatc 2460 
 S  T  N  S  G  L  I  G  W  M  P  H  C  D  T  L  H  A  L  I  820 
agagactggcgtgagaagaagaaaatcctcctcaacatcgagcacaggattatgttgagg 2520 
 R  D  W  R  E  K  K  K  I  L  L  N  I  E  H  R  I  M  L  R  840 
atggctcaggatttggaccatctaaccctcatgcagaaggtggaggtgtttgagcacgcc 2580 
 M  A  Q  D  L  D  H  L  T  L  M  Q  K  V  E  V  F  E  H  A  860 
ctggagcacacacaaggggatgacttagctcggttgctgtggtttaagagtccttcgtct 2640 
 L  E  H  T  Q  G  D  D  L  A  R  L  L  W  F  K  S  P  S  S  880 
gaggtgtggtttgatcgccggacgaattactcccgttccctggctgtcatgtccatggta 2700 
 E  V  W  F  D  R  R  T  N  Y  S  R  S  L  A  V  M  S  M  V  900 
ggctacgtactgggactcggtgaccggcatccctcaaacctcatgctggatcaactgtct 2760 
 G  Y  V  L  G  L  G  D  R  H  P  S  N  L  M  L  D  Q  L  S  920 
gggaagatcatacacattgacttcggtgactgcttcgaagtggccatgatgcgtgaaaag 2820 
 G  K  I  I  H  I  D  F  G  D  C  F  E  V  A  M  M  R  E  K  940 
ttcccggagaagattccattccggctgacgcgtatgttgatccacgccatggaggtcacc 2880 
 F  P  E  K  I  P  F  R  L  T  R  M  L  I  H  A  M  E  V  T  960 
gggattgacggcacgtatcgcatgacctgtgagagtgtcatggcactgatccgccgtaac 2940 
 G  I  D  G  T  Y  R  M  T  C  E  S  V  M  A  L  I  R  R  N  980 
aaggactccctcatggccatgctggaagccttcgtgcatgacccactgctcaactggcgc 3000 
 K  D  S  L  M  A  M  L  E  A  F  V  H  D  P  L  L  N  W  R  1000 
ctcatggacaacacgcagccaaagggaaagcgttctgtggtgggtgagggcgaggcagga 3060 
 L  M  D  N  T  Q  P  K  G  K  R  S  V  V  G  E  G  E  A  G  1020 
ccttcagctccagcctccacttctacaatcgctcctgaccctgctattgacactgccccg 3120 
 P  S  A  P  A  S  T  S  T  I  A  P  D  P  A  I  D  T  A  P  1040 
gccatcacgccagcctcggtagggccacagagccagtcacgggaggacggtggggtgtcg 3180 
 A  I  T  P  A  S  V  G  P  Q  S  Q  S  R  E  D  G  G  V  S  1060 
gaagccctaaacaagaaagcagtcgccatcgtccaccgcgtcagggacaaactcacaggc 3240 
 E  A  L  N  K  K  A  V  A  I  V  H  R  V  R  D  K  L  T  G  1080 
cgggacttctgcactgaggaacctcttgatgtgcaccgccaagtagagcttctcatcgca 3300 
 R  D  F  C  T  E  E  P  L  D  V  H  R  Q  V  E  L  L  I  A  1100 
caggcaacatcacatgagaacctgtgtcagtgttacattggttggtgccccttctggtaa 3360 
 Q  A  T  S  H  E  N  L  C  Q  C  Y  I  G  W  C  P  F  W  *  1119 
caaccatacccaaacacacccacattcaccacactgcagggtaaagtgtggccaggactt 3420 
gtgaagctgaggtgccaagtttactcgtgtcttcgtgttgcgacagggttgttattcttg 3480 
ttgttgttttcaccatgtaggaattccggtgtaatggtggtaaagagagaagcttgggca 3540 
ttgtttggtatcgatggagggaaggaggagaaggagaagggggtgttacgagagaagctt 3600 
aggcattgttttgtatcgatggaggagaaggagggaaggataaacatgaaggagcaggac 3660 
atcggtaatgagagaatcaccccatccccccacacatacatacaccataacaatgactac 3720 
ttttcaacatcgccattagataaatcaaacgaccagtgagtgaggcaggacaaggcaaaa 3780 
attcaaccaccatcacctcctgcagaatatctcgtaagtaatctgtctgtgagtaatgtt 3840 
gtgggaacttgtacattgttttataaagttacnattangcagaagaggaagaggagagga 3900 
tggtgatcatttcggtgttttagaaaggagggagtgtgtgaggtcaagtgcaactgatag 3960 
tttagtttanatttgggttattctgtanattaattaataaaaatanagttgagtgattgt 4020 
aaaaaaaaaaa                                                  4031 
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Figure 2. 3. Figure 2. 3. Nucleotide and deduced amino acid sequences of cDNA encoding 
Cm-mTOR.  The cDNA encoded the 3’ end of the ORF and the complete 3’-UTR. Asterisk 
indicates stop codon. The polyadenylation signal in the 3’-UTR is underlined. The font colors 
correspond to the colors of the domains in Fig. 2. 1. 
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HEAT repeats 

Cm-mTOR : -------------------------DIPEITQTLLNLAEFMEHCDKGPLPLELQLLGEKA :   35 
Dm-mTOR : SCWTELSPDLKNELTQSLIQALQVTDMPEITQTILNLAEFMEHCDRDPIPIETKLLGTRA : 1354 
Aa-mTOR : SCWTDLPDSLKEELSSSLRQALMVPDLPEITQTILNLAEFMEHCENDALRIDPKILGERA : 1339 
Dp-mTOR : SCWTELSQQHQNELVKSLEQALRVPDLPEITQTILNLAEFMEHCEKELCNAELMPKHFIT : 1371 
 
Gl-mTOR : --------------------------VLEHLISINNKLGQKEAAAGLLEY--ARKNNRTD :   32 
Cm-mTOR : MECRAYAKALHYKEEEFHKGPTSE--VLEHLISINNKLGQKEAAAGLLEY--ARKNNRTD :   91 
Dm-mTOR : MACRAYAKALRYKEEEFLLREDSQ--VFESLILINNKLQQREAAEGLLT---RYRNAANE : 1409 
Aa-mTOR : MECRAYAKALHYKEEEFLNMKDKDQSVFESLILINNKLQQKEAAEGLLEYAMEHRSASEE : 1399 
Dp-mTOR : KKPSSMSLPLLRQDRDYLQ---ILRPVLESLISINNKLQQKEAAAGLLEY--AMKKHEGE : 1426 
 
Gl-mTOR : MKVQERWHEKLHDWDQALQAYSTKLETQPD-DLALVLGQMRCLEALGEWGELYSVSCERW :   91 
Cm-mTOR : MKVQERWHEKLHDWDQALQAYSTKLETQPD-DLALVLGQMRCLEALGEWGELYSVACDRW :  150 
Dm-mTOR : LNVQGRWYEKLHNWDEALEHYERNLKTDSS-DLEARLGHMRCLEALGDWSELSNVTKHEW : 1468 
Aa-mTOR : MKVQVRWYEKLHSWEKALNLYQDKLESNPG-DLDSRLGQWRCLEALGEWSTLNTLTKETW : 1458 
Dp-mTOR : IRVQERWHEKLHDWERALEAYRKKESNQQQQEPELVLGQMRCLEALCEWGQLHTLAETNW : 1486 
 
Gl-mTOR : MGTMPEEVRAQMSRVAAASAWGLGEWSMMEEYSRCIPRDTNEGAFYRAVLAVHKDQHHVA :  151 
Cm-mTOR : MGTMAEDVRAQMARVASASAWAMGEWSMMEEYSRCIPRDTNEGAFYRAVLSVHKDQHHMA :  210 
Dm-mTOR : EN-FGTEAKSRAGPLAAVAAWGLQDWEAMREYVRCIPEDTQDGSYYRAVLAVHHDDFETA : 1527 
Aa-mTOR : ES-LGTEGQSKAGRLAAAAAWGLKDWEGMQEFVKFIPEDTQDGSFYRAVLAVHHGEYELA : 1517 
Dp-mTOR : KQ-VNVDVKNRFARMAAAAAWGLGKWTAMEEYVNFIPKETQDGAFYRSVLAIHREQYSQA : 1545 
 
Gl-mTOR : QQYIDTARDLLDTELTAMVGESYQRAYNSMVAVQMLAELEEVIQYKLVPERRPPIIQIWW :  211 
Cm-mTOR : QQYIDTARDLLDTELTAMVGESYQRAYNSMVAVQMLAELEEVIQYKLVPERRRPITHIWW :  270 
Dm-mTOR : QRLIDETRDLLDTELTSMAGESYERAYGAMVCVQMLAELEEVIQYKLIPERREPLKTMWW : 1587 
Aa-mTOR : QTLIDDTRDLLDTELTAMAGESYERAYGAMVCVQMLSELEEVIQYKLIPERQETIKAMWW : 1577 
Dp-mTOR : QTLIDSARDLLDTELTALSGESYQRAYGAMVLVQMLAELEEVIQYKILPERRAPIRKMWW : 1605 
 
Gl-mTOR : ERLQGCQRVVEDWQKILQVRSLVLSPQEDMRPWLKFASLCRKSGRLALSHKTLVRLLGCD :  271 
Cm-mTOR : ERLQGCQRVVEDWQKILQVRSLVLSPQEDMRPWLKFASLCRKSGRLALSHKTLVRLLGCD :  330 
Dm-mTOR : KRLQGGQRLVEDWRRIIQVHSLVVKPHEDIHTWLKYASLCRKSGSLHLSHKTLVMLLGTD : 1647 
Aa-mTOR : DRLLGGQRLVEDWQRILQVHTLVVHPANDVKTWLKFASLCRKSDSLKLSEKTLVMLLRYN : 1637 
Dp-mTOR : QRLQGCQRIVEDWQKIIQVHSLVISPEEDMRTRLKYSSLCRKSGRLALSHKTLVTLLGTD : 1665 
 
Gl-mTOR : PSLSPSQPLPISHPHVTYQYCKHIYTYPHRRQEAYGRLQKFLQFLAP--------AVVVV :  323 
Cm-mTOR : PSLSPTQPLPVSHPHVTYQYCKHIYTYPDRRQEAYGRLQKFLQFLAP--------AVVVV :  382 
Dm-mTOR : PKLNPNQPLPCNQPQVTYAYTKYMAANNQL-QEAYEQLTHFVSTYSQ--------ELSCL : 1698 
Aa-mTOR : PSEYPDHPLEFMQPDISFAYAKHLWAAGEQ-EKAYNQLNRLVADMGI--------EGNFD : 1688 
Dp-mTOR : PSLNPDHPLPTLHPHVTYAYSKHLWMSNQK-EQAFRQLHHFVQASLQPQSLSSISTTPVS : 1724 
 
Gl-mTOR : GGGNQNGDNKLRKLVSRVYLKLGEWYEQLHG-LNEENIANILTYYTHAKDTDETCYKAWH :  382 
Cm-mTOR : GGGNQNGDNKLRKLVSRVYLKLGEWYEQLHG-LNEENIANILTYYTHAKDTDESCYKAWH :  441 
Dm-mTOR : PPEALKQQD--QRLMARCYLRMATWQNKLQDSIRPDAIQGALECFEKATSYDPNWYKAWH : 1756 
Aa-mTOR : VEE--KDEN--RRLLARCYMKLGQWQNQLQG-LNEQSIKGILACYEKATKHDSNWYKAWH : 1743 
Dp-mTOR : TPEEPDRHVELGKLLARCYLRLGQWQECLQG-INELSIPAVLQYYAAATEHDATWYKAWH : 1783 
 
Gl-mTOR : AYAYMNFEAILFYKGKMDVKGEAPTTPGEDSASGAAAVVTPSKKRSAGDFAVAAVKGFIR :  442 
Cm-mTOR : AYAYMNFEAILFYK-----------------------------------------KGFIR :  460 
Dm-mTOR : LWAYMNFKVVQAQKSALDKQQPPGASMGMTMGSGL-----DSDLMIIQRYAVPAVQGFFR : 1811 
Aa-mTOR : LWAYMNFEVVQNQKQQEDLIKNPGG---------------DKEKCMIRQYAVPAVEGFFR : 1788 
Dp-mTOR : SWAYMNFEAVLFYKHQGQNTSANQTLIGENTNKG-------LTAQHVSSYTVPAVQGFFR : 1836 
 
Gl-mTOR : SISLSDGNSLQDTLRLLTVWFEHGHQSGVYEALVDGLKTIQIDTWLQVIPQLIARIDTPR :  502 
Cm-mTOR : SISLSDGYSLQDTLRLLTVWFEHGHQSGVYEALVDGLRPSDIDTWLQVIPQLIARIDTPR :  520 
Dm-mTOR : SISLIKGNSLQDTLRLLTLWFDYGNHAEVYEALLSGMKLIEINTWLQVIPQLIARIDTHR : 1871 
Aa-mTOR : SINLSHGNSLQDTLRLLTLWFDYGQYPKVYEALVEGMRVIEINTWLQVIPQLIARIDTPR : 1848 
Dp-mTOR : SIALSHGSSLQDTLRLLTLWFDYGHWPEVYEALVEGVRTIDVNTWLQVIPQLIARIDTQR : 1896 
 
Gl-mTOR : SLVSKLIHQLLMDIGKHHPQALIYPLTVAAKSSVAARSQAAEKILKNMREHSANLVQQAM :  562 
Cm-mTOR : SLVSKLIHQLLMDIGKHHPQALIYPLTVAAKSSVPARSQAAEKILKNMREHSANLVQQAM :  580 
Dm-mTOR : QLVGQLIHQLLMDIGKNHPQALVYPLTVASKSASLARRNAAFKILDSMRKHSPTLVEQAV : 1931 
Aa-mTOR : NLVGQLIHQLLNDIGKCHPQALVYPLTVASNSASSARRQAAHKILGSMGEHSSNLVNQAI : 1908 
Dp-mTOR : QLVGRLIHQLLMDIGKAHPQALIYPLTVASKSALQARHNAANKILKNMCEHSPVLVQQAV : 1956  

FAT Domain 
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                                                                  FRB Domain 
 
Gl-mTOR : MVSEELIRVAILWHETWHEGLEEASRLYFGERNESGMFRTLEPLHAMMARGPQTLKEMSF :  622 
Cm-mTOR : MVSEELIRVAILWHETWHEGLEEASRLYFGERNESGMFRTLDPLHAMMARGPQTLKEMSF :  640 
Dm-mTOR : MCSEELIRVAILWHEQWHEGLEEASRLYFGDRNVKGMFEILEPLHAMLERGPQTLKETSF : 1991 
Aa-mTOR : MCSEELIRVTILWHEQWHEGLEEASRLYFGDRNIKGMFETLEPLHQMLQRGPQTLKETSF : 1968 
Dp-mTOR : MVSEELIRVAILWHELWHEGLEEASRLYFGERNVTGMFATLEPLHAMLERGPQTLKETSF : 2016 
 
Gl-mTOR : NQAFGRDLNEALEWCRRYQRSGNVRELNQAWDLYYHVFRRISRTLPQLTSLELQSVSPRL :  682 
Cm-mTOR : NQAYGRDLNEAQEWCRRYQRSGNVRELNQAWDLYYHVFRRISRTLPQLTSLELQSVSPRL :  700 
Dm-mTOR : SQAYGRELTEAYEWSQRYKTSAVVMDLDRAWDIYYHVFQKISRQLPQLTSLELPYVSPKL : 2051 
Aa-mTOR : NQAYGRDLNEAQEWCKHYKNSGNIRDLNQAWDLYYHVFRRISRQLPQLTSLELQYVSPKL : 2028 
Dp-mTOR : HQAYGRELLEAQDWCRRYKTSLNVRDLNQAWDLYYHVFRRISRQLPQLTSLELQYVSPKL : 2076 
 
Gl-mTOR : LQCRDLDIAVPGSYAPGQPVICISQVQSSLQVLTSKQRPRKLCIRGSNGRNFVFLLKGHE :  742 
Cm-mTOR : LKCPRSGHRSTGFLCSRYPSYLYSSGAVLVTGLDFKQRPRKLCIKGSNGRDFVFLLKGHE :  760 
Dm-mTOR : MTCKDLELAVPGSYNPGQELIRISIIKTNLQVITSKQRPRKLCIRGSNGKDYMYLLKGHE : 2111 
Aa-mTOR : LACRDLELAVPGSYAPGQELIRIASIQSNLQVITSKQRPRKLCIRGSNGKEYMFLLKGHE : 2088 
Dp-mTOR : LLCRDLELAIPGSYVPNQPVIRISQVNSSLQVITSKQRPRKLCITGSNGKEYMFLLKGHE : 2136 
      
Gl-mTOR : DLRQDERVMQLFGLVNTLLISNPDTFRRNPTIQRFAVIPLSTNSGLIGWVPHCDTLHALI :  802 
Cm-mTOR : DLRQDERVMQLFGLVNTLLISNPDTFRRNLTIQRFAVIPLSTNSGLIGWMPHCDTLHALI :  820 
Dm-mTOR : DLRQDERVMQLFSLVNTLLLDDPDTFRRNLAIQRYAVIPLSTNSGLIGWVPHCDTLHTLI : 2171 
Aa-mTOR : DLRQDERVMQLFGLVNTLLLNDPDTFRRNLTIQRYAFIPLSTNSGLIGWVPHCDTLHTLT : 2148 
Dp-mTOR : DLRQDERVMQLFSLVNTLLIHDPETFRRNLTIQRYAVIPLSTNSGLIGWVPHCDTLHSLI : 2196 
 
Gl-mTOR : RDWREKKKILLNIEHRIMLRMAQDLDHLTLMQKVEVFEHALEHTHGDDLSRLLWFKSPSS :  862 
Cm-mTOR : RDWREKKKILLNIEHRIMLRMAQDLDHLTLMQKVEVFEHALEHTQGDDLARLLWFKSPSS :  880 
Dm-mTOR : RDYRDKKKVPLNQEHRTMLNFAPDYDHLTLMQKVEVFEHALGQTQGDDLAKLLWLKSPSS : 2231 
Aa-mTOR : RDYREKKKTMLNIEHRIMLRMATDYDHLTLMQKVEVFEYALELTKGDDLAKLLWLKSPSS : 2208 
Dp-mTOR : RDYREKKKILLNIEHRIMLRMAPDYDHLSLMQKVEVFEHALEHTQGDDLAKILWLRSPSS : 2256 
 
Gl-mTOR : EVWFDRRTNYSR---------SLAVMSMVGYVLGLGDRHPSNLMLDQLSGKIIHIDFGDC :  913 
Cm-mTOR : EVWFDRRTNYSR---------SLAVMSMVGYVLGLGDRHPSNLMLDQLSGKIIHIDFGDC :  931 
Dm-mTOR : ELWFERRNNYTR---------SLAVMSMVGYILGLGDRHPSNLMLDRMSGKILHIDFGDC : 2282 
Aa-mTOR : EVWFDRRTNYTR---------SLAVMSMVGYILGLGDRHPSNLMLDRLSGKILHIDFGDC : 2259 
Dp-mTOR : EVWFDRRTNYTRHELFFNPINLYTVMSMVGYILGLGDRHPSNLMLDRLSGKILHIDFGDC : 2316 
 
Gl-mTOR : FEVAMMREKFPEKIPFRLTRMLIHAMEVTGIDGTYRMTCESVMALIRRNKDSLMAMLEAF :  973 
Cm-mTOR : FEVAMMREKFPEKIPFRLTRMLIHAMEVTGIDGTYRMTCESVMALIRRNKDSLMAMLEAF :  991 
Dm-mTOR : FEVAMTREKFPEKIPFRLTRMLIKAMEVTGIEGTYRRTCESVMLVLRRNKDSLMAVLEAF : 2342 
Aa-mTOR : FEVAMTREKFPEKIPFRLTRMLINAMEVTGIEGTYRRTCESVMHVLRRNKDSLMAVLEAF : 2319 
Dp-mTOR : FEVAMTREKFPEKIPFRLTRMLVNAMEVTGIEGTYRSTCESVMSVLRGNKDSLMAVLEAF : 2376 
 
Gl-mTOR : VPNLLFYWGHRENKHSKGKGS-------VGADGETGPSAPVSTSAIAPDPSLDPAPAHTL : 1026 
Cm-mTOR : VHDPLLNWRLMDNTQPKGKRS-------VVGEGEAGPSAPASTSTIAPDPAIDTAPA--I : 1042 
Dm-mTOR : VYDPLLNWRLLDVDK-KGNDA-------VAGAGAPGGRGGSGMQDSLSNSVEDSLPMAKS : 2394 
Aa-mTOR : VYDPLLNWRLLDVDK-NRRSK-------NATDVDSTTESMEETLDLLIN--ARNLRMNEA : 2369 
Dp-mTOR : VYDPLLNWRLVVDNVANTKTTRRSKSRHESSSNNSGQGDVGDSMEITANAAANSSSVLNA : 2436 
 
Gl-mTOR : TPTSVGPH--SQAREDGGVSEALNKKAVAIVHRVRDKLTGRDFC--TEESLDVHRQVELL : 1082 
Cm-mTOR : TPASVGPQ--SQSREDGGVSEALNKKAVAIVHRVRDKLTGRDFC--TEEPLDVHRQVELL : 1098 
Dm-mTOR : KPYDPTLQ--QGG-LHNNVADETNSKASQVIKRVKCKLTGTDFQ--TEKSVNEQSQVELL : 2449 
Aa-mTOR : NGGGDVVD--QGSNCIANPAEATNNKARAIVDRVKQKLTGKDFN--TVEPVQR--QIDLL : 2423 
Dp-mTOR : AVSRSKNETVEAVVNDGPQPEILNKRALTIVSRVRDKLTGRDFPNETEGTLSIDRQVELL : 2496 
 
Gl-mTOR : IAHATLHENLCQCYIGWCPFW : 1103 
Cm-mTOR : IAQATSHENLCQCYIGWCPFW : 1119 
Dm-mTOR : IQQATNNENLCQCYIGWCPFW : 2470    
Aa-mTOR : IRQATNNENLCQCYIGWCPFW : 2444 
Dp-mTOR : IQQATSHENLCQCYIGWCPFW : 2517 

                                          FATC Domain 
 

     

KD 
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Figure 2. 4.  Multiple alignment of deduced amino acid sequences of mTOR proteins in 
three crustacean species and two insect species. Abbreviations: Aa, Aedes aegypti 
(AAR97336); Cm, C. maenas (JQ864248); Dm, Drosophila melanogaster (NP524891); Dp, 
Daphnia pulex (EFX69318); and Gl, G. lateralis (HM989973). Amino acid residues that are 
identical or similar in all sequences are shaded in black; gray shading indicates identical or 
similar amino acids in most of the sequences. Dashes indicate gaps introduced to optimize the 
alignment and the boxes indicate the HEAT repeat, FRB (FKBP12 rapamycin binding), KD 
(kinase domain) and FATC (FRAP, ATM and TRRAP C-terminal) domains. The colors of the 
boxes correspond to the colors of the domains in Fig. 2. 1.  
 
