DISSERTATION

FINITE ELEMENT 2-D TRANSPORT MODEL OF GROUNDWATER RESTORATION FOR IN SITU SOLUTION MINING OF URANIUM

Submitted by
James W. Warner

Civil Engineering Department

In partial fulfillment of the requirements for the Degree of Doctor of Philosophy

Colorado State University
Fort Collins, Colorado
Fal1, 1981

WE HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER OUR SUPERVISION BY James W. Warner

ENTITLED Finite Element 2-D Transport Model of Groundwater Restoration for In Situ Solution Mining of Uranium

BE ACCEPTED AS FULFILLING IN PART REQUIREMENTS FOR THE DEGREE OF Doctor of Philosophy

Committee on Graduate Work

Abstract

Developing technologies such as in situ solution mining of uranium represent a new, more complex solute transport problem in site restoration than traditional transport problems such as contaminant migration. The method consists of injecting through wells a lixiviant into the host aquifer containing the uranium. The uranium is preferentially dissolved and the uranium-bearing groundwater is recovered through pumping wells. The environmental advantages of solution mining over conventional mining techniques are several; however, it has the disadvantage of potentially contaminating the groundwater system. A computer model of groundwater restoration for the in situ solution mining of uranium is developed and documented. The model is based on the Galerkin-finite element method using triangular elements and linear shape functions.

The computer model calculates the dual changes in concentration of two reacting solutes subject to binary cation exchange in flowing groundwater. This cation exchange process is important in the groundwater restoration of solution mining. Both the concentration in solution and the concentration adsorbed on the solid aquifer material are calculated for both solutes at specified places and times due to the process of convective transport, hydrodynamic dispersion, mixing from fluid sources and cation exchange. No other reactions are assumed which would affect the solution concentrations. The model also has the capacity to simulate conservative solute transport. A complete documentation of the computer model and a detailed description of the numerical solution of both the groundwater flow equation and the solute-transport equations are presented.

The model was successfully applied to an actual field problem of ammonium restoration for a pilot scale uranium solution mining operation in northeast Colorado near the town of Grover. The computer model is offered as a basic working tool that should be readily adaptable to many other field problems. The model should have wide applicability by regulating agencies, mining companies and others concerned with groundwater restoration for in situ solution mining.

James W, Warner
Civil Engineering Department Colorado State University Fort Collins, Colorado 80523 1981

The author would like to acknowledge the support of the U.S. Environmental Protection Agency and of the U.S. Geological Survey for their cooperative efforts in the funding of the study. The author would also like to acknowledge the support of the Colorado Experiment Station Project No. 110 which has provided funds for part of the preparation of this report and would also like to express appreciation to the Colorado Department of Health and Wyoming Mineral Corporation for their help.

The author would like to thank his advisor, Dr. D. K. Sunada, for his critique and guidance during this study. The suggestions of the other members of the Graduate Committee, Dr. D. B. McWhorter, Dr. H. J. Morel-Seytoux, Prof. R. A. Longenbaugh and Dr. F. G. Ethridge are sincerely appreciated.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
1.1 Description of Problem 1
1.2 Objective 3
1.3 Method of Investigation 4
1.4 Previous Investigations 5
II. CATION EXCHANGE 8
2.1 Cation Exchange Capacity 9
2.2 Affinity for Cation Exchange 12
2.3 Adsorption Isotherm 13
2.4 Cation Exchange Equations 16
2.4.1 Empirical Equations 16
2.4.1.1 Freundlich Isotherm 16
2.4.1.2 Langmuir Isotherm 17
2.4.2 Kinetic-Theory Equations 19
2.4.2.1 Gapon Equation 20
2.4.2.2 Jenny Equation 21
2.4.3 Mass-Action Equations 22
2.5 Law of Mass Action 26
2.6 Selectivity Coefficient 33
III. SOLUTE TRANSPORT WITH ADSORPTION 41
IV. GALERKIN-FINITE ELEMENT METHOD 50
4.1 Methodology 50
4.1.1 Finite Elements 50
4.1.2 Galerkin Approximation 52
Chapter Page
4.1.3 Shape Functions 53
4.1.4 Integrations 57
4.2 Solution of the Groundwater Flow Equation 62
4.2.1 Galerkin Approximation 62
4.2.2 Linearized Approximation 66
4.2.3 Integrations 69
4.2.3.1 Integration of [A] 70
4.2.3.2 Integration of [B] 73
4.2.3.3 Integration of [D] 74
4.2.3.4 Integration of [E] 75
4.2.3.5 Integration of [F] 77
4.2.4 Time Derivative Approximation 78
4.3 Solution of the Coupled Solute Transport Equations 79
4.3.1 Galerkin Approximation 79
4.3.2 Linearized Approximation 85
4.3.3 Integrations 91
4.3.3.1 Integration of [A] 92
4.3.3.2 Integration of [B] and [C] 98
4.3.3.3 Integration of [D] 100
4.3.3.4 Integration of [E] 102
4.3.3.5 Integration of [F] 104
4.3.4 Time-Derivative Approximation 106
4.3.5 Assembly of the Coupled Solutions 107
V. COMPUTER PROGRAM 111
5.1 Simplified F1ow-Chart 111
ChapterPage
5.2 Program Segments 113
5.2.1 Main Program 113
5.2.2 Subroutine INPUT 114
5.2.3 Subroutine ELINTF 114
5.2.4 Subroutine MATFLOW 115
5.2.5 Subroutine ELINTT 116
5.2.6 Subroutine MATCHEM 119
5.2.7 Subroutine CHATSOL 120
5.2.8 Subroutine BSOLVE 121
5.2.9 Subroutine MULT 122
5.2.10 Subroutine WATBAL 122
5.2.11 Subroutine CHEMBAL 122
5.2.12 Subroutine FLOWOUT 122
5.2.13 Subroutine CHEMOUT 123
5.3 Test Problems - Comparison with Analytical Solutions 123
5.3.1 Radial Flow to a Well 123
5.3.2 1-dimensional Conservative Transport in an Infinite Column 126
5.4 Example Problem - Solute Transport with Cation Exchange Reactions 130
VI. GROVER TEST SITE 147
6.1 History 147
6.2 Geohydrology 152
6.3 Model Input Data 154
6.3.1 Grid 154
6.3.2 Boundary Conditions 154
ChapterPage
6.3.3 Potentiometric Surface 157
6.3.4 Saturated Thickness 159
6.3.5 Transmissivity and Storage Coefficient 159
6.3.6 Recharge Rate and Leakage 162
6.3.7 Porosity and Dispersivity 162
6.3.8 Cation Exchange Capacity 163
6.3.9 Selectivity Coefficient 165
6.3.10 Initial Concentrations 166
6.3.11 Pumpage and Injection Rates 170
6.4 Model Calibration 172
6.5 Results 178
VII. SUMMARY AND CONCLUSIONS 184
VIII. REFERENCES 188
APPENDICES 193
A. In Situ Solution Mining 193
A. 1 Uranium Geochemistry 193
A. 2 Lixiviant-Sorption Circuit 196
A. 3 Lixiviants 201
A. 4 Chemica1 Reactions 204
A. 5 Groundwater Contamination 206
A.5.1 Lateral Excursion 208
A.5.2 Vertical Excursion 209
A.5.3 Incomplete Restoration 209
A. 6 Groundwater Restoration Methods 210

TABLE OF CONTENTS (cont.)

Chapter Page
A.6.1 Groundwater Sweeping 211
A.6.2 C1ean-Water Recycling 212
A.6.3 Chemical Treatment 215
B. Derivation of the Solute Transport Equation with Adsorption 217
C. Integral Transformations 224
D. Program Listing 231
E. Definition of Selected Program Variables 270
F. Data Deck Instructions 273
G. Sample Data Deck 279
H. Sample Output from Computer Program 283

1 Example of an adsorption isotherm 14

4 Plot of adsorption isotherm for calcium and ammonium 37

7 Schematic of the leap-frog solution technique 48
8 Diagram showing finite-element discretization 51
9 Diagram showing local shape functions 55
10 Diagram showing global shape function 58

12 Simplified flow-chart . .. 112
13 Graph showing comparison between analytical and numerical $\begin{aligned} & \text { solutions for radial flow to a we11 } 125\end{aligned}$

15 Graph showing comparison between analytical and numerical solutions for 1-dimensional conservative transport in an infinite column, $\alpha_{L}=5$128

16 Diagram showing model grid and nodal numbering system for
example problem 132
17 3-dimensional graph for injection and adsorption of ammonium - Example problem 137
18 3-dimensional graph for injection and adsorption of calcium - Example problem 138

LIST OF FIGURES (cont.)

FIGURE PAGE
19 3-dimensional graph for injection of conservative tracer - Example problem 139
20212223Map showing location of the Grover test site148
24 Map showing layout of the Grover test site 149
25
Diagram showing model grid 155
26
Diagram showing nodal numbering system 156
27
Map showing potentiometric surface for the Grover Sandstone. 158
28
North-south geologic cross-section of the Grover test site 160
293031323334
A1 Diagram showing configuration of uranium deposits insandstones195
A2 Schematic of the solution mining process 197
A3 Diagram showing leach field patterns 199
A4 Diagram showing flow pattern through a vertical section of a single cell in a leach field 200

LIST OF FIGURES (cont.)

FIGURE
PAGE
A5 Plot of carbonate species vs pH 205
A6 Diagram showing water quality zones at a solution mine and an
areal view of the flow pattern for a 4-ce11 leach field. . . . 207
A7 Diagram showing groundwater restoration methods 213

B1 Diagram showing representative volume element of a porous medium for mass balance calculation 218
C1 Diagram showing directional cosines and the outward pointing normal to the surface 226
TABLE PAGE
1 Cation exchange capacity of clay minerals 11
2 Aquifer properties for example problem 131
3 Input concentrations for example problem 133
4 Model results for example problem 134
5 Cation exchange capacity for the Grover Sandstone 164
6 Water quality data at the Grover test site 168
A1 Effectiveness of reverse osmosis 214

CHAPTER I

INTRODUCTION

1.1 Description of the Problem

Solute transport problems in groundwater are recognized as becoming increasingly more common and increasingly more complex. Previous evaluation of transport problems have been concerned with contaminant migration away from waste disposal sites and with determination of the fate of various chemical constituents in the groundwater. More commonly only conservative transport problems have been considered. Developing technologies such as in situ solution mining represent a new, more complex contaminant transport problem in site restoration,

In situ solution mining is a relatively new technology that is being used with increased frequency throughout the mining industry. There are numerous environmental advantages of solution mining over conventional uranium mining techniques such as open pit or underground. With solution mining there is minimal surface disturbance, essentially no tailings to dispose and no dewatering of the aquifer. However, in situ solution mining has the disadvantage of potentially contaminating the groundwater system.

In situ solution mining of uranium consists of injecting through wells a lixiviant (consisting of a leaching agent and an oxidizing agent) into the sandstone formation which contains the uranium deposits. The uranium ore is preferentially dissolved from the host rock and the uranium-bearing groundwater is recovered through pumping wells.

Ammonium bicarbonate is the most commonly used leaching agent. During mining, the groundwater is contaminated with high levels of many
chemical constituents including ammonium. Much concern has been expressed on the relatively high concentration of ammonium immediately following mining.

After mining, restoration of the contaminated aquifer is required. In the normal restoration procedure the contaminated groundwater is pumped from the aquifer and replaced by groundwater entering the mined area from the surrounding unaffected aquifer; or alternatively the contaminated groundwater is pumped from the aquifer, purified and possibly fortified with eluting chemicals and then reinjected. Improper or incomplete restoration may result in contaminated groundwater being left in the aquifer. When an ammonium-bicarbonate based lixiviant is used, the ammonium is adsorbed on the clays in the aquifer during mining when it is in high concentrations in the groundwater. Later, during the restoration process when ammonium concentrations in the groundwater are lower, the ammonium is released back to the groundwater. The desorption of the ammonium occurs slowly and may result in significant residual ammonium concentrations adsorbed in the aquifer after the restoration process was thought to be completed. Few studies have been conducted to determine the extent to which solution mining does have impact on the groundwater system.

Approximately 90% of the U.S. uranium reserves occur in sandstone formations. Since these sandstone formations often have significant permeability the uranium in them is particularly amenable to solutionmining. At present, in situ mining of uranium has been tested on pilot scale operations in the states of Texas, Nyoming, Colorado, New Mexico and Utah, but only Texas has thus far had commercial scale
operations. Recently, in the State of Colorado, permission was given to begin a commercial scale operation in that state. Expectations are that in situ solution mining will become increasingly important in meeting our future uranium energy needs. If solution mining is to meet these expectations as a major mining method, then it is important to evaluate the environmental impact of the method on the groundwater system.

1.2 Objective

At present monitoring is the only method available to assess the extent of groundwater restoration. With monitoring the groundwater can only be sampled for contamination at a few selected points, namely at the monitoring wells and also at the production and recovery wells in the leach field. Other test holes could also be drilled for sampling to aid in determination of the extent of groundwater contamination, but at much additional expense. The extent of groundwater contamination beyond these few points can only be surmised. Improper or incomplete groundwater restoration could result in undetected areas of contaminated groundwater remaining in the aquifer.

There exists a need by regulating agencies, mining companies and others for a predictive tool that can be used to evaluate alternative restoration strategies for complex groundwater flow and solute transport problems. The usefulness of such a predictive tool for planning purposes would include assessment of the trade off benefits between differing levels of restoration efforts versus desired restorative objectives, restoration time requirements, total volumes of water
required for restoration, effects of varying recirculation rates, effects of varying eluting chemical concentrations, etc.

The objectives of this investigation are:

1) Develop a computer model capable of simulating the groundwater restoration for the in situ solution mining of uranium. This computer model could be used as a basic working tool and should have wide applicability by both regulating agencies and mining companies for prediction and planning purposes.
2) Demonstrate application of this computer model to an actual field problem of ammonium restoration for a pilot scale uranium solution mining operation in northeast Colorado near the town of Grover. The model should be readily adaptable to many other field problems.

1.3 Method of Investigation

This report describes a mathematical treatment of the site restoration of contaminants subject to adsorption and exchange on the porous media. The adsorption reaction is treated as an equilibrium controlled reversible binary cation exchange process. This requires that both chemical species involved in the exchange process be followed as they flow with the groundwater through the porous media. The mathematical formulation of the problem includes one equation describing groundwater flow plus two additional equations for solute transport (one equation for each of the solute species involved in the binary cation exchange). The transport equations are coupled through two additional equations which describe the cation exchange process. In a leap-frog fashion
the partial differential equation for groundwater flow is solved for the head distribution in the aquifer and the two coupled partial differential equations for solute transport are solved simultaneously for the dual changes in dissolved concentration for both solute species. The adsorbed concentration for both exchanging solutes is then also obtained.

1.4 Previous investigations

The general mathematical treatment for cation exchange used in this dissertation was originally formulated by Rubin and James (1973) for one-dimensional groundwater f1ow with constant groundwater velocity. The method has received little attention until now because of much simpler methods such as the Freundich Isotherm which is applicable in general to contaminant migration problems.

Several other studies have also taken somewhat similar approaches to the cation exchange problem. Lai and Jurinak (1971) presented a finite difference technique for the binary cation exchange problem with constant anion concentration. Smith (1978) later extended this method to allow for a changing anion concentration. Based on these previous works, Humenick, Schechter and Turk (1978) applied the method to the problem of ammonium migration and elution. It can be easily shown that the above studies are a slightly more restrictive formulation of the more general method presented by Rubin and James. In all of these studies the problem of cation adsorption and exchange was considered only for the case of one-dimensional groundwater flow with constant groundwater velocity without mixing of fluid sources.

More recent studies of the cation exchange problem have attempted to consider two-dimensional groundwater flow. An interesting approach was used by Bommer (1979). In this study a streamline-concentration balance was performed. In essence, the procedure consisted of generating a family of streamlines for the groundwater flow field. A mass balance was then performed along these streamlines. A major disadvantage of the study was that it only considered an isotropic homogeneous aquifer. Schwartz (1975) considered the case of cation exchange coupled with radioactive decay. In the latter study the method of characteristics solution was used for two-dimensional flow in a vertical cross-section.

Very recently Charbeneau (1981) has considered adsorption and cation exchange for the one-dimensional case without dispersion. The method of characteristics solution was used in this study and applied to the case of groundwater restoration for one-dimensional radial flow to a well in a circular mining site. The method has the advantage of being very simple. The major disadvantage of the method is that it only provides "desk top" answers and would not probably be applicable to complex flow and transport problems.

The method of Rubin and James is in this dissertation extended to twodimensions and coupled with the solution of the partial differential equation for groundwater flow. Changes in dissolved concentration are considered for convective transport, hydrodynamic dispersion, fluid sources and cation exchange reactions. Only binary cation exchange is considered but the method can be easily extended for multiple exchange reactions (Rubin and James, 1973). The Galerkin-finite element was
used to solve the resulting partial differential equations for groundwater flow and solute transport.

Before proceeding to a detailed description of the mathematical treatment of this problem a discussion of the fundamentals of cation exchange reactions will be given. The interested reader is referred to Appendix A for a discussion of in situ solution mining of uranium.

CHAPTER II

CATION EXCHANGE

The exchange of cations adsorbed on a porous medium with cations contained in water flowing through the porous medium is generally referred to as cation exchange. This exchange process requires that a cation in solution be adsorbed on the porous medium and simultaneously an adsorbed cation be released from the porous medium into solution. This cation exchange process is important in contaminant migration because it may retard the movement of contaminants which are in solution in the groundwater. It is also a major concern in in situ solution mining because it results in contaminants being accumulated during the mining process on the porous medium when the contaminants are in high concentrations in the groundwater. Later, during the restoration process when contaminant concentrations in the groundwater are lower, the contaminants are released back to the groundwater. This cation exchange process must be considered in the proper restoration of the groundwater.

The cation exchange process is of a particular concern in in situ solution mining when either an ammonium bicarbonate or sulfuric acid based lixiviant is used (see Appendix A). With ammonium bicarbonate, the ammonium ion (NH_{4}^{+}) is adsorbed. The ammonium ion is not particularly harmful and humans consume large amounts of ammonium daily. However, under an oxidizing environment and in the presence of certain nitrifying bacteria, the ammonium is converted to nitrate (NO_{3}). Large amounts of nitrate are known to be harmful to humans. The mobility of ammonium in groundwater systems is low because of this cation exchange process in which the ammonium is adsorbed onto the porous medium. However, if the
ammonium is converted to nitrate, then the mobility is increased significantly.

With sulfuric acid, the hydrogen ion $\left(H^{+}\right)$is adsorbed onto the porous medium. Later, if the groundwater is not properly restored, hydrogen is released back to the groundwater, resulting in low pH (acidic) groundwater.

2.1 Cation Exchange Capacity

The exchange capability of a porous medium is given as the cation exchange capacity (CEC), reported as milliequivalents per 100 grams (meq/ 100 g) of sample. The cation exchange capacity is a measure of the number of exchange sites that are available. The exchange sites occur on the surface of the individual particles comprising the porous medium. The CEC varies significantly for different types of porous medium. In natural groundwater systems, the geologic materials that account for most of the CEC are the clay minerals, especially the montmorillonites and illites. The process of cation exchange in clays is very complicated and only partly understood. The two most important structural characteristics of the clay mineral that account for the very high CEC are: (1) Broken bonds located on the edges and surfaces of the clay particles, and (2) isomorphous substitution (substitution between cations of unequal valence within the clay mineral lattice, e.g. substitution of Al^{+3} for Si^{+4}). Both of these structural characteristics result in an unbalanced negative charge on the surface or between the lattices of the clay mineral which is neutralized by cations in the surrounding solution. Because this charge imbalance on the porous medium is negative, the anions in solution in the groundwater are unaffected by this exchange process.

Charges resulting from isomorphous substitution are much larger than those due to broken bonds. Therefore, clay minerals such as montmorillonite in which most of their charges are from isomorphous replacement have very large $C E C$ and clay minerals such as Kaolinite in which most of their charges are from broken bonds have a much smaller CEC. Since the charges from isomorphous substitution are within the clay mineral lattice, physical changes in the clay mineral particle do not affect the number of isomorphous substitution exchange sites but these sites can be blocked and thus clays such as montmorillonite are subject to fixation. Broken bond charges are located on the surface of the clay particle and physical differences in the clay mineral particles, such as a decrease in grain size and a resulting increase in surface area, would in this case increase the number of broken bond; exchange sites and thus the CEC of clays such as Kaolinite increase as the particle size decreases.

The total sites availabel in a given porous medium for cation exchange is constant. These cation exchange sites must always be filled. This insures electroneutrality. Thus, to remove one cation, another cation must replace it. A solution of distilled water cannot be used to remove adsorbed cations. A few would be displaced by free hydrogen ions in the water but stripping of the adsorbed cation from the clay would be completed much more rapidly if a solution containing a high concentration of replacement cations were used.

The CEC of selected clay minerals is given in Table 1. Compared to the exchange capacity of most clays the exchange capacity of other constituents in the porous medium is very low. Carroll (1959 reports

TABLE 1. -- Cation Exchange Capacity of Clay Minerals
(Source: Carro11, 1959)

Clay Mineral	Cation Exchange Capacity meq/100g
Kaolinite	$3-15$
Halloysite $\left(2 \mathrm{H}_{2} 0\right)$	$5-10$
Halloysite $\left(4 \mathrm{H}_{2} 0\right)$	$40-50$
Montmorill onite group	$70-100 *$
"Illites" (hydrous micas)	$10-40$
Vermiculite	$100-150$
Chlorite	$10-40 ?$
Glauconite	$11-20+$
Palygorskite group	$20-30$
Allophone	$\simeq 70$

*Certain members may have a much lower exchange capacity
that even for fine-grained minerals which would have a large surface area, the CEC is about 1 to $3 \mathrm{meq} / 100 \mathrm{~g}$. Therefore, the CEC of a porous medium is largely determined by the amount of clay contained in the porous medium.

2.2 Affinity for Cation Exchange

While the CEC of a porous medium is necessary to determine the magnitude of the cation exchange reaction, many other factors affect this process. The affinity for cation exchange varies considerably between different cations. In general, the affinity for adsorption onto the porous medium increases for a cation with an increase in the valence and in the atomic weight as shown below (Carrol, 1959 or Grim, 1968)

$$
\begin{equation*}
\mathrm{Ca}^{++}>\mathrm{Mg}^{++}>\mathrm{H}^{+}>\mathrm{NH}_{4}^{+}>\mathrm{K}^{+}>\mathrm{Na}^{+} \tag{1}
\end{equation*}
$$

Several important factors affect this relationship. The first factor is the ionic strength of the solution. The ionic strength of the solution has little effect on the preference for exchange when the cations are of the same valence. However, for cations of different valences, the preference for adsorption for the cation with the higher valence decreases as the ionic strength of the solution increases.

A second factor, termed fixation, is caused by a normally exchangeable cation being held in a nonremovable state by the porous medium. Fixation only occurs at interlayer exchange sites whose charges are from isomorphous substitution and occurs when cations, such as sodium, calcium, and magnesium that expand the clay mineral lattice, are
replaced by either ammonium or potassium which cause the lattice to contract. Since both potassium and ammonium have large radii, the lattice contraction is sufficient to trap them inside the clay particle. This indicates that in solution mining, if montmorillonite is present, the restoration process may be slow and incomplete, if an ammonium bicarbonate based lixiviant is used.

Another factor that affects the affinity of cations for exchange is pH . It has been shown that hydrogen ions have a preference for broken-bond sites and that the hydrogen ion is more firmly held than other monovalent ions. The potential exists that other cations may have preferences for different types of exchange sites.

The assumption is made throughout this study that the process of cation exchange is an entirely reversible process and that the CEC of a porous medium is a constant.

2.3 Adsorption Isotherm

The relative proportion of the exchange sites filled by each cation in the exchange process can be expressed using an adsorption or exchange isotherm. The adsorption isotherm is a plot of the relative concentration in solution for a given cation, expressed as a ratio of dissolved concentration C to the total solution concentration Co , versus the relative adsorbed concentration, expressed as a ratio of the adsorbed concentration \bar{C} to the cation exchange capacity CEC. An example of an adsorption isotherm is shown on Figure 1. The adsorption isotherm is experimentally determined, maintaining a constant total solution concentration and composition. Different adsorption isotherms are

Figure 1. -- Adsorption isotherm.
obtained for each chemical species. In addition, an infinite set of adsorption isotherms are obtained depending on the nature of the porous medium, the total solution concentration and the solution composition (i.e. which competing cations are present in the solution).

Two types of isotherms often encountered in cation exchange are shown on Figure 1. The concave upward curve is called an unfavorable isotherm and the convex upward curve is called a favorable isotherm (Perry, 1963). The unfavorable isotherm describes the exchange of a preferentially adsorbed cation like calcium by a cation having less affinity for adsorption like sodium. The favorable isotherm describes the reverse exchange. Straight line isotherms comprise an intermediate class. Complex isotherms are possible that include both favorable and unfavorable parts.

Favorable and unfavorable adsorption isotherms result in different rates of movement and different concentration profiles in the transport of chemical constituents through the porous medium. A1l other factors being the same, the rate of movement through the porous medium for a chemical constituent described by an unfavorable adsorption isotherm is less than for a favorable adsorption isotherm. In essence, more of the chemical constituent is adsorbed for the unfavorable isotherm than for the favorable isotherm, which retards the movement of the more highly adsorbed constituent relative to the lesser adsorbed constituent.

For the favorable isotherm, higher concentrations will advance faster than lower concentrations which result in a steepening of the concentration profile at the exchange front (Reiniger and Bolt, 1972).

This steepening is called the self-sharpening tendency of the favorable isotherm. This self-sharpening tendency is normally balanced by the flattening effects of hydrodynamic dispersion. However, for the favorable isotherm, the concentration profile at the exchange front will be steeper than for an unfavorable isotherm.

2.4 Cation Exchange Equations

Numerous equations have been developed to quantitatively describe the cation exchange process. These equations have been classified by Grim (1968) as: (1) Empirical equations based on adsorption isotherms; (2) Kinetic-Theory equations; and (3) Mass-action (thermodynamic) equations. Regardless of the approach used, most of the equations assume the following two premises: (1) the CEC is a constant and represents a finite limit to the quantity that can be adsorbed and (2) the cation exchange reaction occurs very rapidly relative to the flow of water through the porous medium and local equilibrium conditions are assumed to apply.

2.4.1 Empirical Equations

The two most commonly used empirical equations are the Freundich Isotherm and the Langmuir Isotherm.

2.4.1.1 Freund1ich Isotherm

The Freundlich Isotherm was one of the earliest attempts to quantify the adsorption process (originally formulated in 1909) but is still widely used today mainly because of its mathematical simplicity. It was
originally for the adsorption of a gas by a solid but has been widely adapted to the adsorption of ions in solution by a solid as (Freeze and Cherry, 1979)

$$
\begin{equation*}
\overline{\mathrm{C}}=\mathrm{K}_{\mathrm{d}} \mathrm{C}^{\alpha} \tag{2}
\end{equation*}
$$

where \bar{C} is the adsorbed concentration, C is the dissolved concentration, and K_{d} (commonly called the distribution coefficient) and α are constants which are determined from the best fit to an experimentally determined adsorption isotherm. If $\alpha=1$, then equation (2) is called the linear adsorption isotherm. Adamson (1976) has derived the Freundlich Isotherm from theoretical considerations but basically the equation is an empirical one.

The Freundlich Isotherm has been widely criticized because it does not predict a maximum adsorption value but with appropriate constraints over a limited range of concentration it yields fairly reliable results. The Freundlich Isotherm has been used extensively in groundwater for contaminant migration problems.

2.4.1.2 Langmuir Isotherm

The Langmuir Isotherm was also originally formulated for adsorption of a gas by a solid (Langmuir, 1918) but with redefinition of the appropriate terms has been used to express the adsorption of cations in solution by a solid (Kelley, 1948)

$$
\begin{equation*}
\overline{\mathrm{C}}=\frac{\overline{\mathrm{c}}_{\mathrm{m}} \mathrm{~K} \mathrm{C}}{1+\mathrm{KC}} \tag{3}
\end{equation*}
$$

where $\overline{\mathrm{C}}=$ adsorbed concentration, $\overline{\mathrm{C}}_{\mathrm{m}}=$ maximum adsorbed concentration (i.e. concentration when all of the exchange sites are filled by the chemical species under consideration), $\mathrm{C}=$ dissolved concentration and $\mathrm{K}=$ constant. The Langmuir Isotherm has theoretical justification also in that it can be derived from Kinetic considerations (Smith, 1970 or Adamson, 1976) or from statistical thermodynamical considerations (Adamson, 1976). The important assumptions of the Langmuir Isotherm are (Smith, 1970): (1) homogeneous solid surface (i.e. the solid surface has a uniform activity for adsorption, (2) no interaction between adsorbed molecules, (3) all adsorption occurs by the same mechanism and, (4) the extent of adsorption is less than one complete monomolecular layer on the surface. The Langmuir Isotherm is basically an empirical equation since no determination of the constant K is possible for the adsorption of solution cations by a solid other than from a best fit to the experimentally determined adsorption isotherm.

The Langmuir Isotherm has been used very little in the study of groundwater problems whereas the Freundlich Isotherm has been used extensively. The Langmuir Isotherm is subject to the same limitations as the Freundlich Isotherm and in general provides no better results. The Freundlich Isotherm is mathematically slightly more simple to use than the Lan gmuir Isotherm which accounts for its more extensive use. Many other empirical equations could also be mentioned but in general the Freundlich and Langmuir Isotherms embody most of the characteristics of these other equations. Most of the empirical equations assume that the adsorbed concentration \bar{C} is only a function of the dissolvedconcentration C (i.e. $\bar{C}=f(C)$), whereas in reality
the adsorbed concentration is also a function of the concentrations of all other competing cations in solution. Recall that the adsorption isotherm was determined for a constant solution concentration and solution composition. Empirial equations based on the adsorption isotherm are not valid, in general, for varying solution concentrations and solution composition. The empirical equations have their merit in providing simple mathematical relationships for problems of adsorption of a single cation species but have little value in cation exchange problems where two or more species of cations are competing for exchange sites. The problem of groundwater restoration for in situ solution mining belongs to this latter class of problems.

2.4.2 Kinetic-Theory Equations

The Kinetic-theory equations are based on the diffuse double layer model of the cation exchange process. A structure of the double layer was first proposed by Helmholtz in 1879. The Helmholtz double layer consisted of 2 rigid electrical layers (analogous to the plates of a condenser), one layer formed by the solid particle surface and a second layer formed by the cations in solution. The theory was modified by Gouy in 1910 and again later by Stern in 1924 as the diffuse double layer model. They considered a double layer consisting of a rigid layer formed by the solid particle surface and a diffuse mobile layer of charges formed by the cations in solution. The cations in the diffuse layer are subject to two opposing forces, electrostatic forces that attract them to the charged surface and diffusion forces that force them away from the surface towards the external solution where their
concentration is smaller. There is no sharp boundary between the two layers and the concentration of the cations in the diffuse layer varies with the distance from the solid particle surface. For a more complete description of the diffuse double layer model the interested reader is referred to Van Olphen (1977).

2.4.2.1 Gapon equation

Gapon (1933) considered cation exchange in terms of the double layer exchange between a liquid and a monomolecular layer of another liquid adsorbed on a solid. Gapon assumed that the quantity of a given liquid adsorbed by a solid is proportional to the surface area occupied by that liquid. The Gapon equation may be written as

$$
\begin{equation*}
\frac{c_{2} \cdot f_{1}}{c_{1}\left(f_{0}-f_{1}\right)}=K \tag{4}
\end{equation*}
$$

where

```
f
f
f}2=\mathrm{ surface area occupied by liquid C C at equilibrium, and
K = constant.
```

In the Gapon equation the $C E C=f_{0}=f_{1}+f_{2}$,
Gapon applied this equation only to binary exchange between monovalent and divalent cations for the following equilibrium reaction which is based on a ratio of surface areas

$$
\begin{equation*}
\left(\overline{\mathrm{C}}_{2 \frac{1}{2}}\right)_{\mathrm{Ads}}+\left(\mathrm{C}_{1}\right)_{\mathrm{Sol}} \rightleftharpoons\left(\overline{\mathrm{C}}_{1}\right)_{\mathrm{Ads}}+\frac{1}{2}\left(\mathrm{C}_{2}\right)_{\mathrm{Sol}} \tag{5}
\end{equation*}
$$

where cation 1 is the monovalent cation and cation 2 is the divalent cation. For the monovalent-divalent exchange Gapon obtained

$$
\begin{equation*}
\frac{\left(\mathrm{c}_{2}\right)^{\frac{1}{2}}\left(\bar{c}_{1}\right)}{\left(\mathrm{C}_{1}\right)\left(\mathrm{CEC}-\overline{\mathrm{C}}_{1}\right)}=\mathrm{K} \tag{6}
\end{equation*}
$$

where C denotes the solution concentrations and \bar{C} denotes the adsorbed concentrations. Kelley (1948) applied the Gapon equation to the binary exchange between monovalent cations for the equilibrium reaction

$$
\begin{equation*}
\left(\overline{\mathrm{C}}_{2}\right)_{\text {Ads }}+\left(\mathrm{C}_{1}\right)_{\text {Sol }} \rightleftharpoons\left(\overline{\mathrm{C}}_{1}\right)_{\text {Ads }}+\left(\mathrm{C}_{2}\right)_{\text {Sol }} \tag{7}
\end{equation*}
$$

where both cations are monovalent ions. For the monovalent-monovalent exchange the Gapon equation yields

$$
\begin{equation*}
\frac{\left(\mathrm{C}_{2}\right)\left(\overline{\mathrm{C}}_{1}\right)}{\left(\mathrm{C}_{1}\right)\left(\overline{\mathrm{C}}_{2}\right)}=\mathrm{K} \tag{8}
\end{equation*}
$$

2.4.2.2 Jenny Equation

Jenny (1936) reasoned that each cation adsorbed by the solid is not at rest but is in a continuous state of thermal agitation and Brownian movement. Cation exchange occurs when a cation in solution chances to pass between the adsorbed cation and the electrical charge of the solid particle surface. The cation previously in solution becomes adsorbed and simultaneously the previously adsorbed cation is released into solution. Applying the laws of probability to this concept of cation exchange, Jenny developed the following equilibrium equation for binary exchange between cations of equal valence

$$
\begin{equation*}
\frac{\left(\mathrm{Z}_{1}\right)\left(\mathrm{N}_{2}\right)}{\left(\mathrm{Z}_{2}\right)\left(\mathrm{N}_{1}\right)}=\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}} \tag{9}
\end{equation*}
$$

where Z_{1} and $Z_{2}=$ the number at equilibrium of adsorbed cations for species 1 and 2 respectively,
N_{1} and $N_{2}=$ the number at equilibrium of cations in free solution for species 1 and 2 respectively, and
V_{1} and $\mathrm{V}_{2}=$ the oscillation volumes for adsorbed cations 1 and 2 respectively.

The oscillation volumes are constants for the given species in the exchange. The Jenny equation and the Gapon equation for monovalentmonovalent exchange (equation 8) are identical when $V_{1} / V_{2}=K=$ constant. On the basis of Jenny's probability oscillation volume concept, Davis (1945a)developed the following equation for the exchange between monovalent and divalent ions

$$
\begin{equation*}
\frac{\left(\mathrm{Z}_{1}\right)\left(\mathrm{N}_{2}\right)^{\frac{1}{2}}}{\left(\mathrm{Z}_{2}\right)\left(\mathrm{N}_{1}\right)}=\mathrm{K} \tag{10}
\end{equation*}
$$

where Z and N are defined as in equation (9) with the subscript 1 referring to the monovalent cation and the subscript 2 referring to the divalent cation and $K=$ constant. As Davis pointed out, this equation is identical with Gapon's equation (6).

2.4.3 Mass-Action Equations

Based on thermodynamic arguments Kerr (1928) formulated the cation exchange process in terms of the law of mass action. For the equilibrium reaction given in equation (7) for the binary exchange between monovalent
cations the law of mass action is written as

$$
\begin{equation*}
\frac{C_{2} \overline{\mathrm{C}}_{1}}{\mathrm{C}_{1} \overline{\mathrm{C}}_{2}}=\mathrm{K} \tag{11}
\end{equation*}
$$

where C and \bar{C} are defined as before and $K=$ constant called the selectivity coefficient. The selectivity coefficient K may be determined theoretically from thermodynamic considerations or from a best fit to the experimentally determined adsorption isotherm.

For the binary exchange between monovalent and divalent cations for the equilibrium reaction

$$
\begin{equation*}
\left(\overline{\mathrm{C}}_{2}\right)_{\mathrm{Ads}}+2\left(\mathrm{C}_{1}\right)_{\mathrm{Sol}} \rightleftharpoons 2\left(\overline{\mathrm{C}}_{1}\right)_{\mathrm{Ads}}+\left(\mathrm{C}_{2}\right)_{\mathrm{Sol}} \tag{12}
\end{equation*}
$$

where again cation 1 is a monovalent cation and cation 2 is a divalent cation, the law of mass action is written as

$$
\begin{equation*}
\frac{\left(\mathrm{C}_{2}\right)\left(\overline{\mathrm{C}}_{1}\right)^{2}}{\left(\mathrm{C}_{1}\right)^{2}\left(\overline{\mathrm{C}}_{2}\right)}=\mathrm{K} \tag{13}
\end{equation*}
$$

For monovalent-monovalent exchange the law of mass action is equivalent to the kinetic-theory equations. However, for monovalentdivalent exchange the law of mass action and the kinetic-theory equations are of similar but of different form.

Kerr expressed his mass-action formulas in terms of concentrations. Vanselow (1932) realized this was an error and that all mass-action formulas should be expressed in terms of activities. Vanselow also suggested that the use of mole fractions for the adsorbed concentrations (defined as $\bar{C} / C E C$). For monovalent-monovalent exchange the use of mole
fractions does not alter the law of mass action for this case (equation 11). However, for monovalent-divalent exchange, the use of mole fractions in equation (13) yields the following

$$
\begin{equation*}
\frac{\left(\mathrm{C}_{2}\right)\left(\overline{\mathrm{C}}_{1}\right)^{2} \mathrm{CEC}}{\left(\mathrm{C}_{1}\right)^{2}\left(\overline{\mathrm{C}}_{2}\right)}=\mathrm{K} \tag{14}
\end{equation*}
$$

Equation (14) normally gives slightly better results than equation (13).

The law of mass action applies to all equilibrium controlled chemical reactions. A tacit assumption in considering the cation exchange process as a chemical reaction is that the adsorbed cations and the solution cations are definable as separate entities. This idea conflicts with the diffuse-double layer concept in which the cation exchange process is viewed as merely a rearrangement of cations in the double layer and not as a chemical reaction, Because of this several authors (e.g. Davis, 1945b, and Bolt, 1955) have questioned the use of the law of mass action to describe the cation exchange process.

The kinetic-theory equations have been criticized in that they neglect the finite size of the cations which accounts for the valence effect observed in the cation exchange process (Laudelout et a1, 1968). The kinetic-theory equations also assume no interference due to activity between competing cations in solution which is contrary to experimental observations of the cation exchange process.

It should be noted that although the Gapon and Jenny equations are kinetically derived formulas, these equations are of a mass-action type (Bear, 1964). In fact, Gapon himself considered his equation to
be a mass-action equation. Recall that for monovalent-monovalent exchange the kinetically derived equations are the same as the law of mass action but for monovalent-divalent exchange the two types of equations are different. Kelley (1948) suggested that the difference between the Gapon equation and the law of mass action for monovalentdivalent exchange is due to the form of the equilibrium reaction used by Gapon (equation 5) with the standard form of the equilibrium reaction (equation 12). Krishnamoorthy and Overstreet (1950) compared the Gapon equation with the law of mass action to their experimental results and concluded that for monovalent-divalent exchange the law of mass action yielded better results. In a recent study, Hill and Lake (1978) also showed that for their own experimental results, the mass action law yielded somewhat more accurate results than the Gapon equation, but no conclusions as to superiority were reached.

Until recently, equations based on the diffuse double layer theory such as the Gapon equation have been in wide use, At present, equations based on thermodynamic considerations (i.e. law of mass action) appear to be most widely accepted. Such authors as Helfferich (1962), Bear (1964), Garrels and Christ (1965), Laudelout et al (1968), Gilbert and Van Bladel (1970), Stumm and Morgan (1970), Hem (1970), Helfferich and Klein (1970), and Freeze and Cherry (1979) use the 1 aw of mass action to describe the cation exchange process. However, adoption of the law of mass action has not been universal and Bolt and Bruggenwert (1976) use the Gapon equation to describe the cation exchange process. For this present study the cation exchange process will be described using the law of mass action which will be discussed in somewhat greater detail in the next section.

The preceeding discussion of the cation exchange equations has been intended only as a review of the major equations in the literature and not as an exhaustive review of the subject. No mention has been made of equations based on the Donnan equilibrium theory of the cation exchange process in which the solid particle surface is comprised of colloidal particles separated from the external solution by a membrane (impermeable to the colloidal particles but permeable to the ions in solution). For a more complete review of cation-exchange equations the interested reader is referred to Bolt (1967). Boast (1973) reviews a number of both equilibrium and nonequilibrium cation exchange equations that have been used in modeling the movement of chemicals in soils by water.

2.5 Law of Mass Action

The preference for exchange between competing cations for the equilibrium controlled cation exchange reaction

$$
\begin{equation*}
\left(\mathrm{Z}_{2} \overline{\mathrm{C}}_{1}\right)_{\mathrm{Ads}}+\left(\mathrm{Z}_{1} \mathrm{C}_{2}\right)_{\text {Sol }} \rightleftharpoons\left(\mathrm{Z}_{1} \overline{\mathrm{C}}_{2}\right)_{\text {Ads }}+\left(\mathrm{Z}_{2} \mathrm{C}_{1}\right)_{\text {Sol }} \tag{15}
\end{equation*}
$$

can be expressed in quantitative terms by the law of mass action given as (Helfferich, 1962)

$$
\begin{equation*}
\mathrm{K}=\frac{\left[\overline{\mathrm{c}}_{2}\right]^{\mathrm{Z}_{1}}\left[\mathrm{c}_{1}\right]^{\mathrm{Z}_{2}}}{\left[\overline{\mathrm{c}}_{1}\right]^{\mathrm{Z}_{2}}\left[\mathrm{c}_{2}\right]^{\mathrm{Z}_{1}}} \tag{16}
\end{equation*}
$$

where

$$
\left[C_{1}\right],\left[C_{2}\right]=\text { activity of cations } 1 \text { and } 2 \text { in solution respectively, }
$$

$$
\begin{aligned}
& {\left[\overline{\mathrm{c}}_{1}\right],\left[\overline{\mathrm{c}}_{2}\right]=} \text { activity of cations } 1 \text { and } 2 \text { adsorbed on the porous } \\
& \text { medium respectively, } \\
& \mathrm{Z}_{1}, \mathrm{Z}_{2} \quad= \text { valences of cations } 1 \text { and } 2 \text { respectively, and } \\
& \mathrm{K}
\end{aligned}
$$

The ratio between activity and the actual or analytical concentration of a substance is called the activity coefficient. For an infinitely dilute solution, the activity coefficient is 1 and the activity equals the actual concentration. The activities may be expressed in concentration units of molality, m (moles per 1,000 grams of water), molarity, M (moles per liter), equivalence, C (equivalents per liter, defined as $C_{i}=Z_{i} m_{i}$) or equivalent ionic fractions, N (dimensionless, defined as $N_{i}=Z_{i} m_{i} / \Sigma_{111}{ }_{j} Z_{j} m_{j}$). For homovalent exchange (in essence monovalentmonovalent exchange or divalent-divalent exchange) the selectivity coefficient K is dimensionless. However, for hetervalent exchange (in essence monovalent-divalent exchange) the selectivity coefficient K is not dimensionless but has concentration units of molality, molarity, or equivalence. In this study, the activities for the adsorbed cations will be expressed in equivalent fractions, N (dimensionless), while the activities for the cations in solution will be expressed in molality, m (moles per $1,000 \mathrm{~g}$), or equivalence, C (equivalents per liter). This follows the terminology suggested by Vanselow (1932) and adopted by most present day authors on the subject.

The relationship between activities and concentrations for the adsorbed phase is given as (Garrels and Christ, 1965)

$$
\begin{equation*}
\left[\bar{c}_{i}\right]=\bar{\lambda}_{i} \bar{N}_{i} \tag{17}
\end{equation*}
$$

where
$\left[\bar{C}_{i}\right]=$ the activity of cation i in the adsorbed phase,
$\bar{N}_{i}=$ concentration of cation i in the adsorbed phase, and
$\bar{\lambda}_{i}=$ rational activity coefficient (dimensionless) for cation i in the adsorbed phase.

The relationship between activities and concentrations for the solution phase is given as (Garrels and Christ, 1965)

$$
\begin{equation*}
\left[c_{i}\right]=\gamma_{i} m_{i} \tag{18}
\end{equation*}
$$

where
$\left[C_{i}\right]=$ the activity of cation i in the solution phase,
$m_{i}=$ concentration of cation i in the solution phase, and
$\gamma_{i}=$ individual ion activity coefficient (dimensionless) for cation i in the solution phase.

Substitution of equations (17) and (18) into equation (16) yields

$$
\begin{equation*}
\mathrm{K}=\frac{\bar{\lambda}_{2}^{\mathrm{Z}_{1}} \overline{\mathrm{~N}}_{2}^{\mathrm{Z}_{1}} \gamma_{1}^{\mathrm{Z}_{2}} \mathrm{~m}_{1}^{\mathrm{Z}_{2}}}{\bar{\lambda}_{1}^{\mathrm{Z}_{2}} \overline{\mathrm{~N}}_{1}^{\mathrm{Z}}{ }_{2} \gamma_{2}^{\mathrm{Z}_{1}}{ }_{\mathrm{m}_{2}}^{\mathrm{Z}_{1}}} \tag{19}
\end{equation*}
$$

The activity coefficients γ_{i} for the solution phase have been determined and for dilute solutions may be calculated using the Debye-Huckel equation (Hem, 1961)

$$
\begin{equation*}
-\log \gamma_{i}=\frac{A Z_{i}^{2} \sqrt{I}}{1+\mathrm{Ba}_{i} \sqrt{\mathrm{i}}} \tag{20}
\end{equation*}
$$

where
$\gamma_{i}=$ the activity coefficient of cation i in the solution phase,
$\mathrm{A}=$ constant relating to the solvent (for water at $25^{\circ} \mathrm{C}$ it is $0.5085)$,
$Z_{i}=$ valence of cation i,
$\mathrm{B}=$ constant relating to the solvent (for water at $25^{\circ} \mathrm{C}$ it is 0.3281×10^{8}),
$a_{i}=$ constant relating to the effective diameter of the cation in solution (on Figure 2, a_{i} for Ca^{++}is 6×10^{-8} and a_{i} for NH_{4}^{+}is 3×10^{-8}), and
$I=$ ionic strength of the solution (defined as $I=\sum_{a 11} \frac{m_{i} Z_{i}^{2}}{2}$).

The Debye-Huckel equation is valid for a solution with an ionic strength of about tenth. At greater ionic strengths the mean salt method (Garrels) and Christ, 1965) must be used to determine the activity coefficients. Plots of the activity coefficient versus ionic strength for Ca^{++}and for $\mathrm{NH}_{4}{ }^{+}$are shown on Figure 2. The activity coefficients for the adsorbed phase $\bar{\lambda}_{i}$ are unknown.

The law of mass action was used to calculate several adsorption isotherms (Figure 3) to illustrate the effects of valence and solution concentration on the cation exchange process. Recall that the adsorption isotherm is a plot of C_{i} / C_{o} versus $\bar{C}_{i} /$ CEC where C_{o} equals the solution concentration. Calculations of $\overline{\mathrm{C}}_{1}$ /CEC were made using the mass action law uncorrected for activity in either the solution phase or the adsorbed phase for varying concentration levels of C_{1} and C_{2} such that $C_{1}+C_{2}=C_{0}$, where C_{0} is kept constant.

Figure 2. -- Activity coefficients in solution for Calcium and Ammonium .

(a) Isotherm for monovalentmonovalent cation exchange.

in solution
(c) Isotherm for monovalentdivalent cation exchange for a solution concentration of $10 \mathrm{meq} / \ell$.

(b) Isotherm for monovalent divalent cation exchange for a solution concentration of $50 \mathrm{meq} / \mathrm{l}$.

Figure 3. -- Adsorption isotherms calculated from the law of mass action.

On Figure 3a is shown the adsorption isotherm for a monovalent-monovalent cation exchange process. On this Figure, a value of the selectivity coefficient equal to 1 represents a linear adsorption isotherm for which the proportion of cation 1 adsorbed on the porous medium is equal to the proportion of cation 1 in solution. A value of the selectivity coefficient greater than 1 indicates the proportion of cation 1 adsorbed on the porous medium is less than the proportion of cation 1 in solution. Recall from the previous discussion of the adsorption isotherm that this type of curve is obtained when cation 2 has a greater affinity for adsorption than does cation 1. The reverse exchange occurs when the selectivity coefficient has a value less than 1 which indicates that the proportion of cation 1 adsorbed on the porous medium is greater than the proportion of cation 1 in solution and occurs when cation 1 has a greater affinity foradsorption than does cation 2 . For the case of monovalentmonovalent exchange, the solution concentration C_{0} has no affect on the adsorption isotherm.

On Figures $3 b, 3 c$ and $3 d$ are shown adsorption isotherms for a monovalentdivalent cation exchange process where cation 1 is a monovalent cation and cation 2 is a divalent cation. For a monovalent-divalent cation exchange process, an infinite set of adsorption isotherms would be obtained for varying solution concentrations C_{0}. Comparison of figures $3 b$ and $3 c$ with $3 a$ illustrate the preference for adsorption for the cation with the higher valence. On both figures $3 b$ and $3 c$ for a given value of the selectivity coefficient, the adsorption isotherms are shifted from figure 3 a in the direction of the unfavorable to the favorable isotherm. This shift is more pronounced on Figure 3c
for a solution concentration of $10 \mathrm{meq} / \mathrm{L}$ than on Figure 3 b for a solution concentration of $50 \mathrm{meq} / \mathrm{L}$. The adsorption isotherm shown on Figure 3d is for constant selectivity coefficient and varying solution concentration. Figure 3d clearly shows that the preference for adsorption of the higher valence cation decreases with an increase in solution concentration.

2.6 Selectivity Coefficient

The selectivity coefficient K in the law of mass action may be determined for the particular cation exchange reaction being considered either from theoretical thermodynamic considerations or from a best fit to an experimentally determined adsorption isotherm. In general, the latter method yields better estimates of K and the procedure for this method will be presented.

The selectivity coefficient K defined by equation(19) is corrected for both activities in the solution phase and the adsorbed phase and can be considered a constant. If, however, the activity coefficients are neglected in the law of mass action then the selectivity coefficient $\mathrm{K}_{\mathrm{c}}^{\prime}$, uncorrected for activity in either the solution phase or the adsorbed phase, is defined as

$$
\begin{equation*}
\mathrm{K}_{\mathrm{c}}^{-}=\frac{\overline{\mathrm{N}}_{2}^{\mathrm{Z}_{1}}{ }_{\mathrm{m}_{1}}^{\mathrm{Z}_{2}}}{\overline{\mathrm{~N}}_{1}{ }_{2}{ }_{\mathrm{m}_{2}}{ }^{\mathrm{Z}_{1}}} \tag{21}
\end{equation*}
$$

Equation (21) was used to calcaulate the adsorption isotherms shown on Figure 3. While these adsorption isotherms show constant values for $\mathrm{K}_{\mathrm{C}}^{\prime}$ for individual curves, in actuality $\mathrm{K}_{\mathrm{c}}^{\prime}$ is a variable. The selectivity
coefficient K , corrected for activity in both the solution phase and the adsorbed phase, is a constant, but the selectivity coefficient $\mathrm{K}_{\mathrm{c}}^{\prime}$, uncorrected for activity in either the solution phase or the adsorbed phase is a variable.

The correction for activity in the solution phase is made by multiplying K_{c}^{\prime} by the experimentally known activity coefficients γ_{i} for the solution phase. Recall that the solution phase activity coefficients are calculated using the Debye-Huckel equation (20). This correction for activity in the solution phase is expressed mathematically as
where
$K_{c}=$ selectivity coefficient corrected for activity in the solution phase but uncorrected for activity in the adsorbed phase, and all other variables are as previously defined.

A preferable method to obtain K_{c} is to plot values of K_{c}^{\prime} versus ionic strength and extrapolate to zero ionic strength. For an infinitely dilute solution, the activity coefficients γ_{i} are 1 and K_{c} equals K_{c}^{\prime}. This method has the advantage that it helps eliminate errors from incomplete attainment of equilibrium and there is no need to calculate the solution activity coefficients γ_{i}. Van Bladel and Laudelout (1967) observed that the logarithm of K_{c}^{\prime} versus the square root of twice the ionic strength plots as a straight line.

The selectivity coefficient K corrected for activity in both the solution phase and the adsorbed phase is related to K_{c} by

$$
\begin{equation*}
\mathrm{K}=\frac{\mathrm{K}_{\mathrm{c}}{\overline{\lambda_{2}}}^{\mathrm{Z}_{1}}}{\overline{\bar{\lambda}}_{1} \mathrm{z}_{2}} \tag{23}
\end{equation*}
$$

The surface activity coefficients $\bar{\lambda}_{i}$ are not known. However, an estimate of K can be made by averaging the surface-activity coefficients over the entire range of composition of the solid material. The selectivity coefficient K can then be determined by the method of Gaines and Thomas (1953 and 1955) using the following approximation

$$
\begin{equation*}
\operatorname{Ln} K \simeq\left(Z_{1}-Z_{2}\right)+\int_{0}^{1} \operatorname{Ln} K_{c} d \bar{N}_{1} \tag{24}
\end{equation*}
$$

For the inverse formulation of the law of mass action given in equation (16) the term $\left(Z_{1}-Z_{2}\right)$ in equation (24) is replaced with the term $\left(Z_{2}-Z_{1}\right)$. The integration shown in equation (24) is carried out graphically.

As an example of this method, consider the binary exchange between calcium and ammonium cations. The equilibrium controlled cation exchange reaction for this case is written as

$$
\begin{equation*}
\left(2 \overline{\mathrm{C}}_{\mathrm{NH}_{4} \mathrm{Ads}}\right)^{\left(\mathrm{C}_{\mathrm{Ca}}\right)} \mathrm{Sol}^{\rightleftharpoons} \rightleftharpoons\left(\overline{\mathrm{C}}_{\mathrm{Ca}}\right)_{\mathrm{Ads}}+\left(2 \mathrm{C}_{\mathrm{NH}_{4}}\right)_{\mathrm{Sol}} \tag{25}
\end{equation*}
$$

The law of mass action for this reaction is written as

$$
\begin{equation*}
\mathrm{K}=\frac{\bar{\lambda}_{\mathrm{Ca}} \overline{\mathrm{~N}}_{\mathrm{Ca}}{ }^{\gamma_{\mathrm{NH}_{4}}{ }^{2} \mathrm{C}_{\mathrm{NH}_{4}}{ }^{2}}}{\bar{\lambda}_{\mathrm{NH}_{4}}^{2} \overline{\mathrm{~N}}_{\mathrm{NH}_{4}}{ }^{2}{ }^{\gamma_{\mathrm{Ca}}}{ }^{\mathrm{C}_{\mathrm{Ca}}}} \tag{26}
\end{equation*}
$$

where

$\mathrm{C}_{\mathrm{Ca}}, \mathrm{C}_{\mathrm{NH}_{4}}=$	concentration of calcium and ammonium in solution
	respectively in units of meq/L,
$\gamma_{\mathrm{Ca}}, \gamma_{\mathrm{NH}_{4}}=$	activity coefficient for calcium and ammonium in
	solution respectively (dimensionless),
$\overline{\mathrm{N}}_{\mathrm{Ca}}, \overline{\mathrm{N}}_{\mathrm{NH}_{4}}=$	equivalent fraction of calcium and ammonium occupying
	the cation exchange sites respectively (dimensionless),
$\bar{\lambda}_{\mathrm{Ca}}, \bar{\lambda}_{\mathrm{NH}_{4}=}=$	rational activity coefficient for the adsorbed calcium
	and ammonium cations respectively (dimensionless), and
$=$	selectivity coefficient corrected for activity in both
$\mathrm{K} \quad$	the solution and the adsorbed phases in meq/ L.

On Figure 4, an experimentally determined adsorption isotherm for a montmorillonite clay is shown for the replacement of ammonium by calcium for four solution concentrations, $50,25,10$ and $5 \mathrm{meq} / \mathrm{L}$. As can be seen, the preference for adsorption of the calcium cation decreases with increases in the ionic strength of the solution. From this data at values of $\bar{N}_{\mathrm{NH}_{4}}$ ranging from 0.1 to 0.9 , values of $\mathrm{K}_{\mathrm{c}}^{\prime}$ were calculated using equation (21) for each of the four solution concentrations.

Shown on Figure 5 are the plots of the logarithm of $\mathrm{K}_{\mathrm{c}}^{\prime}$ versus the square root of twice the ionic strength. Values of K_{c} were then determined by extrapolating to zero ionic strength.

Equation (24) rewritten for this case is

$$
\begin{equation*}
\operatorname{Ln} K=-1+\int_{0}^{1} \operatorname{Ln} K_{\mathrm{C}} \mathrm{dN}_{\mathrm{NH}_{4}} \tag{27}
\end{equation*}
$$

The integral in equation (27) was evaluated graphically using the plot of Ln K_{c} versus $\overline{\mathrm{N}}_{\mathrm{NH}_{4}}$ (Figure 6). The selectivity coefficient K was then calculated to be $17.6 \mathrm{meq} / \mathrm{L}$ for this particular case.

Figure 4. -- Adsorption isotherm for Calcium and Ammonium.

Figure 5. -- Logarithm of K_{C}^{\prime} versus square root of twice the ionic strength.

Figure 6. -- Natural logarithm of K_{c} versus the equivalent fraction of adsorbed ammonium.

In summary, the cation exchange process was considered as an equilibrium controlled reversible chemical reaction that could be quantitatively formulated in terms of the law of mass action. The adsorbed concentration for a given chemical species is dependent not only on its own solution concentration but also on the concentration of all other competing chemical species in solution. This requires that all chemical species involved in the cation exchange process be followed as they flow with the groundwater through the porous media. It remains then to combine the law of mass action with the partial differential equation which describes this movement by groundwater through the porous media of reacting solutes subject to cation exchange reactions.

