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ABSTRACT 

Conventional usage of mu1tiparameter radar measurements for rainfall estimation has been associated with 
tracking the variability of the raindrop size distribution. The use of multiparameter radar measurements in a 
statistical framework to estimate rainfall is presented in this paper. The techniques developed in this paper are 
applied to the radar and rain gauge measurement of rainfall observed on 26 July 1991, during the Convection 
and Precipitation Electrification program. Conventional pointwise estimates of rainfall are also compared. The 
probability matching procedure, when applied to the radar and surface measurements, shows that multiparameter 
radar algorithms can match the probability distribution functions better than the reflectivity based algorithms, 
thereby indicating the potential of multiparameter radar measurements for statistical approach to rainfall es­
timation. 

1. Introduction 

Remote estimation of rainfall is a topic of active 
research and was one of the topics of interest during 
the Convection and Precipitation Electrification pro­
gram (CaPE) (Foote 1991 ) . There have been two gen­
eral approaches to estimate rainfall using radar, namely, 
(a) those that obtain an instantaneous point estimate 
in space and (b) those that provide climatological es­
timates over large areas. Most of the studies on the 
statistical techniques for obtaining mean estimate of 
rainfall use the reflectivity factor only ( Calheiros and 
Zawadzki 1987), and a majority ofthe studies in the 
area of rainfall estimation using polarimetric tech­
niques have concentrated on instantaneous spatial es­
timates of rainfall (Aydin et al. 1990). Conventionally, 
all the multiparameter researches have been associated 
with those studying the variability in raindrop size dis­
tribution (Seliga and Bringi 1976; Scarchilli et al. 
199 3 ) . This paper presents for the first time the use of 
multiparameter radar data in a statistical framework. 
Extensive observation of muitiparameter signatures in 
tropical and subtropical environments suggests that 
those storms are rich in polarimetric signatures ( Bringi 
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et al. 199 3). Therefore, inclusion of polarimetric sig­
natures in a statistical rainfall estimation framework 
intuitively seems reasonable. This approach has the 
potential to avoid the typically nonlinear dBZ-dBR 
(log of rainfall rate) relationship that results from 
matching the radar and gauge CDFs (cumulative dis­
tribution function) of rainfall rate (Rosenfeld et al. 
1993). Our paper uses a variation of the probability 
matching procedure in the context of multi parameter 
radar estimates of rainfall. A clear demonstration of 
improvements in rainfall estimates using multi param­
eter techniques over the conventional reflectivity-based 
estimates has been difficult due to the following reasons: 

(a) There has never been a controlled experiment 
using multiparameter radar specifically designed to ad­
dress the problem of rainfall estimation, and the sci­
entists have had to work with datasets collected for 
other scientific objectives, and, therefore, with com­
promised scanning strategies. 

(b) Until multiparameter procedures required good 
accuracy in radar measurements (to guarantee internal 
accuracy), precise calibration of radars was not mon­
itored (up to 1-dB accuracy), resulting in the variation 
of Z-R relations due to calibration errors. 

Only a handful of previous experiments conducted 
very precisely were able to demonstrate the im­
provements in multiparameter rainfall estimates 
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FIG. I. The location of CP-2 radar and rain gauge network during CaPE. 

(Aydin et al. 1990). Even these experiments do not 
show improvements of the order predicted by theory 
owing to experimental limitations ( Chandrasekar 
and Bringi 1988; Zawadzki 1984). Our approach 
does not treat the problem of multi parameter rainfall 
estimation as one that accounts for variability in drop 
size distribution ( DSD) but treats it in a statistical 
framework, formulated in a way so that it can use 
the wealth of polarimetric signatures present in rain­
storms. We have adapted the probability distribution 
function matching approach discussed by Calheiros 
and Zawadzki ( 1987) for multi parameter radar ap­
plications. We also present the conventional ap­
proach, attempting to compare point estimates of 

rainfall and study the contrast with statistical ap­
proach. In addition, we use the rainfall estimate ob­
tained from the radar rainfall algorithms given by 
the probability matching procedure for comparison 
between radar and rain gauge at the TRMM (Trop­
ical Rainfall Measuring Mission) rain gauge sites. 

