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ABSTRACT

REMOTE SENSING ASSESSMENTS OF CONSUMPTIVE USE OF AGRICULTURAL

WATER IN WESTERN SLOPE OF COLORADO

The Western Slopef Colorado is drained by Colorado River and its tributamésch are facing
increased pressure on their water resources due to prolonged droughts and inteeaantts.
While water is a limited resource, agricuurses more than half of the total diverted water in
the area. In such a scenario, agricultural water carlikelyasupply for water conservation and
sharing. The quantification of precise amount of water consumed by agricattya) or,
consumptive us, is crucial for water sharing under temporary water sharing arrangdikents
water banksRemote Sensinig considere@s the most feasible method to determine spatial

actual crop water use over large areas

A preliminary performance evaluation of REBmodel for daily consumptive water use
estimates under energy limiting and water limiting conditions was done. Coth€&nsumptive
Use estimates from plots replicating historig@all irrigation) andoperational water bank
(reduced irrigation) condiins were maden a monthly basidn addition, crop growth stage
information for grass and alfalfa pastures of the Western Slope was aetenunsing Landsat

and Sentinel satellites.nrfempirical relation between vegetation index (VI) and crop coefficient
(Kc) was developetbr use with reflectanebased crop coefficient approach. Lastly, reflectance
based approach for grass and alfalfa pastures was edahititdReSEFderived daily estimates

of crop consumptive use.
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CHAPTER 1: INTRODUCTION

Semtarid climate of the Western US characterized by low precipitation, making it highly
vulnerable tceffects of climate changaduced droughtfNon-climatic changes due to
increasinghuman population growtare increasg pressure on limited water resources to fulfil
demands for agriculture, urban landscape, municipality, industry, energy and, cecectinrs.
Human activities aralso responsible fodeterioratiorof the quality of these limied water
resources (Peters and Meybeck, 208Tthe same time, it is predicted that climate change
would make precipitation more variable with the possibility of longer droy8laisett et al.
2008; Libecap, 20000ther mtentialimpacts of climate change could include increased
frequency and magnitude of droughts and floods, andtienmg-changes in mean renewable
water supplies through changes in precipitation, temperature, humidity, wind, duration of
accumulated snowpack, nature and extent of vegetation, soil moisture, and runoff (Solomon et

al., 2007).

Irrigated agricultures the mainuser of diverted water globally, reaching a proportion that
exceeds 7880% of the totalvater divertd in the arid and semi-arid zones (Fereres and Soriano,
2007). Inthe United States, this sector consumes 65% owder of all sectors (Hutson et al.,
2004). In the westrn US, Colorado River iawater source fod upper basin states (Colorado,
New Mexco, Utah and Wyoming), 3 lower basin states (Arizona, California and Nevate i

US and MexicoRoughly 90 percent of agricultural land in the Colorado River basin is irrigated,
and 70 percent of the river's entire water supply is used for irrigation (Chen et al., 2@&L5)

Colorado RivelCompactof 1922 regulates and ensures equitable distribution of water of



Colorado River. Itequires theipper basirstatego not to cause the flow, during any consecutive
10-year period, to fall below 9.25 billiomiic metersat Lee Ferry, the site that separates the
upper and lowebasin statedf the flow does fall below the specified amount for a consecutive

10-year period, curtailment of water in the upper basin is possible (Norvigl 2?).

In Colorado, the Western Slope is drainedh®/Colorado River and its tributaries. While about
80% of the water of Colorado is on the Western Slope, about 80% of the state population lives
on the astern Front Range. The seniaater rightg(the first to be fulfiled and reliable even in
times of shortageare largely held bggriculture while Front Range citieRave junior water
rightsandgetfrom 30% to 50% of their water from the Western Slapany given yea(Best,
2009).Historical estimates of théoloradoRiver’s base flow werdetermined to be
approximatelyl8,500million cubic meter per yedMacDonald, 2010). Howevethese

estimats, which serveds the basis for the rivegfiocations, werdoundto be optimistic, since
they relied on historical flows based on records during a wet period. This hasdresalteover-
allocated rivesystem facing additional climagand population increaselated pressures (Chen

et al., 2014).

A recent studypntheColorado River by Vano et al., 20pdojecteda future streamflow
decreasérom 5% to 35% due to +2.5° + 1°C warmimgmid-twenty-first century.They
estimatedhe ratio of annual runoff change to annual precipitation change (precipitation
elasticity) at Lee Ferrio be between 2 and 3, as a result of whi&86 decline in precipitation
will likely result in a 10%15% decline irstreamflow The authors suggesubstantial

reductions in future Colorado River streamflow by the end of the tweatycenturydue to a



combination of strong temperature-induced runoff curtailment and a probable reduction in
annualprecipitation.USBR @012)projectedthe imbalance isupply and demand to be about
3.2 Million Acre Feet (MAF) by 206(5uchan imbalancecould hinder water supply to junior

water right holders, and could also potentially lead ¢argailment of water

Agricultural water could be a likely supply for water conservation and sharinghrasuc
environment. A more precise understandsequiredof the quanties that can be conserved
without jeopardizing the underlying agricultural and rural economies that depemajated
agriculture.In the WestertdS, water rights are distinct property rights not tied to the land, and
water carbe transferred aomg different users A water transfer is a voluntary agreement that
results in a temporary or permanent change in the type, time, or place ofngeradind/or a
water right. Water transfers can be local or distant; they can be a sale, |els®timn; and

they can move water among agricultural, municipal, industrial and environmegga(Dsherty

et al., 2012).

Traditionalform of transfeiof water fromagricultureis permanen{called buyanddry) which
results in permanent dry-upf@griculturd lands There is a increasingoncern thathese water
transfers may have negative thpdrty effects such as impacts to the agricultural supply,
service, and processing sectors that are fundamental to agridadaed rural economieSne
strategy to mitigate these negative thpatty effects is to employ alternative transfer methods
(ATMs). Doherty et al., 2012 define ATM as S&ructured agreement that allows for the transfer
of water to a new use while minimizing the impact on the local economy, providing other

funding sources to the agricultural user, and/or optimizing both the agricultural and



nonagricultural benefits of the remaining larid&he mainaim of these methods to avoid
permanent dry-up of agricultural land, aodminimize tle economic ath environmental impacts
due to loss of irrigated agriculture. ATMs include interruptible supply agreemetatsnal
fallowing, deficitirrigation, and water bankingATM s that are intermittent in nature like
rotational fallowing and water bkimg can beapplied tomitigate drought effects, provide
supplies to municipalities and for environmental uses, provide emergency supplies, and long
term conjunctive use (CDM, 2011). Water banking, authorized by the Colorado legisiature i

2003,is one sub ATM that is gaining popularity ithe Western Slope.

1.1 Water Banking

A water bank is a compensated voluntegter sharingirrangement under the auspices of which
participatirg agricultural water users cahare water by temporarily foregoing their irrigation
and transferring their water to other water usetis.a marketoased approach in which the
deposits and withdrawals to the water “bank” are subject to operational cotisigeod picing,
transadbn and sharing arrangement duration defined appropriately for its successéticoper
A water bankcouldoperateas part of the demand management component to prevent
downstream lakes likeake Powell from going below minimum power levels. In the longe
term, itcould operate to prevent shortages under the Colorado River Casnpaatdalso help
in responding to a Colorado River Compawttailment and iteffects on critical postompact
users, that is, lands that are irrigated byqoepact waterights could be temporarily fallowed,
and the watecould be transferred under a water bankritboal postcompact water usébke

municipalities, industries etc.).



Originally suggested by a group of ranchers from Colorado’s Western Slafsgbanking
system to legally reallocate water could be practiced on a rotational basisrtozein
agricultural economic and environmental impad¥ater bankparticipantscould temporarily
lease water frorfull-season or partial/splgeason irrigation regiesto free uptheir water
According to a study conductéal predict water market participatitay Cook and Rabotyagov
(2014), irrigators were required to participate in a series of stated preferencesesavith real
monetary payoffs and it was foundathwith all other factors being equal, irrigators are more

likely to acceppartial/splitseason than fubeason leases.

Forage and pasture crops are ideal for inclusion in a water bank b#wausedow-value
crops,more tolerant to water stressdamsually do not experience much loegm effects on
future productiofMWH, 2012) Grass and alfalfa pastureops arealsoprimary irrigation water

users on the Western Slope (MWH, 2012).