SOLUTE TRANSPORT WITH ADSORPTION
The equation describing two-dimensional mass transport for a reacting solute subject to adsorption and desorption in flowing groundwater was derived from the principal of mass conservation in Appendix B, equation (B16). This equation is written as

$$
\begin{aligned}
& -\frac{\partial C}{\partial t}-\frac{\partial \bar{C}}{\partial t}=\frac{\partial}{\partial x}\left(C V_{x}\right)+\frac{\partial}{\partial y}\left(C V_{y}\right)+\frac{\partial}{\partial x}\left(-D_{x x} \frac{\partial C}{\partial x}\right) \\
& \quad+\frac{\partial}{\partial y}\left(-D_{y y} \frac{\partial C}{\partial y}\right)+\frac{\partial}{\partial x}\left(-D_{x y} \frac{\partial C}{\partial y}\right)+\frac{\partial}{\partial y}\left(-D_{y x} \frac{\partial C}{\partial x}\right) \\
& \\
& \quad+\frac{W C^{\prime}}{\varepsilon b}+\sum_{p=1}^{m}\left(\delta\left(x-x_{p}\right) \delta\left(y-y_{p}\right) \frac{Q_{p} C^{\prime}}{\varepsilon b}\right)
\end{aligned}
$$

where
$C=C(x, y, t)=$ dissolved concentration of the solute $\left(M / L^{3}\right)$, $\bar{C}=\bar{C}(x, y, t)=$ adsorbed concentration of the solute $\left(M / L^{3}\right)$, $C^{\prime}=C^{\prime}(x, y, t)=$ dissolved concentration of the solute in the source or sink fluid (M / L^{3}),
$\mathrm{V}_{\mathrm{x}}=\mathrm{V}_{\mathrm{x}}(\mathrm{x}, \mathrm{y}, \mathrm{t})=$ average interstitial velocity in the x -direction (L / T), $V_{y}=V_{y}(x, y, t)=$ average interstitial velocity in the y-direction (L/T), $\left(_{x x}, D_{y y}, D_{x y}, D_{y x}\right)=D_{i j}(x, y, t)=$ components of the coefficient of hydrodynamic dispersion ($\mathrm{L}^{2} / \mathrm{T}$),
$b=b(x, y, t) \quad=$ saturated thickness (L),
$\varepsilon=\varepsilon(\mathrm{x}, \mathrm{y}, \mathrm{t}) \quad=$ porosity (dimensionless)
$\mathrm{W}=\mathrm{W}(\mathrm{x}, \mathrm{y}, \mathrm{t}) \quad=$ volumetric water flux per unit area from a distributed source or sink (L / T),

$Q_{p}=Q_{p}(t)=$	volumetric water flux from a point source or sink at $\left(x_{p}, y_{p}\right)$,
	positive sign for withdrawal and negative sign for injection,
	there are m such points $\left(L^{3} / T\right)$,
$\delta(x-\xi)=$	Dirac delta function,
$t=$	time (T), and
$x, y=$	cartesian coordinates in the principal direction of hydraulic
	conductivity (L).

Equation (28) is referred to as the convection-dispersion equation with adsorption and incorporates the effects of: (1) convective transport in which chemical constituents are carried with the average motion of the flowing groundwater; (2) hydrodynamic dispersion, in which primarily variations in local velocity cause a spread of the chemical constituents from the average direction of groundwater flow; (3) fluid sources, in which water of a certain chemical composition is injected into water of a different chemical composition; and (4) adsorption/desorption reactions. Equation (28) contains two unknowns, C and \bar{C}. Thus, at least one additional equation is needed for solution.

The desirability of use of empirical equations such as the Freundlich isotherm is readily apparent in the solution of equation (28). Recall that most of the empirical equations assume that the adsorbed concentration \bar{C} is only a function of the dissolved concentration C (i.e. $\bar{C}=f(C)$) which can then be differentiated with respect to time and substituted directly into equation (28) to yield an equation in terms of only the dissolved concentration C. This equation may then be solved independently of all other equations. However, as was pointed out earlier, these empirical equations are applicable only under some rather stringent criteria, namely that the total solution concentration and composition remain fairly constant.

A more general solution will now be given with particular application to site restoration of solution mining. Only the case of binary cation exchange will be considered but the method can be extended to any number of exchanging solute species (Rubin and James, 1973). Both chemical species involved in the exchange process must be followed as they flow with the groundwater through the porous media. To do this, equation (28) is written for both chemical species in terms of C_{1} and C_{2} as

$$
\begin{align*}
-\frac{\partial C_{1}}{\partial t} & -\frac{\partial \bar{C}_{1}}{\partial t}=\frac{\partial}{\partial x}\left(C_{1} V_{x}\right)+\frac{\partial}{\partial y}\left(C_{1} V_{y}\right)+\frac{\partial}{\partial x}\left(-D_{x x} \frac{\partial C_{1}}{\partial x}\right) \\
& +\frac{\partial}{\partial y}\left(-D_{y y} \frac{\partial C_{1}}{\partial y}\right)+\frac{\partial}{\partial x}\left(-D_{x y} \frac{\partial C_{1}}{\partial y}\right)+\frac{\partial}{\partial y}\left(-D_{y x} \frac{\partial C_{1}}{\partial x}\right) \tag{29}\\
& +\frac{W C_{1}^{\prime}}{\varepsilon b}+\sum_{p=1}^{m}\left(\delta\left(x-x_{p}\right) \delta\left(y-y_{p}\right) \frac{Q_{p} C_{1}^{\prime}}{\varepsilon b}\right),
\end{align*}
$$

and

$$
\begin{align*}
-\frac{\partial C_{2}}{\partial t} & -\frac{\partial \bar{C}_{2}}{\partial t}=\frac{\partial}{\partial x}\left(C_{2} V_{x}\right)+\frac{\partial}{\partial y}\left(C_{2} V_{y}\right)+\frac{\partial}{\partial x}\left(-D_{x x} \frac{\partial C_{2}}{\partial x}\right) \\
& +\frac{\partial}{\partial y}\left(-D_{y y} \frac{\partial C_{2}}{\partial y}\right)+\frac{\partial}{\partial x}\left(-D_{x y} \frac{\partial C_{2}}{\partial y}\right)+\frac{\partial}{\partial y}\left(-D_{y x} \frac{\partial C_{2}}{\partial x}\right) \tag{30}\\
& +\frac{W C_{2}^{\prime}}{\varepsilon b}+\sum_{p=1}^{m}\left(\delta\left(x-x_{p}\right) \delta\left(y-y_{p}\right) \frac{Q_{p} C_{2}^{\prime}}{\varepsilon b}\right) .
\end{align*}
$$

Equations (29) and (30) are coupled through two additional equations which describe the cation exchange process. The first of these equations is the law of mass action which may be written as

$$
\begin{equation*}
\mathrm{K}=\frac{\bar{\lambda}_{2}^{\mathrm{Z}_{1}} \overline{\mathrm{~N}}_{2}^{\mathrm{Z}_{1}} \gamma_{2}^{\mathrm{Z}_{2}} \mathrm{c}_{1}^{\mathrm{Z}_{2}}}{\bar{\lambda}_{1}^{\mathrm{Z}_{2}} \overline{\mathrm{~N}}_{1}^{\mathrm{Z}_{2}} \gamma_{2}^{\mathrm{Z}_{1}} \mathrm{c}_{2}^{\mathrm{Z}_{2}}} \tag{31}
\end{equation*}
$$

where
$C_{1}, C_{2}=$ dissolved concentration of cations 1 and 2 respectively $\left(M / L^{3}\right)$, $\overline{\mathrm{N}}_{1}, \overline{\mathrm{~N}}_{2}=$ equivalent fraction of cations 1 and 2 occupying the cation exchange sites respectively, defined as $\overline{\mathrm{C}}_{1} /$ CEC and $\overline{\mathrm{C}}_{2}$ /CEC respectively (dimensionless),
$\gamma_{1}, \gamma_{2}=$ activity coefficients for cations 1 and 2 in solution respectively (dimensionless),
$\bar{\lambda}_{1}, \bar{\lambda}_{2}=$ rational activity coefficients for the adsorbed cations 1 and 2 respectively (dimensionless), and
$\mathrm{K} \quad=$ selectivity coefficient.
The second equation is obtained from requiring that all of the cation exchange sites must be filled and for binary cation exchange are filled with either $\overline{\mathrm{C}}_{1}$ or $\overline{\mathrm{C}}_{2}$. Also recall that the total cation exchange sites for a given porous medium is a constant and is equal to the cation exchange capacity (CEC). This is expressed mathematically as

$$
\begin{equation*}
\overline{\mathrm{C}}_{1}+\overline{\mathrm{C}}_{2}=\mathrm{CEC} \tag{32}
\end{equation*}
$$

Equations (29), (30), (31) and (32) define a set of 4 equations and 4 unknowns. The direct simultaneous solution of these equations could be accomplished but is not desirable since (1) the problem would be very large (with any sort of numerical method solution a value of $C_{1}, \bar{C}_{1}, C_{2}$ and \bar{C}_{2} must be solved for at each of the n nodes, the
dimension of the problem would therefore be $4 n \times 4 n$), and (2) the inclusion of the law of mass action results in a nonlinear set of equations which is difficult to solve. The complexity and size of the problem is reduced using the following alternative formulations

Equation (31) is rewritten as

$$
\begin{equation*}
\mathrm{K}=\frac{\bar{\lambda}_{2}^{\mathrm{z}_{1}}\left(\overline{\mathrm{C}}_{2} / \mathrm{CEC}\right)^{\mathrm{Z}_{1}} \gamma_{1}^{\mathrm{Z}_{2}} \mathrm{c}_{1}{ }^{\mathrm{Z}_{2}}}{\bar{\lambda}_{1}{ }^{\mathrm{Z}_{2}}\left(\overline{\mathrm{C}}_{1} / \mathrm{CEC}\right)^{\mathrm{z}_{2}}{ }_{\gamma_{2}{ }^{\mathrm{Z}_{1}} \mathrm{C}_{2}{ }^{\mathrm{Z}_{1}}} .} \tag{33}
\end{equation*}
$$

Substitution of equation (32) into equation (33) and expansion yields

$$
\begin{equation*}
\mathrm{K} \bar{\lambda}_{1}^{\mathrm{Z}_{2}}{\left(\overline{\mathrm{C}}_{1} / \text { CEC }\right)^{\mathrm{Z}_{2}}{ }_{\gamma_{2}}{ }^{\mathrm{Z}_{1}} \mathrm{C}_{2}^{\mathrm{Z}_{1}}-\bar{\lambda}_{2}^{\mathrm{Z}_{1}}\left(1-\overline{\mathrm{C}}_{1} / \text { CEC }{ }^{\mathrm{Z}_{1}}{ }_{\gamma_{1}}{ }^{\mathrm{Z}_{2}} \mathrm{C}_{1}^{\mathrm{Z}_{2}}=0 . . .\right.} \tag{34}
\end{equation*}
$$

Differentiation of equation (34) with respect to time yields

$$
\begin{align*}
& \mathrm{K} \bar{\lambda}_{1}{ }^{\mathrm{Z}_{2}}\left(\overline{\mathrm{C}}_{1} / \mathrm{CEC}\right)^{\mathrm{Z}_{2}}{ }_{\gamma_{2}}{ }^{\mathrm{Z}_{1}} \mathrm{Z}_{1} \mathrm{C}_{2}{ }^{\mathrm{Z}_{1}-1} \frac{\partial \mathrm{C}_{2}}{\partial \mathrm{t}} \\
& +\mathrm{K} \bar{\lambda}_{1}^{\mathrm{Z}_{2}} \gamma_{2}^{\mathrm{Z}_{1}} \mathrm{C}_{2} \mathrm{Z}_{1} \mathrm{z}_{2} \frac{\overline{\mathrm{C}}_{1}^{\mathrm{Z}_{2}-1}}{\mathrm{CEC}^{\mathrm{Z}}}{ }^{2} \quad \frac{\partial \overline{\mathrm{C}}_{1}}{\partial \mathrm{t}} \tag{35}
\end{align*}
$$

$$
\begin{aligned}
& +\bar{\lambda}_{2}^{\mathrm{Z}_{1}} \gamma_{1}{ }_{2}^{Z_{2}} \mathrm{C}_{1}^{\mathrm{Z}_{2}} \mathrm{Z}_{1} \frac{\left(1-\overline{\mathrm{C}}_{1} \mathrm{CEC}\right)^{\mathrm{Z}_{1}-1}}{\mathrm{CEC}} \frac{\partial \overline{\mathrm{C}}_{1}}{\partial \mathrm{t}}=0 .
\end{aligned}
$$

$$
\begin{align*}
& g_{1}=-\bar{\lambda}_{2}^{Z_{1}}\left(1-\bar{C}_{1} / \text { CEC }\right)^{Z_{1}}{ }^{\gamma_{1}}{ }^{Z_{2}} Z_{2} c_{1}{ }^{Z_{2}-1} \text {, } \tag{36}\\
& \mathrm{g}_{2}=-\mathrm{K} \bar{\lambda}_{1}{ }^{\mathrm{Z}_{2}}\left(\overline{\mathrm{C}}_{1} / \text { CEC }\right)^{\mathrm{Z}_{2}} \gamma_{2}^{\mathrm{Z}_{1}} \mathrm{z}_{1} \mathrm{C}_{2}{ }^{\mathrm{Z}_{1}-1} \text {, and } \tag{37}\\
& g_{3}=-K \bar{\lambda}_{1}{ }^{Z_{2}} \gamma_{2}{ }^{Z_{1}} C_{2}{ }^{Z_{1}} Z_{2} \frac{\bar{C}_{1}{ }^{Z_{2}-1}}{C_{C E C}{ }^{Z_{2}}}-\bar{\lambda}_{2}^{Z_{1}} \gamma_{1}{ }^{Z_{2}} C_{1}{ }^{Z_{2}} Z_{1} \frac{\left(1-\bar{C}_{1} / C E C\right)^{Z_{1}-1}}{\operatorname{CEC}}{ }^{-1} \tag{38}
\end{align*}
$$

then equation (35) is written as

$$
\begin{equation*}
\mathrm{g}_{1} \frac{\partial \mathrm{C}_{1}}{\partial \mathrm{t}}-\mathrm{g}_{2} \frac{\partial \mathrm{C}_{2}}{\partial \mathrm{t}}=\mathrm{g}_{3} \frac{\partial \overline{\mathrm{C}}_{1}}{\partial \mathrm{t}} \tag{39}
\end{equation*}
$$

or as

$$
\begin{equation*}
\frac{\partial \overline{\mathrm{C}}_{1}}{\partial \mathrm{t}}=\frac{\mathrm{g}_{1}}{\mathrm{~g}_{3}} \frac{\partial \mathrm{C}_{1}}{\partial \mathrm{t}}-\frac{\mathrm{g}_{2}}{\mathrm{~g}_{3}} \frac{\partial \mathrm{C}_{2}}{\partial \mathrm{t}} \tag{40}
\end{equation*}
$$

From differentiation of equation (32)

$$
\begin{equation*}
\frac{\partial \overline{\mathrm{C}}_{1}}{\partial \mathrm{t}}=-\frac{\partial \overline{\mathrm{C}}_{2}}{\partial \mathrm{t}} . \tag{41}
\end{equation*}
$$

Substitution of equation (41) into equation (40) yields

$$
\begin{equation*}
\frac{\partial \bar{C}_{2}}{\partial t}=\frac{g_{2}}{g_{3}} \frac{\partial C_{2}}{\partial t}-\frac{g_{1}}{g_{3}} \frac{\partial C_{1}}{\partial t} \tag{42}
\end{equation*}
$$

Substitution of equation (40) into the convection-dispersion equation for cation 1 (equation 29) and substitution of equation (42) into the convection-dispersion equation for cation 2 (equation 30) yields

$$
\begin{align*}
& -\left(1+\frac{g_{1}}{g_{3}}\right) \frac{\partial C_{1}}{\partial t}+\left(\frac{g_{2}}{g_{3}}\right) \frac{\partial C_{2}}{\partial t}=\frac{\partial}{\partial x}\left(C_{1} V_{x}\right)+\frac{\partial}{\partial y}\left(C_{1} V_{y}\right) \\
& +\frac{\partial}{\partial x}\left(-D_{x x} \frac{\partial C_{1}}{\partial x}\right)+\frac{\partial}{\partial y}\left(-D_{y y} \frac{\partial C_{1}}{\partial y}\right)+\frac{\partial}{\partial x}\left(-D_{x y} \frac{\partial C_{1}}{\partial y}\right) \tag{43}\\
& +\frac{\partial}{\partial y}\left(-D_{y x} \frac{\partial C_{1}}{\partial x}\right)+\frac{W C_{1}^{\prime}}{\varepsilon b}+\sum_{p=1}^{m}\left(\delta\left(x-x_{p}\right) \delta\left(y-y_{p}\right) \frac{Q_{p} C_{1}^{\prime}}{\varepsilon b}\right)
\end{align*}
$$

and

$$
\begin{align*}
& -\left(1+\frac{g_{2}}{g_{3}}\right) \frac{\partial C_{2}}{\partial t}+\left(\frac{g_{1}}{g_{3}}\right) \frac{\partial C_{1}}{\partial t}=\frac{\partial}{\partial x}\left(C_{2} V_{x}\right)+\frac{\partial}{\partial y}\left(C_{2} V_{y}\right) \\
& +\frac{\partial}{\partial x}\left(-D_{x x} \frac{\partial C_{2}}{\partial x}\right)+\frac{\partial}{\partial y}\left(-D_{y y} \frac{\partial C_{2}}{\partial y}\right)+\frac{\partial}{\partial x}\left(-D_{x y} \frac{\partial C_{2}}{\partial y}\right) \tag{44}\\
& +\frac{\partial}{\partial y}\left(-D_{y x} \frac{\partial C_{2}}{\partial x}\right)+\frac{W C_{2}^{\prime}}{\varepsilon b}+\sum_{p=1}^{m}\left(\delta\left(x-x_{p}\right) \delta\left(y-y_{p}\right) \frac{Q_{p} C_{2}^{\prime}}{\varepsilon b}\right) .
\end{align*}
$$

The unknowns $\overline{\mathrm{C}}_{1}$ and $\overline{\mathrm{C}}_{2}$ do not appear explicitly in either equation (43) or (44) but are embedded in the variable coefficients $\mathrm{g}_{1}, \mathrm{~g}_{2}$ and g_{3}. This allows a leap-frog solution technique to be used wherein equations (43) and (44) are solved iteratively with the partial differential equation for groundwater flow. A schematic of the leap-frog solution is shown on Figure 7. The groundwater flow equation is first solved for the head distribution in the aquifer at the specified time from which the values of groundwater velocity V and the dispersion coefficient D are obtained. Using

Figure 7. -- Schematic of the leap-frog solution technique
the initial concentrations for $\mathrm{C}_{1}, \overline{\mathrm{C}}_{1}, \mathrm{C}_{2}$ and $\overline{\mathrm{C}}_{2}$, initial values of g_{1}, g_{2} and g_{3} are obtained from equations (36), (37) and (38). The parameters V, D, g_{1}, g_{2} and g_{3} are then held constant over the next time interval and the two solute transport equations, (43) and (44), are solved simultaneously for new values of C_{1} and C_{2}. These new values of C_{1} and C_{2} are used in equations (31) and (32) to solve for new values of $\overline{\mathrm{C}}_{1}$ and $\overline{\mathrm{C}}_{2}$. The groundwater flow equation is solved again for the head distribution in the aquifer at a new given time from which updated values of V and D are obtained. Using the values of $\mathrm{C}_{1}, \overline{\mathrm{C}}_{1}$, C_{2} and \bar{C}_{2} obtained in the last iteration, updated values of g_{1}, g_{2} and g_{3} are calculated and the leap-frog procedure is repeated as before. The partial differential equation for groundwater flow and the two coupled partial differential equations of solute transport, equations (43) and (44) were solved subject to the appropriate boundary conditions by the Galerkin-finite element method. In the finite element method, approximating integral equations are formed to replace the original partial differential equations. The integration of these integral equations is required. Because the transport equations contain the nonlinear variable coefficients g_{1}, g_{2} and g_{3}, which are dependent on concentration changes, these integrations must be repeated frequently. Triangular elements and linear shape functions were used in the solution by the Galerkinfinite element method. This allowed the use of some very powerful integration formulas which considerably reduced the computational effort and time required from that which would have otherwise been required. The details of the Galerkin-finite element methad used to the solution of the problem of contaminant transport with adsorption is presented in the next section of the dissertation.

CHAPTER IV

GALERKIN-FINITE ELEMENT METHOD

4.1 Methodology

The fundamental basis of the finite element method consists of formulating approximating integral equations to replace the original governing differential equation. There are several methods to formulating these approximate integral equations which can be grouped into variational techniques or weighted residuals techniques. The RayleighRitz method based on the calculus of variations has been used very extensively in the finite element procedure. However, the method of weighted residuals has been shown to be much more general than methods based on variational techniques. Of the weighted residual methods, the Galerkin method has been found best for mass-transport equations and is the method used here.

4.1.1 Finite Elements

In the finite element method, the domain of interest is discretized into a number of subdomains called elements (Figure 8). Triangular elements are used here although other shapes may be used. The triangular element can be used to represent irregular boundaries and also can be concentrated in those regions of the domain where a rapidly varying solution is expected. The complexity of the computation using triangular finite elements is less than that for many other shapes. Using these elements, a continuous function is replaced by values of the function that are specified at a finite number of discrete points called nodes

Figure 8. -- Finite element discretization.
(Figure 8). Function values between the nodes are calculated using piecewise continuous interpolating functions defined for each element. The boundary of the domain is represented by a series of piecewise continuous segments.

4.1.2 Galerkin Approximation

Consider a linear differential operator of the form

$$
\begin{equation*}
\mathrm{L}(\mathrm{u})=0 \quad \text { on Domain } \mathrm{D} \text {. } \tag{45}
\end{equation*}
$$

To solve $L(u)=0$, assume a trial solution $\hat{u}(x, y, t)$ which is made up of a linear combination of suitable shape functions that satisfy the essential boundary conditions of the problem. The trial solution can be expressed as

$$
\begin{equation*}
u(x, y, t) \simeq \hat{u}(x, y, t)=\sum_{j=1}^{n}\left(G_{j}(t) \quad \phi_{j}(x, y)\right) . \tag{46}
\end{equation*}
$$

In equation (46) $\hat{\mathrm{u}}$ is a series approximation to u and ϕ_{j} is a set of independent shape functions (also called basis, coordinate or trial functions) which are specified beforehand. The G_{j} are undetermined coefficients and n represents the number of nodal points. As n appoaches infinity, the trial solution $\hat{\mathrm{u}}$ approaches the actual solution u . However, for a finite series, the trial solution is an approximation to the actual solution.

Substitution into the linear differential operator L of the trial solution $\hat{\mathrm{u}}$ for the exact solution u will result in a residual R. This residual is defined by

$$
\begin{equation*}
R(x, y, t)=L(\hat{u})=L\left[\sum_{j=1}^{n} G_{j}(t) \phi_{j}(x, y)\right] \tag{47}
\end{equation*}
$$

If the trial solution were the exact solution, the residual would be zero. This residual is forced to be zero, in an average sense over the entire domain D,through the selection of the undetermined coefficients G_{j}. The G_{j} are calculated by setting the weighted integral of the residual to zero. In the Galerkin method, the shape functions are used as the weighting functions and the resulting integral formed is

$$
\begin{equation*}
\iint_{D} R(x, y, t) \phi_{i}(x, y) d x d y=0 \tag{48}
\end{equation*}
$$

$$
i=1,2, \ldots n
$$

or in terms of the linear operator L is

$$
\begin{equation*}
\iint_{D} L\left[\sum_{j=1}^{n} G_{j}(t) \quad \phi_{j}(x, y)\right] \quad \phi_{i}(x, y) d x d y=0 \tag{49}
\end{equation*}
$$

$$
i=1,2, \ldots n .
$$

From this are obtained n linear equations which can be solved for the n values of G_{j}.

4.1.3 Shape Functions

The shape functions are selected to have characteristics that conform to the differential equation and also result in simplified equations for ease of computation. Two common shape functions that are used are linear and cubic polynomials. In this study, linear shape functions were used because the computational effort for the integration
is much less than with the cubic polynomials but still provided reliable results.

The computational effort required by the finite element method is greatly minimized by using local shape functions v^{e}. These local shape functions are defined such that v_{i}^{e} is nonzero over only element e, equal to unity at node i, and equal to zero at all other nodes. Thus, for each element e with nodes i, j, k there are only three non zero shape functions, v_{i}^{e}, v_{j}^{e} and v_{k}^{e} (Figure 9a, b and c). These linear shape functions are defined as

$$
\begin{align*}
& v_{i}^{e}(x, y)=a_{i}+b_{i} x+c_{i} y, \\
& v_{j}^{e}(x, y)=a_{j}+b_{j} x+c_{j} y, \text { and } \tag{50}\\
& v_{k}^{e}(x, y)=a_{k}+b_{k} x+c_{k} y
\end{align*}
$$

where x, y are cartesian coordinates and a, b, c are constant coefficients to be determined from the above definition. Referring to Figure 9

$$
\begin{align*}
& v_{i}^{e}\left(x_{i}, y_{i}\right)=1=a_{i}+b_{i} x_{i}+c_{i} y_{i}, \\
& v_{i}^{e}\left(x_{j}, y_{j}\right)=0=a_{i}+b_{i} x_{j}+c_{i} y_{j} \text {, and } \tag{51}\\
& v_{i}^{e}\left(x_{k}, y_{k}\right)=0=a_{i}+b_{i} x_{k}+c_{i} y_{k} .
\end{align*}
$$

Solution of equation (51) for a_{i}, b_{i}, and c_{i} yields

(a) $v_{i}^{e}=\frac{1}{2 A}\left[\left(x_{j} y_{k}-x_{k} y_{j}\right)+\left(y_{j}-y_{k}\right) x+\left(x_{k}-x_{j}\right) y\right]$

(b) $v_{j}^{e}=\frac{1}{2 A}\left[\left(x_{k} y_{i}-x_{i} y_{k}\right)+\left(y_{k}-y_{i}\right) x+\left(x_{i}-x_{k}\right) y\right]$

(c) $v_{k}^{e}=\frac{1}{2 A}\left[\left(x_{i} y_{j}-x_{j} y_{i}\right)+\left(y_{i}-y_{j}\right) x+\left(x_{j}-x_{i}\right) Y\right]$

Figure 9. -- Local shape functions.

$$
\begin{align*}
& a_{i}=\frac{1}{2 A \Delta}\left(x_{j} y_{k}-x_{k} y_{j}\right), \\
& b_{i}=\frac{1}{2 A \Delta}\left(y_{j}-y_{k}\right), \quad \text { and } \tag{52}\\
& c_{i}=\frac{1}{2 A \Delta}\left(x_{k}-x_{j}\right)
\end{align*}
$$

where $A \Delta$ equals the area of the triangular element bounded by nodes $\mathrm{i}, \mathrm{j}, \mathrm{k}$ and is given by Zienkiewicz (1977) as

$$
A \Delta=\frac{1}{2}\left|\begin{array}{ccc}
1 & x_{i} & y_{i} \tag{53}\\
1 & x_{j} & y_{j} \\
1 & x_{k} & y_{k}
\end{array}\right|
$$

Substitution of the values for a_{i}, b_{i} and c_{i} given in equation (52) into the expression for $\mathrm{v}_{\mathrm{i}}^{\mathrm{e}}$ given in equation (50) yields

$$
\begin{equation*}
v_{i}^{e}(x, y)=\frac{1}{2 A \Delta}\left[\left(x_{j} y_{k}-x_{k} y_{j}\right)+\left(y_{j}-y_{k}\right) x+\left(x_{k}-x_{j}\right) y\right] \tag{54}
\end{equation*}
$$

for x , y in element e , otherwise $\mathrm{v}_{\mathrm{i}}^{\mathrm{e}}(\mathrm{x}, \mathrm{y})=0$. In a similar manner $\mathrm{v}_{\mathrm{j}}^{\mathrm{e}}$ and $\mathrm{v}_{\mathrm{k}}^{\mathrm{e}}$ were calculated as

$$
\begin{equation*}
v_{j}^{e}(x, y)=\frac{1}{2 A \Delta}\left[\left(x_{k} y_{i}-x_{i} y_{k}\right)+\left(y_{k}-y_{i}\right) x+\left(x_{i}-x_{k}\right) y\right] \tag{55}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{k}^{e}(x, y)=\frac{1}{2 A \Delta}\left[\left(x_{i} y_{j}-x_{j} y_{i}\right)+\left(y_{i}-y_{j}\right) x+\left(x_{j}-x_{i}\right) y\right] \tag{56}
\end{equation*}
$$

for x, y in element e, otherwise $v_{j}^{e}(x, y)$ and $v_{k}^{e}(x, y)=0$. These are shown graphically on Figure 9a, b and c. Using local shape functions,
the approximating trial solution given as equation (46) is rewritten as

$$
\begin{equation*}
0(x, y, t)=G_{i}(t) v_{i}^{e}(x, y)+G_{j}(t) v_{j}^{e}\left(x, y+G_{k}(t) v_{k}^{e}(x, y)\right. \tag{57}
\end{equation*}
$$

where x, y are in element e.
The global shape function ϕ_{i} is the union of all of the local shape functionsthat are non zero at node i. This is expressed by

$$
\begin{equation*}
\phi_{i}(x, y)=v_{i}^{e_{1}}{ }^{1} \quad{ }_{v_{i}}^{e_{2}} \quad \mathrm{U} \ldots \mathrm{U} \quad \mathrm{v}_{\mathrm{i}}{ }^{\mathrm{e}_{\mathrm{p}}} \tag{58}
\end{equation*}
$$

where $\left\{v_{i}{ }^{e_{1}}, v_{i}{ }^{e_{2}} \ldots v_{i}{ }^{e}{ }^{p}\right\}$ is the set of all local shape functions that are non zero at node i. The global shape function ϕ_{i} is non zero only over elements which have node i as a vertice, equal to unity at node i, and equal to zero at all other nodes. The global shape function ϕ_{i} is shown graphically on Figure 10 for a node which has five non zero local shape functions.

From this definition of ϕ_{i}, the value of the approximating trial solution at node i is rewritten as

$$
\begin{equation*}
\hat{u}\left(x_{i}, y_{i}\right)=G_{i}(t) \phi_{i}\left(x_{i}, y_{i}\right)=G_{i}(t) \tag{59}
\end{equation*}
$$

since $\phi_{i}\left(x_{i}, y_{i}\right)$ is the only non zero global shape function at node i and it has a value of unity. Thus, the undetermined coefficients, $G_{i}(t)$ represent the values of the function \hat{u} at the nodes.

4.1.4 Integrations

In the finite element method, the integration of the approximating integral equation given in equation (49) is required. The integration

Figure 10. -- Global shape function.
is greatly simplified for linear shape function and triangular elements if an area-coordinate system ℓ is utilized as shown on Figure 11. The area coordinates of point P (Figure 11) are defined as

$$
\begin{align*}
& \ell_{i}=A \Delta_{i / A \Delta} \\
& \ell_{j}=A \Delta_{j / A \Delta, \text { and }} \tag{60}\\
& \ell_{k}=A \Delta_{k / A \Delta}
\end{align*}
$$

Where $A \Delta_{i}$ is the area of the triang1e bounded by nodes j, k, and the point $P, A \Delta_{j}$ is the area of the triangle bounded by nodes i, k, and the point P, and $\mathrm{A} \Delta_{k}$ is the area of the triangle bounded by nodes i, j, and the point p. These function possess the properties that

$$
\begin{align*}
& l_{i}+\ell_{j}+\ell_{k}=1, \\
& \ell_{i}=1 \text { at node } i, \ell_{i}=0 \text { at nodes } j \text { and } k, \\
& \ell_{j}=1 \text { at node } j, \ell_{j}=0 \text { at nodes } i \text { and } k, \text { and } \tag{61}\\
& \ell_{k}=1 \text { at node } k, \ell_{k}=0 \text { at nodes } i \text { and } j .
\end{align*}
$$

Note that these properties of ℓ are the same properties as those for the local shape functions v^{e}. In fact, it can be shown that the area coordinate system ℓ is identical with the local shape functions v^{e}. From equations (60) and (53)

$$
\ell_{i}=\frac{A \Delta_{i}}{A \Delta}=\frac{1}{2 A \Delta}\left|\begin{array}{ccc}
1 & x & y \tag{62}\\
1 & x_{j} & y_{j} \\
1 & x_{k} & y_{k}
\end{array}\right|
$$

Figure 11. -- Triangular element and area-coordinate system.

Expansion of equation (62) yields

$$
\begin{equation*}
\ell_{i}=\frac{1}{2 A \Delta} \quad\left(y_{j} x_{k}-x_{k} y_{j}\right)+\left(y_{j}-y_{k}\right) x+\left(x_{k}-y_{j}\right) y \tag{63}
\end{equation*}
$$

which is the same as the expression for v_{i}^{e} given by equation (54). Thus

$$
\begin{equation*}
\ell_{i}=v_{i}^{e} . \tag{64}
\end{equation*}
$$

Similarly, it can be shown that

$$
\begin{align*}
\ell_{j} & =v_{j}^{e}, \text { and } \tag{65}\\
\ell_{k} & =v_{k}^{e}
\end{align*}
$$

The advantage of using the area-coordinate system is the existence of some very powerful integration formulas given by Segerlind. (1976) as

$$
\begin{equation*}
\int_{L} \ell_{i}^{a} \quad \ell_{j}^{b} \quad d 1=\frac{a!b!}{(a+b+1)!} L \tag{66}
\end{equation*}
$$

for length integrals and

$$
\begin{equation*}
\iint_{A} l_{i}^{a} \ell_{j}^{b} \quad l_{k}^{c} \quad d A=\frac{a!b!c!}{(a+b+c+2)!} 2 A \tag{67}
\end{equation*}
$$

for area integrals, where a and b are specified integers.
Substitution of $\ell_{i}=v_{i}^{e}, \ell_{j}=v_{j}^{e}$ and $\ell_{k}=v_{k}^{e}$ into equations (66) and (67) yields

$$
\begin{gather*}
\int_{L}\left(v_{i}^{e}\right)^{a}\left(v_{j}^{e}\right)^{b} d \ell=\frac{a!b!}{(a+b+1)!} L, \text { and } \tag{68}\\
\int_{A}\left(v_{i}^{e}\right)^{a}\left(v_{j}^{e}\right)^{b}\left(v_{k}^{e}\right)^{c} d A=\frac{a!b!c!}{(a+b+c+2)!} 2 A . \tag{69}
\end{gather*}
$$

Integrals of the form of equations (68) and (69) occur frequently in the finite element method. These integration formulas will be used in the solution of the groundwater flow equation and in the mass-transport equations.

4.2 Solution of the Groundwater F1ow Equation

4.2.1 Galerkin Approximation

The equation describing the transient two-dimensional areal flow of groundwater in a confined nonhomogeneous anisotropic aquifer is expressed as (Bear, 1979 or McWhorter and Sunada, 1977)

$$
\begin{align*}
& \frac{\partial}{\partial x}\left(T_{x} \frac{\partial h}{\partial x}\right)+\frac{\partial}{\partial y}\left(T_{y} \frac{\partial h}{\partial y}\right)=S \frac{\partial h}{\partial t}+W+\sum_{p=1}^{m}\left(\delta\left(x-x_{p}\right) \delta\left(y-y_{p}\right) Q_{p}\right) \tag{70}\\
& \text { where } T_{x}=T_{x}(x, y)= \text { transmissivity in the } x \text {-direction }\left(L^{2} / T\right), \\
& T_{y}=T_{y}(x, y)= \text { transmissivity in the } y \text {-direction }\left(L^{2} / T\right), \\
& h=h(x, y, t)= \text { potentiometric head }(L), \\
& S=S(x, y)= \text { storage coefficient (dimensionless), } \\
& W=W(x, y, t)= \text { distributed volumetric water flux per unit area, } \\
& \text { positive sign for discharge and negative sign } \\
& \text { for recharge (L/T), } \\
& Q_{p}=Q_{p}(t)= \text { volumetric water flux at a point located at }\left(x_{p}, y_{p}\right), \\
& \text { positive sign for withdrawal and negative sign } \\
&\text { for injection, there are } \left.m \text { such points (} L^{3} / T\right), \\
&= \text { Dirac Delta function, defined as } \delta(x-\xi)=0 \text { if }, \\
& x \neq \xi \text { and } \int_{\xi-\varepsilon} \delta(x-\xi) d x=1
\end{align*}
$$

```
\(\mathrm{t}=\) time ( T ), and
\(x, y=\) cartesian coordinates in the principal direction
    of transmissivity (L).
```

The linear differential operator corresponding to equation (70) is defined as

$$
L(h)=\frac{\partial}{\partial x}\left(T_{x} \frac{\partial h}{\partial x}\right)+\frac{\partial}{\partial y}\left(T_{y} \frac{\partial h}{\partial y}\right)-S \frac{\partial h}{\partial t}-W
$$

$$
\begin{equation*}
-\sum_{p=1}^{m}\left(\delta\left(x-x_{p}\right) \delta\left(y-y_{p}\right) Q_{p}\right)=0 \tag{71}
\end{equation*}
$$

Equation (71) is solved over the Domain D and enclosed by the Boundary B by the Galerkin-finite element method. The boundary conditions are given as

$$
\begin{equation*}
\frac{\partial h}{\partial x}=\text { constant }=\left.\frac{\partial h}{\partial x}\right|_{B} \quad \text { on Boundary } B \tag{72}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial h}{\partial y}=\text { constant }=\left.\frac{\partial h}{\partial y}\right|_{B} \quad \text { on Boundary } B \tag{73}
\end{equation*}
$$

where $\frac{\partial h}{\partial x}$ and $\frac{\partial h}{\partial y}$ are the outward pointing derivatives from the boundary in the x and y directions respectively. These boundary conditions represent constant gradient boundaries (for a confined aquifer with constant values of transmissivity in time, these boundary conditions also represent
constant flux boundaries). For the special case where $\left.\frac{\partial h}{\partial x}\right|_{B}=0$ and $\left.\frac{\partial h}{\partial y}\right|_{B}=0$ then the boundary conditions represent a no flow boundary. To solve $\downarrow \mathrm{L}(\mathrm{h})=0$ a trial solution given as

$$
\begin{equation*}
h(x, y, t) \approx \hat{h}(x, y, t)=\sum_{j=1}^{n}\left(G_{j}(t) \phi_{j}(x, y)\right) \tag{74}
\end{equation*}
$$

is used. Substitution of the trial solution given by equation (74) into the linear differential operator $\mathrm{L}(\mathrm{h})$ given by equation (71) yields the residual

$$
\begin{align*}
R(x, y, t) & =L(\hat{h})=\frac{\partial}{\partial x}\left[T_{x} \frac{\partial}{\partial x}\left(\sum_{j=1}^{n}\left(G_{j}(t) \phi_{j}(x, y)\right)\right)\right] \\
& \left.+\frac{\partial}{\partial y}\left[T_{y} \frac{\partial}{\partial y} \quad \sum_{j=1}^{n}\left(G_{j}(t) \phi_{j}(x, y)\right)\right)\right] \tag{75}\\
& -s \frac{\partial}{\partial t}\left[\sum_{j=1}^{n}\left(G_{j}(t) \phi_{j}(x, y)\right)\right] \\
& -W-\sum_{p=1}^{m}\left(\delta\left(x-x_{p}\right) \delta\left(y-y_{p}\right) Q_{p}\right)
\end{align*}
$$

The approximating integral equation is formed by substitution of the residual given by equation (75) into equation (48) which yields

$$
\begin{align*}
& \iint_{D}\left\{\frac{\partial}{\partial x}\left[T_{x} \frac{\partial}{\partial x}\left(\sum_{j=1}^{n}\left(G_{j}(t) \phi_{j}(x, y)\right)\right)\right]\right. \tag{76}\\
& \quad+\frac{\partial}{\partial y}\left[T_{y} \frac{\partial}{\partial y} \quad\left(\sum_{j=1}^{n}\left(G_{j}(t) \phi_{j}(x, y)\right)\right)\right]
\end{align*}
$$

$$
-s \frac{\partial}{\partial t}\left[\sum_{j=1}^{n}\left(G_{j}(t) \phi_{j}(x, y)\right)\right]-W
$$

(76 cont.)

$$
\begin{gathered}
\left.-\sum_{p=1}^{m}\left(\delta\left(x-x_{p}\right) \delta\left(y-y_{p}\right) Q_{p}\right)\right\} \phi_{i}(x, y) d x d y=0 \\
i=1,2 \ldots n .
\end{gathered}
$$

Expansion of equation (76) and differentiation inside the summation brackets yields

$$
\begin{align*}
& \iint_{D}\left\{\frac{\partial T_{x}}{\partial x} \phi_{i}(x, y)\left(\sum_{j=1}^{n}\left(G_{j}(t) \frac{\partial \phi_{j}(x, y)}{\partial x}\right)\right)\right. \\
& \quad+T_{x} \phi_{i}(x, y)\left(\sum_{j=1}^{n}\left(G_{j}(t) \frac{\partial^{2} \phi_{j}(x, y)}{\partial x^{2}}\right)\right) \\
& \quad+\frac{\partial T_{y}}{\partial y} \phi_{i}(x, y)\left(\sum_{j=1}^{n}\left(G_{j}(t) \frac{\partial \phi_{j}(x, y)}{\partial y}\right)\right) \\
& \left.\quad+T_{y} \phi_{i}(x, y)\left(\sum_{j=1}^{n}\left(G_{j}(t) \frac{\partial^{2} \phi_{j}(x, y)}{\partial y^{2}}\right)\right)\right\} d x d y \tag{77}\\
& -\iint_{D}\left\{S_{i}(x, y)\left(\sum_{j=1}^{n}\left(\phi_{j}(x, y) \frac{\partial G_{j}(t)}{\partial t}\right)\right)\right\} d x d y \\
& -\iint_{D}\left\{W \phi_{i}(x, y)\right\} d x d y \\
& -\iint_{D}\left\{\phi_{i}(x, y)\left(\sum_{j=1}^{m}\left(\delta\left(x-x_{p}\right) \delta\left(y-y_{p}\right) Q_{p}\right)\right)\right\} d x d y=0 \\
& \\
& \quad \\
& \quad
\end{align*}
$$

Substitution of the trial solution given by equation (74) into the boundary conditions given by equations (72) and (73) yields corresponding boundary conditions of the form

$$
\begin{align*}
& \sum_{j=1}^{n}\left(G_{j}(t) \frac{\partial \phi_{j}(x, y)}{\partial x}\right)=\text { constant }=\left.\frac{\partial h}{\partial x}\right|_{B} \text { on Boundary } B \text {, and } \tag{78}\\
& \sum_{j=1}^{n}\left(G_{j}(t) \frac{\partial \phi_{j}(x, y)}{\partial y}\right)=\text { constant }=\left.\frac{\partial h}{\partial y}\right|_{B} \text { on Boundary } B \text {. } \tag{79}
\end{align*}
$$

4.2.2 Linearized Approximation

The following integral transformation is derived in Appendix C, equation (C9)

$$
\begin{align*}
& \iint_{D}\left\{\frac{\partial \Psi_{1}}{\partial x} \phi_{1} \frac{\partial \phi_{2}}{\partial x}+\Psi_{1} \phi_{1} \frac{\partial^{2} \phi_{2}}{\partial x^{2}}+\frac{\partial \Psi_{2}}{\partial y} \phi_{1} \frac{\partial \phi_{2}}{\partial y}+\Psi_{2} \phi_{1} \frac{\partial^{2} \phi_{2}}{\partial y^{2}}\right\} d \mathrm{dA} \\
& =-\iint_{D}\left\{\Psi_{1} \frac{\partial \phi_{1}}{\partial x} \frac{\partial \phi_{2}}{\partial x}+\Psi_{2} \frac{\partial \phi_{1}}{\partial y} \frac{\partial \phi_{2}}{\partial y}\right\} \mathrm{dA} \tag{80}\\
& \quad+\oint_{B}\left\{\Psi_{1} \phi_{1} \frac{\partial \phi_{2}}{\partial x} \ell_{x}+\Psi_{2} \phi_{2} \frac{\partial \phi_{2}}{\partial y} \quad \ell_{y}\right\} d L
\end{align*}
$$

where $\Psi_{1}(\mathrm{x}, \mathrm{y}), \Psi_{2}(\mathrm{x}, \mathrm{y}), \phi_{1}(\mathrm{x}, \mathrm{y})$ and $\phi_{2}(\mathrm{x}, \mathrm{y})$ are scalars. Equation (80) applied to equation (77) yields

$$
\begin{aligned}
& -\iint_{D}\left\{T_{x} \frac{\partial \phi_{i}(x, y)}{\partial x}\left(\sum_{j=1}^{n}\left(G_{j}(t) \frac{\partial \phi_{j}(x, y)}{\partial x}\right)\right)\right. \\
& \left.+T_{y} \frac{\partial \phi_{i}(x, y)}{\partial y}\left(\sum_{j=1}^{n}\left(G_{j}(t) \frac{\partial \phi_{j}(x, y)}{\partial y}\right)\right)\right\} d x d y \\
& +\oint_{B}\left\{T_{x} \phi_{i}(x, y)\left(\sum_{j=1}^{n}\left(G_{j}(t) \frac{\partial \phi_{j}(x, y)}{\partial x}\right)\right) \ell_{x}\right. \\
& \left.+T_{y} \phi_{i}(x, y)\left(\sum_{j=1}^{n}\left(G_{j}(t) \frac{\partial \phi_{j}(x, y)}{\partial y}\right)\right) \ell_{y}\right\} d L \\
& -\iint_{D}\left\{S \phi_{i}(x, y) \quad\left(\sum_{j=1}^{n}\left(\phi_{j}(x, y) \frac{G_{j}(t)}{t}\right)\right)\right\} d x d y \\
& -\iint_{D}\left\{W \phi_{i}(x, y)\right\} d x d y \\
& -\iint_{D}\left\{\phi _ { i } (x , y) \left(\begin{array}{c}
m \\
\sum_{p=1} \\
\left.\left.\left(\delta\left(x-x_{p}\right) \delta\left(y-y_{p}\right) Q_{p}\right)\right)\right\} d x d y=0
\end{array}\right.\right.
\end{aligned}
$$

$$
i=1,2 \ldots n
$$

From the boundary conditions given in equations (78) and (79) the $\frac{\partial h}{\partial x}$ and $\frac{\partial h}{\partial y}$ are a constant everywhere on the boundary. Substitution of the boundary conditions given by equations (78) and (79) into equation (81) yields

$$
\begin{align*}
& \iint_{D}\left\{T_{x} \frac{\partial \phi_{i}(x, y)}{\partial x}\left(\sum_{j=1}^{n}\left(G_{j}(t) \frac{\partial \phi_{j}(x, y)}{\partial x}\right)\right)\right. \\
& \left.\quad+T_{y} \frac{\partial \phi_{i}(x, y)}{\partial y}\left(\sum_{j=1}^{n}\left(G_{j}(t) \frac{\partial \phi_{j}(x, y)}{\partial y}\right)\right)\right\} d x d y \\
& -\oint_{B}\left\{T_{x} \phi_{i}(x, y)\left(\frac{\partial h}{\partial x} I_{B}\right) \ell_{x}+T_{y} \phi_{i}(x, y)\left(\frac{\partial h}{\partial y} I_{B}\right) \ell_{y}\right\}_{j} d L \\
& +\iint_{D}\left\{S \phi_{i}(x, y)\left(\sum_{j=1}^{n}\left(\phi_{j}(x, y) \frac{\partial G_{j}(t)}{\partial t}\right)\right)\right\} d x d y \tag{82}\\
& +\iint_{D}\left\{W \phi_{i}(x, y)\right\} d_{i x d y} \\
& +\iint_{D}\left\{\phi_{i}(x, y)\left(\sum_{p=1}^{m}\left(\delta\left(x-x_{p}\right) \delta\left(y-y_{p}\right) Q_{p}\right)\right)\right\} d x d y=0
\end{align*}
$$

where [A] and [B] are $n \times n$ dimensional matrices and [D], [E], $[F],\{G\}$ and $\left\{\frac{d G}{d t}\right\}$ are n dimensional vectors. The elements of [A], [B], [D], [E] and [F] are

$$
\begin{equation*}
A_{i j}=\iint_{D}\left\{T_{x} \frac{\partial \phi_{i}(x, y)}{\partial x} \frac{\partial \phi_{j}(x, y)}{\partial x}+T_{y} \frac{\partial \phi_{i}(x, y)}{\partial y} \frac{\partial \phi_{j}(x, y)}{\partial y}\right\} d A \tag{84}
\end{equation*}
$$

$$
\begin{equation*}
B_{i j}=\iint_{D}\left\{S \phi_{i}(x, y) \phi_{j}(x, y)\right\} d A, \tag{85}
\end{equation*}
$$

$$
\begin{equation*}
D_{i}=\iint_{D}\left\{W \phi_{i}(x, y)\right\} d A, \tag{86}
\end{equation*}
$$

$$
\begin{equation*}
F_{i}=-\oint_{B}\left\{T_{x} \phi_{i}(x, y)\left(\left.\frac{\partial h}{\partial x}\right|_{B}\right) \ell_{x}+T_{y} \phi_{i}(x, y)\left(\left.\frac{\partial h}{\partial y}\right|_{B}\right) \ell_{y}\right\} d L \tag{88}
\end{equation*}
$$

4.2.3 Integrations

The integration of equations (84), (85), (86) and (88) is performed in a piecewise manner on an element basis. In doing so, element matrices are formed. Because there are three nodes in a triangular element, each elemen matrix will be of order three. The global matrix for the entire domain is formed from these element matrices by summing for a given node the
contribution to that node from each element matrix. In the element integration the local shape functions v^{e} replace the global shape functions ϕ. Using local shape functions, the approximating trial solution for h (equation 74) for the triangular element shown on Figure 11 with nodes i, j and k becomes

$$
\begin{align*}
h(x, y, t) & \approx \hat{h}(x, y, t)=G_{i}(t) v_{i}^{e}(x, y) \tag{89}\\
& +G_{j}(t) v_{j}^{e}(x, y)+G_{k}(t) v_{k}^{e}(x, y) .
\end{align*}
$$

The nodes i, j and k are numbered counterclockwise around the triangular element.
4.2.3.1 Integration of [A]

Consider the integration of equation (84). Assuming the values of transmissivity are known at the nodes, then in a manner analous to the trial solution for h the following approximations for transmissivity are made

$$
\begin{align*}
& T_{x}(x, y) \simeq T_{x i} v_{i}^{e}(x, y)+T_{x j} v_{j}^{e}(x, y)+T_{x k} v_{k}^{e}(x, y), \text { and } \tag{90}\\
& T_{y}(x, y) \simeq T_{y i} v_{i}^{e}(x, y)+T_{y j} v_{j}^{e}(x, y)+T_{y k} v_{k}^{e}(x, y) \tag{91}
\end{align*}
$$

where $T_{x i}, T_{x j}, T_{x k}, T_{y i}, T_{y j}$ and $T_{y k}$ are the known values of transmissivity at the nodes.

The element matrix [a] is

$$
\begin{align*}
& {[a]=\iint_{e}\left(T_{x i} v_{i}^{e}+T_{x j} v_{j}^{e}+T_{x k} v_{k}^{e}\right)\left[\begin{array}{lll}
\frac{\partial v_{i}^{e}}{\partial x} \frac{\partial v_{i}^{e}}{\partial x} & \frac{\partial v_{i}^{e}}{\partial x} \frac{\partial v_{j}^{e}}{\partial x} & \frac{\partial v_{i}^{e}}{\partial x} \frac{\partial v_{k}^{e}}{\partial x} \\
\frac{\partial v_{j}^{e}}{\partial x} \frac{\partial v_{i}^{e}}{\partial x} & \frac{\partial v_{j}^{e}}{\partial x} \frac{\partial v_{j}^{e}}{\partial x} & \frac{\partial v_{j}^{e}}{\partial x} \frac{\partial v_{k}^{e}}{\partial x} \\
\frac{\partial v_{k}^{e}}{\partial x} \frac{\partial v_{i}^{e}}{\partial x} & \frac{\partial v_{k}^{e}}{\partial x} \frac{\partial v_{j}^{e}}{\partial x} & \frac{\partial v_{k}^{e}}{\partial x} \frac{\partial v_{k}^{e}}{\partial x}
\end{array}\right]} \tag{92}\\
& \text { dA } \\
& +\iint_{e}\left(T_{y i} v_{i}^{e}+T_{y j} v_{j}^{e}+T_{y k} v_{k}^{e}\right)\left[\begin{array}{lll}
\frac{\partial v_{i}^{e}}{\partial y} \frac{\partial v_{i}^{e}}{\partial y} & \frac{\partial v_{i}^{e}}{\partial y} \frac{\partial v_{j}^{e}}{\partial y} & \frac{\partial v_{i}^{e}}{\partial y} \frac{\partial v_{k}^{e}}{\partial y} \\
\frac{\partial v_{j}^{e}}{\partial y} \frac{\partial v_{i}^{e}}{\partial y} & \frac{\partial v_{j}^{e}}{\partial y} \frac{\partial v_{j}^{e}}{\partial y} & \frac{\partial v_{j}^{e}}{\partial y} \frac{\partial v_{k}^{e}}{\partial y} \\
\frac{\partial v_{k}^{e}}{\partial y} \frac{\partial v_{i}^{e}}{\partial y} & \frac{\partial v_{k}^{e}}{\partial y} \frac{\partial v_{j}^{e}}{\partial y} & \frac{\partial v_{k}^{e}}{\partial y} \frac{\partial v_{k}^{e}}{\partial y}
\end{array}\right]
\end{align*}
$$

The partial derivatives $\frac{\partial v^{e}}{\partial \mathrm{x}}$ and $\frac{\partial \mathrm{v}^{\mathrm{e}}}{\partial \mathrm{y}}$ are obtained from differentiation of equations (54), (55), and (56) which yields

$$
\begin{array}{ll}
\frac{\partial v_{i}^{e}}{\partial x}=\frac{1}{2 A \Delta}\left(y_{j}-y_{k}\right), & \frac{\partial v_{i}^{e}}{\partial y}=\frac{1}{2 A \Delta}\left(x_{k}-x_{j}\right), \\
\frac{\partial v_{j}^{e}}{\partial x}=\frac{1}{2 A \Delta}\left(y_{k}-y_{i}\right), & \frac{\partial v_{j}^{e}}{\partial y}=\frac{1}{2 A \Delta}\left(x_{i}-x_{k}\right), \text { and } \\
\frac{\partial v_{k}^{e}}{\partial x}=\frac{1}{2 A \Delta}\left(y_{i}-y_{j}\right), & \frac{\partial v_{k}^{e}}{\partial y}=\frac{1}{2 A \Delta}\left(x_{j}-x_{i}\right) . \tag{95}
\end{array}
$$

The partial derivatives $\frac{\partial v^{e}}{\partial x}$ and $\frac{\partial v^{e}}{\partial y}$ given by equations (93), (94) and (95) are constants and may be removed from under the integration sign in equation (92). This leaves the following integrations to perform

$$
\begin{align*}
& \iint_{e}\left(T_{x i} v_{i}^{e}+T_{x j} v_{j}^{e}+T_{x k} v_{k}^{e}\right) d A, \text { and } \tag{96}\\
& \iint_{e}\left(T_{y i} v_{i}^{e}+T_{y j} v_{j}^{e}+T_{y k} v_{k}^{e}\right) d A . \tag{97}
\end{align*}
$$

Recall that $T_{x i}, T_{x j}, T_{x k}, T_{y i}, T_{y j}$ and $T_{y k}$ are known values of transmissivity at the nodes and are constants. Integration of equations (96) and (97) are performed using the integration formula given in equation (69) from which

$$
\begin{equation*}
\iint_{e} v_{r}^{e} d A=\frac{A \Delta}{3} \quad r=i, j, k \tag{98}
\end{equation*}
$$

is obtained. Substitution of equations (93), (94) and (95) into equation (92) and applying equation (98) to equation (92) yields

$$
[a]=\frac{\left(T_{x i}+T_{x j}+T_{x k}\right)}{12 A \Delta}\left[\begin{array}{ccc}
\left(y_{j}-y_{k}\right)^{2} & \left(y_{j}-y_{k}\right)\left(y_{k}-y_{i}\right) & \left(y_{j}-y_{k}\right)\left(y_{i}-y_{j}\right) \\
\left(y_{k}-y_{i}\right)\left(y_{j}-y_{k}\right) & \left(y_{k}-y_{i}\right)^{2} & \left(y_{k}-y_{i}\right)\left(y_{i}-y_{j}\right) \\
\left(y_{i}-y_{i}\right)\left(y_{j}-y_{k}\right) & \left(y_{i}-y_{j}\right)\left(y_{k}-y_{i}\right) & \left(y_{i}-y_{j}\right)^{2}
\end{array}\right] \begin{gathered}
\text { (99) } \\
\text { cont. } \\
\text { next } \\
\text { page }
\end{gathered}
$$

$$
+\frac{\left(T y_{i}+T y j+T y_{k}\right)}{12 A \Delta}\left[\begin{array}{ccc}
\left(x_{k}-x_{j}\right)^{2} & \left(x_{k}-x_{j}\right)\left(x_{i}-x_{k}\right) & \left(x_{k}-x_{j}\right)\left(x_{j}-x_{i}\right) \\
\left(x_{i}-x_{k}\right)\left(x_{k}-x_{j}\right) & \left(x_{i}-x_{k}\right)^{2} & \left(x_{i}-x_{k}\right)\left(x_{j}-x_{i}\right) \\
\left(x_{j}-x_{i}\right)\left(x_{k}-x_{j}\right) & \left(x_{j}-x_{i}\right)\left(x_{i}-x_{k}\right) & \left(x_{j}-x_{i}\right)^{2}
\end{array}\right] \text { (99 cont.) }
$$

The global matrix [A] is formed by summing the element matrices [a] for all of the elements in the domain D. If nodes i and j in the local nodal system correspond to nodes p and q in the global nodal system, then $a_{i j}$ in the element matrix is added to $A_{p q}$ in the global matrix.

4.2.3.2 Integration of [B]

Consider the integration of equation (85). Assume the storage coefficient S is a constant over the entire domain D and, thus, also constant over the element of integration. Therefore S is removed from under the integration sign in equation (85).