 
 
 
 
 
 
 
 

 
 

 
 
Figure 2. 5.  Domain organization of Rheb. The complete Rheb protein from human (Hs-
Rheb) is compared to the complete Rheb sequences from G. lateralis (Gl-Rheb) and C. maenas 
(Cm-Rheb). All share highly conserved G boxes (G1-G5) and lipid modification (LM) domains, 
indicated by orange and green shading, respectively. 
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gagagtgacgccatcaccgccaccaaaacaaacccacacctccacctgtgtttccgggca 60 
cctcaggcgcacccaggggccccaggtgtgttgcgagctactcttatggaccactgagca 120 
tctctccacgcagcc                                              135 
atgcctcccaagacgagaaaagtggccgttatgggctacagaagcgtggggaagtcatct 195 
 M  P  P  K  T  R  K  V  A  V  M  G  Y  R  S  V  G  K  S  S  20 
ctatgcattcagtttgttgatggccagtttgtggacagctatgatcccaccattgaaaac 255 
 L  C  I  Q  F  V  D  G  Q  F  V  D  S  Y  D  P  T  I  E  N  40 
accttcacaaaaaaactcaaggtgcgagggcaggaatatggcctggagctggtggacacg 315 
 T  F  T  K  K  L  K  V  R  G  Q  E  Y  G  L  E  L  V  D  T  60 
gcaggtcaggatgagtatagcatcttcccagcccaatactccatgaacatccacggctat 375 
 A  G  Q  D  E  Y  S  I  F  P  A  Q  Y  S  M  N  I  H  G  Y  80 
gtcctggtctactccatcacctcggaaaagtccttcgaggtagcccaggtcatctatgac 435 
 V  L  V  Y  S  I  T  S  E  K  S  F  E  V  A  Q  V  I  Y  D  100 
aagattctcgacgtgatgggcaaagtcacagttcctgtggtgttggtgggcaacaagaat 495 
 K  I  L  D  V  M  G  K  V  T  V  P  V  V  L  V  G  N  K  N  120 
gacttgcacctggagcgtgtggtgagcaccgaccaggggcgccgcgtggcagacaactgg 555 
 D  L  H  L  E  R  V  V  S  T  D  Q  G  R  R  V  A  D  N  W  140 
aaggctgtgtttcttgagacaagtgccaaggagcatgaggcagtgagtgacatcttcact 615 
 K  A  V  F  L  E  T  S  A  K  E  H  E  A  V  S  D  I  F  T  160 
cgagccatcctggagattgagaaggctgatgggaacctgccctccggtaacggctgtagt 675 
 R  A  I  L  E  I  E  K  A  D  G  N  L  P  S  G  N  G  C  S  180 
atttcatgaagcctctgtgatatagccagaacctttattgccaccacctctctgacaacc 735 
 I  S  *                                                     182 
agcctctgtgatatagccagaacctttattgccaccacctctctgacaaccgatttggat 795 
cttgaaaacaagactttgtacatggcttattctcttcacgggcaacaggatccagaaatt 855 
tgtgttttcttctgttgtatcagttctttatggccttgcctgttgtgagtatgagccagc 915 
ccactggacccatgcagtaccctcctagtctgttgtgggataatggtcagtactgttggc 975 
agtgggtg                                                     983 

 
 
 
Figure 2. 6.  Nucleotide and amino acid sequences of cDNA encoding Gl-Rheb. The cDNA 
encoded the 5’-UTR, complete ORF, and partial 3’-UTR. The five G boxes involved in GTP 
binding and the lipid modification site are indicated in bold plus underline. The font colors 
correspond to the colors of the domains in Fig. 2. 5. Asterisk indicates stop codon.  
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ccaccaccaccaaaacaaacccacaccttgtcctgtgtttccttcattcagagacacacc 60 
caggattcccaggtgtgctgctgctgcctcgtatggaccagtaaacctgcccctagccag 120 
cc                                                           122 
atgcctcccaaggatagaaaagtggccgttatgggctatagaagtgttggaaagtcgtcc 182 
 M  P  P  K  D  R  K  V  A  V  M  G  Y  R  S  V  G  K  S  S  20 
ctgtgcattcagttcgttgacggacagtttgtggacagctacgaccctactattgaaaac 242 
 L  C  I  Q  F  V  D  G  Q  F  V  D  S  Y  D  P  T  I  E  N  40 
accttcaccaagaaacttaaggtgcgtggacaagagtacggccttgagctggtggacacg 302 
 T  F  T  K  K  L  K  V  R  G  Q  E  Y  G  L  E  L  V  D  T  60 
gccggccaggatgagtacagcatcttcccggcccagtactccatgaacattcacggctat 362 
 A  G  Q  D  E  Y  S  I  F  P  A  Q  Y  S  M  N  I  H  G  Y  80 
gtcctggtgtactccatcacctcggagaagtcctttgaggtggcccaggtcatctacgac 422 
 V  L  V  Y  S  I  T  S  E  K  S  F  E  V  A  Q  V  I  Y  D  100 
aagattctcgacatgatgggcaaagtcacagttcctgtagtgttggtgggcaacaagaat 482 
 K  I  L  D  M  M  G  K  V  T  V  P  V  V  L  V  G  N  K  N  120 
gatttacatttggagcgtgtggtgagcactgagcaaggccgccgcttggctgaccaatgg 542 
 D  L  H  L  E  R  V  V  S  T  E  Q  G  R  R  L  A  D  Q  W  140 
aaggcagcatttctggagacaagtgccaaggaacatgaggcggtgaatgacatcttcaca 602 
 K  A  A  F  L  E  T  S  A  K  E  H  E  A  V  N  D  I  F  T  160 
cgagccatcctggagatcgagagggccgatgggaacctgccccctggaagtagctgtcgt 662 
 R  A  I  L  E  I  E  R  A  D  G  N  L  P  P  G  S  S  C  R  180 
atttcatgaagactctgtgatatagccacaacctttattgccaccatcttcctgaccact 722 
 I  S  *                                                     182 
Gatttacattttgaaaacaggactttgtacaggcatttctctcttcatgggcaatgggac 782 
Ccaggaaattatgttttgttatgttgtatcatttcttcacagccttgcctgttgtgagta 842 
Tgagccagcccagtggttccctgccgggctgtccctgtgtctgacacgggggtggtcact 902 
Actggagccggtgggtgtggcttgcaattcaaggctcagtatatacatagataaaaatat 962 
Tagtggatatatatgttagggaacacagctcatccactgccttagatggtggatttgtac 1022 
Actaaggctatttgggtctggctttgagatgaagactagagtgtgtgatttgggagtcat 1082 
Agtaatcaattctagttatttctttgcaatgcaatgcaaaagactaagagtgtgtgattt 1142 
Gggagtcatagtaatcaaattcctagtttattttttttgccattgcaatgcaagggaggg 1202 
Aacagtttttttcaactcagtgtggttaggaaaaattgtatcagttcagttttttttttt 1262 
Tttttttgttctgtctctccttttggaagagaatttagagccatcagtctgttggataca 1322 
Atgacggccatattggaattccacttacatttgtagacaattttttcacatgtgggaatg 1382 
Acatttgttcatcaataacttacattttagtaagagaggaaaactacacgtggaagctga 1442 
Gctaatggtgaaatagctaagcttataattactataatgtaaggcaataaattcatagaa 1502 
aacagaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa                    1543 

 
 
 
Figure 2. 7.  Nucleotide and amino acid sequences of cDNA encoding Cm-Rheb. The cDNA 
encoded the 5’-UTR, complete ORF, and partial 3’-UTR. The five G boxes involved in GTP 
binding and the lipid modification site are indicated in bold plus underline. The font colors 
correspond to the colors of the domains in Fig. 2. 5.  Asterisk indicates stop codon. The 
polyadenylation signal in the 3’-UTR is underlined. 
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           G1-Box                     G2-Box             
Gl-Rheb : MPPKTRKVAVMGYRSVGKSSLCIQFVDGQFVDSYDPTIENTFTKKLKVRGQEY :  53 
Cm-Rheb : MPPKDRKVAVMGYRSVGKSSLCIQFVDGQFVDSYDPTIENTFTKKLKVRGQEY :  53 
Ha-Rheb : MPPKNRKVAVMGYRSVGKSSLCIQFVDGQFVDSYDPTIENTFTKKLKVRGQEY :  53 
Dm-Rheb : MPTKERHIAMMGYRSVGKSSLCIQFVEGQFVDSYDPTIENTFTKIERVKSQDY :  53 
Aa-Rheb : MPAKERNIAMMGYRSVGKSSLSIQFVEGQFVDSYDPTIENTFTKITRVNSTDY :  53 
                     G3-Box 
Gl-Rheb : GLELVDTAGQDEYSIFPAQYSMNIHGYVLVYSITSEKSFEVAQVIYDKILDVM : 106 
Cm-Rheb : GLELVDTAGQDEYSIFPAQYSMNIHGYVLVYSITSEKSFEVAQVIYDKILDMM : 106 
Ha-Rheb : GLELVDTAGQDEYSIFPAQYSMDIHGYVLVYSITSEKSFEVAQVIYDKILDMM : 106 
Dm-Rheb : IVKLIDTAGQDEYSIFPVQYSMDYHGYVLVYSITSQKSFEVVKIIYEKLLDVM : 106 
Aa-Rheb : EVKLVDTAGQDEYSIFPAQYSMDFHGYVLVYSITSQKSFEVIQIIYEKLLDVM : 106 
          G4-Box                          G5-Box                                                                                                      
Gl-Rheb : GKVTVPVVLVGNKNDLHLERVVSTDQGRRVADNWKAVFLETSAKEHEAVSDIF : 159 
Cm-Rheb : GKVTVPVVLVGNKNDLHLERVVSTEQGRRLADQWKAAFLETSAKEHEAVNDIF : 159 
Ha-Rheb : GKVTVPVVLVGNKNDLHMERVVSTDQARKVADTWKAVFLETSAKQHEAVSDIF : 159 
Dm-Rheb : GKKYVPVVLVGNKIDLHQERTVSTEEGKKLAESWRAAFLETSAKQNESVGDIF : 159 
Aa-Rheb : GKAYVPVVLVGNKTDLHQERAVSTEEGKKLAECWKAQFLETSAKQNESVADIF : 159 
                                        
Gl-Rheb : TRAILEIEKADGNLPSGNGCSIS : 182 
Cm-Rheb : TRAILEIERADGNLPPGSSCRIS : 182 
Ha-Rheb : TRVILEIEKADGNSSPEGKCFIS : 182 
Dm-Rheb : HQLLILIENENGNPQEKSGCLVS : 182 
Aa-Rheb : HLLLQQIERDNGNTGEKSSCTIS : 182 
                                        

                                         Lipid Modification Site 
 
 
Figure 2. 8.  Multiple alignment of deduced amino acid sequences of Rheb proteins in three 
decapod crustacean species and two insect species. Abbreviations: Aa, A. aegypti 
(XP001659013); Cm, C. maenas (HM989970); Dm, D. melanogaster (NP730950); Gl, G. 
lateralis (HM989971); and Ha, Homarus americanus (HM989972). Amino acid residues that are 
identical or similar in all sequences are shaded in black; gray shading indicates identical or 
similar amino acids in most of the sequences. Dashes indicate gaps introduced to optimize the 
alignment. G boxes (G1-G5) and lipid modification (LM) site are indicated. 
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Figure 2. 9. Domain organization of Akt. The complete Akt protein from human (Hs-Akt) is 
compared to the partial Akt sequences from G. lateralis (Gl-Akt) and C. maenas (Cm-Akt). All 
have highly conserved pleckstrin homology (PH), helix, and kinase domains, indicated by 
orange, turquoise, and purple shading, respectively. The Gl-Akt has a portion of the regulatory 
C-terminal (RC) domain, indicated by green shading. 
  



44 
 

atggatgaggcagcaacccctcccaggcctaatattgtcaaggaaggctggctcaacaag 60 
 M  D  E  A  A  T  P  P  R  P  N  I  V  K  E  G  W  L  N  K  20 
cgtggggagcacatcaagaactggaggcagcgttacttttttctccaggaggatggtaca 120 
 R  G  E  H  I  K  N  W  R  Q  R  Y  F  F  L  Q  E  D  G  T  40 
ctcttgggattcaagacaaagccagagcatggccttgaggacccactcaacaatttcaca 180 
 L  L  G  F  K  T  K  P  E  H  G  L  E  D  P  L  N  N  F  T  60 
gtgaagcgatgtcagatcctgaaaacagaaaggccacggccgaacacttttatcatccgt 240 
 V  K  R  C  Q  I  L  K  T  E  R  P  R  P  N  T  F  I  I  R  80 
ggacttcactggaccactgtcattgagagaacattcaatgctcagtcagcaagtgacagg 300 
 G  L  H  W  T  T  V  I  E  R  T  F  N  A  Q  S  A  S  D  R  100 
gaagaatggatggaagctatcaagcaggtgtctgagagaatatcagacaactcatcaggt 360 
 E  E  W  M  E  A  I  K  Q  V  S  E  R  I  S  D  N  S  S  G  120 
cgctgtgttgagatcaaggaggttgactcagtggagcacatccaactcaagtactccagc 420 
 R  C  V  E  I  K  E  V  D  S  V  E  H  I  Q  L  K  Y  S  S  140 
gatgatgatgatgactcacagggctcacggggcaccaagaagaagaggaaaattacactg 480 
 D  D  D  D  D  S  Q  G  S  R  G  T  K  K  K  R  K  I  T  L  160 
gacaactttgagttccttaaagtgttagggaaaggaacatttggtaaagttatcctctgt 540 
 D  N  F  E  F  L  K  V  L  G  K  G  T  F  G  K  V  I  L  C  180 
cgtgaaaagagtagcaaccatttctatgccatcaagatcttgcgtaaagatgtgatcatc 600 
 R  E  K  S  S  N  H  F  Y  A  I  K  I  L  R  K  D  V  I  I  200 
aagcgtgacgaggtggcccacacactcacagagaaccgggtcctgcaagtagtcgatcac 660 
 K  R  D  E  V  A  H  T  L  T  E  N  R  V  L  Q  V  V  D  H  220 
ccttttcttacttacctcaagtattccttccaaaccaatgaccgactctgcttcgtaatg 720 
 P  F  L  T  Y  L  K  Y  S  F  Q  T  N  D  R  L  C  F  V  M  240 
gagtacgtgaacggcggggaactgttcttccacctcaaccaggagcggatctttcctgag 780 
 E  Y  V  N  G  G  E  L  F  F  H  L  N  Q  E  R  I  F  P  E  260 
gaacgagccaggttctatggagcagaaatatgccttgcactgggttacttacacgaaaga 840 
 E  R  A  R  F  Y  G  A  E  I  C  L  A  L  G  Y  L  H  E  R  280 
aatattatctatcgtgatttgaagttagaaaaccttctactggatgctgatgggcacata 900 
 N  I  I  Y  R  D  L  K  L  E  N  L  L  L  D  A  D  G  H  I  300 
aaaattgctgactttgggctatgtaaggaagacatctcctacggctcaaccacccgaaca 960 
 K  I  A  D  F  G  L  C  K  E  D  I  S  Y  G  S  T  T  R  T  320 
ttctgtggcacaccagaatacttggccccagaggtgctagaagaaaatgactatgggcga 1020 
 F  C  G  T  P  E  Y  L  A  P  E  V  L  E  E  N  D  Y  G  R  340 
ggtgttgactggtggggctacggagtctgcttgtacgagatgatggttggccgcctcccc 1080 
 G  V  D  W  W  G  Y  G  V  C  L  Y  E  M  M  V  G  R  L  P  360 
ttctatgacaaggaccatgacaagttattccagctcattgtttgtgaagatgttcgcttc 1140 
 F  Y  D  K  D  H  D  K  L  F  Q  L  I  V  C  E  D  V  R  F  380 
ccaaggaccatctcccaggaggcccgtgaccttcttaagggtctgctgcacaaggatccc 1200 
 P  R  T  I  S  Q  E  A  R  D  L  L  K  G  L  L  H  K  D  P  400 
aacaagcgccttggagggggaccaggcgatgttgaagaggtccagagtcaccccttctac 1260 
 N  K  R  L  G  G  G  P  G  D  V  E  E  V  Q  S  H  P  F  Y  420 
attacaatcaactggaagctcttggaagagaagaagctcaccccacctttcaaaccccaa 1320 
 I  T  I  N  W  K  L  L  E  E  K  K  L  T  P  P  F  K  P  Q  440 
gtaacaagcgagacggacactcgctactttgaccgagagtttactggagagtctgtgcag 1380 
 V  T  S  E  T  D  T  R  Y  F  D  R  E  F  T  G  E  S  V  Q  460 
ctcacaccacctgatcaagtggaacacctcaattctattgctgaggaatcagaaaatgcg 1440 
 L  T  P  P  D  Q  V  E  H  L  N  S  I  A  E  E  S  E  N  A  480 
gctttcaatcaattttcatat                                        1461 
 A  F  N  Q  F  S  Y                                         487  

 
 
 
Fig. 2. 10.  Nucleotide and amino acid sequences of cDNA encoding Gl-Akt. The cDNA 
encoded an incomplete ORF. The activation loop in the kinase domain indicated by blue. The 
font colors correspond to the colors of the domains in Fig. 2. 9. 
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atggatgaggcagcatcccctcccacccctgccattgttaaggaagggtggctcaacaaa 60 
 M  D  E  A  A  S  P  P  T  P  A  I  V  K  E  G  W  L  N  K  20 
cgtggggaacacattaaaaactggaggcagcgctacttctttcttcaagaagatggcacc 120 
 R  G  E  H  I  K  N  W  R  Q  R  Y  F  F  L  Q  E  D  G  T  40 
cttctgggatttaagacaaaaccagagcatggtcttgaagatccacttaacaattttaca 180 
 L  L  G  F  K  T  K  P  E  H  G  L  E  D  P  L  N  N  F  T  60 
gtgaagcaatgccagatcctgaaaacagaaagaccgcggccgaacactttcattatccga 240 
 V  K  Q  C  Q  I  L  K  T  E  R  P  R  P  N  T  F  I  I  R  80 
ggacttcattggacaactatcattgaaagaacctttaatgctcaatcggctagtgacagg 300 
 G  L  H  W  T  T  I  I  E  R  T  F  N  A  Q  S  A  S  D  R  100 
gaatcatggatggaagccatcaaacaggtgtctgagagaatatcagatactcaatcagat 360 
 E  S  W  M  E  A  I  K  Q  V  S  E  R  I  S  D  T  Q  S  D  120 
gagtgttttgagatccaggaggcgagtagaatgaaacaattacaactcaactactccagc 420 
 E  C  F  E  I  Q  E  A  S  R  M  K  Q  L  Q  L  N  Y  S  S  140 
gatgatgatgatacacccggtttgcgaggcaccaagaagaaaaggaaaattactttagat 480 
 D  D  D  D  T  P  G  L  R  G  T  K  K  K  R  K  I  T  L  D  160 
aactttgaatttcttaaagtgcttgggaaagggacgtttggaaaagttatcctgtgtcga 540 
 N  F  E  F  L  K  V  L  G  K  G  T  F  G  K  V  I  L  C  R  180 
gaaaaggtcagcaaccatttttacgctattaagatcctgcgtaaagatgtgattattgag 600 
 E  K  V  S  N  H  F  Y  A  I  K  I  L  R  K  D  V  I  I  E  200 
cgtgatgaggtggtccacacactcacagagaaccgggttctgcaggttgtagatcatccc 660 
 R  D  E  V  V  H  T  L  T  E  N  R  V  L  Q  V  V  D  H  P  220 
ttccttacttacctcaagtattccttccaaaccaacgatcgcctctgtttcgtgatggag 720 
 F  L  T  Y  L  K  Y  S  F  Q  T  N  D  R  L  C  F  V  M  E  240 
tatgtcaatggtggagaactattttttcatctcaccagggagcgcttcttccctgaagaa 780 
 Y  V  N  G  G  E  L  F  F  H  L  T  R  E  R  F  F  P  E  E  260 
cgagccagattttatggagcagaaatatgtcttgcattaggttatttacatgaaaaaaaa 840 
 R  A  R  F  Y  G  A  E  I  C  L  A  L  G  Y  L  H  E  K  K  280 
aaaacctatagtgag                                              855 
 K  T  Y  S  E                                               285  

 
 
 
Figure 2. 11.  Nucleotide and amino acid sequences of cDNA encoding Cm-Akt. The cDNA 
encoded an incomplete ORF. The font colors correspond to the colors of the domains in Fig. 2. 9. 
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                                                 PHD                            
                                                                            
Cm-Akt :                 MDEAASPPTPAIVKEGWLNKRGEHIKNWRQRYFFLQEDGTLLGF :  44 
Gl-Akt :                 MDEAATPPRPNIVKEGWLNKRGEHIKNWRQRYFFLQEDGTLLGF :  44 
Dm-Akt :   MSINTTFDLSSPSVTSGHALTEQTQVVKEGWLMKRGEHIKNWRQRYFVLHSDGRLMGY :  58 
Aa-Akt : MSSSDTTQPPAVPVTQPARVIQPSAALIVKEGWLYKRGEHIKNWRSRYFILRDDGTLVGY :  60 
Dp-Akt :                MAESVVPAKSPAIIKEGWLLKRGEHIKNWRQRYFVLQDDGSLLGF :  45 
                                                                            
Cm-Akt : KTKP--EHGLEDP---LNNFTVKQCQILKTERPRPNTFIIRGLHWTTIIERTFNAQSASD :  99 
Gl-Akt : KTKP--EHGLEDP---LNNFTVKRCQILKTERPRPNTFIIRGLHWTTVIERTFNAQSASD :  99 
Dm-Akt : RSKP-ADSASTPSDFLLNNFTVRGCQIMTVDRPKPFTFIIRGLQWTTVIERTFAVESELE : 117 
Aa-Akt : KNRPDASFQAEPS----NNFTVRGCQIMSVDRPRPFTFIIRGLQWTTVIERMFHVEEERE : 116 
Dp-Akt : KHKPEPSIGLAEP---LNNFTVKGCQIMKADRPKPFTFHIRGLQWTTVIERTFHVESEKE : 102 

                                                                       Helix 
Cm-Akt : RESWMEAIKQVSERISDTQSD---ECFEIQEASRMKQLQLNYSSDDDD------------ : 144 
Gl-Akt : REEWMEAIKQVSERISDNSSG---RCVEIKEVDSVEHIQLKYSSDDDDD----------- : 145 
Dm-Akt : RQQWTEAIRNVSSRLIDVGE----VAMTPSEQTDMTDVDMATIAEDELS----------- : 162 
Aa-Akt : RQEWVEAIRSVANRLTEA------EAYQGSQSNGDGDVEMASIAEDELLT---------- : 160 
Dp-Akt : REEWMVAIEHVAARLHTDTDSTDVDMPAVSEENDLKNSSSPSSLSNKMVSSPMDSGNDEF : 162 

                                                                                                                                                 KD                                                                            
Cm-Akt : --TPGLRGTK------KKRKITLDNFEFLKVLGKGTFGKVILCREKVSNHFYAIKILRKD : 196 
Gl-Akt : --SQGSRGTK------KKRKITLDNFEFLKVLGKGTFGKVILCREKSSNHFYAIKILRKD : 197 
Dm-Akt : -EQFSVQGT--TCNSSGVKKVTLENFEFLKVLGKGTFGKVILCREKATAKLYAIKILKKE : 219 
Aa-Akt : -EKFSVQGTS-TGKISGRKKVTLENFEFLKVLGKGTFGKVILCREKTTAKLYAIKILKKE : 218 
Dp-Akt : QMKFLITGTSNRPHHSGKKKVTLENFEFIKMLGKGTFGKVILCREKGTGHLFAIKILKKE : 222 
                                                                            
Cm-Akt : VIIERDEVVHTLTENRVLQVVDHPFLTYLKYSFQTNDRLCFVMEYVNGGELFFHLTRERF : 256 
Gl-Akt : VIIKRDEVAHTLTENRVLQVVDHPFLTYLKYSFQTNDRLCFVMEYVNGGELFFHLNQERI : 257 
Dm-Akt : VIIQKDEVAHTLTESRVLKSTNHPFLISLKYSFQTNDRLCFVMQYVNGGELFWHLSHERI : 279 
Aa-Akt : VIVQKDEVAHTMAENRVLKKTNHPFLISLKYSFQTVDRLCFVMQYVNGGELFFHLSRERV : 278 
Dp-Akt : VIIAKDEVAHTLTENRVLQTTNHPFLIALKYSFQTAERLCFVMEYVNGGELFFHLSRERI : 282 

                                           Activation Loop 
Cm-Akt : FPEERARFYGAEICLALGYLHEKKKTYSE                                : 285 
Gl-Akt : FPEERARFYGAEICLALGYLHERNIIYRDLKLENLLLDADGHIKIADFGLCKEDISYGST : 317 
Dm-Akt : FTEDRTRFYGAEIISALGYLHSQGIIYRDLKLENLLLDKDGHIKVADFGLCKEDITYGRT : 339 
Aa-Akt : FSEDRTRFYGAEIISALGYLHSHEIVYRDLKLENLLLDKDGHIKIADFGLCKEQITYGRT : 338 
Dp-Akt : FSEDRTRFYGAEIVSALGYLHEQGIIYRDLKLENLLLDKDGHIKIADFGLCKEDITYGRT : 342 
                        
Gl-Akt : TRTFCGTPEYLAPEVLEENDYGRGVDWWGYGVCLYEMMVGRLPFYDKDHDKLFQLIVCED : 377 
Dm-Akt : TKTFCGTPEYLAPEVLDDNDYGQAVDWWGTGVVMYEMICGRLPFYNRDHDVLFTLILVEE : 399 
Aa-Akt : TKTFCGTPEYLAPEVLEDNDYGLAVDWWGTGVVMYEMMCGRLPFYNRDHDILFTLILMEE : 398 
Dp-Akt : TKTFCGTPEYLAPEVLEDNDYGRAVDWWGLGVVMYELMCGRLPFYDRDHDVLFERILLEE : 402 
 
Gl-Akt : VRFPRTISQEARDLLKGLLHKDPNKRLGGGPGDVEEVQSHPFYITINWKLLEEKKLTPPF : 437 
Dm-Akt : VKFPRNITDEAKNLLAGLLAKDPKKRLGGGKDDVKEIQAHPFFASINWTDLVLKKIPPPF : 459 
Aa-Akt : VKFPRSISANARDLLAGLLMKQPRDRLGGGPNDVKEIMVHPFFSSINWTDLVQKRIAPPF : 458 
Dp-Akt : VRFPRTLSQEAKELLGGLLAKDPQKRLGGGPEDYKEITQHPFFLPISWTDLEQRKIPPPF : 462 
                                                                     

Gl-Akt : K                                                   RCD    : 438 
Dm-Akt : KPQVTSDTDTRYFDKEFTGESVELTPPDPTGPLGSIAEEP----LFPQFSYQGDMASTLG : 515 
Aa-Akt : KPQVTSDTDTRYFDSEFTGESVELTPPDNNGPLGAVQEEP----HFSQFSYQ-DMASTLN : 513 
Dp-Akt : KPQVVSETDTRYFESEFTGESVELTPPDP-GPLHSISEEVEPPCYFEKFSYCPEASSTLG : 521 
                               
Dm-Akt : TSSHISTSTSLASMQ : 530 
Aa-Akt : TPSFINNPNSYVSMQ : 528 
Dp-Akt : S----NTSLTHAALG : 532 
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Figure 2. 12.  Multiple alignment of deduced amino acid sequences of Akt proteins in three 
crustacean species and two insect species. Abbreviations: Aa, A. aegypti (AAP37655); Cm, C. 
maenas (JQ864249); Dm, D. melanogaster (NP732114); Dp, D. pulex (EFX86288); and Gl, G. 
lateralis (HM989974). Amino acid residues that are identical or similar in all sequences are 
shaded in black; gray shading indicates identical or similar amino acids in most of the sequences. 
Dashes indicate gaps introduced to optimize the alignment and the boxes indicate highly 
conserved domains, including pleckstrin homology (PH) domain and activation loop in the 
kinase domain. The colors of the boxes correspond to the colors of the domains in Fig. 2. 9. 
 