Beneficialconsumptive usgCU) is the basis, measure and lirofta water right (Hobbs, 2003).
It is defined as thamount of water withdrawfiom a source (e.g., diversions) that is no longer
availablebecause ihas benbeneficiallyremoved fronthe immediate water environment.
Beneficial is used in the contestich that water use for benefit of humans and community,
without any wasteThe waterreturned to the water source through run-off and/or percolation,
collectively termedeturn flow; is not considered to be consumptive ¥Waterconserved on a
particdar agricultural parcdbr successful transfer undewater bak can only come from
consumptre water used historicaliynder a water righdatthat particular agricultural parcel

According to CWCB (2007), it is the reduced @tlcompared to historicaldlzand not the



reduction in gross diversions that can be potentially transferred to other waseCosserved
CU is therefore defined as the amountaiter that isa part of the consumptive use of a water
right that is renoved from an irrigated agridural parcel Conserved€CU, based omeduced CU
due totemporary decreaselative tohistoricalconsumptive usevould be available to a water
bank for meeting Colorado River Compact obligations and/or transfer to downstream junior
water users.

ConservedCU = Historical CU- Reduced CU (1.1)

1.2 Measuring and Monitoring CU

The precise amount of water consumed is important to be quantified for proper water
management under a water bank, especially as the demands of water increase agskspugs p

on limited water resources. It is essential to accurately measure and moaiigeshn CU to
develop reliable water sharing agreements. This is an important distiratiobermittent

reliability sharing agreements like water banks because net benef#sialler than that of
permanent water transfefSolby et al., 2014). Innovative and improved measuring of temporary
water transfers could reduce costs of monitoring water transfer andseikability (Colby et

al., 2012).

Effective water transfelis the past have been limited by their credibility in monitoring and
measuring changes in CU (Keplinger and McCarl, 1998; Young 2010; Colby et al., 2014).
Klamath Water Bank in Oregon was limited by the lack of proper monitoring anslinmeg
technology, ad the precise impact of water banking systems was not captured because even
though the streamflow increased by temporary fallowing, the increaseithas streamflow
measurement error and couldn’t be quantified (USGS, 2005; GAO, 20€%gr @ater trarfer
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proposals in the past were prohibited for groundwiatggated fields, fields near canals causing
water seepage, fields with deegoted crops like alfalfa or with shallow groundwgi@olby et
al., 2012).This is because, even if reliable recordsaalable, CU (both historic and reduced)

may not necessarily be equal to values obtained from these records.

Water consumed by crops in the form of CU is essentially utilized in transpifiatrarthe
stomata from the leaveand in croggrowth andmetabolism The amount of water required in
growth and metabolic processes is quite insignificant as compared to tramspliae water
stored on the surface of agricultural fieldglso lost inthe form ofevaporation. Evaporation is
extremely difficlt to measure gm@rately from transpiratiorAlso, evaporation cannot be
influenced independently of transpiration within a crop micro-environment. Theréfhertwo
processes are considered together and called evapotranspiration &hayfshcroft, 1972).
Thus, crop CU is practically equivalent to evapotranspiration (ET) (Michael, 1B78).

following sectiors discuss methods tietermineCU or ET.

1.2.1 Traditional Methods

This section describes tttwmmon traditional methods used for quantifying agricultural CU,
namely,water deliverybased rathod reference/potentiddenmarMonteith method, and

estimation from poinbased soil moisture sensors.

Water deliverybased method is based upon the water delidaty collected by gauges installed
at the headgates africultural parcal. Not all agicultural parcels have these measuring gauges,
especially in the past, thus limiting the historical water delivery records.&3esigese records
may notbe accurate enoughs mentioned in Mclintire (1970) and USGS (2005). The diversion

7



measurement systehas undergone improvement in terms of automated control and improved
delivery management in the last couple of years. But, seepage, tailwatetuandlows from
agricultural parcels may not be accounted for in these water delivery-basedigvas was

discussed in the last section

PenmarMonteith method is recommended to be adopted as a stdodastimating reference
ET because it closelgstimates potentiavater usdor reference crops and is physicatigised
(Allen et al., 1998). Methods previously udige BlaneyCriddle are found to hawariable
adherence to ET of referenceps (Allen et al., 1998RenmarMonteith methodestimates ET
under potentidideal vegetation conditionwith extensive surfaces no water shortage. €h
referenceET can be determined for either of the standardiegtence cropsthatis for grass
(short crop)or alfalfa (tall crop) Grass reference HET,) is defined as the ET of an actively
growing, densely vegetated cool season grass of 0.12 m height that is spread oersareext
surface and is not short of water. Alfalfa reference ET)(ISTdefined as the ET of an actively
growing, densely vegetated full cover crop of 0.50 m height that is spread overrasivexte
surface and is not short whter.Extensive surface refers to expanse of same vegetation for at
least 100 m. The reference HiCorporates the effect of weather by considering standard
vegetation surfaces. The standardized Pervhamteith equation as described in ASCEWRI

(2005) is given below:

C
0.408 A (Rn - G) + yrrémuz(es - ea)

ET. = 1.2
s A+ (1+C4quyp) {2

where ETis the reference ET for standard c(&J,for grass and ETor alfalfa) and the units
are in mm/hour for hourly time step and mm/day for daily time €epthe right hand side of

the equation, Ris the net radiation at the crop surface (Mour for hourly time step and

8



MJ/m?/dayfor daily time step), G is the soil he&ix at the ground (MJ/Ahour for hourly time
step and MJ/didayfor daily time step)w. is theaveragehourly or daily wind speedt a height

of 2 m (m/s), eand @ are the saturation and actual vapor presqufes),respectivelyT is the
averagair temperature’C), A is the slope of saturation vapor pressigreperatureurve
(kPa/°C), andy is psychrometric constant (kPa/°C ). Cn (K mm s¥Mg/hour or K mm ¥Mg/day)
and G (s/m)are constants that change with the time step (hourly or daily), and are specific f
the type of reference crdgrass or alfalfa)C, and G were derived by simplifying several terms
within thePenmanMonteithequation and rounding the resg®SCE- EWRI 2005).The

constant gincorporates the effect aerodynamic roghness of theeference surfacdhe
constant @incorporates the effect dulk surface resistan@nd aerodynamic roughness of the

reference surface

While the referenc&T is determined by climatic conditions, differencesriop canopy, crop

height, albedo, anstomatal and aerodynamic characteristics cause the transpiration of tifferen
crops to be different from reference cropkese differences are incorporated into a crop
coefficient, which is different for different crops.

ET. = ET; . K. (1.3)
where k is the crop coefficiendand ET is the crop evapotranspiration under excellent disease-
free, weedtree, insecfree, nonsaline well-fertilized fields of noAimiting soil water

conditions. ET thus represents the upper envelope of crop evapotranspiration. The crop
coefficient can either be a single crop coefficigfy) thataverages the effect of evaporation and
transpirationpr a dual crop coefficier{Kc, + Ke) that separately takes in to account basal

transpiration and soil evaporation. The choice between the two depends on the purpose of



calculation,data available and the time step of computations (Allen et al., 19983ifdie crop
coefficient is used to calculate ETc for weekly or longer time petikelsnonthly, althougldual
crop coefficient fodaily time steps summed up to weekly or longer time period can also be
used Single crop coefficient is recommended for planning and design of irrigastensy,
while duel crop coefficient is recommended for irrigation scheduling (Adteal., 1998)The
crop coeffigents are not only dependent upon crop propetiiey also vary with climatic
conditions. Because of this reason, itind-season tabulated FA&6 cropcoefficients(Kcmidtab))
originally developedat subhumid climatic conditionseed to be adjusted using the equation

below, as described in Allen et al., 1998:

h 0.3
K. =K + [0.04(u, — 2) — 0.004 ( RH,;,, — 45)] (5) (1.4)

Cmid Cmid(tab)
where Kmid is the adjusted mideason crop coefficient, h is the mean crop height in the mid-
seasorgrowthstage, wis the mean daily wind spe@tdthe midseason growth stage, and RH

is the mean daily minimum relative humidity in percentage in theseagon growth stage.

Estimationof ET from pointbased soil moisture sensors is also a traditional way to estimate
crop water use. Water inputs and outputs are traced in the soil using the followingrequat

D; =D;_; + ET,—P—1+DP — GW (1.5)
where D and D1 are soil moisture deficits for present and previous Hayjs actual H, | is net
irrigation, P iseffectiveprecipitation,GW is upward groundwater contribution and DP is deep
percolationETa is determined by inverting the above equation while all other variakles ar

measured or assumeshsonably.