The element matrix [b] is

$$
[b]=s \iint_{e}\left[\begin{array}{ccc}
v_{i}^{e} v_{i}^{e} & v_{i}^{e} v_{j}^{e} & v_{i}^{e} v_{k}^{e} \tag{100}\\
v_{j}^{e} v_{i}^{e} & v_{j}^{e} v_{j}^{e} & v_{j}^{e} v_{k}^{e} \\
v_{k}^{e} v_{i}^{e} & v_{k}^{e} v_{j}^{e} & v_{k}^{e} v_{k}^{e}
\end{array}\right]
$$

The integration of equation (100), like the integration of [A] is most easily performed using the integration formula given in equation (69) from which this time

$$
\begin{align*}
& \iint_{e} v_{r}^{e} v_{r}^{e} d A=\frac{A \Delta}{6} \quad r=i, j, k, \text { and } \tag{101}\\
& \iint_{e} v_{r}^{e} v_{p}^{e} d A=\frac{A \Delta}{12} \quad r=i, j, k, \quad p=i, j, k, \text { and } r \neq p \tag{102}
\end{align*}
$$

are obtained. Equations (101) and (102) applied to equation (100) yie1ds

$$
[\mathrm{b}]=\left[\begin{array}{lll}
\frac{\mathrm{SA} \Delta}{6} & \frac{\mathrm{SA} \Delta}{12} & \frac{\mathrm{SA} \Delta}{12} \tag{103}\\
\frac{\mathrm{SA} \triangle}{12} & \frac{\mathrm{SA} \Delta}{6} & \frac{\mathrm{SA} \Delta}{12} \\
\frac{\mathrm{SA} \Delta}{12} & \frac{\mathrm{SA} \triangle}{12} & \frac{\mathrm{SA} \Delta}{6}
\end{array}\right]
$$

The element matrix [b] is inserted into the global matrix [B] in an identical procedure as that used to insert [a] into [A].

4.2.3.3 Integration of [D]

Consider the integration of equation (86). In this equation W represents the volumetric water flux per unit area over the element of integration from a distributed source or sink and is a constant for the element. The element matrix [d] is

$$
[d]=W \iint_{e}\left[\begin{array}{c}
\mathrm{v}_{\mathrm{i}} \tag{104}\\
\mathrm{v}_{\mathrm{j}}^{\mathrm{e}} \\
\mathrm{v}_{\mathrm{k}}^{\mathrm{e}}
\end{array}\right] \mathrm{dA}
$$

This integration was performed earlier for [a] in equation (98). Equation (98) applied to equation (104) yields

$$
[\mathrm{d}]=\left[\begin{array}{c}
\mathrm{WA} \Delta / 3 \tag{105}\\
\mathrm{WA} \Delta / 3 \\
\mathrm{WA} \Delta / 3
\end{array}\right] \text {. }
$$

The element matrix [d] physically represents the sum of distributed source and sink terms (e.g. recharge or evapotranspiration) within the element of integration. The total volumetric water flux from a distributed source or sink for the element is WAD. With the finite element method the source and sink terms are applied at the nodes. One-third of the total volumetric water flux from a distributed source or sink is therefore distributed to each of the three nodes comprising the vertices of the element.

If node i in the local nodal system corresponds to node p in the global nodal system then the global matrix [D] is formed by adding d_{i} to D_{p}.

2.4.3.4 Integration of [E]

Consider the integration of equation (87) which unlike the previous integrations is done globally. Equation (87) physically represents the point source and sink terms. If these point source and sink terms are applied only at the nodes then

$$
\begin{equation*}
\left.E_{i}=\iint_{D} \sum_{p=1}^{n}\left(\delta\left(x-x_{p}\right) \delta\left(y-y_{p}\right) Q_{p}\right) \quad \phi_{i}(x, y)\right\} d A \tag{106}
\end{equation*}
$$

where Q_{p} represents the volumetric water flux at node from a point source or sink which is a function of time only and therefore is considered as a constant in the integration and δ is the dirac delta function. A useful property of the dirac delta function is (Korn and Korn, 1968 or Pearson, 1974)

$$
\int_{a}^{b} f(x) \delta(x-\xi) d x=\left\{\begin{array}{lcc}
0 & \text { if } x<a & \text { or } x>b \tag{107}\\
f(\xi) & \text { if } a & <x<b
\end{array}\right\}
$$

Using equation (107), the integration of equation (106) was carried out in parts by integrating over an infinitesimally small area around each of the nodes and then over the reminder of the domain to yield

$$
[E]=\left[\begin{array}{cc}
\sum_{p=1}^{n} & \tag{108}\\
Q_{p} \phi_{1}\left(x_{p}, y_{p}\right) \\
n & \\
\sum_{p=1} & Q_{p} \phi_{2}\left(x_{p}, y_{p}\right) \\
\vdots \\
n & \vdots \\
\sum_{p=1} & Q_{p} \phi_{n}\left(x_{p}, y_{p}\right)
\end{array}\right]
$$

Recall from the previous definition for the global shape functions ϕ that $\phi_{i}=1$ at node i (i.e. $\phi_{i}\left(x_{i}, y_{i}\right)=1$ and $\phi_{i}=0$ at all other nodes (i.e. $\left.\phi_{i}\left(x_{j}, y_{j}\right)=0, j \neq i\right)$. Thus, equation (108) simplifies to

$$
[\mathrm{E}]=\left[\begin{array}{c}
Q_{1} \tag{109}\\
Q_{2} \\
\cdot \\
\cdot \\
Q_{n}
\end{array}\right]
$$

4.2.3.5 Integration of [F]

Finally, consider the integration of equation (88). The integration path for [F] is along the global boundary B. The boundary is broken into a series of piecewise continuous segments $\Delta \mathrm{L}$. Let nodes i and j be two nodes forming a boundary segment. The terms $\left.\quad \frac{\partial h}{\partial x}\right|_{B}$ and $\left.\frac{\partial h}{\partial y}\right|_{B}$ in equation (88) are constant everywhere on the boundary and are known from the boundary conditions. The terms l_{x} and l_{y} are the cosines of the angles that the outward pointing normal makes with the x and y directions respectively (see Figure C1, Appendix C). These are specified along the boundary.

The matrix [f] is then

$$
\begin{align*}
{[f]=} & -\left(\left.\frac{\partial h}{\partial x}\right|_{B}\right)_{x} l_{x} \int_{\Delta L}\left(T_{x i} v_{i}^{e}+T_{x j} v_{j}^{e}\right) \quad\left[\begin{array}{r}
v_{i}^{e} \\
\\
v_{j}^{e}
\end{array}\right] d L \tag{110}\\
& -\left(\left.\frac{\partial h}{\partial y}\right|_{B}\right)^{l} l_{y} \int_{\Delta L}\left(T_{y i} v_{i}^{e}+T_{y j} v_{j}^{e}\right) \quad\left[\begin{array}{c}
v_{i}^{e} \\
v_{i}^{e}
\end{array}\right] d L .
\end{align*}
$$

The integration of equation (110) is performed using the integration formula given in equation (68) from which

$$
\begin{align*}
& \int_{\Delta L} v_{r}^{e} v_{r}^{e} d L=\frac{\Delta L}{3} \quad r=i, j, \quad \text { and } \tag{111}\\
& \int_{\Delta L} v_{r}^{e} v_{p}^{e} d L=\frac{\Delta L}{6} \quad r=i, j, \quad p=i, j, \quad \text { and } r \neq p \tag{112}
\end{align*}
$$

are obtained. Equations (111) and (112) applied to equation (110) yields

$$
[f]=-\left(\left.\frac{\partial h}{\partial x}\right|_{B}\right)_{x} \frac{\Delta L}{6}\left[\begin{array}{c}
2 T_{x i}+T_{x j} \tag{113}\\
T_{x i}+2 T_{x j}
\end{array}\right]-\left(\left.\frac{\partial h}{\partial y}\right|_{B}\right) e_{y} \frac{\Delta L}{6}\left[\begin{array}{c}
{ }^{2 T_{y i}}+T_{y j} \\
T_{y i}+2 T_{y j}
\end{array}\right]
$$

The order of [f] is two since only two nodes comprise a boundary segment. Equation (112) represents the volumetric water flux across the boundary segment. If $T_{x i}=T_{x j}$ and $T_{y i}=T_{y j}$ then one-half of the flux is assigned to node i and one-half of the flux is assigned to node j.

If node i in the local nodal system corresponds to node p in the global nodal system then the global matrix [F] is formed by adding f_{i} to F_{p}.

4.2.4 Time Derivative Approximation

Although the matrices [A] and [B] and the vectors [D], [E] and [F] have been evaluated, it is still necessary to solve the set of n ordinary differential equations given in equation (83) and repeated below
$[\mathrm{A}] \quad\{\mathrm{G}\}+[\mathrm{B}] \quad\left\{\frac{\mathrm{dG}}{\mathrm{dt}}\right\}+[\mathrm{D}]+[\mathrm{E}]+[\mathrm{F}]=0$.

The time derivative is approximated by using a first-order correct implicit, finite-difference scheme

$$
\begin{equation*}
\frac{\mathrm{dG}}{\mathrm{dt}}=\frac{\mathrm{G}_{\mathrm{t}+\Delta \mathrm{t}}-\mathrm{G}_{\mathrm{t}}}{\Delta \mathrm{t}} . \tag{i15}
\end{equation*}
$$

The vector $\{\mathrm{G}\}$ is known at the time t and is to be evaluated for at the time $t+\Delta t$. Substitution of equation (115) into equation (114) and rearranging yields

$$
\begin{equation*}
\left([A]+\frac{1}{\Delta t}[B]\right)\left\{G_{t+\Delta t}\right\}=\frac{1}{\Delta t}[B]\left\{G_{t}\right\}-[D]-[E]-[F] \tag{116}
\end{equation*}
$$

with all of the terms on the right hand side of the equation being known. Equation (116) was solved for using a point-iterative successive overrelaxation technique (Varga, 1962).

The partial differential equation for groundwater flow has been solved by the Galerkin finite-element method but it still remains to solve the coupled partial differential equations for solute transport (equations 43 and 44).

4.3 Solution of the Coupled Solute Transport Equations

4.3.1 Galerkin Approximation

The linear differential operators L_{1} and L_{2} are defined as

$$
\begin{align*}
L_{1}(C) & =\frac{\partial}{\partial x}\left(D_{x x} \frac{\partial C_{1}}{\partial x}\right)+\frac{\partial}{\partial y}\left(D_{y y} \frac{\partial C_{1}}{\partial y}\right)+\frac{\partial}{\partial x}\left(D_{x y} \frac{\partial C_{1}}{\partial y}\right) \\
& +\frac{\partial}{\partial y}\left(D_{y x} \frac{\partial C_{1}}{\partial x}\right)-\frac{\partial}{\partial x}\left(C_{1} V_{x}\right)-\frac{\partial}{\partial y}\left(C_{1} V_{y}\right) \tag{117}
\end{align*}
$$

$$
\begin{aligned}
& -\left(1+\frac{g_{1}}{g_{3}}\right) \frac{\partial C_{1}}{\partial t}+\left(\frac{g_{2}}{g_{3}}\right) \frac{\partial C_{2}}{\partial t}-\frac{W C_{1}^{\prime}}{\varepsilon b} \\
& -\sum_{p=1}^{m}\left(\delta\left(x-x_{p}\right) \delta\left(y-y_{p}\right) \frac{Q_{p} C_{1}^{\prime}}{\varepsilon b}\right)
\end{aligned}
$$

(117 cont.)
for equation (43) and

$$
\begin{align*}
L_{2}(C) & =\frac{\partial}{\partial x}\left(D_{x x} \frac{\partial C_{2}}{\partial x}\right)+\frac{\partial}{\partial y}\left(D_{y y} \frac{\partial C_{2}}{\partial y}\right)+\frac{\partial}{\partial x}\left(D_{x y} \frac{\partial C_{2}}{\partial y}\right) \\
& +\frac{\partial}{\partial y}\left(D_{y x} \frac{\partial C_{2}}{\partial x}\right)-\frac{\partial}{\partial x}\left(C_{2} V_{x}\right)-\frac{\partial}{\partial y}\left(C_{2} V_{y}\right) \\
& -\left(1+\frac{g_{2}}{g_{3}}\right) \frac{\partial C_{2}}{\partial t}+\left(\frac{g_{1}}{g_{3}}\right) \frac{\partial C_{1}}{\partial t}-\frac{W C_{2}}{\varepsilon b} \tag{118}\\
& -\sum_{p=1}^{m}\left(\delta\left(x-x_{p}\right) \delta\left(y-y_{p}\right) \frac{Q_{p} C_{2}^{\prime}}{\varepsilon b}\right)
\end{align*}
$$

for equation (44). Equations (117) and (118) are solved on Domain D and enclosed by the boundary B by the Galerkin-finite element method. The boundary conditions are given as

$$
\begin{array}{ll}
C_{1}=C_{1 B}(x, y, t)=\left.C_{1}\right|_{B} & \text { on Boundary } B, \\
\frac{\partial C_{1}}{\partial x}=0=\left.\frac{\partial C_{1}}{\partial x}\right|_{B} & \text { on Boundary } B, \tag{120}
\end{array}
$$

$$
\begin{array}{ll}
\frac{\partial C_{1}}{\partial y}=0=\left.\frac{\partial C_{1}}{\partial y}\right|_{B} & \text { on Boundary } B, \\
C_{2}=C_{2 B}(x, y, t)=\left.C_{2}\right|_{B} & \text { on Boundary } B, \\
\frac{\partial C_{2}}{\partial x}=0=\left.\frac{\partial C_{2}}{\partial x}\right|_{B} & \text { on Boundary } B, \text { and } \\
\frac{\partial C_{2}}{\partial y}=0=\left.\frac{\partial C_{2}}{\partial y}\right|_{B} & \text { on Boundary } B \tag{124}
\end{array}
$$

where C_{B} is the prescribed concentration of C on the boundary and $\frac{\partial C}{\partial x}$ and $\frac{\partial C}{\partial y}$ are the outward pointing derivatives from the boundary in the x and y directions respectively. With these boundary conditions the concentration is prescribed everywhere on the boundary and the concentrations are constant across the boundary. The mass flux of the solute across the boundary due to hydrodynamic dispersion is zero (in essence the mass flux of the solute across the boundary is due solely to convective transport and is prescribed by the boundary conditions). The adsorbed concentrations are considered immobile.

To solve $L_{1}(C)=0$ and $L_{2}(C)=0$ trial solutions given as

$$
\begin{align*}
& C_{1}(x, y, t) \simeq \hat{C}_{1}(x, y, t)=\sum_{j=1}^{n}\left(G_{1 j}(t) \phi_{j}(x, y)\right), \text { and } \tag{125}\\
& C_{2}(x, y, t) \simeq \hat{c}_{2}(x, y, t)=\sum_{j=1}^{n}\left(G_{2 j}(t) \phi_{j}(x, y)\right) \tag{126}
\end{align*}
$$

are used. Only the Galerkin-finite element solution for equation (117)
is presented here. It is shown later how the simultaneous solution to both equations (117) and (118) are obtained. Substitution of the trial solutions for C_{1} and C_{2} given by equation (125) and (126) into the linear differential operator $L_{1}(C)$ given by equation (117) yields the residual

$$
\begin{align*}
R_{1}(x, y, t)=L_{1}(\hat{C}) & =\frac{\partial}{\partial x}\left[D_{x x} \frac{\partial}{\partial x}\left(\sum_{j=1}^{n}\left(G_{1 j}(t) \phi_{j}(x, y)\right)\right)\right] \\
& +\frac{\partial}{\partial y}\left[D_{y y} \frac{\partial}{\partial y}\left(\sum_{j=1}^{n} \quad\left(G_{1 j}(t) \phi_{j}(x, y)\right)\right)\right] \\
& +\frac{\partial}{\partial x}\left[D_{x y} \frac{\partial}{\partial y}\left(\sum_{j=1}^{n} \quad\left(G_{1 j}(t) \phi_{j}(x, y)\right)\right)\right] \\
& +\frac{\partial}{\partial y}\left[D_{y x} \frac{\partial}{\partial x}\left(\sum_{j=1}^{n} \quad\left(G_{1 j}(t) \phi_{j}(x, y)\right)\right)\right] \quad \text { (cont.next page) } \tag{127}\\
& -\frac{\partial}{\partial x}\left[V_{x} \sum_{j=1}^{n}\left(G_{1 j}(t) \phi_{j}(x, y)\right)\right] \\
& -\frac{\partial}{\partial y}\left[V_{y} \sum_{j=1}^{n}\left(G_{1 j}(t) \phi_{j}(x, y)\right)\right] \\
& -\left(1+\frac{g_{1}}{g_{3}}\right)\left(\frac{\partial}{\partial t}\left[\sum_{j=1}^{n}\left(G_{1 j}(t) \phi_{j}(x, y)\right)\right]\right)
\end{align*}
$$

$$
\begin{aligned}
& +\left(\frac{g_{2}}{g_{3}}\right)\left(\frac{\partial}{\partial t}\left[\sum_{j=1}^{n}\left(G_{2 j}(t) \phi_{j}(x, y)\right)\right]\right) \\
& -\frac{W C_{1}^{\prime}}{\varepsilon b}-\sum_{p=1}^{m}\left(\delta\left(x-x_{p}\right) \delta\left(y-y_{p}\right) \frac{Q_{p} C_{1}^{\prime}}{\varepsilon b}\right) .
\end{aligned}
$$

(127 cont.)

The approximating integral equation is formed by substitution of the residual given by equation (127) into equation (48) which yields

$$
\begin{aligned}
& \iint_{D}\left\{\frac{\partial}{\partial x}\left[D_{x x} \frac{\partial}{\partial x}\left(\sum_{j=1}^{n}\left(G_{1 j}(t) \phi_{j}(x, y)\right)\right)\right]+\frac{\partial}{\partial y}\left[D_{y y} \frac{\partial}{\partial y} \int_{j=1}^{n}\left(G_{1 j}(t) \phi_{j}(x, y)\right)\right)\right] \\
& \left.+\frac{\partial}{\partial x}\left[D_{x y} \frac{\partial}{\partial y}\left(\sum_{j=1}^{n}\left(G_{1 j}(t) \phi_{j}(x, y)\right)\right)\right]+\frac{\partial}{\partial y}\left[D_{y x} \frac{\partial}{\partial x} \sum_{j=1}^{n}\left(G_{1 j}(t) \phi_{j}(x, y)\right)\right)\right] \\
& -\frac{\partial}{\partial x}\left[V_{x} \sum_{j=1}^{n}\left(G_{1 j}(t) \phi_{j}(x, y)\right)\right]-\frac{\partial}{\partial y}\left[V_{y} \sum_{j=1}^{n}\left(G_{1 j}(t) \phi_{j}(x, y)\right)\right] \\
& -\left(1+\frac{g_{1}}{g_{3}}\right)\left(\frac{\partial}{\partial t}\left[\sum_{j=1}^{n}\left(G_{1 j}(t) \phi_{j}(x, y)\right)\right]\right)+\left(\frac{g_{2}}{g_{3}}\right)\left(\frac{\partial}{\partial t}\left[\sum_{j=1}^{n}\left(G_{2}(t) \phi_{j}(x, y)\right)\right]\right) \\
& \left.\quad-\frac{W C_{1}^{\prime}}{\varepsilon b}-\sum_{p=1}^{m}\left(\delta\left(x-x_{p}\right) \delta\left(y-y_{p}\right) \frac{Q_{p} C_{1}^{\prime}}{\varepsilon b}\right)\right\} \phi_{i}(x, y) d x d y=0
\end{aligned}
$$

$$
i=1,2 \ldots n
$$

Expansion of equation (128) and differentiation inside the summation brackets yields

$$
\begin{aligned}
& \int\left(\int _ { D } \left\{\frac{\partial D_{x x}}{\partial x} \phi_{i}(x, y)\left(\sum_{j=1}^{n}\left(G_{1 j}(t) \frac{\partial \phi_{j}(x, y)}{\partial x}\right)\right)+D_{x x} \phi_{i}(x, y)\left(\sum_{j=1}^{n}\left(G_{1 j}(t) \frac{\partial^{2} \phi_{j}(x, y)}{\partial x^{2}}\right)\right)\right.\right. \\
& \left.+\frac{\partial D_{y y}}{\partial y} \phi_{i}(x, y)\left(\sum_{j=1}^{n}\left(G_{1 j}(t) \frac{\partial \phi_{j}(x, y)}{\partial y}\right)\right)+D_{y y} \phi_{i}(x, y)\left(\sum_{j=1}^{n}\left(G_{1 j}(t) \frac{\partial^{2} \phi_{j}(x, y)}{\partial y^{2}}\right)\right)\right\} d x d y \\
& \left.+\iint_{D} \int_{D D_{x y}}^{\partial x} \phi_{i}(x, y)\left(\sum_{j=1}^{n}\left(G_{1 j}(t) \frac{\partial \phi_{j}(x, y)}{\partial y}\right)\right)+D_{x y} \phi_{i}(x, y)\left(\sum_{j=1}^{n} G_{1 j}(t) \frac{\partial^{2} \phi_{j}(x, y)}{\partial x \partial y}\right)\right) \\
& \left.+\frac{\partial D_{y x}}{\partial y} \phi_{i}(x, y)\left(\sum_{j=1}^{n}\left(G_{1 j}(t) \frac{\partial \phi_{j}(x, y)}{\partial x}\right)\right)+D_{y x} \phi_{i}(x, y)\left(\sum_{j=1}^{n}\left(G_{1 j}(t) \frac{\partial^{2} \phi_{j}(x, y)}{\partial x \partial y}\right)\right)\right\} d x d y \\
& \int-\iint_{D}\left\{\frac{\partial V_{x}}{\partial x^{\prime}}{ }_{i}(x, y)\left(\sum_{j=1}^{n}\left(G_{1 j}(t) \phi_{j}(x, y)\right)\right)+V_{x} \phi_{i}(x, y)\left(\sum_{j=1}^{n}\left(G_{1 j}(t) \frac{\partial \phi_{j}(x, y)}{\partial x}\right)\right)\right. \\
& \text { page) } \\
& \left.+\frac{\partial V_{y}}{\partial y} \phi_{i}(x, y)\left(\sum_{j=1}^{n}\left(G_{1 j}(t) \phi_{j}(x, y)\right)\right)+V_{y} \phi_{i}(x, y)\left(\sum_{j=1}^{n}\left(G_{1 j}(t) \frac{\partial \phi_{j}(x, y)}{\partial y}\right)\right)\right\} d x d y \\
& -\iint_{D}\left\{\left(1+\frac{g_{1}}{g_{3}}\right)_{\phi_{i}}(x, y)\left(\sum_{j=1}^{n}\left(\phi_{j}(x, y) \frac{\partial G_{j j}(t)}{\partial t}\right)\right)\right\} d x d y \\
& +\iint_{D}\left\{\left(\frac{g_{2}}{g_{3}}\right) \phi_{i}(x, y)\left(\sum_{j=1}^{n}\left(\phi_{j}(x, y) \frac{\partial G_{2 j}(t)}{\partial t}\right)\right)\right\} d x d y
\end{aligned}
$$

$$
-\iint_{D}\left\{\int_{\frac{W C_{1}^{\prime}}{1}}^{\varepsilon b} \phi_{i}(x, y)\right\} d x d y-\iint_{D}\left\{\phi _ { i } (x , y) \left(\begin{array}{c}
m \\
\left.\left.\sum_{p=1}^{m} \delta\left(x-x_{p}\right) \delta\left(y-y_{p}\right) \frac{Q_{p} C_{1}^{\prime}}{\varepsilon b}\right)\right\} d x d y=0.0 .
\end{array}\right.\right.
$$

(129 cont.)

$$
i=1,2, \ldots n .
$$

Substitution of the trial solution for C_{1} given by equation (125) into the boundary conditions given by equations (119), (120) and (121) yields corresponding boundary conditions of the form

$$
\begin{array}{ll}
\sum_{j=1}^{n} G_{1 j}(t) \phi_{j}(x, y)=C_{1 B}(x, y, t)=\left.C_{1}\right|_{B} & \text { on Boundary } B, \\
\sum_{j=1}^{n} G_{1 j}(t) \frac{\partial \phi_{j}(x, y)}{\partial x}=0=\left.\frac{\partial C_{1}}{\partial x}\right|_{B} & \text { on Boundary } B \text {, and } \\
\sum_{j=1}^{n} G_{1 j}(t) \frac{\partial \phi_{j}(x, y)}{\partial y}=0=\left.\frac{\partial C_{1}}{\partial y}\right|_{B} & \text { on Boundary B. } \tag{132}
\end{array}
$$

4.3.2 Linearized Approximation

The following integral transformations are derived in Appendix C, equations (C9), (C13) and (C17).

$$
\begin{align*}
& \iint_{D}\left\{\frac{\partial \Psi_{1}}{\partial x} \phi_{1} \frac{\partial \phi_{2}}{\partial x}+\Psi_{1} \phi_{1} \frac{\partial^{2} \phi_{2}}{\partial x^{2}}+\frac{\partial \Psi_{2}}{\partial y} \phi_{1} \frac{\partial \phi_{2}}{\partial y}+\Psi_{2} \phi_{1} \frac{\partial^{2} \phi_{2}}{\partial y^{2}}\right\} \mathrm{dA} \\
& =-\iint_{D}\left\{\Psi_{1} \frac{\partial \phi_{1}}{\partial x} \frac{\partial \phi_{2}}{\partial x}+\Psi_{2} \frac{\partial \phi_{1}}{\partial y} \frac{\partial \phi_{2}}{\partial y}\right\}_{d A} \tag{133}\\
& +\oint_{\mathrm{B}}\left\{\Psi_{1} \phi_{1} \frac{\partial \phi_{2}}{\partial \mathrm{x}} \ell_{\mathrm{x}}+\Psi_{2} \phi_{2} \frac{\partial \phi_{2}}{\partial \mathrm{y}} \ell_{\mathrm{y}}\right\} \mathrm{dL}, \\
& \iint_{D}\left\{\frac{\partial \Psi_{1}}{\partial x} \phi_{1} \frac{\partial \phi_{2}}{\partial y}+\Psi_{1} \phi_{1} \frac{\partial^{2} \phi_{2}}{\partial \mathrm{x} \partial \mathrm{y}}+\frac{\partial \Psi_{2}}{\partial \mathrm{y}} \phi_{1} \frac{\partial \phi_{2}}{\partial \mathrm{x}}+\Psi_{2} \phi_{1} \frac{\partial^{2} \phi_{2}}{\partial \mathrm{x} \partial \mathrm{y}}\right\} \mathrm{dA} \\
& =-\iint_{D}\left\{\Psi_{1} \frac{\partial \phi_{1}}{\partial \mathrm{x}} \frac{\partial \phi_{2}}{\partial \mathrm{y}}+\Psi_{2} \frac{\partial \phi_{1}}{\partial \mathrm{y}} \frac{\partial \phi_{2}}{\partial \mathrm{x}}\right\} \mathrm{dA} \tag{134}\\
& +\oint_{\mathrm{B}}\left\{\Psi_{1} \phi_{1} \frac{\partial \phi_{2}}{\partial \mathrm{y}} \ell_{\mathrm{x}}+\Psi_{2} \phi_{1} \frac{\partial \phi_{2}}{\partial \mathrm{x}} \ell_{\mathrm{y}}\right\} \mathrm{dL} \text {, and } \\
& \iint_{\mathrm{D}}\left\{\frac{\partial \Psi_{1}}{\partial \mathrm{x}} \phi_{1} \phi_{2}+\Psi_{1} \phi_{1} \frac{\partial \phi_{2}}{\partial \mathrm{x}}+\frac{\partial \Psi_{2}}{\partial \mathrm{y}} \phi_{1} \phi_{2}+\Psi_{2} \phi_{1} \frac{\partial \phi_{2}}{\partial \mathrm{y}}\right\} \mathrm{dA} \\
& =-\iint_{D}\left\{\Psi_{1} \frac{\partial \phi_{1}}{\partial \mathrm{x}} \phi_{2}+\Psi_{2} \frac{\partial \phi_{1}}{\partial \mathrm{y}} \phi_{2}\right\} \mathrm{dA} \tag{135}\\
& +\oint_{\mathrm{B}}\left\{\Psi_{1} \phi_{1} \phi_{2}^{\ell} \mathrm{x}+\Psi_{2} \phi_{1} \phi_{2} \mathrm{l}_{\mathrm{y}}\right\} \mathrm{dL}
\end{align*}
$$

where $\psi_{1}(\mathrm{x}, \mathrm{y}), \psi_{2}(\mathrm{x}, \mathrm{y}), \phi_{1}(\mathrm{x}, \mathrm{y})$ and $\phi_{2}(\mathrm{x}, \mathrm{y})$ are scalars.

Equations (133), (134) and (135) applied to equation (129) yields

$$
\begin{aligned}
& -\iint_{D}\left\{D_{x x} \frac{\partial \phi_{i}(x, y)}{\partial x}\left(\sum_{j=1}^{n}\left(G_{1 j}(t) \frac{\partial \phi_{j}(x, y)}{\partial x}\right)\right)\right. \\
& \\
& \left.\quad+D_{y y} \frac{\partial \phi_{i}(x, y)}{\partial y}\left(\sum_{j=1}^{n}\left(G_{1 j}(t) \frac{\partial \phi_{j}(x, y)}{\partial y}\right)\right)\right\} d x d y \\
& +\oint_{B}\left\{D_{x x} \phi_{i}(x, y)\left(\sum_{j=1}^{n}\left(G_{1 j}(t) \frac{\partial \phi_{j}(x, y)}{\partial x}\right)\right) \ell_{x}\right. \\
& \\
& \left.\quad+D_{y y} \phi_{i}(x, y)\left(\sum_{j=1}^{n}\left(G_{1 j}(t) \frac{\partial \phi_{j}(x, y)}{\partial y}\right)\right) \ell_{y}\right\} d L
\end{aligned}
$$

$$
\begin{equation*}
-\iint_{D}\left\{D_{x y} \frac{\partial \phi_{i}(x, y)}{\partial x}\left(\sum_{j=1}^{n}\left(G_{1 j}(t) \frac{\partial \phi_{j}(x, y)}{\partial y}\right)\right)\right. \tag{136}
\end{equation*}
$$

(cont.next page)

$$
\begin{aligned}
& \left.+D_{y x} \frac{\partial \phi_{i}(x, y)}{\partial y}\left(\sum_{j=1}^{n}\left(G_{1 j}(t) \frac{\partial \phi_{j}(x, y)}{\partial x}\right)\right)\right\} d x d y \\
& +\oint_{B}\left\{D_{x y} \phi_{i}(x, y)\left(\sum_{j=1}^{n}\left(G_{1 j}(t) \frac{\partial \phi_{j}(x, y)}{\partial y}\right)\right) \ell_{x}\right. \\
& \left.+D_{y x} \phi_{i}(x, y)\left(\sum_{j=1}^{n}\left(G_{1 j}(t) \frac{\partial \phi_{j}(x, y)}{\partial x}\right)\right) l_{y}\right\} d L
\end{aligned}
$$

$$
\begin{aligned}
& +\iint_{D}\left\{V_{x} \frac{\partial \phi_{i}(x, y)}{\partial x}\left(\sum_{j=1}^{n}\left(G_{1 j}(t) \phi_{j}(x, y)\right)\right)\right. \\
& \left.+v_{y} \frac{\partial \phi_{i}(x, y)}{\partial y}\left(\sum_{j=1}^{n}\left(G_{1 j}(t) \phi_{j}(x, y)\right)\right)\right\} d x d y \\
& -\oint_{B}\left\{V_{x} \phi_{i}(x, y)\left(\sum_{j=1}^{n}\left(G_{1 j}(t) \phi_{j}(x, y)\right)\right) \ell_{x}\right. \\
& \left.+V_{y} \phi_{i}(x, y)\left(\sum_{j=1}^{n}\left(G_{1 j}(t) \phi_{j}(x, y)\right)\right) \ell_{y}\right\} d L \\
& -\iint_{D}\left\{\left(1+\frac{g_{1}}{g_{3}}\right) \phi_{i}(x, y)\left(\sum_{j=1}^{n}\left(\phi_{j}(x, y) \frac{\partial G_{1 j}(t)}{\partial t}\right)\right)\right\} d x d y \\
& +\iint_{D}\left\{\left(\frac{g_{2}}{g_{3}}\right) \phi_{i}(x, y)\left(\sum_{j=1}^{n}\left(\phi_{j}(x, y) \frac{\partial G_{2 j}(t)}{\partial t}\right)\right)\right\} d x d y \\
& -\iint_{D}\left\{\frac{W C_{1}^{\prime}}{\varepsilon b} \phi_{i}(x, y)\right\} d x d y \\
& \left.-\iint_{D} \int_{\phi_{X}}(x, y)\left(\sum_{p=1}^{m} \delta\left(x-x_{p}\right) \delta\left(y-y_{p}\right) \frac{Q_{p} C_{1}^{\prime}}{\varepsilon b}\right)\right\} d x d y=0 \\
& \mathrm{i}=1,2 \ldots \mathrm{n} .
\end{aligned}
$$

Recall from the boundary conditions given in equations (131) and (132) the $\partial C_{1} / \partial x$ and $\partial C_{1} / \partial y$ are zero everywhere on the boundary. Substitution of these boundary conditions into equation (136) causes the first two boundary integrals which contain these terms to vanish. From the boundary condition given in equation (130) the concentration C_{1} is prescribed everywhere on the boundary and is equal to $C_{1 B}$. Substitution of this boundary condition into the remaining boundary integral in equation (136) yields

$$
\iint_{D}\left\{D_{x x} \frac{\partial \phi_{i}(x, y)}{\partial x}\left(\sum_{j=1}^{n}\left(G_{1 j}(t) \frac{\partial \phi_{j}(x, y)}{\partial x}\right)\right)+D_{y y} \frac{\partial \phi_{i}(x, y)}{\partial y}\left(\sum_{j=1}^{n}\left(G_{1 j}(t) \frac{\partial \phi_{j}(x, y)}{\partial y}\right)\right)\right.
$$

$$
+D_{x y} \frac{\partial \phi_{i}(x, y)}{\partial x}\left(\sum_{j=1}^{n}\left(G_{1 j}(t) \frac{\partial \phi_{j}(x, y)}{\partial y}\right)\right)+D_{y x} \frac{\partial \phi_{i}(x, y)}{\partial y}\left(\sum_{j=1}^{n}\left(G_{1 j}(t) \frac{\partial \phi_{j}(x, y)}{\partial x}\right)\right)
$$

$$
\begin{equation*}
\left.-V_{x} \frac{\partial \phi_{i}(x, y)}{\partial x}\left(\sum_{j=1}^{n}\left(G_{1 j}(t) \phi_{j}(x, y)\right)\right)-V_{y} \frac{\partial \phi_{i}(x, y)}{\partial y}\left(\sum_{j=1}^{n}\left(G_{1 j}(t) \phi_{j}(x, y)\right)\right)\right\} d x d y \tag{137}
\end{equation*}
$$

(cont.next page)

$$
+\oint_{B}\left\{V_{x} \phi_{i}(x, y) C_{1 B}(x, y, t) \ell_{x}+V_{y} \phi_{i}(x, y) C_{1 B}(x, y, t) \ell_{y}\right\} d L
$$

$$
+\iint_{D}\left\{\left(1+\frac{g_{1}}{g_{3}}\right) \phi_{i}(x, y)\left(\sum_{j=1}^{n}\left(\phi_{j}(x, y) \frac{\partial G_{1 j}(t)}{\partial t}\right)\right)\right\} d x d y
$$

$$
-\iint_{D}\left\{\left(\frac{g_{2}}{g_{3}}\right)_{i}(x, y)\left(\sum_{j=1}^{n}\left(\phi_{j}(x, y) \frac{\partial G_{2 j}(t)}{\partial t}\right)\right)\right\} d x d y
$$

$+\iint_{D}\left\{\frac{W C_{1}^{\hat{1}}}{\varepsilon b} \phi_{i}(x, y)\right\} d x d y+\iint_{D}\left\{\phi_{i}(x, y)\left(\sum_{p=1}^{m} \delta\left(x-x_{p}\right) \delta\left(y-y_{p}\right) \frac{Q_{p} C_{1}^{\hat{1}}}{\varepsilon b}\right)\right\} d x d y=0$
(137 cont.)

$$
i=1,2 \ldots n,
$$

The n equations of equation (137) are written in matrix form as
$[\mathrm{A}]\left\{\mathrm{G}_{1}\right\}+[\mathrm{B}]\left\{\frac{\mathrm{dG}}{\mathrm{dt}}\right\}+[\mathrm{C}]\left\{\frac{\mathrm{dG}}{\mathrm{dt}}\right\}+[\mathrm{D}]+[\mathrm{E}]+[\mathrm{F}]=0$
where [A], [B] and [C] are $n \times n$ dimensional matrices and [D], [E], [F], $\left\{\mathrm{G}_{1}\right\},\left\{\frac{\mathrm{dG}}{\mathrm{I}_{1}} \mathrm{dt}\right\}$ and $\left\{\frac{\mathrm{dG}}{\mathrm{dt}}{ }_{2}\right\}$ are n dimensional vectors. The elements of [A], [B], [C], [D], [E] and [F] are

$$
\begin{align*}
A_{i j} & =\iint_{D}\left\{D_{x x}-\frac{\partial \phi_{i}(x, y)}{\partial x} \frac{\partial \phi_{j}(x, y)}{\partial x}+D_{y y} \frac{\partial \phi_{i}(x, y)}{\partial y} \frac{\partial \phi_{j}(x, y)}{\partial y}\right. \\
& +D_{x y} \frac{\partial \phi_{i}(x, y)}{\partial x} \frac{\partial \phi_{j}(x, y)}{\partial y}+D_{y x} \frac{\partial \phi_{i}(x, y)}{\partial y} \frac{\partial \phi_{j}(x, y)}{\partial x} \tag{139}\\
& \left.-V_{x} \frac{\partial \phi_{i}(x, y)}{\partial x} \phi_{j}(x, y)-v_{y} \frac{\partial \phi_{i}(x, y)}{\partial y} \phi_{j}(x, y)\right\} d A, \\
B_{i j} & =\iint_{D}\left(1+\frac{g_{1}}{g_{3}}\right) \phi_{i}(x, y) \phi_{j}(x, y) d A, \tag{140}
\end{align*}
$$

$$
\begin{align*}
& C_{i j}=-\iint_{D}\left(\frac{g_{2}}{g_{3}}\right) \phi_{i}(x, y) \phi_{j}(x, y) d A, \tag{141}\\
& \left.D_{i}=\iint_{D} \frac{W C_{1}^{\prime}}{\varepsilon b} \phi_{i}(x, y)\right\} d A, \tag{142}\\
& E_{i}=\iint_{D}\left\{\phi _ { i } (x , y) \left(\begin{array}{c}
\left.\left.\sum_{p=1}^{m} \delta\left(x-x_{p}\right) \delta\left(y-y_{p}\right) \frac{Q_{p} C_{1}^{A}}{\varepsilon b}\right)\right\} d A, \text { and } \\
F_{i}=\oint_{B}\left\{v_{x} \phi_{i}(x, y) C_{1 B}(x, y, t) \ell_{x}+v_{y} \phi_{i}(x, y) C_{1 B}(x, y, t) \ell_{y}\right\} d L
\end{array}\right.\right. \tag{143}
\end{align*}
$$

4.3.3 Integrations

The integration of equations (139), (140), (141), (142) and (144) is performed in a piecewise manner on an element basis. Just as with the flow equation, element matrices are formed. The global matrix for the entire domain is formed from these element matrices by summing for a given node the contribution to that node from each element matrix. In the element integration the local shape functions v^{e} replace the global shape functions ϕ. Using local shape functions, the approximating trial solutions for C_{1} and C_{2} (equations 125 and 126) for a triangular element shown on Figure 11 with nodes i, j and k become

$$
\begin{align*}
& C_{1}(x, y, t) \simeq \hat{C}_{1}(x, y, t)=G_{1 i}(t) v_{i}^{e}(x, y) \tag{145}\\
& \quad+G_{1 j}(t) v_{j}^{e}(x, y)+G_{1 k}(t) v_{k}^{e}(x, y), \text { and }
\end{align*}
$$

$$
\begin{align*}
& C_{2}(x, y, t) \simeq \hat{C}_{2}(x, y, t)=G_{2 i}(t) v_{i}^{e}(x, y) \tag{146}\\
& \quad+G_{2 j}(t) v_{j}^{e}(x, y)+G_{2 k}(t) v_{k}^{e}(x, y)
\end{align*}
$$

Again the nodes $\mathrm{i}, \mathrm{j}, \mathrm{k}$ are numbered counterclockwise around the triangular element.

4.3.3.1 Integration of [A]

Consider the integration of equation (139). Earlier in the solution of the flow equation the transmissivity T of the aquifer was assumed known at the nodes. It is further assumed that all other aquifer properties are also known at the nodes and the following approximations can therefore be made

$$
\begin{align*}
& v_{x}(x, y, t) \simeq v_{x i}(t) v_{i}^{e}(x, y)+v_{x j}(t) v_{j}^{e}(x, y)+v_{x k}(t) v_{k}^{e}(x, y) \tag{147}\\
& v_{y}(x, y, t) \simeq v_{y i}(t) v_{i}^{e}(x, y)+v_{y j}(t) v_{j}^{e}(x, y)+v_{y k}(t) v_{k}^{e}(x, y) \tag{148}
\end{align*}
$$

$$
\begin{equation*}
D_{x x}(x, y, t) \cong D_{x x i}(t) v_{i}^{e}(x, y)+D_{x x j}(t) v_{j}^{e}(x, y)+D_{x x k}(t) v_{k}^{e}(x, y), \tag{149}
\end{equation*}
$$

$$
D_{y y}(x, y, t) \simeq D_{y y i}(t) v_{i}^{e}(x, y)+D_{y y j}(t) v_{j}^{e}(x, y)+D_{y y k}(t) v_{k}^{e}(x, y),
$$

$$
D_{x y}(x, y, t) \simeq D_{x y i}(t) v_{i}^{e}(x, y)+D_{x y j}(t) v_{j}^{e}(x, y)+D_{x y k}(t) v_{k}^{e}(x, y) \text {, and }
$$

$$
\begin{equation*}
D_{y x}(x, y, t) \simeq D_{y x i}(t) v_{i}^{e}(x, y)+D_{y x j}(t) v_{j}^{e}(x, y)+D_{y x k}(t) v_{k}^{e}(x, y) \tag{152}
\end{equation*}
$$

where $V_{x i}, V_{x j}, V_{x k}, V_{y i}, V_{y j}$ and $V_{y k}$ are known values of velocity at the nodes and $D_{x x i}, D_{x x j}, D_{x x k}, D_{y y i}, D_{y y j}, D_{y y k}, D_{x y i}, D_{x y j}, D_{x y k}, D_{y x i}$, $D_{y x j}$ and $D_{y x k}$ are known values of the dispersion coefficient at the nodes.

The element matrix [a] is

$$
\begin{align*}
& {[a]=\iint_{e}\left(D_{x x i} v_{i}^{e}+D_{x x j} v_{j}^{e}+D_{x x k} v_{k}^{e}\right)\left[\begin{array}{lll}
\frac{\partial v_{i}^{e}}{\partial x} \frac{\partial v_{i}^{e}}{\partial x} & \frac{\partial v_{i}^{e}}{\partial x} \frac{\partial v_{j}^{e}}{\partial x} & \frac{\partial v_{i}^{e}}{\partial x} \frac{\partial v_{k}^{e}}{\partial x} \\
\frac{\partial v_{j}^{e}}{\partial x} \frac{\partial v_{i}^{e}}{\partial x} & \frac{\partial v_{i}^{e}}{\partial x} \frac{\partial v_{j}^{e}}{\partial x} & \frac{\partial v_{j}^{e}}{\partial x} \frac{\partial v_{k}^{e}}{\partial x} \\
\frac{\partial v_{k}^{e}}{\partial x} \frac{\partial v_{i}^{e}}{\partial x} & \frac{\partial v_{k}^{e}}{\partial x} \frac{\partial v_{j}^{e}}{\partial x} & \frac{\partial v_{k}^{e}}{\partial x} \frac{\partial v_{k}^{e}}{\partial x}
\end{array}\right]} \\
& +\iint_{e}\left(D_{y y i} v_{i}^{e}+D_{y y j} v_{j}^{e}+D_{y y k} v_{k}^{e}\left[\begin{array}{ccc}
\frac{\partial v_{i}^{e}}{\partial y} \frac{\partial v_{i}^{e}}{\partial y} & \frac{\partial v_{i}^{e}}{\partial y} \frac{\partial v_{j}^{e}}{\partial y} & \frac{\partial v_{i}^{e}}{\partial y} \frac{\partial v_{k}^{e}}{\partial y} \\
\frac{\partial v_{j}^{e}}{\partial y} \frac{\partial v_{i}^{e}}{\partial y} & \frac{\partial v_{j}^{e}}{\partial y} \frac{\partial v_{j}^{e}}{\partial y} & \frac{\partial v_{j}^{e}}{\partial y} \frac{\partial v_{k}^{e}}{\partial y} \\
\frac{\partial v_{k}^{e}}{\partial y} \frac{\partial v_{i}^{e}}{\partial y} & \frac{\partial v_{k}^{e}}{\partial y} \frac{\partial v_{j}^{e}}{\partial y} & \frac{\partial v_{k}^{e}}{\partial y} \frac{\partial v_{k}^{e}}{\partial y}
\end{array}\right] d A\right. \text { (153) } \tag{153}\\
& +\iint_{e}\left(D_{x y i} v_{i}^{e}+D_{x y j} v_{j}^{e}+D_{x y k} v_{k}^{e}\right)\left[\begin{array}{lll}
\frac{\partial v_{i}^{e}}{\partial x} \frac{\partial v_{i}^{e}}{\partial y} & \frac{\partial v_{i}^{e}}{\partial x} \frac{\partial v_{j}^{e}}{\partial y} & \frac{\partial v_{i}^{e}}{\partial x} \frac{\partial v_{k}^{e}}{\partial y} \\
\frac{\partial v_{j}^{e}}{\partial x} \frac{\partial v_{i}^{e}}{\partial y} & \frac{\partial v_{j}^{e}}{\partial x} \frac{\partial v_{j}^{e}}{\partial y} & \frac{\partial v_{j}^{e}}{\partial x} \frac{\partial v_{k}^{e}}{\partial y} \\
\frac{\partial v_{k}^{e}}{\partial x} \frac{\partial v_{i}^{e}}{\partial y} & \frac{\partial v_{k}^{e}}{\partial x} \frac{\partial v_{j}^{e}}{\partial y} & \frac{\partial v_{k}^{e}}{\partial x} \frac{\partial v_{k}^{e}}{\partial y}
\end{array}\right] \\
& \text { dA }
\end{align*}
$$

$+\iint_{e}\left(D_{y x i} v_{i}^{e}+D_{y x} j_{j}^{v_{j}^{e}+D_{y x k} v_{k}^{e}}\left[\begin{array}{lll}\frac{\partial v_{i}^{e}}{\partial y} \frac{\partial v_{i}^{e}}{\partial x} & \frac{\partial v_{i}^{e}}{\partial y} \frac{\partial v_{j}^{e}}{\partial x} & \frac{\partial v_{i}^{e}}{\partial y} \frac{\partial v_{k}^{e}}{\partial x} \\ \frac{\partial v_{j}^{e}}{\partial y} \frac{\partial v_{i}^{e}}{\partial x} & \frac{\partial v_{j}^{e}}{\partial y} \frac{\partial v_{j}^{e}}{\partial x} & \frac{\partial v_{j}^{e}}{\partial y} \frac{\partial v_{k}^{e}}{\partial x} \\ \frac{\partial v_{k}^{e}}{\partial y} \frac{\partial v_{i}^{e}}{\partial x} & \frac{\partial v_{k}^{e}}{\partial y} \frac{\partial v_{j}^{e}}{\partial x} & \frac{\partial v_{k}^{e}}{\partial y} \frac{\partial v_{k}^{e}}{\partial x}\end{array}\right]\right.$
$-\iint_{e}\left(v_{x i} v_{i}^{e}+v_{x j} v_{j}^{e}+v_{x k} v_{k}^{e}\right) \quad\left[\begin{array}{lll}\frac{\partial v_{i}^{e}}{\partial x} v_{i}^{e} & \frac{\partial v_{i}^{e}}{\partial x} v_{j}^{e} & \frac{\partial v_{i}^{e}}{\partial x} v_{k}^{e} \\ \frac{\partial v_{j}^{e}}{\partial x} v_{i}^{e} & \frac{\partial v_{j}^{e}}{\partial x} v_{j}^{e} & \frac{\partial v_{j}^{e}}{\partial x} v_{k}^{e} \\ \frac{\partial v_{k}^{e}}{\partial x} v_{i}^{e} & \frac{\partial v_{k}^{e}}{\partial x} v_{j}^{e} & \frac{\partial v_{k}^{e}}{\partial x} v_{k}^{e}\end{array}\right]$

> dA
> $(153$ cont. $)$
$-\iint_{e}\left(v_{y i} v_{i}^{e}+v_{y j} v_{j}^{e}+v_{y k} v_{k}^{e}\right) \quad\left[\begin{array}{lll}\frac{\partial v_{i}^{e}}{\partial y} v_{i}^{e} & \frac{\partial v_{i}^{e}}{\partial y} v_{j}^{e} & \frac{\partial v_{i}^{e}}{\partial y} v_{k}^{e} \\ \frac{\partial v_{j}^{e}}{\partial y} v_{i}^{e} & \frac{\partial v_{j}^{e}}{\partial y} v_{j}^{e} & \frac{\partial v_{j}^{e}}{\partial y} v_{k}^{e} \\ \frac{\partial v_{k}^{e}}{\partial y} v_{i}^{e} & \frac{\partial v_{k}^{e}}{\partial y} v_{j}^{e} & \frac{\partial v_{k}^{e}}{\partial y} v_{k}^{e}\end{array}\right]$

The partial derivatives $\frac{\partial v^{e}}{\partial \mathrm{x}}$ and $\frac{\partial \mathrm{v}^{\mathrm{e}}}{\partial \mathrm{y}}$ were obtained previously in equations (93), (94) and (95) for the solution of the flow equation. Recall that these partial derivations are constants and thus could be removed from under the integration sign. This leaves integrations of the form

$$
\begin{align*}
& \iint_{e}\left(D_{r} v_{r}^{e}\right) d A \tag{154}\\
& \iint_{e}\left(v_{r} v_{r}^{e} v_{r}^{e}\right) d A \quad j, k, \tag{155}\\
& \iint_{e}\left(v_{p} v_{p}^{e} v_{r}^{e}\right) d A \quad r=i, j, k, \text { and } \tag{156}\\
& r=i, j, k, \quad p=i, j, k, \text { and } \quad r \neq p
\end{align*}
$$

Recall that $D_{i}, D_{j}, D_{k}, V_{i}, V_{j}$ and V_{k} are known values at the nodes which are functions of time only and as such may be considered constants in this integration. These integrations were performed earlier in the solution of the flow equation as equations (98), (101) and (102) and are repeated below as

$$
\begin{align*}
& \iint_{e} v_{r}^{e} d A=\frac{A \Delta}{3} \quad r=i, j, k, \tag{157}\\
& \iint_{e} v_{r}^{e} v_{r}^{e} d A=\frac{A \Delta}{6} \quad r=i, j, k \text {, and } \tag{158}\\
& \iint_{e} v_{p} e_{r}^{e} e_{r}^{e} d A=\frac{A \Delta}{12} \quad r=i, j, k, \quad p=i, j, k \text {, and } \quad r \neq p . \tag{159}
\end{align*}
$$

Substitution of equations (93), (94) and (95) into equation (153) and applying equations (157), (158) and (159) to equation (153) yields
$[a]=\left(\frac{D_{x x i}+D_{x x j}+D_{x x k}}{12 A \Delta}\right)\left[\begin{array}{ccc}\left(y_{j}-y_{k}\right)^{2} & \left(y_{j}-y_{k}\right)\left(y_{k}-y_{i}\right) & \left(y_{j}-y_{k}\right)\left(y_{i}-y_{j}\right) \\ \left(y_{k}-y_{i}\right)\left(y_{j}-y_{k}\right) & \left(y_{k}-y_{i}\right)^{2} & \left(y_{k}-y_{i}\right)\left(y_{i}-y_{j}\right) \\ \left(y_{i}-y_{j}\right)\left(y_{j}-y_{k}\right) & \left(y_{i}-y_{j}\right)\left(y_{k}-y_{i}\right) & \left(y_{i}-y_{j}\right)^{2}\end{array}\right]$

$$
+\left(\frac{D_{y y i}+D_{y y j}+D_{y k k}}{12 A \Delta}\right)\left[\begin{array}{ccc}
\left(x_{k}-x_{j}\right)^{2} & \left(x_{k}-x_{j}\right)\left(x_{i}-x_{k}\right) & \left(x_{k}-x_{j}\right)\left(x_{j}-x_{i}\right) \tag{160}\\
\left(x_{i}-x_{k}\right)\left(x_{k}-x_{j}\right) & \left(x_{i}-y_{k}\right)^{2} & \left(x_{i}-x_{k}\right)\left(x_{j}-x_{i}\right) \\
\left(x_{j}-x_{i}\right)\left(x_{k}-x_{j}\right) & \left(x_{j}-x_{i}\right)\left(x_{i}-x_{k}\right) & \left(x_{j}-x_{i}\right)^{2}
\end{array}\right]
$$

$\left.+\left(\frac{D_{x y i}+D_{x y j}+D}{12 A \Delta}\right)\left[\begin{array}{lll}\left(y_{j}-y_{k}\right)\left(x_{k}-x_{j}\right) & \left(y_{j}-y_{k}\right)\left(x_{i}-x_{k}\right) & \left(y_{j}-y_{k}\right)\left(x_{j}-x_{i}\right) \\ \left(y_{k}-y_{i}\right)\left(x_{k}-x_{j}\right) & \left(y_{k}-y_{i}\right)\left(x_{i}-x_{k}\right) & \left(y_{k}-y_{i}\right)\left(x_{j}-x_{i}\right) \\ \left(y_{i}-y_{j}\right)\left(x_{k}-x_{j}\right) & \left(y_{i}-y_{j}\right)\left(x_{i}-x_{k}\right) & \left(y_{i}-y_{j}\right)\left(x_{j}-x_{i}\right)\end{array}\right] \begin{array}{l}\text { cont. } \\ \text { next } \\ \text { page }\end{array}\right]$
$+\left(\frac{D_{y x i}+D_{y x j}+D_{y x k}}{12 A \Delta}\right)\left[\begin{array}{lll}\left(x_{k}-x_{j}\right)\left(y_{j}-y_{k}\right) & \left(x_{k}-y_{j}\right)\left(y_{k}-y_{i}\right) & \left(x_{k}-x_{j}\right)\left(y_{i}-y_{j}\right) \\ \left(x_{i}-x_{k}\right)\left(y_{j}-y_{k}\right) & \left(x_{i}-y_{k}\right)\left(y_{k}-y_{i}\right) & \left(x_{i}-x_{k}\right)\left(y_{i}-y_{j}\right) \\ \left(x_{j}-x_{i}\right)\left(y_{j}-y_{k}\right) & \left(x_{j}-x_{i}\right)\left(y_{k}-y_{i}\right) & \left(x_{j}-x_{i}\right)\left(y_{i}-y_{j}\right)\end{array}\right]$

$$
\begin{aligned}
& -\frac{1}{24}\left[\begin{array}{lll}
\left(2 v_{x i}+v_{x j}+v_{x k}\right)\left(y_{j}-y_{k}\right) & \left(v_{x i}+2 v_{x j}+v_{x k}\right)\left(y_{j}-y_{k}\right) & \left(v_{x i}+v_{x j}+2 v_{x k}\right)\left(y_{j}-y_{k}\right. \\
\left(2 v_{x i}+v_{x j}+v_{x k}\right)\left(y_{k}-y_{j}\right) & \left(v_{x i}+2 v_{x j}+v_{x k}\right)\left(y_{k}-y_{j}\right) & \left(v_{x i}+v_{x j}+2 v_{x k}\right)\left(y_{k}-y_{i}\right) \\
\left(2 v_{x i}+v_{x j}+v_{x k}\right)\left(y_{i}-y_{j}\right) & \left(v_{x i}+2 v_{x j}+v_{x k}\right)\left(y_{i}-y_{j}\right) & \left(v_{x i}+v_{x j}+2 v_{x k}\right)\left(y_{i}-y_{j}\right)
\end{array}\right] \\
& \text { (160 cont.) }
\end{aligned}
$$

The element matrix [a] is inserted into the global matrix [A] as follows. If nodes i and j in the nodal system correspond to nodes p and q in the global system, then a_{ij} in the element matrix is added to $A_{p q}$ in the global matrix.