 

 

 

 

 

 
 
 
 
Figure 2. 13.  Domain organization of S6k. The complete S6k protein from human (Hs-S6k) is 
compared to the partial S6k sequences from G. lateralis (Gl-S6k) and C. maenas (Cm-S6k). 
Both had the N-terminal domain (NTD) and kinase domain (KD), indicated by light blue and 
dark blue shading, respectively. The Gl-S6k had the kinase extension (KE) domain and a portion 
of the C-terminal domain (CTD), indicated by magenta and green shading. The Cm-S6k was 
shorter and contained a portion of the KE domain. 
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tatgaacaaggcccagatatgattgagaccttacagttgtcggacagtacagtcaaccca 60 
 Y  E  Q  G  P  D  M  I  E  T  L  Q  L  S  D  S  T  V  N  P  20 
ggcagggagaaggtgcgtccatcagactttcagctactgaaggttcttggaaagggcggt 120 
 G  R  E  K  V  R  P  S  D  F  Q  L  L  K  V  L  G  K  G  G  40 
tatggcaaggtctttcaggttagaaaaatgacaggaggtaggggaggagggaaaattttt 180 
 Y  G  K  V  F  Q  V  R  K  M  T  G  G  R  G  G  G  K  I  F  60 
gcaatgaaggtcctgaaaaaagctacaatagtacgtaaccagaaggacacagcgcacaca 240 
 A  M  K  V  L  K  K  A  T  I  V  R  N  Q  K  D  T  A  H  T  80 
aaggcagaaagaaacatccttgaagctgttaagcaccccttcattctggatttagtgtat 300 
 K  A  E  R  N  I  L  E  A  V  K  H  P  F  I  L  D  L  V  Y  100 
gctttccaaacgggtggtaagctatatctcatcctggagtacctctcaggtggggagctc 360 
 A  F  Q  T  G  G  K  L  Y  L  I  L  E  Y  L  S  G  G  E  L  120 
ttcatgcatctggaaagagagggaatattcatggaggacacagcttgtttttacatatct 420 
 F  M  H  L  E  R  E  G  I  F  M  E  D  T  A  C  F  Y  I  S  140 
gagattatactggctctggaacatcttcactctgagggcatcatctacagagacctgaag 480 
 E  I  I  L  A  L  E  H  L  H  S  E  G  I  I  Y  R  D  L  K  160 
cctgaaaatattctattagatgcttttggacatgtgaagctcacagactttggattatgc 540 
 P  E  N  I  L  L  D  A  F  G  H  V  K  L  T  D  F  G  L  C  180 
aaagaaaaaattcaggatgactctgtgacacacacattctgtggtaccattgagtacatg 600 
 K  E  K  I  Q  D  D  S  V  T  H  T  F  C  G  T  I  E  Y  M  200 
gcaccagagatactcacccgcacaggccatggtaaggcagtggactggtggtccctcgga 660 
 A  P  E  I  L  T  R  T  G  H  G  K  A  V  D  W  W  S  L  G  220 
gcactcatgtacgacatgttgacgggtgcgccgcctttcacagctgagaatcgcaagaag 720 
 A  L  M  Y  D  M  L  T  G  A  P  P  F  T  A  E  N  R  K  K  240 
accatagagaagatcctgaaggggaagctgaaccttccaccctacctgactcctgatgca 780 
 T  I  E  K  I  L  K  G  K  L  N  L  P  P  Y  L  T  P  D  A  260 
cgagacctcatccgcaaactgctcaagcgtcaagtcagccagcgattgggcagtgggcca 840 
 R  D  L  I  R  K  L  L  K  R  Q  V  S  Q  R  L  G  S  G  P  280 
gatgatggggagcccattaagaggcatcttttcttcaagctcattaactgggatgttatc 900 
 D  D  G  E  P  I  K  R  H  L  F  F  K  L  I  N  W  D  V  I  300 
aacagaaagctggaccccccattcaagcctgttttgagtggtgatgatgatgtgagccaa 960 
 N  R  K  L  D  P  P  F  K  P  V  L  S  G  D  D  D  V  S  Q  320 
ttcgacagcaagttcaccaagcagacgccagttgactctcctgatgaccacatgctcagc 1020 
 F  D  S  K  F  T  K  Q  T  P  V  D  S  P  D  D  H  M  L  S  340 
gagagtgccaacatggtctttgaggggttcacatatgtggcaccatcagtgttagaggaa 1080 
 E  S  A  N  M  V  F  E  G  F  T  Y  V  A  P  S  V  L  E  E  360 
atggctcggccaagtgtggtgaaagcagaatctcca                         1116 
 M  A  R  P  S  V  V  K  A  E  S  P                          372 
 

 

 
Figure 2. 14.  Nucleotide and amino acid sequences of cDNA encoding Gl-S6k. The 
activation loop in the kinase domain indicated by underlined orange. The font colors correspond 
to the colors of the domains in Fig. 2. 13.  
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cagaaaatgacaggaggcagaggaggtggcagtatctttgccatgaaggtcctgaaaaag 60 
 Q  K  M  T  G  G  R  G  G  G  S  I  F  A  M  K  V  L  K  K  20 
gctaccatagtacgtaaccaaaaggacacagcacacacaaaagctgaaagaaatatcctg 120 
 A  T  I  V  R  N  Q  K  D  T  A  H  T  K  A  E  R  N  I  L  40 
gaagctgtgaagcatccattcattgtggatctggtgtatgcatttcaaacgggtggcaag 180 
 E  A  V  K  H  P  F  I  V  D  L  V  Y  A  F  Q  T  G  G  K  60 
ttgtacctcatcttggagtacctgtccggtggtgagcttttcatgcacctggagagagag 240 
 L  Y  L  I  L  E  Y  L  S  G  G  E  L  F  M  H  L  E  R  E  80 
ggaatattcatggaggacacagcttgtttttacatatcggaaatcatactggctctggaa 300 
 G  I  F  M  E  D  T  A  C  F  Y  I  S  E  I  I  L  A  L  E  100 
catcttcattctgagggcatcatctacagagacttgaagccagaaaatatacttctggat 360 
 H  L  H  S  E  G  I  I  Y  R  D  L  K  P  E  N  I  L  L  D  120 
tcttatgggcatgtgaagctcacagattttggattatgcaaagaaaagattcaggatgac 420 
 S  Y  G  H  V  K  L  T  D  F  G  L  C  K  E  K  I  Q  D  D  140 
tcagtgactcataccttctgtggcaccattgagtacatggcacccgagatcctgacccgc 480 
 S  V  T  H  T  F  C  G  T  I  E  Y  M  A  P  E  I  L  T  R  160 
accggccatggcaaggcagtggactggtggtctcttggagcactcatgtatgacgtgttg 540 
 T  G  H  G  K  A  V  D  W  W  S  L  G  A  L  M  Y  D  V  L  180 
acgggggcgcctccatttacagctgaaaatcgaaagaagacaatagagaagattctaaag 600 
 T  G  A  P  P  F  T  A  E  N  R  K  K  T  I  E  K  I  L  K  200 
gggaagctgaacctgccaccttacttgacacctgattcacgagaccttatccgcaaactg 660 
 G  K  L  N  L  P  P  Y  L  T  P  D  S  R  D  L  I  R  K  L  220 
ctcaagcgtcaagttagtcaacgattgggcagcggctcagatgacggagaacccatcaag 720 
 L  K  R  Q  V  S  Q  R  L  G  S  G  S  D  D  G  E  P  I  K  240 
aggcatctgttcttcaaactcattaactgggatgaagttattaatcgcaagttggatcct 780 
 R  H  L  F  F  K  L  I  N  W  D  E  V  I  N  R  K  L  D  P  260 
ccattcaagccagtattgagtggtgatgatgatgtgagccagtttgacagcaagttcacc 840 
 P  F  K  P  V  L  S  G  D  D  D  V  S  Q  F  D  S  K  F  T  280 
aaacagacaccagtggactcccctgatgaccacacgctcagtgaaagtgccaatatcttg 900 
 K  Q  T  P  V  D  S  P  D  D  H  T  L  S  E  S  A  N  I  L  300 
ctgaaaaactcgagccat                                           918 
 L  K  N  S  S  H                                            306 
 

 

 
Figure 2. 15.  Nucleotide and amino acid sequences of cDNA encoding Cm-S6k. The 
activation loop in the kinase domain indicated by underlined orange. The font colors correspond 
to the colors of the domains in Fig. 2. 13. 
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Gl-S6k :                                                YEQGPDMIETLQL :  13 
Dp-S6k :                                              FNSSPD---VEAVQL :  12 
Aa-S6k :       MAGVFDLELH----EEDNIRDSDDDVIEVDEVDLEPELHINSNLDAEGSETIPL :  50 
Dm-S6k : MADVSDPSELFDLELHDLELQDDKARDSDDDRIELDDVDLEPELCINLHQDTEGQETIQL :  60 

                      NTD                                                      KD 
Cm-S6k :                                   QKMTGGRGGGSIFAMKVLKKATIVRN :  26 
Gl-S6k : SDSTVNPGREKVRPSDFQLLKVLGKGGYGKVFQVRKMTGGRGGGKIFAMKVLKKATIVRN :  73 
Dp-S6k : SETTVNPGAEKTGPQDFELRRVLGRGGYGKVFQVRKLTGKDSG-HIFAMKVLKKATIVRN :  71 
Aa-S6k : SEEIVNPGRMKLGPQDFELKKVLGKGGYGKVFQVRKTTGADAN-SYFAMKVLKKASIVRN : 109 
Dm-S6k : CEENVNPGKIKLGPKDFELKKVLGKGGYGKVFQVRKTAGRDAN-KYFAMKVLKKASIVTN : 119 
                                                                                                           
Cm-S6k : QKDTAHTKAERNILEAVKHPFIVDLVYAFQTGGKLYLILEYLSGGELFMHLEREGIFMED :  86 
Gl-S6k : QKDTAHTKAERNILEAVKHPFILDLVYAFQTGGKLYLILEYLSGGELFMHLEREGIFMED : 133 
Dp-S6k : QKDTAHTKAERNILEAVKHPFIVDLIYAFQTGGKLYLILEYLSGGELFMHLEREGIFMED : 131 
Aa-S6k : QKDTAHTRAERNILEAVRHPFIVELVYAFQTGGKLYLILEYLSGGELFMHLEREGIFLED : 169 
Dm-S6k : QKDTAHTRAERNILEAVKHPFIVELVYAFQTDGKLYLILEYLSGGELFMHLEREGIFLED : 179 

                                    Activation Loop                     
Cm-S6k : TACFYISEIILALEHLHSEGIIYRDLKPENILLDSYGHVKLTDFGLCKEKIQDDSVTHTF : 146 
Gl-S6k : TACFYISEIILALEHLHSEGIIYRDLKPENILLDAFGHVKLTDFGLCKEKIQDDSVTHTF : 193 
Dp-S6k : TASFYLAEIILALEHLHCQGIIYRDLKPENILLDAHGHVKLTDFGLCKESVEDGGVTHTF : 191 
Aa-S6k : TTCFYLCEIILALEHLHNLGIIYRDLKPENVLLDAQGHVKLTDFGLCKEHIQEGIVTHTF : 229 
Dm-S6k : TTCFYLSEIIFALGHLHKLGIIYRDLKPENILLDAQGHVKLTDFGLCKEHIQEGIVTHTF : 239 
 
Cm-S6k : CGTIEYMAPEILTRTGHGKAVDWWSLGALMYDVLTGAPPFTAENRKKTIEKILKGKLNLP : 206 
Gl-S6k : CGTIEYMAPEILTRTGHGKAVDWWSLGALMYDMLTGAPPFTAENRKKTIEKILKGKLNLP : 253 
Dp-S6k : CGTIEYMAPEILTRSGHGKAVDWWSLGALMYDMLTGAPPFTAENRKKTIEKILKGKLNLP : 251 
Aa-S6k : CGTIEYMAPEILTRSGHGKAVDWWSLGALMFDMLTGMPPFTADNRKNTIDAILKGKLNIP : 289 
Dm-S6k : CGTIEYMAPEILTRSGHGKAVDWWSLGALMFDMLTGVPPFTAENRKKTIETILKAKLNLP : 299 
                                                                               
Cm-S6k : PYLTPDSRDLIRKLLKRQVSQRLGSGSDDGEPIKRHLFFKLINWDEVINRKLDPPFKPVL : 266 
Gl-S6k : PYLTPDARDLIRKLLKRQVSQRLGSGPDDGEPIKRHLFFKLINWD-VINRKLDPPFKPVL : 312 
Dp-S6k : PYLTPDARDLIRRLLKRGVVSRLGSTVADGEPVRMHPFFKTIDWNEVACRRLEPPFKPCL : 311 
Aa-S6k : AYLAADSRDLIRRLMKRQVSQRLGSGPTDGQAVRSHSFFKNVNWDDVLARRLDPPIKPVL : 349 
Dm-S6k : AYLTPEARDLVRRLMKRQEPQRLGSGPEDAAAVQIHPFFKHVNWDDVLARRLEPPIKPLL : 359 

                         Hydrophobic Motif                              KE                                                 
Cm-S6k : SGDDDVSQFDSKFTKQTPVDSPDDHTLSESANILLKNSSH                     : 306 
Gl-S6k : SGDDDVSQFDSKFTKQTPVDSPDDHMLSESANMVFEGFTYVAPSVLEEMARPSVVKAESP : 372 
Dp-S6k : ASADDVSQFDTRFTKQTPIDSPDDSTLSESANMVFQGFTYVAPSVLEEMHRPQVIKARSP : 371 
Aa-S6k : RSEDDVSQFDTKFTKQIPVDSPDDSTLSESANLIFQGFTYVAPSVLEEMQQPRVVTARSP : 409 
Dm-S6k : RSEDDVSQFDTRFTRQIPVDSPDDTTLSESANLIFQGFTYVAPSILEDMHRANRMPARSP : 419 

               Phosphorylation Site          
Dp-S6k : RKGMFTQGHSMTTPF                                              : 386 
Aa-S6k : RRTPRPHHGSHHHHHHHMGSHSSHHHHGGHGHHRMGGAIGNGVITLEDEQMLSMPRSQAM : 469 
Dm-S6k : RRTPRQLPDSSFRLQFPSANVGANAPAGHARSFAAIRDVCTSHAAASHADICAASIAGAG : 479 
                                                                            
Aa-S6k : PSSHQPQPMPHHMMFQQQQHQQQQQQSQPQQQPPQQQSAARSTQFVAGPNARHTPAHLQP : 529 
Dm-S6k : RDDGRAGSADGLKAGAIASQPTNPSHPVRSVATQQLHHKLPLPTPKKKKKKKKQQKITEI : 539 
                                                                           
Aa-S6k : FAPRPSPQDEMMEVYPELPIS                                        : 550 
Dm-S6k : DSYYYDVCGVWTWLRIRNEQDDHQEVAEEEEEEEEEAEQHEEHMTSVREIVFVKEKRARI : 599 
 
Dm-S6k : ALFDVYDYENDYEYDYDYEADGEDDCATRRKAFVFGYT : 637 
 
Figure 2. 16. Multiple alignment of deduced amino acid sequences of S6k proteins in three 
crustacean species and two insect species. Abbreviations: Aa, A. aegypti (XP001650653); Cm, 
C. maenas (JQ864250); Dm, D. melanogaster (AAC47429); Dp,. D. pulxe (EFX86042); and Gl, 
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G. lateralis (HM989975). Amino acid residues that are identical or similar in all sequences are 
shaded in black; gray shading indicates identical or similar amino acids in most of the sequences. 
Dashes indicate gaps introduced to optimize the alignment. The boxes indicate highly conserved 
domains including activation loop in the kinase domain and hydrophobic motif. The blue triangle 
indicates the phosphorylation site. The colors of the boxes correspond to the colors of the 
domains in Fig. 2. 13. 
 
 

 
 
 

A. 
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Figure 2. 17. Expression of EF2 and mTOR signaling components in G. lateralis (A) and C. 
maenas (B) tissues using endpoint RT-PCR. Elongation factor 2 (EF2) is a constitutively 
expressed gene that served as a control for RNA isolation and cDNA synthesis. PCR products 
after 30 cycles (EF2) or 35 cycles (mTOR, Rheb, Akt, and S6k) were resolved by agarose gel 
electrophoresis. Inverted images of ethidium bromide-stained gels are shown. Sizes of expected 
PCR products are indicated at left. All five genes were expressed in all tissues. Abbreviations, 
from left to right: EG, eyestalk ganglia; TG, thoracic ganglia; YO, Y-organ; HP, hepatopancreas; 
H, heart; CM, claw muscle; TM, thoracic muscle; MG, midgut; HG, hindgut; and T, testis. 
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CHAPTER THREE 

 

ROLE OF MECHANISTIC TARGET OF RAPAMYCIN (mTOR) AND TGFΒ SIGNALING 

IN THE CRUSTACEAN Y-ORGAN DURING THE MOLT CYCLE 

 

SUMMARY 

Molting in decapod crustaceans is controlled by molt-inhibiting hormone (MIH), an eyestalk 

neuropeptide that suppresses production of ecdysteroids by a pair of molting glands (Y-organs or 

YOs). In the blackback land crab, G. lateralis, molting is induced by eyestalk ablation (ESA) or 

autotomy of 5 or more walking legs (multiple limb autotomy or MLA). The green crab C. 

maenus (both color morphs) were refractory to ESA and MLA, remaining in intermolt. The YO 

transitions through four physiological states during the molting cycle: “basal” state at postmolt 

and intermolt; “activated” state at early premolt (D0); “committed” state at mid premolt (D1, 2); 

and “repressed” state at late premolt (D3,4). The basal to activated state transition is triggered by 

a transient reduction in MIH; the YOs hypertrophy, but remain sensitive to MIH, as premolt is 

suspended by MIH injection or by limb bud autotomy (LBA). Mechanistic Target of Rapamycin 

(mTOR), which controls global translation of mRNA into protein, appears to be involved in YO 

activation in early premolt. Rapamycin (1 μM) inhibited C. maenas and G., lateralis YO 

ecdysteroidogenesis in vitro. Injection of rapamycin (10 μM final) lowered hemolymph 

ecdysteroid titer in ES-ablated G. lateralis. At the activated to committed state transition, the 

animal becomes committed to molt, as the YO is less sensitive to MIH and premolt is not 

suspended by LBA. YO commitment involves a putative transforming growth factor-beta 

(TGFβ)-like factor. Injection of SB431542 (10 μM final), a TGFβ receptor antagonist, lowered 
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hemolymph ecdysteroid titers in 7 and 14 day post-ESA G. lateralis, but had no effect on 

ecdysteroid titers at 1 and 3 days post-ESA. Quantitative PCR data indicated that up-regulation 

of Gl-EF2 and mTOR may reflect an increase in protein synthetic capacity in the premolt YO. 

These data are consistent with the hypothesis that the activated YO synthesizes a required TGFβ-

like factor for the mid-premolt transition and a sustained constitutive increase in ecdysteroid 

synthesis. MLA experiment showed upregulation of Gl-mTOR and Gl-EF2 activity that 

important for increasing translation of mRNA into protein. This increase in protein synthesis is 

necessary for increased ecdysteroid levels in circulating hemolymph 

 
INTRODUCTION 

Control of molting in crustaceans involves a complex interaction between the eyestalk 

neurosecretory center, which produces inhibitory neuropeptides (e.g., MIH), and a pair of 

molting glands (Y-organs or YOs) in the anterior cephalothorax. The YO goes through four 

physiological states during the molt cycle that are mediated by endocrine and autocrine factors. 

A reduction in MIH triggers the transition from the basal state in intermolt (C4) to the activated 

state in early premolt (D0); a putative TGFβ factor triggers the transition from the activated state 

to the committed state in mid premolt (D1-2); and high ecdysteroids trigger the transition from the 

committed state to the repressed state in late premolt (D3-4). In most decapods, including G. 

lateralis, molting is induced by ESA or MLA. YO ecdysteroidogenesis is inhibited by 

cycloheximide, an inhibitor of translation, but not actinomycin D, an inhibitor of transcription 

(Mattson and Spaziani, 1986). 

The YO is a dynamic organ that changes over the molt cycle. MIH suppresses 

ecdysteroidogenesis by the YO during intermolt, but the YO becomes refractory to MIH by late 

premolt (Covi et al., 2010; Chang and Mykles, 2011). There is no reduction in MIH receptors 
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during intermolt or premolt (Webster, 1993), which suggests that the desensitization of MIH 

signaling is downstream from the receptor, possibly through changes in the levels and activities 

of phosphodiesterases (PDEs) and NO/cGMP signaling components. Increased PDE activity 

contributes to the reduced response to MIH by keeping intracellular cyclic nucleotides low 

(Nakatsuji et al., 2009; Chang and Mykles, 2011). In G. lateralis and Carcinus maenas YOs, 

expression of NOS and GC-Iβ is up-regulated in response to an acute and chronic withdrawal of 

MIH and other neuropeptides by ESA (Lee et al., 2007; McDonald et al., 2011). At the end of 

premolt there is a precipitous drop in hemolymph ecdysteroids within a few days of ecdysis 

(Skinner, 1985; Mykles, 2011). This drop appears to determine the timing of ecdysis, as 

artificially elevated ecdysteroid during late premolt delays ecdysis (Chang and Mykles, 2011). It 

is the result of two processes: an increase in ecdysteroid excretion and a decrease in YO 

ecdysteroid production. 20E inhibits YO ecdysteroidogenesis when injected into crayfish (Dell et 

al., 1999). RH-5849, a non-steroidal ecdysteroid agonist, inhibits ecdysteroid secretion by 

crayfish YOs in vitro. Both treatments produce significant reductions in ecdysteroidogenesis 

within 1 h, suggesting a non-genomic response mediated by G protein-coupled and/or 

membrane-associated ecdysteroid receptors (Srivastava et al., 2005; Schlattner et al., 2006). This 

inhibition lasts at least 24 h after a single 20E injection (Dell et al., 1999), which suggests that 

ecdysteroid may also affect gene expression. 

mTOR is a protein kinase highly conserved among all metazoans; that controls protein 

synthesis. It functions as the major sensor for cellular growth regulation by nutrients, cellular 

energy status, oxygen level, and growth factors (Proud, 2009; Laplante and Sabatini, 2012). 

mTOR is crucial for cell growth, aging, development, reproduction, and metamorphosis in 

insects (Layalle et al., 2008; Maestro et al., 2009; Montagne et al., 2010). mTOR increases the 
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ecdysteroid biosynthetic capacity of the insect molting gland (prothoracic gland or PG). 

Nutrients and insulin-like peptides (ILPs) activate mTOR, which phosphorylates components of 

the protein synthetic machinery, such as p70-S6 kinase (S6k) and eIF4E-binding protein (4E-

BP1) to increase translation of mRNA (Proud, 2009; Teleman, 2010). FK506-binding protein 

(FKBP12), complexes with rapamycin to inhibit mTOR (Camargo et al., 2012; Laplante and 

Sabatini, 2012). Binding of ILP to an insulin receptor activates a signal transduction cascade 

involving PI3K, PDK1, and Akt protein kinases (Teleman, 2010). mTORC1 is activated by the 

Rheb GTP. Rheb-GAP (TSC1/2) is inhibited when phosphorylated by Akt. ILP signaling 

prevents the hydrolysis of GTP by Rheb through the inhibition of Rheb-GAP, thus keeping 

mTOR in the active state (Teleman, 2010). The ILP/mTOR pathway controls PG size and 

ecdysteroidogenic capacity (Mirth and Shingleton, 2012). Over-expressing Rheb-GAP inhibits 

PG growth, and over-expressing PI3K, an upstream activator of Akt, stimulates PG growth 

(Mirth et al., 2005). In addition, PI3K and mTOR inhibitors block PTTH-induced increases in 

ecdysteroid secretion in the PG (Gu et al., 2011; Gu et al., 2012). mTOR, FKBP12, Rheb, Akt, 

and S6K are expressed in crustacean tissues, including YO and skeletal muscle (MacLea et al., 

2012). 

The transforming growth factor-β (TGFβ) superfamily of cytokines is mediated by Smad 

transcription factors that regulate genes through transcriptional activation or repression (Heldin 

and Moustakas, 2012; Xu et al., 2012). Our hypothesis indicates that the TGFβ-like factor 

activated YO synthesizes, which is required for the mid-premolt transition and a sustained 

constitutive increase in ecdysteroid synthesis. At mid premolt animals become committed to 

molt, which coincides with reduced sensitivity of the YO to MIH. We hypothesize that YO 

commitment requires a TGFβ factor acting through Activin receptor/Smad signaling, resulting in 
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sustained mTOR activation, up-regulation of ecdysteroid biosynthetic enzymes, and down-

regulation of MIH signaling. 

In this present study, the central hypothesis is that YO ecdysteroidogenesis requires up-

regulation of mTOR signaling. MIH suppresses the mTOR pathway. YO commitment requires a 

TGFβ factor acting through Activin receptor/Smad signaling, resulting in sustained mTOR 

activation, up-regulation of ecdysteroid biosynthetic enzymes, and down-regulation of MIH 

signaling.  We determined the effects molt induction by MLA and ESA on expression of EF2, 

mTOR, Rheb, Akt, and S6k in G. lateralis YO using qPCR. The effects of rapamycin, an 

inhibitor of mTOR, on YO ecdysteroidogenesis in vivo and in vitro, as well as on the expression 

of mTOR signaling components were determined.  The effects of Activin receptor antagonist 

SB431542 on hemolymph ecdysteroid levels and expression of mTOR signaling components in 

G. lateralis YO.  We also quantified effects of ESA and molt stage on the expression of mTOR 

components in the C. maenus YO. 

 

MATERIALS AND METHODS 

Animals and molt induction   

Adult land crabs G. lateralis were collected in the Dominican Republic and shipped via 

commercial air cargo to Colorado, USA.  Animals were maintained at 27 ºC in 75-90% relative 

humidity with intermolt individuals kept in communal plastic cages lined with aspen bedding 

wetted with 5 p.p.t. Instant Ocean (Aquarium Systems, Mentor, OH).  The crab environmental 

chamber was maintained in 12 h:12 h light:dark cycle with twice-weekly animal feedings of 

carrots, iceberg lettuce, and raisins (Covi et al. 2010). These crabs molt approximately once a 

year.  Green shore crabs C. maenas were collected from the harbor at Bodega Bay, California. 
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They were maintained under ambient conditions in the facilities of Bodega Marine laboratory or 

were shipped to Colorado.  In Colorado, animals were kept in aerated 30 ppt Instant Ocean at 20 

°C and fed cooked chicken liver twice a week.  Instant Ocean was changed twice a week (or 

more if water became cloudy or there was a death in the cage) (Lee et al., 2007). 

Molting is easily manipulated in G. lateralis. Experiments used two methods to induce 

molting: ES ablation (ESA) and multiple leg autotomy (MLA). MLA resembles “natural” 

molting, as animals take 3-6 weeks to form basal regenerates before entering premolt and 

successfully completing ecdysis. ESA is an effective and convenient method, as the XO/SG 

complex is the sole source of MIH (Skinner, 1985). It also is the primary source of other 

neuropeptides that may directly or indirectly affect the YO (Lacombe et al., 1999; Chang,  2001). 

The major advantage is that ESA provides a precise reference point for YO activation. In G. 

lateralis, hemolymph titers increase by 1 day post-ESA (Lee et al., 2007). Animals enter premolt 

immediately, but do not successfully complete ecdysis (Covi et al. 2010). Regenerating limbs 

provide an external measure of the progress of premolt events in G. lateralis. This measure is 

defined as the R index (calculated as the length of the regenerate x 100/carapace width), which 

increases from 0 to ~23 prior to ecdysis (Skinner and Graham, 1972; Yu et al., 2002). Limb 

regeneration occurs in two phases: (1) basal growth, which forms a small differentiated LB (R 

index 8-10), occurs during intermolt and requires low levels of ecdysteroids; (2) proecdysial 

growth occurs during premolt and requires high levels of ecdysteroids (Hopkins, 2001; Yu et al., 

2002). Molt stage is determined by a combination of hemolymph ecdysteroid titer, R index, and 

integumentary structure (membranous layer and setal development in maxillae) (Moriyasu and 

Mallet, 1986).  
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Effects of molting on mTOR signaling expression in the YO 

Molting was induced by MLA in G. lateralis. Animals were divided into three premolt 

stages (early premolt, R ~10; mid-premolt, R ~15; and late premolt, R ~22) and two postmolt 

stages (2 days and 10 days postmolt). Hemolymph samples were collected for ecdysteroid titers 

using ELISA (Nimitkul et al., 2010; see Chapter 4) and YOs were harvested for qPCR.  