10



1.2.2Remote Sensing
While traditionalmethods are limited in their capability to capture the spatial variabilégtofl

ET over largeareas, remote sensing can be particularly beneficialefi@mining crop water use
(CU or equivalently, ETover large spatial areas. Adwes in earth observation systems have
enabled remote sensing technology to be beeeéficially to our advantage. Reflectance from
the surface of the earth is measured by remote sensing platforms likéesadeit aerial
vehicles, and unique spectral signature of objects is used to delineate theiigwdpmart
examplehealthy vegetation has a vdrigh reflectance in Near Infrared (NIBandand a éw
reflectance in Red barglich that the difference betweengdgvo bands is highyhile for bare
soil, thedifference between these two bands is relatively(lBwelson and Merzlyak, 1996;
Rock et al., 1986 Distinction between healthy and stressed vegetation is distinctigeéheated
in Red, NIR and Thermal Infrared (TIR) bands. Due to these unique spectral psopedtie

distinctions, remote sensing can be utilized to monitor crop health and water status.

Numerous remote sensibgsed ET algorithms that vary in complexity for estimating magnitude
and trends in crop water use exR®emote sensinfjom remote platforms like satellites has long
been recognized as the most feasible method to monitor spdisthiputed crop water usever
large areas (Gowda et al., 2008; Jackson et al. 1984). Quantifying the consumptiar olesat
large areas such as irrigated agricultural areas is important for watecessplanning,
establishment of hydrologic watlealances, water transfand regulation (Allen et al. 2011).
Remote sensing techniques have been proven reliable for assessing crop vedteiffesent
spatictemporal scale@Gowda et al.2008). According to Gowda et al. (2008), remote sensing
techniques to estimate ET fall under two categories, land surface energelmidreflectanee
based crop coefficient approach, as is discussed below.

11



1.2.2.1 Land Surface Energy Balance
This approach is based on the law of conservation of energy which states that Hmadatd of

energyin a system is conserved, althowggtergy within the system can be changed from one
form to another or transferred from one object to ano@erdand, the net energy (that is the net
radiation (Rn)) is converted to other forms of energy $desible heaH), ground heat (G), and
latentheat(LE) fluxes Evapotranspiration consumes energy from the environmentiand th
energy is the LE. The basic energy balance is given below:

Ri=H+G+LE (1.6)
This basic energy balance equation is iteeto determine LE and thus B% a residual after
determining the rest of the components, that is,

LE=R.-H-G (1.7)
The concept of energy balance to determine heat balance of earth’s @8uidyeo et al., 1961),
evaporation (Fritschen and Bavel, 1962), and evapotranspiration undeateriimiting

conditions (McNaughton and Black, 1973) has been aroundday decadedut it is therecent
advances in estimating sensible heat fldxthat has enhanceéle accuracy significantly
(Taghvaeian et al., 20113ensible heat flux takes place due to the temperature gradient between
plant canopy and the surrounding air. It is one of the prd&tal pars of solving the energy
balance, and is mathematically defined as:

H =p Cy (Taero— Ta) / fan (1.8)
where,p is the density of air, (s the specific heat of ainis thesurface aerodynamic

resistance tbeat transfer, &rois the surface aerodynamic temperature, and the air
temperaturat screen heigh{Brutsaert et al., 1993). Even though the equation to determine H
looks simple, Terocannot be measured. Remote sensing TIR band detects radiometric surface
temperature (J, which is different from the surfa@erodynamic temperaturea£l). The two
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temperatures have been found to differ by G, mostly as a function of canopy density, height,
wind speed and solar angle (Qualls and Brutsaert, 1996; Qualls and Hopson, 1998). Merely a
difference of 1 °C can result in ET difference of 1mm/day (Campbell and Norman, 1998; Irmak

et al., 2012).

The pioneering appreoathat enhanced the accuracy of estimating([EAghvaeian et al., 2012)

is called “Surface Energy Balance Algorithm for Land (SEBAL)” by Bastiaa@s al., 1998. In
this, the temperature differentialalo— Ta) in equation (1.8)d replaced wih dT, which is then
modelled as a linear function of radiometric surface temperatygeT@solve the linear

function, inverse calibration at two extreme conditions of evaporative cooling is done. This
inverse calibration assumes tloaer a wetagriculturalsurface(called the cold surfadgaixel), all

of the available energy (RG) is used for ET and the temperature differential is negligible
Conversely, over a very dagriculturalsurface(called ha surfacépixel) like bare agricultural

soil with severe water limitatigrihe ET is negligible. Spatially anchorittgese two extreme
surfacefpixelsfor inverse calibration enables interpolation of H of all surfaces in between, and
eliminates the need tietermine Zero (Bastiaanssen et al., 1998). Since remote sensing provides
a snapshot at a particular time (hour) in the day, the instantaneous (lestirhgtes need to be
extrapolated to daily values. In SEBAL, this is done on the basis of assumption ohcypmsta
instantaneous ET to instantaneous available energy ratio over the day, ssfoeaiud{free

sky conditions (Brutsaert and Sugita, 199Phis ratio is called evaporative fraction (EF)
However, according to Gentine et al. (2011),r&felyremainsconstant throughout the day.
According to Gowda et al. (2008), EF assumption might not hold in arid and semi-aoitsreqgi

where advection is common.
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An improved modification of the SEBAL model is “Mapping Evapotranspiration with
Internalized Calibration (METRIC)” that is based upon the same princip®eERAL, butthe
main diference lies in the calibration (Allen et al., 2807Trezza et al., 2002nstead of
assuming all available energgnsumedor ET at the coldoixel, it assumes cold pix&8T equal
to 1.05 times of alfalfa referenbeurly ET calculated from nearest weather stgteomd forthe
hot pixel, instead of assuming ET to be negligible, it suggests daailyssurface soil water
balance to confirm if ET equals zero or to supply a neno value for ET if there is residual
evaporation from antecedent precipitation or wetting event. For extrapolaingrfstantaneous
(hourly) to daily, instead of ERMETRIC uses ETeferencdalfalfa) fraction (ETrF) which is
the ratio ofremdely sensed instantaneous ET to reference ET at that instant. This ratio is
essentially equal to actual crop coefficient, which does not vary from instamusto daily time

scale, and thus can be used for estimating daily ET from remote sensing @@@z22002).

A further modification of SEBAL anMETRIC is the*"Remote Sensing of Evapotranspiration
(ReSET)” model thagxplicitly takesinto account the spatial variability in the weather data
(Elhaddad and Garcia, 2008 and 20T Hsumi(2003) mentioned that variable wind speeds in an
image to be processed are a challenge because surface temperature and dT may bhange wit
wind speed. Wind speed affects the estimation oftinace aerodynamic resistarioeheat
transpori(ran) that impats the dT function, and thus the accurate estimation of H. Selecting a
local hot pixel for each region is essential because of this reason. Theretess] ofsa hot

pixel representing a constant upper temperature condition at only one point,tériapasoach
uses a hot grid that is an interpolation from several hot pixels representing tabvspetiion in

conditions over the target area. The same concept applies to cold pixels. (Elhaddaccand G
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2011).ReSET can be run in either calibrateddapor in uncalibrated mode, depending upon the
weather data availabl&he calibrated mode is similar to METRIC in which thérence ET

from weather stations is used to set the maxir&dinof the cold pixel in the image, and the
uncalibrated mode is sitar to SEBAL whereno maximum ET value is imposed (Elhaddad et
al., 2011). In both of these modes, the internal calculationssiegirad such that each pixel

modeled on the basis of its spatial location.

ET estimation for periods longer than daily requires interpolation betweercatimeeoverpass
daily ET estimates. While originally SEBAL did a linear interpolation, METRi€fers
interpolation forETrF for nonroverpass days, usimgirvilinearinterpolation functions like cubic
splinethat better fit typicaturvilinearity of crop coefficients in a growing season (Allen et al.,
2011).ReSET interpolation between two consecutive overpass dates includes a linear
interpolation while taking into account spatemporal variability in weather data (Etldad and

Garcia, 2008).

SEBAL has been utilized worldwidend its typical accuracy, average is 85% for daily and
95% for seasonal ET estimations. Applications of SEBAL in Idaho by Trezza 2002)(
revealed accuracies ranging from 65% to 97.3%, anthverage accuracy 81.8%.SEBAL
may not be able to capture advection and thag underestimate ETn this casea modified
SEBAL model called SEBAIA (Mkhwanazi et al., 2015aan be used in areas of limiting
weather data and advective conditions. For irrigated surfaces with advectdigans where
SEBAL errors were significantly higher, SEBAA performed beer with a dailyaccuracy

higher than 85% (Mkhwanazi et al., 2015b). METRIC has been validated in Idaho fomdiffere
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crop conditionsdaily ET estimation errors were in the range of2ldo, and error ovea 4
month period reduced to 4% (Allen at al., 20RBen et al., 2007; Gowda et al., 200ReSET
error estimated relative to a local lysimeter in Bushland, Texad8/6%6 for uncalibrated mode

and 11.6% for calibrated mode, on a daily basis (Elhaddad et al., 2011).