4.3.3.2 Integration of [B] and [C]

Consider the integration of equations (140) and (141). Recall that the parameters g_{1}, g_{2} and g_{3} in these equations were defined by equations (36), (37) and (38) and are dependent on the dissolved concentration C, the adsorbed concentration $\overline{\mathrm{C}}$ and the CEC of the porous media (all of which are either calculated or assumed known at the nodes). Similar to the approximations made for transmissivity T , velocity V , and coefficient of dispersion D, the following approximations are made

$$
\begin{align*}
& \frac{g_{1}(x, y, t)}{g_{3}(x, y, t)} \simeq \frac{g_{1 i}(t)}{g_{3 i}(t)} v_{i}^{e}(x, y)+\frac{g_{1 j}(t)}{g_{3 j}(t)} v_{j}^{e}(x, y)+\frac{g_{1 k}(t)}{g_{3 k}(t)} v_{k}^{e}(x, y), \text { and } \tag{161}\\
& \frac{g_{2}(x, y, t)}{g_{3}(x, y, t)} \simeq \frac{g_{2 i}(t)}{g_{3 i}(t)} v_{i}^{e}(x, y)+\frac{g_{2 j}(t)}{g_{3 j}(t)} v_{j}^{e}(x, y)+\frac{g_{2 k}(t)}{g_{3 k}(t)} v_{k}^{e}(x, y) \tag{162}
\end{align*}
$$

where $g_{1 i}, g_{1 j}, g_{1 k}, g_{2 i}, g_{2 j}, g_{2 k}, g_{3 i}, g_{3 j}$ and $g_{3 k}$ are known values of the parameters at the nodes.

$$
\left.\begin{array}{l}
{[b]=\iint_{e}\left(1+\frac{g_{1 i}}{g_{3 i}} v_{i}^{e}+\frac{g_{1 j}}{g_{3 j}} v_{j}^{e}+\frac{g_{1 k}}{g_{3 k}} v_{k}^{e}\right)\left[\begin{array}{cccc}
v_{i}^{e} v_{i}^{e} & v_{i}^{e} v_{j}^{e} & v_{i}^{e} v_{k}^{e} \\
v_{j}^{e} v_{i}^{e} & v_{j}^{e} v_{j}^{e} & v_{j}^{e} v_{k}^{e} \\
v_{k}^{e} v_{i}^{e} & v_{k}^{e} v_{j}^{e} & v_{k}^{e} v_{k}^{e}
\end{array}\right] d A} \\
{[c]=-\iint\left(\frac{g_{2 i}}{g_{3 i}} v_{i}^{e}+\frac{g_{2 j}}{g_{3 j}} v_{j}^{e}+\frac{g_{2 k}}{g_{3 k}} v_{k}^{e}\right)}
\end{array}\right]\left[\begin{array}{lll}
v_{i}^{e} v_{i}^{e} & v_{i}^{e} v_{j}^{e} & v_{i}^{e} v_{k}^{e} \tag{164}\\
v_{j}^{e} v_{i}^{e} & v_{j}^{e} v_{j}^{e} & v_{j}^{e} v_{k}^{e} \\
v_{j}^{e} \\
v_{k}^{e} v_{i}^{e} & v_{k}^{e} v_{j}^{e} & v_{k}^{e} v_{k}^{e}
\end{array}\right] d A
$$

The integration of equations (163) and (164) is performed using integration formulas developed from equation (69) from which

$$
\begin{array}{ll}
\iint_{e} v_{r}^{e} v_{r}^{e} d A=\frac{A \Delta}{6} & r=i, j, k, \\
\iint_{e} v_{r}^{e} v_{p}^{e} d A=\frac{A \Delta}{12} & r=i, j, k, \quad p=i, j, k, \quad \text { and } r \neq p, \\
\iint_{e} v_{r}^{e} v_{r}^{e} v_{r}^{e} d A=\frac{A \Delta}{10} & r=i, j, k, \\
\iint_{e} v_{r}^{e} v_{r}^{e} v_{p}^{e} d A=\frac{A \Delta}{30} & r=i, j, k, \quad p=i, j, k, \quad \text { and } r \neq p, \text { and } \\
\iint_{e} v_{r}^{e} v_{p}^{e} v_{q}^{e} d A=\frac{A \Delta}{60} & r=i, j, k, \quad p=i, j, k, \quad q=i, j, k, \tag{169}
\end{array}
$$

are obtained. Equations (165) - (169) applied to equations (163) and (164) yields
$[b]=\frac{A \Delta}{60}\left[\begin{array}{lll}10+6 g_{13 i}+2 g_{13 j}+2 g_{13 k} & 5+2 g_{13 i}+2 g_{13 j}+g_{13 k} & 5+2 g_{13 i}+g_{13 j}+2 g_{13 k} \\ 5+2 g_{13 i}+2 g_{13 j}+g_{13 k} & 10+2 g_{13 i}+6 g_{13 j}+2 g_{13 k} & 5+g_{13 i}+2 g_{13 j}+2 g_{13 k} \\ 5+2 g_{13 i}+g_{13 j}+2 g_{13 k} & 5+g_{13 i}+2 g_{13 j}+2 g_{13 k} & 10+2 g_{13 i}+2 g_{13 j}+6 g_{13 k}\end{array}\right]$
where $g_{13}=g_{1} / g_{3}$ and

$$
[c]=-\frac{A \Delta}{60}\left[\begin{array}{lll}
6 g_{23 i}+2 g_{23 j}+2 g_{23 k} & 2 g_{23 i}+2 g_{23 j}+g_{23 k} & 2 g_{23 i}+g_{23 j}+2 g_{23 k} \tag{171}\\
2 g_{23 i}+2 g_{23 j}+g_{23 k} & 2 g_{23 i}+6 g_{23 j}+2 g_{23 k} & g_{23 i}+2 g_{23 j}+2 g_{23 k} \\
2 g_{23 i}+g_{23 j}+2 g_{23 k} & g_{23 i}+2 g_{23 j}+2 g_{23 k} & 2 g_{23 i}+2 g_{23 j}+6 g_{23 k} .
\end{array}\right]
$$

where $g_{23}=g_{2} / g_{3}$.
The element matrices [b] and [c] are inserted into the global matrices [B] and [C] respectively, in an identical procedure as that used to insert [a] into [A].

4.3.3.3 Integration of [D]

Consider the integration of equation (142). In this equation, W represents the volumetric flux per unit area over the element of integration from a distributed source or sink and C_{1}^{\prime} is the concentration of W . Both are constants for the element. The porosity ε is assumed a constant over the entire Domain D and thus
also constant over the element of integration. Recall that all aquifer properties are assumed known at the nodes. Similar to the previous approximations, the following approximation is made

$$
\begin{equation*}
\frac{1}{b(x, y, t)}=\frac{1}{b_{i}(t)} v_{i}^{e}+\frac{1}{b_{j}(t)} v_{j}^{e}+\frac{1}{b_{k}(t)} v_{k}^{e} \tag{172}
\end{equation*}
$$

where b_{i}, b_{j} and b_{k} are the known saturated thicknesses of the aquifer at the nodes.

$$
\begin{align*}
& \text { The element matrix [d] is } \\
& {[d]=\frac{C_{1}^{\prime} W}{\varepsilon} \iiint_{e}\left(\frac{1}{b_{i}} v_{i}^{e}+\frac{1}{b_{j}} v_{j}^{e}+\frac{1}{b_{k}} v_{k}^{e}\right)\left[\begin{array}{c}
v_{i}^{e} \\
v_{j}^{e} \\
v_{k}^{e} \\
k
\end{array}\right]} \tag{173}
\end{align*}
$$

This integration has been performed several times before in equations (101) and (102), (158) and (159), or (165) and (166). Integration of equation (173) yields

$$
\left[\begin{array}{c}
\frac{1}{b_{i}}+\frac{1}{2 b_{j}}+\frac{1}{2 b_{k}} \tag{174}\\
\frac{1}{2 b_{i}}+\frac{1}{b_{j}}+\frac{1}{2 b_{k}} \\
\frac{1}{2 b_{i}}+\frac{1}{2 b_{j}}+\frac{1}{b_{k}}
\end{array}\right]
$$

The element matrix [d] physically represents the sum of the mass flux from distributed sources or sinks within the element of integration. With the finite element method a source or sink is applied at the
nodes. If $b_{i}=b_{j}=b_{k}$ then the total mass flux for the element from distributed sources or sinks per unit volume of solution per unit thickness of the aquifer is $\frac{\mathrm{C}_{1}^{\prime} \text { WA } \Delta}{\varepsilon b}$ of which one-third is distributed to each of the three nodes comprising the veritices of the element.

If node i in the local nodal system corresponds to node p in the global nodal system then the global matrix [D] is formed by adding d_{i} to D_{p}.

4.3.3.4 Integration of [E]

Consider the integration of equation (144) which, unlike most of the previous integrations, is done globally. Equation (143) physically represents the mass flux from a point source or sink. If these point sources or sinks are applied only at the nodes then

$$
\begin{equation*}
E_{i}=\iint_{D}\left\{\sum_{\sum^{n}}^{n} \delta\left(x-x_{p}\right) \delta\left(y-y_{p}\right) \frac{Q_{p} C_{1}^{\prime} 1_{p}}{\varepsilon b_{p}} \phi_{i}(x, y)\right\} d A \tag{175}
\end{equation*}
$$

where Q_{p} represents the volumetric flux from a point source or sink at the node and $C_{1 p}^{\prime}$ is the concentration of C_{1} in Q_{p}. Both of these are functions of time only and therefore are considered as constants in the space integration. The porosity ε is assumed constant everywhere in the Domain D. Recall that δ is the dirac delta function. The integration of equation (175) is done in an identical manner as the integration of equation (106) for a point source or sink in the solution of the groundwater flow equation. Using the property of the dirac delta function given in equation (107) that

$$
\int_{a}^{b} f(x) \delta(x-\xi) d x=\left\{\begin{array}{lll}
0 & \text { if } x<a & \text { or } x>b \tag{176}\\
f(\xi) & \text { if } a<x<b
\end{array}\right\}
$$

then the integration of (175) was carried out in parts by integrating over an infinitismally small area around each of the nodes and then over the remainder of the domain to yield

$$
[E]=\left[\begin{array}{ccc}
\sum_{p=1}^{n} & \frac{Q_{p} C_{1 p}^{\prime}}{\varepsilon b_{p}} & \phi_{1}\left(x_{p}, y_{p}\right) \tag{177}\\
& & \\
\sum_{p=1}^{n} & \frac{Q_{p} c_{1 p}^{\prime}}{\varepsilon b_{p}} & \phi_{2}^{\prime}\left(x_{p}, y_{p}\right) \\
& \vdots & \\
\sum_{p=1}^{n} & \frac{Q_{p} c_{1 p}^{\prime}}{\varepsilon b_{p}} & \phi_{n}\left(x_{p}, y_{p}\right)
\end{array}\right] .
$$

The aquifer thickness b is known at the nodes and thus could be treated as a constant in the infinitesimally small area about each node. Recall from the previous definition for the global shape functions ϕ that $\phi_{i}=1$ at node $i\left(i . e . ~ \phi_{i}\left(x_{i}, y_{i}\right)=1\right.$) and $\phi_{i}=0$ at all other nodes (i.e. $\phi_{i}\left(x_{j}, y_{j}\right)=0, j \neq i$). Thus equation (177) simplifies to

$$
[\mathrm{E}] \quad=\left[\begin{array}{c}
\frac{Q_{1} C_{11}^{\prime}}{\varepsilon b_{1}} \tag{178}\\
\frac{Q_{2} C_{12}^{\prime}}{\varepsilon b_{2}} \\
\cdot \\
\cdot \\
\frac{Q_{n} C_{1 n}^{\prime}}{\varepsilon b_{n}}
\end{array}\right]
$$

4.3.3.5 Integration of [F]

Finally, consider the integration of equation (144). The integration path for [F] is along the global boundary B. The boundary is broken into a series of piecewise continuous segments $\Delta \mathrm{L}$. Let nodes i and j be two nodes forming a boundary segment. The boundary concentration $C_{1 B}$ in equation (144) is known from the boundary conditions and is specified along the boundary segment $\Delta \mathrm{L}$ as

$$
\begin{equation*}
C_{1 B}(x, y, t) \simeq C_{1 B i}(t) v_{i}^{e}(x, y)+C_{1 B j}(t) v_{j}^{e}(x, y) \tag{179}
\end{equation*}
$$

where $C_{1 B i}$ and $C_{1 B j}$ are known values of the concentration of C_{1} at the boundary nodes. The terms ℓ_{x} and ℓ_{y} are the cosines of the angles that the outward pointing normal makes with the x and y directions respectively (see Figure C1, Appendix C).These are specified along the boundary.

The element matrix [f] is then

$$
\begin{align*}
{[f] } & =\ell_{x} \int_{\Delta L}\left(v_{x i} v_{i}^{e}+v_{x j} v_{j}^{e}\right)\left(C_{1 B i} v_{i}^{e}+C_{1 B j} v_{j}^{e}\right)\left[\begin{array}{r}
v_{i}^{e} \\
v_{j}^{e}
\end{array}\right] \quad d L \\
& +\ell_{y} \int_{\Delta L}\left(v_{y i} v_{i}^{e}+v_{y j} v_{j}^{e}\right)\left(C_{1 B i} v_{i}^{e}+C_{1 B j} v_{j}^{e}\right)\left[\begin{array}{c}
v_{i}^{e} \\
v_{j}^{e}
\end{array}\right] \quad d L \tag{180}
\end{align*}
$$

The integration of equation (180) is performed using the integration formula given in equation (68) from which

$$
\begin{array}{ll}
\int_{\Delta L} v_{r}^{e} v_{r}^{e} v_{r}^{e} d L=\frac{\Delta L}{4} & r=i, j, \text { and } \\
\int_{\Delta L} v_{r}^{e} v_{r}^{e} v_{p}^{e} d L=\frac{\Delta L}{12} & r=i, j, \quad p=i, j, \text { and } r \neq p \tag{182}
\end{array}
$$

are obtained. Equations (181) and (182) applied to equation (180) yields

$$
\begin{align*}
{[f] } & =\ell_{x} \frac{\Delta L}{12}\left[\begin{array}{l}
3 V_{x i} C_{1 B i}+v_{x i} C_{1 B j}+v_{x j} C_{1 B i}+v_{x j} C_{1 B j} \\
v_{x i} C_{1 B i}+V_{x i} C_{1 B j}+v_{x j} C_{1 B i}+3 v_{x j} C_{1 B j}
\end{array}\right] \tag{183}\\
& +\ell_{y} \frac{\Delta L}{12}\left[\begin{array}{l}
\left.3 V_{y i} C_{1 B i}+v_{y i} C_{1 B j}+v_{y j} C_{1 B i}+v_{y j} C_{1 B j}\right] \\
\left.v_{y i} C_{1 B i}+v_{y i} C_{1 B j}+v_{y j} C_{1 B i}+3 V_{y j} C_{1 B j}\right]
\end{array}\right.
\end{align*}
$$

The order of [f] is two since only two nodes comprise a boundary segment. Equation (183) represents the mass flux of the solute across the boundary due to convective transport. Recall from the boundary conditions that the mass flux of the solute across the boundary due to hydrodynamic dispersion is zero.

If node i in the local nodal system corresponds to node p in the global nodal system then the global matrix [F] is formed by adding f_{i} to F_{p}.

4.3.4 Time-Derivative Approximation

Although the matrices [A], [B], and [C] and the vectors [D], [E], and [F] have been evaluated, it is still necessary to solve the set of n ordinary differential equations given in equation (138) and repeated be1ow

$$
\begin{equation*}
[\mathrm{A}]\left\{\mathrm{G}_{1}\right\}+[\mathrm{B}]\left\{\frac{\mathrm{dG}}{\mathrm{dt}}\right\}+[\mathrm{C}]\left\{\frac{\mathrm{dG}}{\mathrm{dt}}\right\}+[\mathrm{D}]+[\mathrm{E}]+[\mathrm{F}]=0 \tag{184}
\end{equation*}
$$

As was done with the flow equation, the time derivative is approximated by using a first-order correct implicit, finite-difference scheme

$$
\begin{equation*}
\frac{d G}{d t}=\frac{G_{t+\Delta t}-G_{t}}{\Delta t} \tag{185}
\end{equation*}
$$

The vector $\{G\}$ is known at the time t and is to be evaluated for at the time $t+\Delta t$. Substitution of equation (185) into equation (184) and rearranging yields

$$
\left.\begin{array}{rl}
([A] & \left.+\frac{1}{\Delta t}[B]\right)\left\{G_{1} t+\Delta t\right\}+\frac{1}{\Delta t}[C]\left\{G_{2} t+\Delta t\right. \tag{186}
\end{array}\right\}
$$

with all of the terms on the right hand side of the equation being known.
Recall that there were two equations to be solved $L_{1}(C)=0$ (equation 117) and $\mathrm{L}_{2}(\mathrm{C})=0$ (equation 118) and thus far only the solution of $L_{1}(C)=0$ has been considered. It remains then to solve $L_{2}(C)=0$. The simultaneous solution of $L_{1}(C)=0$ and $L_{2}(C)=0$ is
obtained by assembling a coupled matrix equation similar in form to equation (186).

4.3.5 Assembly of the Coupled Solutions

The solution of $L_{2}(C)=0$ proceeds in an identical manner as the previous solution to $L_{1}(C)=0$. Let the subscript 1 denote matrices relating to solution of $L_{1}(C)=0$ and the subscript 2 denote matrices relating to solution of $L_{2}(C)=0$. It is then easy to show that the element matrices are related as

$$
\begin{align*}
& {\left[a_{2}\right]=\left[a_{1}\right] \quad \text { (see equation 160), }} \tag{187}\\
& {\left[b_{2}\right]=\left[b_{1}\right] \text { with the value } g_{13} \text { in } b_{1} \text { replaced by } g_{23}} \\
& \text { in } b_{2} \text { (see equation 170) } \tag{188}\\
& {\left[c_{2}\right]=\left[c_{1}\right] \quad \text { with the value } g_{23} \text { in } c_{1} \text { replaced by } g_{13}} \\
& \text { in } c_{2} \text { (see equation 171) } \tag{189}\\
& {\left[d_{2}\right]=\left[d_{1}\right] \text { with the value } C_{1}^{\prime} \text { in } d_{1} \text { replaced by } C_{2}^{\prime} \text { in }} \\
& \mathrm{d}_{2} \text { (see equation 174) } \tag{190}\\
& {\left[E_{2}\right]=\left[E_{1}\right] \text { with the value } C_{1}^{\prime} \text { in } E_{1} \text { replaced by } C_{2}^{\prime} \text { in }} \\
& \mathrm{E}_{2} \text { (see equation } 778 \text {) } \tag{191}\\
& {\left[f_{2}\right]=\left[f_{1}\right] \text { with the value } C_{1 B} \text { in } f_{1} \text { replaced by } C_{2 B}} \\
& \text { in } f_{2} \text { (see equation 183) } \tag{192}
\end{align*}
$$

$$
\left.\begin{array}{rl}
\left(\left[A_{1}\right]\right. & +\frac{1}{\Delta t}\left[B_{1}\right]\left\{G_{1} t+\Delta t\right\}^{\}}+\frac{1}{\Delta t}\left[C_{1}\right]\left\{G_{2} t+\Delta t\right.
\end{array}\right\}
$$

The parallel equation is

$$
\left.\begin{array}{rl}
\left(\left[A_{2}\right]\right. & \left.+\frac{1}{\Delta t}\left[B_{2}\right]\right)\left\{G_{2} t+\Delta t\right.
\end{array}\right\}+\frac{1}{\Delta t}\left[C_{2}\right]\left\{G_{1} t+\Delta t\right\}
$$

The simultaneous solution of equations (193) and (194) for $\left\{G_{1 \measuredangle t+\Delta t}\right\}$ and $\left\{\mathrm{G}_{2 \mathrm{t}+\Delta \mathrm{t}}\right\}$ is obtained by assembling the matrix equation

$$
\begin{equation*}
\left(\left[A^{\prime}\right]+\frac{1}{\Delta t}\left[B^{\prime}\right]\right)\left\{G_{t+\Delta t}^{\prime}\right\}=\frac{1}{\Delta t}\left[B^{\prime}\right]\left\{G_{t}^{\prime}\right\}-\left[D^{\prime}\right]-\left[E^{\prime}\right]-\left[F^{\wedge}\right] \tag{195}
\end{equation*}
$$

where

$$
\begin{aligned}
& {\left[A^{\prime}\right]=\left[\begin{array}{c:c}
A_{1} & 0 \\
\hdashline 0 & A_{2}
\end{array}\right],} \\
& {\left[B^{\prime}\right]=\left[\begin{array}{c:c}
B_{1} & C_{1} \\
\hdashline C_{2} & B_{2}
\end{array}\right],} \\
& {\left[D^{\prime}\right]=\left[\begin{array}{c}
D_{1} \\
-\frac{D_{2}}{D_{2}}
\end{array}\right],}
\end{aligned}
$$

$$
\begin{aligned}
{\left[E^{\prime}\right] } & =\left[\begin{array}{c}
E_{1} \\
-- \\
E_{2}
\end{array}\right], \\
{\left[F^{\prime}\right] } & =\left[\begin{array}{c}
F_{1} \\
--- \\
F_{2}
\end{array}\right], \\
& =\left\{\begin{array}{c}
G_{1 t} \\
---\} \\
\left.G_{2 t}^{\prime}\right\}
\end{array}\right\} \text { and } \\
\left\{G_{t+\Delta t}^{\prime}\right\} & =\left\{\begin{array}{c}
G_{1} t+\Delta t \\
----- \\
G_{2 t+\Delta t}
\end{array}\right\}
\end{aligned}
$$

Equation (195) was solved using a block-iterative Gaussian elimination procedure for $\left\{G_{t+\Delta t}\right\}$ from which $\left\{G_{1} t+\Delta t\right\}$ and $\left\{G_{2} t+\Delta t\right\}$ are obtained. Based on the previous mathematical derivations, a computer program was written which calculates the dual changes in concentration of two reacting solutes subject to binary cation exchange in flowing groundwater. The computer program calculates both solution concentration and adsorbed concentration at any specified place and time due to the process of convective transport, hydrodynamic dispersion, mixing from fluid sources and cation exchange processes. The program allows specification of any number of injection or withdrawal wells and of spatially varying distributed recharge or discharge, leakage, saturated
thickness, transmissivity, cation exchange capacity, boundary conditions and initial heads and concentrations. The program can simulate either transient f1ow - transient transport or steady state flow - transient transport. A complete documentation of the program is contained in the following section of the report.

CHAPTER V

COMPUTER PROGRAM

The purpose of this section of the report is to describe the computer program which was written from the previously developed theory. A listing of the computer program is presented in Appendix D. The computer program is segmented into a main program and twelve subroutines. It contains about 2, 500 lines and is written in Fortran IV. The definition of selected variables in the program is presented in Appendix E. This should help the reader relate the program variables to their corresponding mathematical terms. Also presented is a complete set of data deck instructions for the program (Appendix F), a listing of a sample data deck (Appendix G) and a sample output from a model simulation (Appendix H).

5.1 Simplified Flow-Chart

The major steps in the program are summarized in the simplified flow-chart shown on Figure 12. The flow chart illustrates that at a given time step the groundwater flow equation is solved sequentially with the simultaneous solution of the two coupled convection-dispersion equations in a leap-frog solution technique (this was discussed earlier in Chapter 3 and diagramatically shown on Figure 7). The groundwater flow equation is solved first for the head distribution in the aquifer and then the two coupled transport equations are solved for both the dissolved and adsorbed concentrations.

An implicit finite difference approximation (which is stable for any size time step) is made to the time derivatives in both the groundwater flow equation and the transport equations. The user must specify the

FIGURE 12. -- Simplified Flow Chart
initial time step (TINIT), time increment multiplier (TIMX) and maximum time step (TDELMAX) in the model. All subsequent time steps are automatically determined by the model. A maximum time step is required since the transport equations contain variable parameters g_{1}, g_{2} and g_{3} which are dependent on concentration changes and thus from experience unreliable results are obtained if too large of a time step is used. The program printouts are at the end of each pumping period (NPMP) which are of length (PINT). The model assumes that stresses are constant with time during each pumping period. However, these stresses may be changed for successive pumping periods.

The general program presented in Appendix D is dimensioned for 35 nodes and 50 elements. The user should redimension the program arrays to the appropriate size for the problem being solved. These arrays are contained in COMMON statements, BLOCKA, BLOCKD, BLOCKE, BLOCKG, BLOCKH and BLOCKI and in the DIMENSION statements in subroutines MULT and BSOLVE.

5.2 Program Segments

5.2.1 Main Program

The primary purpose of the main program is to control the overall execution sequence of the program. Subroutines for input, output, integration of coefficient matrices, assembly and solution of the flow and transport equations, and mass balance are called from the main program. The main program also calsulates the time steps.

5.2.2 Subroutine Input

All of the input data are read through subroutine INPUT. These data define the model grid, the boundary conditions, time-step factors, aquifer properties, initial potentiometric head, initial solution concentrations, hydrologic and chemical definition of stresses on the groundwater, and other hydrologic and chemical parameters. The values of many program variables are also initialized in subroutine INPUT. The initial adsorbed concentrations are calculated in this subroutine by a call to subroutine CHATSOL assuming that equilibrium conditions hold. Some other preliminary calculations are also performed such as calculation of element areas and calculation of initial mass stored in the aquifer. A printout is provided of all input data. Subroutine INPUT is also used to selectively update model input data at the end of each pumping period.

The program includes an element identification array (IDELEM) and a node identification array (NODEID) which allows certain elements or nodes to be identified by a unique code number. Each code number is equated with a specified flux, source concentration, aquifer property and/or boundary condition. These identification arrays are used to specify the aquifer stresses, aquifer properties and/or boundary conditions for elements or nodes with the same code number. The identification array feature can save much time and effort in the preparation of input data for the model.

5.2.3 Subroutine ELINTF

The purpose of subroutine ELINTF is to perform the integrations required for the flow equation. These integrations are carried out in
a piecewise manner on an element basis. Global matrices are then formed by summing for a given node the contribution to that node from each element. These global matrices for the flow equation are banded and symmetric. To reduce computer storage requirements, these matrices are stored as half bandwidth column matrices.

5.2.4 Subroutine MATFLOW

Subroutine MATFLOW assembles and solves the flow equation. Solution is by the point successive over-relaxation technique (Varga, 1962). The technique consists of the following iterative procedure: (1) Assign an initial value of head h for each unknown in the set of equations to be solved. (2) Starting with the first equation solve for the first unknown using the initial values as estimates for the other unknowns. A new estimate of the first unknown is then made as

```
new estimate = old estimate + w (new value calculated - old estimate) (196)
```

where

$$
\mathrm{w}=\text { relaxation factor } .
$$

(3) Proceed to the second equation and solve it for the second unknown using the new estimate of the first unknown and the initial values for the remaining unknowns. A new estimate of the second unknown is then made in an identical procedure as was done for the first unknown. (4) Proceed with the remaining equations, solving for the next unknown and always using the latest estimates for the other unknowns in the equation. When the final equation has been solved, yielding a value for the last unknown, then 1 iteration is said to have been completed.
(5) Continue iterating until the value of each unknown determined in a particular iteration differs from its previous value obtained in a preceeding iteration by less than some arbitrarily specified tolerance.

For a relaxation factor $\mathrm{w}>1$ the method is called over-relaxation and for $0<\mathrm{w}<1$ is called under-relaxation. The rate of convergence of the method is strongly dependent on the value of the relaxation factor chosen. A typical value of the relaxation factor for over-relaxation is 1.7. For a relaxation factor $w=1$ the method is equivalent to the Gauss-Seidel method (Varga, 1962). The method absolutely converges for a diagonally dominant matrix and the program contains a convergence test. Fortunately in most groundwater flow problems the matrices are diagonally dominant. The values of the relaxation factor, tolerance and the maximum allowable number of iterations are specified internally within the program and may require redefinition for efficient application to other problems.

5.2.5 Subroutine ELINTT

The purpose of subroutine ELINTT is to perform the integrations required for the transport equations. These integrations are carried out in a piecewise manner on an element basis. G1obal matrices are then formed by summing for a given node the contribution to that node from each element. These global matrices for the transport equation are banded and to reduce computer storage requirements are stored as column matrices. If the global matrix is also symmetric then it is stored as a half bandwidth matrix.

To perform the integrations required for the transport equations, the groundwater velocity V and the coefficient of hydrodynamic dispersion D must be evaluated. The groundwater velocities V are calculated from Darcy's law as

$$
\begin{equation*}
V_{x}=-K_{x} \frac{\partial h}{\partial x} \tag{197}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{y}=-K_{y} \frac{\partial h}{\partial y} \tag{198}
\end{equation*}
$$

where K_{x} and K_{y} are the hydraulic conductivity of the aquifer in the x and y directions respectively (the hydraulic conductivity K equals the transmissivity T divided by the saturated thickness b of the aquifer). The partial derivatives $\partial h / \partial x$ and $\partial h / \partial y$ are obtained from differentiation of the trial solution for h (equation 89) with the coefficients G replaced with the known values of h at the nodes (determine from the solution of the flow equation), which yields

$$
\begin{equation*}
\frac{\partial h}{\partial x} \simeq \frac{\partial \hat{h}}{\partial x}=h_{i}(t) \frac{\partial v_{i}^{e}(x, y)}{\partial x}+h_{j}(t) \frac{\partial v_{j}^{e}(x, y)}{\partial x}+h_{k}(t) \frac{\partial v_{k}^{e}(x, y)}{\partial x} \tag{199}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial h}{\partial y} \simeq \frac{\partial \hat{h}}{\partial y}=h_{i}(t) \frac{\partial v_{i}^{e}(x, y)}{\partial y}+h_{j}(t) \frac{\partial v_{j}^{e}(x, y)}{\partial y}+h_{k}(t) \frac{\partial v_{k}^{e}(x, y)}{\partial y} \tag{200}
\end{equation*}
$$

The partial derivatives $\frac{\partial \mathrm{v}^{\mathrm{e}}}{\partial \mathrm{x}}$ and $\frac{\partial \mathrm{v}^{\mathrm{e}}}{\partial \mathrm{y}}$ were calculated in equations (93), (94) and (95). Substitution of equations (93), (94), (95), (199) and (200) into equations (197) and (198) yields

$$
\begin{equation*}
\left.V_{x}=-\frac{K_{x}}{2 A} \Delta^{\left[h_{i}\right.}(t)\left(y_{j}-y_{k}\right)+h_{j}(t)\left(y_{k}-y_{i}\right)+h_{k}(t)\left(y_{i}-y_{j}\right)\right] \tag{201}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{y}=-\frac{K_{y}}{2 A \Delta}\left[h_{i}(t)\left(x_{k}-x_{j}\right)+h_{j}(t)\left(x_{i}-x_{k}\right)+h_{k}(t)\left(x_{j}-x_{i}\right)\right] \tag{202}
\end{equation*}
$$

Equations (201) and (202) are used in the model and hold only for the interior of domain D.

The groundwater velocity along the boundary B is known from the boundary conditions for the flow equation. Recall that the $\frac{\partial h}{\partial x}$ and $\frac{\partial h}{\partial y}$ are specified constants on the boundary (equations 72 and 73) and thus from Darcy's law

$$
\begin{align*}
& V_{x}=-K_{x}\left(\left.\frac{\partial h}{\partial x}\right|_{B}\right) \text { on Boundary } B \text {, and } \tag{203}\\
& V_{y}=-K_{y}\left(\left.\frac{\partial h}{\partial y}\right|_{B}\right) \text { on Boundary } B \tag{204}
\end{align*}
$$

are obtained.
The dispersion coefficients D are obtained in the model from the velocity of the groundwater and the dispersivity of the aquifer as (Bear, 1979)

$$
\begin{align*}
& D_{x x}=\alpha_{L} \frac{v_{x}^{2}}{|V|}+\alpha_{T} \frac{v_{y}^{2}}{|v|}-\frac{v_{x}^{2} \Delta t}{2}, \tag{205}\\
& D_{y y}=\alpha_{T} \frac{v_{x}^{2}}{|V|}+\alpha_{L} \frac{v_{y}^{2}}{|v|}-\frac{v_{y}^{2} \Delta t}{2}, \text { and } \tag{206}\\
& D_{x y}=D_{y x}=\left(\alpha_{L}-\alpha_{T}\right) \frac{v_{x} v_{y}}{|V|}-\frac{v_{x} v_{y} \Delta t}{2} \tag{207}
\end{align*}
$$

where
$\alpha_{L}=$ longitudinal dispersivity of the porous medium (L),
$\alpha_{T}=$ transverse dispersivity of the porous medium (L), and
$|\mathrm{V}|=$ magnitude of the groundwater velocity (L / T).

Numerical dispersion is introduced in the solution of the transport equations from the implicit finite-difference approximation to the time derivative (Lantz, 1971). This numerical dispersion is of magnitude $\frac{\mathrm{V}^{2} \Delta \mathrm{t}}{2}$. The dispersion coefficients D given in equations (205), (206) and (207) are defined to compensate for this numerical dispersion. A minimum dispersivity α is required in either finite-element or finitedifference solutions to the convection-dispersion equation otherwise stability problems will result. The dispersivity of the aquifer is rarely known from field measurements (dispersivity is a fourth order tensor with 81 components). The dispersivity is normally estimated either from stability considerations or from a trial and error calibration procedure to obtain a best fit between model-calculated concentrations and observed concentrations.

5.2.6 Subroutine MATCHEM

Subroutine MATCHEM assembles and solves simultaneously the two coupled convection-dispersion equations. The solution is by a block iterativeGaussian elimination technique. The technique consists of the following iterative procedure: (1) Assign an initial value of concentration C_{1} and C_{2} for each unknown in the set of equations to be solved (equation (193) for $L_{1}(C)=0$ and equation (194) for $L_{2}(C)=0$ are to be solved simultaneously). (2) Starting with equation (193) for $L_{1}(C)=0$, solve
it by Gaussian elimination for new values of C_{1} using the initial values as estimates for C_{2}. (3) Proceed to equation (194) for $\mathrm{L}_{2}(\mathrm{C})=0$ and solve it also by Gaussian elimination for new values of C_{2} using as estimates for C_{1} the values obtained in step 2 . This completes 1 iteration. (4) Continue iterating. Solve equation (193) for new values of C_{1} using as estimates for C_{2} the values obtained in step 3 of the previous iteration. Then solve equation (194) for new values of C_{2} using as estimates for C_{1} the values obtained in step 2 of the current iteration. (5) Iterating continues until the value of each unknown determined in a particular iteration differs from its previous value obtained in a preceeding iteration by less than some arbitrarily specified tolerance.

This iteration procedure has the advantage that it requires a minimum of computer storage. It has the disadvantage that it is probably slower than many other solution techniques and may also possibly not converge for some problems. The rate of convergence of this iteration procedure may possibly be increased using a relaxation technique as is done in the solution of the flow equation (see subroutine MATFLOW). The values of tolerance and the maximum number of iterations are specified internally within the program and may require redefinition for efficient application to other problems.

5.2.7 Subroutine CHATSOL

Subroutine CHATSOL solves the law of mass action (equation 31) and the electroneutrality balance (equation 32) for the adsorbed concentrations. For homovalent exchange (in essence $Z_{1}=Z_{2}$ or for all practical purposes either monovalent-monovalent exchange or divalentdivalent exchange) the following equations are easily obtained

$$
\begin{equation*}
\bar{C}_{1}=\frac{\mathrm{K}^{\prime} \mathrm{CEC}}{1+\mathrm{K}^{\prime}} \tag{208}
\end{equation*}
$$

where

$$
\mathrm{K}^{\prime}=\frac{\mathrm{C}_{1} \gamma_{1}}{\mathrm{~K}_{\mathrm{c}}{ }^{-Z_{1}{ }^{C_{2} \gamma_{2}}}},
$$

and

$$
\begin{equation*}
\overline{\mathrm{c}}_{2}=\operatorname{CEC}-\overline{\mathrm{c}}_{1} \tag{209}
\end{equation*}
$$

For heterovalent exchange (in essence $z_{1} \neq \mathrm{z}_{2}$ or for all practical purposes monovalent-divalent exchange) the following equationsare easily obtained

$$
\begin{equation*}
\overline{\mathrm{C}}_{1}=\left(\frac{-\mathrm{K}^{\prime}+\sqrt{\mathrm{K}^{\prime 2}+4 \mathrm{~K}^{\prime}}}{2}\right) \mathrm{CEC} \tag{210}
\end{equation*}
$$

where

$$
\mathrm{K}^{\prime}=\frac{\mathrm{C}_{1}^{2} \gamma_{1}^{2}}{\mathrm{~K}_{\mathrm{c}} \mathrm{C}_{2} \gamma_{2}},
$$

and

$$
\bar{C}_{2}=\operatorname{CEC}-\overline{\mathrm{C}}_{1}
$$

Equation (210) was derived for $\mathrm{Z}_{2}=2$ and $\mathrm{Z}_{1}=1$. The values of C_{1} and C_{2} in equations (208) and (210) are obtained from subroutine MATCHEM for the solution of the two coupled convection-dispersion equations. Recall that the solution activity coefficients γ are obtained from the DebyeHucke1 equation (equation 20).

5.2.8 Subroutine BSOLVE

This subroutine solves a banded matrix by the Gaussian elimination procedure. It is called from subroutine MATCHEM and is used in the
iterative procedure used to simultaneously solve the two coupled transport equations.

5.2.9 Subroutine MULT

This subroutine multiplies a banded symmetric matrix times a vector and returns the resulting vector to the calling program. It is called from subroutines MATFLOW and MATCHEM and is used in the assembly of the flow equation and the transport equations.

5.2.10 Subroutine WATBAL

This subroutine calculates a water balance. The volumetric water flux from distributed and point recharge and discharge sources, volumetric water flux due to vertical leakage, volumetric water flux across model boundaries and change in volume of groundwater stored in the aquifer are calculated. These quantities are printed out by subroutine FLOWOUT.

5.2.11 Subroutine CHEMBAL

This subroutine calculates a chemical balance. The mass flux from distributed and point recharge and discharge sources, mass flux due to vertical leakage, mass flux across mode1 boundaries and change in mass stored in the aquifer for both dissolved and adsorbed chemical constituents are calculated. These quantities are printed out by subroutine CHEMOUT.

5.2.12 Subroutine FLOWOUT

This subroutine prints the results of the flow model calculations. This subroutine prints (1) the current potentiometric head matrix,
(2) a current drawdown map, (3) a cumulative water balance, and (4) the inflow and outflow fluxes by node identification and by constant head nodes. From the water balance the subroutine calculates a mass balance error which is used to estimate the accuracy of the flow model calculations.

5.2.13 Subroutine CHEMOUT

This subroutine prints the results of the transport model calculations. This subroutine prints for both chemical species 1 and 2, (1) the current dissolved concentration, (2) the current adsorbed concentration, and (3) a cumulative chemical balance. From the chemical balance the subroutine calculates a mass balance error which is used to estimate the accuracy of the transport model calculations.

5.3 Test Problems - Comparison with Analytical Solutions

The accuracy of the numerical solution to the groundwater f1ow equation and to the convection-dispersion equation can be evaluated in part by analyzing relatively simple problems for which analytical solutions are available and then comparing the model calculations with the analytical solution. The computer program consists of two linked models, a groundwater flow model and a solute transport model. The groundwater flow model was tested separately from the solute-transport mode1.

5.3.1 Radial Flow to a Well

To test the groundwater flow model, a comparison was made between numerical and analytical solutions for the problem of transient radial
flow to a pumping well (Figure 13). The analytical solution for this Lest problem is given by the Theis equation (Todd, 1980). In this test problem an infinite aquifer was simulated with a transmissivity of $5000 \mathrm{ft}^{2} /$ day, a storage coefficient of .3 and a pumping rate of 250 gallons per minute. To take advantage of symmetry, a quadrant of the flow was analyzed in the model rather than the entire flow field. In the model, nodes were placed a radial distance from the well of $1,2,4$, $6,8,10,25,50,75,100,200,300,400,500,750$, and 1000 feet. A constant head boundary was specified perpen dicular to the flow at a radial distance of 1000 feet from the well. The model boundaries parallel to flow were considered as no flow boundaries.

As shown on Figure 13, comparisons between the analytical and numerical solutions were made at two different times ($t=1$ day and 5 days). A fairly close agreement between numerical and analytical solutions was obtained at both times. The greatest difference between the two solutions occurs close to the pumping well where the potentiometric surface is highly nonlinear. Recall that in the numerical solutions a linear approximation to the potentiometric surface is made. At a distance of 1 foot from the well the error between the two solutions was 5.4 percent for $t=1$ day and 4.6 percent for $t=5$ days. At farther distances from the well, nearly exact agreement is obtained. The mass balance error calculated by the model was . 005 percent. The results of this test problem indicate that the numerical model is capable of calculating the shape and position of the potentiometric surface in the aquifer.

Figure 13. -- Comparison between analytical and numerical solutions for radial flow to a well.
5.3.2 1-dimensional Conservative Transport in an Infinite Column Unfortunately, no analytical solution is available to test the numerical solution of the transport equations subject to cation exchange reactions. However, the general computer model can also simulate conservative transport and analytical solutions are available for some : simple conservative transport problems which can serve as a useful test on the transport mode1. As a test a comparison was made between numerical and analytical solutions for the problem of 1-dimensional conservative transport in an infinite column with steady-state flow (Figures 14 and 15). The analytical solution for this test problem is given by Bear (1979).

$$
\begin{equation*}
C(x, t)=\frac{C_{0}}{2} \operatorname{erfc}\left(\frac{x-v t}{\sqrt{4 D_{L} t}}\right) \tag{212}
\end{equation*}
$$

where erfc $=$ complimentary error function.
Equation (212) is subject to the following initial conditions

$$
\begin{array}{lll}
\mathrm{t} \leq 0, & -\infty<\mathrm{x}<0, & \mathrm{C}=\mathrm{C}_{\mathrm{o}} \\
& 0 \leq \mathrm{x} \leq+\infty, & \mathrm{C}=0
\end{array}
$$

and to the following boundary conditions

$$
\begin{array}{ll}
t>0, & x= \pm \infty, \quad \partial C / \partial x=0 \\
x & =+\infty, \quad c=0 \\
& x=-\infty, \quad c=c_{0}
\end{array}
$$

In equation (212) the coefficient of hydrodynamic dispersion is defined as $D_{L}=\alpha_{L} V$.

Figure 14. -- Comparison between analytical and numerical solutions for 1-dimensional conservative transport in an infinite column, $\alpha_{L}=2$.

Figure 15. -- Comparison between analytical and numerical solutions for 1-dimensional conservative transport in an infinite column, $\alpha_{L}=5$.

In the test problem a source concentration C_{o} of $100 \mathrm{mg} / \mathrm{L}$ and an interstitial velocity V of $10 \mathrm{ft} / \mathrm{day}$ was used in equation (212). In the model the aquifer properties used were a transmissivity of $1750 \mathrm{ft}^{2} /$ day, a storage coefficient of zero, an effective porosity of .35 , a saturated thickness of 50 ft , and a groundwater gradient of .1 (these aquifer properties are equivalent to steady-state groundwater flow with a constant interstitial velocity of $10 \mathrm{ft} / \mathrm{day})$. In the model the coefficient of hydrodynamic dispersion is defined as $D=\alpha_{L} V-\frac{V^{2} \Delta t}{2}$. Recall that the latter term in the model definition for D compensates for the numerical dispersion introduced because of the implicit finite-difference approximation to the time derivative. In the model, nodes were placed at 2 foot intervals between -50 to -20 ft , at 1 foot intervals between -20 to 100 ft , and again at 2 foot intervals between 100 to 150 ft . The initial concentration of the nodes were $100 \mathrm{mg} / \mathrm{L}$ between -50 to 0 ft and zero between 1 to 150 ft . The model boundaries parallel to the flow were specified as no flow boundaries and the upstream and downstream boundaries were specified as constant head boundaries.

As shown on Figures 14 and 15, comparisons between the analytical and numerical solutions were made at 4 times ($t=1,3,5$ and 7 days) and for two different values of dispersivity ($\alpha_{L}=2$ and 5 ft). A very close agreement between numerical and analytical solutions was obtained at all times and for both values of dispersivity. The greatest difference between the two solutions occurs in the vicinity of the highly nonlinear region of the concentration fronts where the linear approximations used for concentrations by the model would have the greatest error. The results of this test problem indicate that the numerical model is capable of calculating the shape and position of the concentration profile.

5.4 Example Problem - Solute Transport with Cation Exchange Reactions To illustrate the significance that cation exchange reactions can

 have in solute transport problems the following example problem is presented which considers the binary exchange between ammonium and calcium. The example problem described here is for a single injection well in a homogeneous and isotropic aquifer with the aquifer properties given in Table 2. The model grid and the nodal numbering system for this example problem is shown on Figure 16. A constant head was specified along all boundaries. The injection well is located at the center node (node 18) and had a pumping rate of 5 gpm . The concentration of the injection fluid and the initial dissolved concentration of the groundwater was varied and is given in Table 3 for each model simulation. A selectivity coefficient K_{c} of 38 meq/L determined as an average from Figure 6 was used in the model. Recall that K_{c} is the selectivity coefficient corrected for activity in the solution phase but uncorrected for activity in the adsorbed phase and is a variable. The selectivity coefficient K corrected for activity in both the solution and adsorbed phases is a constant but cannot be used in the model since the surface activity coefficients $\bar{\lambda}$ are unknown. The relationship between K_{c} and K is given by equation (23). For purposes of this simulation K_{c} was held constant and represents the value of K_{c} that would be obtained using average values for the surface activity coefficients in equation (23). All model simulations were for a total time period of 360 days.All model simulation results are given in Table 4 and are graphically depicted 3-dimensionally on Figures 17-22. The model simulation shown on Figure 17 is for the injection and adsorption of ammonium. In this simulation an ammonium solution is injected into a groundwater essentially containing only calcium. Initially, all of the cation exchange sites are

TABLE 2. -- Aquifer Properties for Example Problem

Aquifer Properties	
T	$=100 . \mathrm{ft}^{2} /$ day
b	$=50 . \mathrm{ft}$
s	$=3 \times 10^{-5}$
ε	$=.35$
$\mathrm{dh} / \mathrm{dx}$	$=.025$
α_{L}	$=20 . \mathrm{ft}$
$\alpha_{\mathrm{T}} / \alpha_{\mathrm{L}}$	$=.3$
CEC	$=400 \mathrm{meq} / \mathrm{L}$

also filled essentially only with calcium. The injection of the ammonium alters the established chemical equilibrium. Some of the injected ammonium is adsorbed on the solid aquifer material and simultaneously some of the previously adsorbed calcium is released into solution and a new chemical equilibrium is established. This adsorption of the ammonium severely retards its movement from the point of injection.

Figure 16. -- Model grid and nodal numbering system for example problem.