C. maenus were refractory to MLA (see Chapter 4). Instead, animals at various molt stages 

(intermolt, early premolt, late premolt and postmolt) were collected during the spring molting 

season in Bodega harbor. Hemolymph samples were collected for measuring ecdysteroid titers 

and YOs were harvested for qPCR.  

Effects of ESA, SB431542, and rapamycin on YO ecdysteroidogenesis and gene expression 

The effects of SB431542 were determined in vivo. Intact intermolt and ES-ablated G. 

lateralis were injected with SB431542 (~10 µM estimated final hemolymph concentration) or 

vehicle (DMSO, ~1% final concentration) at Day 0 (mass ×0.3μl= amount to inject). 

Hemolymph samples were taken and YOs were harvested at 0, 1, 3, 7, and 14 days post-

injection. Hemolymph ecdysteroid was quantified by ELISA.  

The effects of rapamycin were determined in vivo and in vitro. G. lateralis were ES-ablated 

and injected with vehicle (~1% DMSO final concentration) or rapamycin (~10 µM final 

concentration) at Day 0 (mass ×0.3μl= amount to inject). Hemolymph samples were taken and 

YOs were harvested at 0, 1, 3, 7, and 14 days post-injection. For the in vitro study, paired YOs 

from 3 day post-ESA G. lateralis and C. maenas were incubated with rapamycin or 1% DMSO 

for 4.5 h. As the paired YOs from the same animal have similar rates of secretion, one YO serves 

as the control and the other as the experimental treatment. Ecdysteroids secreted into the culture 

medium were quantified by ELISA (Nimitkul et al., 2010). 



59 
 

Adult intermolt C. maenus (both red and green color morphs) were ES-ablated. Hemolymph 

samples were taken and YOs were harvested at 0, 7, and 14 days post-ESA.  

RNA purification, cDNA synthesis and quantitative real-time RT-PCR 

Tissues were flash-frozen in liquid nitrogen and stored at -80 ˚C. Total RNA was isolated 

from crab tissues using TRIzol reagent (Life Technologies, Carlsbad, CA) as described 

previously (Covi et al., 2010).  Briefly, tissues (YOs) (50-200 mg) were homogenized in 1 ml 

TRIzol and centrifuged at 12,000 xg for 15 min at 4 ºC.  Supernatants were phenol-chloroform 

extracted and RNA in the aqueous phase was precipitated using isopropanol (0.75 ml per 1 ml 

TRIzol reagent). RNA was treated with DNase I (Life Technologies), extracted twice with 

phenol:chloroform:isoamyl alcohol (25:24:1), precipitated with isopropanol, washed twice with 

70% ethanol in DEPC water, and resuspended in nuclease-free water.  First-strand cDNA was 

synthesized using 2 µg total RNA in a 20 µl total reaction with SuperScript III reverse 

transcriptase (Life Technologies) and oligo-dT(20)VN primer (50 µmol/l; IDT, Coralville, IA) as 

described (Covi et al., 2010).  RNA was treated with RNase H (Fisher Scientific, Pittsburgh, PA) 

and stored at -80 ºC. 

A LightCycler 480 thermal cycler (Roche Applied Science, Indianapolis, IN) was used to 

quantify levels of EF2, mTOR, Rheb, Akt and S6k mRNAs for G. lateralis and C. maenas.  

Reactions consisted of 1 µl first strand cDNA or standard, 5 µl 2× SYBR Green I Master mix 

(Roche Applied Science), 0.5 µl each of 10 mM forward and reverse primers (Table 1), and 3 µl 

nuclease-free water.  PCR conditions were as follows:  an initial denaturation at 95 ºC for 5 min, 

followed by 45 cycles of denaturation at 95 ºC for 10 s, annealing at 62 ºC for 20 s, and 

extensions at 72 ºC for 20 s, followed by melting curve analysis of the PCR product.  Transcript 

concentrations were determined with the LightCycler 480 software (Roche, version 1.5) using a 



60 
 

series of dsDNA gene standards produced by serial dilutions of PCR product for each gene (10 

ag/µl-1 to 10 ng/µl-1).  The absolute amounts of transcript in copy numbers per µg of total RNA 

in the cDNA synthesis reaction were calculated based on the standard curve and the calculated 

molecular weight of dsDNA products.   

Statistical analyses and software 

Statistical analysis was performed using JMP 5.1.2, 6.0.0, or 8.0.2 (SAS Institute, Cary, 

NC).  Group variances were analyzed using a Brown-Forsythe test and found to be equal (P < 

0.05).  Means for different developmental stages and treatments were compared using analysis of 

variance (ANOVA).  All data not plotted as individual points are represented as mean ± 1 S.E. 

and the level of significance for the all the data analyses was set at α = 0.05. All qPCR data was 

log transformed to reduce the variance of the mean.  The data were performed using Excel 2010 

(Microsoft, Redmond, WA) and JMP. Excel 2010 (Microsoft, Redmond, WA) was used for 

constructing/annotating graphs and figures. 

 

RESULTS 

Effects of molting on expression of mTOR signaling components 

G. lateralis were multiple leg autotomized and entered premolt a few weeks later. Molt 

stage was monitored by measuring the R index. The ecdysteroid titers in the hemolymph were 

low during early premolt; titers increased in mid-premolt and reached a peak in late premolt (Fig. 

3. 1A). Ecdysteroid titers were lowest at 2 days and 10 days postmolt, indicating that the YOs 

had returned to the basal state (Fig. 3. 1A).  

There were significant effects of molting on Gl-EF2, Gl-mTOR, and Gl-Akt expression in 

the G. lateralis YO. Gl-EF2 mRNA level increased during premolt, with the mean at late premolt 
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(R ~22) significantly higher than the mean at early premolt (R ~10) (Fig. 3. 1B). There was a 

significant decrease in Gl-EF2 mRNA levels at 2 and 10 days postmolt to levels that were not 

significantly different from the Gl-EF2 level at early premolt (Fig. 3. 1B). Gl-mTOR expression 

was elevated during premolt, with the means at early, mid, and late premolt not significantly 

different from each other (Fig. 3. 1C). Gl-mTOR mRNA levels decreased during postmolt, with 

the mean at 10 days postmolt significantly different from the means at mid and late premolt (Fig. 

3. 1C). Gl-Akt mRNA levels increased during premolt, with the means at mid and late premolt 

significantly higher than the mean at early premolt (Fig. 3. 1E). There was a significant decrease 

at 2 days postmolt, with the means at 2 and 10 days postmolt not significantly different from the 

mean at early premolt (Fig. 3. 1E). There was no significant effect of molting on the expression 

of Gl-Rheb (Fig. 3. 1 D) and Gl- S6k (Fig. 3. 1 F).  

As adult C. maenas are refractory to molt induction by ESA or MLA (see Chapter 4), gene 

expression in the YOs of animals (green morphs) undergoing natural molts was quantified. Crabs 

were collected during the spring molting season in Bodega harbor. The hemolymph ecdysteroid 

titers showed the characteristic pattern over the molt cycle: low levels during intermolt, 

increasing levels during premolt, and lowest levels during postmolt (Fig. 3. 2A). The YOs from 

these same animals were used to quantify Cm-mTOR, Cm-Rheb, Cm-Akt, Cm-S6k, and Cm-EF2 

expression. The postmolt stage was not quantified, as the RNA concentrations obtained from 

YOs from postmolt animals were too low for cDNA synthesis.  Unlike G. lateralis, there was no 

effect of molting on the expression of Cm-EF2 and mTOR signaling components. There were no 

significant differences in the means of the five mRNAs between intermolt, early premolt, and 

late premolt stages (Fig. 3. 2B).  
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Effects SB431542 on YO ecdysteroidgenesis and gene expression in G. lateralis in vivo 

Intermolt intact and ES-ablated animals were injected with SB431542 dissolved in DMSO 

or DMSO alone at Day 0. ES-ablated animals injected with DMSO at Day 0 showed a significant 

increase in hemolymph ecdysteroid titers (Fig. 3. 3A). Intact animals injected with vehicle alone 

(DMSO) or SB431542 had no effect (Fig. 3. 3A). ESA animals injected with SB431542 showed 

a significant increase in hemolymph ecdysteroid titer that paralleled the control animals at Day 1 

and Day 3 post-ESA. However SB431542 significantly decreased the hemolymph ecdysteroid 

titers at Day 7 and Day 14 post-ESA. ESA animals transition from the activated to the committed 

state around Day 7 (Covi et al., 2010). 

SB431542 blunted the effects of ESA on the expression of Gl-EF2, Gl-mTOR, and Gl-Akt, 

but not Gl-Rheb and Gl-S6k. In controls, there were significant increases in the expression of Gl-

EF2, Gl-mTOR, Gl-Rheb, Gl-Akt, and Gl-S6k by 3 days post-ESA and decreases by 14 days 

post-ESA (Fig. 3. 3B-F). By contrast, gene expression in YOs from SB431542-injected animals 

either did not change (Gl-EF2, Gl-Rheb, and Gl-S6k) or decreased (Gl-mTOR and Gl-Akt) by 3 

days post-ESA (Fig. 3. 3B-F). The expression levels between control and experimental 

treatments converged at 14 days post-ESA for all five genes (Fig. 3. 3B-F). Gl-EF2 mRNA level 

showed a significant increase from 1 day post-ESA to 3 and 7 days post-ESA in control animals, 

while the Gl-EF2 mRNA level did not increase in the experimental animals (Fig. 3. 3B). The 

means of the control animals were significantly greater than the means of the experimental 

animals at 3 and 7 days post-ESA (Fig. 3. 3B).   

Expression of Gl-mTOR mRNA increased significantly at 3 and 7 days post-ESA in 

controls, when compared with day 0 (Fig. 3. 3C). The Gl-mTOR mRNA level decreased 

significantly from 7 days to 14 days post-ESA in controls (Fig. 3. 3C). The means of the control 
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and experimental treatments were significantly different at 3 and 7 days post-ESA (Fig. 3. 3C). 

Gl-Rheb mRNA level in control animals increased significantly at 3 days post-ESA and 

decreased significantly by 14 days post-ESA (Fig. 3. 3D). However, there were no significant 

differences in the means between control and experimental treatments, indicating that SB431542 

had no effect on Gl-Rheb expression (Fig. 3. 3D). There was as small, but significant, increase in 

Gl-Akt expression in control animals at 3 days post-ESA (Fig. 3. 3E). In the experimental 

treatment, there were significant decreases in Gl-Akt mRNA levels at 3 and 7 days post-ESA and 

the difference of the means between control and experimental treatments at Day 3 were 

statistically significant (Fig. 3. 3E). Gl-S6k mRNA level in control animals increased 

significantly from 0 to 3 days post-ESA, which decreased to Day 0 levels at 7 and 14 days post-

ESA (Fig. 3. 3F). There were no significant differences between the means of the control and 

experimental treatments at all time points, indicating that SB431542 had no effect on Gl-S6k 

expression in the YO (Fig. 3. 3F). 

Effects of rapamycin on YO ecdysteroidgenesis in vitro and in vivo 

Rapamycin, an mTOR inhibitor, is a potent inhibitor of YO ecdysteroidogenesis in vivo and 

in vitro. Injection of rapamycin into ES-ablated G. lateralis significantly lowered hemolymph 

ecdysteroid titers 1 through 14 days post-injection (Fig. 3. 4A). In vitro, YOs from G. lateralis 

and C. maenas showed a dose-dependent inhibiton by rapamycin, with maximum inhibition of 

ecdysteroid secretion (70% and 85%, respectively) at 1 μM (Fig. 3. 4B). 

Effects of ESA on hemolymph ecdysteroid levels and gene expression in C. maenas 

In C. maenas, ESA had little effect on hemolymph ecdysteroid titer and no effect on 

expression of mTOR signaling components. There were no differences between green and red 

morphs (Fig. 3. 5). Hemolymph ecdysteroid levels remained low, although there was a 
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significant decrease in hemolymph ecdysteroid level at 7 days and 14 days post-ESA in both 

color morphs (Fig. 3. 5A). There was no significant effect of ESA on the expression of Cm-

mTOR, Cm-Rheb, Cm-Akt, Cm-S6k and Cm-EF2 in red morphs (Fig. 3. 5B) and green morphs 

(Fig. 3. 5C).  

 
DISCUSSION 

The highly conserved insulin/IGF/mTOR signaling pathway is found in all metazoans and 

has an important role as a nutrient sensor (Proud, 2009) critical for growth and development in 

insects (Hietakangas and Cohen, 2009; Layalle et al., 2008; Maestro et al., 2009; Montagne et 

al., 2009; Walkiewicz and Stern, 2009) and other invertebrates (Soulard et al., 2009).  Before 

undertaking this project, it was not clear whether components of this pathway would be regulated 

during the molt cycle of crustaceans as is the case in insects (Song and Gilbert, 1994), although 

study of Artemia spp. did demonstrate the increased expression of p70S6 kinase in emergence 

from quiescence (Santiago and Sturgill, 2001; Malarkey et al., 1998). 

Induction of molting by multiple limb autotomy showed increase in hemolymph 

ecdysteroids (Fig. 3. 1A). In this experiment, the expression of Gl-EF2, Gl-mTOR and Gl-Akt 

mRNA (Fig. 3. 1B, C, E) increased during premolt and peaked at late premolt, followed by a 

return to intact levels in postmolt. The expression patterns of Gl-Rheb and Gl-S6k (Fig. 3. 1D, F) 

were similar to each other. There was a trend in an increase in the expression of each gene by R 

= 22, but the changes were not significant. We conclude that molting induced by MLA increases 

the expression of Gl-EF2, Gl-mTOR, and Gl-Akt, but has no effect on the expression of Gl-Rheb 

and Gl-S6k. 

This observed up-regulation of mTOR activity and its well understood downstream effectors 

of p70 S6 kinase and 4E-BP1, are important for increasing translation of mRNA into protein 
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(Proud, 2009). Our data indicate that we have identified at least part of the mechanism by which 

this overall (non-specific) increase in protein synthesis occurs (Covi et al., 2010). This increase 

in protein synthesis is necessary for increased ecdysteroid levels in circulating hemolymph 

(Mykles and Skinner, 1982a; Mykles, 1999). How exactly ecdysteroid titers are mediating this 

process is a key area of investigation. The previous analysis (Covi et al., 2010) and these data, 

taken together, allow us to correlate levels of ecdysteroid with expression of mTOR components. 

The changes observed in mTOR signaling components in YOs may be only one important 

aspect of mTOR regulation during molting. Development of Drosophila larvae is mediated by 

mTOR signaling in the prothoracic gland (PG), a gland in insects that secretes ecdysone and is 

homologous to the YO in crustaceans (McNeill et al., 2008; Layalle et al., 2008). The mTOR-

dependent ecdysone secretion of the PG in fruit flies in response to nutrient/energy-dependent 

signals is important for the transition from larva to pupa (Layalle, et al., 2008).  Similarly, caste 

development of the honeybee, Apis mellifera, is also dependent on mTOR signaling, as royal 

jelly is unable to cause development of queen bees in its absence (Patel et al., 2007).  In 

crustacean YO, induction of molting by methods including MLA result in activation of the gland 

and increased ecdysteroid levels (Fig. 3. 1A).  The activation of the YO involves up-regulation of 

ecdysteroid synthetic genes (Mykles, 2010), and also affects synthesis of other genes such as 

nitric oxide synthase and guanylyl cyclases (McDonald et al., 2011).  

Eyestalk ablation (ESA) was used to examine the mTOR pathway transcriptional response 

of land crab G. lateralis in the intermolt phase of the molt cycle to activation of the YOs. We 

observed that ESA resulted in large increases in hemolymph ecdysteroid concentrations (Fig. 3. 

3A). Injecting ES-ablated land crabs with SB431542, an antagonist of the Activin RII receptor, 

caused a ~65% decrease in hemolymph ecdysteroid titers at 7 days post-injection (Fig. 3. 3A). 
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The Day 7 time point is especially significant, as this is the time when ESA animals transition 

from D0 to D1 and become committed to molt (Covi et al., 2010). The TGFβ superfamily is not 

necessary for YO activation, as the titers in ESA animals ± SB431542 were the same at 1 and 3 

days post-injection. The expression of Gl-EF2, Gl-mTOR and Gl-Akt in the group that were 

eyestalk ablated and injected with SB431542 showed a significant decrease with respect to 

control animals at 3 and 7 days post-injection for Gl-EF2 and Gl-mTOR and at 3 days post-

injection for Gl-Akt (Fig. 3. 3B, C, D). As EF2 is a constitutively expressed gene essential for 

mRNA translation, the up-regulation of Gl-EF2 may reflect a large increase in protein synthetic 

capacity in the premolt YO. 

Taken together, the data are consistent with the model presented in Chapter 1 (Figs. 4-6). 

mTOR-dependent protein synthesis is required for activation of the YO at the onset of premolt, 

as rapamycin inhibited YO ecdysteroidogenesis in vivo and in vitro. Moreover, molt induction by 

MLA and ESA up-regulates components of the mTOR signaling pathway. Once activated, the 

YO synthesizes and secretes a TGFβ-like factor, which is required for the mid-premolt transition 

to the committed state and a sustained mTOR-dependent constitutive increase in ecdysteroid 

synthesis. This is supported by the prolonged effect of a rapamycin injection (Fig.3. 4A) and the 

delayed effect of SB431542 injection into ES-ablated animals (Fig. 3. 3A). These results are 

highly significant, as they provide the first evidence that an Activin-like TGFβ factor is involved 

in regulating YO ecdysteroidogenesis in crustaceans. 

Recent work indicates that a similar mechanism operates in the insect PG. Loss of Activin 

signaling by RNAi knockdown of Type I receptor, Type II receptor, Co-Smad, or R-Smad 

prevents the PTTH-induced ecdysteroid peak that triggers metamorphosis in Drosophila 

(Gibbens, 2011). Over-expression of ligand or Activin I receptor causes precocious pupariation 
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(Gibbens, 2011). mRNA levels of PTTH receptor, insulin receptor, and Halloween genes are 

decreased in the PG of dSmad2 RNAi larvae (Gibbens, 2011), indicating that TGFβ/Smad 

signaling is required for PTTH-dependent stimulation of PG ecdysteroidogenesis. 

Green crab C. maenas and land crab G. lateralis differed in their response to ESA. G. 

lateralis soon entered premolt and proceed to ecdysis, although most do not successfully molt; 

this corresponds to increasing ecdysteroid level that reached a peak by the end of late premolt 

(Fig. 3. 3A) (Covi et al., 2010). ESA did not have any effect on C. maenus mTOR signaling 

components expression nor was there any increase in hemolymph ecdysteroid levels (Fig. 3. 5). 

These data suggest that both red and green morphs are resistant to ESA. This is examined in 

Chapter 4. 

Adult green crabs (green morphs) captured during late winter and early spring underwent 

spontaneous molting. YOs were harvested from animals at intermolt, early premolt, late premolt 

and postmolt stages. Molt stage had no significant effect on the expression of Cm-mTOR, Cm-

Rheb, Cm-Akt, Cm-S6k and Cm-EF2 (Fig. 3. 2B), suggesting that increased expression of mTOR 

signaling components is not required for YO ecdysteroidogenesis in C. maenas. 

 

CONCLUSIONS 

In the blackback land crabs G. lateralis, molting is induced by eyestalk ablation (ESA) or 

autotomy of 5 or more walking legs (multiple leg autotomy, MLA). mTOR, which controls 

translation of mRNA into protein, appears to be involved in YO activation in early premolt, as 

rapamycin inhibits YO ecdysteroidogenesis in vitro and in vivo. At the activated to committed 

state transition, the animal becomes committed to molt, as the YO is less sensitive to MIH and 

premolt is not suspended by LBA. YO commitment involves a putative TGFβ-like factor. 
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Activin receptor antagonist SB431542 causes a delayed decrease in hemolymph titer in ESA 

animals at the time animals transition from D0 to D1. This suggests that the transition to molt 

commitment requires activation of Activin/Smad signaling by a TGFβ factor, which up-regulates 

mTOR and Halloween genes (e.g., Phm) and down-regulates MIH signaling. Quantitative PCR 

data indicated up-regulation of Gl-EF2 and mTOR that may reflect an increase in protein 

synthetic capacity in the premolt YO. These data are consistent with the hypothesis that the 

activated YO synthesizes a TGFβ-like factor for the mid-premolt transition and a sustained 

constitutive increase in ecdysteroid synthesis that is mTOR-dependent. These results provide the 

first evidence that an Activin-like TGFβ is involved in regulating YO ecdysteroidogenesis. 

Unlike G. lateralis, molting had no effect on expression of Cm-mTOR, Cm-Rheb, Cm-Akt, and 

Cm-S6k, suggesting that up-regulation of mTOR signaling is not necessary for YO 

ecdysteroidogenesis in C. maenas. Experiments are planned to determine the effects of 

rapamycin and SB431542 injection on hemolymph ecdysteroid titers in molting green crabs. 
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Table 3. 1. Oligonucleotide primers used in the expression analysis (qPCR) of mTOR 

signaling components from G. lateralis (Gl) and C. maenas (Cm). Abbreviations: F, forward; 

R, reverse; EF2, elongation factor 2; mTOR, mechanistic Target of Rapamycin; Rheb, Ras 

homolog expressed in brain; Akt, protein kinase B; S6k, p70 S6 kinase. 

 

 

  

 
Primer 

 
Sequence (5’-3’) 

 

Product  
Size (bp) 

Annealing  
Temperature 

 
    
Gl-EF2 F1 TTCTATGCCTTTGGCCGTGTCTTCTC 227 62ºC 
Gl-EF2 R1 ATGGTGCCCGTCTTAACCA 62ºC 
Gl-mTOR F2 AGAAGATCCTGCTGAACATCGAG 159 62ºC 
Gl-mTOR R2 AGGAGGGACTCTTGAACCACAG 62ºC 
Gl-Rheb F1 TTTGTGGACAGCTATGATCCC 119 62ºC 
Gl-Rheb R1 AAGATGCTATACTCATCCTGACC 62ºC 
Gl-Akt F2 AACTCAAGTACTCCAGCGATGATG 156 62ºC 
Gl-Akt R1 GGTTGCTACTCTTTTCACGACAGA 62ºC 
Gl-s6k F2 GGACATGTGAAGCTCACAGACTTT 239 62ºC 
Gl-s6k R1 TTCCCCTTCAGGATCTTCTCTATG 62ºC 
Cm-EF2 F1 CCATCAAGAGCTCCGACAATGAGCG 

278 
62ºC 

Cm-EF2 R1 CATTTCGGCACGGTACTTCTGAGCG 62ºC 
Cm-mTOR F2 CATCCCTCAAACCTCATGCT 

319 
62ºC 

Cm-mTOR R2 CACCCACCACAGAACGCTTT 62ºC 
Cm-Rheb F2 ATGGGCAAAGTCACAGTTCC 

281 
62ºC 

Cm-Rheb R2 GTCAGGAAGATGGTGGCAAT 62ºC 
Cm-Akt F1 GTGAAGCAATGCCAGATCCT 

259 
62ºC 

Cm-Akt R2 CGGGTGTATCATCATCATCG 62ºC 
Cm-s6k F2 TCTCCGTCATCTGAGCCGCT 

258 
62ºC 

Cm-s6k R2 GTACATGGCACCCGAGATCC 62ºC 
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  A. Ecdysteroid level                                             B. Gl-EF2 

        
    C. Gl-mTOR                                                           D. Gl-Rheb 

        
 

   E. Gl-Akt                                                                 F. Gl-S6k 

        
 

Figure 3. 1. Effects of molt induction by MLA on hemolyph ecdysteroid titers (A) and YO 
expression of Gl-EF2 and mTOR components (B-F) in G. lateralis. Hemolymph ecdysteroid 
levels were quantified by ELISA. Gl-mTOR, Gl-Rheb, Gl-Akt, Gl-S6k, and Gl-EF2 mRNA levels 
at early premolt (10-R), mid premolt (15-R), late premolt (22-R), 2 days postmolt, and 10 days 
postmolt were quantified by real-time PCR (see Materials and methods). Data are presented as 
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mean ± 1 S.E. (n = 6 for 10-R, 13 for 15-R, 6 for 22-R, 9 for 2 days postmolt, and 4 for 10 days 
posmolt. Means that are significantly different from each other have the same the same letter (A, 
B, C, and E). There were no significant differences in the means for Gl-Rheb (D) and Gl-S6k (F). 
 
 
                             A. Ecdysteroid level 

 
 

 
 

                                      B. 

 
Figure 3. 2. Effects of molting on hemolymph ecdysteroid titers (A) and YO expression of 
Cm-EF2 and mTOR components (B) in C. maenas. Hemolymph ecdysteroid levels were 
quantified by ELISA. Cm-mTOR, Cm-Rheb, Cm-Akt, Cm-S6k, and Cm-EF2 mRNA levels at 
intermolt, early premolt, and late premolt stages were quantified by real-time PCR (see Materials 
and methods). Data are presented as mean ± 1 S.E. (intermolt, n = 6; early premolt, n = 12; late 
premolt, n = 6; and postmolt, n = 8). There were no significant differences in the means for all 
five genes at all the molt stages. 
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A. Ecdysteroid level                                        B. Gl-EF2 

          
 
 C. Gl-mTOR                                                           D. Gl-Rheb 

          
 
   E. Gl-Akt                                                          F. Gl-S6k  

           
 
Figure 3. 3.  Effects of Activin receptor antagonist SB431542 on hemolymph ecdysteroid 
titers (A) and YO expression of Gl-EF2 and mTOR signaling components (B-F) in G. 
lateralis in vivo. Intact and ES-ablated animals were injected with a single dose of DMSO (~1%) 
final hemolymph concentration or SB431542 in DMSO (~10 µM final hemolymph 
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concentration) at Day 0. Data are presented as mean ± 1 S.E. (sample size for each treatment: 
Day 0, n = 8; Days 1, 3, and 7, n = 5; Day 14, n = 7). Means within treatments that were 
significantly different from each other have the same number for the SB/ESA treatment and the 
same letter for the DMSO/ESA treatment. Same letters indicate means that were significantly 
different between treatments at the same time point. Same numbers indicate the means were 
significantly different between each time point. YO expression in intact animals was not 
measured (see Materials and methods). 
 