Besides the onsource models discussed above, other energy balance models include two-source
or two-layer models which consider canopy and soil fluxes separately, and ayeltichodels

that divide the canopy into many layers. Argdhese, the Twource Model (TSM) developed
by Norman et al. (1995) and Kustas and Norman (1999) has been applied in severall$tisdies.
approach in addition to weather and remote sensing data (thermal and multifaectsal
requires some knowledge of crop and requires assumptions such as partitioning of eomposit
radiometric surface temperature into soil and vegetation components, turbulegtasmengass
exchange at solil level and coupling/decoupling of soil and cafpapsllel or series network)
(Gowda et al., 2008¥s0onzalezDugo et al. (2006) compared ET obtained from TSM with eddy
covariance ET estimatesid found the regression between them equal to 0.94. According to
French et al(2019, implementatiorof TSM involves many assumptions, is sensitive to land
surface temperature observation errors, and is recommended when crop biophyamal su

conditions are known.

1.22.2 Reflectancdased crop coefficient approach

More complexET methods are not necessarily more accurate than empirical approaches (Kalma
et al. 2008)Reflectancébased crop coefficient is an empirical approach in which actual crop
coefficients based on field conditions arapirically modelled by vegetation indic&&getation
indices(VIs) are mathematical combinations of different bands in the electromagnetic spectrum
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(mostly in Visible and Infrared) and are used to distinguish vegetaitipiysicalproperties.
NDVI is anormalized difference vegetation inddgvatuses NIR and Red bands of

electromagnetic spectrum. It was developed by Deeti®gq), and is given by the following

equation:
NIR-Red
NI = NIR+Red (1.9)

In reflectancebased cop coefficient approadinst step is to obtain spatiallyistributed crop
coefficient from reflectance data, that is, from VI calculated from reflectangeaifis bands.

For this, a locally developegmpirical elation between VI and crop coefficient is needads
relation is empirical becausgomass, crop fractional cover and thus arogfficients can be

related andrackedby VIs. Since these crop coefficients are based upon actual reflectance data
they areconsidered to determine actual crop conditions in a field. These reflectasckeap
coefficients(Kcr) can then be multiplied with reference ET from the nearest westthiéon to

determine actual water usgthout the need o thermal band

Several previous studies have developed&¥Kor Kcb, when evaporation is known to be

negligible functions for different crops over different areas. These include relatewetoped

for corn (Neale et al. 1989; Bausch 1993), wheat (Ray and Dadhwal 2001), cotton (Hunsaker et
al. 2003), potato (Jayanthi et al. 2007), soybean, sorghum, and alfalfa (Singh and Irmak 2009).
The table belowTable 1)gives thee already developed relaticios different crops and the

studies in whicleach of them werdevelopedEr-Raki et al.(2007) evaluated this approach for
winter wheat in Morocco and found the efficiency of this approach to be 70-80%, compared to

44% of that of FAO-56 procedure (Gowda et al., 2008). Neale et al. (2003) concluded that the
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remote sensing based crop coefficients can be accurately used for gragnaincand forage

crops.
Table 1 VI-Kc (or Kcb) relations from past studies

Study Area Crop Relation

Neale et al. (1989) | ColoradoUsS (Fruita) Corn Kcb=1.092NDVI-
0.053

Bausch et al. (1993) | ColoradoUS (Fort Collins) Corn Kcb=1.416SAVI+0.01
7

Ray & Dadhwal Gujarat, India Early Wheat Kc=1.904SAVI|-0.401

(2001) Late Wheat Kc=2.004SAVI-0.159

Perennials Kc=0.895SAVI+0.280
Hunsaker et al. Arizona, US Cotton Kcb=1.4NDVI - 0.12

(2003)

(prefull cover)

Jayanthi et al. (2007

Idaho, US

Potato

Kcb=1.085SAVI+0.05

Singh & Irmak

(2009)

Nebraska, US

Irrigated corn
Irrigated soybean
Irrigatedsorghum

Irrigated alfalfa

Kc=1.3INDVI1+0.027

Kc=1.22NDVI+0.033

Kc=1.34\DVI1-0.056

Kc=0.98INDV+0.113

1.3 Remote Sensing Platforms

Remote sensing platforms can be spa@ee, airborne or ground based. For large spatial

coverage, spadeerne and aiborne platformsre preferredWhile air-borne platforms like

manned or unmanned aenahicles to fly over desired areas for collecting remote sensing data

are not very commoyet, spaceborne eartlobservation satelliteEOSs)have unrestricted

ability to cover earth’s surface repeatedigrth observation satelliteange from low resation
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(AVHRR, MODIS,ASTER, etc) to moderate resolution (Landsat, Senti&&OT, etc) to

hyperspatialhigh) resolution¢gommercial satellites likikkonos, Worldview, GeoEye,

Quickbird, etc.) and hyperspectral satellifg$yperion etc.)SomecommonEOSsthatare

utilized for earth observatiomwith theirbands, resolutions and revisit perioas given below in

Table2.
Table 2 Common Earth Observation Satellites
Satellite Time of Bands(of EM VIS, NIR Thermal Revisit time
operation spectrum band band period
included resolution resolution
MODIS December 36 bands, from | 250 m for 1 km ~1 day
1999 -present | 0.4to 14.4um | NIR and Red
500 mfor
Blue, Green
and 3 IR
bands
AVHRR NOAA-12 Red, NIR, 1.1 km 1.1 km 1 day
AVHRR from | SWIR, TIR
September
1991 -present
Landsat5 | March 1984 - | Blue, Green, 30m 120 m 16 days
November Red, NIR, 2
2011 SWIR, TIR
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Landsat 7 | April 1999 - Blue, Green, 30 m 60 m 16 days
present Red, NIR, 2
SWIR,
Panchromatic
TIR
Landsat 8 | March 2013 - | Blue, Green, 30m 100 m 16 days
present Red, NIR,
SWIR,
Panchromatic,
TIR
Sentinel 2a | June 2015 13 bands in 10-60 m - ~10days
(collecting datg Visible, NIR and | (changes
since SWIR with
November bandwidth)
2015) —present]
Sentinel 2b | 2017(expected) same as Sentine - Combined
2a - with Sentinel
2a,
approximately
5 days
Ikonos September Blue, Green, 4m - Appx. 3 days
1999 -present | Red, NIR,
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Panchromatic

Quickbird 2 | October 2001 - Blue, Green, 244 m - 1-3.5 days,
present Red, NIR, depending on
Panchromatic the latitude

Depending on the type of use and methodology, appropriate satellites can be seleittedb &V
from satellites like MODIS|.andsat Sentinel 2a etc. can be obtained at no cost, high resolution
(hyperspatialdata from commercial satellites like Ikonos, Quickbird, Worldveevis not free

of charge.

1.4 Problem Statement

The quantification of precise amount of water uptake by agricultural crops, or, qunsiuse,

is crucialfor water management for the Colorado River Basin. Reliable and acCdta ET)
estimate®ver large area®r asharing arrangement like a marketsed water bank in the
Western Slope of Coloradecomes evemore crucial because of the temporary and
intermittent nature ofvater sharing, where the net economic benefits of temporary transfers are
small compared to the outright purchase of agricultural water righyswater conserved, or
conservedCU (CCU)wouldserve as theundamental basis of compsation to agricultural

water users who participate in a markased water banBecause CCU is based on reduced CU
relative to historicafor full) CU, accurate spatial estimates of water beneficially used is
necessary for both historical (full, or notealimitation) and watelimited conditions.

Traditional pointbased measuremerts not capture intra and intdreld variability, andwater
delivery records even if available for most of the parcels in the aneay not be reliable

enough, and do not differentiate between consumptive and non-consumptirotisesal
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methods like Penmaltonteith estimateeferenceET under ideal agronomic conditions in the
soil (which may not always exist), accuracy of which also dependsaquoinacy otrop

coefficients and length of growth staggsecific to a given location and climate.