TABLE 3. -- Input Concentrations for Example Problem

Simulation	Injection and Dilution and Adsorption Desorption of Ca of NH_{4}	Injection Dilution and and Adsorption Desorption of NH_{4} of Ca	Injection of Conservative Tracer	```Dilution of Conservative Tracer```
```Injection Fluid Concentration (mg/L)```	$\begin{aligned} & C_{\mathrm{Ca}}=500 \\ & \mathrm{C}_{\mathrm{NH}_{4}}=0 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{Ca}}=0 \\ & \mathrm{C}_{\mathrm{NH}_{4}}=500 \end{aligned}$	$C=500$	$C=0$
Initial   Dissolved   Concentration   of Ground-   water (mg/L)	$\mathrm{C}_{\mathrm{Ca}}=.001$ $\mathrm{C}_{\mathrm{NH}_{4}}=200$	$\begin{aligned} & \mathrm{C}_{\mathrm{Ca}}=200 \\ & \mathrm{C}_{\mathrm{NH}_{4}}=.001 \end{aligned}$	$C=.001$	$C=200$

TABLE 4. -- Mode1 Results for Example Problem

$\left\|\begin{array}{r} \text { Simu- } \\ \text { lation } \end{array}\right\|$		Injection and Adsorption of Ammonium (mg/L)					Injection and Adsorption of Calcium (mg/L)					
Node	60	120	180	240	300	360	60	120	180	240	300	360
	Days											
1	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0	0	0	0
12	0	13	37	64	91	115	0	0	9	26	46	67
13	0	13	37	64	91	115	0	0	9	26	46	67
14	0	0	0	0	0	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0	0	0	0	0	0
16	0	0	0	0	0	0	0	0	0	0	0	0
17	0	5	22	43	65	86	0	0	4	15	30	47
18	220	317	358	380	394	404	135	254	320	355	374	387
19	0	5	22	43	65	86	0	0	4	15	30	47
20	0	0	0	0	0	0	0	0	0	0	0	0
21	0	0	0	0	0	0	0	0	0	0	0	0
22	0	0	0	0	8	18	0	0	0	0	0	0
23	3	35	75	112	143	170	0	7	32	64	96	125
24	3	35	75	112	143	170	0	7	32	64	96	125
25	0	0	0	0	8	18	0	0	0	0	0	0
26	0	0	0	0	0	0	0	0	0	0	0	0
27	0	0	0	0	0	0	0	0	0	0	0	0
28	0	0	0	7	15	24	0	0	0	1	4	9
29	0	0	0	4	14	27	0	0	0	0	1	6
30	0	0	0	7	15	24	0	0	0	1	4	9
31	0	0	0	0	0	0	0	0	0	0	0	0
32	0	0	0	0	0	0	0	0	0	0	0	0
33	0	0	0	0	0	0	0	0	0	0	0	0
34	0	0	0	0	0	0	0	0	0	0	0	0
35	0	0	0	0	0	0	0	0	0	0	0	0

TABLE 4. -- Model Results for Example Problem (cont.)

$\begin{gathered} \text { Simu- } \\ \text { 1ation } \end{gathered}$		Injection of Conservative $\qquad$   Tracer (mg/L)					Dilution and Desorption of Ammonium (mg/L)					
Node	60	120	180	240	300	360	60	120	180	240	300	360
Node	Days											
1	0	0	0	0	0	0	200	200	200	200	200	200
2	0	0	7	33	74	121	200	200	200	200	214	234
3	0	0	7	33	74	121	200	200	200	200	214	234
4	0	0	0	0	0	0	200	200	200	200	200	200
5	0	4	37	70	98	121	200	200	200	202	210	217
6	26	101	174	236	288	331	208	244	279	308	331	350
7	9	83	160	223	272	311	200	231	272	307	334	355
8	26	101	174	236	288	331	208	244	279	308	331	350
9	0	4	37	70	98	121	200	200	200	202	210	217
10	21	93	163	217	258	288	206	241	272	293	308	319
11	71	190	274	333	376	407	230	288	330	360	381	396
12	250	349	397	426	446	459	326	373	387	386	376	363
13	250	349	397	426	446	459	326	373	387	386	376	363
14	71	190	274	333	376	407	230	288	330	360	381	396
15	21	93	163	217	258	288	206	241	272	293	308	319
16	30	156	254	321	366	398	210	272	318	350	372	388
17	223	338	396	430	451	465	313	370	392	398	393	384
18	445	471	482	488	492	494	301	205	151	123	107	97
19	223	338	396	430	451	465	313	370	392	398	393	384
20	30	156	254	321	366	398	210	272	318	350	372	388
21	47	176	278	347	392	422	220	288	335	365	385	399
22	125	259	343	396	430	452	258	324	366	394	410	418
23	290	380	425	452	468	479	346	383	381	364	342	321
24	290	380	425	452	468	479	346	383	381	364	342	321
25	125	259	343	396	430	452	258	324	366	394	410	418
26	47	176	278	347	392	422	220	288	335	365	385	399
27	10	120	238	324	382	420	200	259	317	358	386	405
28	121	254	341	397	432	455	259	326	369	395	408	414
29	154	296	374	420	448	466	273	344	386	407	418	422
30	121	254	341	397	432	455	259	326	369	395	408	414
31	10	120	238	324	382	420	200	259	317	358	386	405
32	5	105	266	318	380	420	200	251	312	358	387	406
33	79	227	325	388	427	452	238	312	359	388	406	419
34	79	227	325	388	427	452	238	312	359	388	406	419
35	5	105	266	318	380	420	200	251	312	358	387	406

TABLE 4. -- Model Results for Example Problem (cont.)

$\begin{array}{r} \text { Simu- } \\ \text { Iation } \end{array}$		Dilution and Desorption of Calcium (mg/L)					Dilution of Conservative Tracer (mg/L)					
Node	60	120	180	240	300	360	60	120	180	240	300	360
Node	Days											
1	200	200	200	200	200	200	200	200	200	200	200	200
2	200	200	200	200	219	250	200	200	200	200	189	172
3	200	200	200	200	219	250	200	200	200	200	189	172
4	200	200	200	200	200	200	200	200	200	200	200	200
5	200	200	200	200	213	225	200	200	200	199	192	186
6	213	265	316	359	395	424	194	166	138	114	95	79
7	200	250	316	367	405	434	200	173	140	113	93	77
8	213	265	316	359	395	424	194	166	138	114	95	79
9	200	200	200	200	213	225	200	200	200	199	192	186
10	210	257	300	334	360	381	196	169	143	124	110	99
11	244	331	396	440	470	490	175	127	92	68	51	39
12	382	436	443	434	420	404	103	62	42	30	22	17
13	382	436	443	434	420	404	103	62	42	30	22	17
14	244	331	396	440	470	490	175	127	92	68	51	39
15	210	257	300	334	360	381	196	169	143	124	110	99
16	216	305	378	429	462	485	192	141	101	74	56	44
17	364	437	460	461	453	440	114	66	43	29	20	14
18	273	184	146	127	115	106	23	12	7	5	3	2
19	364	437	460	461	453	440	114	66	43	29	20	14
20	216	305	378	429	462	485	192	141	101	74	56	44
21	231	323	394	444	479	502	186	132	91	63	45	33
22	285	385	447	483	501	508	153	99	64	42	29	20
23	405	434	422	400	378	357	86	49	31	20	13	9
24	405	434	422	400	378	357	86	49	31	20	13	9
25	285	385	447	483	501	508	153	99	64	42	29	20
26	231	323	394	444	479	502	186	132	91	63	45	33
27	201	283	368	432	476	505	200	155	107	72	48	33
28	285	382	443	477	495	502	154	100	65	42	28	18
29	306	414	470	498	508	507	141	83	51	33	21	14
30	285	382	443	477	495	502	154	100	65	42	28	18
31	201	283	368	432	476	505	200	155	107	72	48	33
32	200	274	362	429	474	504	200	161	112	74	49	33
33	255	360	431	477	507	526	171	111	71	46	30	20
34	255	360	431	477	507	526	171	111	71	46	30	20
35	200	274	362	429	474	504	200	161	112	74	49	33



Figure 17. -- 3-dimensional graph for injection and adsorption of Ammonium - example problem.


Figure 18. -- $\begin{aligned} & \text { 3-dimensional graph for injection and adsorption of } \\ & \text { Calcium - example problem. }\end{aligned}$


Figure 19. -- 3-dimensional graph for injection of conservative tracer example problem.


Figure 20. -- 3-dimensional graph for dilution and desorption of Ammonium - example problem.


Figure 21. -- 3-dimensional graph for dilution and desorption of Calcium - example problem.


Figure 22. -- 3-dimensional graph for dilution of conservative tracer example problem.

Shown on Figure 18 is the model results for the injection and adsorption of calcium for analogous conditions to that previously discussed for the injection and adsorption of ammonium. As with the ammonium the movement of the calcium is severely retarded by adsorption. However, calcium has an even greater affinity for adsorption than does ammonium (see equation 1) and comparison of Figures 17 and 18 indicates the mobility of calcium is slightly less than that of ammonium.

For comparison, shown on Figure 19 is the model simulation results for the injection of a conservative tracer not subject to adsorption on the porous medium. As can be easily seen by comparison of Figures 17, 18 and 19 the mobility of the conservative tracer is much greater than that of either calcium or ammonium. After 60 days the conservative tracer has moved farther than either calcium or ammonium has after 360 days.

The model simulation shown on Figure 20 is for the dilution and desorption of ammonium. In this simulation ammonium is flushed from the aquifer by the injection of a calcium solution. The initial groundwater concentration contains only ammonium and initially all of the cation exchange sites are filled with ammonium. Two processes are at work that affect dissolved ammonium concentrations in the groundwater in this model simulation. The first is dilution which acts to lower the dissolved ammonium concentration in the groundwater by the addition of the injection fluid containing only calcium. The second is the desorption of previously adsorbed ammonium which is released into solution by the exchange with the injected calcium. The desorption process acts to increase the dissolved ammonium concentration in the groundwater.

The model simulation results (see Table 4) indicate that for early times the desorption process was in general greater than the dilution affects and the dissolved ammonium concentration increased in the groundwater. At time equal to 30 days (results not shown) the dissolved ammonium concentration increased from initial concentrations of $200 \mathrm{mg} / \mathrm{L}$ to about $350 \mathrm{mg} / \mathrm{L}$ at the injection node (node 18). The surrounding nodes also had similar but smaller concentration increases. At time equal to 60 days at the injection node the dilution effect is now already greater than the desorption process and the dissolved ammonium concentration at this node decreases to about $300 \mathrm{mg} / \mathrm{L}$. However, the surrounding nodes continue to have a concentration increase with a maximum concentration of about $346 \mathrm{mg} / \mathrm{L}$.

At time equal to 120 days this trend continues as the dissolved ammonium concentration at the injection node continues to decrease to about $205 \mathrm{mg} / \mathrm{L}$ and at the surrounding nodes continues to increase to a maximum concentration at nodes 23 and 24 of $383 \mathrm{mg} / \mathrm{L}$ (nodes 23 and 24 are the nearest downstream nodes to the injection node). A maximum dissolved ammonium concentration of $385 \mathrm{mg} / \mathrm{L}$ occurs at nodes 23 and 24 at 150 days after which the dissolved ammonium concentration decreases at all later times at these nodes. This pattern is repeated at other surrounding nodes in which at early times the desorption process is larger than the dilution affects and the dissolved ammonium concentration at first increases and then at later times begins to decrease as the dilution effects become greater than the desorption process. At the end of the simulation period at 360 days the dissolved ammonium concentration at the injection we 11 has decreased to about $97 \mathrm{mg} / \mathrm{L}$. At all other
nodes the net change in the dissolved ammonium concentration has increased over the simulation time period with ending concentrations at some nodes of over $400 \mathrm{mg} / \mathrm{L}$.

Shown on Figure 21 is the model results for the dilution and desorption of calcium for analogous conditions to that previously discussed for the dilution and desorption of ammonium. Comparison of Figures 20 and 21 indicate similar results were obtained between the two simulations. Shown on Figure 22 is the model simulation results for dilution of a conservative tracer not subject to exchange on the porous medium. As can easily be seen by comparison of Figures 20, 21 and 22 the flushing of the conservative tracer by dilution is much more exten sive than for either the calcium or ammonium. Since the conservative tracer is not subject to desorption the only process that affects dissolved concentrations is dilution. After 10 days (results not shown) the concentration of the conservative tracer has been lowered at the injection node to about $69 \mathrm{mg} / \mathrm{L}$ which is lower than either the dissolved calcium or ammonium concentration at the injection node after 360 days. This example problem demonstrates that significantly different results can be obtained by the use of the law of mass action description of the cation exchange reaction than would be obtained using the common empirical formulas such as the Freundlich isotherm. The law of mass action takes into account the competitive nature of the cation exchange process which the empirical formulas fail to do. The concentration increases calculated by the model for the dilution and desorption of either ammonium or calcium would have not been predicted using these empirical formulas. The law of mass action requires additional effort in that two coupled transport equations must be solved instead of the usual single
transport equation. However, as this example problem demonstrates this additional effort may be needed to obtain reliable results for complex transport problems involving cation exchange reactions such as groundwater restoration for the in situ solution mining of uranium.

The computer model developed in this study was applied to an actual field problem of groundwater restoration involving ammonium for a pilot scale in situ solution mining of uranium operation in northeast Colorado near the town of Grover. This represented the first application of a 2 -dimensional transport model incorporating cation exchange reactions to a complex contaminant transport problem of site restoration for actual field data. The details of this study are presented in the following section.

## GROVER TEST SITE

### 6.1 History

The Grover uranium deposit was discovered in 1970 (Reade, 1976 and 1978) and is located in northeast Colorado near the town of Grover (Figure 23). The major uranium mineralization occurs at a depth of about $200-250$ feet below land surface in the Grover sandstone member of the Laramie Formation. In May 1976 an application was made to the Colorado Water Quality Control Commission, Department of Health by Wyoming Minerals Corporation to operate a pilot scale in situ uranium solution mine at a site about 36 miles northeast of Greeley in Weld County in Section 24, T. 10 N. and R. 62 W. Wyoming Minerals was a partner in a joint venture with Power Resources and Aquarius. The purpose of the test was to determine the economical and environmental feasibility of mining the Grover uranium deposit using in situ solution mining technology. In September 1976, Wyoming Minerals received permission to proceed with the test.

In June 1977 solution mining was initiated at the Grover test site using a triple 5-spot pattern with a well spacing of 40 feet (Leach Field 1, Figure 24).An ammonium bicarbonate-hydrogen peroxide solution was used as the lixiviant. In September 1977 mining was terminated at this leach field. In October 1977 mining was recommenced in a second leach field (a dual 5-spot pattern, Figure 24) again using ammonium bicarbonate-hydrogen peroxide as the lixiviant. Mining at leach field 2 was stopped in December 1977. A changeover was made from the ammonium bicarbonate-hydrogen peroxide lixiviant to a calcium bicarbonate-hydrogen peroxide lixiviant and mining was restarted in leach field 2 in


Figure 23. -- Location of the Grover test site.

## EXPLANATION

- Control Points for Geologic Cross-section
$\triangle$ GM5 Monitoring Well and Number
$A$ - $A^{\prime}$ Line of Section $A-A^{\prime}$
$B-B^{\prime}$ Line of Section $B-B^{\prime}$
- Production Injection Wells


FMI


Figure 24. -- Layout of the Grover test site.

February 1978. All in situ solution mining tests were terminated in April 1978.

On May 13, 1978, restoration of leach field 1 was initiated. The restoration of leach field 1 was conducted in three separate phases. Between start up and July 5, clean water recycling was used (see Appendix A) using a reverse osmosis purification system. The ammonium concentrations in the recovery water dropped at the end of this restoration phase from post mining levels of about $490 \mathrm{mg} / \mathrm{L}$ to about $85 \mathrm{mg} / \mathrm{L}$. To increase the rate at which the adsorbed ammonium was removed from the aquifer calcium chloride was injected during phase 2. In this second restoration phase the calcium concentration in the injection solution was increased gradually in increments of $250 \mathrm{mg} / \mathrm{L}$ to a level of about $1,000 \mathrm{mg} / \mathrm{L}$. The ammonium in solution was removed using an air stripping technique. The addition of the calcium chloride in the injection water caused an increase in the ammonium concentration in the recovery water. During phase 2 the peak ammonium concentration in the recovery water was about $163 \mathrm{mg} / \mathrm{L}$ and the ending concentration was about $108 \mathrm{mg} / \mathrm{L}$. This chemical treatment technique continued until September 7 at which time clean water recycling was reimplemented. This third phase of the restoration procedure lasted until February 28, 1979. The ending ammonium concentration in the recovery water was about $13 \mathrm{mg} / \mathrm{L}$.

The restoration of leach field 2 was initiated in June 1978. The first phase of restoration for this leach field was to remove the ammonium from solution by air stripping. This continued until midAugust when chemical treatment using a calcium ch1oride additive was started. In mid-September the restoration of the two leach fields were coupled and clean water recycling was implemented. The restoration was terminated on February 28, 1979.

Following restoration, a ninety-day stabilization period was initiated. Groundwater samples were collected from seven wells (five wells in leach field 1 and two wells in leach field 2) at 1,45 and 90 day intervals. Ammonium levels were less than $5 \mathrm{mg} / \mathrm{L}$ for all but one well which had an ammonium concentration of between $11-15 \mathrm{mg} / \mathrm{L}$ during this stabilization period. A limit of $50 \mathrm{mg} / \mathrm{L}$ for post restoration dissolved ammonium concentrations was set by the Colorado Department of Health.

Fourteen monitoring wells were installed to detect any escape of the contaminated groundwater from the mine site (Figure 24). To detect vertical excursions, two of the monitoring wells (we11s PMI and PM2) were located in the sandstone unit immediately above the mined zone and two of the monitoring wells (wells FM1 and FM2) were located in the sandstone unit immediately below the mined zone. The remaining ten monitoring wells (wells GM1-8, 22C, and 4C) were used to detect any lateral excursion of contaminated groundwater from the mine site. The nearest monitoring well located in the Grover sandstone was about 230 feet downgradient from the production field.

In August 1979 Wyoming Mineral Corporation made application for abandonment of the Grover test site. The request for abandonment was denied by the Water Quality Control Commission which required Wyoming Mineral Corporation to conduct an additional year of sampling. In October 1980 the commission granted permission to Wyoming Mineral Corporation to abandon the site after no further desorption of ammonium was observed.

The computer model previously discussed in this dissertation was applied to the restoration of leach field. Restoration of leach field 2 was not considered since the mining history for this leach field included
use of both the ammonium bicarbonate and the calcium carbonate lixiviants.

### 6.2 Geohydrology

Only that geology necessary to the understanding of the hydrology of the study site is presented in this dissertation. For a fainly complete description of the regional geohydrologic conditions, the interested reader is referred to Kirkham, $0^{\prime}$ Leary, and Warner (1980). Important geologic formations at the study site are in ascending order; the Pierre Shale, the Fox Hills Sandstone, the Laramie Formation, and the White River Formation.

The Pierre Shale consists of Upper Cretaceous marine shales, claystone, and siltstone, with occasional thick sections of sandstone, silty sandstone, and siltstone. It ranges in thickness in the general vicinity of the mine site from about 3,000 to 8,000 feet. The Pierre shale is transitional with the overlying Fox Hills Sandstone.

The Fox Hills Standstone of upper Cretaceous age consists of at least 3 to 7 upward-coarsening sandstone beds overlain by as many as 5 massive sandstones that are separated by relatively thin shales. The sequence of upward-coarsening sands constitute the lower member of the Fox Hills Sandstone and the overlying massive sands comprise the upper member (Ethridge, Tyler and Thompson, 1979). The Fox Hills Sandstone ranges in thickness in the general vicinity of the mine site from about 200 to 450 feet. Extensive uranium mineralization occurs in the Fox Hills Sandstone. A commerical scale solution mine has been approved near Keoto which is about 10 miles southeast of Grover. Mining at this site will be from the upper member of the Fox Hills Sandstone. The Fox Hills Sandstone
is the most dependable groundwater source in the area. Wells tapping the upper Fox Hills commonly yield 20 to 100 gpm and occasionally yield over 200 gpm . The lower Fox Hills contains fewer high permeability sands and well yields are typically low.

The Upper Cretaceous Laramie Formation overlies the Fox Hills Sandstone. It consists of interbedded sandstone, shale, claystone, and coal, and ranges up to 1600 feet thick. Numerous 10 to 125 -feet sandstone beds occur throughout the Laramie. Most sandstone members of the Laramie generally are lenticular channel sandstones. An individual, locally thick sandstone may irregularly split into several thinner sandstone units. The Laramie provides a significant amount of the total groundwater currently utilized in the area primarily because it underlies much of the basin at shallow depths. The upper Laramie Formation supplies two wells for the town of Grover with yields of 35 and 55 gpm . Solution mining at the Grover test site was from a sandstone unit in the lower Laramie Formation called the "Grover Standstone".

The White River Formation of Tertiary age is exposed at the surface at the test site. It consists largely of poorly permeable, ashy siltstone and claystone, but highly permeable, fluvial channels of sandstone and conglomerate occur occasionally in the formation. Some wells recover minor amounts of water from the ashy siltstone, and claystone, but production is generally very low. The fluvial channels provide moderate to high quantities of groundwater. The tuffaceous beds of the White River Formation are postulated as the source of uranium in the sandstones of the underlying Laramie and Fox Hills Formations.

### 6.3 Mode1 Input Data

The data used in the model concerning the mining and restoration events at the Grover test site are part of the public information supplied by Wyoming Minerals Corporation to the Colorado Department of Health. This data represents the best available reconstruction of the mining and restoration events at the Grover test site. Some of the data may be poorly defined or contain inaccuracies because (1) records kept may be sketchy with regards to details; (2) not all of the collected data may have been released by Wyoming Minerals Corporation because of the proprietary nature of the information; or (3) inadequate data may have been collected.

### 6.3.1 Grid

The model area included the leach field and extended to the perimeter of the containment zone, defined in Appendix $A$ as the line connecting the monitoring wells surrounding the leach field (Figure 24). The model grid is shown on Figure 25. The model area encompasses about $250,000 \mathrm{ft}^{2}$ (about 5.7 acres, or $.01 \mathrm{mi}^{2}$ ) and was divided into 204 elements which required 122 nodes (nodal numbering system shown on Figure 26). This grid enabled aquifer conditions to be simulated in detail at the Grover test site.

### 6.3.2 Boundary Conditions

Only the Grover Sandstone in the vicinity of the test site was modeled. Adjacent parts of the Grover Sandstone completely encircle the model area. Groundwater flow occurs across this model boundary. Along the boundary a constant-head condition was specified.


Figure 25. -- Model grid.


Figure 26. -- Nodal numbering system.

With a constant-head boundary, the potentiometric surface at the model boundary is not allowed to change with time, however, the rate of groundwater flow across the model boundary is allowed to vary with time.

During both the mining and restoration phases of operation, pumping rates slightly exceeded injection rates. This was done to maintain a slight groundwater gradient towards the leach field and thus prevent any migration of contaminated groundwater from the test site. Between June 1977 and January 1979 periodic water level measurements were made on the monitoring wells. Until October 1978 only slight variations in water levels were measured. However, between October 1978 and January 1979, water levels declined sharply in the monitoring wells with a maximum measured decline of about 17 feet. This decline was measured in all of the monitoring wells including well 4 C which had a decline in water level of about 15 feet and which is considerably further from the leach field than the other monitoring wells. This would indicate that the water leve1 decline measured in the monitoring wells was probably due to a regional decline in the altitude of the potentiometric surface in the Grover Sandstone and most likely related to natural variations. The slight overpumping of the aquifer during mining and restoration was thought to have not resulted in any detectable decline in the water level in the monitoring wells.

### 6.3.3 Potentiometric Surface

Using water levels measured in the monitoring wells a potentiometric surface map (Figure 27) was constructed for the model area for June 1977. The natural direction of groundwater movement within the model area is southeastward. The average drop in water level altitude


- GMI Monitoring well and numberUsed as control point.
between wells GM4 and GM7 was determined to be 1.7 feet, This converts into an average groundwater gradient of $15.1 \mathrm{ft} / \mathrm{mi}$. In comparison Thompson, Wade and Ethridge (1980) determined the average groundwater gradient at the Grover test site to be $26.9 \mathrm{ft} / \mathrm{mi}$ southwards. The regional direction of groundwater movement is to the southeast towards the South Platte River (Kirkham, 0'Leary and Warner, 1980; and Reade, 1976 and 1978).


### 6.3.4 Saturated Thickness

Two geologic cross sections (Figures 28 and 29) were constructed to determine the approximate thickness of the Grover Sandstone at the test site. Within the model area the Grover Sandstone varies in thickness from about 65 ft to 75 ft . The average thickness of the Grover Sandstone within the model area is 70 ft . The regional geology indicates that the Grover Sandstone dips to the north at a small angle (Reade, 1976) but for all practical purposes the Grover Sandstone is horizontal within the model area.

### 6.3.5 Transmissivity and Storage Coefficient

Other geohydrologic data needed to construct the model include transmissivity and storage coefficient of the aquifer. To determine these parameters, an aquifer test was performed by personnel of Wyoming Minerals Corporation. Analysis of the data from this aquifer test yielded a transmissivity of $103 \mathrm{ft}^{2} /$ day and a storage coefficient of $.3 \times 10^{-4}$ for the Grover Sandstone. Anisotropy was indicated with the direction of greatest hydraulic conductivity approximately to the



Figure 29. -- East-West geologic cross-section of the Grover test site.
northeast-southwest. Analysis of the data also indicated either the possible existence of leaky confining layers or a reduction in the pumping rate towards the end of the test. The aquifer test was of too short a duration ( 4 hours pumping and 4 hours recovery) with inadequate control to be conclusive.

### 6.3.6 Recharge Rate and Leakage

Any groundwater recharge to the Grover Sandstone within the model area from infiltration of rainfall and snowmelt was thought to be negligible and was ignored in the model. The Grover Sandstone at the test site is confined by upper and lower relatively thick shale layers. Though the aquifer test data were inconclusive, these confining layers were considered not to be leaky and were treated in the model as impermeable layers.

### 6.3.7 Porosity and Dispersivity

The porosity and the dispersivity of the aquifer material are also needed. The porosity of the Grover Sandstone was measured by Wyoming Minerals Corporation (1976 and 1978) to be 38 percent (an average value based on 14 samples from 1 core hole). This is supported by Thompson, Wade and Ethridge (1980) who in their work found the porosity to range from about 30 to 40 percent with an average value of about 36 percent (their value was based on 7 samples). In this study a porosity of 37 percent was used in the model. This value was assumed constant throughout the model area.

No field data were available on dispersivity. A constant value of 20 feet for longitudinal dispersivity was used in the model. This value was
sufficiently large to ensure numerical stability, A ratio of longitudinal to transverse dispersivity of .3 was used in the model.

### 6.3.8 Cation Exchange Capacity

The cation exchange capacity (CEC) of the Grover Sandstone was determined from 12 samples taken from 4 core holes at the Grover test site (Table 5). The CEC ranged for these samples from 4.4 to 21.0 meq/ 100 g of solid sample with an average value of $9.4 \mathrm{meq} / 100 \mathrm{~g}$ of solid sample. These values of the CEC are relatively low and is characteristic of samples that are primarily sandstone. The CEC is usually reported in units of meq/ 100 g of solid sample. The model requires the CEC in units of meq/liter of solution. The conversion for this is
$\operatorname{CEC}$ (meq/liter of solution) $=\left(\frac{\rho_{S}(1-\phi)(10)}{\phi}\right) \operatorname{CEC}$ (meq/ 100 g of solid sample) (213)
where

$$
\begin{aligned}
& \phi=\text { porosity, and } \\
& \rho_{s}=\text { particle mass density }\left(\mathrm{g} / \mathrm{cm}^{3}\right) .
\end{aligned}
$$

In equation (213) a density of water of $1000 \mathrm{~g} /$ liter is assumed. Note the term $\rho_{S}(1-\phi)$ is simply the bulk mass density $\rho_{B}$. Values of particle mass density are given in Lambe and Whitman (1969) as $\rho_{\mathrm{s}}=2.65 \mathrm{~g} / \mathrm{cm}^{3}$ for quartz, $\rho_{s}=2.61 \mathrm{~g} / \mathrm{cm}^{3}$ for kaolinite, $\rho_{\mathrm{s}}=2.84 \mathrm{~g} / \mathrm{cm}^{3}$ for illite and $\hat{\rho}_{\mathrm{s}}=2.74 \mathrm{~g} / \mathrm{cm}^{3}$ for montmorillonite.

Using values of $\phi=.37$ and $\rho_{s}=2.65 \mathrm{~g} / \mathrm{cm}^{3}$ in equation (213) the CEC of the Grover Sandstone ranged for the 12 samples from 198.5 to $947.6 \mathrm{meq} /$ iter of solution with an average value of $423 \mathrm{meq} /$ liter of solution. Expressed in constituent concentrations the CEC ranged from

TABLE 5.--Cation Exchange Capacity for the Grover Sandstone

Location   Node (see Figure 26)	Depth (feet)	Cation Exchange Capacity (meq/100g)*
53	215	10.0
	220	4.4
	221	7.3
51	210	21.0
	223	7.0
37	217	12.0
	222	5.3
	231	9.1
	233	4.5
52	223	6.5
	235	5.4
	238	20.0

*of solid sample

3,600 to $17,100 \mathrm{mg} / \mathrm{L}$ of ammonium or from 4,000 to $19,000 \mathrm{mg} / \mathrm{L}$ of calcium. For even the relatively low CEC of the Grover Sandstone, the cation exchange process is significant. The net effect of the cation exchange process is to potentially concentrate contaminants such as ammonium in much greater concentrations in the adsorbed phase than are found in solution.

The cation exchange capacity of the aquifer was chosen within the limits of the field data to achieve the "best fit" during the calibration of the model. The CEC was assumed constant throughout the model area.

### 6.3.9 Selectivity Coefficient

Recall that the selectivity coefficient K , corrected for activity in both the solution phase and the adsorbed phase, was given for the exchange between calcium and ammonium as (equation 26)

$$
\begin{equation*}
\mathrm{K}=\frac{\bar{\lambda}_{\mathrm{Ca}} \overline{\mathrm{~N}}_{\mathrm{Ca}}{ }^{\gamma_{\mathrm{NH}_{4}}{ }^{2} \mathrm{C}_{\mathrm{NH}_{4}}{ }^{2}}}{\bar{\lambda}_{\mathrm{NH}_{4}}{ }^{2} \overline{\mathrm{~N}}_{\mathrm{NH}_{4}}{ }^{2}{ }^{\gamma}{ }_{\mathrm{Ca}} \mathrm{C}_{\mathrm{Ca}}} \tag{214}
\end{equation*}
$$

where

$$
\begin{aligned}
{ }^{C_{C a}}, C_{\mathrm{NH}_{4}}= & \text { concentration of calcium and ammonium in solution } \\
& \text { respectively in units of meqt, } \\
\gamma_{\mathrm{Ca}}, \gamma_{\mathrm{NH}_{4}}= & \text { activity coefficient for calcium and ammonium in } \\
& \text { solution respectively (dimensionless), } \\
\overline{\mathrm{N}}_{\mathrm{Ca}}, \overline{\mathrm{~N}}_{\mathrm{NH}_{4}}= & \text { equivalent fraction of calcium and ammonium occupying } \\
& \text { the cation exchange sites respectively (dimensionless), } \\
\bar{\lambda}_{\mathrm{Ca}}, \bar{\lambda}_{\mathrm{NH}_{4}}= & \text { rational activity coefficient for the adsorbed calcium } \\
& \text { and ammonium cations respectively (dimensionless), and }
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{K}= & \text { selectivity coefficient corrected for activity in both the } \\
& \text { solution and the adsorbed phases in meq/L. }
\end{aligned}
$$

In this equation the selectivity coefficient K is a constant.

The activity coefficients $\gamma$ for the solution phase can be easily calculated using the Debye-Huckel equation (equation 20). Unfortunately, the rational activity coefficients $\bar{\lambda}$ for the adsorbed phase are unknown. Therefore, the selectivity coefficient $K_{c}$ corrected for activity in the solution phase, but not in the adsorbed phase, was used in the model. The two selectivity coefficients are related by equation (23) as

$$
\begin{equation*}
\mathrm{K}_{\mathrm{c}}=\frac{\mathrm{K} \bar{\lambda}_{\mathrm{NH}_{4}}}{\bar{\lambda}_{\mathrm{Ca}}} \tag{215}
\end{equation*}
$$

Recall that though the selectivity coefficient $K$ is a constant, the selectivity coefficient $K_{c}$ is a variable. Values of $K_{c}$ determined from Figure 5 are plotted for adsorption levels between . 1 and . 9 (Figure 30). A cubic polynomial was fitted to this data to obtain

$$
\begin{equation*}
\mathrm{K}_{\mathrm{c}}=97.1-329\left(\overline{\mathrm{~N}}_{\mathrm{NH}}^{4}-1\right)+552\left(\overline{\mathrm{~N}}_{\mathrm{NH}_{4}}\right)^{2}-292\left(\overline{\mathrm{~N}}_{\mathrm{NH}}^{4}-1\right)^{3} \tag{216}
\end{equation*}
$$

### 6.3.10 Initial Concentrations

Initial constituent concentration values for the groundwater are also required for model input. Premining and postmining water quality data at the Grover test site is shown in Table 6. The model has the capacity to simulate binary cation exchange (exchange between 2 cations). Multi cation exchange cannot be simulated. In this model application


Figure 30. -- $\mathrm{K}_{\mathrm{c}}$ versus $\overline{\mathrm{N}}_{\mathrm{NH}_{4}}$.

TABLE 6. -- Water Quality Data at the Grover Test Site (Data from Wyoming Mineral Corp., 1979)

Constituent	Premining ${ }^{1}$		Postmining ${ }^{2}$	
	MG/L	MEQ/L	MG/L	MEQ/L
Calcium ( $\mathrm{CA}^{+2}$ )	9.1	. 4541	75.8	3.7824
Magnesium ( $\mathrm{Mg}^{+2}$ )	1.1	. 0905	22.4	1.8426
Sodium ( $\mathrm{Na}^{+1}$ )	85.2	3.7062	237.5	10.3313
Potassium ( $\mathrm{K}^{+1}$ )	4.4	. 1133	13.1	. 3350
Ammonium ( $\mathrm{NH}_{4}{ }^{+1}$ )	. 25	. 0139	304	16.8538
		4.378		33.1451
Bicarbonate ( $\mathrm{HCO}^{-1}$ )	220.1	3.6074	1127.3	18.4765
Carbonate ( $\mathrm{CO}_{3}{ }^{-2}$ )	4.3	. 1437	11.6	. 3866
Sulfate ( $\mathrm{SO}_{4}{ }^{-2}$ )	38.3	. 7974	311.0	6.4750
Chloride ( $\mathrm{Cl}^{-1}$ )	7.0	. 1975	75.5	2.1300
Nitrate ( $\mathrm{NO}_{3}{ }^{-1}$ )	1.4	. 0226	5.2	. 0839
Flouride ( $\mathrm{F}^{-1}$ )	. 7	. 0369	. 1	. 0053
		4.806		27.5573

$1_{\text {Premining }}$ Water Quality Data represents the average of 4 samples from each of 3 wells taken during June 1977 prior to the initiation of mining.
${ }^{2}$ Postmining Water Quality Data represents the average of 1 sample from each of 6 wells.
only the exchange between calcium and anmonium is considered. A necessary simplififying assumption was therefore to lump all cations except ammonium (in essence calcium, magnesium, sodium and potassium) into an equivalent concentration of calcium. The resulting premining equivalent concentration of calcium was $92 \mathrm{mg} / \mathrm{L}$. The premining concentration of ammonium was 0.25 $\mathrm{mg} / \mathrm{L}$. The resulting postmining equivalent concentration of calcium was $327 \mathrm{mg} / \mathrm{L}$ and the postmining concentration of ammonium was $304 \mathrm{mg} / \mathrm{L}$. Between the end of the mining phase and the beginning of the restoration phase, a bleed off of the adsorbed ammonium occurred and ammonium concentrations in solution in the contaminated zone increased from post mining levels of about $304 \mathrm{mg} / \mathrm{L}$ to prerestoration levels of about $490 \mathrm{mg} / \mathrm{L}$.

No migration of contaminated groundwater was detected in the monitoring wells, during either the mining or restoration phases of operation. After the mining phase, core holes were drilled to determine the areal extent of groundwater contamination outside the leach field. It was determined that the ammonium contamination of the groundwater extended less than one cell distance (approximately 40 feet) from the leach field.

The wells in the leach field were perforated only in the zone of uranium mineralization within the Grover Sandstone. This was done to concentrate the flow of the lixiviant during the mining phase within the mineralized zone. The average well screen interval was 5 feet. Horizontal flow is simulated in the model, but in actuality the streamlines diverge vertically away from the injection wells and converge vertically approaching pumping wells as illustrated on Figure A4. Core hole
drilling after the mining indicated that an approximate 12 foot thickness of the Grover Sandstone had been contaminated by the adsorption of ammonium.

The adsorbed concentrations of calcium and ammonium were calculated in the model assuming that equilibrium conditions hold. For the initial premining condition, essentially all of the cation exchange sites on the solid aquifer material are filled by the calcium and none by the ammonium. For the initial prerestoration condition, the model calculated that approximately 54 percent of the cation exchange sites were filled by the ammonium and approximately 46 percent of the sites were filled by the calcium.

### 6.3.11 Pumpage and Injection Rates

The pumpage and injection rates for each phase of the restoration are shown on Figure 31. During each phase of the restoration a different pumpage and injection pattern was used in order to assure a fairly complete sweeping of the contaminated groundwater from the leach field.

During phase 1, a total of about 2.25 million gallons were recovered. The pumpage rate was approximately 40,000 gpd (the limit of the primary reverse osmosis unit). The injection rate was approximately 34,200 gpd. The net pumpage rate over the injection rate was therefore about 4 gpm . This excess was disposed of in evaporation ponds.

During phase 2, a total of about 2.5 million gallons were recovered. The rate of pumpage was maintained at $40,000 \mathrm{gpd}$. However, injection rates were increased so that there was a balance between pumpage and injection rates due to the high level of water in the evaporation


## Explanation

- Pumping well
- Injection well

Number adjacent to well is pumpage rate in GPM Negative number indicates injection
ponds. During the last two weeks of phase 2 , a return was made to the phase 1 pumpage and injection pattern.

During phase 3 , a total of about 5.3 million gallons were recovered. The pumping rate was reduced to about $29,000 \mathrm{gpd}$. The injection rate was approximately $26,000 \mathrm{gpd}$. The net pumpage rate over the injection rate was therefore about 2 gpm . For a short time period during the phase 3 restoration heavy overpumping of the aquifer was done to cause an influx of groundwater to the leach field from the surrounding uncontaminated aquifer. The overpumping had no significant benefit and was terminated by Wyoming Minerals. In the model, this short-term overpumping of the aquifer was not included.

A total of approximately 9.8 million gallons were pumped from leach field 1 during the restoration. This represents somewhere between 25 - 50 pore volumes of contaminated groundwater being removed before restoration was completed.

### 6.4 Model Calibration

Calibration of the transport model consisted of a comparison between observed ammonium concentrations and model-calculated ammonium concentrations. A plot of ammonium concentration versus cumulative water recovered during restoration is shown on Figure 32 for both measured and model-calculated values. There were some erratic fluctuations in the measured ammonium concentrations indicating noise in the data, probably due to either analytical measurement errors or unknown variations in aquifer properties. The plot was visually smoothed to eliminate this noise. For comparison, a plot of model-calculated concentration values assuming conservative transport is also shown on Figure 32. The model


[^0]was calibrated to reduce the difference between the measured and the model-calculated total ammonium removed during restoration.

During phase 1 clean water recycling was used and the measured ammonium concentration dropped in the recovery water from an initial level of about $490 \mathrm{mg} / \mathrm{L}$ to an estimated $85 \mathrm{mg} / \mathrm{L}$ (Figure 32). The model calculated a similar but somewhat larger drop to about $61 \mathrm{mg} / \mathrm{L}$ (Fig ure 32). Most of the error between the observed and model-calculated ammonium concentrations is introduced during the initial .5 million gallons of water recovered. After that, the model-calculations roughly parallel observed concentrations during the phase 1 restoration. The difference may be due to many factors such as poorly defined initial concentration of ammonium in the model or poor initial efficiency of the reverse osmosis unit used to purify the contaminated water removed from the aquifer. During phase 1 of the restoration the contaminated recovery water was processed through a single reverse osmosis unit. During later restoration phases secondary and tertiary reverse osmosis units were also used. In the model an average efficiency rate of removal of 95 percent for ammonium and 97.5 percent for calcium was used.

During phase 2 a calcium chloride solution was injected to increase the rate at which the adsorbed ammonium was flushed from the aquifer. The calcium chloride was added in increments of $250 \mathrm{mg} / \mathrm{L}$ up to $1000 \mathrm{mg} / \mathrm{L}$ This resulted in measured ammonium concentrations in the recovery water increasing from post phase 1 restoration levels of an estimated $85 \mathrm{mg} / \mathrm{L}$ to a peak of $163 \mathrm{mg} / \mathrm{L}$. No measurable increase in calcium concentrations in the recovery water occurred during phase 2 until shortly before the peak in ammonium concentration was reached (roughly at about the 4 million gallon point in Figure 32). This breakthrough of the calcium in the recovery
water prompted Wyoming Mineral Corporation to modify the pumping pattern in order to assure a complete contact of the entire field with the calcium solution. During the final two weeks of phase 2 restoration, a return was made to the phase 1 pumping and injection pattern and the ammonium concentrations in the recovery water decreased to about $108 \mathrm{mg} / \mathrm{L}$. The model-calculated ammonium concentrations agreed remarkably well with the measured concentrations during phase 2 . The model-calculated ammonium concentration increased from post phase 1 restoration levels of about $61 \mathrm{mg} / \mathrm{L}$ to a peak of $172 \mathrm{mg} / \mathrm{L}$. The model-calculated peak occurred at nearly the same time as did the peak in ammonium concentration measured in the field (Figure 32). The model-calculated ending phase 2 ammonium concentration was $124 \mathrm{mg} / \mathrm{L}$ compared to $108 \mathrm{mg} / \mathrm{L}$ measured in the field. Note that at the beginning of phase 2 restoration there was a slight drop in the model-calculated ammonium concentration in the recovery water from the ending phase 1 concentration. This results from the change in pumping patterns between phase 1 and phase 2. Different pumpage and injection wells were used and thus the slight change in the ammonium concentration of the recovery water.

The model calculated that during phase 2 the addition of the calcium chloride solution would have a greater effect of eluting adsorbed ammonium than was actually observed in the field. This difference may be caused by possibly too large of a CEC in the mode1. The CEC used in the model was $300 \mathrm{meq} / \mathrm{L}$ of solution. This was determined in the model by a trial and error procedure to obtain the overall best fit between model-calculated and observed ammonium concentrations for the given set of input data (in essence for the given pumpage and injection rates, initial concentration conditions, etc.). Errors in this input data
would be incorporated into the model determined CEC. The CEC of 300 meq/L used in the model is less than the average CEC of $423 \mathrm{meq} / \mathrm{L}$ measured in the field. The justification for this is that not all of the cation exchange sites may be available for the calcium-ammonium exchange due possibly to fixation of the ammonium. A second reason for the difference is the possibility of channelizing of the flow within the aquifer in the field. Permeability changes within the aquifer during restoration may have prevented a complete sweeping of the contaminated aquifer. These permeability changes could result from a detrimental reaction between the calcium-chloride solution and unreacted ammonium-bicarbonate lixiviant forming calcium carbonate, which because of its relatively low solubility in water may have been precipitated from solution and thus reduced the permeability of the aquifer along the reaction front. Ortiz, Ferentchak, Ethridge, Granger and Sunada (1980) have demonstrated similar permeability changes in the laboratory.

During phase 3 clean water recycling was repeated and the measured ammonium concentration dropped in the recovery water from about $108 \mathrm{mg} / \mathrm{L}$ to about $13 \mathrm{mg} / \mathrm{L}$. The model-calculated ammonium concentrations dropped from $124 \mathrm{mg} / \mathrm{L}$ to ending concentrations of about $16 \mathrm{mg} / \mathrm{L}$. Note the drop in model-calculated ammonium concentrations at the beginning of phase 3 . This drop is again caused by the changing of the pumping patterns. No reason is known why similar drops were not measured in the field data by Wyoming Minerals Corporation.

In general, the agreement is fairly close between the observed and model-calculated ammonium concentrations in the recovery water shown on Figure 32. Differences are attributed to five primary factors: (1) errors in the model input data, (2) channelizing of the flow within
the aquifer in the field caused as previously discussed by permeability changes within the aquifer during restoration from detrimental chemical reactions, (3) insufficient number of nodes used in the model, particularly in the vicinity of the leach field to provide a more detailed definition of model-calculated ammonium concentrations in the recovery water, (4) error in the selectivity coefficient used in the model, and (5) assumptions such as 2-dimensional groundwater flow and binary cation exchange upon which the model was developed may contributed also to the difference. Errors in the model input data include unknown variations in aquifer properties (permeability, effective porosity, CEC, etc.), poorly defined initial concentrations of ammonium, and errors in the reconstruction of the restoration processes used by Wyoming Minerals Corporation (errors in pumpage and injection rates, errors in efficiency of reverse osmosis process used to purify the recovered contaminated groundwater, etc.). The selectivity coefficient is valid only for a particular cation exchange reaction and for a given porous medium. The value of the selectivity coefficient used in the model was computed from laboratory data for the binary exchange between calcium and ammonium for a montmorillonite clay. Analysis of the error introduced into the selectivity coefficient because field conditions differed from the above conditions was beyond the scope of this study.

Comparison of the plot of model-calculated ammonium concentration assuming conservative transport in Figure 32 with the observed field data and with the model-calculated concentrations incorporating cation exchange reactions clearly indicate the importance of considering the cation-exchange process in groundwater restoration for ammonium. For chemical solutes not subject to the cation exchange process the clean up of the contaminated aquifer occurs at a much faster rate.

The calibration of the model was performed on a "macro" level. That is no comparison was made of measured ammonium concentrations at the wells sampled (recall that there were 5 such wells in leach field 1) with model-calculated ammonium concentrations for the corresponding nodes. During the calibration of the model it was observed that ammonium concentrations at the nodes in the leach field were very sensitive to changes in the pumpage and injection patterns. Slight changes in the pumpage and injection pattern used in the model often caused considerable changes in the concentration at the nodes in the leach field. However, the overall calibration of the model was fairly insensitive to this type of error in the model input data. Even though the ammonium concentration at a specific node might change considerably depending on the pumpage and injection history for that node, the total amount of contaminated groundwater removed from the aquifer during restoration was a constant (approximately 9.7 million gallons) and the change in the total amount of ammonium recovered during restoration was small and thus on a "macro" level did not affect the extent of aquifer restoration accomplished by Wyoming Mineral Corporation. With this in mind, the following results on the groundwater restoration at the Grover test site are presented.

### 6.5 Results

In the field, groundwater was sampled during restoration for ammonium contamination at on 1 y a few selected points. The extent of groundwater contamination beyond these points could only be surmised. One of the major advantages of computer modeling is the capability to simulate conditions in the aquifer at essentially any place and time. The calibrated model was used to calculate the dissolved post restoration
ammonium concentrations at all 122 nodes in the model (Figure 33). The model results indicate that at all but 2 of the nodes the dissolved ammonium concentration is less than the $50 \mathrm{mg} / \mathrm{L}$ limit agreed to between Wyoming Minerals Corporation and the Colorado Department of Health for post restoration ammonium levels. Thus considering the uncertainties in the model data, the model results do not contradict and in general support that Wyoming Minerals Corporation has successfully restored dissolved ammonium concentrations in the groundwater at the Grover test site to within the agreed limit of $50 \mathrm{mg} / \mathrm{L}$.

In general, the restoration of the aquifer was more complete within the leach field than for the immediate surrounding area. Of the 11 nodes in the leach field, the model-calculated ammonium concentrations were less than $10 \mathrm{mg} / \mathrm{L}$ at 5 of the nodes, between 10 to $20 \mathrm{mg} / \mathrm{L}$ at 3 of the nodes and between 20 to $35 \mathrm{mg} / \mathrm{L}$ at 3 of the nodes.

Through the processes of hydrodynamic dispersion and convective transport the ammonium was spread to the immediate area surrounding the leach field. Even though over pumping in both the mining and restoration phases was done to maintain groundwater gradients toward the leach field, some of the groundwater follows a path initially away from the leach field, but ultimately returns (see Figure A6). This is caused by outer wells in the leach field being used for injection which results in local groundwater gradients near these wells opposite to the regional groundwater gradient. In the immediate area surrounding the leach field the model-calculated ammonium concentrations were greater than $50 \mathrm{mg} / \mathrm{L}$ at 2 nodes, between 35 to $50 \mathrm{mg} / \mathrm{L}$ at 3 nodes, between 20 to $35 \mathrm{mg} / \mathrm{L}$ at 14 nodes and between 10 to $20 \mathrm{mg} / \mathrm{L}$ at 8 nodes. In the remaining 84 nodes in the model the model-calculated dissolved ammonium concentrations were less than $10 \mathrm{mg} / \mathrm{L}$.


Model-calculated dissolved ammonium concentrations in milligrams per liter:

Scale:

- greater than 50
- between 35 and 50
- between 20 and 35
a between 10 and 20
- less than 10

Number adjacent to symbol is nodal numbering system (see Figure

Figure 33. -- Model-calculated post restoration dissolved Ammonium concentrations.

Nodes 44 and 45 (Figure 33) had the greatest model-calculated ammonium concentrations. During the second phase of restoration, injection occurred at these nodes and high concentrations of ammonium were forced into the surrounding aquifer. The model results indicate that this ammonium remained more or less in place during later restoration efforts.

The calibrated model was also used to calculate the adsorbed post restoration ammonium concentrations at all of the nodes in the model (Figure 34). The model results indicate that potentially large quantities of adsorbed ammonium remain in the aquifer at the Grover test site. The maximum adsorbed ammonium concentration calculated by the model was greater than $1000 \mathrm{mg} / \mathrm{L}$. At a total of 30 of the nodes in the model the adsorbed ammonium concentration was calculated to be greater than $250 \mathrm{mg} / \mathrm{L}$ and at 47 of the nodes to be greater than $50 \mathrm{mg} / \mathrm{L}$. Eventually, all of this adsorbed ammonium will be desorbed by the exchange with other cations in the groundwater. The mobility of ammonium in groundwater is low and the process of cation rexchange by itself would not probably result in high future dissolved ammonium concentrations in the groundwater.

However, the conversion of ammonium to nitrate would increase its mobility substantially and coupled with the process of cation exchange could possibly result in future high nitrate concentrations in the groundwater. The potential to convert ammonium in groundwater is not known, but thought to be reasonably possible. An oxidizing environment and certain nitrifying bacteria are required. During the solution mining phase an oxidizing environment was established. The natural occurrence of nitrifying bacteria in groundwater systems is not known. The


Model-calculated adsorbed ammonium concentrations in milligrams per liter:

Scale:

- greater than 1000

- between 750 and 1000
- between 500 and 750
a between 250 and 500
$\Delta$ between 50 and 250
- less than 50

Number adjacent to symbol is nodal numbering system (see Figure

Figure 34. -- Model-calculated post restoration adsorbed Ammonium concentrations.
possibility exists that nitrifying bacteria may have been introduced into the groundwater during solution mining.

The significance of the residual adsorbed ammonium is best left to the environmental engineer and others involved in the regulation of solution mining. However, it is the responsibility of the groundwater hydrologist to provide the best possible data to aid them in their decision making process. The model developed in this study is intended to provide this information.

## SUMMARY AND CONCLUSIONS

In situ solution mining represents a new, more complex contaminant transport problem in site restoration than traditional contaminant transport problems. This dissertation describes a mathematical treatment of the site restoration of contaminants subject to adsorption and exchange on the porous media. The adsorption reaction is treated as an equilibrium controlled reversible binary cation exchange process. This requires that both chemical species involved in the exchange process be followed as they flow with the groundwater through the porous media. The mathematical formulation of the problem includes one equation describing groundwater flow plus two additional equations for solute transport (one equation for each of the chemical species involved in the binary cation exchange). The transport equations are coupled through two additional equations which describe the cation exchange process. In a leap-frog fashion the groundwater flow equation is solved for the head distribution in the aquifer and the two coupled transport equations are solved simultaneously for the dual changes in dissolved and adsorbed concentration for both chemical species.

A discussion of the fundamentals of the cation exchange process is presented in the dissertation along with a review of the major cation exchange equations. The assumption is made that the process of cation exchange is an entirely reversible process, that the cation exchange capacity of the porous medium is constant and that the cation exchange sites are always filled (the latter assumption ensures electroneutrality). The law of mass action is the most widely used equation to quantitatively describe the cation exchange process and is used in this study.

The groundwater flow equation and the two coupled solute transport equations were solved by the Galerkin-finite element method. In the finite element method, approximating integral equations were formed to replace the original governing partial differential equations for groundwater flow and solute transport. The integration of these integral equations were performed using triangular elements and linear shape functions. The doupled transport equations contain non-1inear variable coefficients that are dependent on concentration changes and which require the integrations to be repeated frequently. The use of triangular elements and linear shape functions in the finite element solution allowed some very powerful integration formulas to be applied which considerably reduced the computational effort and time required to make these integrations than would have otherwise been required.

A computer program was written which calculates the dual changes in concentration of two reacting solutes subject to binary cation exchange in flowing groundwater. The computer program calculates both dissolved and adsorbed concentrations at any specified place and time due to the process of convective transport, hydrodynamic dispersion, mixing from fluid sources and cation exchange reactions. The program allows specification of any number of injection or withdrawal wells and of spatially varying distributed recharge or discharge, transmissivity, saturated thickness, cation exchange capacity, boundary conditions and initial heads and concentrations. The program can simulate either transient flowtransient transport or steady state flow-transient transport.

A complete documentation of the program is contained in the report.

The accuracy of the numerical solution used in the computer program to the groundwater flow equation and to the coupled convection-dispersion equations was evaluated by analyzing some relatively simple problems for which analytical solutions were available and then comparing the model calculations with the analytical solutions. In these test problems good agreement between the model and analytical results were obtained. An example problem was also presented for solute transport with cation exchange reactions. The computer program as written is general and flexible in that it can be readily and directly applied to a wide range of types of problems. However, some program modifications may be required for efficient application to specialized problems or conditions not included in the general model.

The model has specific application to groundwater restoration for the in situ solution mining of uranium. Basically in situ solution mining of uranium consists of injecting through wells a lixiviant (consisting of a leaching agent and an oxidizing agent) into the sandstone formation which contains the uranium deposits. The uranium ore is preferentially dissolved from the host rock and the uranium-bearing groundwater is recovered through pumping wells. Ammonium bicarbonate is the most commonly used leaching agent and during mining the ammonium is adsorbed on the porous media when it is in relatively high concentrations in the groundwater. Later during the restoration process when ammonium concentrations in the groundwater are lower, the ammonium is released back to the groundwater. The desorption of the ammonium occurs slowly and may result in significant residual ammonium concentrations adsorbed in the aquifer after the restoration process was thought to be completed.

The model was applied to an actual field problem of groundwater restoration involving ammonium for a pilot scale in situ solution mining of uranium operation. This represented the first application of a 2-dimensional transport model incorporating cation exchange reactions to a complex contaminant transport problem of site restoration for actual field data. The model developed in this study was demonstrated to be capable of simulating the adsorption and exchange of contaminants on the porous media. The model should be readily adaptable to many other field problems.

The model is presented as a basic working tool to be used by regulating agencies, mining companies and others concerned with groundwater restoration for in situ solution mining. The model can be used to assess the extent of groundwater restoration from either past or current restoration efforts or as a predictive tool to evaluate alternative restoration strategies. The usefulness of such a predictive tool for planning purposes would include assessment of the trade-off benefits between differing levels of restoration efforts versus desired restoration objectives, restoration time requirements, total volumes of water required for restoration, effects of varying pumpage and injection rates and patterns, effects of varying eluting concentrations, etc.

## CHAPTER VIII

## REFERENCES

Adamson, A.W., 1976, Physical Chemistry of Surfaces, 3rd edition: John Wiley \& Sons, N.Y., 698 p.

Bear, F.E., 1964, Chemistry of the Soil, 2nd edition: Reinhold Publishing Corp., N.Y., 515 p.

Bear, J., 1979, Hydraulics of Groundwater: McGraw Hill, N.Y., 567 p.
Boast, C.W., 1973, Modeling the Movement of Chemicals in Soils by Water: Soil Science, Vol. 115, No. 3, p. 224-230.

Bolt, G.H., 1955, Ion Adsorption by Clays: Soil Science, Vol. 79, p. 267-276.

Bolt, G.H. and Page, A.L., 1965., Ion-Exchange equations based on double layer theory, Soil Sci., Vol. 99, p. 357-361.

Bolt, G.H., 1967, Cation-exchange equations used in soil science - A review: Netherlands Journal of Agricultural Science, Vol. 15, p. 81-103.

Bolt, G.H., and Bruggenwert, M.G.M., 1976, Soil Chemistry - A. Basic Elements: Elsevier Scientific Publishing Co., Amsterdam, 281 p.

Bommer, P.M., 1979, A streamline-concentration balance model for in situ uranium leaching and site restoration: Ph.D. dissertation, University of Texas at Austin, 252 p.

Carrol, D., 1959, Ion Exchange in Clays and other Minerals: Bulletin of the Geological Society of America, Vol. 70, p. 749-780.

Charbeneau, R.J., 1981, Groundwater Contaminant Transport with Adsorption and Ion Exchange Chemistry - Method of Characteristics for the case without Dispersion: Water Resources Research, V. 17, No. 3, p. 705-713.

Davis, L.E., 1945a, Simple Kinetic Theory of Ionic Exchange for Ions of Unequal Charge: Journal of Physical Chemistry, Vol. 49, p. 473-479.

Davis, L.E., 1945b, Theories of Base - Exchange Equilibriums: Soil Science, Vol. 59, p. 379-395.

Ethridge, F.G., Tyler, N., and Thompson, T.B., 1979, The Uranium-Bearing Fox Hills and Laramie Aquifers, Cheyenne Basin, Colorado. Structure, Depositional Systems and Groundwater, Part 1 - Structure and Depositional Systems: Colorado State University, Dept. of Earth Resources, Fort Collins, Colorado, 40 p.

Freeze, R.A., and Cherry, J.A., 1979, Groundwater: Prentice-Hall Inc., Englewood Cliffs, N.J., 604 p.

Gaines, G.L., and Thomas, H.C., 1953, Adsorption Studies on Clay Minerals, II. A Formulation of the Thermodynamics of Exchange Adsorptions: Journal of Chemical Physics, Vo1. 21, No. 4, p. 714-718.

Gaines, G.L., and Thomas, H.C., 1955, Adsorption Studies on Clay Minerals, V. Montmorillonite-Cesium-Strontium at several Temperatures: Journal of Chemical Physics, Vol. 23, No. 12, p. 2322-2326.

Gapon, E.N., 1933, Theory of Exchange adsorption in Soils: Journal General Chemistry (USSR), Vol. 3, p. 144-158.

Garrels, R.M., and Christ, C.L., 1965, Solutions, Minerals and Equilibria: Freeman, Cooper \& Co., S.F.,California, 450 p.

Gilbert, M., and Van Blade1, R., 1970, Thermodynamics and Thermochemistry of the exchange between $\mathrm{NH}_{4}$ and $\mathrm{M}_{\mathrm{n}}{ }^{2+}$ in a Montmorillonite Clay: Soil Science, Vol. 21, p. 38-49.

Grim, R.E., 1968, Clay Mineralogy, 2nd edition, McGraw-Hill, N.Y., 596 p.
Helfferich, F., 1962, Ion Exchange: McGraw-Hill, N.Y., 624 p.
He1fferich, F., and Klein, G., 1970, Multicomponent Chromatography-Theory of Interference: Marce1 Dekker Inc., N.Y., 419 p.

Hem, J.D., 1961, Calculation and Use of Ion Activity: U.S. Geological Survey Water-Supply Paper 1535C, 17 p.

Hem, J.D., 1970, Study of Interpretation of the Chemical Characteristics of Natural Water, 2nd edition, U.S. Geological Survey Water-Supply paper 1473 , 363 p .

Hill, H.J., and Lake, L.W., 1978, Cation exchange in chemical flooding, Part 3 - Experiments, Journal of Society of Petroleum Engineering, p. 445-456.

Humenick, M.J., Schecter, R.S., and Turk, L.J., 1978, Literature review and preliminary analysis of inorganic ammonia pertinent to South Texas Uranium in situ leach: Center for Research in Water Resources, University of Texas at Austin, Technical Report CRWR-155.

Jenny, H., 1936, Simple Kinetic Theory of Ionic Exchange, pt. 1-Ions of equal valency: Journal of Physical Chemistry, Vol. 40, No. 4, p. 501-517.

Kasper, D.R., Martin, H.W., Munsey, L.D., Bhappu, R.B., and Chase, C.K., 1979, Environmental Assessment of In Situ Mining: PRC Toups, Orange, Calif., 292 p.

Kelley, W.P., 1948, Cation Exchange in Soils: Reinhold Publishing Corp., N.Y., 144 p.

Kerr, H.W., 1928, The Nature of Base Exchange and Soil Acidity: Journal of American Society of Agronomy, Vo1. (20), p. 309-335.

Kirkham, R.M., $0^{\prime}$ Leary, W., and Warner, J.W., 1980, Hydrogeologic and Stratigraphic Data Pertinent to Uranium Mining, Cheyenne Basin, Colorado: Colorado Geological Survey Information Series 12, 31 p .

Korn, G.A., and Korn, T.M., 1968, Mathematical Handbook for Scientists and Engineers: McGraw-Hill, N.Y., 1130 p.

Kreyszig, E., 1979, Advanced Engineering Mathematics, 4th edition: John Wiley \& Sons, N.Y., 939 p.

Krishnamoorthy, C., and Overstreet, R., 1950, An Experimental evaluation of ion-exchange relationships: Soil Science, Vol. 69, p. 41-53.

Lai, S., and Jurinak, J.J., 1972, Cation Adsorption in one-dimensional flow through soils: A numerical solution: Water Resources Research, Vol. 8, No. 1, p. 99-107.

Lambe, T.W., and Whitman, R.V., 1969, Soil Mechanics: John Wiley \& Sons, Inc., N.Y., 553 p.

Langmuir, I., 1918, The adsorption of Gases on Planes of Surfaces of Glass, Mica and Platinum: J. Am. Chem. Soc., 401, p. 1361-1403.

Lantz, R.B., 1971, Quantitative Evaluation of Numerical Diffusion (Truncation Error): Journal of Society of Petroleum Engineers, Vol. 11, No. 3, p. 315-320.

Larson, W.C., 1978, Uranium In Situ Leach Mining in the United States: U.S. Bureau of Mines Information Circular No. 8777, 68 p.

Laudelout, H., Van Blade1, R., Bolt, G.H. and Page, A.L., 1968, Thermodynamics of Heterovalent Cation Exchange Reactions in a Montmorillonite Clay: Transactions of the Faraday Society, Vol. 64, No. 6, p. 1477-1488.

McWhorter, D.B., and Sunada, D.K., 1977, Groundwater Hydrology and Hydraulics: Water Resources Publication, Fort Collins, Colorado, 290 p.

Ortiz, N.V., Ferentchak, J.A., Ethridge, F.G., Granger, H.C., and Sunada, D. K., 1980, Groundwater Flow and Uranium in Colorado Plateau: Groundwater Journal, Vo1. 18, No. 6, p. 596-605.

Pearson, C.E., 1974, Handbook of Applied Mathematics: Van Nostrand Reinhold Co., N.Y., 1265 p.

Perry, J.H., 1963, Chemical Engineering Handbook, 4th edition: McGrawHill, N.Y., p. 16.5-16.11.

Reade, H.L., 1976, Grover Uranium deposit -- a case history of uranium exploration in the Denver Basin, Colorado: The Mountain Geologist, Vol. 13, No. 1, p. 21-31.

Reade, H.L., 1978, Uranium Deposits - Northern Denver, Julesburg Basin, Colorado, in Pruitt, J.D., and Coffin, P.E., editions, Energy Resources of the Denver Basin: Rocky Mountain Association of Geologists, p. 161-171.

Reddell, D.L., and Sunada, D.K., 1970, Numerical Simulation of Dispersion in Groundwater Aquifers, Fort Collins, Colorado State University, Hydrology Paper No. 41, 79 p.

Reiniger, P., and Bolt, G.H., 1972, Theory of chnomatography and its application to cation exchange in soils: Netherlands Journal of Agricultural Science, Vol. 20, p. 301-313.

Riding, J.R., and Rosswog, F.J., 1979, Restoration of Groundwater Quality after in situ uranium leaching: Ford, Bacon and Davis, Inc., Salt Lake City, Utah, 360 p.

Robinson, R.A., and Stokes, R.H., 1959, Electrolyte Solutions, 2nd edition, Butterworth \& Co., London, England, 569 p.

Rubin, J. and James, R.V., 1973, Dispersion-Affected Transport of Reacting Solutes in Saturated Porous Media: Galerkin Method Applied to Equilibrium-Controlled Exchange in Unidirectional Steady Water Flow: Water Resources Research, Vol. 9., No. 5, p. 1332-1356.

Schwartz, F.W., 1975, On radioactive waste management: An analysis of the parameters controlling subsurface contaminant transfer: Journal of Hydrology, Vo1. 27, p. 51-71.

Segerlind, L.J., 1976, Applied Finite Element Analysis: John Wiley \& Sons Inc., N.Y., 422 p.

Smith, F.W., 1978, Ion Exchange Conditioning of Sandstones for Chemical Flooding: Journal of Petroleum Technology; Trans. AIME, p. 959-968.

Smith, J.M., 1970. Chemical Engineering Kinetics, 2nd edition; McGrawHill, N.Y., 612 p.

Stumm, W., and Morgan, J.J., 1970, Aquatic Chemistry: John Wiley \& Sons, N.Y., 583 p.

Thompson, T.B., Wade, K., and Ethridge, F.G., 1980, The Uranium Bearing Fox Hills and Laramie Aquifers, Cheyenne Basin, Colorado - Structure, Depositional Systems and Groundwater, Part 2 - Groundwater Colorado State University, Dept. of Earth Resources, Fort Collins, CO, 23 p.

Thompson, W.E., Swarzenski, W.V., and others, 1978, Groundwater elements of In Situ Leach Mining of Uranium: Geraghty and Miller, Inc., Tampa, Fla., 173 p.

Todd, D.K., 1980, Groundwater Hydrology, 2nd edition: John Wiley \& Sons, N.Y., 535 p.

Trace Metal Data Institute, 1979, Restoration of In Situ Uranium Leaching Sites Incorporating Reverse Osmosis Technology: Bulletin 605, Trace Metal Data Institute, E1 Paso, Texas, 65 p.

Van Bladel, R., and Laudelout, H., 1967, Apparent Irreversibility of IonExchange Reaction in Clay Suspensions: Soil Science, Vol. 104, p. 134-137.

Van Olpen, H., 1977, An introduction to Clay Colloid Chemistry: 2nd edition: John Wiley \& Sons, N.Y., 318 p.

Vanselow, A.P., 1932, Equilibria of the Base-Exchange Reaction of Bentonites, Permutites, Soil Colloids and Zeolites: Soil Science, Vol. (33), p. 95-113.

Varga, R.S., 1962, Matrix Iterative Analyses: Englewood Cliffs, N.J., Prentice Hall, 322 p.

Wylie, C.R., 1966, Advanced Engineering Mathematics, 3rd Edition: McGraw-Hil1, N.Y., 813 p.

Wyoming Mineral Corporation, 1976, Grover Uranium Solution Mining Test Site, Appendix-Subsurface Disposal System Permit, 41 p.

Wyoming Mineral Corporation, 1978, Environmental eport Keota Project, Weld County, Colorado, Volume 1 - Technical Report, Volume 2 Appendices, 518 p.

Wyoming Mineral Corporation, 1979, Grover Groundwater Restoration Summary Report - Final, 31 p.

Zienkiewicz, O.C., 1977, The Finite Element Method, 3rd Edition: McGraw-Hill, N.Y., 787 p.

## APPENDIX A

## IN SITU SOLUTION MINING

## A. 1 Uranium Geochemistry

Uranium deposits in Tertiary age sandstone formations probably contain the largest uranium reserves in the United States, Because these sandstones often are fairly good aquifers with significant permeability, the uranium ore in them is particularly amenable to solution mining techniques. To understand how solution mining works, a description of uranium mineralogy and of the depositional process of uranium is presented.

Uranium has many valence states ( $+2,+3,+4,+5$ and +6 ), but only the +4 and +6 states are of mining interest. In the lowest two valence states ( +2 , and +3 ) uranium is such a powerful reducing agent that it can free hydrogen from water. Uranium in the +5 valence, in the presence of water, is unstable with respect to the +4 and +6 valence states. Uranium in the +4 valence state is called tetravalent uranium and in the +6 valence state is called hexavalent uranium.

The mineralogy and geochemistry of tetravalent and hexavalent uranium are dissimilar. Tetravalent uranium is stable only under reducing conditions. It oxidizes readily into hexavalent uranium. In general, tetravalent uranium compounds are much less soluble than the hexavalent uranium compounds. This is a very important property related to both the deposition and the solution mining of uranium.

The method by which uranium was deposited has been extensively studied by many researchers. Despite this, there is considerable amount of dispute over the exact origin of the sandstone type uranium deposits.

However, most of the researchers agree that uranium in the earths' crust was introduced hydrothermally or magmatically in alkalic granites, arkoses or volcanic-ash tuffs. In many areas the alkalic granites have an unusually high uranium content. Subsequent erosion of the granites occurred and the uranium was deposited contemporaneously with the deposition of the sandstone. The uranium was then mobilized by oxidizing groundwater flowing through the sandstones. The uranium was transported in a dissolved state along with the groundwater.

As long as the groundwater conditions were such that the uranium was kept in a hexavalent state, no precipitation occurred. When groundwater conditions changed from an oxidizing to a reducing environment, the uranium was changed from the hexavalent state to the tetravalent state which is less soluble in water. The uranium was then precipitated along the oxidation-reduction front (Redox front) in several configurations, such as the classic crescent shape or more commonly as tabular, dish-shaped, or irregular deposits (Figure Al.) Uranium deposited in this manner is referred to as roll front uranium deposits. Roll front uranium deposits make up the bulk of the uranium deposits in the Western United States. Solution mining strives to reverse this process by causing a strongly oxidizing condition to exist in which the tetravalent uranium compounds are transformed into hexavalent uranium compounds. The hexavalent uranium compounds are more soluble and can, therefore, be more readily mobilized.

In nature, uranium has been found in over 104 known uranium mineral compounds. Most of these are very rare. The most commonly found uranium compound is an uranium oxide called uraninite. Ideally, the composition


Explanation


Uraninum OreReduced sandstone
A- Classic cresent shape
B- Tabular deposits along permeability changes
$\square$ Oxidized sandstone

C-Dish shaped deposits

Shale or siltstone

Figure Al. -- Configuration of Uranium deposits in sandstones.
of uraninite is $\left(\mathrm{UO}_{2}\right)^{+2}$. Uraninite occurs as extremely fine-grained particles scattered within the sandstone matrix or as a black coating on individual sand grains. Uraninite has been identified as the dominant uranium mineral in the uranium deposits found in the Western United States.

Another uranium compound commonly found is a uranium silicate called coffenite. The composition of coffenite is $U\left(\mathrm{SiO}_{4}\right)_{1-x}(\mathrm{OH})_{4 \mathrm{x}}$. Coffenite is frequently found together with uraninite and is usually indistinguishable by visual inspection from uraninite. Coffenite also has been identified as a minor uranium mineral in these ore deposits.

## A. 2 Lixiviant-Sorption Circuit

The in situ solution process can be broken down into two main circuits (1) a lixiviant-sorption circuit, and (2) an elution-precipitation circuit. The relationships between the circuits are shown in Figure A2. For purposes of this study, we are only interested in the lixiviant-sorption circuit.

The lixiviant-sorption circuit consists of the sandstone aquifer containing the uranium ore body and the uranium extraction column. A lixiviant is injected by means of injection wells into the sandstone aquifer containing the ore body. The lixiviant flows through the permeable sandstone and contacts the uranium oxides (uraninite) and uranium silicates (coffenite). The lixiviant contains an oxidizing agent that oxidizes the uranium from the tetravalent state to the hexavalent state. The lixiviant also contains a leaching agent that mobilizes the uranium as a soluble uranium-ion complex, normally as


FIGURE A2. -- Schematic of the Solution Mining Process
either an uranium-carbonate complex or as an uranium-sulfate complex depending on the chemical makeup of the lixiviant. The uranium bearing groundwater is then recovered by production (recovery) wells. This solution contains the soluble uranium complexes, undesirable mobilized reaction byproducts and unreacted reagents in the lixiviant.

The well field (referred to hereafter as the leach field) provides the means by which the lixiviant is circulated through the sandstone aquifer to extract the uranium. The leach field design determines the efficiency of the uranium extraction. It also can have severe environmental effects by allowing contaminated groundwater to escape from the mine site. Several types of injection-recovery leach field patterns are used. The most common is the five-spot pattern (Figure A3A). Another pattern used is the seven-spot pattern (Figure A3B). The total number of wells and the well spacing used is determined by the hydrologic characteristics of the sandstone aquifer. The flow pattern through a vertical section of a single cell in a leach field is shown on Figure A4.

After recovery, the uranium bearing groundwater is passed through an uranium-sorption column which consists of a solid ion-exchange resin. The solution leaving the resin column is essentially barren of uranium, but does contain residual 1ixiviant chemicals and other undesirable contaminants. The barren solution is then regenerated with additional lixiviant chemicals and recycled to the leach field for reinjection. In some cases, a part of the barren solution is bled from the system. This net discharge lowers the groundwater levels in the localized area of the leach field causing outside groundwater to flow towards the mined zone. This reduces the possibility of escape of the lixiviant from the localized leach field area.


A - multiple 5-spot pattern


B- multiple 7-spot pattern

## Explanation

- Injection well
- Recovery well

Figure A3. -- Leach field patterns.


Explanation

- Arrow indicates direction of ground-water flow, size of arrow indicates magnitude of flow.


## A. 3 Lixiviants

The lixiviant consists of an oxidizing agent used to put the uranium into solution and a leaching agent used to mobilize the uranium by forming soluble uranium complexes. The most common oxidizing agent is hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$. Dissolved oxygen added by aerating the solution also is used. The criteria is that the oxidizing agent must be capable of oxidizing the uranium from the tetravalent state (+4 valence) to the hexavalent state (+6 valence). The concentration of hydrogen perixide is usually between 0.25 to 1 gram per liter ( $\mathrm{g} / \mathrm{L}$ ) in the lixiviant.

There are two major considerations in selecting a leaching agent for solution mining of uranium. First, the leaching agent must be capable of forming a soluble uranium complex which can be mobilized. Second, detrimental lixiviant reactions with other minerals present in the sandstone aquifer besides the uranium ore, such as calcite, clays, feldspars, zeolites, pyrites, and carbonaceous materials, should be minimized. These detrimental lixiviant-host rock reactions may (1) cause a decrease/increase in the permeability of the sandstone aquifer which may hinder the recovery of the uranium or allow escape of the contaminated groundwater from the mine site; (2) cause the leaching agent to be consumed and, thus, reduce the economic efficiency of the solution mining process; (3) cause other trace minerals to be dissolved along with the uranium that may interfere with chemical and ion exchange reactions in the solution mining process or cause further contamination of the groundwater; and (4) cause adsorption of the lixiviant onto the solid aquifer material which hinder the restoration of the groundwater upon completion of the mining.

There are four major leaching agents applicable to the solution mining of uranium. These are: (1) ammonium bicarbonate, (2) sodium bicarbonate, (3) alkaline-earth bicarbonates, and (4) sulfuric acid. The choice of the lixiviant to be used is determined by field testing during pilot-scale operations. The decision as to the best lixiviant to use depends on the composition of the uranium ore and the presence or lack of other minerals in the aquifer that may cause detrimental reactions to occur. A brief discussion of each of the four major lixiviants follows.

Ammonium bicarbonate $\left(\mathrm{NH}_{4} \mathrm{HCO}_{3}\right)$ is the most commonly used leaching agent in the solution mining of uranium. The concentration of the ammonium bicarbonate is usually between 1 and $10 \mathrm{~g} / \mathrm{L}$ in the lixiviant. The pH of the lixiviant is typically maintained at about 8. The uranium-carbonate complex formed in the reaction of the ammonium bicarbonate and the uranium ore is stable over a wide pH range of about 6 to 10. In general, trace minerals which occur together with the uranium are not subject to attack by the carbonate ion. However, the ammonium ion $\left(\mathrm{NH}_{4}^{+}\right)$has a strong potential for adsorption onto the solid aquifer material.

The sodium bicarbonate lixiviant is identical to the ammonium bicarbonate lixiviant except for the substitution of the sodium ion $\left(\mathrm{NA}^{+}\right)$for the ammonium ion $\left(\mathrm{NH}_{4}^{+}\right)$. The concentration of the sodium bicarbonate lixiviant is about the same as the ammonium bicarbonate lixiviant; usually about 1 to $10 \mathrm{~g} / \mathrm{L}$. The sodium bicarbonate lixiviant is only in limited use in the solution mining of uranium. The major disadvantage of sodium bicarbonate is that if there is any appreciable
amounts of clay contained in the aquifer, then the sodium causes swelling of the clay which reduces the permeability of the aquifer and thus reduces the efficiency of the uranium extraction and also may increase the potential for escape of contaminated groundwater from the mine site. Another disadvantage is that additional processing of the uranium is required to convert the sodium diurinate to the more commercially acceptable ammonium diurinate (yellowcake). In general, the sodium bicarbonate lixiviant does not readily mobilize contaminant trace minerals found with the uranium. The sodium cation does not exhibit as strong a potential for adsorption onto the aquifer material as does the ammonium cation.

The alkaline-earth bicarbonates that can be used as lixiviants are calcium carbonate and magnesium carbonate. These lixiviants have been tested on small pilot-scale operations, but have not been used, as yet, on a commercial scale operation. The difficulty with the alkalineearth bicarbonates are their low solubility in water. Calcium compounds often precipitate out of solution and clog the injection and production wells or interfere with the ion-exchange process. Quite often calcium removal units are utilized in solution mining to remove these unwanted calcium compounds.

Sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ is used as a lixiviant when the uranium ore resists extraction using the bicarbonate lixiviants and where already high sulfate concentrations occur in the groundwater. One of the major difficulties with sulfuric acid is that it is not very selective. It will mobilize the uranium as well as many of the other trace contaminants associated with the uranium. This increases the groundwater
contamination problem and makes restoration more difficult. Another difficulty with sulfuric acid is that the hydrogen ion ( $\mathrm{H}^{+}$) is adsorbed onto the aquifer material. If not properly restored the hydrogen ion is later released back to the groundwater after restoration resulting in a low pH acidic groundwater.

## A. 4 Chemical Reactions

The chemical reactions that take place during the mining depend on the structure of the uranium ore, the lixiviant used, and on the pH of the groundwater-aquifer system. If the uranium ore is uranite $\left(\mathrm{UO}_{2}\right)^{+2}$ and the lixiviant is ammonium bicarbonate-hydrogen perioxide, then the following reactions hold (Larson, 1978).

$$
\begin{aligned}
\text { Oxidation }= & \mathrm{UO}_{2}
\end{aligned}+\mathrm{H}_{2} \mathrm{O}_{2} \rightleftharpoons \mathrm{UO}_{3}+\mathrm{H}_{2} \mathrm{O}, ~\left(\mathrm{UO}_{2} \mathrm{O}+3\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3} \rightleftharpoons\left(\mathrm{NH}_{4}\right)_{4} \mathrm{UO}_{2}\left(\mathrm{CO}_{3}\right)_{3}\right)
$$

and

$$
=\mathrm{UO}_{3}+2 \mathrm{NH}_{4} \mathrm{HCO}_{3} \rightleftharpoons\left(\mathrm{NH}_{4}\right)_{2} \mathrm{UO}_{2}\left(\mathrm{CO}_{3}\right)_{2}+\mathrm{H}_{2} 0 ; 8.35>\mathrm{pH}>\approx 5
$$

At a $\mathrm{pH}>10.3$, the dominant form of the carbonate species is the carbonate ion $\left(\mathrm{CO}_{3}=\right.$ ) (Figure A5). Between a pH of 10.3 and 6.4

(source: Freeze and Cherry, 1979)

Figure A5. -- Carbonate species versus pH.
the dominant form of the carbonate species is the bicarbonate ion $\left(\mathrm{HCO}_{3}\right)$ (Figure A5). At a pH below $6.4, \mathrm{H}_{2} \mathrm{CO}_{3}$ is the dominant carbonate species (Figure A5). The net product of the reaction is always an ammonium-carbonate uranyl complex which is relatively soluble in solution and fairly stable in the range of pH between 6 and 10 , thus resisting reprecipitation.

## A. 5 Groundwater Contamination

Undoubtedly, the greatest environmental impact from solution mining is the potential contamination of the groundwater. For purposes of discussion, three groundwater quality zones are defined at a solution mine. (1) mining zone, (2) containment zone, and (3) undisturbed groundwater zone. The mining zone (Figure A6) includes the leach field and extends approximately one-well spacing or about 40 feet beyond the outermost injection wells. An areal view of the flow pattern for a 4-cell leach field is shown on Figure A6. Most of the flow occurs within the leach field in a nearly straight line between the injection wells and the production wells. However, some of the groundwater follows a path which initially leads away from the leach field but ultimately returns. The mining zone represents approximately the area contaminated under normal operating conditions.

The containment zone extends from the perimeter of the mining zone to the perimeter defined by the line connecting the monitor wells surrounding the leach field (Figure A6). Parts of this zone may become degraded during normal solution-mining operations and it may be desirable


[^1]to place trend wells within this zone. The undisturbed zone is the area outside the perimeter of the containment zone (Figure A6).

Groundwater contamination can occur from (1) lateral excursions, (2) vertical excursions, and (3) improper or incomplete restoration.

## A.5.1 Lateral Excursion

A lateral excursion is an uncontrolled migration of contaminated groundwater within the ore-bearing aquifer away from the mine site past the perimeter of the containment zone and technically occurs when contaminated groundwater is detected in the monitoring wells surrounding the leach field. A lateral excursion may result from undetected natural variations in aquifer permeabilities, too large of a well spacing, incorrect injection or recovery rates, or from detrimental lixiviant host rock reactions which alter the porosity or permeability of the aquifer. Of these, well spacing is probably the most important. A major cost of solution mining is the drilling and completion of the wells and, therefore, there is a tendency to increase the spacing of the wells to minimize the total number of wells required. The greater the well spacing, the less the control over the fluid flow and the more likely excursions are to occur.

To reduce the possibility of lateral excursions, pumpage rates from the leach field should exceed injection rates in order to maintain groundwater gradients toward the mine site. For minor lateral excursions, the primary remedial action taken is normally to increase the overpumping of the leach field in order to increase groundwater gradients toward the mine site and attempt to draw the contaminated
groundwater back towards the leach field. For more major excursions it may be necessary to cease all well injections and begin pumping the entire leach field in order to halt the migration of the contaminated groundwater. For the most severe excursions it may be necessary to install either an injection or a pumpage barrier downgradient to intercept the contaminated groundwater. In some cases it may be necessary to begin restoration of the aquifer.

## A.5.2 Vertical Excursion

A vertical excursion is the leakage of contaminated groundwater into an overlying and/or underlying aquifer. This leakage can occur through unplugged exploration holes, through the production and recovery wells within the leach field, or through a leaky confining layer. Monitoring wells are placed within the leach field in both the underlying and overlying aquifers to detect vertical excursions. Vertical excursions can be very serious and can potentially endanger an adjacent important aquifer. Corrective actions for vertical excursions are difficult and normally require restoring the over or underlying aquifer that has been contaminated.

## A.5.3 Incomplete Restoration

During solution mining, the groundwater is contaminated by the dissolved-uranium compounds, the residual lixiviant chemicals, and associated trace contaminants, such as vanadium, selenium, radium-226, cadium, arsenic, chromium, molybdenum, as well as hosts of others. After mining, restoration of the contaminated groundwater is required.

It is difficult to remove many of the trace contaminants from the groundwater system and even when left in minor amounts may result in a serious contamination problem. There is generally a substantial increase in the residual gross alpha and beta radioactivity counts in the groundwater even after restoration procedures have been implemented.

Another problem is the adsorption of certain contaminants onto the clays in the aquifer. During mining the contaminant is adsorbed on clay particles in the aquifer when it is in high concentrations in the groundwater. Later during restoration when the contaminant is in lower concentrations in the groundwater, the contaminant is released back into solution. This desorption process occurs slowly and can result in significant residual quantities of the contaminant adsorbed in the aquifer after the restoration process was thought to be completed. The restoration of contaminants subject to adsorption and desorption on the solid aquifer material is treated in detail in other sections of this dissertation.

The groundwater can only be sampled for contamination at a few selected points, namely at the monitoring wells and also at the production and recovery wells in the leach field. The extent of groundwater contamination beyond these few points can only be surmised. Improper or incomplete groundwater restoration could result in areas of contaminated groundwater remaining in the aquifer.

## A. 6 Groundwater Restoration Methods <br> Restoration is the returning of the contaminated groundwater to a condition consistent with the premining use or potential use. Establishment of restoration criteria is the initial step in any restoration

program. An often mentioned criteria is that the groundwater after mining should be returned to within 10 to 20 percent of the premining concentrations for each individual constituent in the groundwater.

The responsibility for in situ solution mining of uranium falls under the jurisdiction of both federal and state agencies. The licensing of in situ uranium solution mining falls under the jurisdiction of the U.S. Nuclear Regulatory Commission in non-agreement states and under the jurisdiction of the states in agreement states. All western states except Utah, Wyoming, Montana, South Dakota and Ok1ahoma are agreement states. The enforcement of groundwater protection falls to the U.S. Environmental Protection Agency (EPA). In several states, prima $y$ for groundwater protection has been given by the EPA to various state regulatory agencies. For a discussion of the appropriate federal and state regulations governing solution mining the interested reader is referred to Riding and Rosswog (1979).

In general, groundwater restoration techniques for in situ solution mining may be grouped into three methodologies: (1) Groundwater sweeping, (2) clean-water recycling, and (3) chemical-treatment.

## A.6.1 Groundwater Sweeping

Groundwater sweeping involves removing the contaminated groundwater from the mined aquifer by pumping, thereby inducing an influx of native groundwater from the surrounding undisturbed aquifer into the mine site. The contaminated groundwater and associated residual impurities are gradually displaced or swept away by the uncontaminated groundwater entering the mine site and, ideally, all contaminated
groundwater will be replaced by uncontaminated groundwater. This method is schematically shown in Figure A7a. Of the restoration methods, ground water sweeping has been tried the most, mainly because of the simplicity of operation and low cost. The method has only been partially successful in restoring the groundwater. Removal of certain contaminants which were adsorbed onto the clays during mining is very slow with groundwater sweeping. The method results in contamination of a large quantity of previously uncontaminated sweep water. Groundwater sweeping is used most extensively in Texas where deep well disposal of contaminated water is allowed.

## A.6.2 Clean-Water Recyling

With clean-water recycling the contaminated groundwater is removed from the mined aquifer, purified (usually by reverse osmosis) and reinjected into the mined aquifer. The method is schematically shown in Figure A7b. Clean-water recycling has the advantage that there is very little consumptive use of groundwater compared with groundwater sweeping. A small amount of brine is generated from the reverse osmosis process which may be disposed of in evaporation ponds. Additionally, a small amount of bleedoff of the purified water before reinjection may be needed to ensure that groundwater gradients are toward the mined site. The effectiveness of reverse osmosis in removing various ions in the water (TABLE Al) increases with increasing valence and with increasing molecular weight. Of special interest, the reduction rate by reverse osmosis for ammonium and for calcium is about 95 and 97.5

(a) Groundwater Sweep Method

(c) Chemical Treatment Method

Figure A7. -- Groundwater restoration methods.

TABLE A1. -- Effectiveness of Reverse Osmosis
(Source: Trace Metal Data Institute, 1979)

Constituent	Percent reduction
Monovalent ions	$94-98$
Divalent ions	$98-99.5$
Trivalent ions	$99-99.9$
Non-electrolytes	$92-95$
Total dissolved solids	$96-97$
Radionuclides--gross alpha	$85-96$
Radionuclides--gross beta	$95-99$
Molecular weight greater than 180	$98-100$

percent, respectively (Thompson and others, 1978). The clean-water recycling method is used when the main purpose is reducing the residual total dissolved solids of the groundwater. The major disadvantage of this method is that it does very little to remove contaminants that have been adsorbed on the c1ays.

## A.6.3 Chemical-Treatment

The chemical-treatment method in conjunction with recirculation is shown schematically in Figure A7c. In this method, restoration is accomplished by injecting chemicals into the mined aquifer. During mining, many contaminants were mobilized along with the uranium. One purpose of the chemical-treatment method can be to reprecipitate these contaminants by a suitable choice of the chemical, thereby reestablishing the chemical equilibrium that was present before the mining took place. Another purpose of the chemical-treatment method can be the eluting of adsorbed contaminants from the clays. For example, adsorbed ammonium can be removed from the clays by injecting a highly concentrated calcium solution. The ammonium is then selectively removed by increasing the pH of the solution which is then passed through a stripping tower through which a large volume air stream also is passed. The high pH of the solution converts the ammonium ion $\left(\mathrm{NH}_{4}{ }^{+}\right)$to the dissolved ammonia gas $\left(\mathrm{NH}_{3}\right)$ which is removed from the water by the flowing air stream.

Groundwater restoration technology is still in a developmental stage. Other methods besides sweeping and recirculation have been proposed such as bacterial precipitation (Riding and Rosswog, 1979)
but these other methods are still in the laboratory stage. Groundwater restoration by sweeping, clean-water recycling and/or chemical treatment have been demonstrated on small-scale test sites (less than 5 acres) but have never been attempted on a large-scale basis (Kasper et al., 1979). The unanswered questions remaining on groundwater restoration, effects of varying eluting chemical concentrations, effects of varying recirculation rates, restoration time requirements, etc.

An equation describing the two-dimensional mass transport for a reacting solute subject to adsorption in flowing groundwater is derived from the principal of conservation of mass. The derivation presented here is based on the development of Redde11 and Sunada (1970).

The conservation of mass for the volume element with dimensions $\Delta x, \Delta y$ and $\Delta z$ shown on Figure B1 is