 

                               
 
 
Figure 3. 4. Effects of mTOR inhibitor rapamycin inhibits on YO ecdysteroidogenesis in G. 
lateralis in vivo (A) and in vitro (B). (A) Animals were ES-ablated at Day 0 and injected with a 
single dose of rapamycin (~10 μM final hemolymph concentration) or equal volume DMSO. 
(~1% final hemolymph volume). Same letters indicate means that were significantly different 
between control and rapamycin at the same time point. (B) Paired YOs from 3 day post-ESA G. 
lateralis (O) and C. maenas (□) were incubated with 5-fold dilutions of rapamycin (1, 0.2, 0.04, 
and 0.008 µM) or 1% DMSO for 4.5 h and ecdysteroids secreted into the medium were 
quantified by ELISA. The secretion with rapamycin was expressed as the % of the control 
secretion of the same pair.  Data presented as mean ± 1 S.E. (n = 5-8). 
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Figure 3. 5. Effects of ESA on hemolymph ecdysteroid titer (A) and YO expression of Cm-
EF2 and mTOR components in C. maenas. Intermolt red (B) and green (C) morphs were 
ES-ablated at Day 0. Hemolymph and YOs tissues were collected from intact (Day 0) and at 7 
days and 14 days post-ESA (see Materials and methods). Means of ESA animals that were 
significantly different from intact control (Day 0) are indicated by “1” for green morphs and “a” 
for red morphs (A). There was no significant effect of ESA on expression of the five genes. 
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CHAPTER FOUR 

 

ADULT GREEN SHORE CRAB, CARCINUS MAENAS, IS REFRACTORY TO MOLT 

INDUCTION BY EYESTALK ABLATION AND MULTIPLE LEG AUTOTOMY: 

EXPRESSION OF NO SYNTHASE AND GUANYLYL CYCLASES IN MOLTING GLAND 

(Y-ORGAN) AND MOLT-INHIBITING HORMONE IN EXTRA-EYESTALK TISSUES  

 

SUMMARY 

Regulation of the molt cycle in decapod crustaceans is controlled by the X-organ/sinus gland 

complex in the eyestalks (ES). The complex secretes molt-inhibiting hormone (MIH) that 

suppresses production of molting hormone (ecdysteroids) by molting glands (Y-organs or YOs). 

MIH signaling involves NO and cyclic nucleotides in the YO, which expresses NO synthase 

(NOS) and NO-sensitive guanylyl cyclase (GC-I). During premolt the YO becomes refractory to 

MIH, which is due, at least in part, to a down-regulation of MIH signaling. In most decapods, 

precocious molting is induced by eyestalk ablation (ESA), which removes the primary source of 

MIH, and by multiple leg autotomy (MLA), which stimulates limb regeneration. However, ESA 

of the green shore crab (Carcinus maenas) has limited effects on hemolymph ecdysteroid titers 

and Cm-NOS expression, and animals do not initiate premolt processes by 7 days post treatment. 

The purpose of this study was to determine the effects of ESA and MLA on molting and YO 

gene expression at intermediate (16 and 24 days) and long-term (~90 days) intervals in the 

“green” and “red” color morphs of adult C. maenas. The two color morphs differ in 

physiological traits: green morphs invest more energy to growth and molt more frequently, while 

red morphs invest more energy to reproduction and molt less frequently. Partial cDNAs encoding 
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the catalytic subunit of GC-I (Cm-GC-Iβ, a receptor GC (Cm-GC-II), and a soluble NO-

insensitive GC (Cm-GC-III) were cloned. In intermediate-interval experiments, ESA of intermolt 

animals caused transient increases in hemolymph ecdysteroid titers in both color morphs during 

the first 2 weeks. In long-term experiments on intermolt red and green morphs, ESA increased 

hemolymph ecdysteroid titers, compared to intact and MLA animals, by 30 days post treatment, 

but there was no late premolt peak (>600 pg/µl) characteristic of molting animals. ESA 

accelerated the transition of green to the red phenotype, which was due to a decrease in the ratio 

of green to red color in the exoskeleton. Not surprisingly, there was no significant effect of 

intermediate and long-term ESA and MLA treatments on the expression of Cm-NOS, Cm-GC-Iβ, 

Cm-GC-II, Cm-GC-III in the YO from either color morph. In green morphs that were in premolt 

at the time of treatment, ESA appeared to delay molting, whereas intact and MLA animals 

molted by 30 days post treatment. Surprisingly, there was no effect of molt stage on expression 

of Cm-NOS, Cm-GC-Iβ, Cm-GC-II, and Cm-GC-III in the YO. This indicated that reduced 

sensitivity to MIH during premolt was not due to transcriptional down-regulation of Cm-NOS 

and Cm-GC-Iβ. The ineffectiveness of ESA to stimulate molting suggested that there was a 

secondary source of MIH. Using nested reverse transcription-polymerase chain reaction (RT-

PCR), Cm-MIH transcripts were detected in eyestalk ganglia, brain, and thoracic ganglion from 

intermolt animals. ESA had no significant effect on the expression of Cm-MIH in brain and 

thoracic ganglion. The expression of Cm-MIH sustained to intact levels in red and green morphs. 

We conclude the MIH expression was similar between the color morphs and ESA had little 

effect on MIH transcript levels, indicating that the MIH gene was not regulated transcriptionally 

by the loss of the eyestalks. The data suggest that MIH secreted by neurons in the brain and 
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thoracic ganglion (serve as secondary sources of MIH) is sufficient to prevent molt induction 

when the primary source of MIH is removed by ESA. 

 
INTRODUCTION 

The European green shore crab, Carcinus maenas, has invaded sheltered coastal and 

estuarine habitats worldwide (Grosholz and Ruiz, 1996; Hanfling et al., 2011). C. maenas were 

first reported at Bodega Bay, California in 1993 and now the harbor sustains a large resident 

population (de Rivera et al., 2011; Grosholz and Ruiz, 1995). Genetic analysis indicates that the 

populations at Bodega Bay and other western North America coastal locations are derived from a 

small number of individuals introduced to San Francisco Bay, California from the east coast of 

North America (Grosholz and Ruiz, 1995; Tepolt et al., 2009). Adults occur as two color morphs 

that are distinguished by the pigmentation of the ventral surface of the thoracic segments and the 

arthrodial membrane articulating the basal segments of each of the legs. “Green” morphs have a 

light green ventral surface and leg joints and “red” morphs have red pigmentation in the leg 

joints that spreads to the ventral surface as the animal ages (McGaw et al., 1992; McGaw and 

Naylor, 1992a). In the Bodega harbor population, green morphs are more common during the 

winter months and molt frequently during February to April. The green morphs transition to red 

morphs during the summer and are most common in fall. The color morphs in United Kingdom 

populations differ in ecophysiological traits. Red morphs occur primarily in the subtidal zone and 

cannot tolerate low salinity for extended periods (McGaw et al., 1992; McGaw and Naylor, 

1992a, b). Green morphs are more prevalent in the high intertidal zone and salt marshes and can 

tolerate greater ranges in salinity (McGaw et al., 1992; McGaw and Naylor, 1992a, b). Green 

color morphs direct more energy into molting and growth, while red morphs molt less frequently 

and direct more energy to reproduction (Reid et al., 1997). As a consequence of the longer 
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intermolt period, red morphs have a thicker exoskeleton and stronger claws (Reid et al., 1997; 

Taylor et al., 2009). 

The process of ecdysis, or molting, in crustaceans requires precise coordination of 

physiological processes occurring in various organs and tissues, such as the degradation of the 

old exoskeleton, synthesis of a new exoskeleton, regeneration of lost appendages, and atrophy of 

skeletal muscle in the claws (Chang and Mykles, 2011; Mykles, 1997; Skinner, 1985). The molt 

cycle is divided into four major stages: intermolt, premolt, ecdysis, and postmolt (Skinner, 1985). 

Steroid molting hormones, or ecdysteroids, which are synthesized and secreted by a pair of 

molting glands, or Y-organs (YOs), initiate and coordinate these processes (Lachaise et al., 1993; 

Skinner, 1985). Thus, the YOs, located in the anterior cephalothorax, are activated to initiate the 

transition from the intermolt stage to the premolt stage (Chang and Mykles, 2011). Hemolymph 

ecdysteroid levels are low during postmolt and intermolt stages, and increase during premolt, 

reaching a peak at the end of premolt (Chang, 1989; Mykles, 2011). There is a large drop in 

ecdysteroid level a few days before ecdysis, which serves as a trigger for actual shedding of the 

exoskeleton (ecdysis), as well as the growth of the claw muscles and the synthesis and 

calcification of the exoskeleton during the postmolt stage (Chang and Mykles, 2011; Skinner, 

1985). 

The YOs are controlled by inhibitory neuropeptides produced by the X-organ/sinus gland 

(XO/SG) complex located in the eyestalks of decapod crustaceans (Chang and Mykles, 2011; 

Hopkins, 2012; Skinner, 1985; Webster et al., 2012). These neuropeptides, molt-inhibiting 

hormone (MIH) and crustacean hyperglycemic hormone (CHH), inhibit ecdysteroidogenesis in 

the YO (Chang and Mykles, 2011; Covi et al., 2012; Nakatsuji et al., 2009; Webster et al., 2012). 

MIH is expressed primarily in the XO/SG complex, but there are a few reports of MIH 
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expression in extra-eyestalk tissues (Lu et al., 2001; Tiu and Chan, 2007; Zhu et al., 2011). By 

contrast CHH is expressed in a wide variety of tissues including the XO/SG complex (Webster et 

al., 2012). Both neuropeptides share similar highly conserved motifs (Nakatsuji et al., 2009; 

Webster et al., 2012) and inhibit ecdysteroid synthesis via cGMP-dependent signaling pathways 

(Covi et al., 2009; Mykles et al., 2010). CHH is a pleiotropic neuropeptide that regulates glucose 

utilization, molting, osmoregulation, and metabolism (Chung et al., 2010; Fanjul-Moles, 2006; 

Webster et al., 2012). The eyestalk CHH isoform inhibits the YO through a membrane receptor 

guanylyl cyclase, or GC-II (Chung et al., 2010). MIH signaling pathway may involve a 

calmodulin (CaM)-dependent NO synthase (NOS) and NO-dependent guanylyl cyclase (GC-I) 

(Chang and Mykles, 2011; Covi et al., 2012). Thus, CHH and MIH inhibit YO ecdysteroid 

biosynthesis through two distinct signaling pathways involving membrane receptor and NO-

dependent GCs, respectively. 

The YO expresses NOS, the catalytic subunit of GC-I (GC-Iβ, a receptor GC (GC-II), and a 

soluble NO-insensitive GC (GC-III) (Chang and Mykles, 2011; Mykles et al., 2010; Webster et 

al., 2012). cDNAs encoding NOS, GC-Iβ, GC-II, and GC-III have been cloned from the 

blackback land crab, Gecarcinus lateralis (Kim et al., 2004; Lee et al., 2007b). cDNAs encoding 

GC-II have also been cloned from crayfish, Procambarus clarkii, and blue crab, Callinectes 

sapidus (Liu et al., 2004; Zheng et al., 2006). In addition, a cDNAs encoding NOS in C. maenas, 

Marsupenaeus japonicus, Panulirus argus, Litopenaeus vannamei, Scylla paramamosain, and 

the water flea, Daphnia magna, have been cloned and characterized (Inada et al., 2010; Labbe et 

al., 2009; Li et al., 2012; McDonald et al., 2011; Rodriguez-Ramos et al., 2010; Yao et al., 

2010). Crustacean NOS has an N-terminal oxygenase domain and a C-terminal reductase domain 

linked by a CaM-binding domain, which is characteristic of CaM-dependent NOS genes in other 
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species (Daff, 2010; Kim et al., 2004; McDonald et al., 2011). GC-I is a heterodimer; the 

catalytic, or β subunit has heme/NO-binding and heme/NO-binding-associated domains, which 

are characteristic of β subunits of NO-sensitive GCs in other species (Lee et al., 2007b; Potter, 

2011). The GC-II has extracellular ligand-binding, transmembrane, cytosolic kinase homology, 

dimerization, and catalytic domains (Lee et al., 2007b; Liu et al., 2004; Potter, 2011; Zheng et 

al., 2006). The GC-III resembles GC-II; it is truncated in the kinase homology domain and thus it 

may be constitutively active (Lee et al., 2007b). 

In most decapod crustaceans molting can be induced by eyestalk ablation (ESA) or by 

autotomy of at least 5 walking legs (multiple leg autotomy or MLA) (Chang and Mykles, 2011; 

Mykles, 2001; Skinner, 1985). ESA removes the primary source of MIH and results in an 

immediate activation of the YO and an increase in hemolymph ecdysteroid titers within 1 day 

(Covi et al., 2010; Lee et al., 2004; Lee et al., 2007b; Lee and Mykles, 2006). In G. lateralis, 

ESA increases Gl-NOS, Gl-GC-Iβ and Gl-GC-III expression ~6-fold, ~10-fold, and ~4-fold, 

respectively, in the YO by 7 days post-ESA, which indicates that YOs are responsive to acute 

withdrawal of eyestalk neuropeptides (Lee et al., 2007b; McDonald et al., 2011). In green 

morphs of C. maenas, hemolymph ecdysteroid titer and YO Cm-NOS mRNA increases about 2-

fold and 4-fold, respectively, by 3 days post-ESA, with little or no further increases by 7 days 

post-ESA; expression of GCs was not measured, as cDNAs were not available (McDonald et al., 

2011). These data suggest that G. lateralis and C. maenas differ in responsiveness to ESA. 

The purpose of this study was to determine the effects of ESA and MLA on molting and YO 

gene expression in the two color morphs at intermediate and long-term time intervals. As red 

morphs molt less frequently than green morphs, we hypothesized that red morphs would be less 

responsive to molt induction than green morphs. Partial cDNAs encoding three guanylyl cyclases 
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from C. maenas, designated Cm-GC-Iβ, Cm-GC-II, and Cm-GC-III, were cloned to assess 

responsiveness to molt induction. The effects of ESA and MLA on the color morphs were 

determined by measuring hemolymph ecdysteroid levels and YO gene expression of Cm-NOS, 

Cm-GC-Iβ, Cm-GC-II, and Cm-GC-III using quantitative polymerase chain reaction (qPCR). 

The expression of GCs and NOS was also quantified in YOs from green morphs undergoing 

spontaneous molts. The expression of MIH in brain and thoracic ganglion in intact and ESA 

green and red morphs was determined by nested PCR and qPCR. The results showed that both 

color morphs are refractory to ESA and MLA and that the brain and thoracic ganglion serve as 

secondary sources of MIH. 

 

MATERIALS AND METHODS 

Animals and experimental treatments 

Adult male green shore crabs (Carcinus maenas) were collected from the harbor at Bodega 

Bay, California. They were maintained under ambient conditions at approximately 13 ˚C in the 

facilities of Bodega Marine Laboratory and fed squid twice per week. Some crabs were shipped 

to Colorado. In Colorado, animals were kept in aerated 30 parts per thousand Instant Ocean 

(Aquarium Systems, Mentor, OH, USA) at 20 °C on a 12 h:12 h dark:light cycle. They were fed 

cooked chicken liver once a week and water was changed after feeding. ESA and MLA used the 

same procedures as those described for G. lateralis (Lee et al., 2007a; Skinner and Graham, 

1972).  

Animals (green morphs) undergoing natural molts were collected in February to April, 2010 

and 2011. YOs were harvested from intermolt, premolt, and postmolt animals, frozen in liquid 
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nitrogen, and stored at -80 ˚C. Hemolymph samples (100 µl) were taken at the time of tissue 

harvest and combined with 300 µl methanol for ELISA (see below). 

Intermediate-interval experiments determined the effects of ESA in green and red morphs 

for up to 24 days. YOs were harvested from intact (Day 0) animals and from ESA animals at 

various intervals post-ESA. Hemolymph samples (100 µl) were taken at the time of harvest and 

combined with 300 µl methanol for ELISA (see below). 

Long-term experiments determined the effects of ESA and MLA after about 3 months in 

green and red morphs. Green morph animals from the winter molting season were divided into 

three treatment groups: intact control (n = 10), ESA (n = 9), and MLA (n = 18). All 8 walking 

legs were autotomized in the MLA group. Digital images of the ventral area of each crab were 

acquired every two weeks. Photographs were analyzed with Photoshop CS software using the 

“Info” tab to quantify the intensities of red, green, and blue from the center of first thoracic 

sternum on the crab’s left side. Results were analyzed by one-way analysis of variance 

(ANOVA) using Sigmastat version 3.00 (SPSS, Inc.). Red morph animals from the late spring 

season were divided into four treatment groups: intact control (n = 3), ESA (n = 4), MLA (n = 4), 

and ESA + MLA (n = 4). Every week, hemolymph samples (50 µl) were combined with 350 µl 

methanol for ELISA (see below). After about 90 days, the YOs were harvested, frozen in liquid 

nitrogen, and stored at -80 ˚C. 

Ecdysteroid ELISA 

 The ecdysteroid ELISA was modified from (Kingan, 1989) and (Tamone et al., 2007). 

Plates (96-well, Costar 3366, Corning, NY, USA) were coated with AffiniPure goat anti-rabbit 

IgG Fc fragment antiserum (Jackson ImmunoResearch Labs 111-005-008, West Grove, PA, 

USA; 0.5 µg in 90 µl per well) in phosphate-buffered saline (PBS; 10 mM sodium phosphate, 
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0.15 M NaCl, pH 7.5) for 2 h at 23 ˚C. The wells were incubated (300 µl per well) with assay 

buffer (AB; 25 mM sodium phosphate, pH 7.5; 150 mM NaCl; and 1 mM EDTA disodium 

dihydrate) containing 0.1% bovine serum albumin (BSA, Fraction V; Sigma A-9647, St. Louis, 

MO, USA) for 2 h at 23 ˚C. The wells were washed 3 times with PBS containing 0.05% Tween 

20 (PBS-T; Sigma, P-5927). All samples were run in duplicate. Nonspecific binding (NSB) was 

determined by loading wells with AB containing 0.1% BSA (100 µl per well). Standards ranged 

from 0 to 120 pg 20-hydroxyecdysone (20E) in AB containing 0.1% BSA (50 µl per well). 

Hemolymph samples in methanol were centrifuged for 10 min at 20,000 xg at 4 ˚C to remove 

precipitated protein. Supernatant aliquots (10 µl) were dried under vacuum in a Speed Vac 

centrifuge (Savant, West Palm Beach, FL, USA) and dissolved in 150 µl AB containing 0.1% 

BSA. Samples (50 µl), in duplicate, were loaded into each well.  An internal standard consisting 

of lobster (Homarus americanus) hemolymph was included to assess inter-assay variation. 20E 

conjugated to horseradish peroxidase (HRP) reagent (1:64,000 dilution in AB with 0.1% BSA; 

50 µl) was added to all wells and incubated for 5 min at 23 ˚C.  A rabbit anti-ecdysteroid primary 

antibody (50 µl; 1:100,000 dilution in AB with 0.1% BSA) was added to all wells, except for the 

first two wells containing NSB. The 20E/HRP conjugate and 20E antibody were obtained from 

Dr. Timothy Kingan. The plates were sealed with Parafilm and incubated overnight at 4 ˚C. 

Equal volumes of Solutions A and B of a tetramethylbenzidine-peroxidase (TMB) kit (KPL, 

catalog 50-76-03, Gaithersburg, MD, USA) were combined and 100 µl were added to each well. 

The plates were incubated for 15 min at 23 ˚C in the dark. The reaction was stopped by the 

addition of 100 µl 1 M phosphoric acid and read with a Genios plate reader (Tecan, San Jose, 

CA, USA) at 450 nm. The data were archived with Magellan 6 (Tecan) and analyzed with 

Microplate Manager (Bio-Rad) software. 
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Cloning of Cm-Guanylyl cyclases (Cm-GCs) 

RT-PCR and RACE were used to clone partial cDNAs encoding Cm-GCIβ, Cm-GCII, and 

Cm-GCIII.  An initial partial cDNA sequence for Cm-GCIβ, Cm-GCII, and Cm-GCIII was 

obtained by designing nested degenerate primers to two highly-conserved sequences in the 

catalytic domain of G. lateralis guanylyl cyclases (Lee et al., 2007b). Mixed tissue cDNA from 

YO, claw muscle, and thoracic ganglion was used for the initial PCR (RNA isolation and cDNA 

synthesis are described below). The PCR conditions were an initial denaturation at 96 °C for 4 

min followed by 35 cycles of denaturation for 30 s at 96 °C, annealing for 30 s at the appropriate 

melting temperature for the specific primer set (Table 4. 1), and extension for 30-90 s at 72 °C. 

Extension time varied with expected product size allowing 30 s for every 500 bp. PCR consisted 

of 1 µl cDNA template, 0.5 µl each forward and reverse primers (Table 4. 1), 5 µl GoTaq Green 

Master Mix (Promega Corp., Madison, WI, USA), and 3 µl sterile deionized water (Integrated 

DNA Technology). Reactions were performed using a Veriti 96 Well Thermal Cycler (Applied 

Biosystems Inc., Foster City, CA, USA).   

5’ RACE and 3’ RACE used the FirstChoice RLM-RACE kits (Applied 

Biosystems/Ambion, Austin, TX, USA) as described by (McDonald et al., 2011). Nested primers 

were used to amplify products from the RACE templates. Outer reactions contained 1 μl 3’ or 5’ 

RACE template, 2 μl 3’ or 5’ RACE outer primer, 2 μl specific outer primer (Table 4. 1), 14.25 

μl GoTaq Green mix (Promega), and 30.75 μl nuclease free water (Integrated DNA Technology). 

Inner reactions contained 1 μl outer 3’ or 5’ RACE reaction, 1 μl specific inner primer (Table 4. 

1), 1 μl 3’ or 5’ RACE inner primer, 5 μl GoTaq Green mix (Promega), and 2 µl nuclease free 

water. PCR conditions were 3 min denaturation at 94 °C, followed by 35 cycles of 30 s at 94 °C, 

30 s at 60 °C, 1 min 30 s at 72 °C, and a final extension of 7 min at 72 °C. PCR products were 

separated by 1.0% agarose gel electrophoresis and stained with ethidium bromide. The gel slices 
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were purified using Qiaex II Gel Extraction kit (Qiagen, Inc., Valencia, CA, USA) and DNA was 

ligated into pJet 1.2 (Fermentas, Glen Burnie, MD, USA) vector, which was transformed into 

CH3 Blue E. coli cells (Bioline USA Ins., Taunton, MA, USA). Plasmids were purified using 

QAIprep Spin Miniprep kit (Qiagen) and sequenced using pJET sequence-specific primers 

(Davis Sequencing, Davis, CA, USA).   

RNA isolation and RT-PCR 

The RNA isolation protocol is described in (Covi et al., 2010). Animals were anesthetized 

with ice for 5 min prior to dissection of the YO and other tissues. Hemolymph samples (100 µl) 

were combined with 300 µl methanol for quantification of ecdysteroids by radioimmunoassay 

(Medler et al., 2005) or ELISA (see above). Tissues were frozen in liquid nitrogen and stored at -

80 °C. Total RNA was isolated using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) using 

manufacturer’s protocol. Total RNA was treated with DNAase I for 30 min, extracted with 

phenol:chloroform:isoamyl alcohol (25:24:1), precipitated with 1 volume of isopropanol, and 

dissolved in 30 µl nuclease-free water (Integrated DNA Technology). RNA concentration was 

determined by absorbance at 260 nm using a NanoDrop ND-1000 Spectrophotometer (Thermo 

Fisher Scientific, Inc). cDNA was synthesized in reactions (20 µl) containing 1 µg RNA, 4 µl 

Transcriptor RT reaction buffer (Roche, Nutley, NJ, USA), 0.5 µl Ribolock RNase Inhibitor (40 

u/µl; Fermentas), 0.5 µl Reverse Transcriptase (Roche), 2.0 µl dNTP (10 mM), and 5 µl 

nuclease-free water. Complementary RNA was removed with RNase H (New England Biolabs, 

Ipswich, MA, USA).   

The tissue distribution of C. maenas guanylyl cyclases (Cm-GCIβ, Cm-GCII, and Cm-

GCIII), Cm-MIH (GenBank accession # X75995; (Klein et al., 1993)), and Cm-Elongation 

Factor-2 (Cm-EF-2; #GU808334) was determined by end-point PCR. Reactions contained 1 µl 
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template cDNA and 5 pmol each of the appropriate expression primers (Table 2) in master mix 2 

(Thermo scientific).  After denaturation at 94 ºC for 3 min, 30 or 35 cycles of 94 ºC for 30 s, 

lowest annealing temperature of a primer pair for 30 s, and 72 ºC for 30 s, were completed.  Final 

extension was for 7 min at 72 ºC. After PCR was terminated, products were separated on a 1% 

agarose gel containing TAE (40 mM Tris acetate and 2 mM EDTA, pH 8.5).  The gels were 

stained with ethidium bromide and visualized with a UV light source. Cm-EF-2 is a 

“housekeeping” gene that is constitutively expressed and served as the control for RNA isolation 

and cDNA synthesis. 

A Light Cycler Fast Start DNA Master Plus SYBR GREEN I reaction mix (Roche Applied 

Science) and a Light Cycler 480 thermal cycler (Roche) was used for quantitative analysis of 

Cm-GCIβ, Cm-GCII, Cm-GCIII, and Cm-NOS (GenBank  accession #GQ862349), Cm-MIH, and 

Cm-EF-2. qPCR reactions contained 1 µl cDNA, 5 µl 2x SYBR Green Master Mix, 0.5 µl (10 

mM) each of forward and reverse gene-specific primers (Table 4. 2), and 3 µl of PCR-grade 

water. The primers for Cm-GCII were targeted to the kinase homology domain (Table 4. 3). The 

PCR conditions were an initial 95 °C for 5 min, followed by 45 cycles of 95 °C for 5 s 

(denaturation), 62 °C for 5 s (annealing), and 72 °C for 20 s (extension). Melting temperature 

analysis of the PCR products and the concentrations of the PCR transcripts used Roche version 

1.2 Light cycler 480 software. Standard curves were prepared by serial dilutions of purified PCR 

products (10-8 ng/µl to 10-16 ng/µl) for Cm-GCIβ, Cm-GCII, Cm-GCIII, Cm-NOS, Cm-MIH, and 

Cm-EF-2. The PCR reactions contained 1 µl template cDNA and 5 pmol each of the appropriate 

expression primers (Table 4. 2) in Master Mix 2 (Thermo scientific).  After denaturation at 94 ºC 

for 3 min, 35 cycles of 94 ºC for 30 s, lowest annealing temperature of a primer pair for 30 s, and 

72 ºC for 30 s, were completed.  Final extension was for 7 min at 72 ºC. After PCR was 
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terminated, products were separated on a 1% agarose gel containing TAE (40 mM Tris acetate 

and 2 mM EDTA, pH 8.5).  The gels were stained with ethidium bromide and visualized with a 

UV light source. PCR products were purified using Qiaex II Gel Extraction kit (Qiagen). 