Our paper is organized as follows: section 2 describes 
the experiment;,U setup during CaPE. In section 3 we 
compare the rainfall accumulation obtained at each rain 
gauge location with a similar estimate obtained from ra­
dar. Section 4 introduces the procedure for matching the 
probability density function of rainfall rates obtained by 
multiparameter radar and rain gauges. Section 5 sum­
marizes the key results of this paper. 
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TABLE I. The characteristics of the CP-2 S-band radar. 

Characteristic 

Polarization type 
Wavelength (em) 
Peak power (kW) 
Pulse length (JLS) 
PRF (s- 1) 

Antenna type 
Antenna size (m) 
Beamwidth 
Polarizations transmitted 
Polarization received 
Maximum sidelobe level (dB) 
Polarization control method 
Polarization control period 

CP-2 S-band radar 

Linear 
10.7 
1200 
1.0 
960 
Center fed paraboloid 
8.5 
0.93° 
Linear V or H 
Copolar to transmit 
-21 
Ferrite switch 
Pulse by pulse 

2. CaPE rainfall measurement experiment 

CaPE was conducted in the central F1orida region dur­
ing the summer of 1991. One of the objectives of the 
CaPE program was remote estimation of rainfall by mul­
tiparameter radar. F1orida's unique geographical and 
meteorological conditions contribute to the high fre­
quency of thunderstorm activity during the summer. In 
the afternoon, the heated landmass is sufficiently large to 
produce deep convection. Furthermore, the action and 
the subsequent movement of the coastal sea breezes tend 
to focus this convection. During summer, the Atlantic­
Bermuda high extends westward across central F1orida. 
The north-south oscillations of the ridge tend to influence 
the locations and severity of thunderstorm development. 

The sea-breeze circulation and the normal patterns 
of Florida convection assume different characteristics 
depending on whether the prevailing low-level flow has 
an onshore, offshore, or alongshore component. This 
larger-scale flow can accelerate or impede the daily 
progress of the sea breeze inland. Onshore flow (south­
westerly flow) along the Gulf coast may drift eastward 
(usually in north-northeast-south-southwest lines) 
across the CaPE region. Generally, southwesterly flow 
is more unstable, contains deeper moisture, and more 
large-scale upward vertical motion than that from other 
quadrants. This regime can occur as much as 50% of 
the time during July and August, producing two-thirds 
of the storms in the CaPE region. 

The instrumentation for rainfall measurement ex­
periment during CaPE primarily consisted of the 
CP-2 multiparameter radar and a network of rain 
gauges called TRMM rain gauges located primarily in 
the vicinity of the Merrit Island area at the Kennedy 
Space Center ( KSC). Figure 1 shows the location of 
the CP-2 radar and the TRMM rain gauge network. 

The TRMM rain gauge network consists of 22 tip­
ping-bucket rain gauges with a recording resolution of 
1 min located at the National Aeronautics and Space 
Administration (NASA)/KSC and CaPE Canaveral 
Airforce Station ( CCAFS). The parameters of interest 
for precipitation measurement that were measured by 

the CP~2 radar were the reflectivity factor at horizontal 
polarization (ZH) and the differential reflectivity (ZoR), 
both measured at S-band frequency. Table 1 lists the 
main features of the CP-2 radar that are relevant to 
this paper. Data used in this paper for rainfall mea­
surement were collected, integrating 64 samples pairs 
with 1-ms PRT (pulse repetition time) in a PPI (plan 
position indicator) mode with a typical scan rate of 
80 -1 s . 