Previous research studies recognize Remote Seasitigg most feasible methoddetermine
spatial crop water use oviarge areas (Gowda et al., 20083cording to Ambast edl. (2002),
there is still a gap between research studies and practical applafateznote sensing
techniquedor water managemeriEarth observation satellites, which have been operational
since thdate half of the twentieth century offer an opportymo reliably assesactual ET, as

determined fromactualradiation reflected and emitted from the agricultural fields

ReSEThas been applied successfuly the Eastern Front Range of Colordalocrops like
corn,alfalfa, etc. It hasot been utilizd or applied for pasture cropsgeographicallydiffused
agro-climatologicalareas othe Western Slope. Since it has a potential to be twagliable
CU, performance of this model as it applies to Western Slope nebdgvaluated for both

energylimiting (non soitwater limiting) and sotlvater limiting conditions.

While energy balance approach requites coarsethermal banénd follows a physicalipased
approachreflectance based crop coefficient approach is empirical but can hifbrerspatial

resolution without the need tfe coarsethermal band. Thimay berequiredfor capturing intra
field variability, andmaybe especiallgpplicablefor smaller pasture fielda the Western Slope
where coarse thermal resolutis a limitaton and energy balance method cannot be applied

without some contamination of the thermal pixel from surrounding akedbk-Kc model for
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grass pastures has never been developed bBfmential of utilizing ths approach needs to be

assessed.

1.50bjectives

The objectives of this study are as follows:

. Performance evaluation of ReSET for agro-climatological conditions of \MeSkepe of

Colorado

. DeterminemonthlyCCU from ReSET

. Determinéocal crop growth stage lengths for different cutting cycles forsguad alfalfa

pastures

. Develop VIKc modelfor grass pastures for use with reflectance based crop coefficient method

. Evaluate reflectanebased models for grass and alfalfa pastareadaily basis
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CHAPTER 2:MATERIALS AND METHODS

2.1 Study Area

The overall study area comgesthe Uncompahgre and Gunnison area of the Western Slope of
Colorado (shown in figure 1). The elevation of the region varies from about 1400 m to about
3000 m.Precipitation and temperatwarieswith elevation resulting in differences in crop
evapotranspiration, effective precipitation, and consumpiaterrequiremerg. Major rivers

that flow in the area are tthéncompahgre River which drains into the Gunnison River, which
eventually drains into the Colorado Riv@rhile the Uncompahgreegionis at a lower elevation
(on an average of about 1700 m), Gunnison is at a higher elevation (on an average of about 2400
m). The agreclimatological conditions aboth areas differ widely due to different elevations and
diversehydrologicalconditions. The most common irrigation methods in the study aeea a
surface irrigation, witlood irrigation (where water is released onto a field, and allowed to flow
along the ground through gravity)ore prealent for Gunnison agricultal fields The cro of

focus for this studwregrassand alfalfa pasturdsecause thetpgether occupy a major part of

irrigated agriculture in thetudy areandareeconomicallyfit for a water banKMWH, 2012).
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Figure 1 Study area; Zoomed in- Uncompahgre on left and Gunnison on right

A grass pasture site at Montrose (in Uncompahgre region) was selected tteeyauad
estimations of remotely sensed CU. This site is locgiprbximately at 38.509° N and -
107.874 W and at an elevation of about 1,76@bove mean sea levdlhe size of the field is
14.5 acre (58,680 ) and consists of fescue, orchard grass, alfalfa smooth broome, wheatgrass,
bluegrass and plantago grass types divided into two treatmentsfull irrigation (replicating
full irrigation conditions of the past, under the terms of a water right)limitdd/splt-season
(replicating potential water bank scenario where irrigati@pgiedonly for partial season).
This is shown inifure 2, the treatment plot on the left was fully irrigaleeference) and the
treatment plot on the right was limit@digated.The soil type at full treatment plot is clayey
loam and at partial treatment plot is clay&lge full irrigation plot was irrigated throughout the
growingseasoa of 2015 and 2016, whilerigation atpartial treatment plot irrigation was

stoppedat startof Augustin 2015 and July in 201growing seasarOn thelimited irrigation
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treatment plot, &ipp and Zonen Large Apertureistillometer(LAS), along with &ipp and

Zonen NR Lite 2 NeRadiometerand HFT 3.1, Radiation and Energy Balance Systems, Inc Soil
heat flux plates were installed to measure sensible heat flux, net radiatiomand lgeat flux,
respectively, so that as a result of these measurements, ET flux can be calthé&gedensors

were installed from August-October in 20d4sd JuneOctober in 2016.

%, _
Flume with Transducer

| REFERENCE |

Figure 2 Montrose site; Reference treatment plot on left and Limited treatment plot on right

2.2 Satellite Data
Landsat 8 and 3atellites imagery(downloaded fromvww.earthexplorer.usgs.gpwasused to

runtheenergy balance because they have the finest thermal resolution amongthléthe
satellites withathermal bandTwo PathRow combinations encompassing thedstarea were
processed. The overpass for recompahgreegion is Path 35/Row 33, and over the Gunnison
region is Path 34/Row 33 — both of which are respectively shown in figures 3 Bachof

these images covers an ared® km x 160 kmSince these are both consecutive overpasses,

26


http://www.earthexplorer.usgs.gov/

there is an overlap between the two. A large part of the western Gunnison area tlaiks

overlap.The time difference between the two overpasses is 1\(¥mle Lardsat 7 images have
stripesbecause of the Scan Li@®rrector failure in 2003, half of the Uncompahgre region
(including the Montrose study sitis at the center of the scene anfiee of striping issues.

The doud-ree images processéat Uncompahgre overpass (Path35/Row33) were June 2, June
18, June 26, July 12, July 20, July 28, August 5, August 13, August 21, August 29, September 6,
October 8 in 2015and April 1, May 3, May 19, May 27, June 4, June 20, June 28, July 6, July
14, August 7 in 2016The cloudfree imageprocessedor the Gunnison overpagBath 3/Row

33) were June 19, June 27, July 13, July 29, August 6, August 14, August 30, September 23 in

2015 and May 4, May 12, June 5, June 13, June 21, July 7, July 23 in 2016.

Figure 3 Landsat 8 imagery for Path35/Row33
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Figure 4 Landsat 8 imagery for Path34/Row33

Additionally, Sentinel 2a MSI data (downloaded framvw.earthexplorer.usgs.gpwver the

Uncompahge, wereutilized in the growing season of 2016. Sentinel 2a MSI overpass image

used is shown in figure Fhe cloud-free images used were March 8, April 7, June 6, June 19,

June 26, July 9, July 16, and July 29.
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Figure 5 Sentinel 2a MSI -Uncompahgre overpass imagery

2.3Weather data
Weather data wer@ownloaded from Colorado Agricultural Meteorological (COAGMET)

network of weather stationkt{p://www.coagmet.colostate.edlul hese weather stations

measuraveather variables like air temperature, relative humidity vapor preselaeradiation,

wind speed and precipitation. Throughout 2015 and 20d®ing season, there were 9

functional weathestations (Appendix 1@ncompassipthe two overpass imaga¥hile most of
these weather stations aretive Uncompahgre, there is only one weather station in Gunnison
(installed in 2015)lt is noted on th€€ OAGMENT websitethat thethreshold wind speed

(minimum readingjor the weathertations’ anemometers is4@m/s (L.12 miles/hour or 26.84
miles/day. Valuesbelow this threshold are dropped toldewind speed in the study area is
generally low often lower than 1 m/s, and sometimes even below 0.5 m/s (which is dropped by

the anemometer).
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2.4 Digital Elevation Data
Elevation of the Western Slope varies widely, which means that theveestradiation

reaching the surface of earth varies widely and an atmospheric lapse ratd@ors needetb
take into account the net coolingtemperature aloft with elevatiomhus, a digital elevation
model over the area is needed. National Elevation Dataset (bfEI§ arc-second, which is

approximately equal to 10 meters in the study aves,used.

2.5 Crop Cover Data
Cropcover classifiationmap for 2015 was downloaded from USDA NASS Cropscape

(http://nassgeodata.gmu.edu/CropScr@dso, additional fieldspecific crop type data was

collectedfrom field visits in theUncompahgre. This field data served as ground validation for
grass and alfalfa crops. From the field data, it was found that in the Cropsgam®ma alfalfa
fields were incorrectly classified as corn and some grass pastures as fitfzeorabther
hay/pastures, burn fields were mostly accuratéeld-specific crop type dataas not

collected in Gunnison since majority of the crops are grass pastures, and Qealsoa

identifies most of the fields as grass pastures.