Statistical analysis was performed using JMP 5.1.2 software (SAS institute, Inc., Cary, NC, 

USA). All qPCR data was log transformed to reduce the variance of the mean. Means for 

transcript abundance were compared using an analysis of variance (ANOVA) for days post-ESA 

verses log copy number. An ANOVA was also used to compare the means of naturally molting 

animals in various molting stages verses log copy numbers. A paired t-test was used to compare 

the means for transcript abundance between red and green morph hemolymph ecdysteroid 

concentration verses log copy number. A Grubb’s test was used to detect outliers. The level of 

significance for the all the data analyses was set at α = 0.05. 

 

RESULTS 

Cloning and characterization of cDNAs encoding green shore crab guanylyl cyclases 

cDNAs encoding GC-Iβ, GC-II, and GC-III were cloned to assess the response of the YO to 

ESA and MLA. An initial PCR product (~230 bp) amplified using degenerate primers was 

ligated into a plasmid vector and used to transform E. coli cells. Plasmids were purified from 

each clone and sequenced. Three distinct sequences were obtained that corresponded to G. 

lateralis GC-Iβ, GC-II, and GC-III (Lee et al., 2007b) (Fig. 4. 1). Nested 3’ RACE using 

sequence-specific primers (Table 4. 1) directed toward each of the three initial sequences yielded 

the remainder of the 3’ open reading frame (ORF) and the 3’ untranslated region (UTR) of Cm-

GC-Iβ and Cm-GC-III (Table 3). 3’ RACE failed to amplify the complete 3’ sequence of the Cm-

GC-II. However, a second sequence was obtained when the RLM-RACE kit reverse primer 
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apparently annealed to an A-rich sequence in the kinase homology (KH) domain 5’ to the 

guanylyl cyclase (GC) domain in the ORF (Table 4. 3). An additional 5’ sequence of Cm-GC-III 

was amplified using sequence-specific Cm-GC-II gap bridging primers (Table 4. 1). The Cm-

GC-II primer sequences and Cm-GC-III cDNA sequence apparently were similar enough to 

allow annealing of the primers to the Cm-GC-III cDNA. Nested 5’ RACE failed to obtain the 5’ 

UTR of Cm-GC-II and Cm-GC-Iβ, which was most likely due to the predicted length (~2100 bp 

and ~1600 bp, respectively), based on the G. lateralis GC sequences. The DNA and translated 

amino acids sequences of GC-Iβ, Cm-GC-II, and Cm-GC-III are presented in Figures 4. 2, 4. 4, 

and 4. 6 respectively. Multiple sequence alignments showed that the deduced amino acid 

sequences of Cm-GC-Iβ, Cm-GC-II, and Cm-GC-III were similar to those of other decapod 

crustacean and insect guanylyl cyclases (Figs. 4. 3, 4. 5, and 4. 7, respectively). Cm-GC-Iβ 

shared 93% amino acid identity with Gl-GCIβ (Fig. 4. 3), Cm-CII shared 54% identity with Gl-

GCII (Fig. 4. 5), and Cm-GC-III shared 78% identity with Gl-GC-III (Fig. 4. 7).   

The tissue distribution of Cm-GC-Iβ, Cm-GC-II, and Cm-GC-III was determined using 

endpoint RT-PCR (Fig. 4. 8). Sequence-specific primers were targeted to the ORF and 3’ UTR 

of Cm-GC-Iβ, the KH sequence of Cm-GC-II, and the 3’ UTR of Cm-GC-III (Table 4. 2). Each 

primer set generated a single PCR product, as determined by qPCR melting temperature analysis 

(see Materials and methods). The identities of the PCR products were confirmed by direct 

sequencing. All three GCs were expressed in all the tissues examined; Cm-GC-III appeared to 

show a greater variation in expression level (Fig. 4. 8). 
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Intermediate-interval experiment: effects of ESA and MLA on hemolymph ecdysteroid and 

gene expression in YOs from red and green morphs 

The effects of ESA on hemolymph ecdysteroid levels and NOS and GC expression was 

determined in green morphs over a 16-day interval and red morphs over a 24-day interval. ESA 

resulted in a transient increase in ecdysteroid titers, but the magnitude and timing differed 

between the color morphs (Fig. 4. 9A). In red morphs, there was a 4.2-fold increase to 48.9 pg/µl 

(P < 0.0001) in the ecdysteroid concentration at 14 days post-ESA, which was followed by a 3.8-

fold decrease (P < 0.0001) at 21 days post-ESA (Fig. 4. 9A). In green morphs, there was a 2-fold 

increase to 20.5 pg/µl (P < 0.012) in hemolymph ecdysteroid at 3 days post-ESA, which returned 

to pre-ESA levels at 14 and 21 days post-ESA (Fig. 4. 9A). 

ESA had no significant effect on the expression of Cm-EF2, which served as a 

constitutively expressed control, in green and red morphs (Fig. 4. 9B). Moreover, Cm-EF2 

mRNA levels were not significantly correlated with hemolymph ecdysteroid concentration in 

either color morph (data not shown). ESA had no significant effect on the expression of Cm-NOS 

in either the red or green morph (Fig. 4. 9C). In addition, there were no significant correlations 

between Cm-NOS mRNA levels and hemolymph ecdysteroid concentrations in either morph 

(data not shown).  

ESA had a small, but significant, effect on Cm-GC-Iβ expression in red morphs, but not in 

green morphs. There was a decrease in Cm-GC-Iβ mRNA level (P < 0.022) that coincided with 

the peak in hemolymph ecdysteroid at 14 days post-ESA. Cm-GC-Iβ mRNA levels were 

negatively correlated (P < 0.014) with hemolymph ecdysteroid concentration in the red morphs, 

but not in the green morphs (data not shown). There was no significant effect of ESA on the 

expression of Cm-GC-II and Cm-GC-III in either color morph (Fig. 4. 9E, F). Moreover, mRNA 
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levels of Cm-GC-II and Cm-GC-III were not significantly correlated with hemolymph 

ecdysteroid concentrations in either red or green morph (data not shown).  

Long-term experiment: effects of ESA and MLA on hemolymph ecdysteroid and gene 

expression in YOs from red and green morphs 

The long-term effects of ESA and MLA were determined on red and green morphs. Red 

morphs were divided into four treatment groups: intact (control), ESA, MLA, and combined 

ESA+MLA. The experiment was conducted during the summer, after the winter/spring molting 

season. All the red morphs were in the intermolt stage and remained in the intermolt stage; none 

of the animals molted during the 90-day duration of the experiment. ESA, either singly or in 

combination with MLA, significantly increased hemolymph ecdysteroid level at Day 28 and later 

time intervals, although the means never exceeded 30 pg/µl (Day 45; Fig. 4. 10). There was no 

significant difference between the intact and MLA animals, except at Day 52 (Fig. 4. 10).  

Green morphs were divided into three treatment groups: intact (control), ESA, and MLA. 

The experiment was initiated in February at the beginning of the molting season. Hemolymph 

samples were taken at weekly intervals and ecdysteroid titers were determined at the end of the 

experiment. Eight of the 30 animals were in premolt, as indicated by elevated ecdysteroid 

(between 72.0 and 196.0 pg/µl), at Day 0: 2 in the control group, 3 in the MLA group, and 3 in 

the ESA group. MLA had no effect on molting of the premolt crabs; ecdysteroid levels in the 

premolt intact and MLA animals continued to increase and all 5 crabs molted within 4 weeks 

(Fig. 4. 11; compare A and B). By contrast, ESA delayed molting of premolt animals. The 

increase in hemolymph ecdysteroid was delayed in 2 animals, which molted at Day 40 and Day 

90; in the third animal, ecdysteroid titer decreased and the animal did not molt during the 

experiment (Fig. 4. 11C). The other 22 animals that were in intermolt at Day 0 did not molt for 
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the duration of the experiment. MLA had no effect on hemolymph ecdysteroid levels, as there 

were no significant differences between the means of the intact and MLA animals at all-time 

intervals, except at Day 63 (Fig. 4. 11D). By contrast, ESA significantly increased hemolymph 

ecdysteroid levels at Day 21 and later time intervals, although the means never exceeded 53 

pg/µl (Day 70; Fig. 4. 11D). 

While conducting the intermediate-interval experiments on the green morphs, we observed 

that ESA accelerated the transition from the green to red color morph pigmentation. This 

transition was documented in the long-term experiment by capturing digital images of the ventral 

surface of the cephalothorax of intact, MLA and ESA animals at 2-week intervals. Fig. 4. 12A 

shows images of representative animals from each group. MLA resulted in the reddening of the 

arthrodial membranes of the basi-ischial joints, compared to those of the intact animals, which 

was noticeable by 4 weeks post-MLA (12 March 2010; Fig. 4. 12A). There was also a slight 

reddening of the ventral cephalothorax 6 to 12 weeks post-MLA (Fig. 4. 12A). ESA resulted in 

the accumulation of red pigment in the basi-ischial joints and ventral cephalothorax within 2 

weeks and the red color became more intense at later time intervals (Fig. 4. 12A). The images 

from all the animals were analyzed for changes in red, blue, and green colors of the ventral 

exoskeleton (see Materials and methods). The results are presented as the ratio of green to red 

intensities, as green color was affected by treatment, while red and blue colors were relatively 

constant (data not shown). ESA significantly decreased the green to red color ratio (Fig. 4. 12B). 

There was also a decrease in the green: red ratio in MLA animals, but the means were not 

significantly different from those of intact animals. We conclude that ESA caused a loss of green 

color, which revealed the red pigment present in the exoskeleton. Experiment showed changes 

over the molt cycle for all the mTOR pathway components examined. 
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At the conclusion of the long-term experiments, YOs were harvested and the expression of 

three guanylyl cyclases and EF2 were quantified by real-time PCR (Fig. 4. 13). ESA and MLA 

experiments showed little change for all the Cm-GCIβ, Cm-GCII, Cm-GCIII and Cm-EF2 

examined in red and green morph. There were no significant changes in three guanylyl cyclases 

and EF2 copy numbers expressed in YOs tissue in red or green morph. 

Effects of molting on hemolymph ecdysteroid and YO expression of NOS, GC-Iβ, GC-II, GC-

III, and EF2 

The hemolymph ecdysteroid levels were collected during the natural molt cycle stages 

(intermolt premolt and postmolt). The hemolymph ecdysteroid levels (Fig. 4. 14A), increased in 

early premolt followed by greater peak compared with intermolt animals, the levels observed in 

postmolt animals immediately following molt were very low. 

As intermolt green and red morphs were refractory to ESA and MLA, the expression of 

NOS, three guanylyl cyclases and EF2 were quantified in YOs from naturally molting green 

morphs at 3 molt stages: intermolt, premolt and posmolt for qPCR. Green crabs during the 

natural molt showed little changes over the molt cycle for all the three guanylyl cyclases, NOS 

and EF2 examined (Fig. 4. 14B). There are no significant changes in NOS, GC-Iβ, GC-II, GC-III 

and EF2 copy numbers expressed in YOs tissue in green morphs at molt stages: intermolt, 

premolt and posmolt (Fig. 4. 14B). 

Tissue expression of Cm-MIH and effects of ESA on expression of Cm-MIH and Cm-EF2 in 

brain and thoracic ganglion from green and red morphs 

The XO/SG complex in the eyestalks is the primary site of MIH synthesis in decapod 

crustaceans. As ESA did not induce molting in intermolt animals, the brain and thoracic ganglion 

were investigated at secondary sources of MIH. Nested endpoint PCR indicated that MIH was 
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expressed in brain and thoracic ganglion from intact intermolt animals (Fig. 4. 15). The identity 

of the PCR product as Cm-MIH was verified by direct sequencing. cDNAs from claw and 

thoracic muscles were also tested under the same conditions as negative controls. Nested PCR 

yielded no Cm-MIH product (Fig. 4. 15). 

C. maenas brain and thoracic ganglion were harvested from intact, 7-day and 14-day ESA 

red and green morphs to quantify the expression of MIH and EF2 (Fig. 4. 16B, C). ESA had no 

significant effect on the expression of Cm-MIH and Cm-EF2 in brain and thoracic ganglion. The 

expression of Cm-MIH sustained to intact levels in red and green morphs (Fig. 4. 16C). We 

conclude the brain and thoracic ganglion serve as secondary sources of MIH, which can 

compensate for the loss of the eyestalks and prevent precocious molting. 

 

DISCUSSION 

A model of the MIH signaling pathway is arranged in two phases. The “triggering” phase 

produces a rapid, transient increase in cAMP, influx of Ca2+, and binding of Ca2+ to CaM; the 

“summation” phase follows when Ca2+/CaM activates NOS, which, in turn, activates GC-I and 

produces a large sustained increase in cGMP (Chang and Mykles, 2011; Covi et al., 2012; 

Webster et al., 2012). YOs express a CaM-dependent NOS and an NO-sensitive GC, the 

expression of which is up-regulated by acute withdrawal of MIH by ESA (Kim et al., 2004; Lee 

et al., 2007a; Lee et al., 2007b; McDonald et al., 2011). Moreover, it appears that inactivation of 

NOS by phosphorylation is required for increased YO ecdysteroidogenesis (Lee and Mykles, 

2006). CHH represses YO ecdysteroidogenesis by activating a membrane receptor GC. Thus, 

both neuropeptides inhibit YO ecdysteroidogenesis by increasing cGMP by way of two distinct 

guanylyl cyclases. 
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Partial cDNAs encoding three guanylyl cyclases were cloned and used as markers for YO 

activation in C. maenas. Four types of GCs have been characterized in arthropods (Morton, 

2004, 2011; Morton and Hudson, 2002). GC-I is an NO-sensitive soluble GC that forms a 

heterodimer of α and β subunits (Lee et al., 2007b; Morton and Hudson, 2002). The catalytic 

subunit, GC-Iβ, has heme/NO-binding and heme/NO-binding-associated domains (Lee et al., 

2007b; Morton and Hudson, 2002). A membrane receptor GC, Gl-GC-II, has signal peptide, N-

terminal extracellular ligand-binding, transmembrane, kinase homology, dimerization, and 

catalytic domains (Lee et al., 2007b; Morton and Hudson, 2002). GC-III is a soluble NO-

insensitive GC that resembles GC-II, but lacks the signal peptide, ligand-binding, 

transmembrane, and most of the kinase homology domain (Lee et al., 2007b; Morton and 

Hudson, 2002). A GC-IV has also been identified in insects that are involved in the hypoxia 

escape response (Morton, 2004, 2011; Morton and Hudson, 2002). Full-length cDNAs encoding 

GC-Iβ and GC-III have been cloned in G. lateralis and GC-II has been cloned in G. lateralis, 

Callinectes sapidus (blue crab), and Procambarus clarkii (crayfish) (Lee et al., 2007b; Liu et al., 

2004; Zheng et al., 2006). The partial cDNA sequences obtained from initial PCR using 

degenerate nested primers directed to the catalytic domain were grouped into three major classes 

based on sequence identities with crustacean and insect guanylyl cyclases in the GenBank 

database. Cm-GC-Iβ, Cm-GC-II, and Cm-GC-III are orthologs of Gl-GCIβ, Gl-GCII, and Gl-

GCIII, respectively, based on at least a 60% amino acid sequence identity between each class 

using sequence alignments (Figs 4. 3, 4. 5, 4. 7; Table 4. 3). 

There was little effect of ESA and MLA and molt stage on NOS and GC expression in the 

C. maenas YO.  McDonald et al. (2011) found that NOS expression increases in both G. lateralis 

and C. maenas YOs by 32-fold for Gl-NOS at day 24 and by 5-fold for Cm-NOS by day 7 after 
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ESA.  Gl-NOS and Cm-NOS transcript numbers were correlated with hemolymph ecdysteroid 

levels (McDonald et al., 2011).  In land crab, Gl-NOS and Gl-GC-Iβ transcript numbers are 

correlated with hemolymph ecdysteroid levels, suggesting that expression of these genes is 

associated with YO activation.  Gl-GC-Iβ mRNA transcript number increases ~10-fold by 7 days 

post-ESA (Lee et al., 2007b).  Here we report that Cm-NOS transcript levels and hemolymph 

ecdysteroid concentrations were non-responsive, which did not confirm the results of McDonald 

et al. (2011). Both Lee et al. (2007b) and McDonald et al. (2011) showed that ESA increases Gl-

GC-1β expression in land crab YOs.  By contrast, ESA did not have an effect on C. maenus 

green morph GC-Iβ mRNA expression levels nor was there any correlation with hemolymph 

ecdysteroid levels.  The means were not significantly different between the various days post-

ESA animals for Gl-GC-II mRNA (McDonald et al., 2011).  In addition, there was no significant 

correlation between Gl-GC-II mRNA and hemolymph ecdysteroid concentration (McDonald et 

al., 2011).  Similarly, ESA did not have an effect on Cm-GC-II mRNA expression (Fig 4. 9E). 

Both color morphs are resistant to ESA, as ESA caused only a small, transient increase in 

hemolymph ecdysteroid titers. ESA did not have any effect on Cm-NOS, Cm-GC-II, and Cm-

GC-III transcript copy numbers in either red or green morph (Fig. 4. 9 A-F). 

Color change in crustaceans has long been known to be dependent on eyestalk factors 

(Pouchet, 1872; Shibley, 1968). The body of the most crabs blanches after eyestalk removal as a 

result of concentration of pigment in chromatophores (Shibley, 1968). Injection of eyestalk 

extracts into the animal temporarily reverses the condition (Abramowitz, 1937; Carlson, 1936; 

Fingerman, 1965; Kleinholz, 1961; Shibley, 1968). Also, eyestalk ablation can abolish daily 

rhythmic color changes in the fiddler crab Uca and the crayfish, Astacus (Brown, 1961). In 1951, 

Lenel and Veillet (Lenel and Veillet, 1951) reported the changes in color after removing the 
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eyestalks of C. maenas. The pigmentary layer of the new cuticle is affected first and then the 

epidermal chromatophores (Goodwin, 1960; Lenel and Veillet, 1951). This change in color was 

not due to increased accumulation of the carotenoid astaxanthin, but rather to the dissociation of 

the brown and green astaxanthin-protein complex (Lenel and Veillet, 1951). Our results were 

consistent with those of Lenel and Veillet (Lenel and Veillet, 1951). The ESA treatment group 

showed a strong decline in the green:red ratio from the first two weeks until the end of the 

experiment (Fig. 4. 12). There was no change in red color intensity, which presumably measured 

the amount of astaxanthin, in ESA and MLA animals. The color change was not strictly linked to 

molting, as green morphs remained in intermolt (indicated by low hemolymph ecdysteroid titers 

and presence of the membranous layer at the end of the experiment) and did not molt. The 

green:red ratio of MLA animals showed a decreasing trend, but it was not significantly different 

from intact animals (Fig. 4. 12). This suggests that MLA can alter the synthesis and/or release of 

eyestalk neuroendocrine factor(s) regulating green to red transformation. The identity of this 

factor(s) and its mode of action require further investigation. 

The XO/SG complex is the primary source of MIH in decapod crustaceans. However, there 

are several reports of MIH being expressed in other tissues. Me-MIH-A is expressed only in 

eyestalk, but Me-MIH-B is expressed in eyestalk, brain, thoracic ganglion, and ventral nerve 

cord (Tiu and Chan, 2007). In the swimming crab, Portunus trituberculatus, MIH is expressed in 

eyestalk ganglia, brain, thoracic ganglion, and gonadal tissues (Zhu et al., 2011). In Cancer 

pagurus, MIH expressed in the nervous tissues (optic nerve, ventral nerve cord and 

thoracic/abdominal ganglion). The results of the nested PCR analysis (Fig. 4. 15) clearly show 

the presence of PCR products the expected size of MIH (199 bp) in brain and thoracic ganglion. 

However, we considered the possibility of cross-contamination of PCR reactions of thoracic 
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ganglion and brain preps with MIH mRNA or cDNA. Although we can’t completely rule out this 

possibility, this is less likely, since the muscle cDNAs along with water control did not yield 

PCR products (Fig. 4. 15). 

 

CONCLUSIONS 

The shift from the green to red morphotype is regulated by eyestalk neuroendocrine 

factor(s), as change in pigmentation was accelerated by ESA. MIH does not appear to be 

involved, as the transition occurs in intermolt animals. What is interesting is that the change in 

color is not due to an increase in red pigment. Instead, there is a decrease in green color, which 

unmasks the red pigment and makes it more apparent. Three partiral sequences reported for 

CmGCIβ, Cm-GCII, and Cm-GCIII and diposited in the GeneBank. ESA and MLA experiments 

had no effect in the three guanylyl cyclase and NOS. There were no significant effect on 

expression of guanylyl cyclase and NOS by long-term experiments ESA and MLA. Moreover, 

naturally molting green morphs showed little changes over the molt cycle for all the three 

guanylyl cyclases and NOS. There are no significant changes in NOS, GC-Iβ, GC-II, GC-III 

expression. Adult green shore crab, C. maenas is refractory to ESA. Nested endpoint RT-PCR 

showed that MIH transcript is present in brain and thoracic ganglion of intermolt crabs. MIH 

expression was similar between the color morphs and ESA had little effect on MIH transcript 

levels, indicating that the MIH gene was not regulated transcriptionally by the loss of the 

eyestalks. The data suggest that MIH secreted by neurons in the brain and thoracic ganglion is 

sufficient to prevent molt induction when the primary source of MIH is removed by ESA. 
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Table 4. 1. Primers used for cloning cDNAs encoding C. maenas guanylyl cyclases Iβ, II, 

and III. Abbreviations: Cm, C. maenas; deg, degenerate; F, forward; GC, guanylyl cyclase; IF, 

inner forward; IR, inner reverse; OF, outer forward; OR, outer reverse.  

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 
Primer 

 
Use 

 
Sequence (5’ to 3’) 

Annealing 
Temperature 

    
Cm-GC-deg OF3 Nested PCR TAYAARGTGGAGACHRTVGG 52.˚C 
Cm-GC-degOR3 Nested PCR GGAAASAGRCARTADCMHGGC 56.4 ˚C 
Cm-GC-degIF4 Nested PCR AARTGGAGACHRTVGGSGA 58.1 ˚C 
Cm-GC-degIR4 Nested PCR AASAGRCARTADCMHGGCAT 54.6 ˚C 
F1 GCII 3’RACE 3’ RACE CTGTTGGACGCCATCAAC 54.1 ˚C 
F2 GCII 3’RACE 3’ RACE CTACCTATCCGTAACGAGGAGC 56.2 ˚C 
F13 GCII PCR CCCAACATCTTCGACAACATGCTG 58.5 ˚C 
R7 GCII PCR GTTACGGATAGGTAGCCCGCTTAC 58.8 ˚C 
F1 GCIβ 3’ RACE CACCATCGGCATCCACAC 56.5 ˚C 
F2 GCIβ 3’ RACE CACGCCAAGTGCATCGGC 60.3 ˚C 
F1 GCIII 3’ RACE CTTCACCATTGCTCACCGTC 56.3 ˚C 
F2 GCIII 3’ RACE GACGCATACATGGTGGTATC 53.1 ˚C 
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Table 4. 2. Primers used for Cm-MIH, Cm-NOS, Cm-EF2, Cm-GCIβ, Cm-GCII, and Cm-

GCIII qPCR. Cm, C. maenas; F, forward; R, reverse; GC, guanylyl cyclase. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. 3. Partial cDNAs encoding C. maenas guanylyl cyclases (GC). 

