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ABSTRACT 
 
 
 

REMOTE SENSING ASSESSMENTS OF CONSUMPTIVE USE OF AGRICULTURAL 

WATER IN WESTERN SLOPE OF COLORADO 

 
 
The Western Slope of Colorado is drained by Colorado River and its tributaries, which are facing 

increased pressure on their water resources due to prolonged droughts and increasing demands. 

While water is a limited resource, agriculture uses more than half of the total diverted water in 

the area. In such a scenario, agricultural water can be a likely supply for water conservation and 

sharing. The quantification of precise amount of water consumed by agricultural crops, or, 

consumptive use, is crucial for water sharing under temporary water sharing arrangements like 

water banks. Remote Sensing is considered as the most feasible method to determine spatial 

actual crop water use over large areas.  

 

A preliminary performance evaluation of ReSET model for daily consumptive water use 

estimates under energy limiting and water limiting conditions was done. Conserved Consumptive 

Use estimates from plots replicating historical (full irrigation) and operational water bank 

(reduced irrigation) conditions were made on a monthly basis. In addition, crop growth stage 

information for grass and alfalfa pastures of the Western Slope was determined using Landsat 

and Sentinel satellites. An empirical relation between vegetation index (VI) and crop coefficient 

(Kc) was developed for use with reflectance-based crop coefficient approach. Lastly, reflectance-

based approach for grass and alfalfa pastures was evaluated with ReSET-derived daily estimates 

of crop consumptive use.  
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CHAPTER 1: INTRODUCTION 
 
 
 

Semi-arid climate of the Western US is characterized by low precipitation, making it highly 

vulnerable to effects of climate change-induced droughts. Non-climatic changes due to 

increasing human population growth are increasing pressure on limited water resources to fulfil 

demands for agriculture, urban landscape, municipality, industry, energy and, recreation sectors. 

Human activities are also responsible for deterioration of the quality of these limited water 

resources (Peters and Meybeck, 2007). At the same time, it is predicted that climate change 

would make precipitation more variable with the possibility of longer droughts (Barnett et al., 

2008; Libecap, 2010). Other potential impacts of climate change could include increased 

frequency and magnitude of droughts and floods, and long-term changes in mean renewable 

water supplies through changes in precipitation, temperature, humidity, wind, duration of 

accumulated snowpack, nature and extent of vegetation, soil moisture, and runoff (Solomon et 

al., 2007).  

 

Irrigated agriculture is the main user of diverted water globally, reaching a proportion that 

exceeds 70–80% of the total water diverted in the arid and semi-arid zones (Fereres and Soriano, 

2007). In the United States, this sector consumes 65% of the water of all sectors (Hutson et al., 

2004). In the western US, Colorado River is a water source for 4 upper basin states (Colorado, 

New Mexico, Utah and Wyoming), 3 lower basin states (Arizona, California and Nevada) in the 

US and Mexico. Roughly 90 percent of agricultural land in the Colorado River basin is irrigated, 

and 70 percent of the river's entire water supply is used for irrigation (Chen et al., 2015). The 

Colorado River Compact of 1922 regulates and ensures equitable distribution of water of 
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Colorado River. It requires the upper basin states to not to cause the flow, during any consecutive 

10-year period, to fall below 9.25 billion cubic meters at Lee Ferry, the site that separates the 

upper and lower basin states. If the flow does fall below the specified amount for a consecutive 

10-year period, curtailment of water in the upper basin is possible (Norviel et al., 1922).  

 

In Colorado, the Western Slope is drained by the Colorado River and its tributaries. While about 

80% of the water of Colorado is on the Western Slope, about 80% of the state population lives 

on the eastern Front Range. The senior water rights (the first to be fulfilled and reliable even in 

times of shortage) are largely held by agriculture, while Front Range cities have junior water 

rights and get from 30% to 50% of their water from the Western Slope in any given year (Best, 

2009). Historical estimates of the Colorado River’s base flow were determined to be 

approximately 18,500 million cubic meter per year (MacDonald, 2010). However, these 

estimates, which served as the basis for the river's allocations, were found to be optimistic, since 

they relied on historical flows based on records during a wet period. This has resulted in an over-

allocated river system facing additional climate and population increase-related pressures (Chen 

et al., 2014). 

  

A recent study on the Colorado River by Vano et al., 2014 projected a future streamflow 

decrease from 5% to 35% due to +2.5° ± 1°C warming in mid-twenty-first century. They 

estimated the ratio of annual runoff change to annual precipitation change (precipitation 

elasticity) at Lee Ferry to be between 2 and 3, as a result of which a 5% decline in precipitation 

will  likely result in a 10%–15% decline in streamflow. The authors suggest substantial 

reductions in future Colorado River streamflow by the end of the twenty-first century due to a 
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combination of strong temperature-induced runoff curtailment and a probable reduction in 

annual precipitation. USBR (2012) projected the imbalance in supply and demand to be about 

3.2 Million Acre Feet (MAF) by 2060. Such an imbalance could hinder water supply to junior 

water right holders, and could also potentially lead to a curtailment of water.  

 

Agricultural water could be a likely supply for water conservation and sharing in such an 

environment. A more precise understanding is required of the quantities that can be conserved 

without jeopardizing the underlying agricultural and rural economies that depend on irrigated 

agriculture. In the Western US, water rights are distinct property rights not tied to the land, and 

water can be transferred among different users. “A water transfer is a voluntary agreement that 

results in a temporary or permanent change in the type, time, or place of use of water and/or a 

water right. Water transfers can be local or distant; they can be a sale, lease, or donation; and 

they can move water among agricultural, municipal, industrial and environmental uses” (Doherty 

et al., 2012).  

 

Traditional form of transfer of water from agriculture is permanent (called buy-and-dry) which 

results in permanent dry-up of agricultural lands. There is an increasing concern that these water 

transfers may have negative third‐party effects such as impacts to the agricultural supply, 

service, and processing sectors that are fundamental to agriculture‐based rural economies. One 

strategy to mitigate these negative third-party effects is to employ alternative transfer methods 

(ATMs). Doherty et al., 2012 define ATM as “a structured agreement that allows for the transfer 

of water to a new use while minimizing the impact on the local economy, providing other 

funding sources to the agricultural user, and/or optimizing both the agricultural and 
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nonagricultural benefits of the remaining lands.” The main aim of these methods is to avoid 

permanent dry-up of agricultural land, and to minimize the economic and environmental impacts 

due to loss of irrigated agriculture. ATMs include interruptible supply agreements, rotational 

fallowing, deficit irrigation, and water banking. ATMs that are intermittent in nature like 

rotational fallowing and water banking can be applied to mitigate drought effects, provide 

supplies to municipalities and for environmental uses, provide emergency supplies, and long‐

term conjunctive use (CDM, 2011). Water banking, authorized by the Colorado legislature in 

2003, is one such ATM that is gaining popularity in the Western Slope. 

 

1.1 Water Banking 

A water bank is a compensated voluntary water sharing arrangement under the auspices of which 

participating agricultural water users can share water by temporarily foregoing their irrigation 

and transferring their water to other water users. It is a market-based approach in which the 

deposits and withdrawals to the water “bank” are subject to operational considerations of pricing, 

transaction and sharing arrangement duration defined appropriately for its successful operation. 

A water bank could operate as part of the demand management component to prevent 

downstream lakes like Lake Powell from going below minimum power levels.  In the longer 

term, it could operate to prevent shortages under the Colorado River Compact or could also help 

in responding to a Colorado River Compact curtailment and its effects on critical post-compact 

users, that is, lands that are irrigated by pre‐compact water rights could be temporarily fallowed, 

and the water could be transferred under a water bank to critical post‐compact water uses (like 

municipalities, industries etc.).   
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Originally suggested by a group of ranchers from Colorado’s Western Slope, water banking 

system to legally reallocate water could be practiced on a rotational basis to minimize 

agricultural economic and environmental impacts. Water bank participants could temporarily 

lease water from full -season or partial/split-season irrigation regimes to free up their water. 

According to a study conducted to predict water market participation by Cook and Rabotyagov 

(2014), irrigators were required to participate in a series of stated preference exercises with real 

monetary payoffs and it was found that with all other factors being equal, irrigators are more 

likely to accept partial/split-season than full-season leases.  

 

Forage and pasture crops are ideal for inclusion in a water bank because they are low-value 

crops, more tolerant to water stress, and usually do not experience much long-term effects on 

future production (MWH, 2012). Grass and alfalfa pasture crops are also primary irrigation water 

users on the Western Slope (MWH, 2012).  

 

Beneficial consumptive use (CU) is the basis, measure and limit of a water right (Hobbs, 2003). 

It is defined as the amount of water withdrawn from a source (e.g., diversions) that is no longer 

available because it has been beneficially removed from the immediate water environment. 

Beneficial is used in the context such that water use is for benefit of humans and community, 

without any waste. The water returned to the water source through run-off and/or percolation, 

collectively termed return flow, is not considered to be consumptive use. Water conserved on a 

particular agricultural parcel for successful transfer under a water bank can only come from 

consumptive water used historically under a water right at that particular agricultural parcel. 

According to CWCB (2007), it is the reduced CU as compared to historical CU, and not the 
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reduction in gross diversions that can be potentially transferred to other water users. Conserved 

CU is therefore defined as the amount of water that is a part of the consumptive use of a water 

right that is removed from an irrigated agricultural parcel. Conserved CU, based on reduced CU 

due to temporary decrease relative to historical consumptive use, would be available to a water 

bank for meeting Colorado River Compact obligations and/or transfer to downstream junior 

water users. 

Conserved CU = Historical CU – Reduced CU      (1.1) 

 

1.2 Measuring and Monitoring CU 

The precise amount of water consumed is important to be quantified for proper water 

management under a water bank, especially as the demands of water increase and puts pressure 

on limited water resources. It is essential to accurately measure and monitor changes in CU to 

develop reliable water sharing agreements. This is an important distinction for intermittent 

reliability sharing agreements like water banks because net benefits are smaller than that of 

permanent water transfers (Colby et al., 2014). Innovative and improved measuring of temporary 

water transfers could reduce costs of monitoring water transfer and increase reliability (Colby et 

al., 2012). 

 

Effective water transfers in the past have been limited by their credibility in monitoring and 

measuring changes in CU (Keplinger and McCarl, 1998; Young 2010; Colby et al., 2014). 

Klamath Water Bank in Oregon was limited by the lack of proper monitoring and measuring 

technology, and the precise impact of water banking systems was not captured because even 

though the streamflow increased by temporary fallowing, the increase was within streamflow 

measurement error and couldn’t be quantified (USGS, 2005; GAO, 2005).  Other water transfer 
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proposals in the past were prohibited for groundwater-irrigated fields, fields near canals causing 

water seepage, fields with deep-rooted crops like alfalfa or with shallow groundwater (Colby et 

al., 2012). This is because, even if reliable records are available, CU (both historic and reduced) 

may not necessarily be equal to values obtained from these records.  