26 July 1991 case study. On 26 July 1991 the CP-2 
radar began operating early, and there was little activity 
during the morning. During the afternoon a cluster of 
storms moved over the TRMM rain gauge network, 
and the thunderstorm activity lasted for about 1 h. The 
CP-2 radar collected data over these storms in a PPI 
mode obtaining data over the rain gauge network. Most 
of the rainfall activity discussed in this paper refers to 
a single precipitation event. Figure 2 shows a typical 
low-elevation PPI of the precipitation cell under study. 
We can see that the storm had high values of reflectiv­
ities (55 dBZ) producing significant rainfall over the 
TRMM network. Figure 3 shows the time record of 
rainfall rate at a typical gauge. 

3. Pointwise radar and rain gauge comparison 

a. Data analysis procedure 

The procedure to compute point rainfall using radar 
and rain gauge is conceptually straightforward, but nu-

26 JUL 91 20• 3·54 20· 4• 3 PPI FXANG • 2.1 
WE 
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NOT 9t001HID X-DISTANCE !KMJ 
PLOT 1 GTS 

FIG. 2. A sample PPI of reflectivity observed on the afternoon of 
26 July, during CaPE. The legend on the top of the contour plot is 
as follows: 20.3.54-20.4.3 indicates the time (UTC) when the volume 
of radar data was collected; PPI FXANG = 2.1 indicates that the 
PPI scan was done at fixed elevation angle of 2.1 o; the gray-scale 
patterns indicate the contour levels. 
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FIG. 3. Sample time record of a TRMM rain gauge 
during the afternoon of 26 July (time in UTC). 

22. 

merous details are important. We want to stress here 
that we have not made any adjustment for storm 
movement, or any other adjustment or fine-tuning of 
the data, and the comparison is direct. The actual steps 
involved in collecting radar data for each rain gauge 
location is as follows. (a) The location of each rain 
gauge is mapped on the radar PPI of reflectivity factor 
and differential reflectivity. Subsequently, the radar 
data are converted to rainfall rate using each of the 
following three algorithms: 

b. Experimental results 

Rainfall accumulation at each rain gauge location 
is estimated for comparison with rain gauge estimates. 
The rainfall accumulation is estimated using the three 
algorithms given by ( 1 ) , ( 2), and ( 3), namely, two Z­
R relations and the one given by ZH and ZoR. Figure 
4 shows the comparison of rainfall accumulation at 
the TRMM rain gauge sites in the form of scatterplot. 
In Fig. 4 the square points denote Marshall-Palmer 
rainfall estimates, the open circles denote the GATE 
algorithm, and the diamond symbols indicate dual po­
larization rainfall algorithm. We have also estimated 
a figure of merit to quantitatively describe the capability 
of algorithms to estimate rainfall, namely, the fractional 
standard error ( FSE) defined as 

{_!_ 'L [rainfall (radar) 
N }112 

- rainfall (gauge)] 2 

FSE = -------------
1 . N 'L [ramfall (gauge)] 

(4) 

where N represents the number of rain gauges. 
The averages are computed using data from sev­
eral rain gauge locations. The FSE ofthe Marshall­
Palmer rainfall estimate was found to be 49%, 
whereas the standard error in the GATE Z-R 
relation was found to be 58%. The corresponding 
standard error in dual polarization rainfall estimate 
was 35%. 

I I 

0 

50 
0 ( i) the Marshall-Palmer ( 1948) relation 

R(ZH) = 0.0365Z ~625 , 
e: 

(l) e: 
i 

• • 
( ii) the GARP Tropical Atlantic Experiment 

(GATE) relation (Hudlow et al. 1979) 

R(ZH) = 0.0129Z~l, and (2) 

(iii) the dual-polarization algorithm (Gorgucci et 
al. 1993) 

RoR = 10 X 10-3 z ~9210 -0.369ZoR. ( 3 ) 