 

 

 
 
 
 
 
 

 
 
 
 
 

 
Primer Sequence (5’ to 3’) 

Produ
ct Size 

Annealing 
Temperature 

    
Cm-NOS F4 GTGTGGAAGAAGAACAAGGACG 158 bp 55˚C 
Cm-NOS R1 CCACCATCCTCTATGCCACAGA 58˚C 
Cm-EF2 F1 CCATCAAGAGCTCCGACAATGAGCG 278 bp 61˚C 
Cm-EF2 R1 CATTTCGGCACGGTACTTCTGAGCG 61˚C 
Cm-GCIβ F8  CAAGATGATGGGTTCGCCTTCACCTACC 149 bp 

 
375 bp 

62˚C 
Cm-GCIβ R7 
Cm-GCII F3 

CTCTCTCTGGTCGTGTCTCTGCCTC 
CGGTGGGTGGTGAAGATCAG 

61˚C 
57˚C 

Cm-GCII R3 CTCCGCCCAGCACTCCGTC 63˚C 
Cm-GCIII F7 CCTCCTCACACAAAGACTCCAACGC 259 bp 60˚C 
Cm-GCIII R8 GTGTGCCGTTACTAGACGAGAAATACGC  61 ˚C 
Cm-MIH F1 TATCGGTGGTGGTTCTGG 281 bp 54 ˚C 
Cm-MIH R1 AGCCCCAAGAATGCCAACC  58˚C 
Cm-MIH F2 CGGCGAGAGTTATCAACG 199 bp 53˚C 
Cm-MIH R2 TCTCTCAGCTCTTCGGACC  55˚C 
    

Gene Accession 
number 

Size 
(bp) 

Domain(s) Identity to G. 
lateralis GC 

Cm-GC-Iβ JQ911525 1260 
HNOBA, Catalytic 

and 3’ UTR 
93% 

Cm-GC-II JQ911527 1188 KH and Catalytic 54% 

Cm-GC-III JQ911526 1157 Catalytic and 3’ UTR 78% 
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Figure 4. 1. Domain organization of three guanylyl cyclases from land crab (Gl-GC) and 
green crab (Cm-GC). The deduced amino acid sequences of GC-Iβ, GC-II, and GC-III from 
both species are depicted; all have a highly conserved catalytic (GC) domain. (A) CGIβ has 
heme/NO-binding (HNOB) and heme/NO-binding-associated (HNOBA) domains, which are 
characteristic of the β subunit of NO-sensitive GCs. (B) GC-II has signal peptide (Signal), 
ligand-binding (LB), transmembrane (TM), kinase homology (KH), and dimerization (DD) 
domains. (C) GC-III resembles the GC-II, but lacks the signal peptide, LB, TM, and most of the 
KH domain. Amino acid residues, numbered from the N-terminus to the C-terminus are 
indicated. 
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cagatcagcccgaggacgttctgccaggtgtgtcccttccacttgatgtttgaccgtgac 60 
Q  I  S  P  R  T  F  C  Q  V  C  P  F  H  L  M  F  D  R  D   20 
ctgcacgtgcaccaggcgggggactccatctcccgcgtgctgccctccgtctgccacccc 120 
L  H  V  H  Q  A  G  D  S  I  S  R  V  L  P  S  V  C  H  P   40 
ggcgcctccctcggcaaactcttccaaattgttcgtcctcacatggagctcacctttgag 180 
G  A  S  L  G  K  L  F  Q  I  V  R  P  H  M  E  L  T  F  E   60 
aacattctctcccacatcaacaccatctacgtccttcgggcttgcgagggactgtccacg 240 
N  I  L  S  H  I  N  T  I  Y  V  L  R  A  C  E  G  L  S  T   80 
gcttcccgcgatgattctaaccccgaacagcgctgcctcagattaaagggtcagatgatc 300 
A  S  R  D  D  S  N  P  E  Q  R  C  L  R  L  K  G  Q  M  I   100 
tacctccccgagactgacttaatgctgtacgtatgctcgccttccgttctcaacctggac 360 
Y  L  P  E  T  D  L  M  L  Y  V  C  S  P  S  V  L  N  L  D   120 
gacctctaccgccgcggcctctacctctcagacatgcctctccacgacgccacaagagac 420 
D  L  Y  R  R  G  L  Y  L  S  D  M  P  L  H  D  A  T  R  D   140 
ctcgtcctcctcagcgagaagttcgaggccgagtacgccctaaccactaacctcgagatt 480 
L  V  L  L  S  E  K  F  E  A  E  Y  A  L  T  T  N  L  E  I   160 
ctgacggacaagttgcagcaaacccatcgcgagctcgaaggagagagacagaaaacggac 540 
L  T  D  K  L  Q  Q  T  H  R  E  L  E  G  E  R  Q  K  T  D   180 
aagctgctctattcagtcctgcctatcagtattgccaatgagctgaggcacaagagacca 600 
K  L  L  Y  S  V  L  P  I  S  I  A  N  E  L  R  H  K  R  P   200 
gtgccgccgcggaggtacgaggtggtaacactgctcttttcgggcatcgtgggcttcacc 660 
V  P  P  R  R  Y  E  V  V  T  L  L  F  S  G  I  V  G  F  T   220 
gactactgctcccgacacactgacatcgccggagcttccaagattgtacggatgttgaat 720 
D  Y  C  S  R  H  T  D  I  A  G  A  S  K  I  V  R  M  L  N   240 
gatctctacactgcctttgacgtgctcaccgacgaggtcaagaatcccaatgtttataag 780 
D  L  Y  T  A  F  D  V  L  T  D  E  V  K  N  P  N  V  Y  K   260 
gtggagacggtgggggacaaatacatggcggtgagtggactgcccgaagcctgtgatcac 840 
V  E  T  V  G  D  K  Y  M  A  V  S  G  L  P  E  A  C  D  H   280 
cacgccaagtgcatcggtaacctcgcactggatatgatggacaaggcagccggggtcatt 900 
H  A  K  C  I  G  N  L  A  L  D  M  M  D  K  A  A  G  V  I   300 
gtggacggccagcgtgtgcaaatcaccatcggcatccacacgggcgaagtagtgacgggt 960 
V  D  G  Q  R  V  Q  I  T  I  G  I  H  T  G  E  V  V  T  G   320 
gtgataggacagaggatgccgcgctactgtctatttggcaacactgtcaacatcacctcg 1020 
V  I  G  Q  R  M  P  R  Y  C  L  F  G  N  T  V  N  I  T  S   340 
aggacggagacgacgggcgagaagggacgagtcaacgtgtctgaagtgtcgtacaggtat 1080 
R  T  E  T  T  G  E  K  G  R  V  N  V  S  E  V  S  Y  R  Y   360 
ctgcagcagccggagaaccaagatgatgggttcgccttcacctaccgcggtcctgtgcct 1140 
L  Q  Q  P  E  N  Q  D  D  G  F  A  F  T  Y  R  G  P  V  P   380 
atgaagggaaggaaggagcccatgcaggtgtggttcctcagcaggcggaaggcagcgtga 1200 
M  K  G  R  K  E  P  M  Q  V  W  F  L  S  R  R  K  A  A  *   399 
ggtgaagaagcaggacaagatggaagcagagacacgaccagagagagaaaaaaaaaaaaa 1260 
 
 
 

Figure 4. 2.  Nucleotide and amino acid sequences of cDNA encoding C. maenas GC-Iβ. 
Initial sequence within the catalytic domain was obtained using nested degenerate primers (Table 
1) directed toward conserved sequences in the catalytic domain of land crab and insect GCs. The 
3’ UTR sequence was obtained using 3’ RACE. The glycine-rich site underlined in the KH 
domain. The locations of secondary structures (β2, β3, β5 and α4) that form the GTP-binding 
pocket in GC domain are indicated by font colors and underlines. The font colors correspond to 
the colors of the domains in Fig. 4. 1. 
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Cm-GCIß :                                                        QISPR :   5 
Gl-GCIß : VKAVSKELHETEVEVEILKTKEQEGHVQFLITEKDTHTTHHISETTHDLEADTESKISPK : 209 
Ms-GCIß : VKTVASKLHNTEVKVEILKTKEECDHVQFLITETSTTGRVSAPEIAEIETLSLEPKVSPA : 209 
Dp-GCIß : VKTVTSKLHKTEVKVEILKTKEECDHVQFLITETSNTGRVSIPEIAEIETLSLDPKVSPA : 240 
                                                                             
Cm-GCIß : TFCQVCPFHLMFDRDLHVHQAGDSISRVLPSVCHPGASLGKLFQIVRPHMELTFENILSH :  65 
Gl-GCIß : TFCQVCPFHLMFDRDLHVHQAGVSISRVLPSVTYPDASLDRLFQVVRPHMELTFENILSH : 269 
Ms-GCIß : TFCRVFPFHLMFDRDLNIVQAGRTVSRLLPRVTRPGCKITDVLDTVRPHLEMTFANVLAH : 269 
Dp-GCIß : TFCRVFPFHLMFDRDLNIVQAGRTVSRLLPRVTRPGCKITDVLETVRPHLEMTFANVLAH : 300 
                                                                             
Cm-GCIß : INTIYVLRACEGLSTASRDDSNPEQRCLRLKGQMIYLPETDLMLYVCSPSVLNLDDLYRR : 125 
Gl-GCIß : INTIYVLRTREGLAQATRDEPGPDQGCLRLKGQMIYLPETDLMLYVCSPSVLNLDDLYRR : 329 
Ms-GCIß : INTVYVLKTKP--EEMSVTDPHEEIASLRLKGQMLYIPETDVVVFQCYPSVTNLDDLTRR : 327 
Dp-GCIß : INTVYVLKTKS--EEMTVNDPHEEIASLRLKGQMLYIPETDVVVFQCYPSVTNLDDLTRR : 358 
                                                                             
Cm-GCIß : GLYLSDMPLHDATRDLVLLSEKFEAEYALTTNLEILTDKLQQTHRELEGERQKTDKLLYS : 185 
Gl-GCIß : GLYLSDIPLHDATRDLVLLSEKFEAEYTLTTNLEILNDKLQQTHRELESERQKTDKLLYS : 389 
Ms-GCIß : GLCIADIPLHDATRDLVLMSEQFEADYKLTQNLEVLTDKLQQTFRELELEKQKTDRLLYS : 387 
Dp-GCIß : GLCISDIPLHDATRDLVLMSEQFEADYKLTQNLEVLTDKLQQTFRELETEKQKTDRLLYS : 418 
                                                                           
Cm-GCIß : VLPISIANELRHKRPVPPRRYEVVTLLFSGIVGFTDYCSRHTDIAGASKIVRMLNDLYTA : 245 
Gl-GCIß : VLPISIANELRHKRPVPPRRYEVVTLLFSGIVGFTDYCSRHTDIAGASKIVRMLNDLYTA : 449 
Ms-GCIß : VLPISVATELRHRRPVPARRYDTVTLLFSGIVGFANYCARNSDHKGAMKIVRMLNDLYTA : 447 
Dp-GCIß : VLPISVATELRHRRPVPARRYDPVTLLFSGIVGFANYCARNIDHKGAMKIVKMLNDLYTA : 478 
                                                                            
Cm-GCIß : FDVLTDEVKNPNVYKVETVGDKYMAVSGLPEACDHHAKCIGNLALDMMDKAAGVIVDGQR : 305 
Gl-GCIß : FDVPTDEVKNPNVYKVETVGDKYMAVSGLPEACDHHARCIGNLALDMMDKAAGVIVDGQR : 509 
Ms-GCIß : FDVLTDPKRNPNVYKVETVGDKYMAVSGLPEYEVAHAKHISLLALDMMDLSQTVTVDGEP : 507 
Dp-GCIß : FDVLTDPKRNPNVYKVETVGDKYMAVSGLPEYKVAHAKHISLLALEMMDLSRTVTVDGEP : 538 

               β2            β3                                      
Cm-GCIß : VQITIGIHTGEVVTGVIGQRMPRYCLFGNTVNITSRTETTGEKGRVNVSEVSYRYLQQPE : 365 
Gl-GCIß : VQITIGIHTGEVVTGVIGQRMPRYCLFGNTVNITSRTETTGEKGRINVSEVSYRYLQQQE : 569 
Ms-GCIß : VGITIGIHSGEVVTGVIGHRMPRYCLFGNTVNLTSRCETTGVPGTINVSEDTYNYLMRED : 567 
Dp-GCIß : VGITIGIHSGEVVTGVIGHRMPRYCLFGNTVNLTSRCETTGVPGTINVSEDTYSYLMGPD : 598 

          α4            β5                                                
Cm-GCIß : NQDDGFAFTYRGPVPMKGRKEPMQVWFLSRRKAA : 399 
Gl-GCIß : NQDSGFAFTYRGPVPMKGRKEPMQVWFLSRRRAA : 603 
Ms-GCIß : NHDEQFELTYRGHVTMKGKAEPMQTWFLTRKIH- : 600 
Dp-GCIß : NYDEQFELTYRGHVSMKGKAEPMQTWFLTRKSA- : 631 
                                              
                               
     

Figure 4. 3. Comparison of deduced amino acid sequences of the β subunit of NO-sensitive 
soluble guanylyl cyclase cDNAs from crustacean and insects. Amino acid sequence of green 
crab GC-Iβ (Cm-GC-Iβ; #JQ911525) was aligned with NO-sensitive GCs from land crab GC-Iβ 
(Gl-GC-Iβ; #DQ355434), Manduca sexta (Ms-GC-Iβ; #AAC61264), and Danaus plexippus (Dp-
GC- Iβ, # EHJ74622) using ClustalX2 software. Amino acid residues that are identical or similar 
between all sequences are highlighted in black; residues identical or similar in two of the four 
sequences highlighted in gray. The catalytic GC domain (purple box) and the heme/NO-binding-
associated HNOBA domain (red box) are indicated. The locations of secondary structures (α4, 
β2, β3, and β5) that form the GTP-binding pocket in the GC domain are indicated. 

GC domain 

HNOBA  
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gtgtgtacggttaccgagtactgctcccgtggctccctcaaggacattctggacaacgag 60 
 V  C  T  V  T  E  Y  C  S  R  G  S  L  K  D  I  L  D  N  E  20 
gacgtgaagcttgacaacatgttcatagcttcactaattggagacatcgtgcagggtatg 120 
 D  V  K  L  D  N  M  F  I  A  S  L  I  G  D  I  V  Q  G  M  40 
atctaccttcacgattcccccgttaagtcccacggtaacctcaagtcatccaactgcctg 180 
 I  Y  L  H  D  S  P  V  K  S  H  G  N  L  K  S  S  N  C  L  60 
gtggattcccggtgggtggtgaagatcagtgactttgggcttcacgaacttaagtcaggc 240 
 V  D  S  R  W  V  V  K  I  S  D  F  G  L  H  E  L  K  S  G  80 
tatgaaacaacatcagtggcggaggcgggcgagacgcagaggaggtgtacagacctgctg 300 
 Y  E  T  T  S  V  A  E  A  G  E  T  Q  R  R  C  T  D  L  L  100 
taccgtgcccctgagctgctgagggacacgtcggcgccccctggagggacgcagaagggc 360 
 Y  R  A  P  E  L  L  R  D  T  S  A  P  P  G  G  T  Q  K  G  120 
gacgtgtactccttcgccatcatcctctacgaagttcacgtacgccacggcccctggggc 420 
 D  V  Y  S  F  A  I  I  L  Y  E  V  H  V  R  H  G  P  W  G  140 
gccacggaccaaagccccttgtccgtgattcgcctggtgatggcgggcgtacaaggctca 480 
 A  T  D  Q  S  P  L  S  V  I  R  L  V  M  A  G  V  Q  G  S  160 
aactctcccgtgagaccgtctgtggaagctatggggagttctctggactgtgtgcgtgtg 540 
 N  S  P  V  R  P  S  V  E  A  M  G  S  S  L  D  C  V  R  V  180 
gtgctgacggagtgctgggcggaggtacccgaggagaggccggacttcaggagcgtcaag 600 
 V  L  T  E  C  W  A  E  V  P  E  E  R  P  D  F  R  S  V  K  200 
atcaagctcagacccatgaggaaaggactgaagcccaacatcttcgacaacatgctggaa 660 
 I  K  L  R  P  M  R  K  G  L  K  P  N  I  F  D  N  M  L  E  220 
atgatggaaaagtacgccaataatctcgaggctctagtggatgagagaacggaccagctc 720 
 M  M  E  K  Y  A  N  N  L  E  A  L  V  D  E  R  T  D  Q  L  240 
atccaggagaagaagaaaacagaggcgctgctgtacgagatgctgccgccctatgtggct 780 
 I  Q  E  K  K  K  T  E  A  L  L  Y  E  M  L  P  P  Y  V  A  260 
gaacagctcaagaggggacgcaaggtacaggctgagagcttcgactgtgtcaccatctac 840 
 E  Q  L  K  R  G  R  K  V  Q  A  E  S  F  D  C  V  T  I  Y  280 
ttcagtgacattgtgggattcactgagatgtccgctgagtctacgccgctacaggtggtg 900 
 F  S  D  I  V  G  F  T  E  M  S  A  E  S  T  P  L  Q  V  V  300 
gatttcctgaacgacttgtacacctgtttcgactccatcatcggccactatgacgtgtac 960 
 D  F  L  N  D  L  Y  T  C  F  D  S  I  I  G  H  Y  D  V  Y  320 
aaggtggagacgatcggggacgcgcacatggtggtaagcgggctacctatccgtaacgag 1020 
 K  V  E  T  I  G  D  A  H  M  V  V  S  G  L  P  I  R  N  E  340 
gagcagcacgccggagaggtcgcgtccatgtccctccacctgttggacgccatcaacaag 1080 
 E  Q  H  A  G  E  V  A  S  M  S  L  H  L  L  D  A  I  N  K  360 
ttccagatccgccaccgtcccacagacaccctcaagcttcgtattggactccactcaggt 1140 
 F  Q  I  R  H  R  P  T  D  T  L  K  L  R  I  G  L  H  S  G  380 
ccagtgtgtgcaggcgtggtgggactcaagatgccgagatactgcctg             1188 
 P  V  C  A  G  V  V  G  L  K  M  P  R  Y  C  L              396 
 
 
 
 

Figure 4. 4.  Nucleotide and amino acid sequences of cDNA encoding C. maenas GC-II. 
Initial sequence within the catalytic domain was obtained using nested degenerate primers (Table 
1) directed toward conserved sequences in the catalytic domain of land crab and insect GCs. 
The3’ UTR sequence was obtained using 3’ RACE PCR. The glycine-rich site underlined in the 
KH domain. The locations of secondary structures (β2, β3, β5 and α4) that form the GTP-
binding pocket in GC domain are indicated by font colors and underlines. The font colors 
correspond to the colors of the domains in Fig. 4. 1. 
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                                                                       KH domain                                                    
                                                                              
Cm-GCII    :                    VCTVTEYCSRGSLKDILDNEDVKLDNMFIASLIGDIVQ :   38 
Cs-GCYO1   : FIGAYVEH---------SKVALVTEYAPRGSLLDILALEDMKLDSLFIFSLIHDLLR :  684 
Gl-GCII+18 : FIGAYVEHNKVSTGGERAKVALVSEYCPRGSLLDILAMEDIKLDCLFISSLVHDLLR :  739 
 
Cm-GCII    : GMIYLHDSPVKSHGNLKSSNCLVDSRWVVKISDFGLHELKSGYETTSVAEAGETQRR :   95 
Cs-GCYO1   : GMIFLH-SHFGPHGNLKSSNCVVXSRWVLQITDFGLKDLR--CETLKQLERDDQVQF :  738 
Gl-GCII+18 : GMIFLH-SHFGPHGNLKSSNCVVNSRWVLQITDYGLHDLR--CETLNQLERDDQVQF :  793 
 
Cm-GCII    : CTDLLYRAPELLRDTSAPPGGTQKGDVYSFAIILYEVHVRHGPWGATD----QSPLS :  148 
Cs-GCYO1   : HRQMLWRAPEQLREGIDAP-WTKEADVYSFGIIFHEVILXQGPYGMYDGIANDNAAD :  794 
Gl-GCII+18 : HRQMLWRAPELLRKGIDAP-GTKEGDVYSFGIIFHEVIGRQGPYGIYDGVANDDATD :  849 

                                         Glycine-rich              
Cm-GCII    : VIRLVMAGVQGSNSPVRPSVEAMG----SSLDCVRVVLTECWAEVPEERPDFRSVKI :  201 
Cs-GCYO1   : IIRKVRAGRTEAGSPYRPDLNKIVDMPFGSNPSVRNAMQMAGQRLPQIVPASGAIKL :  851 
Gl-GCII+18 : IIRKLKAGSTEAGSPYRPDLNKIVDMPYGADSSVRTAMQMSWSESSTERPTFRTLKL :  906 

      DD                                                                  
Cm-GCII    : KLRPMR-KGLKPNIFDNMLEMMEKYANNLEALVDERTDQLIQEKKKTEALLYEMLPP :  257 
Cs-GCYO1   : KVKGMKDKSKRGNLMDHMMQMMEQYSKNLEELVANRTQALRDEEKRTKDLLHRMLPS :  908 
Gl-GCII+18 : KLKGMKDKSKKGNLMDHMMQMMEQYSKNQEDLVAARTQALRDEERKTKDLLHRMLPT :  963 
 
Cm-GCII    : YVAEQLKRGRKVQAESFDCVTIYFSDIVGFTEMSAESTPLQVVDFLNDLYTCFDSII :  314 
Cs-GCYO1   : SVAASLAQGIAVEPQGFDAVTIYFSDIVGFTSLSAESTPYEVVTFLNDLYTLFDKII :  965 
Gl-GCII+18 : SVAASLMQGIAVEPQGFDAVTIYFSDIVGFTSLSAESTPYEVVTFLNDLYTLFDKII : 1020 
 
Cm-GCII    : GHYDVYKVETIGDAHMVVSGLPIRNEEQHAGEVASMSLHLLDAIN-KFQIRHRPTDT :  370 
Cs-GCYO1   : RGYDVYKVETIGDAYMVVSGLPNPNNGRHAGEIASMALELLDGVQNKFVITHRPDKK : 1022 
Gl-GCII+18 : RGYDVYKVETIGDAYMVVSGLPHPNNGRHAGEIASMALELLDGVQHKFVIHHRPEKK : 1077 

               β2        β3 
Cm-GCII    : LKLRIGLHSGPVCAGVVGLKMPRYCL------------------------------- :  396 
Cs-GCYO1   : LLLRVGLHTGPVIAGVVGLTMPRYCLFGDTVNTASRMESNGEPLRIHISKTCNSALE : 1079 
Gl-GCII+18 : LLLRIGLHTGPVIAGVVGLTMPRYCLFGDTVNTASRMESNGEPLRIHISERCRDALE : 1134 

                               β5                  α4 
                                 
Cs-GCYO1   : KLGGYLTERRGLIPMKGKGDVLTYWLNGATKDAIQRREVSELLPPLLQQSDADVLGE : 1136 
Gl-GCII+18 : NLGGYLTEKRGLVPMKGKGEVLTFWLNGAIKDAIQRREVSESLPPLLQLSDTEVG-E : 1190 

                           GC domain 
Cs-GCYO1   : VRRRSPRLSSLGNRTSSIRRSVEEPGDQNGGLG----------LLGEEVRVNAIINS : 1183 
Gl-GCII+18 : LRKRSPRLSSLGNRTSSVPRSMEDAGDLNGGPGGLVDDPPMRDSPGSKVFRRRCLSS : 1247 
 
Cs-GCYO1   : GPREDSTRIGRAGTVRRQAVDVSPLR-----RVNQAIWL--LTTGAREAAFRNIKTI : 1233 
Gl-GCII+18 : NFRTSSVDNTPRGSLLCPPVTNTTERGSTPDSVPQSISLDGLNQSGLRLEVPALQTI : 1304 
 
Cs-GCYO1   : AECLADELIN-----ASRGSSNSYAIKKKDELERVAKSNR----- : 1268 
Gl-GCII+18 : TAATSPSSSEPTLPLEDKRGVNFCPTARTGGASVPAHGNGERNPC : 1349 
                                                                  

 Figure 4. 5. Comparison of deduced amino acid sequences of crustacean membrane 
receptor guanylyl cyclase cDNAs. Amino acid sequence of green crab GC-II (Cm-GC-II; 
#JQ911527) was aligned with receptor GCs from of land crab (Gl-GC-II +18; #DQ355435) and 
blue crab (Cs-GC-YO1; #AY785292) using ClustalX2 software. Amino acid residues that are 
identical or similar between all the sequences are highlighted in black; residues identical or 
similar in two of the three sequences are highlighted in gray. There was a high degree of 
sequence identity in the kinase homology (KH; box with red line), dimerization (DD; box with 
green line), and catalytic (GC; box with purple line) domains. The glycine-rich subdomain in the 
KH domain is indicated. The locations of secondary structures (α4, β2, β3, and β5) that form the 
GTP-binding pocket in the GC domain are indicated. 
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cccaacatcttcgacaacatgctggaaatgatggaaaagtacgccaataatctcgaggct 60 
 P  N  I  F  D  N  M  L  E  M  M  E  K  Y  A  N  N  L  E  A  20 
ctagtggatgagagaacggaccagctcatccaggagaagaagaaaacagaggcgctgctg 120 
 L  V  D  E  R  T  D  Q  L  I  Q  E  K  K  K  T  E  A  L  L  40 
tacgagatgctgccgccctatgtggctgaacagctcaagaggggacgcaaggtacaggct 180 
 Y  E  M  L  P  P  Y  V  A  E  Q  L  K  R  G  R  K  V  Q  A  60 
gagagcttcgactgtgtcaccatctacttcagtgacattgtgggattcactgagatgtcc 240 
 E  S  F  D  C  V  T  I  Y  F  S  D  I  V  G  F  T  E  M  S  80 
gctgagtcaacgcccatgcaggtggtgcatctcctcaacgacctttacacacgcttcgac 300 
 A  E  S  T  P  M  Q  V  V  H  L  L  N  D  L  Y  T  R  F  D  100 
gctatcatcgagaacttcgacgtgtacaaggtggagactgtgggggacgcatacatggtg 360 
 A  I  I  E  N  F  D  V  Y  K  V  E  T  I  G  D  A  Y  M  V  120 
gtatccggacttccggtgaggaacggcactacacacacaagagagatcgcgaggatgtcc 420 
 V  S  G  L  P  V  R  N  G  T  T  H  T  R  E  I  A  R  M  S  140 
ttggcgctgctgcaagaggtagataccttcaccattgctcaccgtcctgaccacaaactg 480 
 L  A  L  L  Q  E  V  D  T  F  T  I  A  H  R  P  D  H  K  L  160 
aagctgaggatcgggatgcacacgggaccctgcgtggctggtgtggtgggcctcaaaatg 540 
 K  L  R  I  G  M  H  T  G  P  C  V  A  G  V  V  G  L  K  M  180 
cctagatactgcctgttcggcgacactgtcaacactgcctcgcggatggagagtaatgga 600 
 P  R  Y  C  L  F  G  D  T  V  N  T  A  S  R  M  E  S  N  G  200 
caaccactgaagatccatgtatccccctgcacccagaagttgttggctgagcactacccc 660 
 Q  P  L  K  I  H  V  S  P  C  T  Q  K  L  L  A  E  H  Y  P  220 
tccttcgtgttggagcttcgtggagaggttgacatgaagggcaaagggaggatgtacacc 720 
 S  F  V  L  e  l  r  g  e  v  d  m  k  g  k  g  r  m  y  t  240 
tactggttgcttggggagaacgattctggagcttaaggcaaagggaggatgtacacctac 780 
 y  w  l  l  g  e  n  d  s  g  a  *                          251  
tggttgcttggggagaacgattctggagcttaaggtgcaccatttcctcctcacacaaag 840 
actccaacgcccagctggccactgtctctggctccacgcctccgccgctctgggtcgtag 900 
catccgccgctcttgagaagcccatcactagaatatggactcaagaatccccttcccttc 960 
agtttccaggcaccgcgacgcagccctcacgccttgcaccgtagcgctctcctcaacccg 1020 
gcattaccgaaagcttgcaagatgtttataagccttgcgtatttctcgtctagtaacggc 1080 
acacatgtgcgggattcagtaggatattgaatactataatgttctatgatagatgctcat 1140 
tgaagaaaaaaaaaaaa                                            1157 
 
 
 
 
Figure 4. 6.  Nucleotide and amino acid sequences of cDNA encoding C. maenas GC-III.   
Initial sequence within the catalytic domain was obtained using nested degenerate primers (Table 
1) directed toward conserved sequences in the catalytic domain of land crab and insect GCs. The 
3’ UTR sequence was obtained using 3’ RACE PCR. Additional 5’ sequence for Cm-GCIII was 
amplified using sequence-specific Cm-GCII gap bridging primers (Table 1; see Materials and 
methods). The locations of secondary structures (β2, β3, β5 and α4) that form the GTP-binding 
pocket in GC domain are indicated by font colors and underlines. The font colors correspond to 
the colors of the domains in Fig. 4. 1. 
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Ms-GCIII : MSLVPPGGADSPSPRRAVSPLLEMRRPHCTLACDYCAAILEDKFKRSAEMRNRGTSPLSA :  60 
Dp-GCIII : MSLVPPGGTDSPSPRRAVSPLLESRRPHCTLACDYCAAILEDKFRRNADMRNRGTSPLSV :  60 
 