```
(rate of mass inflow) - (rate of mass outflow)
 \pm \mp@code { (r a t e ~ o f ~ m a s s ~ t r a n s f e r ~ t h r o u g h ~ a ~ s o u r c e ~ o r ~ s i n k) }
 \pm (rate of mass depletion/production by adsorption/
 desorption)
```

    \(=\) (rate of change of solute mass in solution within the volume element):
    The rate of mass inflow is equal to the mass flux of the solute in the $x$-direction across the face $A B C D$ of the volume element (represented as $M_{o x}$ ) plus the mass flux of the solute in the $y$-direction across the face DCGH of the volume element (represented as $M_{o y}$ ). The rate of mass outflow is equal to the mass flux of the solute in the $x$-direction across the face EFGH of the volume element (represented as $M_{\Delta x}$ ) plus the mass flux of the solute and the $y$-direction across the face $A B F E$ of the volume element (represented as $M_{\Delta y}$ ).


Figure B1. -- Representative volume element of a porous medium for mass balance calculation.

Expansion of $M_{\Delta x}$ and $M_{\Delta y}$ in a Taylor Series expansion about the origin yields

$$
\begin{align*}
& M_{\Delta x}=M_{o x}+\frac{\partial}{\partial x}\left(M_{x}\right) \Delta x+\text { higher order terms, and }  \tag{B2}\\
& M_{\Delta y}=M_{o y}+\frac{\partial}{\partial y}\left(M_{y}\right) \Delta y+\text { higher order terms. } \tag{B3}
\end{align*}
$$

Neglecting higher order terms the net mass flux in the $x$-direction is

$$
\begin{equation*}
(\text { Net Mass Flux })_{x}=M_{o x}-M_{\Delta x}=-\frac{\partial}{\partial x}\left(M_{x}\right) \Delta x \tag{B4}
\end{equation*}
$$

and similarly in the $y$-direction is

$$
\begin{equation*}
(\text { Net Mass Flux })_{y}=M_{o y}-M_{\Delta y}=-\frac{\partial}{\partial y}\left(M_{y}\right) \Delta y \tag{B5}
\end{equation*}
$$

The instantaneous mass flux in the $x$-direction is given as

$$
\begin{equation*}
\mathrm{M}_{\mathrm{x}}=C V_{\mathrm{x}}^{*} \varepsilon \Delta \mathrm{y} \Delta \mathrm{z} \tag{B6}
\end{equation*}
$$

where

```
C = concentration of the solute (M/L '),
V
 in the x-direction (L/T), and
 \varepsilon = porosity (dimensionless).
```

Note that the term ( $\varepsilon \Delta y \Delta z$ ) is simply the effective cross-sectional area. The instantaneous mass flux in the $y$-direction is given as

$$
\begin{equation*}
M_{y}=C V_{y}^{*} \varepsilon \Delta x \Delta z \tag{B7}
\end{equation*}
$$

where
$\mathrm{V}_{\mathrm{y}}^{*}=$ instantaneous interstitial velocity of the groundwater in the y -direction ( $\mathrm{L} / \mathrm{T}$ ).

Solute enters or leaves the volume element as a flux through sources or sinks. This is expressed as
(Source/Sink Mass Flux) $=-C^{\prime} R * \Delta x \Delta y \Delta z$
where
$C^{\prime}=$ concentration of the solute in the source or sink fluid ( $\mathrm{M} / \mathrm{L}^{3}$ ), and
$R^{*}=$ volume flux per unit bulk volume ( $L^{3} / T / L^{3}$ ).
Note that the term ( $\Delta x \Delta y \Delta z$ ) is simply the bulk volume of the volume element. The negative sign indicates that if a sink (withdrawal) is considered positive in sign and a source (recharge or injection) is considered negative in sign, then when all other fluxes balance, the solute mass in solution within the volume element will decrease for a sink and increase for a source.

Solute is removed from or added to solution within the volume element by the effects of adsorption or desorption. This is expressed as

$$
\begin{equation*}
\text { (Mass flux by Adsorption/Desorption) }=-\frac{\partial}{\partial t}(\overline{\mathrm{C}} \varepsilon \Delta x \Delta y \Delta z) \tag{B9}
\end{equation*}
$$

where $\overline{\mathrm{C}}$ is the concentration adsorbed on the solid aquifer material per volume of solution $\left(M / L^{3}\right)$. Note that the term ( $\varepsilon \Delta x \Delta y \Delta z$ ) is simply
the volume of the solution in the volume element. The negative sign indicates that if the adsorbed concentration increases with time, then when all other fluxes balance the solute mass in solution within the volume element will decrease.

The change of solute mass in solution within the volume element is expressed as
(Rate of change of solute mass in solution within the volume element)

$$
\begin{equation*}
=\frac{\partial}{\partial t} \quad(C \varepsilon \Delta x \Delta y \Delta z) . \tag{B10}
\end{equation*}
$$

Substitution of equations (B2) - (B10) into the mass balance equation (B1) yields

$$
\begin{align*}
\frac{\partial}{\partial t}(C \varepsilon \Delta x \Delta y \Delta z) & =-\frac{\partial}{\partial x}\left(C_{x}^{*} \in \Delta y \Delta z\right) \Delta x-\frac{\partial}{\partial y}\left(C V_{y}^{*} \Delta x \Delta y\right) \Delta y  \tag{B11}\\
& -\frac{\partial}{\partial t}\left(\bar{C} \varepsilon \Delta x \Delta y \Delta z-C^{\wedge} R^{*} \Delta x \Delta y \Delta z\right.
\end{align*}
$$

Assuming that changes over time in the porosity $\varepsilon$ of the aquifer are not significant, that no deformation of the volume element occurs (in essence $\Delta x, \Delta y$ and $\Delta z$ are constant), and letting $x_{1}$ represent the $x$-direction and $x_{2}$ represent the $y$-direction then equation (B11) is rewritten as

$$
\begin{equation*}
-\frac{\partial C}{\partial t}-\frac{\partial \bar{C}}{\partial t}=\frac{\partial}{\partial x_{i}}\left(C V_{i}^{*}\right)+\frac{C^{\prime} R^{*}}{\varepsilon} \quad i=1,2 . \tag{B12}
\end{equation*}
$$

The instantaneous mass flux of the solute is represented by the term $C V_{i}^{*}$ in equation (B12). This flux can be separated into a convective flux, a dispersive flux, and a diffusive flux. The convective flux represents the mass flux of the solute transported by the average fluid
motion of the groundwater through the volume element and is expressed as

$$
\begin{equation*}
\text { (convective flux) }=\mathrm{CV}_{\mathrm{i}} \tag{B13}
\end{equation*}
$$

where
$V_{i}=$ average interstitial velocity of the groundwater in the ith direction (L/T).

The dispersive and diffusive fluxes represent collectively hydrodynamic dispersion. The dispersive flux results from velocity fluctuations from the average interstitial velocity of the fluid. Bear (1979) gives the dispersive flux as

$$
\begin{equation*}
\left(\text { dispersive flux) }=-D_{i j} \frac{\partial C}{\partial x_{j}}\right. \tag{B14}
\end{equation*}
$$

where D is the coefficient of hydrodynamic dispersion (a second-order tensor, $L^{2} / T$ ). The dispersive flux is directly proportional to the concentration gradient and occurs in the direction from higher concentrations towards lower concentrations. The diffusive flux results from molecular and ionic diffusion. In flowing groundwater, diffusive fluxes are assumed negligible in comparison to dispersive fluxes.

The sources and sinks are represented by the term $\frac{C^{\prime} R^{*}}{\varepsilon}$ in equation (B12). These sources and sinks may be either distributed sources or sinks (for example evapotranspiration and recharge) or may be point sources and sinks (for example injection or withdrawal wells). Accordingly from Bear (1979) the volumetric flux can be broken into distributive flux terms and point flux terms as

$$
\begin{equation*}
R^{*}=\frac{W}{b}+\sum_{p=1}^{m}\left(\delta\left(x-x_{p}\right) \delta\left(y-y_{p}\right) \frac{Q_{p}}{b}\right) \tag{B15}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathrm{W}= & \text { distributive net inflow per unit area over the element } \\
& \left(\mathrm{L}^{3} / \mathrm{T} / \mathrm{L}^{2}\right), \\
\mathrm{Q}_{\mathrm{p}}= & \text { net inflow at a point located at }\left(\mathrm{x}_{\mathrm{p}}, y_{\mathrm{p}}\right)\left(\mathrm{L}^{3} / \mathrm{T}\right), \\
& \text { there are } m \text { such points within the element, } \\
\delta= & \text { dirac delta function, and } \\
\mathrm{b}= & \text { saturated thickness. }
\end{aligned}
$$

Substitution of equations (B13) and (B14) for convective and dispersive fluxes and equation (B15) for $\mathrm{R}^{*}$ into equation (B12) yie1ds

$$
\begin{aligned}
& -\frac{\partial C}{\partial t}-\frac{\partial \bar{C}}{\partial t}=\frac{\partial}{\partial x_{i}}\left(C V_{i}-D_{i j} \frac{\partial C}{\partial x_{j}}\right)+\frac{W C^{\prime}}{\varepsilon b} \\
& \quad+\sum_{p=1}^{m}\left(\delta\left(x-x_{p}\right) \delta\left(y-y_{p}\right) \frac{Q_{p} C^{\prime}}{\varepsilon b}\right)
\end{aligned}
$$

which is the general partial differential equation for computing the concentration of a single dissolved chemical species in flowing groundwater with adsorption.

## APPENDIX C

## Integral Transformations

Several integral transformations used in the solution of the groundwater flow equation and of the solute transport equations are developed from the Gauss-Divergence theorem which can be written in three dimensions for a close bounded region in space $V$ whose surface is S as (Kreyzig, 1979 or Wylie, 1966)

$$
\begin{equation*}
\iiint_{V} \nabla \cdot \underline{f} \mathrm{~d} \tau=\oiint_{\mathrm{S}} \underline{\mathrm{n}} \cdot \underline{\mathrm{f}} \mathrm{~d} \sigma . \tag{C1}
\end{equation*}
$$

Equation (C1) is written in two dimensions as

$$
\begin{equation*}
\iint_{D} \nabla \cdot \underline{f} d A=\oint_{B} \underline{n} \cdot \underline{f} d L \tag{C2}
\end{equation*}
$$

where $D$ is a close bounded domain with boundary $B$ and where $\underline{f}(x, y)$ is a vector function and $\underline{n}$ is the outward pointing unit normal on $B$. The symbol $\oint$ indicates that the integration is over the entire closed boundary. If $\underline{f}$ and $\underline{n}$ are written in terms of components then

$$
\begin{equation*}
\underline{f}=f_{x} \underline{i}+f_{y \underline{j}} \tag{C3}
\end{equation*}
$$

where $f_{x}$ and $f_{y}$ are the components of vector $\underline{f}$ in the $x$ and $y$ directions, respectively, and $\underline{i}$ and $\dot{j}$ are unit vectors in the $x$ and $y$ directions, respectively, and

$$
\begin{equation*}
\underline{n}=l_{x} \underline{i}+l_{y} \underline{j} \tag{C4}
\end{equation*}
$$

where $l_{\mathrm{x}}=\cos \alpha$ and $l_{\mathrm{y}}=\cos \beta$ as shown on Figure C1.
The divergence of the vector $\underline{f}$ is a scalar and is defined as
$\nabla \cdot \underline{f}=\left(\frac{\partial}{\partial x} \underline{i}+\frac{\partial}{\partial y} \underline{j}\right) .\left(f_{x} \underline{i}+f_{y} \underline{j}\right)=\frac{\partial f_{x}}{\partial x}+\frac{\partial f_{y}}{\partial y}$.

A useful transformation is obtained by letting

$$
\begin{equation*}
\underline{f}=\psi_{1} \phi_{1} \quad \frac{\partial \phi_{2}}{\partial x} \underline{i}+\psi_{2} \phi_{1} \frac{\partial \phi_{2}}{\partial y} \underline{j} \tag{C6}
\end{equation*}
$$

where $\psi_{1}(x, y), \psi_{2}(x, y), \phi_{1}(x, y)$ and $\phi_{2}(x, y)$ are scalars.
Then

$$
\begin{align*}
\nabla \cdot \underline{f} & =\left(\frac{\partial}{\partial x} \underline{i}+\frac{\partial}{\partial y} \underline{j}\right) \cdot\left(\psi_{1} \phi_{1} \frac{\partial \phi_{2}}{\partial x} \underline{i}+\psi_{2} \phi_{1} \frac{\partial \phi_{2}}{\partial y} \underline{j}\right) \\
& =\frac{\partial}{\partial x}\left(\psi_{1} \phi_{1} \frac{\partial \phi_{2}}{\partial x}\right)+\frac{\partial}{\partial y}\left(\psi_{2} \phi_{1} \frac{\partial \phi_{2}}{\partial y}\right)  \tag{C7}\\
& =\frac{\partial \psi_{1}}{\partial x} \phi_{1} \frac{\partial \phi_{2}}{\partial x}+\psi_{1} \frac{\partial \phi_{1}}{\partial x} \frac{\partial \phi_{2}}{\partial x}+\psi_{1} \phi_{1} \frac{\partial^{2} \phi_{2}}{\partial x^{2}} \\
& +\frac{\partial \psi_{2}}{\partial y} \phi_{1} \frac{\partial \phi_{2}}{\partial y}+\psi_{2} \frac{\partial \phi_{1}}{\partial y} \frac{\partial \phi_{2}}{\partial y}+\psi_{2} \phi_{1} \frac{\partial^{2} \phi_{2}}{\partial y^{2}}
\end{align*}
$$

and

$$
\begin{align*}
\underline{n} \cdot \underline{f} & =\left(l_{x} \underline{i}+\ell_{y} \underline{j}\right) \cdot\left(\psi_{1} \phi_{1} \frac{\partial \phi_{2}}{\partial x} \underline{i}+\psi_{2} \phi_{1} \frac{\partial \phi_{2}}{\partial y} \underline{j}\right) \\
& =\psi_{1} \phi_{1} \frac{\partial \phi_{2}}{\partial x} \ell_{x}+\psi_{2} \phi_{2} \frac{\partial \phi_{2}}{\partial y} \ell_{y} . \tag{C8}
\end{align*}
$$



Figure C1. -- Directional cosines and the outward pointing normal to the surface.

Substitution of equations (C7) and (C8) into equation (C2) and rearranging yields

$$
\begin{align*}
& \iint_{\mathrm{D}}\left\{\frac{\partial \psi_{1}}{\partial \mathrm{x}} \phi_{1} \frac{\partial \phi_{2}}{\partial \mathrm{x}}+\psi_{1} \phi_{1} \frac{\partial^{2} \phi_{2}}{\partial \mathrm{x}^{2}}+\frac{\partial \psi_{2}}{\partial \mathrm{y}} \phi_{1} \frac{\partial \psi_{2}}{\partial \mathrm{y}}+\psi_{2} \phi_{1} \frac{\partial^{2} \phi_{2}}{\partial \mathrm{y}^{2}}\right\} \\
& =-\iint_{\mathrm{D}}\left\{\psi_{1} \frac{\partial \phi_{1}}{\partial \mathrm{x}} \frac{\partial \phi_{2}}{\partial \mathrm{x}}+\psi_{2} \frac{\partial \phi_{1}}{\partial \mathrm{y}} \frac{\partial \phi_{2}}{\partial \mathrm{y}}\right\} \mathrm{dA}  \tag{C9}\\
& +\oint_{\mathrm{B}}\left\{\psi_{1} \phi_{1} \frac{\partial \phi_{2}}{\partial \mathrm{x}} \ell_{\mathrm{x}}+\psi_{2} \phi_{2} \frac{\partial \phi_{2}}{\partial \mathrm{y}} \ell_{\mathrm{y}}\right\} \mathrm{dL} .
\end{align*}
$$

A second useful integral transformation is obtained by letting

$$
\begin{equation*}
\underline{f}=\psi_{1} \phi_{1} \frac{\partial \phi_{2}}{\partial y} \quad \underline{i}+\psi_{2} \phi_{1} \frac{\partial \phi_{2}}{\partial x} \quad \underline{j} \tag{C10}
\end{equation*}
$$

where $\psi_{1}(x, y), \psi_{2}(x, y), \phi_{1}(x, y)$ and $\phi_{2}(x, y)$ are scalars. Then

$$
\begin{align*}
\nabla \cdot \underline{f} & =\left(\frac{\partial}{\partial x} \underline{i}+\frac{\partial}{\partial y} \underline{j}\right) \cdot\left(\psi_{1} \phi_{1} \frac{\partial \phi_{2}}{\partial y} \underline{i}+\psi_{2} \phi_{1} \frac{\partial \phi_{2}}{\partial x}\right. \\
& =\frac{\partial}{\partial x}\left(\psi_{1} \phi_{1} \frac{\partial \phi_{2}}{\partial y}\right)+\frac{\partial}{\partial y}\left(\psi_{2} \phi_{1} \frac{\partial \phi_{2}}{\partial x}\right)  \tag{C11}\\
& =\frac{\partial \psi_{1}}{\partial x} \phi_{1} \frac{\partial \phi_{2}}{\partial y}+\psi_{1} \frac{\partial \phi_{1}}{\partial x} \frac{\partial \phi_{2}}{\partial y}+\psi_{1} \phi_{1} \frac{\partial^{2} \phi_{2}}{\partial x \partial y} \\
& +\frac{\partial \psi_{2}}{\partial y} \phi_{1} \frac{\partial \phi_{2}}{\partial x}+\psi_{2} \frac{\partial \phi_{1}}{\partial y} \frac{\partial \phi_{2}}{\partial x}+\psi_{2} \phi_{1} \frac{\partial^{2} \phi_{2}}{\partial x \partial y}
\end{align*}
$$

and

$$
\begin{align*}
\underline{n} \cdot \underline{f} & =\left(\ell_{x} \underline{i}+\ell_{y} \underline{j}\right) \cdot\left(\psi_{1} \phi_{1} \frac{\partial \phi_{2}}{\partial y} \underline{i}+\psi_{2} \phi_{1} \frac{\partial \phi_{2}}{\partial x} \underline{j}\right)  \tag{C12}\\
& =\psi_{1} \phi_{1} \frac{\partial \phi_{2}}{\partial y} \ell_{x}+\psi_{2} \phi_{1} \frac{\partial \phi_{2}}{\partial x} \ell_{y} .
\end{align*}
$$

Substitution of equations (C11) and (C12) into equation (C2) and rearranging yie1ds

$$
\begin{align*}
& \iiint_{D}\left\{\frac{\partial \psi_{1}}{\partial x} \phi_{1} \frac{\partial \phi_{2}}{\partial y}+\Psi_{1} \phi_{1} \frac{\partial^{2} \phi_{2}}{\partial \mathrm{x} \partial \mathrm{y}}+\frac{\partial \psi_{2}}{\partial \mathrm{y}} \phi_{1} \frac{\partial \phi_{2}}{\partial \mathrm{x}}+\psi_{2} \phi_{1} \frac{\partial^{2} \phi_{2}}{\partial \mathrm{x} \partial \mathrm{y}}\right\} \mathrm{dA} \\
&=-\iint_{\mathrm{D}}\left\{\psi_{1} \frac{\partial \phi_{1}}{\partial \mathrm{x}} \frac{\partial \phi_{2}}{\partial \mathrm{y}}+\psi_{2} \frac{\partial \phi_{1}}{\partial \mathrm{y}} \frac{\partial \phi_{2}}{\partial \mathrm{x}}\right\} \mathrm{dA}  \tag{C13}\\
&\left.+\oint_{\mathrm{B}} \int_{\psi_{1} \phi_{1}} \frac{\partial \phi_{2}}{\partial \mathrm{y}} \ell_{\mathrm{x}}+\psi_{2} \phi_{1} \frac{\partial \phi_{2}}{\partial \mathrm{x}} \quad \ell_{\mathrm{y}}\right\} \mathrm{dL}
\end{align*}
$$

A third useful integral transformation is obtained by letting

$$
\begin{equation*}
\underline{f}=\psi_{1} \phi_{1} \phi_{2} \quad \underline{i}+\psi_{2} \phi_{1} \phi_{2} \underline{j} \tag{C14}
\end{equation*}
$$

where $\psi_{1}(x, y), \psi_{2}(x, y), \phi_{1}(x, y)$ and $\phi_{2}(x, y)$ are scalars. Then

$$
\begin{align*}
\nabla \cdot \underline{f} & =\left(\frac{\partial}{\partial x} \underline{i}+\frac{\partial}{\partial y} \underline{j}\right) \cdot\left(\psi_{1} \phi_{1} \phi_{2} \underline{i}+\psi_{2} \phi_{1} \phi_{2} \underline{j}\right) \\
& =\frac{\partial}{\partial x}\left(\psi_{1} \phi_{1} \phi_{2}\right)+\frac{\partial}{\partial y}\left(\psi_{2} \phi_{1} \phi_{2}\right)  \tag{C15}\\
& =\frac{\partial \psi_{1}}{\partial x} \phi_{1} \phi_{2}+\psi_{1} \frac{\partial \phi_{1}}{\partial x} \phi_{2}+\psi_{1} \phi_{1} \frac{\partial \phi_{2}}{\partial x}
\end{align*}
$$

$$
\begin{equation*}
+\frac{\partial \psi_{2}}{\partial \mathrm{y}} \phi_{1} \phi_{2}+\psi_{2} \frac{\partial \phi_{1}}{\partial \mathrm{y}} \phi_{2}+\psi_{2} \phi_{1} \frac{\partial \phi_{2}}{\partial \mathrm{y}} \tag{C15cont.}
\end{equation*}
$$

and

$$
\begin{align*}
\underline{n} \cdot \underline{f} & =\left(\ell_{x} \underline{i}+\ell_{y} \underline{j}\right) \cdot\left(\psi_{1} \phi_{1} \phi_{2} \underline{i}+\psi_{2} \phi_{1} \phi_{2} \underline{j}\right) \\
& =\psi_{1} \phi_{1} \phi_{2} l_{x}+\psi_{2} \phi_{1} \phi_{2}^{\ell} y \tag{C16}
\end{align*}
$$

Substitution of equations (C15) and (C16) into equation (C2) and rearranging yields

$$
\left.\begin{array}{l}
\iint_{\mathrm{D}}\left\{\frac{\partial \psi_{1}}{\partial \mathrm{x}} \phi_{1} \phi_{2}+\psi_{1} \phi_{1} \frac{\partial \phi_{2}}{\partial \mathrm{x}}+\frac{\partial \psi_{2}}{\partial \mathrm{y}} \phi_{1} \phi_{2}+\psi_{2} \phi_{1} \frac{\partial \phi_{2}}{\partial \mathrm{y}}\right\} \mathrm{dA} \\
=-\iint_{\mathrm{D}}\left\{\psi_{1} \frac{\partial \phi_{1}}{\partial \mathrm{x}} \phi_{2}+\psi_{2} \frac{\partial \phi_{1}}{\partial \mathrm{y}} \phi_{2}\right\} \mathrm{dA}  \tag{C17}\\
\quad+\oint_{\mathrm{B}}\left\{\psi_{1} \phi_{1} \phi_{2}^{l} \mathrm{x}+\psi_{2} \phi_{1} \phi_{2} \quad \mathrm{l}\right. \\
\mathrm{y}
\end{array}\right\} \mathrm{dL}
$$

## COMPUTER PROGRAM AND RELATED DATA.

APPENDIX D. -- Program Listing


## PROGRAM LISTING--CONTINUED




PROGRAM LISTING--CONTINUED

	C ZOTLEK $=0$.	B	0650
	C1OTLEK = C2OTLEK	B	0660
	C2INLEK $=$ C10TLEK	B	0670
	CIINLEK = C2IALEK	B	0680
	c20tbit $=0$.	8	0690
	C10TBDY $=$ C20tBDY	B	0700
	C2INBDY $=$ C10TBDY	8	0710
	CIINBDY $=$ C2INBDY	B	0720
c	******************************************************************	B	0730
C		B	0740
c $P$	PRINT YEADING	B	0750
C		B	0760
	WRITE ( 6,100$)$	8	0770
100	FORMAT (1H15x, 108H2-DIMENSIONAL MASS TRANSPORT IN FLOWING GROUNDWA	B	0780
	1 IER FOR 2 REACTING SOLUTES SUBJECT TO BINARY CATION EXCHANGE/1H 9	B	0790
	$2 \mathrm{~K}, 109$ HNUMERICAL SOLUTION BY THE GALERKIN FINITE ELEMENT METHOD USI	B	0800
	3NG TRIANGULAR ELEMENTS AND LINEAR SHAPE FUNCTIONS/1H , 5X,38HURITTE	B	0810
	$4 N$ AND PROGRAMMED BY JAMES WARNER)	8	0820
C		8	0830
	read title card	B	0840
c		B	0850
	READ (5,110) TITLE	8	0860
110	FORMAT (2044)	B	0870
	WRITE (6,120) TITLE	8	0880
120	FORMAT (/11H,20A4/I)	B	0890
$c$ *		B	0900
c		8	0910
c	READ - FOR CONSERVATIVE TFANSPORT, ICT>O	B	0920
c	FOR NONCONSERVATIVE TRANSPORT, ICT =0	8	0930
c		B	0940
	READ (5,110) TITLE	$B$	0950
	READ (5,130) ICT	8	0960
130	FORMAT (I5)	8	0970
	IF (ICT.EQ.0) HRITE (6,140)	8	0980
140	FORMAT (33H NONCONSERVATIVE TRANSPCRT(ICT=0))	B	0990
	IF (ICT.GT.0) WRITE (6,150)	8	1000
150	FORMAT ( 30 H CONSERVATIVE TRANSPORT (ICT>O))	B	1010
	WRITE ( 6,160 )	8	1020
150		B	1030
	1----------1/1/)	B	1040
c	**************************	8	1050
c		B	1060
	LOAD ELEMENT DESCRIPTORS	8	1070
C		B	1080
C N	NUMNP $=$ NUMBER OF NCDAL POINTS	8	1090
C N	NUMEL = NUMBER OF ELEMENTS	8	1100
C N	NUMBS = NUMBER OF BOUNDARY SEGMENTS	8	1110
c		B	1120
	READ ( 5,110 ) TITLE	8	1130
	READ ( 5,170 ) NUMNP, NUMEL, NUM BS	B	1140
170	FORMAT (3I5)	B	1150
	WRITE ( 6,180$)$ NUMNP, NUMEL, NUMBS	8	1160
180	FORMAT (1H, $22 \mathrm{X}, 19 \mathrm{HELEMENT}$ DISCRIPTCRS//13x,48HNUMNP CNUMBER OF	8	1170
		B	1180
	2ENTS) $\quad=2 \mathrm{X}, \mathrm{I} 4 / 13 \mathrm{x}, 48 \mathrm{HNUMBS}$ (NUMBER OF BOUNDARY	8	1190
	3 SEGMENTS) $\quad=, 2 \mathrm{X}, \mathrm{I} 4)$	8	1200
C *	*************************************************************	B	1210
c		-	1220
L	LGAD. TIME PARAMETERS	日	1230
		8	1240
	NTIM = MAXIMUN NUMBER OF TIME STEPS	8	1250
c N	NPMP $=$ NUMBER OF PUMPING PERIODS	8	1260
$c \quad P$	PINT $=$ FIRST PUMPING PERIOD IN DAYS	8	1270
$T$	TIMX = TIME INCREMENT MULTIPLIER.	B	1280
c T	TDELMAX = MAXIMUM TIME STEP IN DAYS	B	1290
T	TINIT = INITIAL TIME STEP IN SECONDS	8	1300
c		8	1310
	२EAD (5,110) TITLE	B	1320
	READ ( 5,1 ¢ $)$ NTIM, NPMP, PINT, TIMX,TCELMAX,TINIT	B	1330

## PROGRAM LISTING=-CONTINUED



```
 170 FORMAT (2:5,4F10.0)
 WRITE (6,200) NTIM,NPMP,PINT,TIMK,TCELMAX,TINIT
 200 FORMAT (///,23X,16HTIME PARAMETERS//13X,48HNTIM
 (MAXIMUM NUMBE
 12 OF TIME STEPS) =, 2X,I4/13X,48HNPMP (NUMBEK CF PUMPING
 2 PERIODS) =,2X,I4/13X,4EHPINT (FIRST PUMPING PERIOC
 3IN DAYS) =,2X,F7.2/13X,48HTIMX (TIME INCREMENT MULTIPLI
 4ER) =, 2X,F7.2113X,48HTDELMAX (MAKIMUM TIME STEP IN DAYS
 =, 2x,F7.2/13x,48HTINIT CINITIAL TIME STEP IN SECOND
 5) = =, 2x,F7.
C
 LOAD HYDROLOGIC ANO CHEMICAL FARAMETERS
 S = STORAGE COEFFICIENT
 POROS = EFFECTIVE PCROSITY
 BETA = LONGITUDINAL DISPERSIVITY IN FT
 DLTRAT = RATIO OF TRANSVERSE TO LONGITUDINAL DISPERSIVITY
 Z1 = VALENCE OF SPECIES 1
 Z2 = VALENCE OF SPECIES 2
 ATOMHT1 = ATOMIC HEIGHT IN GRAMS OF SPECIES 1
 ATOMWT2 = ATOMIC WEIGHT IN GRAMS OF SPECIES 2
 DBYHUK1 = DEBYE HUCKEL PARAMETER FOR SPECIES 1
 DBYHUK2 = DEBYE HUCKEL PARAMETER FOR SPECIES 2
 Sk = SELECTIVITY COEFFICIENT
 NOTE=-Z2 MUST BE GREATER THAN OR EQUAL TO Z1
 READ (5,110) TITLE
 READ (5,210) S,POROS,8ETA,DLTRAT,Z1,22,ATOMWT1,ATOMWT2
 210 FORMAT (8F10.0)
 READ (5,110) TITLE
 READ (5,223) DBYHUK1,DBYHUK2,SK
 220 FORMAT (3F10.0)
 WRITE (6,230) S,POROS,BETA,DLTRAT,21,Z2,ATOMWT1,ATOMMT 2,OBYHUK1,DB
 IYHUK2,SK
 230 FORMAT (///,14X,34HHYDROLOGIC AND CHEMICAL PARAMETERS//13X,4BHS
 1 (STORAGE COEFFICIENT) =,2X,F10.5/13X,48HPOROS
 2 (EFFECTIVE POROSITY) =,2X,F10.5/13X,48HBETA
 3 (LONGITUCINAL DISPERSIVITY IN FT) =,2X,F6.1/13X,48HDLTRAT
 4(RATIO OF TRANSVERSE TO /13X,48H LONGITUNI
 5NAL DISPERSIVITY) =, 2X,F7.2/13X,48HZ1 (VALENCE OF
 6SPECIES 1) =,2X,F5.0/13X,48HZ2 (VALENCE OF SP
 7ECIES 2) =, 2X,F5.0/13X,48HATOMWT1 (ATOMIC WEIGHT I
 8N GRAMS OF SPECIES 1) =, 2X,F8.3/13X,48HATOMHT2 (ATOMIC WEIGHT IN
 9GRAMS OF SPECIES 2) =, 2X,F8.3/13x,48HDBYHUK1 (DEBYE HUCKEL PARAME
 OTER FOR SPECIES 1) =, 2x,F5.0/13x,48HDBYHUK2 (DEBYE HUCKEL PARAMETE
 1R FOR SPECIES 2) =, 2X,F5.0113X,48HSK (SELECTIVITY COEFFICIENT
 2) =, 2x,F10.5)
c
C READ NODAL COORDINATES
c
 READ (5,110) TITLE
 READ (5,240) FCTR
 240 FORMAT (F10.0)
 READ (5,250) (NP,X(NP),Y(NP),I = 1,NUMNP)
 250 FORMAT (3(I5,2F10.0))
C
 DO 260 NP = 1,NUMNP
 X(NP) = X(NP)* FCTR
 Y(NP) = Y(NP) * FCTR
 260 continue
c
 YRITE (6,270)
```




```
 2--/1H0,9X,3(4HNODE,5X,5HX LOC,7X,5HY LOC,16X)/)
 HRITE (6,290) (NP,X(NP),Y(NP),NP = 1,NUMNP)
 280 FOFMAT (/(10X,3(I3,F12.2,F12.2,15X1))
C
```


## PROGRAM LISTING-=CONTINUED

```
C
c
 READ ELEMENT VERTICES M
 READ (5,110) TITLE
 READ (5,290) (NE,NI(NE),NJ(NE),NK(NE)OI = 1,NUMEL)
C
C
C
 CALCULATE BANDMIDTH
 DO 300 I = 1,NUMEL
 IJ = IABS(NI(I) - NJ(I)) + 1
 IK = IABS(NI(I) - NK(I)) +1
 JK = IABS(NJ(I) = NK(I)) * 1
 B 2150
 WRITE (6,310)
```




```
 2--/1H0,10X,3(7HELEMENT,3X,6HNODE I,2X,6HNODE J,2X,6HNODE K,5X)/) B 2210
 WRITE (6,320) (NE,NI (NE),NJ(NE),NK (NE),NE = 1,NUMEL)
 B 2220
 320 FORMAT (/(10X,3(15,5X,I5,3X,15,3X,15,6X)))) B 2230
 WRITE (6,330) IBAND
 B 2240
 330 FORMAT (///,1H ,10X,11HBANDWIOTH =,I5) B 2250
c
C
C
 READ BOUNDARY SEGMENTS, DIRECTICNAL COSINES AND BOUNDARY GRADIENTS B 2270
 READ (5,110) TITLE B 2300
 READ (5,340) (NBNDYI(I),NBNDYJ(I),COSX(I),COSY(I),DHDX(I),OHOY(I), B 2310
 1I = 1,NUMBS)
 MI= =NMMBS)
c
```




```
 2GMENT,52X)/1H ,10X,2(11HNODE - NODE,5X,2HLX,8X,2HLY,7X,4HDHDX,6X,4 B 2380
 3HDYDY,10X)/1
 HRITE (6,360) (NBNDYI(I),NBNDYJ(I),COSX(I),COSY(I),DHDX(I),DHDY(I)
 1,I = 1,NUMBS) B 2410
 B 2250
 B 2270
 B B 2290
 WRITE (6,350) B 2350
 360 FORMAT (/(9X,2(I5,3H =,I4,4F10.4,7X))) B 2420
C
C
C
370
```



```
 READ IDELEM ARRAY
 RECH =OISTRIBUTED RECHARGE OR DISCHARGE IN FT**3/DAY/FT**2 B 2550
 POSITIVE IS DISCHARGE(PUMPAGE) AND NEGATIVE IS RECHARGE(INJECTION) B 2560
 C1RECH =CONCENTRATICN OF C1 IN DISTRIBUTED RECHARGE IN MG/L B 2570
 C2RECH =CONCENTRATION OF C2 IN DISTRIBUTED RECHARGE IN MG/L B 2580
 VPRM =VERTICAL HYDRAULIC CONDUCTIVITY/THICKNESS OF CONFINING LAYER B 25SO
 RECH=FCTRI
 C1RECH=FCTR2
 C2RECH=FCTR3
 VPRM=FCTR4
 SPECIFY OTHER CODES TO FIT YOUR NEECS B 2640
 READ (5,110) TITLE
B 2650
C
C NCODEL = NUYBER OF ELEMENT ID
B 2670
 B 2680
 READ (5,380) NCODEL B 2690
380 FORMAT (I2)
B 2700
 DO 390 NE = 1,NUMEL
```

PROGFAM LISTING--CONTINUED

	RECH (NE) $=0$.	B	2120
	C10ECH (JIE) $=0$.	B	2730
	C2RECH (VE) $=0$.	B	2740
	$\operatorname{VPRM}(N E)=0$.	8	2750
	IDELEM (NE) $=0$	B	2760
	continue	B	2770
	IF (NCODEL.EQ.O) GC TO 460	8	2780
	READ ( 5,400 ) (NE,IDELEM (NE), $\mathrm{I}=1$, NUMEL)	B	2790
	FORMAT (8(2IE))	B	2800
	WRITE (6.410)	8	2810
	FORMAT ( $1 \mathrm{H} 1,45 \mathrm{X}, 21 \mathrm{HINP}$ U T D A T A/1H, $44 \mathrm{X}, 23 \mathrm{H}$	8	2820
		B	2830
	2-------------/1H0,21X,9HNUMBER OF,/1H ,9X,7HELEM ID,5X,10HOCCURENC	B	2840
	SES, $10 \mathrm{X}, 5 \mathrm{HPECH}, 9 \mathrm{X}, 6 \mathrm{HC1RECH}, 9 \mathrm{X}, 6 \mathrm{HC} 2 \mathrm{RECH}, 10 \mathrm{X}, 4 \mathrm{HVPRM}$ )	8	2850
	READ ( 5,110 ) TITLE	8	2860
	DJ 450 NID $=1$,NCODEL	B	2870
	KOUNT $=0$	B	2880
	PEAD (5,420) ICODE, FCTR1,FCTR2,FCTR3,FCTR4	B	2890
420	FORMAT ( $15,4 \mathrm{~F} 10.0$ )	B	2900
	DO $430 \mathrm{I}=1$, NUMEL	B	2910
	If (IDELEM (I).NE. ICODE) GO TO 430	B	2920
	KOUNT $=$ KOUNT + 1	B	2930
	RECH (I) = FCTR1	B	2940
	C1RECH(I) = FCTR2	8	2950
	C2RECH (T) = FCTR3	8	2960
	VPRM(I) = FCTR4	B	2970
430	continue	8	2980
	HRITE (6,440) ICODE, KOUNT,FCTR1,FCTR2,FCTR3,FCTR4	B	2990
	FORMAT ( $(10 \mathrm{X}, \mathrm{I} 5,8 \mathrm{X}, \mathrm{I} 5,8 \mathrm{X}, 4(\mathrm{~F} 10.0,5 \mathrm{X})$ )	B	3000
450	CONTINUE	B	3010
	********************	B	3020
		8	3030
	CONVERT CRECH CONCENTRATIONS FROM MG/L TO MEQ/L	B	3040
		8	3050
460	DO 470 NE $=1$, NUMEL	8	3060
	CIRECH (NE) $=$ CIRECH (NE) * Z1/ATOMWT1	B	3070
	C2RECH (NE) $=$ C2RECH(NE) * 22/ATOMHT2	B	3080
	****************************	8	3090
		8	3100
	PRINT ELEMENT DATA FOR AREA AND ELEMENT Id	B	3110
		8	3120
	WRITE (6,480)	8	3130
490		B	3140
		$B$	3150
	2(9X, 7HELEMENT, 7X, 4HAREA, 5 X , 7HELEM $10,4 \mathrm{X}$ ) ${ }^{\text {( }}$	B	3160
	WRITE ( 6,490 ) (NE,AREA(NE), IDELEM (NE), NE $=1$, NUMEL)	8	3170
490	FDRMAT ( $3(10 x, 15, F 14.1,4 \mathrm{X}$,5 , 5x) )	B	3180
	HRITE $(6,500)$ AREATOT	B	3150
500	FORMAT ( $/ 1 / 1,1 \mathrm{H}, 10 \mathrm{x}, 18 \mathrm{HMODEL}$ AREA $(F T * * 2)=, \mathrm{F} 20.2)$	B	3200
	*************************************************	B	3210
		8	3220
	READ AQUIFER THICKNESS ARRAY IN (FT)	B	3230
		8	3240
	READ (5,110) TITLE	B	3250
	READ (5,510) INP,FCTR	8	3260
510	FORMAT (I2,F10.0)	B	3270
	IF (INP.EQ.1) READ (5,520) (NP, THCK(NP), I = 1,NUMNP)	B	3280
520	FORMAT (5 (15,F10.0))	B	3290
	DO $540 \mathrm{I}=1$, NUMNP	B	3300
	IF (INP.NE.1) GO TO 530	B	3310
	THCK (I) $=$ THCK (I) * FCTR	8	3320
	60 TO 540	8	3330
530	THCK(I) $=$ FCTR	8	3340
540	continue	B	3350
		B	3360
		8	3370
	READ TRANSMISSIVITY ARRAY IN (FT**2/DAY)	B	3380
		8	3350
	READ (5,110) TITLE	B	3400

## PROGRAM LISTING=-CONTINUED