 

Water consumed by crops in the form of CU is essentially utilized in transpiration from the 

stomata from the leaves, and in crop growth and metabolism. The amount of water required in 

growth and metabolic processes is quite insignificant as compared to transpiration. The water 

stored on the surface of agricultural fields is also lost in the form of evaporation. Evaporation is 

extremely difficult to measure separately from transpiration. Also, evaporation cannot be 

influenced independently of transpiration within a crop micro-environment. Therefore, the two 

processes are considered together and called evapotranspiration (Taylor and Ashcroft, 1972). 

Thus, crop CU is practically equivalent to evapotranspiration (ET) (Michael, 1978). The 

following sections discuss methods to determine CU or ET. 

 

1.2.1 Traditional Methods 

This section describes the common traditional methods used for quantifying agricultural CU, 

namely, water delivery-based method, reference/potential Penman-Monteith method, and 

estimation from point-based soil moisture sensors. 

 

Water delivery-based method is based upon the water delivery data collected by gauges installed 

at the headgates of agricultural parcels. Not all agricultural parcels have these measuring gauges, 

especially in the past, thus limiting the historical water delivery records. Besides, these records 

may not be accurate enough, as mentioned in McIntire (1970) and USGS (2005). The diversion 
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measurement system has undergone improvement in terms of automated control and improved 

delivery management in the last couple of years. But, seepage, tailwater and return flows from 

agricultural parcels may not be accounted for in these water delivery-based methods, as was 

discussed in the last section. 

 

Penman-Monteith method is recommended to be adopted as a standard for estimating reference 

ET because it closely estimates potential water use for reference crops and is physically-based 

(Allen et al., 1998). Methods previously used like Blaney-Criddle are found to have variable 

adherence to ET of reference crops (Allen et al., 1998). Penman-Monteith method estimates ET 

under potential/ideal vegetation conditions with extensive surfaces of no water shortage. The 

reference ET can be determined for either of the standardized reference crops - that is for grass 

(short crop) or alfalfa (tall crop). Grass reference ET (ETo) is defined as the ET of an actively 

growing, densely vegetated cool season grass of 0.12 m height that is spread over an extensive 

surface and is not short of water. Alfalfa reference ET (ETr) is defined as the ET of an actively 

growing, densely vegetated full cover crop of 0.50 m height that is spread over an extensive 

surface and is not short of water. Extensive surface refers to expanse of same vegetation for at 

least 100 m. The reference ET incorporates the effect of weather by considering standard 

vegetation surfaces. The standardized Penman-Monteith equation as described in ASCE – EWRI 

(2005) is given below: 

ETs =
0.408 Δ (Rn − G) +  γ Cn

T + 273
u2(es − ea)Δ + (1 + Cd u2)

                                                                     (1.2) 

where ETs is the reference ET for standard crop (ETo for grass and ETr for alfalfa) and the units 

are in mm/hour for hourly time step and mm/day for daily time step. On the right hand side of 

the equation, Rn is the net radiation at the crop surface (MJ/m2/hour for hourly time step and 
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MJ/m2/day for daily time step), G is the soil heat flux at the ground (MJ/m2/hour for hourly time 

step and MJ/m2/day for daily time step), u2 is the average hourly or daily wind speed at a height 

of 2 m (m/s), es and ea are the saturation and actual vapor pressures (kPa), respectively, T is the 

average air temperature (˚C), Δ is the slope of saturation vapor pressure-temperature curve 

(kPa/˚C), and γ is psychrometric constant (kPa/˚C ). Cn (K mm s3/Mg/hour or K mm s3/Mg/day) 

and Cd (s/m) are constants that change with the time step (hourly or daily), and are specific for 

the type of reference crop (grass or alfalfa). Cn and Cd were derived by simplifying several terms 

within the Penman Monteith equation and rounding the result (ASCE - EWRI 2005). The 

constant Cn incorporates the effect of aerodynamic roughness of the reference surface. The 

constant Cd incorporates the effect of bulk surface resistance and aerodynamic roughness of the 

reference surface.  

 

While the reference ET is determined by climatic conditions, differences in crop canopy, crop 

height, albedo, and stomatal and aerodynamic characteristics cause the transpiration of different 

crops to be different from reference crops. These differences are incorporated into a crop 

coefficient, which is different for different crops.  

ETc = ETs . Kc                                                                                                                           (1.3) 

where Kc is the crop coefficient and ETc is the crop evapotranspiration under excellent disease-

free, weed-free, insect-free, non-saline, well-fertilized fields of non-limiting soil water 

conditions. ETc thus represents the upper envelope of crop evapotranspiration. The crop 

coefficient can either be a single crop coefficient (Kc) that averages the effect of evaporation and 

transpiration, or a dual crop coefficient (Kcb + Ke) that separately takes in to account basal 

transpiration and soil evaporation. The choice between the two depends on the purpose of 
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calculation, data available and the time step of computations (Allen et al., 1998). The single crop 

coefficient is used to calculate ETc for weekly or longer time periods like monthly, although dual 

crop coefficient for daily time steps summed up to weekly or longer time period can also be 

used. Single crop coefficient is recommended for planning and design of irrigation systems, 

while duel crop coefficient is recommended for irrigation scheduling (Allen et al., 1998). The 

crop coefficients are not only dependent upon crop properties, they also vary with climatic 

conditions. Because of this reason, the mid-season tabulated FAO-56 crop coefficients (Kcmid(tab)) 

originally developed at sub-humid climatic conditions need to be adjusted using the equation 

below, as described in Allen et al., 1998:  

Kcmid = Kcmid(tab) + [0.04(u2 − 2) − 0.004 ( RHmin − 45)] �h3�0.3
                                     (1.4) 

where Kcmid is the adjusted mid-season crop coefficient, h is the mean crop height in the mid-

season growth stage, u2 is the mean daily wind speed in the mid-season growth stage, and RHmin 

is the mean daily minimum relative humidity in percentage in the mid-season growth stage. 

 

Estimation of ET from point-based soil moisture sensors is also a traditional way to estimate 

crop water use. Water inputs and outputs are traced in the soil using the following equation: 

Di = Di−1 + ETa − P − I + DP − GW                                                                                     (1.5) 

where Di and Di-1 are soil moisture deficits for present and previous day, ETa is actual ET, I is net 

irrigation, P is effective precipitation, GW is upward groundwater contribution and DP is deep 

percolation. ETa is determined by inverting the above equation while all other variables are 

measured or assumed reasonably. 
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1.2.2 Remote Sensing 

While traditional methods are limited in their capability to capture the spatial variability of actual 

ET over large areas, remote sensing can be particularly beneficial for determining crop water use 

(CU or equivalently, ET) over large spatial areas. Advances in earth observation systems have 

enabled remote sensing technology to be used beneficially to our advantage. Reflectance from 

the surface of the earth is measured by remote sensing platforms like satellites and aerial 

vehicles, and unique spectral signature of objects is used to delineate their properties. For 

example, healthy vegetation has a very high reflectance in Near Infrared (NIR) band and a low 

reflectance in Red band such that the difference between these two bands is high, while for bare 

soil, the difference between these two bands is relatively low (Gitelson and Merzlyak, 1996; 

Rock et al., 1986). Distinction between healthy and stressed vegetation is distinctively delineated 

in Red, NIR and Thermal Infrared (TIR) bands. Due to these unique spectral properties and 

distinctions, remote sensing can be utilized to monitor crop health and water status. 

 

Numerous remote sensing-based ET algorithms that vary in complexity for estimating magnitude 

and trends in crop water use exist. Remote sensing from remote platforms like satellites has long 

been recognized as the most feasible method to monitor spatially-distributed crop water use over 

large areas (Gowda et al., 2008; Jackson et al. 1984). Quantifying the consumption of water over 

large areas such as irrigated agricultural areas is important for water resources planning, 

establishment of hydrologic water balances, water transfer and regulation (Allen et al. 2011). 

Remote sensing techniques have been proven reliable for assessing crop water use at different 

spatio-temporal scales (Gowda et al., 2008). According to Gowda et al. (2008), remote sensing 

techniques to estimate ET fall under two categories, land surface energy balance and reflectance-

based crop coefficient approach, as is discussed below. 
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1.2.2.1 Land Surface Energy Balance 

This approach is based on the law of conservation of energy which states that the total amount of 

energy in a system is conserved, although energy within the system can be changed from one 

form to another or transferred from one object to another. On land, the net energy (that is the net 

radiation (Rn)) is converted to other forms of energy like sensible heat (H), ground heat (G), and 

latent heat (LE) fluxes. Evapotranspiration consumes energy from the environment and this 

energy is the LE. The basic energy balance is given below: 

Rn = H + G + LE                                                                                                                        (1.6) 

This basic energy balance equation is inverted to determine LE and thus ET as a residual after 

determining the rest of the components, that is,  

LE = Rn – H – G                                                                                                                        (1.7) 

The concept of energy balance to determine heat balance of earth’s surface (Budyko et al., 1961), 

evaporation (Fritschen and Bavel, 1962), and evapotranspiration under non-water limiting 

conditions (McNaughton and Black, 1973) has been around for many decades, but it is the recent 

advances in estimating sensible heat flux (H) that has enhanced the accuracy significantly 

(Taghvaeian et al., 2011). Sensible heat flux takes place due to the temperature gradient between 

plant canopy and the surrounding air. It is one of the most critical parts of solving the energy 

balance, and is mathematically defined as: 

 H = ρ Cp (Taero – Ta) / rah                                                                                                          (1.8) 

where, ρ is the density of air, Cp is the specific heat of air, rah is the surface aerodynamic 

resistance to heat transfer, Taero is the surface aerodynamic temperature, and Ta is the air 

temperature at screen height (Brutsaert et al., 1993). Even though the equation to determine H 

looks simple, Taero cannot be measured. Remote sensing TIR band detects radiometric surface 

temperature (Ts), which is different from the surface aerodynamic temperature (Taero). The two 
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temperatures have been found to differ by 1-5 ˚C, mostly as a function of canopy density, height, 

wind speed and solar angle (Qualls and Brutsaert, 1996; Qualls and Hopson, 1998). Merely a 

difference of 1 ˚C can result in ET difference of 1mm/day (Campbell and Norman, 1998; Irmak 

et al., 2012). 

 

The pioneering approach that enhanced the accuracy of estimating ET (Taghvaeian et al., 2012) 

is called “Surface Energy Balance Algorithm for Land (SEBAL)” by Bastiaansen et al., 1998. In 

this, the temperature differential (Taero – Ta) in equation (1.8) is replaced with dT, which is then 

modelled as a linear function of radiometric surface temperature (Ts). To solve the linear 

function, inverse calibration at two extreme conditions of evaporative cooling is done. This 

inverse calibration assumes that over a wet agricultural surface (called the cold surface/pixel), all 

of the available energy (Rn –G) is used for ET and the temperature differential is negligible. 