2.6 Procedure

The procedure employed to meet the objectives of the study are discussed iwirdoll
sectionsEach section covers procedure for one or more of the objectives specified above, not

necessarily in the same order
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2.6.1ReSET model
ReSET calibrated mode involving inputs of spatialistributedreference ETinstantaneous as

well asdaily) and wind speed maps was utilized for both Uncompahgre (Path 35/Row 33)
imagery and GunnisofiPah 34/Row 33) imagery. Even though the Unconypahrea

comprised of 8 weather statioasdthe Gunnison area had only ongata from all weather

stations was used for both of the overpasses to create spatially distributedmeapanaps

were created by determinitgth hourly and daily (2#our) alfalfa reference ET from Penman
Monteith method at eacheather stationutilizing wind speedlatafrom each weather statipon
andspatially interpolatingheseusing Inverse Distance Weighted (IDW) functi@aily

reference ET at each weather station was calculated by summing up the éfenelyceET
(calculaed for each hour from equation 1.2) for the whole rddlyer than using daily tirmgtep

in equation 1.2, because substantial changes in wind speed, humidity, cloudiness ethaluring t

day can affect averaghkily estimates othe parameters of equatior2l.

The ReSET modalsedwas largely automatethcluding selection of calibration/anchor (hot

and cold)pixels The automatic selection of hot and cold pixels was done by creating NDVI and
albedo masks, selecting top candidates of pixels from imag@tastpconditioningop

candidate pixelto be in a cluster of 8 similaurrounding pixels and by constraining cold pixel
selection to beavithin 10-20 km radius around the weather statidre &utomatic selection of hot
and cold pixels was checked visually for every image. This automated selectiohaf pirels
worked well enouglfior most of the Montrose imagery, but not for Gunnison imagecause of

the complex topography (mountainous), soil-mineral depositions, lots of narrow was bodi
and shallow groundwater cooling down the grosndace Because of thist was determined to
best select anchgixels manuallyfor Gunnison imagery.
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The Digital Elevation Modelvas usedor atmospheric lapse rate correctiasing the standard
lapse rate of 0.0066/m from International Civil Aviation Organization (ICAC§ince locations
with higher elevationare at a lower temperatuiigan lower elevation areas, the model may
detect higher locations as having higher ET values. To correct this error, temgeest

adjusted to compensate for the change in elevation, as given by the equation below:

Teorr s = (DEM — datum) * 0.0065 + Ts (2.2)
Where, Tor_sis the corrected surface temperatur&elvins, Tsis the original radiometric

surface temperatuiia Kelving DEM is the digital elevation data (in raj any pixel and
“datum”is the average elevation of the area of intgfE800 mfor Uncompahgre, and 2400 m
for Gunnison)as mentioneth Allen et al. (2011)Implication of datum selection and sensitivity
of model to the datum value chosen over different spatial locations was not considergd in thi

study, but needs to be assessed in future research.

For wind speed lower than 1m/s (@tldue to awal low wind or values droppday the
anemometer)the surface aerodynamic resistance (rah) term in the sensible heat flux equation
(equation 1.Bbreaks apart becausenumerical instabilitypecause it is based on turbulence

(good mixing) ceated by the interaction wfind with surface element3.herefore, for missing

wind speed below 1m/s (no data or otherwise), an assumption of wind speed equivalent to 1 m/s
wasmade before spatially interpolating wind speed and utilizing wind speed map iodieé m
Because an assumption of wind speedecessary, @ind sensitivity analysis was done to check

if increasing the wind speed has a significant differencéailg ET estimationsThe sensitivity
analysis was carried out for 3 different windege- 1, 1.4 and 1.8 m/s. This was done only for

2015 Path 35/Row 33 imagery, and the rasgknalysis was done for the two treatment plots at
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the field site at Montrose. Also, it is noteworthy to mention that since wind speedarethis

quite low, advection effectsn energy balanoc&ould be minimum.

After determining instantaneous (hourly) ET at the time of overpasalftiiareference
evapotranspiration fraction (EFy mechanis was usedo extrapolate instantaneous (houif)
to daily,as in Allen et al(2007a) ETrF is the ratio of remotely sensed instantaneous ET) (&T
thegrassreference ET (E#r) computed from weather station datdhet time of satellite

overpass.

2.2)

This ratio is essentially the actughssbasedcrop coefficient, which does not vary from
instantaneous tdaily time scale, andias used to estimatiily ETq by using the following
equation:

ETy = ETrF.ETy rer (2.3)
whereETq_ref i the dailygrassreference ET calculated from weather statidmese calculations

are done in raster form, on a pixsl-pixel basis. For interpolation between two consecutive
overpass days to get monthly Eor monthlyCU estimates)correction ratioy) method, as
mentioned in Elhaddad and Garcia (2008) and given below, was implemented.

y = [(ETrF; — ETrFiy,)/N] (2.4)
ETq; = [ETrF; — (¥ * T)] * ETq rer (2.5)
whereETrF and ETrk=1 are the ETF gridsof two consecutive overpass ddyetween which
interpolation is being done, N is the number of days betweearvtrpass imagder whichthe

data is being interpolateBTy j is the interpolated daily EBetween two consecutive overpass

datesandETy_retis the daily reference ET for that particular datiee ETq4_i changes for each
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day, depending on where that day falls between the beginning and end of the imerpelabd
(T). This interpolation was done only for Montrose field site treatments to estimatklynon

CCU when the limited treatment plot was stressed in 2015 and 2016.

Preliminary @aluation of ReSET Edaily assessments was douasingtwo separateriterig the
first wasutilizing ground instruments (LAS setup). LAS suite of instruments werdletstanly

at the limited treatment pltd evaluate stressonditionET becausstressed vegetation has
lower vegetation cover that leads to heterogeneity of surface, which aehsesepancy
between actual and ET estimated from models like ReSET that are basedeai dpproach.
Unfortunately, LAS measurements waa alwaysmade (or made accuratelygcausessues of
alignment, low battery, etadisrupted continuous good quality data collection. Nonetheless, 7
dates that overlapped with satellite overpass vadenetified and ddy ET was comparedith

ReSET derivecET estimates at limited plot.

The secone@valuation criteria was a scehased evaluation in which the ETfafly - irrigated
alfalfafield(s)in the scene d@he peak growth time periaglas compared with ASCE reference
ET. Since the reference ET is ideally the maximum weather demand, the maximerfwaiop
coefficient at these fullyrigated alfalfa field(s) at peak growth shouldrbasonablylose to 1.
Fields with normal grwing conditions (without any water or agronomic limitations) were
choseron the basis of threestepfiltering procedure. First, an inward buffer inside each field
was implemented to minimize pixel contamination from surrounding roads, buildimgsenr
bodies. Second, the NDViltering was done such that selected fields had NDVI higher than

0.75. Third, the highest crop coefficient pixel had to pass the clustering filter (3{Btpi
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eliminate noiseThis scene evaluation at peak growths done for both Uncompahgre and
Gunnison image on day(swhen cropvasat/near peak growth. Since the Cropscape crop
cover classification did not show a substantial number of alfalfa fields in the Ganthie same

evaluationof maximum crop coefficient wgserformed orgrass pastures instead

2.6.2 Crop growth stage lengths

In previous studies like that of Taghvaeian et al (2011), actual crop growth lenggusfr@an

the ones mentioned in FAO-56. Lengths of crop development stages i febles are
indicative of general conditions, but magry substantially from region to region, with climate,
elevation, crop variety anglanting dat€FAO-56). Additionally, individual agronomic practices
may also affect the crop growth stages. Since gropthlengthsof grass and alfalfa pastures
the Western Slope have not been determined and/or verified bitfasges done using Landsat 8,
Landsat7, and Sentinel R4Sl satellites for the year 2016. This was achieved by tracking
biomass changes usibnpPVI from multispectral bandsf these 3 satellitesombined.Utilizing

the 3 satellites increased the temporal resolution to better capture NDVI chiemgesid any
classification error in crop cover layenly groundtruthed grass fields weessessedAnother
filtering procedure was used in the procéssinward buffer of 60 m was created to avoid any
edge effect. Fields that had a high intra-field standard deviation (>0.06 NDVIY éiettls that
didn’t show much variation in NDVI throughout the season were eliminated becausetrdt
non-uniform or poor growing conditions, or extensive grazing pastures. The croj ¢gagths

determined for each cutting cycle were analyzed compared to FAO-56 values.
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2.6.3Reflectancebased crop coefficient methaahd its evaluation

To use this simplifieanethod that does not require thermal han¥®l-Kc relationship that is
specific to a particular crop is needed. Sin&é -#&c relationship for grasgasturesioes not
exist in the previous literaturge,was developed using tliata from the fields filtexd in section

2.6.2. This was done by dividing the hourly ET raster derived from RQSERlsethourly) by the
spatiallyinterpolated hourlalfalfa reference ET rasteETRefhour]y) to obtain the Kc as shown

in equation 2.6Then, this Kc was regressedhvNDVI for the caresponding fields for the

sameday satellite overpass, to obtain an empirical reflectdased model for grass pastures

ETResethourly

KcReset = — (2.6)
FurthermoreReflectance based models for grass (developed in this study) and for alfalfa
(developed in Nebraska by Irmak and Singh (2009); shown in Takler&écompared with
ReSETderiveddaily ET estimateso evaluateheir average dailperformance on full and
limited irrigation treatment plot&t Montrose) for grass, and filtered (in section 2.6.2) alfalfa
field sites.