```
 READ (5,550) TNP,FCTR B 3410
 550 FORMAT (I2,F10.0) B 3420
 IF (INP.EQ.1) READ (5,560) (NP,TRANS(NP),I = 1,NUMNP) B 3430
 560 FORMAT (5(I5,F10.0)) B 3440
 DO 580 I = 1,NUMNP
 IF (INP.NE.1) GO TO 570
 TRANS(I) = TRANS(I) * FCTR
 GO TO 580
 5 7 0 ~ T R A N S (I) ~ = ~ F C T R ~
 580 CONTINUE
C
 CALCULATE HYDRAULIC CONDUCTIVITY ARRAY IN (FT/DAY)
 DO 590 I = 1,NUMNP
 590 HYDK(I) = TRANS(I)/THCK\I)
C
C
 READ INITIAL HEAD ARRAY IN (FT)
 READ (5,110) TITLE
 READ (5,600) INP,FCTR
 600 FORMAT (I2,F10.0)
 (NP,HEAD(NP),I = 1,NUMNP
 FORMAT (5(i5,F10\bullet0))
 IF (IND.NE.1) GC TO 620
 HEAD(I) = HEAD(I) * FCTR
 GO TO 630
 620 HEAD(I) = FCTR
 630 CONTINUE
C
C SET INITIAL HEAD VALUE
 640 HDI(I) = HEAD(I)
C
 READ INITIAL SOLUTE CONCENTRATICN ARRAY FOR SPECIES I IN (MG/L)
 READ (5,110) TITLE
 READ (5,650) INP,FCTR
 650 FORMAT (I2,F10.0)
 IF (INP.ER.1) \EAD (5,660) (NP,C1(NP),I = 1,NUMNP)
 650 FORMAT (5 (I5,F10.0))
 DO 680 I = 1,NUMNP
 IF (IND.NE.1) GC TO 670
 C1(I) = C1(I)*FCTR
 G0 TO 680
 670 C1(I) = FCTR
 6 8 0 ~ C O N T I N U E ~
C
 READ INITIAL SQLUTE CONCENTRATION ARRAY FOR SPECIES 2 IN (MG/L)
 READ (5,110) TITLE
 READ (5,690) INP,FCTR
 690 FORMAT (I2,F10.0)
 IF (INP.EQ.1) READ (5,700) (NP,C2(NP),I = 1,NUMNP)
 700 FORMAT (5(I5,F10.0))
 DO 720 I = 1,NUMNP
 IF (INP.NE.1) GO TO 710
 C2(I) = C2(I) * FCTR
 GO TO 720
 710 C2(I)=FCTR
 720 CONTINUE
 DO 730 NP = 1,NUMNP
 IF (C1(NP).LE..00001) C1(NP) = .00001 B 4070
 730 IF (C2(NP) LE .00001) C2(NP) = 00001
B 4080
C
```

```
PRCGRAM LISTING－＝CONTINUED
```



```
C B 4100
C
 CONVERT SOLUTION CONCENTRATICNS FROM MG/L TO MEQ/L
 DO 740 NP = 1,NUMNF
 C1(NP) = C1(NP) * 21/ATOMHT1
 C2(NP) = C2(NP) * Z2/ATOMHT2
 740 CONTINUE
 READ CATION EXCHANGE CAPACITY ARRAY IN (MEQ/L)
 READ (5,110) TITLE
 READ (5,750) INP,FCTR
 750 FORMAT (I 2,F10.0)
 IF (INP.EQ.1) PEAD (5,76日) (NP,CEC(NP),I = 1,NUMNP)
 750 FJRMAT (5(I5,F10.0))
 D) }780\textrm{I}=1,NUMN
 IF (IND.NE.1) GO TO 770 B 4270
 CEC(I) = CEC(I) * FCTR B 4280
 GO TO 780 8 4290
 770 CEC(I) = FCTR
 780 CONTINUE
 *
80 CONTINUE (
C
つのの
 CALCULATE INITIAL ADSORBED CONC FOR SPECIES 1 AND 2 IN (MEQ/L)
 D3 790 I = 1,NUMNP
 C1HAT(I) = 0.
 C2HAT(I) = 0.
 790 CONTINUE
 FOR CONSERVATIVE TRANSPORT DO NOT CALL CHATSOL
 IF (ICT.EQ.O) CALL CHATSOL
 #** B B 4 420
 READ NODEID ARRAY
 NODE ID COOES FOR 1-10 ARE RESERVED FOR CONSTANT HEAD NODES
 REC =POINT RECHARGE OR DISCHARGE IN GPM
 POSITIVE IS DISCHARGE(PUMPAGE) AND NEGATIVE IS RECHARGE(INJECTION)
 CIREC =CONCENTRATION DF CI IN POINT RECHARGE IN MG/L
 C2REC =CONCENTRATION OF C2 IN POINT RECHARGE IN MG/L
 REC=FCTR1
 C1REC=FCTR2
 C2REC=FCTR3
 SPECIFY OTHER CODES TO FIT YOUR NEEDS
 READ (5,110) TITLE
C
 NCODNP = NUMBER OF NODE ID
 READ (5,800) NCODNP
800 FORMAT (I2)
 DO 810 NP = 1,NUMNP
 REC(NP) = 0.
 C1REC(NP) = 0.
 C2REC (NP) = 0.
 NODEID(NP)=0
8 1 0 ~ C O N T I N U E
 IF (NCODND.LE.O) GO TO 880
 READ (5,820) (NP,NODEID(NP),I = 1,NUMNP) B 4670
820 FORMAT (8(2I5))
 WRITE (6,830)
```




```
 2-=-=-=-=/1H0,21K,9HNUMBER OF,/1H , 5X,7HNODE ID,5X,1OHOCCURENCES,11 B 4720
 3X,3HREC, 10X,5HC1REC, 10X,5HC2REC) B 4730
 , IND (5,110,)
 READ (5,110) TITLE
 DO 870 NID = 1,NCODNP
 KOUNT = 0
 READ (5,840) ICODE,FCTR1,FCTR2,FCTR3 B 4770
840 FORMAT (I5,3F10.0) B 4780
```


## PROGRAM LISTING=-CONTINUED



## PRCGRAM LISTING-=CONTINUED



## PROGRAM LISTING=-CONTINUED

```
 1--=---=/11H0,21X,9HNUMBER OF,/1H ,9X,7HNODE ID,5X,10HOCCURENCES,11K B 6170
 2,3HREC,10X,5+C1REC,10X,5HC2REC)
 B 6180
 READ (5,110) TITLE B 61.50
 DO 1110 NID = 1,NCODNP
 KOUNT = 0
 READ (5,1080) ICODE,FCTR1,FCTR2,FCTR3
1080 FORMAT (I5,3F10.0)
 00 1090 I = 1,NUMNP
 IF (NODEID(I).NE.ICCDE) GO TC 1090
 KOUNT = KOUNT * 1
 REC(I) = FCTR1
 C1REC(I) = FCTR2
 C2REC(I) = FCTR3
 Continue
 WRITE (6,1100) ICODE,KOUNT,FCTR1,FCTR2,FCTR3
1100 FORMAT ((10x,I5,8X,I5,8X,3(F10,0,5x)))
1110 CONTIHUE
c
C CONVERT REC FROM GPM TO FT**3/DAY
C CONVERT CREC CONCENTRATIONS FROH MG/L TO MEQ/L
 DO 1120 NP = 1,NUMNP
 REC(NP)=REC(NP)/7.48052 * 60*24
 C1REC(NP) = CIREC(NP) * 21/ATOM以T1
 C2REC(NP) = C2REC(NP) * Z2/ATOMUT2
 1120 CONTINUE
 WRITE (6,1030)
 HRITE (6,1130)
```



```
 15(4HNODE,4X,7HNODE ID,10X))
 WRITE (6,1140) (I,NODEID(I),I = 1,NUMNP) & 6470
 1140 FORMAT (5(10X,15,5x,15)) 8 6480
 WRITE (6,1150) B 6490
 1150 FORMAT (1H1,/////)
c
 1160 RETURN
 END
 SUBROUTINE ELINTF(NCALL)
 COMMON /BLOCKA/ NUMNP,X(35),Y(35),NUMEL,NI(50),NJ《50),
 1NK(50),NUMBS,NBNDYI(18),NBNDYJ(18), cosx(18), COSY(18),
 2DHDX(18),DHOY(18),TITLE(20),IBAND,ICT
 COMMON /BLOCKC/ S,POROS,BETA,DLTRAT,Z1,Z2,ATOMHT1,ATOMHT2,DBYHUK1,
 1DBYHUK2,SK
 COMMON/BL\capCKD/ NCODNP,NODEID(35),TRANS(35),HYDK(35),THCK(35),
 1REC(35),C1REC(35),C 2REC(35)
 COMMON /BLDCKE/ IDELEM(50),RECH(50),C1RECH(50),C2RECH(50), C 0090
 1VPRM(50), APEA(50)
 COMMON /BLOCKF/ HEAD(35),HDI(35),C1(35),C2(35),C1HAT(35), C 0110
 1C2HAT(35),CEC(35)
 COMMON /BL\CKG/ AF (35,7),BF(35,7),DF(35)
 c 0120
 c 0130

 THIS SUBROUTINE PERFORMS THE INTEGRATIONS REQUIRED FOR THE FLOH
 EQUATION. THESE INTEGRATIONS ARE CARRIED CUT IN A PIECEUISE C OIZ0
 C 0140
O
 MANNER ON AN ELEMENT BASIS. GLOBAL MATRICES ARE THEN FORMED BY C O 0180
 SUMMING FOR A GIVEN NODE THE CONTRIEUTION TO THAT NODE FROM EACH C 0190
 ELEMENT. THESE GLOBAL MATRICES FOR THE FLOW EQUATION ARE BANDED C 0200
 AND SYMMETRIC. C C 0210
```



```
C IF (NCALL.GT.1) GOTO140
C IF(NCALL.GT.1) GOTO 140 (***
 PERFORM ELEMENT INTEGRATIONS (A MATRIX = FLOW) C 0270
 DO 100 I = 1,NUMNO
 DO 100 J = 1,IBAND
c 0170
 C C 0210
 c 0230
 C 0230
 C 0240
C
c
 c 0280
 100 AF(I,J) = 1,IBAND C C O300
AF(19,J) = 0.
c 0310
C
```




## PROGRAM LISTING-=CONTINUED



## PROGRAM LISTING--CONTINUED



PROGRAM LISTING=-CONT INUED


## PROGRAM LISTING-=CONTINUED



## PROGRAM LISTING=-CONTINUED



```
 E9 = (DXX * (RY(NI(I)) - Y(NJ(I))) * (Y(NI(I)) - Y(NJSIM)) & D E 1190
 1 YY * ((X(NJ{I)) - X(NI(I))) * (X(NJ(I)) - X(NI(I)))) + DXY * (C
 2 Y(NI(I)) = Y(NJ(I))) * (X(NJ(I)) = X(NI(I))) + (X(NJ(I)) - X{NI
 (I))) * (Y(NII(I))=Y(NJ(I)))))/(4 * AREA(I))
 E 1200
 E 1210
 E 1220
 E 1230
 VXC1 = 2 *VXI +VXJ +VXK
 E 1240
 VXC2 = VXI + 2 *VXJ + VXK
 E 1250
 VXCZ =VXI +VXJ + 2 *VXK
 VYC1 = 2 * VYI * VYJ + VYK
 E 1260
 E 1270
 VYC2 =VYI + 2 *VYJ +VYK
 E 1280
 VYCZ = VYI +VYJ + 2 *VYK
 E 1290
 E1=E1 + (=VXCI * (Y(NJ(I))=Y(NK(I)))=VYC1 * (XXNK(I)) =
 X(NJ(I))))/24.
 E 1300
 * = - VXC2 * (Y(NJ(I)) - Y(NK(I))) = VYC2 * (X(NK(I)) -
 X(NJ{I))),/24. E E 1330
 E3=E3 + (= VXC3 * (Y(NJ(I)) = Y(NK(I))) = VYC3 * (X(NK\I)3 -
 X(NJ(I))))/24.
 E4 = E4 * (-VXC1 * (Y(NK(I)) = Y(NI(I))) = VYC1 * (X(NICI)) -
 X(NK(I))))/24.
 E5 = ES * (- VXC2 * (Y(NK(I)) = Y(NI(I))) = VYC2 * (X(NICI)) =
 x(NK(I))))/24.
 E6 = E6 + (=VXC3 * (Y(NK(I)) = Y(NI(I))) = VYC3 * (XXNI(I)) -
 X(NK (I))))/24.
 ET=ET + (=VXC1 * (Y(NI(I))=Y(NJ(I)))=VYCI * (X(NJ{I)) =
 X(NI(I))))/24.
 E8 = E8 + (-VXC2 * (Y(NI(I)) = Y(NJ(I))) - VYC2 * (X(NJ(I)) =
 X(NI(I))))/24.
 E9 = EG + (-VXC3 * (Y(NI(I)) = Y(NJ(I))) = VYC3 * (X(NJCI)) =
 1 X(NI(I))))/24.
 LOCATE IN BANDED GLOBAL MATRIX (ASYMMETRIC)
 IJ =NJ(I) = NI(I) + IBAND
 JI=NI(I) - NJ(I) + IBAND
 IK =NK(I) = NI(I) + IBAND
 KI =NI(I) - NK(I) + IBAND
 JK = NK(I) - NJ(I) + IBAND
 KJ =NJ(I) - NK(I) + IBAND
 AT(NI(I),IBAND) = AT(NI(I),IBAND) * EI
 AT(NI (I),IJ)=AT(NI(I),IJ) + E2
 AT(NI(I),IK) = AT(NI(I),IK) + EJ
 AT(NJ(I),JI)=AT(NJ(I),JI) + EA
 AT(NJ(I),IBAND) = AT(NJ(I),IBAND) + ES
 AT(NJ(I),JK) = AT(NJ(I),JK) + E\epsilon
 AT (NK (I),KI) = AT (NK(I),KI) & E7
 AT (NK (I),KJ) = AT (NK(I),KJ) *E\varepsilon
 AT(NK(I),IBAND) = AT(NK(I),IBAND) +Eg
 140 CONTINUE
C **
C
 PERFORM ELEMENT INTEGRATIONS (B&C MATRICES - TRANSPORT)
 DO 150 I = 1,NUMNP
 DO 150 J = I,IBAND
 CT1(I,J) = 0.
 CT2(I;J)=0.
 BT1(I,J) = 0.
 150 BT2(I,J) = 0.
 DO 230 I = 1,NUMEL
 F23K = 0.
 F23J = F23K
 F23I = F23J
 F13K = F23I
 F13J = F13K
 F13I = F13J
FOR CONSEOVATIVE TRANSPORT SKIP G FARAMETER CALCULATIONS
 IF (ICT.GT.O) GO TO 160
 SOLSI = (C1(NI(I))*(1 * 21) + C2(NI(I))*(1 + 22))/2000.
 SOLSJ=(C1(NJ(I))*(1 * 21) * C2&NJ(I))* (1 + 22))/2000.
```

```
PROGRAM LISTING=-CONTINUED
```

$1 \mathrm{I}=\mathrm{AC} 1 \mathrm{~J}=\mathrm{AC} 1 \mathrm{~K}=\mathrm{AC} 2 \mathrm{I}=\mathrm{AC} 2 \mathrm{~J}=\mathrm{AC} 2 \mathrm{~K}=1$
G1I = - (1-C1HAT(NI(I))/CEC(NI (I)) * * 21 * AC1I * * Z2 *
$Z 2 * C 1(N I(I)) * *(Z 2-1)$
$G 1 J=-(1-C 1 H A T(N J(I)) / C E C(N J(I))) * * Z 1 * A C 1 J * * 22 *$

Z2 * C1(NJ(I)) * * (Z2 - 1)
G1K = - (1 - C1HAT(NK(I))/CEC(NK (I)) ) * * Z1 * AC1K * * 22 *
22 * C1(NK(I)) * * (Z2 - 1)
G2I = - SK * (C1HAT(NI (I))/CEC(NI(I))) * * Z2 * AC2I * * Z1
* Z1 * C2 (NI(I)) * * (Z1 - 1)
G2J $=-$ SK * (C1HAT (NJ(I))/CEC(NJ(I))) * * Z2 * AC2J* * Z1
* Z1 * C2 (NJ(I)) * * (Z1 - 1)
G2K = - SK * (C1HAT (NK(I))/CEC (NK(I)) ) * Z2 * AC2K * * Z1
* Z1 * C2\&NK(I)) * * (Z1 - 1)
G3I = - SK * AC2I * * Z1 * C2 (NI(I)) * * Z1 * CIHAT(NI(I)) *
* (22-1) * 22 * (1/CEC(NI(I)) * * 22 - AC1I * * 22 * C16
NI(I)) * * Z2 * Z1/CEC(NI(I)) * (1-C1HAT(NI(I))/CECENI(I)))
* * (Z1 - 1)
G3J $=$ - SK * AC2J** 21 * C2 (NJ(I)) * * 21 * C1HAT (NJCI) ) *

NJ(I)) * * Z2 * Z1/CEC(NJ(I)) * (1 - C1HAT(NJ(I))/CEC(NJ(I)))
* * (21 - 1)
G3K = - SK * AC2K * * Z1 * C2 (NK (I)) * * Z1 * C1HAT(NK(I)) *
* (Z2-1)*22*(1/CEC(NK(I)) ) * *22-AC1K * * Z2 * C1C
NK(I)) * * 22 * Z1/CEC(NK(I)) * (1 - C1HAT(NK(I))/CEC(NK(I)))
* * (Z1 - 1)
F13I = G1I/G3I
F13J $=$ G1J/G3J
F13K $=$ G1K/G3K
F23I $=$ G2I/63I
F23J $=$ G2J/G3J
F23K $=\mathrm{G} 2 \mathrm{~K} / \mathrm{G} 3 \mathrm{~K}$
$E_{1}=A Z E A(I) / 30$.
$E 2=A R E A(I) / 60^{\circ}$
$E 3=A R E A(T) / 60$.
$E 4=A R E A(I) / 30$.
$E 5=A^{\circ} E A(I) / 60$.
$E 6=A R E A(I) / 30^{\circ}$.
LOCATE IN BANDED GLOBAL MATRIX (SYMPETRIC)
$I J=I A B S(N I(I)-N J(I))+1$
$I K=I A B S(N I(I)-N K(I))+1$
$J K=I A B S(N J(I)=N K(I))+1$
BT1 (NI (T), 1$)=$ BT1 (NI(I), 1) +E1* $(5+3 * F 13 I+F 13 J+F 13 K)$
BT2(NI(I),1) $=$ BT2(NI(I),1) +E1* (5 + 3 * F23I + F23J + F23K)
CT1世NI(I), 1) $=$ CT1(NI(I), 1) + E1 * $=3 * F 23 I-F 23 J=F 23 K)$
CT2(NI(I),1) $=$ CT2 (NI (I), 1) + E1 * ( 3 * F13I - F13J - F13K)
IF (NI(I).LT.NJ(I)) GO TO 170
BTI (NJ(I),IJ) = BTI (NJTI),IJ) +E2* $5+2 * F 13 I+2 * F 13 J+$
F13K)
BT2 $2(N J(I), I J)=B T 2(N J(I), I J) * E 2 *(5 * 2 * F 23 I+2 * F 23 J+$
F23K)
CT1 (NJPI), IJ) $=$ CT1 (NJ(I), IJ $)+E 2 *(-2 * F 23 I-2$ * F23J -
F23k)
CT2 (NJ(I),IJ) $=$ CT2(NJ(I),IJ) +E2* (-2*F13I - 2*F13J -
F13K)
SOLSK $=(C 1(N K(I)) *(1+21)+C 2(N K(I)) *(1+22)) / 2000$. E 1880

281 * DQYHUK1 * SOLSI * *.5)) E 1900

281 * OBYHUK1 * SOLSJ * * .51) E 1920
$\mathrm{ACLK}=10 * *(1-.5085 * 21 * * 2$ * SOLSK * * . 5) / ( 1 * . 3 E 1930
281 * OBYHUK1 * SOLSK * * .51) E 1940
AC2I $=10 * *(1=.5085 * 22 * * 2 * * S O L S I * * * 5) /(1$ * . 3 E 1950
231 * DBYHUK2 * SOLSI * * .5) ) E 1960
AC2J $=10$ * * ( -.5085 * 22 * * 2. * SOLSJ * * .5)/(1 + . 3 E 1970
291 * DBYHUK2 * SOLSJ * * .5)) E 1980
AC2K = 10 * * ( $1-.5085$ * 22 * * 2. * SOLSK * *. .5)/イ1 * . 3 E 1990
E 2030
1
1
1
1
1
160


## PRCGRAM LISTING=-CONTINUED


C

250

DO 340 NE $=1$, NUMEL
IF (VPRM(NE).ER.0.0) GO TO 340
HEADBAR $=(H E A D(N I(N E)) \leftarrow H E A D(N J(N E)) * H E A D(N K(N E))) / 3$. HDIBAR $=(H D I(N I(N E))$ + HDI (NJ(NE)) \& HDI(NK(NE)))/3. VLEK $=$ VPRM(NE) * (HEADBAR = HDIBAR) * AREA(NE) IF (VLEX.LE.O.O) GO TO 300
CLEK1 $=(C 1(N I(N E))+C 14 N J(N E))+C 1(N K(N E)) / 3$.
CLEK2 $=(C 2(N I(N E))+C 2(N J(N E))+C 2(N K(N E))) / 3$.
GO TO 310
300 CLEK1 $=C 1 R E C H$ (NE)
CLEK2 $=$ C2RECH (NE)
310 IF (NODEID(NI (NE)).GE.1.AND.NODEID(NI (NE)).LE. 10 ) GD TO 320
THCKI $=(1 /$ THCK (NI (NE)) $+1 /(T H C K(N J(N E)) * 2)+1 /(T H C K(N K(N E)$
1 ) 2)
DT 1 (NI (NE)) $=$ DT1(NI (NE) $) *(C L E K 1 * V L E K) /(6 *$ POROS * THCKI) DT2(NI(NE)) $=\operatorname{DT} 2(N I(N E)) *(C L E K 2 * V L E K) /(6 *$ POROS * THCKI)
320
1
THCKJ $=(1 /(T H C K(N T(N E))+2)+1 / T H C K(N J(N E))+1 /(T H C K(N K(N E)$
1 ) *2)
DT1(NJ(NE)) = DT1(NJ(NE)) * (CLEK1 *VLEK)/(6 * POROS * THCKJ) DT2(NJ(NE)) $=$ DT2(NJ(NE)) + (CLEK2 *VLEK) /(6 *POROS *THCKJ)THCKK $=(1 /(T H C K(N I(N E)) * 2)+1 /(T H C K(N J(N E))+2)+1 / T H C K / N$
DT1 (NK(NE)) = DT1(NK(NE)) + (CLEK1 *VLEK)/46 * POROS * THCKK)
DT2(NK(NE)) 2 DT2(NK(NE)) * (CLEK2 *VLEK)/(6 *POROS * THCKK)
340 CONTINUE
DO 370 NP $=1$, NUMNP
IF (REC(NP).LE.O.0) GO TO 350
CREC1 $=$ C1 (NP)
CREC2 $=C 2(N P)$
GO TO 360
350
CREC1 = C1REC (NP)
CREC2 $=$ C2REC (MP)
360 DT1 (NP) $=$ DT1 (NP) + (CREC1 *REC(NP))/(POROS *THCK(NP))
DT2 (NP) $=$ DT2(NP) $+(C R E C 2 * R E C(N P)) /(P G R O S$ * THCK(NP))
370 CONTINUE
RETURN
END
SUBROUTINE MATCHEM
COMMON /BL CKA/ NUMNP, $X(35), Y(35)$, NUMEL, NI (50), NJ(50),
1NK (50), NUMBS, NBNDYI(18), NBNDYJ(18), $\operatorname{COSX}(18), \operatorname{COSY}(18)$,

E 3260
E 3270
E 3280
E 3290
CRECH2 $=$ C2RECH (NE)
E 3300
THCKI $=(1 / T H C K(N I(N E))+1 /(T H C K(N J(N E)) * 2)+1 /(T H C K(N K(N E) E ~ E 310$
) * 2)
E 3320
E 3330
PORO * THCKI) (NI NE) * (CRECHI *RECH (NE) AREA (NE)JIG *
E 3340
E 3350
POROS * THCKI)
IF (NODEID(NJ(NE)).GE.1.AND.NODEID(NJ(NE)).LE.10) GO TO 280
THCKJ $=(1 /(T H C K(N I(N E)) ~ * 2) ~+1 / T H C K(N J(N E))+1 /(T H C K(N K(N E)$
OT1(NJ(NE)) $=\operatorname{DT} 1(N J(N E))+(C R E C H 1$ * RECH(NE) * AREA(NE))/86 * POROS * THCKJ)

POROS * THCKJ)
IF (NODEID(NK (NE)).GE.1.AND.NODEID(NK (NE)).LE.10) 60 TO 290
THCKK $=(1 /(T H C K(N I(N E)) ~ * ~ 2) ~+~ 1 /(T H C K \& N J(N E)) ~ * ~ 2) ~+~ 1 / T H C K ~(N ~$
K(NE)))
DT1 (NK (NE)) $=$ DT1 (NK (NE)) + (CRECH1 * RECH (NE) * AREA (NE))/(6 * POROS * THCKK)
DT2 (NK (NE)) $=$ DT2 (NK (NE) ) + (CRECH2 * RECH(NE) * AREA(NE))/(6 * POQOS * THCKK)

E 3360
E 3370
E 3380
E 3390
E 3400
E 3410
E 3420
E 3430
E 3440
E 3450
E 3460
E 3470
E 3480
E 3490
E 3500
3510
E 3520
E 3530
E 3540
E 3550
E 3560
E 3570
E 3580
E 3590
E 3600
E 3610
E 3620
E 3630
E 3640
E 3650
E 3660
E 3670
E 3680
E 3690
E 3700
E 3710
E 3720
THCKK $=(1 /(T H C K(N I(N E)) ~ * 2) ~+1 /(T H C K(N J(N E)) ~ * ~ 2) ~+1 / T H C K(N ~$

K(NE)),
E 3740
E 3750
E 3760
E 3770
340 CONTINUE
3780
DO $370 \mathrm{NP}=1$, NUMNP
(REC(NP) eLE:0.0) GO TO 350
E 3750
E 3800
CREC1 $=C 1(N P)$
GO TO 360
350 CREC1 $=$ C1REC (NP)
E 3810
E 3820
E 3830
CREC2 $=$ C2REC (NP)
E 3840
$360 \quad$ DT1 (NP) $=$ DT1(NP) * (CREC1 *REC(NP))/(POROS *THCK(NP)) ) E 3860
DT2(NP) $=$ DT2(NP) * (CREC2 *REC(NP))/(PGROS *THCK(NP)) E 3870
E 3850

370 CONTINUE
E 3880
RETURN
3890
END
E 3900
SUBROUTINE MATCHEM
F 0010
COMMON /BL CCKA/ NUMNP, $X(35), Y(35)$, NUMEL, NI (50), NJ (50),
F 0020
F 0030

	20HDX(18), DHDY(18),TITLE(20), IBAND, ICT		0040
	COMMON /BLOCKB/ NTIM,NPMP,PINT,TIMX,TINIT, TPDAAY,SUMT,TDEL, INT,TIMY	F	0050
	1, TDELMAX	F	0060
	COMMON /8LOCKC/ S,POROS, BETA, DLTRAT, $21, Z 2, A T O M W T 1, A T O M W T 2, D B Y H U K 1, ~$	F	0070
	10BYHUK2,SK	$F$	0080
	COMMON /BL CKKD/ NCCDNP, NODEID(35), TRANS (35), $\mathrm{HYDK}(35)$, THCK(35),	F	0050
	1PEC(35), C1REC(35), C2REC (35)	F	0100
	COMMON /BLOCKF/ HEAD (35), HOI (35), C1(35), C2(35), C1HAT (35),	$F$	0110
	1C2HAT (35), CEC(35)	F	0120
	COMMON /BL^CKH/ AT (35,13),8T1(35,7), BT 2(35,7),	F	0130
	1CT1(35,7),CT2(35,7), DT1 (35), DT2(35)	$F$	0140
	COMMON /BLOCKI/ CM $(35,13)$, RHS (35), RHSU(35),RHSL(35)	F	0150
C *		F	0160
c		$F$	0170
c	this subroutine assembles and solves the two coupled transport	F	0180
c	EQUATIONS. SOLUTION IS BY A BLOCK ITERATIVE GAUSSIAN ELIMINATION	F	0190
c	PROCEDURE.	F	0200
c		F	0210
C *	*******	F	0220
c		F	0230
R	RHS VECTOR	F	0240
C		F	0250
	CALL MULT (NUMNP, IBAND, BT $1, \mathrm{C} 1$,RHS)	F	0260
	CALL MULT (NUMNP, IBAND,CT1, C2,RHSU)	F	0270
	DO $100 \mathrm{I}=1$, NUMNP	F	0280
100		F	0290
	CALL MULT (NUMNP, IBAND, CT $2, \mathrm{Cl}, \mathrm{RHS}$ )	F	0300
	CALL MULT (NUMNP, IBAND, BT $2, \mathrm{C} 2, \mathrm{RHSL}$ )	$F$	0310
	DO $110 \mathrm{I}=1$, NUMNP	F	0320
110	RHSL(I) $=($ RHS $(I)+$ RHSL (I))/TDEL - DT2(I)	F	0330
C *	**	F	0340
	TOL $=.1$	F	0350
	TOL1 $=$ TOL * Z1/ATOMWT1	F	0360
	TOL2 $=$ TOL * Z2/ATOMLT2	F	0370
	ITMAX $=100$	F	0380
C *	*****************************************************	F	0390
C		F	0400
	BEGIN ITERATIONS	F	0410
c		F	0420
	DO $380 \mathrm{IT}=1, \mathrm{ITMAX}$	F	0430
	ERROR1 $=0.0$	F	0440
	ERROR2 $=0.0$	F	0450
c		F	0460
M	MODIFY RHS VECTOR	F	0470
	CALL MULT (NUMNP,IBAND,CT1,C2,RHS)	F	0480
	DO $120 \mathrm{I}=1$, NUMNP	F	0490
120	$\operatorname{RHS}(\mathrm{I})=\mathrm{RHSU}(\mathrm{I})=\mathrm{RHS}(\mathrm{I}) /$ TDEL	F	0500
C		F	0510
C	COEFFICIENT MATRIX	F	0520
	IBAND2 $=$ IBAND * $2-1$	F	0530
	DO $130 \mathrm{~J}=1,1 \mathrm{BAND} 2$	F	0540
	Do $130 \mathrm{I}=1, \mathrm{NUMNP}$	F	0550
130	$C M(I, J)=0$.	F	0560
C		$F$	0570
C (	(1) ROW	$F$	0580
	DO $140 \mathrm{~J}=1$, IBAND	F	0590
	$L C=I B A N D-1+J$	F	0600
140	$\mathrm{CM}(1, \mathrm{LC})=\mathrm{AT}(1, \mathrm{LC})+\mathrm{BT} 1(1, \mathrm{~J}) / \mathrm{TDEL}$	F	0610
c		$F$	0620
C (	(2) TO (IBAND) ROW	F	0630
	DO 170 I $=2$, IBAND	F	0640
	DO $150 \mathrm{~J}=1$, IBAND	F	0650
	$L C=$ IBAND - 1 + J	F	0660
150	CM(I,LC) $=$ AT(I,LC) + BTI(I,J)/TDEL	F	0670
	IR $=1$	$F$	0680
	$J C=1$	$F$	0690
	LC = IBAND	$F$	0700
	$00160 \mathrm{~K}=2, \mathrm{I}$	F	0710
	$I R=I R-1$	F	0720

```
PRCGRAM LISTING=-CONTINUED
```

```
 JC = JC + 1 F 0730
 LC =LC=1 F 0740
 160 CM(I,LC)=AT(I,LC) + BT1(IR,JC)/TDEL. F 0750
 170
 CONTINUE
C
C (IBAND+1) TO (NUMNP=(IBAND-1)) ROM
 KR = NUMNP - IBAND * 1
 IBP1 = IBAND + 1
 DO 200 I = IBP1,KR
 DO 180 J = 1,IBAND
 LC = IBAND - 1 + J
 180 CM(I,LC) = AT(I,LC) + BTI(I,J)/TDEL
 IR=I
 JC = 1
 LC = IBAND
 DO 190 K = 2,IBAND
 IR = IR = 1
 JC=JC + 1
 LC = LC - 1
 190 CM(I,LC) = AT(I,LC) + BTI(IR,JC)/TDEL
 200 CONTINUE
C
C (NUMNP-IBAND+2) TO (NUMNP) ROW
 KR = NUMNP = IBAND * 2
 KC = IBAND
 DO 230 I = KR,NUMNP
 KC = KC - 1
 DO 210 J = 1,KC
 LC = IBAND = 1 + J
 210 CM(I,LC)=AT(I,LC) + BT1(I,J)/TDEL
 IR = I
 JC = 1
 LC = IBAND
 DO 220 K = 2,IBAND
 IR=IR=1
 JC= JC + 1
 JC=JC+1
 CM(I,LC) = AT(I,LC) + BT1(IR,JC)/TDEL
 CONTINUE
 CALL BSOLVE (CM,RHS,NUMNP,IBAND2)
 IR=0
 DO 240I = 1,NUMNP
 DIFF = ABS (RHS(I) = CI(I))
 ERROR1 = AMAXI (ERROR1,DIFF)
 240 C1(I) = RHS(I)
C
C MODIFY RHS VECTOR
 CALL MULT (NUMNP,IBAND,CT2,C1,RHS,
 DO 250 I = 1,NUMNP
 250 RHS(I) = RHSL(I) = RHS(I)/TDEL
C
 c COEFFICIENT MATRIX
 DO 260 J = 1,IBAND2
 DO 260 I = 1,NUMNP
 260 CM(I,J) = 0.
C
 (1) ROW
 DO 270 J = 1,IBAND
 LC = IBAND - 1 + J
 270 CM(1,LC) = AT(1,LC) + BT2(1,J)/TDEL
C
 (2) TO (IBA:JD) ROW
 DO 300 I = 2,IBAND
 DO 280 J=1,IBAND
 DO 280J=1, JBAND
 CM(I,LC)=AT(I,LC) + BT2(I,J)/TDEL
 IR=I
 JC = 1
 LC = I
220
 JC = JC + 1 F 0730
 LC = LC = 1
F }076
 F}076
 F 0780
 IBPI = IBAND + 1
F 0790
 F 0800
 0800
 F 0810
 F }082
 F 0840
 F }085
 F 0860
 F 0880
 F 0890
 F 0890
 F }090
F }091
F }092
 F 0930
 F 0940
 F 0950
 F 0960
 F0960
 F }097
 F 0970
 F 0980
 F 0990
 F
 F 1010
F }102
F 1030
F
F 1050
 F 1060
 F 1070
 F 1080
 F}108
 F 1090
F }110
 F 1110
 F }112
 DO 2HTFF = ABS FRHS
 F 11130
 F 1140
 F 1150
 F
 F 1170
 F
F 1190
F}120
F 1210
F }122
F 1230
F 1240
F 1250
F 1260
F 1270
-260 (M)
F }128
F 1280
F
F 1310
 F 1310
C
F 1320
F 1330
F F1340
F 1350
F 1360
F 1370
F 1380
F 1390
F 1400
F
```

```
PROGRAM LISTING--CONTINUED
```

```
 440 FORMAT (12F10.3/)
C CONVERT SOLUTION CONCENTRATIONS FRON MG/L TO MEQ/L
 DO 450 NP = 1,NUMNF
 C1(NP)=C1(NP)* Z1/ATOMWT1 F 2140
 450 C2(NP) = C2(NP) * 22/ATOMWT2 F 2150
 4 6 0 ~ R E T U R N
 END
 F 2160
 F 2170
 F 2180
 SUBROUTINE CHATSOL
 COMMON /BLOCKA/ NUMNP,X(35),Y(35),NUMEL,NI(50),NJ{50), 6 0020
 G 0010
 1NK(50),NUMBS,NBNDYI(18),NBNDYJ(18),COSX(18),COSY(18),
 6 0020
 2DHDX(18), DHOY(18),TITLE (20), IBAND, ICT
 COMMON /BLOCKC/ S,FCROS,BETA,DLTRAT, Z1,Z2,ATOMWT1,ATOMHT 2,DBYHUK1,
 1DBYHUK2.SK
 COMMOV/BLOCKF/ HEAD(35),HDI (35),C1(35),C2(35),C1HAT(35),
 1C2HAT (35),CEC(35)
 G 0030
 G 0040
 6 0050
 6 0060
 G 0070
 6 0080
```



```
C
G 0100
 THIS SUBROUTINE SOLVES FOR THE VALUES OF C1HAT AND C2HAT G 0110
 Z2 MUST BE GREATER THAN OR EQUAL TO 21 6 0120
G 0130
 **)
 RATIO = 22/Z1
 G 0150
 ZIINV = 1/Z1
 G 0160
 IF (RATIO.EQ.1.) GO TO 130 6 0170
 IF (RATIO.EQ.2.) GO TO 110 G 0180
 WRITE (6,100)
 G 0190
 100 FORMAT (1H1,5X,24HSTOP=m=SUBROUTINE CHATSOL)
 G 0200
 STOP G 0210
```




```
 G 0240
```




```
C
 G }027
```



```
C
 G 0290
```



```
C
 6 0310
C
 G 0320
```



```
C
C
C
 G 0340
 G }035
 G 0360
CMOM
 120 CONTINUE
6 0380
 GO TO 150 G 0390
```




```
 G 0430
130 DO 140 NP = 1,NUMNP
 SOLS = (C1(NP)* (1 + 21) + C2(NP) * (1 + Z2))/2000.
 AC1=10** (1 =.5085*21** 2.*SOLS*** 5)/(1 * . 328 G 0460
```



```
 AC2 = 10** (C =.5085* 22** 2.*SOLS**.5)/(1*.328
 1 1 * DBYHUK2 * SCLS * * .5))
 SKP = 1./((SK * AC2** *1*C2(NP)* * 21)/&AC1 * * 22* C1 G 0500
 1 (NP) * * Z2)) * * ZIINV
 C1HAT(NP) = SKP * CEC(NP)/(1 + SKP)
 C2HAT (NP) = CEC(NP) - C1HAT (NP)
 G 0390
G 0430
```


## PROGRAM LISTING-=CONTINUED

```
MCM
```
























































```
MCM
```







```
MCM
```


## PRCGRAM LISTING=-CONTINUED

## PROGRAM LISTING=-CONTINUED



```
 COMMON /BL`CKD/ NCCDNP,NODEID(35),TRANS(35),HYDK(35),THCK(35), J 0090
 1REC(35),C1REC(35),C2REC(35)
 COMMON/BL\capCKE/ IDELEM(50),RECH(50),C1RECH(50),C2RECH(50),
 1VPRM(50), AREA(50)
 COMMON /BLOCKF/ HEAD(35),HDI(35),C1(35),C2(35),C1HAT(35),
 1C 2HAT (35),CEC (35)
 CJMMON /BLOCKJ/QINRCH,QOUTRCH,QINREC, QOUTREC,QINCHN,QOUTCHN,
 1QINLEK,QOUTLEK,QINBDY,QOUTBDY,GSTOR
 **
 THIS SUBROUTINE CALCULATES A WATER BALANCE J 0190
 **
 CALCULATE FLUX FROM DISTRIBUTED RECHARGE AND DISCHARGE SOURCES J 0230
 DJ 110 NE = 1,NUMEL
 IF (RECH(NE).GT.O.O) GO TO 100
 QINRCH = RECH(NE) * AREA(NE) * TDEL + QINRCH J 0270
 GO TO 110
 100 QOUTRCH = RECH(NE) * APEA(NE) * TDEL * QOUTRCH J 0290
 110 CONTINUE
C
C
 CALCULATE FLUX FROM POINT RECHARGE AND DISCHARGE SOURCES
 (EXCLUDING CONSTANT HEAD NODES)
 DO 130 NP = 1,NUMNP
 IF (NODEID(NP).GE.1.AND.NODEID(NP).LE.10) GO TO 130
 IF (REC(NP),GT.0.0) GO TO 120
 QINREC = REC(NP) *TDEL + QINREC
 GO TO 130
 120 QOUTREC = REC(NF) * TDEL + GOUTREC
 120 QOUTREC = REC(NF) * TDEL + GOUTREC
 J 0100
 J 0110
 J 0120
 J 0130
 J 0140
 J 0150
 J 0160
 J 0170
 J 0180
C
 J 0200
 J 0210
 J 0220
 J 0240
 J 0250
 J 0260
 GO TO 110 J 0280
110 CONTINUE J 0300
C
 CC
C
 CALCULATE FLUX FROM POINT RECHARGE AND DISCHARGE SOURCES
 (AT CONSTANT HEAD NODES CNLY)
 DO 150 NP = 1,NUMNP
 IF (NODEID(NP).EQ.O.OR.NODEID(NP).GT.10) GO TO 150
 IF (REC(NP).GT,O.0) GO TO 140
 QINCHN = REC(NP) * TDEL * QINCHN
 gO TO 150
 140 GOUTCHN = REC(NP) * TDEL * GOUTCHN
 150 CONTINUE J 0540
 150 CONTINUE J 0540
C
 CALCULATE FLUX FROM VERTICAL LEAKAGE
 DO 170 NE = 1,NUMEL
 IF (VPRM(NE).EQ.0.0) GO TO 170
 HEADBAR = (HEAD(NI (NE)) + HEAD(NJ(NE)) + HEAD(NK(NE)))/3.
 HDIBAR = (HDI(NI(NE)) + HDI (NJ(NE)) + HDI (NK(NE)))/3.
 VLEK = VPRM(NE) * (HEADBAR = HDIBAR) * AREA(NE)
 IF (VLEK.GT.O.O) GO TO 160
 QINLEK = VLEK * TDEL + QINLEK
 GO TO 170
 160 QOUTLEK = VLEK * TDEL + QOUTLEK
 170 CONTINUE
C
```



```
 CALCULATE FLUX ACROSS MODEL BOUNDARIES
 DO 180 NB = 1,NUMBS
 DX2 = (X(NBNDYI (NB)) - X(NBNDYJ(NB))) * * 2
 DY2 = (Y(NBNDYI (NB)) - Y(NBNDYJ(NB))) * * 2
 DL = (DX2 + DY2)** *5
 0760
 TBAR = (TRANS (NBNDYI(NB)) + TRANS(NBNDYJ(NB)))/2. J 0770
```

PROGRAM LISTING-=CONTINUED


## PRCGRAM LISTING=-CONT INUED



```
 RETURN J 1470
 END
 1480
 SUBROUTINE CHEMBAL
 0010
 COMMON /BLOCKA/ NUMNP,X(35),Y(35),NUMEL,NI(50),NJ(50),
 IVK(50),NUMBS,NBNDYI(18),NENDYJ(18),}\operatorname{COSX(18),}\operatorname{COSY(18),
 2DHDX(18), DHDY(18),TITLE(20),IBAND,ICT
 COMMON /BLOCKB/ NTIM,NPNP,PINT,TIMX,TINIT,TPDAY,SUMT,TDEL,INT,TIMY
 1,TDELMAX
 COMMON /BL^CKC/ S,POROS,BETA,DLTRAT,Z1,Z2,ATOMWT1,ATOMMT2,DBYHUK1,
 1DBYHUK2,SK
 COMMON /BLDCKD/ NCCDNP,NODEID(35),TRANS(35),HYDK(35),THCK(35),
 1REC(35),C1PEC(35),C2REC(35)
 COMMON /BLOCKE/ IDELEM(50),RECH(50),C1RECH(50),C2RECH(50),
 IVPRM(50), AREA(50)
 COMMON /BLOCKF/ HEAD(35),HDI(35),C1(35),C2(35),C1HAT(35),
 1C2HAT (35),CEC(35)
 COMMON /BLOCKK/ C1INRCH,C2INRCH,C1CTRCH,C2OTRCH,C1INREC,C2INREC,
 1C1OTREC,C2OTREC,C1INCHN,C2INCHN,C1OTCHN,,C2OTCHN,C1INLEK,C2INLEK,
 2C1OTLEK,C2OTLEK,C1ISTOR,C2ISTOR,C1STOR,C2STOR,C1INBDY,C2INBDY,
 3C1OTBDY,C20TBDY
C
 THIS SUBROUTINE CALCULATES A CHEmICAL MASS BALANCE
 CONVERT CRECH,CREC,SOLUTION AND ADSCRBED CONC FROM MEQ/L TO MG/L
 DO 100 NE = 1,NUMEL
 C1RECH(NE) = C1RECH(NE)/Z1 * ATOMHT1
 100 C2RECH(NE) = C2RECH(NE)/Z2 * ATOMWT2
 DO 110 NP = 1,NUMNP
 C1REC(NP) = C1REC(NP)/21 * ATOMWT1
 C2REC(NP) = C2REC(NP)/Z2 * ATOMHT2
 C1(NP) = C1(NP)/Z1 * ATOMWT1
 C2(NP) = C2(NP)/Z2 * ATOMWT2
 C1HAT (ND) = C1HAT (NP)/Z1 * ATOMWT1
 110 C2HAT(NP) = C2HAT(NP)/Z2 * ATOMWT2
C **
 CALCULATE MASS FROM DISTRIBUTED RECHARGE AND DISCHARGE SOURCES
 DO 130 NE = 1,NUMEL
 IF (RECH(NE).GT.0.0) GO TC 120
 CIINRCH = RECH(NE) * AREA(NE) * TDEL * CIRECH(NE) + CIINRCH
 C2INRCH = RECH(NE) * AREA(NE) * TDEL * C2RECH(NE) * C2INRCH
 GO TO 130
 120 CRECH1 = (C1(NI(NE)) * C1<NJ(NE)) + C1(NK(NE)))/3.
 CRECH2 = (C2(NI(NE)) +C2(NJ(NE)) + C2(NK(NE)))/3.
 C1OTRCH = RECH(NE) * AREA(NE) * TDEL * CRECH1 + C1OTRCH K 0480
 C2OTRCH = RECH (NE) * AREA(NE) * TDEL * CRECH2 + C2OTRCH K 0490
k 0500
 130 CONTINUE
C c***
 DO 150 NP = 1,NUMNP
 IF (NODEID(NP).GE.1.AND.NODEID(NP).LE.10) 60 TO 150
 IF (REC(NP).GT.0.0) GO TO 140
 C1INREC = REC(NP) * TDEL * C1REC(NP) * CIINREC
 C2INREC = REC(NP) * TDEL * C2REC (NP) * C2INREC
 60 TO 150
 140 C1OTPEC = REC(NP) * TDEL * C1(NF) + C1OTREC
 C2OTREC = REC(ND) * TDEL * C2(NP) * C2OTREC
 150 continue
C
 CALCULATE MASS FROM POINT RECHARGE AND DISCHARGE SOURCES
```


## PROGRAM LISTING--CONTINUED



## PROGRAM LISTING--CONTINUED

```
 C1INRCH = C1INRCH = AIINRCH
 C2INRCH=C2INRCH = A2INRCH K K 1380
 C1OTRCH = C1OTRCH = A1OTRCH K 1350
 C2JTRCH = C2OTRCH = A2OTRCH K 14DO
 CIINLEK = C1INLEK = AIINLEK % 1410
 C2INLEK = C2INLEK - A2INLEK % 1420
 C1OTLEK = C1OTLEK = A1OTLEK N 1430
 C2OTLEK = C2OTLEK - A2OTLEK K 1440
 K 1450
 CALCULATE MAN 1460
 CALCULATE CYANGE IN MASS STORED IN THE AQUIFER K 1470
 CISTOR =0.
 C2STOR = O.
 K 1500
```



```
 DO 250 NE = 1,NUMEL (THCK(NI (NE)) + THCK(NJ(NE)) + THCK(NK(NE)))/3.
 DO 250 NE = 1,NUMEL (THCK(NI (NE)) + THCK(NJ(NE)) + THCK(NK(NE)))/3.
 DO 250 NE = 1,NUMEL (THCK(NI (NE)) + THCK(NJ(NE)) + THCK(NK(NE)))/3.
 C1TBAR = (C1(NI(NE)) + C1INJ(NE)) + C1(NK(NE)))/3. + (CIHAT(NI\
 1 NE)) + C1HAT(NJ(NE)) + C1HAT(NK(NE)))/3.
 C1STOR = AREA(NE) * THCKBAR * PCROS * C1TBAR * C1STOR K 1550
 K 1530
 K 1540
 1 NE)) + C2HAT(NJ(NE)) + C2HAT(NK(NE)))/3.
 K 1560
 250 C2STOR = APEA(NE) *THCKBAR *POROS * C2TBAR + C2STOR K K 1580
c
nの0
DO 260 NE = 1,NUMEL
 C1RECH(NE) CIRECH(NE) Z1/ATOMNTI
 C1RECH(NE) = C1RECH(NE) * Z1/ATOMHT1 K 1640
 260 C2RECH(NE) = C2RECH(NE) * Z2/ATOMWT2
 K 1650
K 1660
 DO 270 NP = 1,NUMNP
 K
 C2REC(NP) = C2REC(NP) * Z2/ATCMWT2
 K 1680
 C1(NP)}=C1(NP)*Z1/ATOMWT11
 K 1650
 K 1700
 C1HAT (NP) = C1HAT (NP) * Z1/ATOMWT1 K 1710
 270 C2HAT (NP) = C2HAT(NP) * Z2/AATOMMT2
 K 1720
C
```



```
 K 1730
 END
 K 1750
 SUBROUTINE FLOWOUT
 COMMON /BLOCKA/ NUMNP, X(35),Y(35),NUMEL,NI(50),NJ(50), L D020
 1NK(50),NUMBS,NBNDYI(18),NBNDYJ(18),COSX(18),COSY(18), L 0030
 1NK(50),NUMBS,NBNDYI(18),NBNDYJ(18),COSX(18),COSY(18), L 0030
 L 0040
 2DHDX(18),DHDY(18),TITLE(20),IBAND,ICT
 2DHDX(18), DHDY(18),TITLE(20),IBAND,ICT
 1.TDELMAX
 L 0850
 COMMON /BLOCKC/ S,POROS,BETA,DLTRAT,Z1,Z2,ATOMWT1,ATOMMT2,DBYHUK1,
 1DBYHUK2,SK
 L
 L 0070
 COMMON/BLOCKD/ NCCDNP,NODEID(35),TRANS(35),HYDK(35),THCK(35), L 0090
 1REC(35),C1PEC(35),C2REC(35) L 0100
 L 0090
 COMMON /BLOCKF/ HEAD(35),HDI(35),C1(35),C2(35),C1HAT(35), L 0110
 COMMON (3)
 IC2HAT (35),CEC(35)
 L 0120
 COMMON /BLOCKJ/QINRCH,QOUTRCH,QINREC,QOUTREC,QINCHN,QOUTCHN, L 0130
 IQINLEK,QOUTLEK,QINBDY,QOUTBDY,GSTOR L 0140
```



```
nの
C
 *** K K 15S0
 CONVERT CRECH,CPEC,SOLUTION AND ADSCRBED CONC FROM MG/L TO MEQ/L K 1610
 250 C2STOR = AREA(NE)* THCKBAR *POROS * C2TBAR + C2STOR K K 1580
C
 K 1460
 CISTOR = 0
 K 1570
K 1600
 K K 1620
 K
 C2(NP) = C2(NP) * Z2/ATOMWT2
 K 1740
 L. }001
 L 0060
 L 0080
 COMMON /BLTCKDH NCCDNP,NODEID(JS),TRANS(J5),HYDK(JS),THCK(JS),
 L 0100
C #***
 L 0160
 THIS SUBROUTINE PRINTS THE OUTPUT FCR THE FLOL PART OF THE MODEL
 L 0170
L 0180
L 0190
L
L 0200

 L 0210
 PRINT HEAD VALUES =** FT
 L 0230
 WRITE (6,100) L 0240
```



```
 1m=--=-)
 1m=-a=)
 HRITE (6,110) SUMT
 L }026
 3) L 0270
110 FORMAT (1H0,4X,13HTIME(DAYS) = F10.3) 0280
 FORMAT (1H0,4X,13HTIME(DAYS) = FF10.3)
 WRITE (6,120) TIMY
 L 0290
120 FORMAT (5X,13HTIME(YEARS)=,F10.5)
L. }030
```

```
 WRITE (6,130)
 1DE, 10X,4HHEAD, 12X,4HNODE, 10X,4HHEAD)
 WRITE (6,140) (NP,HEAD(NP),NP = 1,NUMNP)
 L 0310
 L 0320
 FRIM (6,140)
 140 FORMAT (4(10X,I3,5x,F12.3))
\のn
WQITE (6,150)
 150 FORMAT (1H1,4X,27HDRAWDOWN DISTRIBUTION =- FT/5X,27H=-\infty=-\infty-\infty-\infty-m-m
```



```
 WRITE (6,110) SUMT
 WRITE (6,120) TIMY
 URITE (6,160)
 L 0330
L 0340
 **
 PRINT DRAWDOWN VALUES =- FT
 160 FORMAT (//11H,9X,4HNODE,9X,8HDRAWDCHN,9X,4HNODE,9X,8HDRAWDOHN,9X,
 14HVODE,9X,9HDRAWDOWN,9X,4HNODE,9X,8HDRAWDCWN)
 IF=0
 KD=1
 KC=4
 170 DJ 180 NP = KR,KC
 IR = IR + 1
 ND(IR)=NP
 180 DZWDN(IR) = HDI(NP) - HEAD(NP)
 WRITE (6,190) (ND(I),DRWDN(I),I = 1,IR)
 190 FORMAT (4(10X,I3,5X,F12.3))
 190 FORMAT (KC.EQ.NUMIJP) GO TO 200
 IR=0
 KR=KC + 1
 KR=KC + 1
 IF (KC.GT.NUMNP) KC = NUMNP
 GO TO 170
C
 200 WRITE (6,210)
210 FORMAT (///1HH1,4X,33HCUMULATIVE WATER BALANCE = = FT** 3/5X,33H=====
```



```
 WRITE (6,110) SUMT
 WRITE (6,110) SUMT
 WRITE (6,220) QINRCH,QOUTPCH
L 0350
nの
 L}036
 O*)
 L 0370
 L 0380
 L 0350
 L 0400
 L 0410
 L
 L 0430
 L }044
 L. }045
L 0460
 L 0470
 L. }048
 L 0450
 L }050
 L }051
 L 0520
 L 0530
 L 0540
 L 0550
 L 0560
 L 0570
 L 0580
 L. }059
 L 0600
 L 0610
```



```
C-**
 PQINT CUMULATIVE WATER BALANCE == FT**3
L 0630
C
 L 0640
L 0650
200 HRITE (G 210)
L 0660
L 0670
L 0680
L}068
 (6,120) TIMY L L L L10
 220 FORMMT (/1,15x,38HRINRCH (RECHARGE=OISTRIBUTED) =, =15.3,1,1 L L O730
 1 L 0730
 15x,38HQOUTRCH (DISCHARGE=DISTRIBUTED) =,F15.3)
 WRITE (6,230) QINREC,QOUTREC
 L 0740
 230 FORMAT (/,15X, उSHQINREC (RECHARGE-POINT) =,F15.3./.15
 1X,38HQOUTREC (DISCHARGE-POINT) =,F15.3)
L. }075
L 0760
 WRITE (6,240) QINLEK,QOUTLEK
L 0770
 240 FORMAT (/,15X,38HQINLEK (RECHARGE-LEAKAGE) =,F15.3.1.15
 1X,38HQOUTLEK (OISCHARGE-LEAKAGE) =,F15.3)
L 0780
 WRITE (6,250) QINBCY,QOUTEDY
L }079
 L 0790
 250 FORMAT (/,15X,38HQINBDY (RECHARGE-BOUNDARY) =,F15.3,1,15
 1X,38HQOUTBDY (DISCHARGE=BOUNDARY) =,F15.3)
 IX, 38HQOUTBDY (DISCHARGE-BOUNDARY) =,F15.3)
L 0800
L 0810
 X, 38HQOUTBDY (DISCHARGE=BOUNDARY) =,F15.3)
 250 FORMAT (}1,15X,38HOINCHN (RECHARGE-CONST HEAD NODES) =,F15.3,1,1
 1X,3SHQOUTCHN (DISCHARGE-CONST HEAD NODES) =,F15.3)
L 0820
C
 QIN = QIN2CH + QINPEC + QINLEK + QINCHN + QINBDY
L 0840
 L 0850
 QOUT = QOUTRCH + QOUTREC + QOUTLEK * QOUTCHN + QCUTBDY
 WRITE (6,270) QIN,GCUT
 L 0860
 L 0870
 M--
 270 FORMAT (}56\times,12H=-\infty=-\infty=-\infty=-/.40X,13HTOTAL QIN =,F15.3/.40X,13HTO
 1TAL QOUT =,F15.3)
 L 0880
 L. 0850
 WRITE (6.2RO) OSTOR
 L 0900
L 0910
 290 FORMAT (/,15X.3&HOSTAR (WATER RELEASED FROM STORAGE) =,F15.3)
L
```



```
 CALCULATE AND PRINT MASE BALANCE RESIDUAL AND ERROR AS A PER CENT
C
 L 0940
 QRESID = OIN + QOUT - QSTOR
 L 0950
 QRESID = OIN + QOUT - QSTOR
 L 0960
 QRESID = ABS(QRESIC)
L 0970
L 0980
L 0950
```


## PRCGRAM LISTING--CONTINUED




## PROGRAM LISTING=-CONT INUED