Conversely, over a very dry agricultural surface (called hot surface/pixel) like bare agricultural 

soil with severe water limitation, the ET is negligible. Spatially anchoring these two extreme 

surfaces/pixels for inverse calibration enables interpolation of H of all surfaces in between, and 

eliminates the need to determine Taero (Bastiaanssen et al., 1998). Since remote sensing provides 

a snapshot at a particular time (hour) in the day, the instantaneous (hourly) estimates need to be 

extrapolated to daily values. In SEBAL, this is done on the basis of assumption of constancy of 

instantaneous ET to instantaneous available energy ratio over the day, especially for cloud-free 

sky conditions (Brutsaert and Sugita, 1992). This ratio is called evaporative fraction (EF). 

However, according to Gentine et al. (2011), EF rarely remains constant throughout the day. 

According to Gowda et al. (2008), EF assumption might not hold in arid and semi-arid regions 

where advection is common.  
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An improved modification of the SEBAL model is “Mapping Evapotranspiration with 

Internalized Calibration (METRIC)” that is based upon the same principles as SEBAL, but the 

main difference lies in the calibration (Allen et al., 2007a, Trezza et al., 2002). Instead of 

assuming all available energy consumed for ET at the cold pixel, it assumes cold pixel ET equal 

to 1.05 times of alfalfa reference hourly ET calculated from nearest weather station; and for the 

hot pixel, instead of assuming ET to be negligible, it suggests doing a daily surface soil water 

balance to confirm if ET equals zero or to supply a non-zero value for ET if there is residual 

evaporation from antecedent precipitation or wetting event. For extrapolating from instantaneous 

(hourly) to daily, instead of EF, METRIC uses ET reference (alfalfa) fraction (ETrF) which is 

the ratio of remotely sensed instantaneous ET to reference ET at that instant. This ratio is 

essentially equal to actual crop coefficient, which does not vary from instantaneous to daily time 

scale, and thus can be used for estimating daily ET from remote sensing (Trezza et al., 2002).  

 

A further modification of SEBAL and METRIC is the “Remote Sensing of Evapotranspiration 

(ReSET)” model that explicitly takes into account the spatial variability in the weather data 

(Elhaddad and Garcia, 2008 and 2011). Tasumi (2003) mentioned that variable wind speeds in an 

image to be processed are a challenge because surface temperature and dT may change with 

wind speed. Wind speed affects the estimation of the surface aerodynamic resistance for heat 

transport (rah) that impacts the dT function, and thus the accurate estimation of H. Selecting a 

local hot pixel for each region is essential because of this reason. Therefore, instead of a hot 

pixel representing a constant upper temperature condition at only one point, this raster approach 

uses a hot grid that is an interpolation from several hot pixels representing the spatial variation in 

conditions over the target area. The same concept applies to cold pixels. (Elhaddad and Garcia 
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2011). ReSET can be run in either calibrated mode, or in uncalibrated mode, depending upon the 

weather data available. The calibrated mode is similar to METRIC in which the reference ET 

from weather stations is used to set the maximum ET of the cold pixel in the image, and the 

uncalibrated mode is similar to SEBAL where no maximum ET value is imposed (Elhaddad et 

al., 2011). In both of these modes, the internal calculations are rasterized such that each pixel is 

modeled on the basis of its spatial location.  

 

ET estimation for periods longer than daily requires interpolation between consecutive overpass 

daily ET estimates. While originally SEBAL did a linear interpolation, METRIC prefers 

interpolation for ETrF for non-overpass days, using curvilinear interpolation functions like cubic 

spline that better fit typical curvilinearity of crop coefficients in a growing season (Allen et al., 

2011). ReSET interpolation between two consecutive overpass dates includes a linear 

interpolation while taking into account spatio-temporal variability in weather data (Elhaddad and 

Garcia, 2008). 

 

SEBAL has been utilized worldwide and its typical accuracy, on average is 85% for daily and 

95% for seasonal ET estimations. Applications of SEBAL in Idaho by Trezza et al. (2002) 

revealed accuracies ranging from 65% to 97.3%, with an average accuracy of 81.8%. SEBAL 

may not be able to capture advection and thus may underestimate ET. In this case, a modified 

SEBAL model called SEBAL-A (Mkhwanazi et al., 2015a) can be used in areas of limiting 

weather data and advective conditions. For irrigated surfaces with advective conditions where 

SEBAL errors were significantly higher, SEBAL-A performed better with a daily accuracy 

higher than 85% (Mkhwanazi et al., 2015b). METRIC has been validated in Idaho for different 
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crop conditions- daily ET estimation errors were in the range of 10-20%, and error over a 4-

month period reduced to 4% (Allen at al., 2005; Allen et al., 2007; Gowda et al., 2008). ReSET 

error estimated relative to a local lysimeter in Bushland, Texas was 13.6% for uncalibrated mode 

and 11.6% for calibrated mode, on a daily basis (Elhaddad et al., 2011).  

 

Besides the one-source models discussed above, other energy balance models include two-source 

or two-layer models which consider canopy and soil fluxes separately, and multi-layer models 

that divide the canopy into many layers. Among these, the Two-Source Model (TSM) developed 

by Norman et al. (1995) and Kustas and Norman (1999) has been applied in several studies. This 

approach in addition to weather and remote sensing data (thermal and multispectral bands) 

requires some knowledge of crop and requires assumptions such as partitioning of composite 

radiometric surface temperature into soil and vegetation components, turbulent energy and mass 

exchange at soil level and coupling/decoupling of soil and canopy (parallel or series network) 

(Gowda et al., 2008). Gonzalez-Dugo et al. (2006) compared ET obtained from TSM with eddy 

covariance ET estimates and found the regression between them equal to 0.94. According to 

French et al. (2015), implementation of TSM involves many assumptions, is sensitive to land 

surface temperature observation errors, and is recommended when crop biophysical surface 

conditions are known. 

 

1.2.2.2 Reflectance-based crop coefficient approach 

More complex ET methods are not necessarily more accurate than empirical approaches (Kalma 

et al. 2008). Reflectance-based crop coefficient is an empirical approach in which actual crop 

coefficients based on field conditions are empirically modelled by vegetation indices. Vegetation 

indices (VIs) are mathematical combinations of different bands in the electromagnetic spectrum 
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(mostly in Visible and Infrared) and are used to distinguish vegetation biophysical properties. 

NDVI is a normalized difference vegetation index that uses NIR and Red bands of 

electromagnetic spectrum. It was developed by Deering (1978), and is given by the following 

equation: 

NDVI =
NIR−RedNIR+Red                                                                                                                        (1.9) 

 

In reflectance-based cop coefficient approach, first step is to obtain spatially-distributed crop 

coefficient from reflectance data, that is, from VI calculated from reflectance in specific bands. 

For this, a locally developed empirical relation between VI and crop coefficient is needed- this 

relation is empirical because biomass, crop fractional cover and thus crop coefficients can be 

related and tracked by VIs. Since these crop coefficients are based upon actual reflectance data 

they are considered to determine actual crop conditions in a field. These reflectance-based crop 

coefficients (Kcr) can then be multiplied with reference ET from the nearest weather station to 

determine actual water use without the need of a thermal band. 

 

Several previous studies have developed VI-Kc (or Kcb, when evaporation is known to be 

negligible) functions for different crops over different areas. These include relations developed 

for corn (Neale et al. 1989; Bausch 1993), wheat (Ray and Dadhwal 2001), cotton (Hunsaker et 

al. 2003), potato (Jayanthi et al. 2007), soybean, sorghum, and alfalfa (Singh and Irmak 2009). 

The table below (Table 1) gives these already developed relations for different crops and the 

studies in which each of them were developed. Er-Raki et al. (2007) evaluated this approach for 

winter wheat in Morocco and found the efficiency of this approach to be 70-80%, compared to 

44% of that of FAO-56 procedure (Gowda et al., 2008). Neale et al. (2003) concluded that the 
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remote sensing based crop coefficients can be accurately used for grain, non-grain and forage 

crops.  

Table 1 VI-Kc (or Kcb) relations from past studies 

Study Area Crop Relation 

Neale et al. (1989) Colorado,US (Fruita) Corn Kcb=1.092NDVI-

0.053 

Bausch et al. (1993) Colorado,US (Fort Collins) Corn Kcb=1.416SAVI+0.01

7 

Ray & Dadhwal 

(2001) 

Gujarat, India Early Wheat 

Late Wheat 

Perennials 

Kc=1.904SAVI-0.401 

Kc=2.004SAVI-0.159 

Kc=0.895SAVI+0.280 

Hunsaker et al. 

(2003) 

Arizona, US Cotton 

(pre full cover) 

Kcb=1.49NDVI - 0.12 

Jayanthi et al. (2007) Idaho, US Potato Kcb=1.085SAVI+0.05 

Singh & Irmak 

(2009) 

Nebraska, US Irrigated corn 

Irrigated soybean 

Irrigated sorghum 

Irrigated alfalfa 

Kc=1.31NDVI+0.027 

Kc=1.22NDVI+0.033 

Kc=1.34NDVI-0.056 

Kc=0.981NDV+0.113 

 

1.3 Remote Sensing Platforms 

Remote sensing platforms can be space-borne, air-borne or ground based. For large spatial 

coverage, space-borne and air-borne platforms are preferred. While air-borne platforms like 

manned or unmanned aerial vehicles to fly over desired areas for collecting remote sensing data 

are not very common yet, space-borne earth observation satellites (EOSs) have unrestricted 

ability to cover earth’s surface repeatedly. Earth observation satellites range from low resolution 
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(AVHRR, MODIS, ASTER, etc.) to moderate resolution (Landsat, Sentinel, SPOT, etc.) to 

hyperspatial (high) resolution (commercial satellites like Ikonos, Worldview, GeoEye, 

Quickbird, etc.) and hyperspectral satellites (Hyperion etc.). Some common EOSs that are 

utilized for earth observation, with their bands, resolutions and revisit periods, are given below in 

Table 2. 