(b) The radar estimates are then averaged over their 
nearest neighbors within 1 km on each side. This is 
done to smooth the data over measurement errors. We 
note here that in the above equations ZH has its stan­
dard units (mm6 m-3 ) and ZoR is in decibels. The 
rainfall obtained from radar over time is then accu­
mulated, at each rain gauge location, for the entire pre­
cipitation event, and the results are discussed in the 
following section. 
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FIG. 4. The radar and rain gauge rainfall accumulation observed 
at the TRMM rain gauge sites. The radar-based rainfall is computed 
using three algorithms, namely, the Marshall-Palmer Z-R relation 
(•), the GATE Z-R relation (0), and the dual polarization algorithm 
(+). 
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FIG. 5. The experimental probability distribution function (CDF) 
of rainfall. The solid line shows the CDF observed by rain gauge, 
whereas the dotted line shows the CDF obtained from radar data 
using the Marshall-Palmer Z-R relation. 

The intent of this section is not to study the pointwise 
performance of the multiparameter relation with the 
GATE or Marshall-Palmer Z-R relation. However, 
with the presentation of these results, we set the stage 
for subsequent analysis in the rest of the paper. One 
point that is worth noting is that the multiparameter 
relation is theoretically obtained (based on a general­
ized gamma DSD model). The multi parameter rainfall 
estimates perform better than the two Z-R rainfall al­
gorithms evaluated here; however, at this stage we are 
not sure whether these are the best Z-R relation, or 
whether the multiparameter estimate can be better than 
the best Z-R relation that can be derived. All of the 
above considerations are discussed in the following 
sections. One conclusion that can be reached from the 
results of Fig. 4 is that in the absence of the knowledge 
of the best Z-R relation to use, the multiparameter 
radar estimates seem to outperform a conventional Z­
R relation. This is one of the few results that have been 
demonstrated based on data (see also Aydin et al. 
1990). 

In the following section we evaluate procedures to 
obtain parameters of the best Z-R relation and mul­
tiparameter rainfall relation. We study the probability 
distribution function ( CDF) matching procedure for 
evaluating the best parametric relation based on radar 
and rain gauge data. 

4. Parametric estimates based on cumulative 
distribution function of rainfall rate 

The CDF of rainfall can be constructed from radar 
and the functional shape will depend on the type of 

algorithm used to convert the radar observations to 
rainfall. The rainfall conversion algorithm can be Z­
R based or multiparameter based depending on the 
algorithm used. The Z-R algorithms have parameters 
of the following form: 

(5) 

where C1 and a are parameters of the algorithm. Sim­
ilarly, the multiparameter rainfall estimate R(Z, ZoR) 
has the form 

where C2 , {3, and v are the parameters ofthe algorithm . 
Our procedure for estimating the parameters of the 
radar rainfall algorithm based on CDF matching is as 
follows: 

1) For a given starting guess of parameters C1 , a, 
C2 , {3, and v, evaluate the radar rainfall estimate at 
each rain gauge location as described in section 3. Typ­
ically, the initial guess is based on an established re­
lation such as the Marshall-Palmer Z-R relation or 
the GATE Z-R relation. 

2) Construct the CDF based on result of step 1. 
3) Construct the CDF based on rain gauge obser­

vations. 
4) Construct the mean-square error (ERR) between 

the radar-based and rain gauge-based CDF, obtained 
as the integration of the square deviation between the 
two CDFs over the entire range. 

5) Iterate the coefficients to minimize the mean­
square error. 

Figures 5, 6, and 7 show comparisons of the CDF 
of rainfall obtained from rain gauge and radar using 
the Marshall-Palmer Z-R relation, the GATE Z-R 
relation, and the multiparameter algorithm given by 
( 3), respectively. The corresponding mean-square error 
between the two CDFs in self consistent units is as 
follows: 

(a) Marshall-Palmer Z-R equation: ERR= 236.7 
(b) GATE Z-R equation: ERR = 200.3 
(c) multi parameter rainfall algorithm ( 3): ERR 

= 129.5, 

where ERR is the mean-square error defined in 
step 4. 