```
C #**)
C
 CONVERT SOLUTION CONCENTRATIONS FROM MEG/L TO MG/L M 0210
```



```
 C1(NP) = C1(NP)/Z1 * ATOMWT1
 C2(NP) = C1(NP)/21 ATONWT1 M 0240
 C2(NP) = C2(NP)/Z2 * ATOMHT2 M 0250
 100 CONTINUE
 M 0260
 C *** M M 0270
C
 PRINT SOLUTE CONCENTRATION OF SPECIES 1 (C1) =mMG/L
 WRITE (6,110)
 110 FORMAT (1H1,4X,4GHSOLUTE CONCENTRATION OF SPECIES 1 &C1) =- MG/L/5 M 0320
```



```
 URITE (6,120) SUMT
 120 FORMAT (1H0,4X,13HTIME(DAYS) = ,F1O.3)
 WRITE (6,130) TIMY
 130 FORMAT (5X,13HTIME(YEARS)=,F10.5)
 WRITE (6,140)
 140 FORMAT (//11H, 9X,4HNODE, 10X,4HCONC, 12X,4HNODE, 10X, 4HCONC, 12X,4HNO M 0390
 1DE, 10X,4HCONC, 12X,4HNODE, 10X,4HCONC)
 WRITE (6,150) (NP,C1(NP),NP = 1,NUNNP)
 150 FORMAT (4(10X,I3,5X,F12.3))
C
 PRINT SOLUTE CONCENTRATION OF SPECIES 2 (C2)-m MG/L
 WRITE (6,160)
 160 FORMAT (}1\textrm{H1},4\textrm{X},46HSOLUTE CONCENTRATION OF SPECIES 2 (C2) - MG/L/5
```



```
 WRITE (6.120) SUMT
 WRITE (6.130) TIMY
 HRITE (6,140)
 WRITE (6,150) (NP,C2(NP),NP = 1,NUMNP)
C ##** M M 0540
 CONVERT SOLUTION CONCENTRATIONS FROM MG/L TO MEQ/L M 0560
 CONVERT ADSORBED CONCENTRATIONS FRON MEQ/L TO FRACTION ADSORBED M 0570
 DO 170 NP = 1,NUMNP
 C1(NP) = C1(NP)* 21/ATOMHT1
 C2(NP) = C2(NP) * Z2/ATOMWT2
 C1HAT(NP) = C1HAT(NP)/CEC(NP)
 170 C2HAT (NP) = C2HAT (NP)/CEC (NP)
 IF CONSERVATIVE TRANSPORT SKIP PRINTOUT OF CHAT
 IF (ICT.GT.O) GO TO 250 M 0660

 PRINT FRACTION ADSORBED OF SPECIES 1 (CIHAT/CEC) =- DIMENSIONLESS M 0690
 M O700
 WRITE (6,180)
 180 FORMAT (1H1, 4X,7OHEQUIVALENT FRACTION ADSORBED OF SPECIES 1 (CIHAT
```




```
 WRITE (6,120) SUMT
 URITE (6,130) TIMY
 WRITE (6,140)
 WRITE (6,190) (NP,C1HAT (NP),NP = 1,NUMNP) M 0780
 190 FOPMAT (4(10X,I3,10X,F5.3,2X))
M 0790
190 FO?MAT (4(10X,I3,10X,F5*3,2X))
C #**
 PRINT FRACTION ADSOREED OF SPECIES 2 (C2HAT/CEC) =- DIMENSIONLESS M 0820
 WRITE (6,200)
200 FORMAT (1H1,4X,7OHEQUIVALENT FRACTION ADSORBED OF SPECIES 2 GC2HAT M O85D
```



```
 2---*)
 M 0280
 M 0290
 M 0300
 M 0310
 M 0340
 M 0350
 M 0360
 M 0370
 M 0380
 M 0390
 M 0400
 M 0410
 M 0420
 M 0430
 M 0440
 M 0450
 M 0460
 M 0470
 M 0480
 M 0490
 M 0500
 M 0510
 M 0520
 M }053
 M 0580
 M 0550
 M 0600
 M 0610
 M 0620
 M 0630
```



```
 M 0670
 M 0710
 M 0720
 M 0730
 M 0730
M 0740
M 0750
M 0750
M 0760
M 0770
M 0780
M 0810
M 0830
M 0840
M 0860
M 0870
```


## PRCGRAM LISTING--CONTINUED



## PRCGRAM LISTING=-CONTINUED



```
 WRITE (6,320) CIIN,C1OUT M 1570
 320 FORMAT (56X,12H----m---=--/,39X,14HTOTAL C1IN =,F15.3/,39X,14HT
 IOTAL CIOUT =,F15.3)
 WRITE (6,330) C1STOR
 FORMAT (/,18X,35HC1STOR (PRESENT MASS STORED) =,F15.3) M 161.0
 WRITE (6,340) C1ISTOR
 340 FORMAT (18X,35HC1ISTOR (INITIAL MASS STORED)
 CIDELST = CISTOR = CIISTOR
 WRITE (6.350) C1DELST
 350 FORMAT (}56\times,12H-\infty-\infty-\infty-\infty-\infty),18X,35HCIDELST (CHANGE IN MASS STORED
 1) =,F15.3)
C
 CALCULATE AND PRINT MASS BALANCE RESIDUAL AND ERROR AS A PER CENT
 CIRESID = CIIN + CIOUT * CIDELST
 CIRESID = ABS(CIRESID)
 WRITE (6,360) CIRESID
 360 FORMAT (//,25X,28HMASS BALANCE RESIDUAL
 CIERRIN = 0.
 IF (CIIN.NE.0.0) C1ERRIN = C1RESID/(- CIIN) * 100.
 C1ERROT = 0.
 IF (CIOUT.NE.0.0) CIERROT = CIRESID/CIOUT * 100.
 C1ERRST = 0.
 IF (C1DELST.NE.0.0) CIERRST = C1RESID/ABS(C1DELST) * 100.
 C1ERIST = 0.
 IF (C1ISTOR.NE.0.0) C1ERIST = ABS(C1RESID)/C1ISTOR * 100.
 WRITE (6,370) C1ERRIN,C1ERROT,C1ERRST,C1ERIST
 OHERROR
 RMAT (24X,29HERROR AS PERCENT OF CIIN
 1S PERCENT OF C1OUT =,F15.3/,24X,29HERROR AS PERCENT OF CIDELST = M 1850
 2,F15.3/,24X,29HERROR AS PERCENT OF C1ISTOR =,F15.3)
nのnの
 PRINT CUM CHEMICAL BALANCE FOR SPECIES 2 (C2 & C2HAT) -- MG/L*FT**3
 WRITE (6,390)
 330 FORMAT (///1H1,4X,66HCUMULATIVE CHEMICAL BALANCE FOR SPECIES 2 (C2
```




```
 WRITE (6,120) SUMT
 WRITE (6,130) TIMY
 WRTTE (6,390) C2INRCH,C 20TRCH
 390 FORMAT (//,15X,38HC2INRCH (OISTRIBUTED RECHARGE) =,F15.3./.1
 15X,38HC 2OTRCH (DISTRIBUTED DISCHARGE) =,F15.3)
 WRITE (6,400) C2INREC,C2OTREC
 4 0 0 ~ F O R M A T ~ (/ , 1 5 X , 3 8 H C 2 I N R E C ~ (P O I N T ~ R E C H A R G E) ~ = , F 1 5 . 3 . / , 0 1 5 ~
 1X,38HC2OTREC (POINT DISCHAPGE) =,F15.3)
 WRITE (6,410) C2INLEK,C 2OTLEK
 410 FORMAT (/,15X,38HC2INLEK (OECHARGE-LEAKAGE) =,F15.3,/',15
 1X,38HC 20TLEK (DISCHARGE=LEAKAGE) =,F15.3)
 WRITE (6,420) C2INCHN,C 2OTCHN
 4 2 0 ~ F O R M A T ~ (/ , 1 5 x , 3 8 H C ~ 2 I N C H N ~ (R E C H A R G E - C O N S T ~ H E A D ~ N O D E S) ~ = , F 1 5 . 3 . 1 , 1 5
 1X,38HC2OTCHN (DISCHARGE-CONST HEAD NODES) =,F15.3)
 WRITE (6,430) C2INEDY,C2OTBDY
 430 FORMAT (/,15X,38HC2INBDY (INFLOW=MODEL BOUNDARY) =.F15.3./,15
 1X,33HC2OTBDY (OUTFLOW=MODEL BOUNDARY) =,F15.3)
C
 C2IN = C2INRCH + C2INREC + C2INLEK + C2INCHN + C2INBDY
 C2OUT = C2JTRCH + C2OTREC + C2OTLEK + C2OTCHN + C2OTBDY
 WRITE (6,440) C2IH,C2OUT
440 FORMAT (56X,12H-m---m-=-=-1,39X,14HTOTAL C2IN =,F15.3%,39X,14HT
 1OTAL C2OUT =,F15.3)
 WRITE (6,450) C2STCR
450 FORMAT (/,18X,35HC2STOR (PRESENT NASS STCRED) =,F15.3) M 21<0
 HRITE (6,460) C2ISTOR
460 FORMAT (IQX,35HC2ISTOR (INITIAL MASS STORED) =,F15.3)
 C2DELST = C2STOR - C2ISTOR
 WRITE (6,470) C2DELST
470 FGRMAT (56x,12H-=--=------=-/.12X,3EHC2DELST (CHANGE IN MASS STORED
 1) =,F15.3)
```


## PRCGRAN LISTING=-CONTINUED

```
C CALCULATE AND PRINT MASS BALANCE RESIDUAL AND ERROR AS A PER CEVT M 2260
C CALCULATE AND PRINT MASS BALANCE RESIDUAL AND ERROR AS A PER CENT M 2270
C
 C2RESID = C2IN + C2OUT + C2DELST
 C2RESID = ABS(C2RESID)
 C2RESID = ABS(C2RESID
 480 FORMAT (//f,25X,28HMASS BALANCE RESIDUAL =,F15.3)
 C2ERRIN = 0.
 IF (C2IN.VE.0.0) C2ERRIN = C2RESID/(- C2IN) * 100.
 C2ERROT = 0.
 IF (CZOUT.NE.O.0) C2EPROT = C2RESIC/C2OUT * 100. M 2360
 C2ERRST = 0.
 IF (C2DELST.NE.0.0) C2ERRST = C2RESID/ABS(C2DELST) * 100.
 C2ERIST = 0.
 IF (C2ISTOR.NE.0.0) C2ERIST = ABS(C2RESID)/C2ISTOR * 100.
 WRITE (6,490) C2ERRIN,C2ERROT,C2ERRST,C2ERIST M 2410
 470 FORMAT (24X,29HERROR AS PERCENT OF C2IN =,F15.3/,24X,29HERROR A
```



```
 2,F15.3/,24X,29HERROR AS PERCENT OF C2ISTOR =,F15.3)
 M 2280
 M 2290
 M 2300
 M 2310
 M 2420
M 2430
 2,F15.3/,24X,29HERROR AS PERCENT OF C2ISTOR =,F15.3) M 2440
C
 RETURN M 2460
 END
M 2450
```



JBYMUK 1 गBYHUK2 Јнох

DHOY
oltrat 401 HEAD

Hyok IBAND ICT IDELEM INT NBNOYI NBMOYJ NCODNP NI
NJ
NK
NODEIO
NPMP
NT
NTIM
NUMBS
NUVEL
NUMNP
OINT
POROS
aINBDY
QINCHN
aINLEK QINRCH QINREC QJUTBDY qOUTCHN QOUTLEK QOUTRCH QOUTREC QSTOR REC RECH 3
SK
SU4T
toel
toclmax
THCK
TIM
TIMX
timy
TINIT
TPDAY
title
trans
VPPM
$x$
r
21
22

BOUNDARY SEGMENT
DEBYE HUCKEL PARAMETER FOR CATION 1 $0 \equiv 8 Y E$ HUCKEL PARAMETER FOR CATION 2 GPADIENT CF THE GROUNDWATER IN THE X-DIRECTION ACROSS THE SPECIFIED BJUNDARY SEGMENT GRADIENT OF THE GROUNDWATER IN THE Y-DIRECTION ACROSS THE SPECIFIED BOUNCARY SEGNENT
RATIC OF TRANSVERSE TO LONGITUDINAL DISPERSIVITY
INITIAL POTENTIONETRIC HEAD AT THE SPECIFIED NODE(IN FEET)
Calculateo potentiometric head at the en of the current time
step at tre specified node (in feet)
HYDRAULIC CONDUCTIVITY OF THE AQUIFER AT THE SPECIFIED NODE(IN FT/OAY)
gANDWI DTH
INDICATOR VARIABLE FOR CONSERVATIVE/NONCYNSERVATIVE TRANSPORT
ELEMENT IDENTIFICATION CODE FOR THE SPECIFIED ELEMENT
CURRENT PUMPING PERIOD NUMBER
NODE I OF THE SPECIFIED BOUNDARY SEGMENT
NODE $J$ OF THE SPECIFIED BOUNDARY SEGMENT
NUMBER OF NODE IDENTIFICATION CODES
NODE I OF THE SPECIFIED ELEMENT
NODE $J$ OF THE SPECIFIED ELEMENT
NODE $K$ OF THE SPECIFIED ELEMENT
NODE IDENTIFICATION NUMBER FOR THE SPECI=IEO NODE
NUMBEF OF FUMPING PERIODS
CURRENT TIME STEP NUMBER
MAXIMUM NUMBER OF TIME STEPS
NUMBER OF BOUNDARY SEGMENTS
NUMBEF OF ELEMENTS
NUMBER OF NCDAL POINTS
LENGTH OF CURRENT PUMPING PERIOD(IV DAYS)
EFFECTIVE POROSITY OF THE AQUIFEP.
CUMULATIVE VOLUME OF WATER AS INFLOW ACRJSS MODEL BOUNDARIES(IN FT**?)
CUMULATIVE VOLUME OF WATER RECHARGED THRJUGH CONSTANT HEAD NODES (IN FT**3)
CUMULATIVE VOLUME OF WATER RECHARGED FROY VERTICAL LEAKAGE (IN FT**3)
CUMULATIVE VOLUME OF WATER RECHARGED FRDY DISTRIBUTED SOURCES (IN FT**3)
CUMULATIVE VOLUME OF HATER RECHAPGED FROM POINT SOURCES (IN FT** 3)
CUMULATIVE VOLUME OF WATER AS OUTFLOU ACZOSS MODEL BOUNDARIES (IN FT**3)
CUMULATIVE VOLUME OF WATER DISCHARGED THROUGH CONSTANT HEAD NODES (IN FT**3)
CUMULATIVE VOLUME OF HATER DISCHARGED FRJM VERTICAL LEAKAGE (IN FT**3)
CUMULATIVE VOLUME OF WATER DISCHARGEO TO DISTRIBUTED SINKS (IN FT**Z)
CUMULATIVE VOLUME OF WATER OISCHARGEO TO POINT SINKS(IN FT**3)
CHANGE IN VOLUME OF WATER STORED IN THE AQUIFER (IN FT**3)
FOINT SOURCE OR SINK AT THE SPECIFIED NOJE (IN GPM)
DISTRIBUTED SOURCE $9 R$ SINK FOR SPECIFIED ELENENT (IN FT**3/DAY/FT**2)
STORAGE COEFFICIENT OF THE AQUIFER
SELECTIVITY COEFFICIENT(IN MEQ/L)
TOTAL ELAFSED TIME (IN DAYS)
LENGTH OF CURRENT TIME STEP (IN DAYS)
MAXIMUM LENGTH FOR ANY TIME STEP (IN DAYS)
SATURATED THICKNESS OF THE AQUIFER OT THE SPECIFIED NODE(IN FEET)
POTENTIAL LENGTH OF CURRENT TIME STEP(IN DAYS)
TIME STEP MULTIPLIER
TOTAL ELAPSEO TIME(IN YEARS)
INITIAL TIME STEP(IN SECONDS)
TOTAL TIME AI THE END OF THE CURRENT PUMPING PERIODGIN DAYS) CPTIONAL USER COMMENT
TRANSMISSIVITY OF THE AQUIFER AT THE SPECIFIED NCDE(IN FT**2/DAY)
LEAKANCE CEFINED AS VERTICAL HYDRAULIC CONDUCTIVITY/THICKNESS OF CONFINING LAYER(IN FT/DAY/FT)
X-COORDINATE OF THE SPECIFIED NODE(IV FEET)
$\gamma$-COORDINATE OF THE SPECIFIED NODE (IN FEET)
VALENCE OF CATION 1
VALENCE OF CATION 2


APPENDIX F. -- Data Deck Instructions

DATA DECK INSTRUCTIONS
The following group of cards is read by the first call of subroutine input.

Parameter			
Card	Format	Variable	Description
1	20A4	TITLE	Description of problem
2	2044	TITLE	Optional user comment.
3	I5	ICT	Set ICT=0 for nonconservative transport. Set ICT>0 for conservative transport.
4	20 A 4	TITLE	Optional user comment.
5	315	NUMNP	Number of nodal points.
		NUMEL	Number of elements.
		NUMBS	Number of boundary segments.
6	2044	TItLE	Optional user comment.
7	2I5, 4F10.0	NTIM	Maximum number of time steps in a pumping period.
		NPMP	Number of pumping periods. Note that if NPMP>1 then update data must be provided.
		PINT	Length of first pumping period in days.
		TIMX	Time increment multiplier.
		TDELMAX	Maximum allowable time step in days.
		TINIT	Length of initial time step in seconds.
8	20 A 4	TITLE	Optional user comment.
9	8F10.0	S	Storage coefficient. Set $\mathrm{S}=0$ for steady flow problems.
		POROS	Effective porosity.
		BETA	Longitudinal dispensivity in feet.
		DLTRAT	Ratio of transverse to longitudinal dispersivity.
		Z1	Valence of the first cation.
		Z2	Valence of the second cation. Note Z2 must $\geq \mathrm{Z1}$.
		ATOMWT1	Atomic weight in grams of cation 1.
		ATOMWT2	Atomic weight in grams of cation 2.
10	20 A 4	TItLE	Optional user comment.
11	3 (F10.0)	DBYHUK 1	Debye Huckel parameter for cation 1.
		DBYHUK 2	Debye Huckel parameter for cation 2.
		SK	Selectivity coefficient.

Data Deck Instructions - continued

Data Set	Number of Cards	Format	Variable	Description
1	1	20A4	TITLE	Optional user comment.
	1	F10.0	FCTR	Multiplication factor for nodal coordinates read below. Set
				FCTR=1 if no data conversion is required.
	NUMNP / 3	3 (I5, 2F10.0)	NP	Node number.
			X (NP)	$X$ coordinate of node NP in feet.
			Y(NP)	$Y$ coordinate of node NP in feet.
2	1	20A4	TITLE	Optional user comment.
	NUMEL/4	4 (4I5)	NE	Element number.
			NI (NE)	Node I of element NE.
			$\mathrm{NJ}(\mathrm{NE})$	Node J of element NE.
			NK (NE)	Node $K$ of element NE. Note nodes must be sequenced in a counterclockwise manner around the element.
3	1	20A4	TITLE	Optional user comment.
	NUMBS	2I5, 4F10.0	NBNDYI (I)	Node I for boundary segment I.
			NBNDYJ (I)	Node $J$ for boundary segment $I$.
			$\cos x(I)$	Component of outward-pointing normal from boundary in $x$ direction for boundary segment I.
			COSY (I)	Component of outward-pointing normal from boundary in $y$ direction for boundary segment I.
			DHDX ( I )	Gradient of the groundwater in the x-direction for boundary segment I.
			DHDY ( I )	Gradient of the groundwater in the $y$-direction for boundary segment I. For no-flow boundary both $D H D X=0$ and $D H D Y=0$.
4	$1$	$20 \mathrm{~A} 4$	TITLE	
	$1$	I2	NCODEL	Number of element identification codes to be specified. If NCODEL $=0$ then program skips the remainder of data set 4 .
	NUMEL/8	8(2I5)	NE	Element number.
			IDELEM (NE)	Element identification number.   The IDELEM array is used to input diffuse recharge/discharge sources such as from infiltration of precipitation, evapotranspiration or from vertical leakage.

Data Deck Instructions - continued

Data   Set	Number of   Cards	Format	Variable	Description

Data Deck Instructions - continued

Data   Set	Number of Cards	Format	Variable	Description
9	1	$\begin{gathered} 20 \mathrm{~A} 4 \\ \text { I2, F10.0 } \end{gathered}$	TITLE	Optional user comment.
			INP	*
			FCTR	*
	NUMNP / 5*	5(I5,F10.0)	NP	Node number.
			C2 (NP)	Initial concentration of cation 2 in the groundwater at node NP in MG/L. Note, from C1 and C2 data, program calculates adsorbed concentrations in the aquifer assuming equilibrium conditions.
10	1	$\begin{gathered} 20 \mathrm{~A} 4 \\ \mathrm{I} 2, \mathrm{~F} 10.0 \end{gathered}$	TITLE	```Optional user comment. * * Node number. Cation exchange capacity of the aquifer at node NP in MEQ/Liter of solution.```
			INP	
			FCTR	
	NUMNP / 5*	5(I5, F10.0)	NP	
			CEC (NP)	
11	1	$\begin{aligned} & 20 \mathrm{~A} 4 \\ & \mathrm{I} 2 \end{aligned}$	TItLE	Optional user comment.
	1		NCODNP	Number of node identification codes to be specified. If $N C O D N P=0$ then program skips the remainder of data set 11 .
	NUMNP / 8	8(2I5)		Node number.
			NODEID (NP)	Node identification number. The node ID array is used to input point recharge/discharge sources such as at wells, springs, etc.
	$\begin{gathered} 1 \\ \text { NCODNP } \end{gathered}$	$\begin{aligned} & 20 \mathrm{~A} 4 \\ & \text { I5, } 3 \mathrm{~F} 10.0 \end{aligned}$	TItLe	Optional user comment.
			ICODE	Node identification code. When NODEID=ICODE, program sets point recharge/discharge (REC)=FCTR1 in GPM, concentration of species 1 in REC (C1Rec)=FCTR2 in MG/L, concentration of species 2 in REC (C2REC)=FCTR3 in MG/L. Note recharge/injection is (-) and discharge/withdrawal is (+).
			FCTR1	
			FCTR2	
			FCTR3	

The following update data is read by additional calls of subroutine input. There should be 1 group of cards for each additional call or a total of (NPMP-1) groups.

Data Deck Instructions - continued

Parameter   Card	Format	Variable	Description
1	$20 A 4$	TITLE	Description of pumping   period.
2		$20 A 4$	TITLE
Optional user comment.			
Length of current pumping			
period in days.			

[^2]APPENDIX G. -- Sample Data Deck

```
EXAMPLE OATA
ICT (I5)
NUMND,NUMEL,NUMBS (3IE)
 35 50 18
NTIM,NPMD,FINT,TIMX,TCELMAX,TINIT (2I5,4F10.0)
 200 02 1.0 1.5 0.5 60.
S,POROS,BETA,OLTRAT,Z1,Z2,ATOMLT1,ATOMHT 2 (8F10.)
 .00003 . 35 20. .3 1. 2. 18.04 40.09
DBYHUK1,D8YHUK2,SK (3F10.0)
3. 6. 38.0
NOJAL CJORDINATES (F10.0),3(I5,2F10.0)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & & 0. & & 120. & 2 & & 40. & & 120. & 3 & & 80. & & 120. & \\
\hline 4 & & 120. & & 120. & 5 & & 0. & & 100. & 6 & & 30. & & 100. & \\
\hline 7 & & 60. & & 100. & 8 & & 90. & & 100. & 9 & & 120. & & 100. & \\
\hline 10 & & 0. & & 80. & 11 & & 20. & & 80. & 12 & & 40. & & 80. & \\
\hline 13 & & 80. & & 80. & 14 & & 100. & & 80. & 15 & & 120. & & 80. & \\
\hline 16 & & 0. & & EO． & 17 & & 30. & & 60. & 18 & & 60. & & 60. & \\
\hline 19 & & 50. & & 60. & 20 & & 120. & & 60. & 21 & & 0. & & 40. & \\
\hline 22 & & 20. & & 40. & 23 & & 40. & & 40. & 24 & & 80. & & 40. & \\
\hline 25 & & 100. & & 40. & 26 & & 120. & & 40. & 27 & & 0. & & 20. & \\
\hline 23 & & 30. & & 20. & 29 & & 60. & & 20. & 30 & & 90. & & 20. & \\
\hline 31 & & 120. & & 20. & 32 & & 0. & & 0 。 & 33 & & 40. & & 0. & \\
\hline 34 & & 90. & & 0. & 35 & & 120. & & 0. & & & & & & \\
\hline ELEMENT & VER & TICES & 414 & & & & & & & & & & & & \\
\hline 1 & 5 & 6 & 1 & 2 & 6 & 2 & 1 & 3 & 6 & 7 & 2 & 4 & 7 & 3 & 2 \\
\hline 5 & 7 & \(\varepsilon\) & 3 & 6 & 8 & 4 & 3 & 7 & 8 & 9 & 4 & 8 & 10 & 11 & E \\
\hline 9 & 11 & \(\epsilon\) & 5 & 10 & 11 & 12 & 6 & 11 & 12 & 7 & 6 & 12 & 12 & 13 & 7 \\
\hline 13 & 13 & 8 & 7. & 14 & 13 & 14 & 8 & 15 & 14 & 9 & 8 & 16 & 14 & 15 & 9 \\
\hline 17 & 16 & 11 & 10 & 18 & 16 & 17 & 11 & 19 & 17 & 12 & 11 & 20 & 17 & 18 & 12 \\
\hline 21 & 18 & 13 & 12 & 22 & 18 & 19 & 13 & 23 & 19 & 14 & 13 & 24 & 19 & 20 & 14 \\
\hline 25 & ＜ 0 & 15 & 14 & \(2 E\) & 21 & 22 & 16 & 27 & 22 & 17 & 16 & 28 & 22 & 23 & 17 \\
\hline 29 & 23 & 18 & 17 & 30 & 23 & 24 & 18 & 31 & 24 & 19 & 18 & 32 & 24 & 25 & 13 \\
\hline 33 & 25 & 20 & 19 & 34 & 25 & 26 & 20 & 35 & 27 & 22 & 21 & 36 & 27 & 28 & 22 \\
\hline 37 & 28 & 23 & 22 & 38 & 28 & 29 & 23 & 39 & 29 & 24 & 23 & 40 & 29 & 30 & 24 \\
\hline 41 & 30 & 25 & 24 & 42 & 30 & 31 & 25 & 43 & 31 & 26 & 25 & 44 & 32 & 28 & 27 \\
\hline 45 & 32 & 33 & 28 & 46 & 33 & 29 & 28 & 47 & 33 & 34 & 29 & 48 & 34 & 30 & 23 \\
\hline 49 & 34 & 35 & 30 & 50 & 35 & 31 & 30 & & & & & & & & \\
\hline
\end{tabular}
BOUVDARY SEGMENTS，DIRECTIONAL COSINES AVD BOUNDARY GRADIENTS（2I5．4F10．0）
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1 & 2 & 0. & 1. & 0 。 & 0 。 \\
\hline 2 & 3 & C． & 1. & 0. & 0. \\
\hline 3 & 4 & 0. & 1. & 0. & 0 ． \\
\hline 4 & ¢ & 1. & 0. & 0 。 & 0. \\
\hline 7 & 15 & 1. & 0. & 0 ． & 0 。 \\
\hline 15 & 20 & 1. & C． & 0 。 & 0. \\
\hline 20 & 26 & 1. & C． & 0. & 0. \\
\hline 26 & 31 & 1. & 0. & 0. & 0. \\
\hline 31 & 35 & 1. & 0. & 0 。 & 0. \\
\hline 35 & 34 & 0. & －1． & 0 ． & 0. \\
\hline 34 & 33 & C． & －1． & 0. & 0. \\
\hline 33 & 32 & C． & －1． & 0. & 0. \\
\hline 32 & 27 & －1． & 0. & 0. & 0 ． \\
\hline 27 & 21 & －1． & C． & 0 。 & 0. \\
\hline 21 & 16 & －1． & 0. & 0 ． & 0 ． \\
\hline 16 & 10 & －1． & 0. & 0. & 0. \\
\hline 10 & 5 & －1． & C． & 0 ． & 0 。 \\
\hline 5 & 1 & －1． & \(0 \cdot\) & 0. & 0. \\
\hline
\end{tabular}
IDELEY ARRAY（I2），8（2I5）
3
\begin{tabular}{rrrrrrrrrrrrrrr}
1 & 0 & 2 & 0 & 3 & 0 & 4 & 0 & 5 & 0 & 6 & 0 & 7 & 0 & 8 \\
9 & 0 & 10 & 0 & 11 & 0 & 12 & 0 & 13 & 0 & 14 & 0 & 15 & 0 & 16 \\
17 & 0 & 18 & 0 & 19 & 0 & 20 & 0 & 21 & 0 & 22 & 0 & 23 & 0 & 24 \\
25 & 0 & \(2 \epsilon\) & 0 & 27 & 0 & 28 & 0 & 29 & 0 & 30 & 0 & 31 & 0 & 32 \\
33 & 0 & 34 & 0 & 35 & 0 & 36 & 0 & 37 & 0 & 38 & 0 & 37 & 0 & 40 \\
41 & 0 & 42 & 0 & 43 & 0 & 44 & 0 & 45 & 0 & 46 & 0 & 47 & 0 & 48 \\
4 & 0
\end{tabular}
\(\begin{array}{ccccc}\text { ICOO ，FCTR1，FCTR2，FCTR3，FCTR4 } & (I 5,4 F 10.0) & 0 .\end{array}\)
```

```
INPUT CATA FOR SAMPL: OUTPUT--CONTINLED
```



INPUT DATA FOR SAMPLE OUTPUT－－CONT I NUED

11	0.	0.	0.
12	0.	0.	0.
13	0.	0 。	0.
14	0.	0.	0 。
15	0.	0.	0.
16	－10．	500.	0.
17	0.	0.	0.
18	0 ．	0.	0.
17	0.	0.	0 。
20	0 ．	C．	0.

APPENDIX H. -- Sample Output From Computer Program

2-DIMENSIONAL MASSTRANSPGRT IN FLCWING GROUNDWATER FOR 2 REACTING SCLUTES SUBJECT TO BINARY CATION EXCHANGE NUMERICAL SOLUTION BY THE GALERKIN FINITE ELEMENT METHOD USING TRIANGULAR ELEMENTS AND LINEAR SHAPE FUNCTIONS WRITTEN ANC PROGRAMMED BY JAMES HARNER

EXAMPLE DATA

NONCONSERVATIVE TRANSPORT(ICT=0)


ELEMENT DISCRIPTCRS

NUMNP (NUMEER OF NODAL POINTS)	$=$	35
NUMEL (NUMBER OF ELEMENTS)	$=$	50
NUMES (NUMEER OF BOUNDARY SEGMENTS)	$=18$	

NUMES (NUMBER OF BOUNDARY SEGMENTS) $=18$

## TIME PARAMETERS

NTIM	(MAXIMUM NUMBER OF TIME STEPS)	$=$	200
NPMP	(NUMEER OF PUMPING PERIODS)	$=$	2
PINT	(FIRST PUMPING PERICD IN DAYS)	$=$	1.00
TIMX (TIME INCREMENT MULTIPLIER)	$=$		
TCELMAX (MAXIMUM TIME STEP IN DAYS)	1.50		
TINIT (INITIAL TIME STEP IN SECONDS)	$=$	$=50$	
		$=60$.	

HYOROLOGIC AND CHEMICAL PARAMETERS

S	(STORAGE COEFFICIENT)   (EFFECTIVE PORCSITY)							$=$$=$	.00003	
POROS								. 35006		
BETA	(LONGITUDINAL DISPERSIVITY					IN FT)			=	20.0
OLTRAT	CRATIO OF	OF TRAN	NSVERS	SE TO						
	LONGITUD	UDINAL	DISPE	ERSIVI				$=$	-30	
21	CVALEICE	CF SP	PECIES	S 1)				$=$	1.	
22	(VALEVCE	OF SP	PECIES	S 2)				$=$	2.	
ATOMUTI	(ATOMIC	WEIGHT	T IN	GRAMS	0 F	SPECIES	1)	=	18.040	
ATOMHT 2	CATOMIC	HEIGHT	T IN	GRAMS	OF	SPECIES	2)	$=$	40.080	
DBYHUK 1	CJEBYE HU	HUCKEL	PARAN	METER	FOR	SPECIES	1)	$=$	3.	
DBYHUK 2	( DEBYE HU	HUCKEL	PARAM	METER	FOR	SPECIES	2)	$=$	6.	
SK	(SELECTIV	IVITY C	COEFF	ICIEN					38.00000	


NODE	$\times$ LOC	Y LOC	NODE	$x$ LOC	Y LOC	NODE	X LOC	Y LOC
1	0.00	120.00	2	40.00				
4	120.00	120.00	5	40.00 0.00	120.00	3		120.00
7	50.00	100.00	8	90.00	100.00	5	, 1.00 C	100.00
10	0.00	80.00	11	20.00	100.00 80.00	5	120.00	100.00
13	80.00	80.00	14	100.00	80.00	12	40.00	80.00
16	0.00	E0.00	17	30.0	EO.00	15	120.00	80.00
19	90.00	60.00	20	120.00	$\in 0.00$	18	EC.00	60.00
22	20.00	40.00	23	40.00	40.00	21	0.00	40.00
25	100.00	40.00	26	120.00	40.00	24	80.00	40.00
28	30.00	20.00	29	60.00	20.00	27	C. 00	20.00
31	120.00	20.00	32	0.0 0	0.00	30 32	90.00	20.00
34	80.00	0.00	35	120.00	0.00	32	40.00	0.00



SEGMENT				SEGMENT									
NODE		VODE	LX	LY	DHD X	DHDY	VODE		NODE	LX	LY	$3 H D X$	DH) Y
1	-		0.0000	1.0000	0.0000	0.0000	2	-	3	0.0000	1.0000	0.0000	0.0000
3			0.0000	1.0000	0.0000	0.0000	4	-	9	1.0000	C. 0000	0.0000	0.0000
3	-		1.0000	0.0000	0.0000	0.0000	15	-	20	1.0000	C. 0000	0.0000	0.0000
20	-		1.0000	0.0000	0.0000	0.0000	26	-	31	1.0000	C. 0000	C. 0000	0.0000
31	-		1.0000	0.0000	0.0000	0.0000	35		34	0.0000	$-1.0000$	0.0000	0.0000
34	-		0.0000	-1.0000	0.0000	0.0000	33	-	32	0.0000	-1.0000	0.0000	0.0000
32	-		$-1.0000$	0.0000	0.0000	0.0000	27		21	-1.0000	C. 0000	0.0000	0.0000
21	-		$-1.0000$	0.0000	0.0000	0.0000	16	-	10	-1.0000	C. 0000	0.0000	0.0000
10	-	5	$-1.0 C O C$	0.0000	0.0000	0.0000	5	-	1	-1.0000	C. 0000	0.0000	0.0000

## INPUT DATA

## ELEMENT IDENTIFICATION

	NUMEER OF				
ELEM 10	OCCURENCES	RECH	C1RECH	C 2RECH	VPRM
1	0	0 .	0.	f.	0.
2	0	0 。	0.	c.	0.
3	0	0 .	0.	c.	0.


ELEMENT	AREA	ELEM ID	ELEMENT	AREA	ELEM ID
1	300.1	0	2	400.0	0
4	400.0	0	5	300.0	0
7	300.0	0	8	200.0	0
10	200.0	0	11	300.0	0
13	300.1	0	14	200.0	0
16	200.0	0	17	200.0	0
19	200.1	0	20	300.0	0
22	300.8	0	23	200.0	0
25	200.1	0	26	200.0	0
28	200.0	0	29	300.0	0
31	300.8	0	32	200.0	0
34	200.0	0	35	200.0	0
37	200.1	0	38	300.0	0
40	300.8	0	41	200.0	0
43	200.0	0	44	300.0	0
46	300.1	0	47	400.0	0
49	400.0	0	50	300.0	0


ELEMEVT	AREA	ELEM IL
$z$	300.0	0
6	400.0	0
9	300.0	0
12	400.0	0
15	300.0	0
13	300.0	0
21	400.0	0
24	300.0	0
27	300.0	0
30	400.0	0
33	300.0	0
36	300.0	0
23	400.0	0
42	300.0	$C$
45	400.0	0
48	300.0	0


ソアoE IO	NUMEER OF occurences	REC	C1REC	
1	18	0.	200.	C2REC 200.
2	0	0.	0.	${ }^{\circ}$
3	0	0.	0.	c．
4	0	0.	0.	$0_{0}$
5	0	0 。	0.	0.
6	0	0 。	0.	c．
7	0	0 ．	0.	c．
3	0	0.	0.	0.
9	0	0 ．	0.	0.
10	0	0.	0.	c．
11	0	0.	0.	$c$
12	0	0.	0.	c．
13	0	0.	0.	c．
14	0	0.	0.	${ }_{6}$
15	0	0.	0.	6.
16	1	－5．	1000.	0.
17	0	0.	0.	0.
18	0	0.	0.	c．
17	0	0.	0.	$c_{0}$
20	0	0.	0.	0.


		HYORAULIC		CATION EXCHANGE	
NODE	TRANSMISSIVITY	CONDUCTIVITY	THICKVESS	CAPACITY(MEQ ${ }^{\text {( }}$ )	(WDE ID
1	100.00	2.000	50.00	300.0	1
2	100.00	2. 000	50.00	300.0	1
3	$10 \mathrm{C.00}$	2. 000	50.00	300.0	1
4	100.00	2. 000	50.00	300.0	1
5	100.00	2.000	50.00	300.0	1
6	100.00	2.000	50.00	300.0	0
7	$10 \mathrm{C.00}$	2. 000	50.00	300.0	0
8	100.00	2. 000	50.00	300.0	0
9	100.00	2.000	50.00	300.0	1
10	100.00	2. 000	50.00	300.0	1
11	100.00	2. 000	50.00	300.0	1
12	100.00	2. 000	50.00	300.0	0
13	100.00	2. 000	50.00	300.0	0
14	100.00	2. 000	50.00	300.0	C
15	100.00	2. 000	50.00	300.0	1
16	100.00	2. 000	50.00	300.0	1
17	100.00	2.000	50.00	300.0	0
18	100.00	2. 000	50.00	300.1	$1 \in$
19	100.00	2. 000	50.00	300.0	0
20	100.00	2. 000	50.00	300.0	1
21	100.00	2. 000	50.00	300.0	1
22	1 CO 00	2. 000	50.00	300.0	C
23	100.00	2. 000	50.00	300.0	0
24	100.00	2. 000	50.00	300.0	0
25	100.00	2. 000	50.00	300.0	0
26	100.00	2. 000	50.00	300.0	1
27	100.00	2. 000	50.00	300.0	1
28	100.00	2. 000	50.00	300.0	0
29	100.00	2. 000	50.00	300.0	0
30	100.00	2. 000	50.00	300.0	c
31	100.00	2. 000	50.00	300.0	1
32	100.00	2. 000	50.00	300.0	1
33	100.00	2. 000	50.00	300.0	1
34	100.00	2.000	50.00	300.0	1
35	100.00	2. 000	50.00	300.0	1



MATFLOW	ITERATIONS =	9	TIME=	. 0006944
MATCHEM	ITERATIONS =	1	TTME=	. 0006944
MATFLOU	ITERATIONS =	7	TIME=	. 0017361
MATCHEM	ITERATIONS =	1	TIME=	. 0017361
MATFLJU	ITERATIONS =	4	TIME=	. 0032986
MATCHEY	ITERATIONS=	1	TIME=	.0032986
MATFLOM	ITERATIONS =	1	TIME=	. 0056424
MATCHEM	ITERATICNS =	1	TIME $=$	.0056424
MATFLOU	ITERATIONS =	1	TIME $=$	.0091580
MATCHEM	ITEFATIONS =	1	TIME=	.0091580
MAT FLOW	ITERATIONS =	1	TIME =	. 0144314
MATCHEM	ITERATIONS =	2	TIME=	. 0144314
MATFLJW	ITERATIONS =	1	TIME $=$	. 0223416
MAT CHEM	ITERATIONS =	3	TIME $=$	. 0223416
MATFLJW	ITERATIONS =	1	TIME=	. 0342068
MAT CHEM	ITERATIONS =	4	TIME=	. 0342068
MATFLOM	ITERATIONS =	1	TIME=	. 0520047
MATCHEM	ITERATIONS =	6	TIME=	. 0520047
MATFLOH	ITERATIONS $=$	1	TTME=	.0787014
MATCHEM	ITERATIONS =	7	TIME=	. 0787014
MATFLOW	ITERATIONS =	1	TIME=	. 1187466
MATCHEM	ITERATIONS =	8	TIME=	.1187466
MATFLOU	ITERATIONS =	1	TIME $=$	.1788144
MATCHEM	ITERATIONS =	10	TIME $=$	. 1788144
MATFLJW	ITERATIONS =	1	TIME $=$	.2689160
MATCHEM	ITERATIONS =	11	TIME=	. 2689160
MATFLOW	ITERATIONS =	1	TIME=	.4040684
MATCHEM	ITERATIONS =	12	TIME=	.4040684
MATFLOW	ITERATIONS =	1	TIME=	. 6067971
MATCHEM	ITERATIONS =	13	TIME=	.6067971
MATFLOW	ITERATIONS =	1	TIME=	.9108900
MATCHEM	ITERATIONS =	13	TIME=	.9108900
MATFLOU	ITERATIONS =	1	TINE $=$	1.0000000
MATCHEM	ITERATIONS =	10	TIME=	1.0000000


HEAD DISTRIBUTION -- FT	
TIME (DAYS) $=$	1.000
TTME (YEARS) $=$	.00274



DRAWO OAN DISTRIBUTION -- FT

TIME(OAYS) $=1.000$
$\operatorname{TIME}($ YEARS $)=\quad .00274$

NODE	DRAWDOWN	NODE	DRAWDOWN	NODE	DRAWOOWN	NODE	DF AWDOWN
1	0.000	2	0.000	3	0.000	4	C. 000
5	0.000	6	-. 433	7	-. 629	8	-. 433
9	0.000	10	0.000	11	-. 585	12	-1.346
13	-1.346	14	-. 585	15	0.000	16	0.000
17	-1.148	18	-3.935	19	-1.148	co	0.000
21	0.000	22	-. 585	23	-1.346	24	-1.346
25	-.585	26	0.000	27	0.000	< 8	-. 433
29	--¢ 29	30	-. 433	31	0.000	$\geq 2$	0.000
33	0.000	34	0.000	35	0.000		-



FLOW BY NODE ID -- GPM

QIN $(1)=$	-.407
QCUT $(1)=$	5.407
QIN $(16)=$	-5.000
QOUT $(16)=$	0.000

FLCh FROY CONSTANT HEAD NODES -- GPM POSITIVE IS DISCHARGE (PUMPAGE)
NEGATIVE IS RECHARGE (INJECTION)
NODE $(1)=\quad-.204$
NODE $\quad 2)=\quad .007$
NODE 3 ) = $\quad .007$
NODE 4 ) = -.204
NODE (5)= .188
NODE 9 ) $=\quad .188$
NODE $(10)=$
$-3 C 4$
$3 C 4$
-351
-351

- 351
- 351
- $3 \mathrm{C4}$
- $3 C 4$
- 188
- 188
. 316

1. 046
1.046
1.046
$\begin{array}{lr}\text { NCDE }(34)= & 1.046 \\ \text { NODE }(35)= & 1.316\end{array}$

TIME(DAYS) $=$	1.00 C
TIME(YEARS) $=$	.00274


NOD	CONC	NODE	CONC
1	200.128	2	199.284
5	$199.36 E$	6	200.409
9	199.366	10	199.043
13	194.004	14	201.866
17	193.636	18	242.741
21	199.129	22	201.682
25	201.682	$2 \epsilon$	199.129
27	$201.8 C 8$	30	200.301
33	199.471	34	199.471


VODE	CONC
3	199.284
7	202.196
11	201.866
15	199.042
19	193.636
23	194.594
27	199.479
31	199.479
35	200.109

CONC
199.284
200. 409
199. 043
201.866 242.741 99. 129 200. 301 199.471

NCOE	CONC
4	200.128
8	200.409
12	194.004
16	201.128
20	201.128
24	194.595
28	200.301
22	200.109

TIME (DAYS) = 1.000
$\operatorname{TIME}(Y E A R S)=\quad .00274$

NODE	CONC	NODE	CONC
1	200.171	2	199.002
5	199.122	$\epsilon$	200.573
9	199.122	10	198.724
13	191.563	14	202.573
17	190.924	18	262.645
21	198.895	22	202.212
25	202.211	26	198.893
29	202.306	30	200.362
33	195.370	34	199.370

CONC 200.171 200.573 191.562 201.614 201.614 192.726 192.726 200.362 200.134

TIME (DAYS) $=1.000$

TIME(YEARS) = .00274

NOOE	CONC	NODE	CONC	NOOE	CONC	NCDE	CONC
1	. 531	2	. 531	3	. 531	4	. 531
5	. 531	6	. 530	7	- 529	9	- 530
9	- ¢31	10	. 531	11	. 530	12	. 534
13	. 534	14	. 530	15	- 531	16	. 530
17	. 534	18	. 509	19	. 534	20	. 530
21	- 531	22	. 530	23	. 534	24	. 534
25	-530	26	- 531	27	- 531	28	. 530
29	. 529	30	. 530	31	- 531	12	. 531
33	. 531	34	. 531	35	- 531		

$\begin{array}{lr}\text { TIME (DAYS) }= & 1.000 \\ \text { TIME (YEARS) } & .00274\end{array}$

NOOE	CJNC	NODE	CDNC	VODE	CONC	NODE	CONC
1	2540.514	2	2537.876	3	2537.876	4	254 C.514
5	2538.109	$\epsilon$	2541.336	7	2546.816	3	2541.336
9	2538.109	10	2536.885	11	2545.954	12	2521.910
13	2521.910	14	2545.954	15	2536.885	16	2543.393
17	2521.324	18	2658.676	19	2521.324	< 0	2543.393
21	2536.544	22	2545.829	23	2522.255	$<4$	2522.255
25	2545.829	26	2536.944	27	2538.185	28	2541.263
29	2546.550	30	2541.263	31	2538.185	32	2540.501
33	2538.004	34	2538.004	35	2540.501		

ADSORBED CONCENTRATICN CF SPECIES 2 (C2HAT) -- MG/L

TIME(DAYS) $=\quad 1.000$
$\operatorname{TIME}($ YEARS $)=.00274$

NJDE	CONC	NODE	CONC	VODE	CONC	NODE	CONC
1	3189.832	2	3192.763	3	3192.763	4	3189.832
5	3192.504	6	3188.920	7	3182.831	3	3188.920
9	3192.504	10	3193.863	11	3183.789	12	3210.499
13	3210.459	14	3183.789	15	3193.864	16	3186.634
17	3211.150	18	3058.570	19	3211.150	$\bigcirc 0$	3186.634
21	3193.798	22	3183.928	23	3210.116	24	3210.116
25	3183.928	26	3193.799	27	3192.420	28	3189.001
29	3183.128	$\geq 0$	3189.001	31	3192.420	32	3189.847
33	3192.621	34	3192.621	35	3189.847		




PUMPING PERIJD 2

PIAT (PUMPING PERIOD IN DAYS) =

NOCE IDENTIFICATION


NODE	NODE IO
1	1
6	0
11	0
16	0
21	0
26	0
31	0


NODE	NODE ID	NODE	VODE ID
2	1	3	1
7	0	8	0
12	0	13	6
17	0	18	16
22	0	23	6
27	0	28	0
32	1	33	1

NODE
4
5
14
19
24
25
34

NCOE
5
10
15
20
25
30
35

MATFLOd	ITERATIONS =	15	TIME=	1.0006944
MATCHEM	ITERATIONS =	1	TIME=	1.0006944
MATFLOW	ITERATIONS =	13	TIME=	1.0017361
MATCHEM	ITERATIONS =	1	TIME $=$	1.0017361
MATFLJW	ITERATIONS =	10	TIME $=$	1. 0032986
MATCHEM	ITERATIONS =	1	TIME=	1.0032986
MATFLJd	ITERATIONS $=$	4	TIME=	1.0056424
MATCHEM	ITERATIONS =	1	TIME=	1.0056424
MATFLJH	ITERATIONS =	1	TIME $=$	1.0091580
MATCHEM	ITERATIONS =	1	TIME=	1.0091580
MATFLOH	ITERATIONS =	1	TIME=	1.0144314
MATCHEM	ITERATIONS =	1	TIME=	1.0144314
MATFLOH	ITEFATIONS =	1	TINE=	1.0223416
MATCHEM	ITEFATIONS =	1	TIME=	1.0223416
MATFLJd	ITERATIONS =	1	TIME $=$	1.0342068
MATCHEM	ITERATIONS =	2	TIME=	1.0342068
MATFLOd	ITERATIONS =	1	TINE=	1.0520047
MATCHEM	ITERATIONS =	2	TINE $=$	1.0520047
MATFLJd	ITERATIONS =	1	TIME=	1.0787014
NATCHEM	ITERATIONS =	2	TIME=	1.0787014
MATFLOW	ITERATIOVS =	1	TIME=	1.1187466
MATCHEM	ITERATIONS =	3	TIME=	1.1187466
MATFLOH	ITERATIONS =	1	TIME=	1.1788144
MATCHEM	ITERATIONS =	4	TIME=	1.1788144
MATFLOH	ITERATIONS =	1	TIME $=$	1.2689160
MATCHEY	ITERATIONS =	5	TIME=	1.2689160
MATFLOW	ITERATIONS =	1	TINE=	1.4040684
MATCHEM	ITERATIONS =	7	TIME=	1.4040684
MATFLOW	ITERATIONS =	1	TIME=	1.5000000
MATCHEM	ITERATIONS =	5	TIME =	1.5000000

heac oistribution -- ft
------------------

TMME(JAYS) $=\quad 1.500$
TME (YEARS) = 00411

NODE	HEAO	NODE
1	50.000	2
5	50.825	$\epsilon$
9	50.839	10
13	52.790	14
17	52.237	18
21	50.382	22
25	50.734	26
29	49.344	30
33	47.000	34


HEAD	VODE	HEAD
50.000	3	50.000
51.110	7	51.342
51.381	11	51.732
51.733	15	51.382
57.530	19	52.237
50.733	23	51.791
50.383	27	48.840
49.112	31	48.840
47.000	35	47.000

HEA 50.000 51.111 52.790 52.790
51.223
51.223 51.224 51.791
49.112 49.112
47.000

```
DQAWDCWN OISTRIBUTION -- FT
```

TIME(DAYS) $=1.50 \mathrm{C}$
TIME(YEARS)= .00411


```
CUMULATIVE WATER BALANCE -- FT**3
ll
QINRCH (RECHARGE-DISTRIBUTED) =
QOUTRCH (DISCHARGE-DISTRIBUTED) =
GINREC (RECHARGE-FCINT) = -1925.000
QOUTREC (DISCHARGE-FOINT) = 0.000
INLEK (RECHARGE-LEAKAGE) = 0.000
GOUTLEK (DISCHARGE-LEAKAGE) =
INBOY (RECHARGE-BOUNDARY) =
GOUTBDY (DISCHARGE-BOUNDARY) =
GINCHN (RECHARGE-CONST HEAD NODES) = -78.469
GOUTCHV (DISCHARGE-CONST HEAD NODES) = 1998.567
TOTAL GIN = -2003.469
TOTAL GOUT = 1998.567
QSTOR (WATER RELEASED FRCM STORAGE) = -1.051
MASS BALANCE RESIDUAL =
ERROR AS FERCENT OF OIN =
ERROR AS PERCEAT OF QIN =
ERROR AS PERCENT OF QCUT =
ERROR AS PERCENT CF QSTOR =
```

0.000
0.000
1925.000
0.000
0.000
0.000
0.000
0.000
$-78.469$ 1998.567
$-2003.469$ 1998.567
$-1.051$
3.851
.192 .193 366.280

FLOK BY NODE ID -- GPM

QIN $(1)=$	0.000
QOUT $(1)=$	5.580
QIN $(16)=$	-10.000
QOUT $(16)=$	0.000

FLCU FROM CONSTANT HEAD NCDES -- GPM
POSITIVE IS DISCHARGE (PUMPAGE)
NEGATIVE IS RECHARGE (INJECTICN)
NODE ( $11=$
$\operatorname{NODE}(2)=$
NODE (3)=
NODE ( 4 ) =
$\operatorname{NODE}(32)=$
NODE ( 33 ) $=$
$\operatorname{NCDE}(34)=$
NCDE ( 35 )=
$\begin{array}{r}.470 \\ \hline 1.243\end{array}$

1. 243
1.244
.471

- 551
2.284

2. 284
-9ร1

SOLUTE CONCENTRATION OF SPECIES 1 (C1) -- MG/L
$\begin{array}{lr} & 1.50 \mathrm{C} \\ \text { TIME (DAYS })= & .00411\end{array}$

NOD	CONC	Node	CONC	VODE	CONC	NODE	CONE
1	200.10t	2	199.446	3	199.446	4	200.106
5	195.467	6	200.314	7	201.858	8	200.314
9	199.46E	10	199.104	11	201.704	12	194.557
13	194.558	14	201.706	15	199.094	16	201.213
17	193.544	18	245.749	19	193.543	$\leq 0$	201.213
21	199.273	22	201.408	23	195.441	24	195.442
25	201.409	26	199. 265	27	199.621	28	200.179
29	201. 315	30	200.179	31	199.620	$\geq 2$	200.070
33	195.68\%	34	199.688	35	200.070		

SOLUTE CONCENTRATICN OF SPECIES 2 (C2) -- MG $/ 2$
$\begin{array}{lr}\text { TIME(DAYS) }= & 1.500 \\ \text { TIME(YEARS) } & =\quad .00411\end{array}$

NODE	CONC	NODE	CONC	NODE
1	200.083	2	199.552	3
5	199.522	6	200.258	7
9	199.520	10	199.167	11
13	194.443	14	201.669	15
17	192.506	18	257.183	19
21	$199.5 C 6$	22	201.073	23
25	201.076	26	199.490	27
29	200.641	30	199.990	31
33	200.026	34	200.026	35

CONC
199.552
201.719
201.665
$199.14 \epsilon$
192.503
196.215
199.827
$199.82 \epsilon$
200.013

CONC
200.083
200.257 194.440 201.476 201.476
196.218
196.218
199.990
199.990
200.012

TMMECDAYS $=$   TIME(YEARS)=	$\begin{aligned} & 1.500 \\ & 00411 \end{aligned}$						
node	CONC	node	conc	vode	CONC	node	CONC
1	. 469	2	. 469	3	. 469	4	. 469
5	. 465	6	. 470	7	. 471	8	. 470
9	. 469	10	. 469	11	. 471	12	. 465
13	. 465	14	. 471	15	. 469	16	. 470
17	. 454	18	. 499	19	. 464	20	. 470
21	-469	22	. 471	23	. 465	24	. 465
25	. 471	$2 \epsilon$	. 469	27	. 469	28	. 470
29	. 471	30	. 470	31	. 469	32	. 469
33	. 469	34	. 469	35	. 469		


NOOE	CONC	NODE		CONC	VODE	CONC	NODE	CONC
1	-531	2		. 531	- 3	- 531	4	- 531
5	-531	6		- 530	7	- 529	8	- 530
9	. 531	10		. 531	11	. 529	12	. 535
13	. 535	14		. 529	15	- 531	16	- 530
17	- 536	18		. 501	19	. 536	C0	- 530
21	. 531	22		. 529	23	- 535	¢ 4	. 535
25	- 529	26		. 531	27	- 531	28	- 530
29	. 529	30		. 530	31	- 531	32	- 531
3 \%	-531	34		. 531	35	. 531		

ADSCR3ED CONCEVTRATION OF SPECIES 1 (C1HAT) -- MG/L

TIME (JAYS) $=1.500$
$\operatorname{TIME}(Y E A R S)=\quad .00411$

NOC		CONC	NODE	CONC	VODE	CONC	N0うE	CONC
1		2540.696	2	2537.014	3	2537.013	4	254 C. 686
5		2537.324	6	2541.816	7	2549.448	1	2541.816
9		2537.323	10	2535.563	11	2548.301	12	2514.480
13		2514.481	14	2548.302	15	2535.561	16	2544.726
17	.	2513.560	18	2699.200	19	2513.560	20	2544.726
21		2535.650	22	2548.148	23	2514.948	24	2514.748
25		2548.142	26	2535.648	27	2537.420	¢3	2541.729
29		2549.122	30	2541.729	31	2537.420	? 2	2540.662
33		2537.182	34	2537.182	35	2540.662		



TIME (DAYS) $=$	1.500
TIME (YEARS $)=$	.00411


C IINRCH	(DISTRIBUTED RECHARGE)	$=$	0.000
C1JTRCH	(DISTRIBUTED DISCHARGE)	$=$	0.000
CIINREC	(POINT RECHARGE)	$=$	-1443749.900
CIOTREC	(POINT DISCHARGE)	$=$	0.000
CIINLEK	(RECHARGE-LEAKAGE)	$=$	0.000
C 10TLEK	(DISCHARGE-LEAKAGE)	=	0.000
CIINCHN	(RECHARGE-CONST HEAD NODES)	$=$	-15693.809
C IOTCHM	(DISCHARGE-CCNST HEAD NODES)	$=$	399177.313
CIINBor	(INFLOW-MODEL BOUNDARY)	$=$	0.000
C1JTBDY	(OUTFLOW-MODEL BOUNDARY)	$=$	0.000
	TOTAL CIIN	$=$	-1459443.709

CISTOR (PRESENT MASS STORED) CIDELST (CHANGE IN MASS STOREO) 690502127.265 1030896.316



[^0]:    Figure 32. -- Ammonium concentration versus cumulative water recovered during restoration.

[^1]:    Figure A6. -- Water quality zones at a solution mine and an areal view of the flow pattern for a 4 cell leach field.

[^2]:    *This parameter card preceeds the indicated data sets. It is used to specify whether the parameter is constant and uniform, and can be defined by a single value, or whether it varies in space and must be defined at each node. If $I N P=0$, the data set has a constant value, which is defined by FCTR, and the program skips the remainder of the data set. If INP $\neq 0$, then $\operatorname{FCTR}$ is used as a multiplication factor for the values read in the data set. Set $\mathrm{FCTR}=1$ if no data conversion is required.