Table 2 Common Earth Observation Satellites 

Satellite Time of 

operation 

Bands (of EM 

spectrum) 

included 

VIS, NIR 

band 

resolution 

Thermal 

band 

resolution 

Revisit time 

period 

MODIS December 

1999 - present 

36 bands, from 

0.4 to 14.4 um 

250 m for 

NIR and Red 

; 

500 m for 

Blue, Green 

and 3 IR 

bands 

1 km ~1 day 

AVHRR NOAA-12 

AVHRR from 

September 

1991 - present 

Red, NIR, 

SWIR, TIR 

1.1 km 1.1 km 1 day 

Landsat 5 March 1984 -  

November 

2011 

Blue, Green, 

Red, NIR, 2 

SWIR, TIR 

30 m 120 m 16 days 
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Landsat 7 April 1999 - 

present 

 

Blue, Green, 

Red, NIR, 2 

SWIR, 

Panchromatic, 

TIR 

30 m 60 m 16 days 

Landsat 8 March 2013 - 

present 

Blue, Green, 

Red, NIR, 

SWIR, 

Panchromatic, 

TIR 

30 m 100 m 16 days 

Sentinel 2a 

 

 

 

 

 

Sentinel 2b 

June 2015 

(collecting data 

since 

November 

2015) – present 

 

2017(expected) 

13 bands in 

Visible, NIR and 

SWIR  

 

 

 

same as Sentinel 

2a 

10-60 m 

(changes 

with 

bandwidth) 

 

 

 

- 

      - 

 

 

 

 

 

- 

~10 days 

 

 

 

 

 

Combined 

with Sentinel 

2a, 

approximately 

5 days 

Ikonos September 

1999 - present 

Blue, Green, 

Red, NIR, 

4 m 

 

- Appx. 3 days 
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Panchromatic 

Quickbird 2 October 2001 - 

present 

Blue, Green, 

Red, NIR, 

Panchromatic 

2.44 m       -  1-3.5 days, 

depending on 

the latitude 

 

Depending on the type of use and methodology, appropriate satellites can be selected. While data 

from satellites like MODIS, Landsat, Sentinel 2a etc. can be obtained at no cost, high resolution 

(hyperspatial) data from commercial satellites like Ikonos, Quickbird, Worldview etc. is not free 

of charge. 

 

1.4 Problem Statement 

The quantification of precise amount of water uptake by agricultural crops, or, consumptive use, 

is crucial for water management for the Colorado River Basin. Reliable and accurate CU (or ET) 

estimates over large areas for a sharing arrangement like a market-based water bank in the 

Western Slope of Colorado becomes even more crucial because of the temporary and 

intermittent nature of water sharing, where the net economic benefits of temporary transfers are 

small compared to the outright purchase of agricultural water rights. Any water conserved, or 

conserved CU (CCU) would serve as the fundamental basis of compensation to agricultural 

water users who participate in a market-based water bank. Because CCU is based on reduced CU 

relative to historical (or full) CU, accurate spatial estimates of water beneficially used is 

necessary for both historical (full, or no water limitation) and water-limited conditions. 

Traditional point-based measurements do not capture intra and inter- field variability, and water-

delivery records - even if available for most of the parcels in the area- may not be reliable 

enough, and do not differentiate between consumptive and non-consumptive uses. Potential 
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methods like Penman-Monteith estimate reference ET under ideal agronomic conditions in the 

soil (which may not always exist), accuracy of which also depends upon accuracy of crop 

coefficients and length of growth stages specific to a given location and climate.  

 

Previous research studies recognize Remote Sensing as the most feasible method to determine 

spatial crop water use over large areas (Gowda et al., 2008). According to Ambast et al. (2002), 

there is still a gap between research studies and practical application of remote sensing 

techniques for water management. Earth observation satellites, which have been operational 

since the late half of the twentieth century offer an opportunity to reliably assess actual ET, as 

determined from actual radiation reflected and emitted from the agricultural fields.  

 

ReSET has been applied successfully on the Eastern Front Range of Colorado for crops like 

corn, alfalfa, etc. It has not been utilized or applied for pasture crops in geographically diffused 

agro-climatological areas of the Western Slope. Since it has a potential to be used for reliable 

CU, performance of this model as it applies to Western Slope needs to be evaluated for both 

energy-limiting (non soil-water limiting) and soil-water limiting conditions. 

 

While energy balance approach requires the coarser thermal band and follows a physically-based 

approach, reflectance based crop coefficient approach is empirical but can afford higher spatial 

resolution without the need of the coarser thermal band. This may be required for capturing intra-

field variability, and maybe especially applicable for smaller pasture fields in the Western Slope 

where coarse thermal resolution is a limitation and energy balance method cannot be applied 

without some contamination of the thermal pixel from surrounding areas. A VI -Kc model for 
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grass pastures has never been developed before. Potential of utilizing this approach needs to be 

assessed. 

 

1.5 Objectives 

The objectives of this study are as follows: 

 

1. Performance evaluation of ReSET for agro-climatological conditions of Western Slope of 

Colorado 

2. Determine monthly CCU from ReSET  

3. Determine local crop growth stage lengths for different cutting cycles for grass and alfalfa 

pastures 

4. Develop VI-Kc model for grass pastures for use with reflectance based crop coefficient method 

5. Evaluate reflectance-based models for grass and alfalfa pastures on a daily basis 
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CHAPTER 2: MATERIALS AND METHODS 
 
 
 

2.1 Study Area 

The overall study area comprises the Uncompahgre and Gunnison area of the Western Slope of 

Colorado (shown in figure 1). The elevation of the region varies from about 1400 m to about 

3000 m. Precipitation and temperature varies with elevation resulting in differences in crop 

evapotranspiration, effective precipitation, and consumptive water requirements. Major rivers 

that flow in the area are the Uncompahgre River which drains into the Gunnison River, which 

eventually drains into the Colorado River. While the Uncompahgre region is at a lower elevation 

(on an average of about 1700 m), Gunnison is at a higher elevation (on an average of about 2400 

m). The agro-climatological conditions of both areas differ widely due to different elevations and 

diverse hydrological conditions. The most common irrigation methods in the study area are 

surface irrigation, with flood irrigation (where water is released onto a field, and allowed to flow 

along the ground through gravity) more prevalent for Gunnison agricultural fields. The crops of 

focus for this study are grass and alfalfa pastures because they together occupy a major part of 

irrigated agriculture in the study area and are economically fit for a water bank (MWH, 2012).  
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Figure 1 Study area; Zoomed in- Uncompahgre on left and Gunnison on right 

 

A grass pasture site at Montrose (in Uncompahgre region) was selected to evaluate ground 

estimations of remotely sensed CU. This site is located approximately at 38.509˚ N and -

107.874̊ W and at an elevation of about 1,760 m above mean sea level. The size of the field is 

14.5 acre (58,680 m2), and consists of fescue, orchard grass, alfalfa smooth broome, wheatgrass, 

bluegrass and plantago grass types. It is divided into two treatments - full irrigation (replicating 

full irrigation conditions of the past, under the terms of a water right), and limited/split-season 

(replicating potential water bank scenario where irrigation is applied only for partial season). 

This is shown in figure 2, the treatment plot on the left was fully irrigated (reference) and the 

treatment plot on the right was limited-irrigated. The soil type at full treatment plot is clayey 

loam and at partial treatment plot is clayey. The full irrigation plot was irrigated throughout the 

growing seasons of 2015 and 2016, while irrigation at partial treatment plot irrigation was 

stopped at start of August in 2015 and July in 2016 growing season. On the limited irrigation 
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treatment plot, a Kipp and Zonen Large Aperture Scintillometer (LAS), along with a Kipp and 

Zonen NR Lite 2 Net Radiometer, and HFT 3.1, Radiation and Energy Balance Systems, Inc Soil 

heat flux plates were installed to measure sensible heat flux, net radiation and ground heat flux, 

respectively, so that as a result of these measurements, ET flux can be calculated. These sensors 

were installed from August-October in 2015 and June-October in 2016.  

 

Figure 2 Montrose site; Reference treatment plot on left and Limited treatment plot on right 

 

2.2 Satellite Data 

Landsat 8 and 7 satellites’ imagery (downloaded from www.earthexplorer.usgs.gov) was used to 

run the energy balance because they have the finest thermal resolution among all the other 

satellites with a thermal band. Two Path/Row combinations encompassing the study area were 

processed. The overpass for the Uncompahgre region is Path 35/Row 33, and over the Gunnison 

region is Path 34/Row 33 – both of which are respectively shown in figures 3 and 4. Each of 

these images covers an area of 160 km x 160 km. Since these are both consecutive overpasses, 

http://www.earthexplorer.usgs.gov/
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there is an overlap between the two. A large part of the western Gunnison area falls on this 

overlap. The time difference between the two overpasses is 1 day.  While Landsat 7 images have 

stripes because of the Scan Line Corrector failure in 2003, half of the Uncompahgre region 

(including the Montrose study site) lies at the center of the scene and is free of striping issues. 

The cloud-free images processed for Uncompahgre overpass (Path35/Row33) were June 2, June 

18, June 26, July 12, July 20, July 28, August 5, August 13, August 21, August 29, September 6, 

October 8 in 2015 ; and April 1, May 3, May 19, May 27, June 4, June 20, June 28, July 6, July 

14, August 7 in 2016. The cloud-free images processed for the Gunnison overpass (Path 34/Row 

33) were June 19, June 27, July 13, July 29, August 6, August 14, August 30, September 23 in 

2015; and May 4, May 12, June 5, June 13, June 21, July 7, July 23 in 2016. 

 

Figure 3 Landsat 8 imagery for Path35/Row33 
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Figure 4 Landsat 8 imagery for Path34/Row33 

 

Additionally, Sentinel 2a MSI data (downloaded from www.earthexplorer.usgs.gov), over the 

Uncompahgre, were utilized in the growing season of 2016. Sentinel 2a MSI overpass image 

used is shown in figure 5. The cloud-free images used were March 8, April 7, June 6, June 19, 

June 26, July 9, July 16, and July 29.  

http://www.earthexplorer.usgs.gov/
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Figure 5 Sentinel 2a MSI -Uncompahgre overpass imagery 

 

2.3 Weather data 

Weather data were downloaded from Colorado Agricultural Meteorological (COAGMET) 

network of weather stations (http://www.coagmet.colostate.edu/). These weather stations 

measure weather variables like air temperature, relative humidity vapor pressure, solar radiation, 

wind speed and precipitation. Throughout 2015 and 2016 growing season, there were 9 

functional weather stations (Appendix 1) encompassing the two overpass images. While most of 

these weather stations are in the Uncompahgre, there is only one weather station in Gunnison 

(installed in 2015). It is noted on the COAGMENT website that the threshold wind speed 

(minimum reading) for the weather stations’ anemometers is 0.49 m/s (1.12 miles/hour or 26.84 

miles/day). Values below this threshold are dropped to 0. The wind speed in the study area is 

generally low, often lower than 1 m/s, and sometimes even below 0.5 m/s (which is dropped by 

the anemometer). 

http://www.coagmet.colostate.edu/
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2.4 Digital Elevation Data 

Elevation of the Western Slope varies widely, which means that the short-wave radiation 

reaching the surface of earth varies widely and an atmospheric lapse rate correction is needed to 

take into account the net cooling of temperature aloft with elevation. Thus, a digital elevation 

model over the area is needed. National Elevation Dataset (NED) of 1/3 arc-second, which is 

approximately equal to 10 meters in the study area, was used. 