2.7 Statistical Evaluation
Coefficient of Variation (CV)
The Coefficient of Variation (CVineasures the variability in the values relative to the
magnitude of the mean. It is a ratio of standard deviation and mean, often expréssed i
Mean Biased Error (MBE) & Root Mean Square Error (RMSE)
RMSE = [N 3N, (P, — 0)?]° (2.6)
MBE = N3N (P, - 0)) (2.7)
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where, N is the number of observations, P is a prediction, and O is an observation. RMSE
summarizes model error in termswvafriance ofmagnitude and MBE describes model bias. The
errors together can provide descriptive measures of model performance.

NashSutcliffe Coefficient of Efficiency (NSCE)

It is used to assess the predictive power of a model’s predictions with respe@rna@tbss,

and is given by:

. Y1 (P;—04)?

NSCE =1 1(0;-00)?

(2.8)

where,n is the number of observations, P is a prediction and O is an observation,iankeO
mean of observations. The range of NSCE is from negative infinity to 1, with negdties va
indicating unacceptable model pmrhance. The closée valueof NSCEis to 1, the rore

accurate a model mnsidered to be.
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CHAPTER 3: RESULTS AND DISCUSSIONS

3.1 Performance and EvaluationRESET

3.1.1 Low(<1 m/s)wind speed

The probability distribution of wind speed at the time of satellite overpasgefather stations

at/near Montrose for the growing season (Ap@etober) oflast 4 years is shown in figure 6.

Similarly, thegrowing season wind probability distribution for Gunnison weather station since

its installmentn 2015 is shown in figure 7.
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Figure 6 Montrose wind probability distribution from last 4 years
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Figure 7 Gunnison wind probability distribution from last 2 years (since installment of weather station)

The distributions are positilyeskewed withabout 60% and 75% of the growing season wind
speed data, for Montrose and Gunnison respectively, being less than 1 m/s. Whibgvsuch |
wind speeds are associated with minimum advection effects on energy balancsyedsl
lower than 1 m/sausenumerical instability in surface aerodynamic resistance (rah) term in
equation (1.8). Therefore, for wind speed values lower than Jatrdl,wealer stations in the
study arepan assumption of 1 mvgas necessary.o test the effect of thiassumption, the

sensitivity of ReSET ET results to wind speed waralyzed as discussed in section 3.1.2.

3.1.2 Wind Sensitivity Analysis

Thesensitivity analysis was carried out for 3 different wind speeds: 1, 1.4 and 1Bhis/aas
done only for 2015 Path 34/Row BBagery and the result analysis was done for the two
treatment plots at the field site at MontroBgures 8 and 9 show the percent coefficients of
variation (% CV) ofgrasshourly ETfor full irrigation and limited irrigation plot,espectively.

The first bar(blue) in these figures represent the %CV between the hourly ETs obtained by
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assuming a minimum wind speed of 1m/s and 1.4 m/s, for any wind speed values <1 m/s.
Similarly, the second bdyellow) is the %CV between the hourly Efor 1.4m/s and 1.&/s

And, the third bared)is the %CV between the hourly Efis 1m/s and 1.8n/s

%CV of grass hourly ET for full
irrigation plot
100
80
60
40

20
0 | - [ | - I I | | I —

2-Jun 18-Jun 26-Jun 12-Jul 28-Jul 5-Aug 13-Aug21-Aug29-Aug 6-Sep 8-Oct

% CV of grass hourly ET

1.0-1.4 14-1.8 m1.0-1.8

Figure 8 Clustered bar graph showing %CV of grass hourly ET for full irrigation treatment plot

%CV of grass hourly ET for limited
irrigation plot
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Figure 9 Clustered bar graph showing %CV of grass hourly ET for limited irrigation treatment plot
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Since the 11.8 m/scluster has a higher ran@grange i9.8), the variabilityof grasshourly ET
between these two wind speed assumptions is high, as expEotetthis cluster, o average, the
percent variability of grass Ei$ 6.3% (maximum of 12.6%) for full treatment plot and 6.7%
(maximum of 19.7%) for the limited treatment plot. The least varialufigrass ETis seen
between 1 and 1.4 m/s (range is 0.dh-average4.4% (maximum of 10%) for futfreatment

plot and 4.8%¢maximum of 11%) for limitedreatmenplot. For1.4 to 1.8m/s(range is 0.4), the
variability of grass ETis 6.9% (maximum of 22%) for futteatmenplot and 7.2%maximum of
23.5%) for limitedtreatmenplot. This indicates that as the value of wind speed assumption
increases, the variabiligf grass ETincreases even though the range (0.4) is conlséween 1
1.4 and 1.4-1.8 clusters. The %CVs for all the 3 ranges described is comparable for the two
treatment plotsOverall the %CVof grass hourly ETs approximately 6% on average, and thus

the grass ETs not highly sensitive to wind speed values in or below the range tested.

3.1.3 ReSET evaluation

3.1.3.1 Evaluation with groundstruments

Daily ReSEFderivedgrassET compared against E&stimatedrom the suite of ground
instrumentsthat is, LAS, net radiometer and ground platesalled(hereafter called LAS
estimatedptthe limited irrigation treatmermglot for 7 overlapping satellite overpass dates in

2015 and 2016 is shown Trable 3

Table 3 Comparison between daily LAS-estimated and ReSET-derived ET

Dates LAS-estimated ReSETderived % Difference
August 5, 2015 6.8 6.51 4.3
August 13,2015 | 7.4 4.34 41.3
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August 21, 2015 | 3.9 4.1 -5.1

August 29, 2015 | 5.2 4.1 21.2
June 4, 2016 6.5 4.6 29.2
June 20, 2016 6.3 4.7 254
July 14, 2016 4.2 1.8 57.1

Average = 24.8

On average, the difference betweendhiy LAS-estimatecand ReSET derived ETwas24.8%
on a daily basis, with a maximum difference of 57.1¥9hile the above data afem limited
treatment plot, this plot wasot stressed until the&tart of July 02016, even though some stress-
carryover from 2015 is possible. The above dataset was thus divided into Stespexd
5,13,21,29 in 2015 and July 14 in 2016) and stassedJune 4 and 20 in 2016ategories. It
wasestimated thathe average differender the formercategory i23.8% and for theakter is
27.3%. Overall, it was observed that ReSHeérived ET is lower, anchaypoint to some
underestimation for both stressed and stvessed categorigsigure10 shows th&AS-
estimatecand ReSEderived ET comparison withlfalfa reference ET from weather station
(WS). It was observed that on August 13, 2Qdfsessed category)AS-estimated Ewas
higher than the reference Ewhich is the maximum weather demand at any time per&dge
this was the stressed category, lthted plot was not irrigatednd according to the nearest
COAGMET weather station (Montrose), negligible precipitati@s receiveaver the area in
the pasB-4 days. Since the actual ET cannot be higher than the weather demamghtighkts
the fad¢ that these instrumentsay not bdree of their own errors and limitatiorend may not

be considered as an absolute benchmark for evaluation. Another possibility could béva negat
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sensible heat flux (sensible heat flux absorbed by the crops), whidd vause an increase in

available energy and thus an increase in actual ET.