The above analysis based on the CDF of rainfall rate 
again suggests that in absence of the knowledge of the 
right kind of Z-R relations to use, multiparameter ra­
dar rainfall algorithm performs better than Z-R rela­
tions. We proceed next to obtain the optimum Z-R 
and multiparameter relations. We must note here that 
our optimization procedure is done using nonlinear 
optimization algorithms. We do not linearize the Z­
R relation or R(Zu, ZoR) taking logarithms. The lin­
earization procedure taking logarithms disturbs the 
natural distribution of rainfall in the minimization 
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FIG. 6. Same as Fig. 5 except the radar-based CDF of rainfall 
is obtained using the GATE Z-R relation. 

process. The resulting parameter estimates and error 
variance for R(ZH) and R(ZH, ZoR) based on CDF 
matching criteria are as follows: 

R(ZH) = 123.5 X 10-3z 9f572 (7) 

with the corresponding mean-square error ERR 
195.1, and 

R(ZH, ZoR) = 10 X w-3z9f91410-0.377ZoR (8) 

with the corresponding mean-square error ERR 
= 114.4. 

There are three important observations we can make 
from the results depicted in ( 7) and ( 8). First, the op­
timum Z-R relation matching the CDF is different 
from both the GATE and Marshall-Palmer algorithms. 
Second, the best multiparameter algorithm based on 
(ZH, ZoR) has a lower mean-square error compared to 
the best Z-R relation, thereby indicating that in a sta­
tistical approach to rainfall estimation, polarimetric 
techniques have some improvement to offer. Another 
possibly more significant conclusion of practical im­
portance is the optimum R(ZH, ZoR) has parameters 
and error structure very close to the theoretical algo­
rithm, indicating thereby that we can possibly do with 
just one expression. It is to be noted here that we have 
followed a new approach to obtain polarimetric radar 
estimates of rainfall. Historically, polarimetric radar 
techniques have all been branded as those that solve 
for variabilities in raindrop size distribution. However, 
in this paper we have tried to address a different ques­
tion. Polarimetric radars provide alternate measure­
ments, compared to reflectivity factor, that have dif­
ferent statistical spatial and temporal covariance struc-

ture (Krajewski et al. 199 3). Therefore, polarimetric 
measurements have the potential to add additional in­
formation in the context of rainfall estimation. We have 
evaluated whether the polarimetric measurements of 
rainstorms have something to add "in a statistical 
sense" to the problem of rainfall estimation. The pre­
liminary answer seems to be "yes." 

The algorithms given by ( 7) and ( 8) have been ob­
tained in a statistical framework for radar-rain gauge 
comparison. In the following, we compare the esti­
mation of rainfall accumulation at the TRMM gauge 
locations based on ( 7) and ( 8) for point comparisons, 
of the type done in section 3. 

Figures 8 and 9 show the scatterplot of rainfall ac­
cumulation at TRMM rain gauge locations based on 
R(ZH) and R(Zif, ZoR) obtained using the procedure 
described in section 3 but substituting the recomputed 
algorithms ( 7) and ( 8). The standard error of Fig. 8 
based on R(ZH) is 25%, whereas the corresponding 
standard error for R(ZH, ZoR) is 21%. Both the error 
percentages are artificially low because the minimiza­
tion and error computation are done on the same da­
taset that was used to obtain the parameters. However, 
even under such conditions, the best R(ZH, ZoR) seems 
to have a slight edge over the best R(ZH ). Though the 
optimization criteria for parameter estimation is dif­
ferent from the point estimate comparison, the results 
seem similar. We can also obtain optimum estimates 
of coefficients to use in R(ZH, ZoR) based on direct 
pointwise matching of rainfall accumulation itself as 
the criterion. In other words, we minimize the FSE 
defined in ( 4) to obtain the optimum parameters in 
( 6). We perform the minimization directly on the 
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Flo. 8. Scatterplot of rainfall accumulation observed by rain gauge 
and radar at the TRMM rain gauge sites. The radar-based rainfall 
accumulation is computed using the Z-R relation that provides the 
best matching between the observed CDF of rainfall by radar and 
rain gauges. 