 

2.5 Crop Cover Data 

Crop cover classification map for 2015 was downloaded from USDA NASS Cropscape 

(http://nassgeodata.gmu.edu/CropScape/). Also, additional field-specific crop type data was 

collected from field visits in the Uncompahgre. This field data served as ground validation for 

grass and alfalfa crops. From the field data, it was found that in the Cropscape map, some alfalfa 

fields were incorrectly classified as corn and some grass pastures as either alfalfa or other 

hay/pastures, but corn fields were mostly accurate. Field-specific crop type data was not 

collected in Gunnison since majority of the crops are grass pastures, and Cropscape also 

identifies most of the fields as grass pastures. 

 

2.6 Procedure 

The procedure employed to meet the objectives of the study are discussed in the following 

sections. Each section covers procedure for one or more of the objectives specified above, not 

necessarily in the same order. 

 

http://nassgeodata.gmu.edu/CropScape/
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2.6.1 ReSET model 

ReSET calibrated mode involving inputs of spatially-distributed reference ET (instantaneous as 

well as daily) and wind speed maps was utilized for both Uncompahgre (Path 35/Row 33) 

imagery and Gunnison (Path 34/Row 33) imagery. Even though the Uncompahgre area 

comprised of 8 weather stations and the Gunnison area had only one, data from all weather 

stations was used for both of the overpasses to create spatially distributed maps. These maps 

were created by determining both hourly and daily (24-hour) alfalfa reference ET from Penman-

Monteith method at each weather station, utilizing wind speed data from each weather station, 

and spatially interpolating these using Inverse Distance Weighted (IDW) function. Daily 

reference ET at each weather station was calculated by summing up the hourly reference ET 

(calculated for each hour from equation 1.2) for the whole day rather than using daily time-step 

in equation 1.2, because substantial changes in wind speed, humidity, cloudiness etc. during the 

day can affect average daily estimates of the parameters of equation 1.2.  

 

The ReSET model used was largely automated, including selection of calibration/anchor (hot 

and cold) pixels. The automatic selection of hot and cold pixels was done by creating NDVI and 

albedo masks, selecting top candidates of pixels from image histogram, conditioning top 

candidate pixels to be in a cluster of 8 similar surrounding pixels and by constraining cold pixel 

selection to be within 10-20 km radius around the weather station. The automatic selection of hot 

and cold pixels was checked visually for every image. This automated selection of anchor pixels 

worked well enough for most of the Montrose imagery, but not for Gunnison imagery because of 

the complex topography (mountainous), soil-mineral depositions, lots of narrow water bodies 

and shallow groundwater cooling down the ground surface. Because of this, it was determined to 

best select anchor pixels manually for Gunnison imagery. 
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The Digital Elevation Model was used for atmospheric lapse rate correction using the standard 

lapse rate of 0.0065˚C/m from International Civil Aviation Organization (ICAO). Since locations 

with higher elevations are at a lower temperature than lower elevation areas, the model may 

detect higher locations as having higher ET values. To correct this error, temperature was 

adjusted to compensate for the change in elevation, as given by the equation below: 

Tcorr_s = (DEM− datum) ∗ 0.0065 + Ts                                                                               (2.1) 

Where, Tcorr_s is the corrected surface temperature in Kelvins, Ts is the original radiometric 

surface temperature in Kelvins, DEM is the digital elevation data (in m) at any pixel and 

“datum” is the average elevation of the area of interest (1700 m for Uncompahgre, and 2400 m 

for Gunnison), as mentioned in Allen et al. (2011). Implication of datum selection and sensitivity 

of model to the datum value chosen over different spatial locations was not considered in this 

study, but needs to be assessed in future research. 

 

For wind speed lower than 1m/s (either due to actual low wind or values dropped by the 

anemometer),  the surface aerodynamic resistance (rah) term in the sensible heat flux equation 

(equation 1.8) breaks apart because of numerical instability because it is based on turbulence 

(good mixing) created by the interaction of wind with surface elements. Therefore, for missing 

wind speed below 1m/s (no data or otherwise), an assumption of wind speed equivalent to 1 m/s 

was made before spatially interpolating wind speed and utilizing wind speed map in the model. 

Because an assumption of wind speed is necessary, a wind sensitivity analysis was done to check 

if increasing the wind speed has a significant difference on daily ET estimations. The sensitivity 

analysis was carried out for 3 different wind speeds – 1, 1.4 and 1.8 m/s. This was done only for 

2015 Path 35/Row 33 imagery, and the resulting analysis was done for the two treatment plots at 
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the field site at Montrose. Also, it is noteworthy to mention that since wind speed in the area is 

quite low, advection effects on energy balance would be minimum. 

 

After determining instantaneous (hourly) ET at the time of overpass, the alfalfa reference 

evapotranspiration fraction (ETrF) mechanism was used to extrapolate instantaneous (hourly) ET 

to daily, as in Allen et al. (2007a). ETrF is the ratio of remotely sensed instantaneous ET (ETi) to 

the grass reference ET (ETref) computed from weather station data at the time of satellite 

overpass. 

ETrF =  
ETiETref                                                                                                                                   (2.2)                                         

This ratio is essentially the actual grass-based crop coefficient, which does not vary from 

instantaneous to daily time scale, and was used to estimate daily ETd by using the following 

equation: 

ETd  =   ETrF . ETd_ref                                                                                                                     (2.3)                                         

where ETd_ref  is the daily grass reference ET calculated from weather station. These calculations 

are done in raster form, on a pixel-by-pixel basis. For interpolation between two consecutive 

overpass days to get monthly ET (for monthly CU estimates), correction ratio (γ) method, as 

mentioned in Elhaddad and Garcia (2008) and given below, was implemented. γ =  [(ETrFi − ETrFi+1)/N]                                                                                                    (2.4) 

ETd_i = [ ETrFi − (� ∗ T)] ∗ ETd_ref                                                                                         (2.5) 

where ETrFi and ETrFi+1 are the ETrF grids of two consecutive overpass days between which 

interpolation is being done, N is the number of days between the overpass images for which the 

data is being interpolated, ETd_i is the interpolated daily ET between two consecutive overpass 

dates and ETd_ref is the daily reference ET for that particular date. The ETd_i changes for each 
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day, depending on where that day falls between the beginning and end of the interpolation period 

(T). This interpolation was done only for Montrose field site treatments to estimate monthly 

CCU when the limited treatment plot was stressed in 2015 and 2016. 

 

Preliminary evaluation of ReSET ET daily assessments was done using two separate criteria; the 

first was utilizing ground instruments (LAS setup). LAS suite of instruments were installed only 

at  the limited treatment plot to evaluate stress-condition ET because stressed vegetation has 

lower vegetation cover that leads to heterogeneity of surface, which creates a discrepancy 

between actual and ET estimated from models like ReSET that are based on big-leaf approach. 

Unfortunately, LAS measurements were not always made (or made accurately) because issues of 

alignment, low battery, etc., disrupted continuous good quality data collection. Nonetheless, 7 

dates that overlapped with satellite overpass were identified, and daily ET was compared with 

ReSET derived-ET estimates at limited plot. 

 

The second evaluation criteria was a scene-based evaluation in which the ET of fully- irrigated 

alfalfa field(s) in the scene at the peak growth time period was compared with ASCE reference 

ET. Since the reference ET is ideally the maximum weather demand, the maximum value of crop 

coefficient at these fully-irrigated alfalfa field(s) at peak growth should be reasonably close to 1. 

Fields with normal growing conditions (without any water or agronomic limitations) were 

chosen on the basis of a three-step filtering procedure. First, an inward buffer inside each field 

was implemented to minimize pixel contamination from surrounding roads, buildings or water 

bodies. Second, the NDVI filtering was done such that selected fields had NDVI higher than 

0.75. Third, the highest crop coefficient pixel had to pass the clustering filter (3x3 pixel) to 
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eliminate noise. This scene evaluation at peak growth was done for both Uncompahgre and 

Gunnison imagery on day(s) when crop was at/near peak growth. Since the Cropscape crop 

cover classification did not show a substantial number of alfalfa fields in the Gunnison, the same 

evaluation of maximum crop coefficient was performed on grass pastures instead.  

 

2.6.2 Crop growth stage lengths 

In previous studies like that of Taghvaeian et al (2011), actual crop growth lengths varied from 

the ones mentioned in FAO-56. Lengths of crop development stages in FAO-56 tables are 

indicative of general conditions, but may vary substantially from region to region, with climate, 

elevation, crop variety and planting date (FAO-56). Additionally, individual agronomic practices 

may also affect the crop growth stages. Since crop growth lengths of grass and alfalfa pastures in 

the Western Slope have not been determined and/or verified before, it was done using Landsat 8, 

Landsat7, and Sentinel 2a MSI satellites for the year 2016. This was achieved by tracking 

biomass changes using NDVI from multispectral bands of these 3 satellites combined. Utilizing 

the 3 satellites increased the temporal resolution to better capture NDVI changes. To avoid any 

classification error in crop cover layer, only ground-truthed grass fields were assessed. Another 

filtering procedure was used in the process: An inward buffer of 60 m was created to avoid any 

edge effect. Fields that had a high intra-field standard deviation (>0.06 NDVI) and/or fields that 

didn’t show much variation in NDVI throughout the season were eliminated because that meant 

non-uniform or poor growing conditions, or extensive grazing pastures. The crop growth lengths 

determined for each cutting cycle were analyzed, and compared to FAO-56 values.  
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2.6.3 Reflectance-based crop coefficient method and its evaluation 

To use this simplified method that does not require thermal band, a VI-Kc relationship that is 

specific to a particular crop is needed. Since a VI-Kc relationship for grass pastures does not 

exist in the previous literature, it was developed using the data from the fields filtered in section 

2.6.2. This was done by dividing the hourly ET raster derived from ReSET (ETResethourly ) by the 

spatially-interpolated hourly alfalfa reference ET raster (ETRefhourly ) to obtain the Kc as shown 

in equation 2.6. Then, this Kc was regressed with NDVI for the corresponding fields for the 

same-day satellite overpass, to obtain an empirical reflectance-based model for grass pastures. 

KcReset =
ETResethourly ETRefhourly                                                                                                               (2.6) 

Furthermore, Reflectance based models for grass (developed in this study) and for alfalfa 

(developed in Nebraska by Irmak and Singh (2009); shown in Table 1) were compared with 

ReSET-derived daily ET estimates to evaluate their average daily performance on full and 

limited irrigation treatment plots (at Montrose) for grass, and filtered (in section 2.6.2) alfalfa 

field sites. 

 

2.7 Statistical Evaluation 

Coefficient of Variation (CV) 

The Coefficient of Variation (CV) measures the variability in the values relative to the 

magnitude of the mean. It is a ratio of standard deviation and mean, often expressed in %. 