 Cm-GCIII :                                      PNIFDNMLEMMEKYANNLEALV :  22 
Gl-GCIII :     MQMMKKCWAEEHMERPDFQQLKTIIRRLNKDNESGNILDNLLSRMEQYANNLEALV :  56 
Ms-GCIII : SPRQSLTGEPPWTLPDDDRPDFSALKENIHRINKDCETSTRLDMLLTQVEQYANNLEALV : 120 
Dp-GCIII : SPRQSLTGEPPWTLPDDDRPDFSALKENIHRINKDCETSTRLDMLLTQVEQYANNLETLV : 120 
                                                                
Cm-GCIII : DERTDQLIQEKKKTEALLYEMLPPYVAEQLKRGRKVQAESFDCVTIYFSDIVGFTEMSAE :  82 
Gl-GCIII : QERTADYLEEKRRCEELLYQLLPKSVASQLIQGKSMVAETFDCVTIYFSDIVGFTALSAQ : 116 
Ms-GCIII : EERTSDYLEEKRKCEELLYQLLPKSVASQLIMGQPVMAETYDQVTIYFSDIIGFTQLSAE : 180 
Dp-GCIII : EERTSDYLEEKRKCEELLYQLLPKSVASQLIMGQPVMAETYDQVTIYFSDIIGFTQLSAE : 180 
  
Cm-GCIII : STPMQVVHLLNDLYTRFDAIIENFDVYKVETVGDAYMVVSGLPVRNGTTHTREIARMSLA : 142 
Gl-GCIII : STPMEVVDLLNDLYTKFDDIIENFDVYKVETIGDAYMVVSGLPVRNGTTHTREIVRMSLA : 176 
Ms-GCIII : STPLEVVDLLNDLYTSFDSIIENFDVYKVETIGDAYMVVSGLPMRNGNRHAAEIARMSLA : 240 
Dp-GCIII : STPLEVVDLLNDLYTSFDSIIENFDVYKVETIGDAYMVVSGLPMRNGNRHAAEIARMSLA : 240 

                                  β2                β3 
Cm-GCIII : LLQEVDTFTIAHRPDHKLKLRIGMHTGPCVAGVVGLKMP-YCLFGDTVNTASRMESNGQP : 201 
Gl-GCIII : LLQAVGTFKIRHRPKDTLKLRIGLHTGPCVAGVVGLKMPRYCLFGDTVNTASRMESNGLP : 236 
Ms-GCIII : LLNAVRVKTVPHRPGERLLLRIGMHTGPCVAGVVGLKMPRYCLFGDTVNTASRMESHGEA : 300 
Dp-GCIII : LLRGVRVKTVPHRPGERLLLRIGMHSGPCVAGVVGLKMPRYCLFGDTVNTASRMESHGEA : 300 

                                              β5 
Cm-GCIII : LKIHVSPCTQKLLAEHYPSFVLELRGEVDMKGKGRMYTYWLLGEN--------------- : 246 
Gl-GCIII : LRIHVSPFTQKMLAEHYPSFEPELRGEVDMKGKGRMKTYWLNGER--------------- : 281 
Ms-GCIII : LKIHVSPKTKEVL-DLYDCFELDCRGEITMKGKGKMTTYWLLGEKVPQHQDNPNEAIDTR : 359 
Dp-GCIII : LKIHVSPKTKEVL-DLYDCFELECRGEITMKGKGKMTTYWLLGEKSIQVERQPN-----Y : 354 

                            α4        GC domain  
Cm-GCIII : --------------DSGA                                           : 250 
Gl-GCIII : --------------DSGA                                           : 285 
Ms-GCIII : NNVVNNPSITFQGPDSPASHSLTQSHSPDQSEIKE-NNHKPVEIMNERDRIKHEIATFVA : 418 
Dp-GCIII : NESTNNPSITFQGPDSPASHSLTHSQSPEKNDAKNPVVNKPLELMSERDRIKHEIATFVA : 414 
                                             
Ms-GCIII : KDLINNIDNAVKEFRKSQSATFTST-MTNKPICNGNEKGLITPTYDKELVISKGKVRDVV : 477 
Dp-GCIII : KDLINNIDNAVREFRLSQSGNLASVPSSNKPVCNGNGKGLITPTYDKGLVINKGKVRDVV : 474 
                                                                              
Ms-GCIII : NRFNSCVITEAKATKNK--PLKTED : 500 
Dp-GCIII : NRFNNTVNSSNDAVKNKQKSTKSKD : 499 
                                           
 
 
 

Figure 4. 7. Comparison of deduced amino acid sequences of NO-insensitive soluble 
guanylyl cyclase cDNAs from crustacean and insect. Amino acid sequence of the green crab 
GC-III (Cm-GC-III; #JQ911526) was aligned with soluble NO-insensitive GC from land crab 
GC-III (#DQ355438), Manduca sexta (Ms-GC-I, #AAC62238), and Danaus plexippus (Dp-GC, 
#EHJ68929) using ClustalX2 software. Amino acid residues that are identical or similar between 
all the sequences are highlighted in black. There was a high sequence identity in the dimerization 
(DD; green box), and catalytic GC (GC; purple box) domains. The locations of secondary 
structures (α4, β2, β3, and β5) that form the GTP-binding pocket in GC domain are indicated. 
  

DD  
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Figure 4. 8. Expression of guanylyl cyclases and elongation factor 2 (EF2), in C. maenas 
tissues. Endpoint PCR was used to determine the presence of Cm-EF2, Cm-GC-Iβ, Cm-GC-II, 
and Cm-GC-III in various tissues. Abbreviations: EG, eyestalk ganglia; TG, thoracic ganglia; 
YO, Y-organ; HP, hepatopancreas; H, hart; CM, claw muscle; TM, thoracic muscle; MG, 
midgut; HG, hindgut; and T, testis. 
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A. Ecdysteroid level                                                           B. Cm-EF2 

                 
C. Cm-NOS                                                                 D. Cm-CGIβ 

              
 
E. Cm-GCII                                                               F.Cm-GCIII 

                
 
Figure 4. 9. Effects of ESA on hemolymph ecdysteroid and NOS and guanylyl cyclase 
expression in red (red symbol and line) and green (green symbol and line) morphs over 24 
and 16 days, respectively. Animals were eyestalk-ablated at Day 0. YOs were harvested and 
hemolymph samples were taken at various intervals post-ESA. Ecdysteroid levels were 
quantified by ELISA. mRNA levels were quantified by real-time PCR. Data presented as mean 
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± 1. S.E. (red morph, n = 3 at Days 3 and n = 6 at Days 14; green morph, n = 4 at Days 7 and n = 
6 at Days 3). Asterisks indicate significant differences between day 0 and 24 post ESA crabs at p 
< 0.017 (*) in Cm-GCII expression.  
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 

 
 

 
Figure 4. 10. Effects of ESA and MLA on C. maenas hemolymph ecdysteroid levels in red 
morphs. Intermolt red morphs were divided into intact (control), ESA, MLA, and ESA+MLA 
treatment groups and hemolymph samples were taken at weekly intervals during the 3-month 
period. Data presented as mean ± 1. S.E. (n=5). 
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Figure 4. 11. Effects of ESA and MLA on C. maenas hemolymph ecdysteroid levels in green 
morphs. Green morphs were divided into intact, ESA, and MLA treatment groups and 
hemolymph samples were taken at weekly intervals during the 3-month period. Intermolt 
animals at Day 0 are graphed in (A); data presented as mean ± 1. S.E. (intact, n = 10; ESA, n=7 
and MLA n=18). Premolt animals at Day 0 are graphed separately for individual crabs: (B) intact 
animals; (C) ESA animals; and (D) MLA animals.  

 
 
 
 
 
 
 
 
 
 

Days after treatment

-10 0 10 20 30 40 50 60 70 80 90 100

Ec
dy

st
er

oi
ds

 le
ve

l (
pg

/u
l)

0

200

400

600

800

1000

1200

Crab number 1
Crab number 2

Days after treatment

-10 0 10 20 30 40 50 60 70 80 90 100

Ec
dy

st
er

oi
ds

 le
ve

l (
pg

/u
l)

0

200

400

600

800

1000

1200

Crab number 1
Crab number 2
Crab number 3

Days after treatment

-10 0 10 20 30 40 50 60 70 80 90 100

Ec
dy

st
er

oi
ds

 le
ve

l (
pg

/u
l)

0

200

400

600

800

1000

1200

Crab number 1
Crab number 2
Crab number 3

B. Premolt intact 

C. Premolt ESA D. Premolt MLA 
Days after treatment

-10 0 10 20 30 40 50 60 70 80 90 100

Ec
dy

st
er

oi
ds

 le
ve

l (
pg

/u
l)

0

20

40

60

80

100

ESA
MLA
Control

* ** 

**
 

*
 ** ** 

*
 

*
 

** 
** 

* 

* 

A.  Intermolt 



111 
 

A. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

               

Control ESA MLA 
12

 F
eb

ru
ar

y 
 

26
 F

eb
ru

ar
y 

 
12

 M
ar

ch
 2

01
0 

26
 M

ar
ch

 2
01

0 
9 

A
pr

il 
20

10
 

23
 A

pr
il 

20
10

 
7 

M
ay

 2
01

0 



112 
 

B. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 4. 12. Effects of eyestalk ablation (ESA) and multiple leg autotomy (MLA) on C. 
maenas green morph ventral pigmentation. (A) Representative images of individual crabs 
from intact, ESA, and MLA treatment groups captured at 2-week intervals for 12 weeks (see 
Materials and methods). Approximate width of each panel is equivalent to 5 cm. (B) Ratio of 
green to red color intensities of the left thoracic sternum of intact (n = 10), ESA (n = 10), and 
MLA (n = 20) animals (mean ± 1 S.D.; see Materials and methods). Asterisks indicate significant 
differences between the control and ESA crabs at p < 0.05 (*) and p < 0.001 (***). There were 
no significant differences between the intact and MLA animals.  
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A. Red Morph 

 
                     
 
B. Green Morph 

 
 

Figure 4. 13. Effects of ESA and MLA on YO expression of guanylyl cyclases (GCIβ, GCII, 
and GCIII) and Cm-EF2 in red and green morphs. (A) Red morphs were divided into 4 
treatment groups: intact (control), ESA, MLA, and ESA+MLA. (B) Green morphs were divided 
into 3 treatment groups: intact, ESA, and MLA. YOs were harvested 90 to 100 days post-
treatment and transcripts were quantified by real-time PCR (see Materials and methods). Data 
are presented as mean ± 1. S.E. (red morph n = 3, 5 and green morph n = 8, 17). 
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A. 

 
  
 B. 

 
 

Figure 4. 14. Effects of molting on hemolymph ecdysteroid levels (A) and expression of 
guanylyl cyclases, and Cm-NOS in C. maenas YOs (B). Hemolymph and YOs were collected 
from spontaneously molting green morphs at 3 molt stages: intermolt, premolt, and posmolt (see 
Materials and methods). Data are presented as mean ± 1 S.E. (intermolt n = 62, premolt n= 18, 
and posmolt n = 4).  
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Figure 4. 15. Expression of Cm-MIH and Cm-EF2 in eyestalk ganglia, brain, muscle, and 
thoracic ganglion from intermolt C. maenas. Nested end-point PCR was used to detect Cm-
MIH transcript in cDNA from brain, thoracic ganglion, and muscle (35 cycles for each round). A 
single round of PCR was used to detect Cm-MIH in eyestalk ganglia (35 cycles with the inner 
primer pair) and Cm-EF2 in cDNA from brain, thoracic ganglion, and muscle (35 cycles; see 
Materials and methods).  
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C. Cm-MIH 

 
 

Figure 4. 16. Effects of ESA on hemolymph ecdysteroid (A), and expression of Cm-EF2 (B), 
and Cm-MIH (C), in brain and thoracic ganglion from red and green morphs. Hemolymph 
and tissues were collected from intact (Day 0) and 7-day and 14-day ESA red and green morphs 
(see Materials and methods). Letters and numbers indicate significant differences between the 
control (intact) and ESA in hemolymph level (A), red morph at p < 0.05 (a & b) and green 
morph at p < 0.001 (1, 2 & 3). The samples from the brian and thoracic ganalion were combined 
for qPCR. 
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CHAPTER FIVE 

 

SUMMARY AND FUTURE DIRECTIONS 

The mechanistic target of rapamycin (mTOR) is a highly conserved protein kinase 

controlling cell growth in multicellular animals. Molting in decapod crustaceans is controlled by 

the X-organ/sinus gland complex, a neurosecretory center in the eyestalks (ES). The complex 

secretes molt-inhibiting hormone (MIH), a neuropeptide that suppresses production of molting 

hormone (ecdysteroids) by a pair of molting glands (Y-organs or YOs) located in the anterior of 

the body. MIH signaling is organized into a cAMP/Ca2+-dependent “triggering” phase and a 

NO/cGMP-dependent “summation” phase linked by calmodulin. In the blackback land crab, 

Gecarcinus lateralis, molting can be induced by ES ablation (ESA) or autotomy of 5 or more 

walking legs (multiple leg autotomy or MLA). The up-regulation of mTOR signaling is 

necessary for YO hypertrophy and the molt-inhibiting hormone (MIH) down-regulates mTOR 

signaling in the YO of intermolt animals. cDNAs encoding Akt (protein kinase B), mTOR, Rheb, 

and p70 S6 kinase (S6k) were cloned from blackback land crab, Gecarcinus lateralis, and green 

shore crab, Carcinus maenas. The G. lateralis clones were obtained by RT-PCR and 3’RACE. 

Degenerate primers for G. lateralis were used in nested RT-PCR. We isolated partial cDNAs 

encoding 1051bp of the mTOR kinase domain, 827bp of the Akt pleckstrin and kinase domains 

and 810bp of the S6K N-terminal kinase domain. During the molt cycle, the YO transitions 

through four physiological states, which are mediated by endocrine and autocrine/paracrine 

factors: “basal” state at postmolt (molt stages A, B, C1-3) and intermolt (C4); “activated” state at 

early premolt (D0); “committed” state at mid premolt (D1,2); and “repressed” state at late premolt 

(D3,4). The basal to activated state transition is triggered by a transient reduction in MIH; the 
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YOs hypertrophy, but remain sensitive to MIH, as premolt is suspended by MIH injection or by 

limb bud autotomy (LBA). Mechanistic Target of Rapamycin (mTOR), which controls global 

translation of mRNA into protein, appears to be involved in YO activation in early premolt. At 

the activated to committed state transition, the animal becomes committed to molt, as the YO is 

less sensitive to MIH and premolt is not suspended by LBA. YO commitment involves a putative 

TGFβ factor, as SB431542, a TGFβ receptor antagonist, lowers hemolymph ecdysteroid titers in 

mid premolt animals. At the committed to repressed state transition, high 20-hydroxyecdysone 

(20E) levels inhibit YO ecdysteroid secretion and hemolymph titers fall. Molting, or ecdysis, 

marks the regressed to basal state transition, during which the YO atrophies and regains 

sensitivity to MIH. Real-time PCR (qPCR) data for quantifying the effects of molting induced by 

eyestalk ablation (ESA) or multiple leg autotomy (MLA) on expression of mTOR components 

showed significant changes on EF2, mTOR at 3 and 7 days post ESA. The indicated up-

regulation of Gl-EF2 and mTOR may reflect an increase in protein synthetic capacity in the 

premolt YO. The activated YO synthesizes required TGFβ-like factor for the mid-premolt 

transition and a sustained constitutive increase in ecdysteroid synthesis. These results provide the 

first evidence that an Activin-like TGFβ is involved in regulating YO ecdysteroidogenesis. 

However, adult green shore crab (Carcinus maenas) is refractory to ESA. ESA causes a 

small increase in hemolymph ecdysteroid titers, but animals do not immediately enter premolt. 

Some ES-ablated animals molt after many months, but most fail to molt at all. We therefore 

hypothesized that other regions of the nervous system, specifically brain and/or thoracic 

ganglion, were secondary source(s) of MIH. Nested endpoint RT-PCR showed that MIH 

transcript is present in brain and thoracic ganglion of intermolt crabs. Sequencing of the PCR 

product confirmed its identity as MIH. Quantitative PCR was used to determine the effects of 
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ESA on MIH expression. Both green and red color morphs were ES-ablated and brain and 

thoracic ganglion were harvested at 7 days and 14 days post-ESA. Tissues from intact animals 

served as controls. MIH expression was similar between the color morphs and ESA had little 

effect on MIH transcript levels, indicating that the MIH gene was not regulated transcriptionally 

by the loss of the eyestalks. The data suggest that MIH secreted by neurons in the brain and 

thoracic ganglion is sufficient to prevent molt induction when the primary source of MIH is 

removed by ESA. 

The project addresses the question: What are the endocrine and molecular mechanisms 

controlling molting in crustaceans? It focuses on the roles of the mTOR, MIH and 

TGFβ/Activin/Smad signaling pathways that mediate critical transitions in YO physiological 

states. We know very little about the signaling pathways regulating YO transitions, particularly 

those occurring in mid and late premolt. Now that key components of the mTOR signaling 

pathways have been identified and mTOR/TGFβ signaling were involved in YO activation, 

future studies can be directed to measure mTOR activity by S6k phosphorylation. S6k 

phosphorylation is determined by Western blotting using commercial antibodies that recognize 

S6k in insects; the ratio of phospho-S6k to total S6k is a measure of mTOR activity.  
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APPENDICES 

Appendix I. Cloing partial sequences for American lobster, Homarus americanus ribosomal 

protein S6 kinase (Ha-S6k).  

 
gttaacttgacggggaagggccgtgtggacatggcgcatttcgaactgctcaaagtttta 60 
 V  N  L  T  G  K  G  R  V  D  M  A  H  F  E  L  L  K  V  L  20 
ggcacgggagcatatggaaaagtgtttcttgtgagaaaaatatcagggaaagatgcagga 120 
 G  T  G  A  Y  G  K  V  F  L  V  R  K  I  S  G  K  D  A  G  40 
aaactgtatgccatgaaggtcttgaagaaggcaaccatcatccagaagaaaaagacgaca 180 
 K  L  Y  A  M  K  V  L  K  K  A  T  I  I  Q  K  K  K  T  T  60 
gaacacacaaagacagagcgtcaagtcttggaggctgtgcgacaaagtcctttcctagtt 240 
 E  H  T  K  T  E  R  Q  V  L  E  A  V  R  Q  S  P  F  L  V  80 
actcttcactatgccttccaaactgatgccaagcttcatctaattttagattatgttagt 300 
 T  L  H  Y  A  F  Q  T  D  A  K  L  H  L  I  L  D  Y  V  S  100 
ggaggagaactatttacacacctgtatcagcgtgaaagatttcgtgaggatgaagtgcgt 360 
 G  G  E  L  F  T  H  L  Y  Q  R  E  R  F  R  E  D  E  V  R  120 
ctctatattggagaaatcatccttgcccttgagcatttgcacaaactgggcataatatat 420 
 L  Y  I  G  E  I  I  L  A  L  E  H  L  H  K  L  G  I  I  Y  140 
cgtgatatcaaacttgagaacattctcctagactctgatggccatgtagtgctaacagat 480 
 R  D  I  K  L  E  N  I  L  L  D  S  D  G  H  V  V  L  T  D  160 
tttggcctaagcaaggattttctgtcacatgacacagaacatcgtgcttactctttttgt 540 
 F  G  L  S  K  D  F  L  S  H  D  T  E  H  R  A  Y  S  F  C  180 
ggtactattgaatatatggcaccagaggtagttcgtggaggatctcatgggcatgaccag 600 
 G  T  I  E  Y  M  A  P  E  V  V  R  G  G  S  H  G  H  D  Q  200 
gcagtagactggtggagtgttggtgtgctgacttacgaacttttaacgggagcgtcacca 660 
 A  V  D  W  W  S  V  G  V  L  T  Y  E  L  L  T  G  A  S  P  220 
ttcactgttgagggagagaaaaataaccaacaggagatctcaaggcgaatcctgaaaaca 720 
 F  T  V  E  G  E  K  N  N  Q  Q  E  I  S  R  R  I  L  K  T  240 
caacctcctctaccgagtgaactgtccccagaagtttgtgatttcatttcccgtttactt 780 
 Q  P  P  L  P  S  E  L  S  P  E  V  C  D  F  I  S  R  L  L  260 
gtgaaagatccccgtcaacga                                        801 
 V  K  D  P  R  Q  R                                         267 

 

             I. A. Nucleotide and amino acid sequences of cDNA encoding Ha-S6k. The cDNA encoded an 
incomplete ORF. 
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Cm-S6k : ----------------------------------QKMTGGRGGGSIFAMKVLKKATIVRN :  26 
Ha-S6k : ---VNLTGKGRVDMAHFELLKVLGTGAYGKVFLVRKISGKDAG-KLYAMKVLKKATIIQK :  56 
Gl-S6k : SDSTVNPGREKVRPSDFQLLKVLGKGGYGKVFQVRKMTGGRGGGKIFAMKVLKKATIVRN :  73 
Aa-S6k : SEEIVNPGRMKLGPQDFELKKVLGKGGYGKVFQVRKTTGADAN-SYFAMKVLKKASIVRN : 109 
Dp-S6k : SETTVNPGAEKTGPQDFELRRVLGRGGYGKVFQVRKLTGKDSG-HIFAMKVLKKATIVRN :  71 
Dm-S6k : CEENVNPGKIKLGPKDFELKKVLGKGGYGKVFQVRKTAGRDAN-KYFAMKVLKKASIVTN : 119 
                                                                            
Cm-S6k : QKDTAHTKAERNILEAVKH-PFIVDLVYAFQTGGKLYLILEYLSGGELFMHLEREGIFME :  85 
Ha-S6k : KKTTEHTKTERQVLEAVRQSPFLVTLHYAFQTDAKLHLILDYVSGGELFTHLYQRERFRE : 116 
Gl-S6k : QKDTAHTKAERNILEAVKH-PFILDLVYAFQTGGKLYLILEYLSGGELFMHLEREGIFME : 132 
Aa-S6k : QKDTAHTRAERNILEAVRH-PFIVELVYAFQTGGKLYLILEYLSGGELFMHLEREGIFLE : 168 
Dp-S6k : QKDTAHTKAERNILEAVKH-PFIVDLIYAFQTGGKLYLILEYLSGGELFMHLEREGIFME : 130 
Dm-S6k : QKDTAHTRAERNILEAVKH-PFIVELVYAFQTDGKLYLILEYLSGGELFMHLEREGIFLE : 178 
                                                                            
Cm-S6k : DTACFYISEIILALEHLHSEGIIYRDLKPENILLDSYGHVKLTDFGLCKEKIQDDSVT-- : 143 
Ha-S6k : DEVRLYIGEIILALEHLHKLGIIYRDIKLENILLDSDGHVVLTDFGLSKDFLSHDTEHRA : 176 
Gl-S6k : DTACFYISEIILALEHLHSEGIIYRDLKPENILLDAFGHVKLTDFGLCKEKIQDDSVT-- : 190 
Aa-S6k : DTTCFYLCEIILALEHLHNLGIIYRDLKPENVLLDAQGHVKLTDFGLCKEHIQEGIVT-- : 226 
Dp-S6k : DTASFYLAEIILALEHLHCQGIIYRDLKPENILLDAHGHVKLTDFGLCKESVEDGGVT-- : 188 
Dm-S6k : DTTCFYLSEIIFALGHLHKLGIIYRDLKPENILLDAQGHVKLTDFGLCKEHIQEGIVT-- : 236 
                                                                            
Cm-S6k : HTFCGTIEYMAPEILTR--TGHGKAVDWWSLGALMYDVLTGAPPFTAE----NRKKTIEK : 197 
Ha-S6k : YSFCGTIEYMAPEVVRGGSHGHDQAVDWWSVGVLTYELLTGASPFTVEGEKNNQQEISRR : 236 
Gl-S6k : HTFCGTIEYMAPEILTR--TGHGKAVDWWSLGALMYDMLTGAPPFTAE----NRKKTIEK : 244 
Aa-S6k : HTFCGTIEYMAPEILTR--SGHGKAVDWWSLGALMFDMLTGMPPFTAD----NRKNTIDA : 280 
Dp-S6k : HTFCGTIEYMAPEILTR--SGHGKAVDWWSLGALMYDMLTGAPPFTAE----NRKKTIEK : 242 
Dm-S6k : HTFCGTIEYMAPEILTR--SGHGKAVDWWSLGALMFDMLTGVPPFTAE----NRKKTIET : 290 
                                                                            
Cm-S6k : ILKGKLNLPPYLTPDSRDLIRKLLKRQVSQRLGSGSDDGEPIKRHLFFKLINWDEVINRK : 257 
Ha-S6k : ILKTQPPLPSELSPEVCDFISRLLVKDPRQR----------------------------- : 267 
Gl-S6k : ILKGKLNLPPYLTPDARDLIRKLLKRQVSQRLGSGPDDGEPIKRHLFFKLINWD-VINRK : 303 
Aa-S6k : ILKGKLNIPAYLAADSRDLIRRLMKRQVSQRLGSGPTDGQAVRSHSFFKNVNWDDVLARR : 340 
Dp-S6k : ILKGKLNLPPYLTPDARDLIRRLLKRGVVSRLGSTVADGEPVRMHPFFKTIDWNEVACRR : 302 
Dm-S6k : ILKAKLNLPAYLTPEARDLVRRLMKRQEPQRLGSGPEDAAAVQIHPFFKHVNWDDVLARR : 350 
                                                                            
 
 
I. B. Multiple alignment of deduced amino acid sequences of S6k proteins in four crustacean 
species and two insect species. Abbreviations: Ha, H. americanus; Aa, A. aegypti 
(XP001650653); Cm, C. maenas (JQ864250); Dm, D. melanogaster (AAC47429); Dp,. D. pulxe 
(EFX86042); and Gl, G. lateralis (HM989975). Amino acid residues that are identical or similar 
in all sequences are shaded in black; gray shading indicates identical or similar amino acids in 
most of the sequences. Dashes indicate gaps introduced to optimize the alignment. 
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