mean-square error between the cumulative rainfall es­
timates from radar and rain gauge. The parameteriza­
tion that gives the least fractional standard error defined 
by ( 4) is 

RoR = 10 X w-3 Z9i9110-0.385ZoR. (9) 

We can see that the above parameterization compares 
well with ( 8) and ( 3). In summary, the RoR parame­
terizations obtained by two independent criteria agree 
with each other and the theoretical relation available 
in the literature. 

5. Summary and conclusions 

Two general approaches to remotely estimate rainfall 
with radar are studied here: 

(a) obtain instantaneous point estimates of rainfall; 
(b) apply statistical techniques in a mean sense for 

the whole storm, or climatological region. 

Conventionally, multiparameter radar estimates 
of rainfall take the first approach and are primarily 
associated with accounting for the variability in the 
drop size distribution, whereas the statistical tech­
niques use only reflectivity. This paper presents for 
the first time the use of multiparameter radar mea­
surements in a statistical framework for estimating 
rainfall. We also compare pointwise rainfall esti­
mation using Z-R as well as multiparameter algo­
rithms. We used data from a rain event during CaPE 
to test the analytical procedures developed in this 

paper. Pointwise comparison of rainfall accumula­
tion at the TRMM rain gauge sites using multipa­
rameter estimate RoR was found to have a standard 
error of 35%, whereas the GATE and Marshall­
Palmer Z-R relations were found to have a standard 
error of 58% and 49%, respectively. 

We have analyzed the difference between the ex­
perimental CDF obtained from radar and rain gauge 
network. Such an analysis showed that Marshall-Pal­
mer and GATE Z-R relations had a mean-square er­
ror (in its own internally self-consistent units) of 256 
and 200, respectively, whereas the theoretical RoR had 
an error of 129.5. We subsequently obtain parame­
terization for the RoR and Z-R algorithms matching 
the experimental CDF of rainfall from radar to the 
one that is observed by rain gauge. This analysis 
showed that RoR can be parameterized to obtain better 
a match between the experimental CDF of rainfall 
obtained by radar and rain gauge network (with an 
error of 114). The best match between the radar and 
rain gauge CDF was obtained for an RoR relation not 
very different from the theoretical relation given by 
(3). In addition, the best Z-R relation defined as the 
one that will minimize the difference between radar 
and rain gauge network-based CDFs had a mean­
square error of 195 (in self-consistent units) higher 
than the theoretical RoR relation. In summary, it ap­
pears from this preliminary analysis that the theoret­
ical RoR algorithm can match the CDF observed by 
rain gauge network, even better than the best Z-R 
relation that can be determined after the fact (i.e., the 
Z-R relation that fits the data best). 
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Flo. 9. Same as Fig. 8 except the radar-based rainfall accumulation 
is computed using the dual-polarization algorithm that provides the 
best matching between the observed CDF of rainfall by radar and 
rain gauges. 
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Our preliminary results indicate that multiparameter 
radar measurements of rainfall can be successfully used 
in a statistical framework. It also appears from our 
analysis that multiparameter radar measurements show 
good potential for use in the context of statistical pro­
cedures for rainfall estimation. These are only dem­
onstrations of initial observations, and we recognize 
that extensive study is necessary to evaluate our pre­
liminary conclusions. 

We want to add one concluding note about the 
importance of absolute calibration. The importance 
of absolute calibration cannot be overstated. A 
couple-of-decibels error in absolute calibration can 
easily go unnoticed during the experiment, showing 
no obvious symptoms; however, this can have serious 
consequences on the measurement of rainfall. All 
the procedures that even remotely involve the re­
flectivity factor will fail in the presence of an error 
in absolute gain of the radar system. This will have 
unintended consequences such as creation of a new 
Z-R relation. 
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