Mean Biased Error (MBE) & Root Mean Square Error (RMSE) 

RMSE = �N−1∑ (Pi − OiNi=1 )2�0.5
                                                                                             (2.6) 

MBE = N−1∑ (Pi − OiNi=1 )                                                                                                        (2.7) 
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where, N is the number of observations, P is a prediction, and O is an observation. RMSE 

summarizes model error in terms of variance of magnitude and MBE describes model bias.  The 

errors together can provide descriptive measures of model performance. 

Nash-Sutcliffe Coefficient of Efficiency (NSCE) 

It is used to assess the predictive power of a model’s predictions with respect to observations, 

and is given by: 

NSCE = 1− ∑ (Pi−Oi)2ni∑ (Oi−Oo)2ni                                                                                                              (2.8) 

where, n is the number of observations, P is a prediction and O is an observation, and Oo is the 

mean of observations. The range of NSCE is from negative infinity to 1, with negative values 

indicating unacceptable model performance. The closer the value of NSCE is to 1, the more 

accurate a model is considered to be.  
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CHAPTER 3: RESULTS AND DISCUSSIONS 
 
 
 

3.1 Performance and Evaluation of ReSET 

 

3.1.1 Low (<1 m/s) wind speed 

The probability distribution of wind speed at the time of satellite overpass for weather stations 

at/near Montrose for the growing season (April – October) of last 4 years is shown in figure 6. 

Similarly, the growing season wind probability distribution for Gunnison weather station since 

its installment in 2015 is shown in figure 7. 

 

 

Figure 6 Montrose wind probability distribution from last 4 years 
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Figure 7 Gunnison wind probability distribution from last 2 years (since installment of weather station) 

 

The distributions are positively skewed with about 60% and 75% of the growing season wind 

speed data, for Montrose and Gunnison respectively, being less than 1 m/s.  While such low 

wind speeds are associated with minimum advection effects on energy balance, wind speeds 

lower than 1 m/s cause numerical instability in surface aerodynamic resistance (rah) term in 

equation (1.8). Therefore, for wind speed values lower than 1 m/s, at all weather stations in the 

study area, an assumption of 1 m/s was necessary. To test the effect of this assumption, the 

sensitivity of ReSET ET results to wind speed were analyzed, as discussed in section 3.1.2. 

 

3.1.2 Wind Sensitivity Analysis 

The sensitivity analysis was carried out for 3 different wind speeds: 1, 1.4 and 1.8 m/s. This was 

done only for 2015 Path 34/Row 33 imagery, and the result analysis was done for the two 

treatment plots at the field site at Montrose. Figures 8 and 9 show the percent coefficients of 

variation (% CV) of grass hourly ET for full irrigation and limited irrigation plot, respectively. 

The first bar (blue) in these figures represent the %CV between the hourly ETs obtained by 

0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5 6 7 8

P
ro

b
a

b
ili

ty

Wind Speed (m/s) 

2016 2015



40 

 

assuming a minimum wind speed of 1m/s and 1.4 m/s, for any wind speed values <1 m/s. 

Similarly, the second bar (yellow) is the %CV between the hourly ETs for 1.4m/s and 1.8 m/s. 

And, the third bar (red) is the %CV between the hourly ETs for 1m/s and 1.8 m/s. 

 

 

Figure 8 Clustered bar graph showing %CV of grass hourly ET for full irrigation treatment plot 

 

 

Figure 9 Clustered bar graph showing %CV of grass hourly ET for limited irrigation treatment plot 
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Since the 1-1.8 m/s cluster has a higher range (range is 0.8), the variability of grass hourly ET 

between these two wind speed assumptions is high, as expected.  For this cluster, on average, the 

percent variability of grass ET is 6.3% (maximum of 12.6%) for full treatment plot and 6.7% 

(maximum of 19.7%) for the limited treatment plot. The least variability of grass ET is seen 

between 1 and 1.4 m/s (range is 0.4) - on average, 4.4% (maximum of 10%) for full treatment 

plot and 4.8% (maximum of 11%) for limited treatment plot. For 1.4 to 1.8 m/s (range is 0.4), the 

variability of grass ET is 6.9% (maximum of 22%) for full treatment plot and 7.2% (maximum of 

23.5%) for limited treatment plot. This indicates that as the value of wind speed assumption 

increases, the variability of grass ET increases even though the range (0.4) is constant between 1-

1.4 and 1.4-1.8 clusters. The %CVs for all the 3 ranges described is comparable for the two 

treatment plots. Overall, the %CV of grass hourly ET is approximately 6% on average, and thus 

the grass ET is not highly sensitive to wind speed values in or below the range tested. 

 

3.1.3 ReSET evaluation 

3.1.3.1 Evaluation with ground instruments 

Daily ReSET-derived grass ET compared against ET estimated from the suite of ground 

instruments, that is, LAS, net radiometer and ground plates installed (hereafter called LAS-

estimated) at the limited irrigation treatment plot for 7 overlapping satellite overpass dates in 

2015 and 2016 is shown in Table 3.  

Table 3 Comparison between daily LAS-estimated and ReSET-derived ET 

Dates LAS-estimated ReSET-derived % Difference 

August 5, 2015 6.8 6.51 4.3 

August 13, 2015 7.4 4.34 41.3 
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August 21, 2015 3.9 4.1 -5.1 

August 29, 2015 5.2 4.1 21.2 

June 4, 2016 6.5 4.6 29.2 

June 20, 2016 6.3 4.7 25.4 

July 14, 2016 4.2 1.8 57.1 

   Average = 24.8 

 

On average, the difference between the daily LAS-estimated and ReSET- derived ET was 24.8% 

on a daily basis, with a maximum difference of 57.1%. While the above data are from limited 

treatment plot, this plot was not stressed until the start of July of 2016, even though some stress-

carryover from 2015 is possible. The above dataset was thus divided into stressed (August 

5,13,21,29 in 2015 and July 14 in 2016) and non-stressed (June 4 and 20 in 2016) categories. It 

was estimated that the average difference for the former category is 23.8% and for the latter is 

27.3%. Overall, it was observed that ReSET-derived ET is lower, and may point to some 

underestimation for both stressed and non-stressed categories. Figure 10 shows the LAS-

estimated and ReSET-derived ET comparison with alfalfa reference ET from weather station 

(WS). It was observed that on August 13, 2015 (stressed category), LAS-estimated ET was 

higher than the reference ET (which is the maximum weather demand at any time period). Since 

this was the stressed category, the limited plot was not irrigated and according to the nearest 

COAGMET weather station (Montrose), negligible precipitation was received over the area in 

the past 3-4 days. Since the actual ET cannot be higher than the weather demand, this highlights 

the fact that these instruments may not be free of their own errors and limitations, and may not 

be considered as an absolute benchmark for evaluation. Another possibility could be a negative 
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sensible heat flux (sensible heat flux absorbed by the crops), which would cause an increase in 

available energy and thus an increase in actual ET. 

 

Figure 10 ET comparison between reference Weather Station (WS), LAS-estimated and ReSET-derived 

 

3.1.3.2 Scene evaluation 

Path 35/ Row 33 

Scenes chosen at the time of peak alfalfa growth were June 2, 2015 and June 4, 2016, since the 

cutting after first crop growth cycle were observed to happen around/after the first week of June 

(as seen later in section 3.2. In 2016, for ground-verified alfalfa fields in the area, the maximum 

value of alfalfa crop coefficient obtained was 0.96. Since, the number of fields verified for crop 

type on ground was limited for the purpose (only 9 fields in the entire scene), the crop cover 

layer was also utilized to choose maximum values of alfalfa crop coefficients. Even though the 

crop cover layer was observed to be not entirely accurate because some alfalfa fields were 

classified as corn and some grass pastures as alfalfa, but corn fields were not classified as alfalfa- 
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highly transpiring, stress-free fields, after filtering, were selected from the crop cover layer, and 

combining their maximum crop coefficients with 0.96 (the maximum value of crop coefficient 

for ground-verified alfalfa) revealed the average maximum crop coefficient in the peak growth to 

be 0.98. Similarly, for 2015, the average maximum alfalfa crop coefficient was 1.04. This 

perhaps points to slight underestimation of ET in 2016 and slight overestimation in 2016 because 

crop coefficient in peak growth stage should ideally be 1. But crop coefficients at peak stage can 

be slightly lower or higher than 1 because of a slight difference of actual surface resistance, 

albedo etc. than assumed in FAO-56 Penman-Monteith equation. Overall, ReSET performed 

well in this peak growth season scene evaluation. It should be mentioned that this evaluation is 

only for peak period, and may vary during different crop growth stages and stress conditions.  

Path 34/ Row 33 

Scenes chosen for this overpass were July 7, 2016 and June 27, 2015. Since the area under this 

scene does not have alfalfa, the scene evaluation for maximum crop coefficient was done for 

grass pastures, and the aforementioned dates were selected on the basis of common knowledge 

of peak growth of grass pastures before their first cutting in mid-July (Dr. Perry Cabot, personal 

communication). The maximum crop coefficient of grass pastures after passing all the filtering 

checks was found to be 1.15 in 2016 and 1.1 in 2015. These crop coefficients of grass pastures 

are with respect to the reference alfalfa ET (ETr) because the physiology of these pastures is 

closer to alfalfa reference crop than short grass reference crop (ETo). Clearly, ReSET 

overestimated ET for the peak growth season of grass in this scene evaluation, perhaps due to 

excess water decreasing thermal signature leading to an increase in derived ET. Another issue 

could be selection of anchor pixels, especially cold pixels due to all the small/narrow water 

bodies which can erroneously lead to selection of a colder cold pixel- which has high NDVI and 

is highly transpiring due to sufficient water availability. This would lead to an underestimation of 
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ET, if selection of hot pixel is correct and is not affected by saline/mineralated soils. To further 

explore the selection of cold and hot pixels in this complex scene, the overlapping area between 

this Path34/Row33 and Path35/Row33 was compared. The reasoning was that since crop 

coefficients estimated over a given area (overlapping area between two images) do not change 

significantly over a day, crop coefficients determined over Gunnison and Uncompahgre imagery 

on consecutive overpass days can be compared for evaluating the estimation of ET over 

Gunnison area, and to check the anchor points’ selection in Path34/Row33 imagery. Figure 11 

shows the difference of average crop coefficients from the two overpass scenes (Path34/Row33 – 

Path35/Row33) over the entire growing season- one image per month (except September when 

no cloud-free subsequent images existed) to capture the overall trends, with data from 2015 

complementing 2016 when needed. Assuming that the ET estimation for Path35/Row33 is 

accurate and not affected by hot and/or cold pixel miscalibration, it was observed that in peak 

growth, selection of hot and cold pixels may not be an issue because the average difference of 

crop coefficient between the two is minimal in June (peak of first growth cycle) and August 

(peak after crop regrows after first cutting). But, there is underestimation in July and October 

that could be due to selection of a colder cold pixel, and overestimation in May could be due to 

selection of a hotter hot pixel since selection of a right hot pixel is relatively more important in 

the beginning of season because of faster heating up of soils with salt or minerals in them. In 

such a situation, an energy balance model that is not based on anchor pixels, like Two-Source 

model, may perform better and is worth evaluating in future research. 
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Figure 11 Average daily crop coefficient difference, calculated from consecutive overpass days 

 

3.1.4 Conserved CU (CCU) 

Monthly CCU calculated for 2015 (August-October) and 2016 (April-July) for Montrose site as a 

result of ET difference at full and limited irrigation plots is shown in figure 12. CCU increased 

gradually from August to October in 2015 after the limited plot was stressed in August. There 

was some stress carryover in 2016 on the limited plot because ET or CU on this plot is not as 

high in April  and May of 2016, even though this plot was not stressed during this time period. 

June CCU is slightly negative which could be an artifact of slightly higher irrigation on limited 

irrigation plot around the satellite overpass dates in June. July CCU is again positive, which is 

expected since the limited plot was stressed in this month. 
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Figure 12 Monthly Full, Limited and Conserved CU (mm/month) 

 

3.1.5 Number of cloud-free images 

As noted from 2015-2016 data, for both Uncompahgre and Gunnison overpasses, the number of 

cloud-free images was found to be adequate in the middle of the growing season- from June to 

August, with an average of 2-3 cloud-free images per month. The month of April usually has 1 

cloud-free image for the Uncompahgre overpass, but none for the higher elevation Gunnison 

overpass. The months of May, September and October have 1-2 cloud-free images for 

Uncompahgre overpass and 0-1 for Gunnison overpass. According to Allen et al. (2015) and 

Elhaddad et al. (2011), a minimum of one image per month is necessary for season estimates of 

CU. For monthly estimates, more than one imagery per month may often be necessary, 
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band) with satellites like Sentinel in conjunction with Landsat to increase temporal frequency, 

can be considered in the future. 

 

3.2 Local growth stage lengths  

3.2.1 Grass 

To avoid any classification error in crop cover layer, average NDVI of 16 ground-truthed grass 

pasture fields were tracked through the beginning of March to the beginning of September (a 

total of 21 cloud-free images) with Sentinel 2 MSI, Landsat 7 and 8 to estimate local growth 

stage lengths of each cutting cycle because NDVI is directly related to crop coefficients (Without 

Sentinel, the number of cloud-free images for this time period were only 13). After filtering, 10 

fields were chosen. Three out of these 10 fields showed 3 cutting cycles until the beginning of 

September, which probably meant that these fields were a mix, with some alfalfa in them- even 

though their NDVI was not as high as alfalfa (alfalfa fields tend to have a NDVI  >0.8 at peak 

stage; as in figure in 13). These fields were excluded for this analysis- but do highlight the 

complexity of water management due to highly variable agronomic practices in the area. The 

average NDVI for the remaining fields, with 2 cutting cycles until the beginning of September, is 

shown in figure 13. According to FAO-56, the growing season for grass pastures can be 

estimated to begin 7 days before the last -4 ̊ C in spring. Following this FAO-56 guideline, the 

growing season can be estimated to begin on March 30 in 2016. The lengths of grass growth 

stages mentioned in FAO-56 are 10 and 20 days for initial and development growth stages 

respectively for the first cutting cycle. No information is provided for the rest of the cutting 

cycles. 
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Figure 13 Grass pastures crop growth (related to NDVI) with time 

Values of NDVI increased from March 8 to April 1, which shows a green-up of perennial grass 

pastures. This was followed by the initial stage with nearly constant NDVI for about 7 days, 

which is similar to FAO-56 value of 10 days for initial stage. The development stage for the first 

cutting cycle lasted for 42 days, which is twice as long as mentioned in FAO-56(20 days). This 

could be because of the elevation differences between the Uncompahgre and Idaho (University 

of Idaho Agricultural Experiment Station, Moscow, Idaho). The high elevation of the 

Uncompahgre causing cooling of air could be one reason for the delay of crop growth. The mid 

and late season lasted for a total of 37 days. It is unclear if the second cutting cycle has an initial 

growth stage due to slight noise perhaps due to atmospheric or sensor differences from June 28-

July 16. The second development stage lasted 45 days, while FAO-56 does not provide any 

information about the growth stage lengths after the first cutting cycle.  It is also noted that this 

information maybe specific to the limited number of ground-truthed and filtered fields used, and 

additional analysis on more number of fields and for more number of years needs to be done in 

the future.  
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3.2.2 Alfalfa 

Similar to grass pastures, average NDVI of 9 ground-truthed alfalfa pasture fields were tracked 

through March to September with the same 3 satellites, and filtering process resulted in 4 

desirable fields which were used to construct the average NDVI curve shown in Figure 14. It was 

observed that there were 3 cutting cycles of alfalfa until the beginning of September. According 

to FAO-56, the growing season for alfalfa can be estimated to begin on the day the last -4 ̊ C 

temperature happened in spring, which was on April 6 in 2016. The lengths of alfalfa growth 

stages mentioned in FAO-56 for Idaho, USA, are 10, 30, 25, and 10 days for initial, 

development, mid and late growth stages respectively for the first cutting cycle; and 5, 20, and 

10 days for initial, development, mid and late growth stages respectively for all other cutting 

cycles.  

 

Figure 14 Alfalfa pastures crop growth (related to NDVI) with time 

The crop growing season starts from April 6 (last -4 ̊ C), but from figure 14, it was observed that 

from March 8 to April 7, NDVI increased gradually perhaps referring to the perennial crop 

green-up period. Initial growth stage was not seen for any cutting (for the first cutting cycle as 

well as subsequent cycles, right after each cutting). This could be due to rapid crop development 
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after the crop green-up before the first cycle, and for other cycles – perhaps the crop does not 

need that initial stage since it is already an established crop. Another reason could be that the 

crops were not cut all the way down their entire height – in such a case, an initial growth stage is 

not needed. The number of days, for the development stage at the first cycle, on average was 

found to be 42; which is equivalent to number of days for FAO-56 initial (10) and development 

(30) stages. For the second and third cutting cycles, the number of days in each period was 22 

and 21, respectively, which is equivalent to FAO-56(20). Mid and late growth stage lengths are 

highly variable, depending on farmers’ condition and decision which is related to factors like 

size of the field (e.g., if the size of field is very big, cutting will take several days), grazing 

patterns (e.g.., animals maybe let out for grazing as soon as the crops reach peak growth for all or 

one/more than one of the cutting cycles; how many animals graze a field, how long animals are 

let out in the field for grazing) etc. The average number of days, for mid and late stages 

combined, were found to be 18, 18, and 24 for first, second and third cutting cycles, which is 

roughly similar to FAO-56 (35, 20, and 20). It is also noted that this information maybe specific 

to the limited number of ground-truthed and filtered fields used, and additional analysis on more 

number of fields and for more number of years needs to be done in the future. 

 

3.3 Reflectance-based empirical model for grass pastures 

The filtered fields in section 3.2.1 were utilized to generate an empirical model between Kc and 

NDVI. The scatter plot obtained between ReSET-derived Kc’s and NDVI is shown in figure 15 

and the linear equation for line-of-best fit is: 

Kc = 1.195 NDVI – 0.057     (R2 = 0.72)                                                                             (3.1) 

This is an empirical regression model that can be utilized with reflectance-based crop coefficient 

approach. Since this model is developed from ReSET, it inherently contains the errors of ReSET 
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(perhaps due to low wind speed or atmospheric lapse rate correction), if any. The model has a 

NSCE of 0.71, MBE of -0.05% and RMSE of 20%. Since it was difficult to determine surface 

conditions (dry or wet) of fields used in model formulation, the Kc used here is a single crop 

coefficient- which is the sum of basal crop coefficient (Kcb), and the contribution of soil 

evaporation (Ke). Since different surface condition are considered together, the magnitude of 

variance (or RMSE) about the best line of fit is also relatively high. The model may be improved 

in the future using known surface conditions (perhaps utilizing an index like Normalized 

Difference Moisture Index that is sensitive to wet/moisture conditions)– but in that case, when 

applying the specific-surface conditions model (e.g., Kcb for conditions where soil is not wet and 

evaporation is low), the surface condition of the fields should be known too. The model derived 

here in its current form can be utilized to calculate near-real time ET without the need of thermal 

band, perhaps with other multispectral satellites like Sentinel 2 MSI to increase the temporal 

resolution. 

 

Figure 15 Scatter plot between Kc and NDVI 
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3.4 Evaluation of reflectance-based empirical models 

3.4.1 Grass pastures 

Reflectance-based empirical model developed in section 3.3 was applied to both full and limited 

plots at Montrose site, which is approximately 5 km away from a weather station. After 

obtaining the reflectance-based crop coefficient from (3.1), the alfalfa reference ET (ETr) from 

weather station was multiplied with it to determine actual ET. Table 4 shows the performance of 

this approach on daily average basis with respect to Reset-derived daily ET. The model 

performed better for the full irrigation plot (average MBE and RMSE of 0.64 and 1.02 mm/day, 

respectively; NSCE of 0.63) than at the limited plot (average MBE and RMSE of 0.69 and 1.09 

mm/day, respectively; NSCE of 0.52) because short-term stresses may not affect the NDVI, but 

affects the ET rates. Overall, the performance of this method for grass pastures is similar to 

ReSET on a daily basis and has a potential to be utilized with a combination of several 

multispectral satellites to get a higher temporal resolution ET product in almost near-real time. 

 

Table 4 Grass pastures: Error analysis of Reflectance-based daily ET with respect to ReSET-derived daily ET 

 Full irrigation field Limited irrigation field 

MBE (mm/day) 0.64 0.69 

MBE (%) 13 21 

RMSE (mm/day) 1.02 1.09 

RMSE (%) 15 23 

NSCE 0.63 0.52 
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3.4.2 Alfalfa pastures 

Singh and Irmak (2009) alfalfa-based empirical model derived in Nebraska was evaluated with 

respect to ReSET outputs at 3 alfalfa sites approximately 5 km away from weather stations for 

2015 and 2016. Table 5 summarizes the MBE, RMSE and NSCE of the daily ET outputs of this 

method with respect to ReSET-derived daily ET. The performance of this method for alfalfa is 

similar to ReSET and has a potential to be utilized with a combination of several multispectral 

satellites to get a higher temporal resolution ET product in almost near-real time. The errors 

observed from alfalfa model were slightly lower than that for locally-developed grass model- this 

was attributed to the higher number of alfalfa fields used in Singh and Irmak (2009) than used in 

this study. 

Table 5 Alfalfa pastures: Error analysis of Reflectance-based daily ET with respect to ReSET-derived daily ET 

MBE (mm/day) 0.16 

MBE (%) 3 

RMSE (mm/day) 1.13 

RMSE (%) 22 

NSCE 0.60 
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CHAPTER 4: CONCLUSIONS AND RECOMMENDATIONS 
 
 
 

This study performed a preliminary evaluation of ReSET model for agro-climatological 

conditions of the Western Slope. Wind sensitivity analysis revealed that grass hourly ET was not 

very sensitive to wind speed, especially at lower values. Evaluation of grass daily ET with 

ground sensors pointed to an underestimation by about 25%. But it was also noted that the 

ground instruments had their own limitations. Besides, as has been noted in previous studies, 

these errors may decrease on an average for a longer time period, like monthly. A scene based 

evaluation of grass ET was also done for peak growth stage and it was observed that the ReSET 

model performed well for the Uncompahgre. Overall, this preliminary evaluation reveals a high 

potential of ReSET to be utilized in the Uncompahgre for the estimation of daily CU at large 

spatial scales for alternate water transfer methods like water banks. 

 

It is recommended that further evaluation of ReSET under both full and limited irrigation 

conditions on a monthly time- scale, which is practically more appropriate for an operation water 

bank needs to be carried out. Although CCU estimated showed expected trends due to recession 

of irrigation, further validation needs to be done using lysimeter or neutron probe ET estimation.  

 

The selection of anchor pixels for calibrating the Gunnison imagery was questionable due to 

complex agro-hydrological area.  For geographically complex Gunnison area, future research 

should explore other energy-based models like Two Source model which do not rely on anchor 

pixels. But nonetheless, the plethora of narrow water bodies, and type of irrigation (flood) in the 

Gunnison area may reduce the thermal signature of canopy in the image, and may present a 
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challenge to any remote sensing based methodology. For Gunnison area, a conclusive evaluation 

is thus needed to determine the use of remote sensing methodologies in reliable quantification of 

CU for water sharing arrangements. 

 

Crop growth stages’ lengths were tracked with Landsat and Sentinel satellites, and provide 

important information regarding local growth stage lengths for grass and alfalfa pastures in the 

area. A NDVI-Kc relationship for grass pastures was also developed. This relationship was 

evaluated for energy and water limiting conditions on grass, and results showed that it performed 

similar to ReSET daily estimates. Errors were higher for stressed crop because NDVI does not 

capture short-term/immediate stresses. Previously developed Nebraska-based NDVI-Kc 

relationship for alfalfa was also evaluated, and it also performed similar to daily ReSET 

estimates. The errors observed from alfalfa model were slightly lower than that for locally-

developed grass model; this was attributed to the higher number of alfalfa fields used in the 

Nebraska-based study than used in this study. 

 

The NDVI-Kc approach can be a promising tool for estimating near-real time ET in the future 

for water sharing arrangements, especially when utilized with a combination of Landsat 7, 

Landsat 8, Sentinel 2a MSI and Sentinel 2b MSI(to be launched in 2017) satellites. The monthly 

CU (and subsequently CCU) estimation using this approach on an enhanced temporal scale has a 

potential to overcome the limitations of using the energy balance approach which relies on the 

thermal bands - thus a limited temporal frequency of only Landsat satellites.  
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APPENDICES 
 
 
 

Appendix 1 

Table 6 COAGMET Weather Stations 

S.NO. Weather Station Name Elevation(m) 

1 Montrose 1722 

2 Delta 1527 

3 Eckert 1683 

4 CSU Fruita Exp. Station 1378 

5 CSU Rogers Mesa Exp Station 1691 

6 Orchard Mesa 1402 

7 Olathe 1 1623 

8 Olathe 2 1662 

9 Gunnison 2406 
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Appendix 2 

 

ReSET model 

1. Hourly alfalfa reference ET was first computed from the weather station data (comprising of 

temperature, relative humidity, vapor pressure, wind speed and solar radiation) using RefET 

software (Allen, 2002).  

2. Daily alfalfa reference ET was calculated by summing up the hourly ET values. 

3. Spatially interpolated reference ET (hourly and daily) and wind speed from all the weather 

stations was created using the Inverse Distance Weight (IDW) function. 

4. After calculating reflectance and brightness temperature (Tb) Landsat bands, surface 

radiometric temperature (Ts) was calculated by: 

Ts =  
TbεNB0.25  

Where εNB is barrow bans surface emissivity = 0.97 +0.0033 LAI. LAI is the Leaf area index. If 

LAI is >3, this value is set equal to 0.98. 

5. The surface radiometric temperature was then corrected using atmospheric lapse rate 

correction, as seen in equation (2.1). 

6. Net radiation flux (Rn) was determined by: 

Rn = Rs↓ −  αRs↓ + RL↓ −  RL↑ − (1− eo)RL↓    
Where Rs↓ is incoming short-wave radiation (W m-2), α is surface albedo (dimensionless), RL↓ is 

incoming long-wave radiation (W m-2), RL↑is outgoing long-wave radiation (W m-2) and eo is 

broadband surface thermal emissivity. 

7. Ground heat flux was determined by the following equation: 

GRn = 0.005 + 0.18E−0.521LAI  (LAI ≥ 0.5) 
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��� =
1.80(��−273.15)�� + 0.084     (LAI <0.5) 

8. Sensible heat flux was given by � =
�������ℎ     

where dT is the near surface temperature difference(K); � is the air density (kg/m3), Cp is the 
specific heat of air (1004 J/kg/K), and rah is the aerodynamic resistance to heat transport(s/ m) 

9. The near surface temperature difference (dT) is assumed to be linearly related with Ts 

dT = a Ts +b 

This linear equation has two unknowns thus needs two conditions to be solved. This is where the 

concept of hot and cold pixels comes in. In ReSET, more than once hot and cold pixels are 

selected, and then an interpolation between them produces hot and cold rasters, such that the 

above equation is solved for every pixel. 

10. The aerodynamic resistance to heat transport (rah) was given by 

rah =
ln (

z2z1)u∗k   

where z1 and z2 are near surface levels, 0.1 and 2 m respectively, k is von karman constant equal 

to 0.4, and u* is friction velocity 

11. The friction velocity (u*) was given by � ∗ =  
���ln (
�����)

   

Where ux is wind sped (m/s) at height zx above the ground, and zom is the momentum roughness 

length (m) 

12. The momentum roughness length (zom) was calculated as a function of LAI 

zom = 0.018 LAI  

A minimum value of 0.005 is set for zom when LAI tends to zero. 

13. The LAI was derived as a function of Soil Adjusted Vegetation Index (SAVI) 
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LAI =  − ln(
0.69−SAVI0.59 )0.91   

14. Initially, the sensible heat flux was calculated assuming neutral atmospheric conditions. 

Atmospheric stability corrections were done using the Monin-Obukhov (M-O) Similarity 

Theory (MOST). The M-O length (L) was calculated using the following equation: 

L =  −  
ρCpu∗3TskgH   

where g is gravitational constant. If L>0, the atmosphere is stable; if L=0, the atmosphere is 

neutral, if L<0, atmosphere is unstable. The stability iterations were repeated until the H 

stabilizes (change in H between two consecutive iterations in <5%) 

15. Then, the latent heat flux (LE) was computed as a residual of the energy balance: 

LE= Rn – G - H  

16. Instantaneous(hourly) ET was then computed from the LE 

ETinst =  3600 
LEλρw  

where ρw is 1,000 kg/m3, and λ is given by (2.501 – 0.00236(Tair – 273.15)). 106 (J/kg) 

17. Reference ET fraction (ETrF) was then computed by dividing the Einst by spatially 

interpolated hourly reference ET raster 

ETrF =
ET_instETr   

18. Daily ET(ETd) was then calculated by using the ETrF function as follows: 

ETd = ETrF X ETr_d  

Where ETr_d is the spatially interpolated reference daily reference ET raster from the weather 

stations 
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LAS description and calculations 

The LAS operates by transmitting a near-infrared (880 nm) electromagnetic beam between a 

transmitter and receiver, which is affected by “scintillations” or turbulence in the beam path 

caused by variations in the air refractive index (n) (Meijninger, 2003). The receiver captures the 

strength of the transmitted signal and correspondingly accounts for the variation of the signal 

strength in time. The LAS was installed at limited irrigation plot at a height of approximately 

2.17 m, and the distance between the transmitter and receiver being 192 m. The relationship 

between the measured variance of the natural logarithm of intensity fluctuations (σlnI
2) and the 

structure parameter of the air refractive index (Cn
2 , m-2/3) exists: 

Cn2 = 1.12σlnI2  D7/3L−3                                                                                                                (1) 

where D is the aperture diameter, L is the distance between transmitter and receiver (path 

length). 

Cn2 can be decomposed into the structure parameters of temperature, and humidity. For NIR 

wavelengths, temperature fluctuations (CT
2, K. m-2/3) are the main contributors to Cn2. 

CT2 =  
T2AT2 .

Cn2
(1+0.03B  )2                                                                                                                        (2)                            

where B is bowen ratio (H/LE), AT = -0.78.10-6
BpT +0.126.10-6 Rvq and T is air temperature (K), 

BP is barometric pressure, Rv is water vapor gas constant and q is specific humidity. Subsequent 

application of Monin-Obukhov (M-O) similarity theory (MOST) permits the determination of 

the temperature scale (T*, K). 

T ∗ = �CT2  (zLAS−d)
23fT(

zLAS−dLmo )
�0.5

                                                                                                                (3) 
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zLAS is the effective LAS beam height (m), d is the zero displacement height (m), and fT 

represents the MOST similarity function for CT 2 and T*. In order to determine H, additional 

input of the friction velocity (u*, m s −1 ) is required. � ∗ =
��.(�2−�1)ln�(�2−�)

(�1−�)
�−ψ��2−���� �+ψ(

�1−���� ) 
                                                                                                  (4) 

The equation for u* above represents the logarithmic wind profile model, where kv is the Von 

Karman constant (~0.41), U represents horizontal wind speed (m s −1 ) at two heights, z1 and z2 

(m), and ψ represents the M-O similarity functions for u*. Both T* and u* are dependent (in a 

thermally stratified surface layer) on similarity functions of the buoyancy parameter (z/Lmo), 

where z (m) represents the measurement height less the zero displacement height (d, m) and Lmo 

is the Monin-Obukhov length (m). The computations are different for unstable and stable 

atmospheric conditions; independent determination of the atmospheric stability condition was 

made from ancillary data from two thermometers installed vertically at the study site. Both T* 

and u* are dependent (in a thermally stratified surface layer) on similarity functions of the 

buoyancy parameter (z/Lmo), where z (m) represents the measurement height less the zero 

displacement height (d, m) and Lmo is the Monin-Obukhov length (m). Lmo is also dependent on 

T* and u*, thus requiring an iterative computation to obtain H from Cn2 measurement. 

H =  −ρaircpu ∗ T ∗                                                                                                                   (5) 

where is ρair density of air and cp is the specific heat of dry air at constant pressure ( ~ 1,005 J. 

Kg-1. K-1). 
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