[y
o

ET (mm/day)
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BWS [@LAS-estimated [ ReSET-derived

Figure 10 ET comparison between reference Weather Station (WS), LAS-estimated and ReSET-derived

3.1.3.2 Scene evaluation

Path35/ Row 33
Scenschosen at the time of peak alfalfa growth were Jyr#015 and June 4, 2016, since the

cutting after first crop growth cycleere observed to happen around/after the first week of June
(as seemater in sectior8.2. In 2016 for groundverified alfalfafieldsin the area, the maxium
value ofalfalfa crop coefficient obtained was 0.96. Since, the number of fields verified for crop
type on ground aslimited for the purpose (only 9 fields in the entire scene), the crop cover
layer wasalsoutilized to chose maximum values of alfalfa crop coefficieritsen though the

crop cover layer was observed torim entirely accurate because some alfalfa fiele®

classified as corn and some grass pastures as alfalfa, but corn fields were ifiedcasalfalfa
which means that choosing alfalfa layer was acceptable for this process beeanagimum

value ofcrop coefficients foalfalfa-classified fields would belong to alfalfarhe threemost
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highly transpiring, stresBeefields, after filtering wereselected from the crop cover layer, and
combiningtheir maximum crop coefficients with 96 (the maximum value of crop coefficient

for groundverified alfalfg revealedhe average maximum crop coefficient in the peak growth to
be 0.98 Similarly, for 205, the average maximum alfalfa crop coefficient Wa#g!. This

perhaps points tslight underestimation of ET in 2016 and slight overestimation in D@téuse
crop coefficienin peak growth stage should ideally be 1. But crop coefficients at peak atage ¢
beslightly lower or higher than 1 becauskaslight difference of actual surface resistance
albedo etcthan assumed in FAO-56 Penman-Monteith equafwerall, ReSET performed

well in thispeak growth seas@tene evaluatiort should be mentiortethat thisevaluationis

only for peak period, and may vary during different crop growth stages andcsinelssons.

Path34/ Row 33

Scenes chosen for this overpass were July 7, 2016 and June 27, 2015. Since the area under this
scene does not have alfalfa, the scene evaluation for maximum cropieaéeffias done for

grass pastures, and the aforementioneeisdaere selected on the basis@mmon knowledge

of peak growth of grass pastures before their first cutting irJuiigl Or. PerryCabot, personal
communication)The maximum crop coefficient of grass pastures after passing all the filtering
checks was found to del5 in 2016 and 1.1 in 201%hese crop coefficieabf grass pastures

are with respect to the reference alf&fb (ETr) becausehe physiology othese pastures is
closer to alfalfa reference crop thsimortgrass reference cr@gTo). Clearly, ReSET
overestimated ET for the peak growth season of grass in this scene exajpethaps due to
excess water decreasing thersighatue leading toanincrease in derived ERnother issue
could be selection of anchor pixels, especially cold pixels due to all the snalWvaater

bodies which can erroneously lead to selection of a colder cold pixel- which has RijtaiND

is highly transpiring due to sufficient water availability. This would leadriianderestimation of
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ET, if selection of hot pixel is correct and is not affected by Jatimeralatedsoils. To further
explore the selection of cold and hot pixels in this complex scene, the overlappithg@veen
this Patl34/Row33and PatB5/Row33wascomparedThe reasoning was that sinc@p
coefficients estimated over a given afeeerlapping area between two images) do not change
significantly over a day, crop coefficients determined over Gunnison and Uncompahgery
on consecutive overpass days can be compared for evaluating the estimatiavef ET
Gunnison area, and to check the anchor points’ selection in Path34/Row33 irkagen/11
showsthedifference of average crop coefficients from the two overpass s¢ead34Row33 —
Path33Row33) over the entire growing season- one image per nfextiept September when
no cloudfree subsequent images existamapture the overall trends, with data from 2015
complementing 2016 when need@édsuming that the ET estimatiéor Path3%Row33is
accurate and not affected by hot and/or cold pixstalibration it was observed that in peak
growth, selection of hot and cold pixels may betan issue because the average difference of
crop coefficient between the two is minimaldiane (peak of first growth cycle) and August
(peak after crop regrows after first cutting). But, thenenderestimation in July and October
that could be due to selection of a colder cold pixel, and overestimation in May could be due to
selection of a hotter hot pixel since selection of a right hot pixel is relatively mooetanpin

the beginning of seson because of faster heating up of soils with salt or minerals inlthem.
such a situation, an energy balance model that is not based on anchor pixels, Ifkeuree-

model, may perform bettand is worth evaluating in future research
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Figure 11 Average daily crop coefficient difference, calculated from consecutive overpass days

3.1.4 Conserved C(CCU)
Monthly CCU calculated for 2015 (August-October) and 2016 (April-July) for Monsibseas a

result of ETdifference afull and limited irrigation plag isshown in figure 12. CU increased
gradually from August to October in 2015 after lingted plotwas stressed in August. There

was some stress carryover in 2016 on the limited plot because ET or CU on this plasis not
high inApril and May of 2016, even though this plot was not stressed during this time period.
June CCU is slightly negative which could be an artifact of slightly highgatron on limited
irrigation plot around the satellite overpass dates in June. July CCU is again positive, which is

expected since the limited plot was stressed in this month.
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3.1.5 Number of cloudree images

As noted from 2015-2016 data, for both Uncompahgre and Gunnison overpasses, the number of
cloudfree images wakund to be adequate in the middle of the growing season- from June to
August, with an average of 2-3 cloud-free images per month. The month of April usudlly has
cloudfree imaye for theUncompahgre overpass, but none for the higher elevation Gunnison
overpass. The months of May, September and October have 1-Zrdeudvages for
Uncompahgre overpass and 0-1 for Gunnison overpass. According to Allen et al. (2015) and
Elhaddad et al. (2011), a minimum of one image per month is necessary for seasatresfim
CU. For monthly estimates, more than one imagery per nmaghoften baecessary,

especially for these pasture crops which go through different cuttingscgrtl rapidly changing
phenology over a month. For tracking crop changes better, utilizing other esisltin thermal
band (like MODIS Aqua/Terra which has 1 km thermal band) conjunctively with Liaafiea
utilizing pixel sharpening technique (Agam et al., 2007) to run ReSET model, or utilizing a

different approach like reflectantased crop coefficient method (that does not require a thermal
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band) with satellites like Sentinel conjunction with Landsdb increase temporal frequency

can be considered in the future.

3.2 Local growth stage lengths

3.2.1 Grass
To avoid any classification error in crop cover layer, average NDVI of 16 groundetigridoes

pasturdields were trackethrough the beginning dflarchto the beginning of September (a
total of 2L cloudfree images) with SentinellMSI, Landsat 7 and 8 to estimate local growth
stage lengths of each cutting cycle because NDVI is directly related to créipientf(Without
Sentinel, the number of cloud-free images for this time period were onljfi&r filtering, 10
fields were chosemhreeout of these 10 fields showed 3 cutting cycles until the beginning of
September, which probably meant that these fields weri,avith some alfalfa in thesrreven
though their NDVI was not as high as alfalfa (alfalfa fields tend to advBVI >0.8 at peak
stagejas in figure inl3). These fields were excluded for this analybist do highlight the
complexityof water managemendue to highlywariable agronomic practicaésthe areaThe
average VI for the remaining fieldswith 2 cutting cycles until the beginning of Septemizer,
shown in figure 13. According to FAO-56, the growing season for grass pasdarbe
estimatedo begin7 days before the last °C in spring.Following this FAQ56 guidelinethe
growing season can be estimated to begiMarch 30 in 2016. The lengthsgraissgrowth
stages mentioned in FAO-56 are 10 and 20 #aywitial anddevelopment growth stages
respectively for the first cutting cycldlo information is provided for the rest of the cutting

cycles.
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Figure 13 Grass pastures crop growth (related to NDVI) with time
Values ofNDVI increased from March 8 to April 1, which shows a green-up of perennial grass
pastures. Thisvas followed by the initial stage with nearly constant NDVI for about 7 days,
which is similar to FAG56 value of 10 days for initial stage. The developmegestor the first
cutting cycle lasted for 42 days, which is twicdasy as mentioned in FAO-56(20 dayshis
could be because of the elevatiorfelénces between the Uncompahgnel Idaho (University
of ldaho Agricultural Experiment Station, Moscow, Idahthehigh elevation of the
Uncompahgre causing cooling of air could be one reason for the delay of crob.grbe/mid
and late season lasted for a total of 37 days.unclear if the second cutting cycle has atiah
growth stage due to slight noise perhaps due to atmospheric or sensor diffemnchst 28-
July 16. The second development stage lasted 45 days, while FAO-56 does notgrpvide
information about the growth stage lengths after the first cutting cyidle also noted that this
information maybe specific to the limited number of ground-truthed and filtereld fisked, and
additional analysis on more number of fields and for more number of years needs to be done in

the future.
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3.2.2Alfalfa
Similar to grass pastures, averagfeVI of 9 groundtruthed alfalfa pasture fields were tracked

through March to September witlhe same 3 satellites, antdring processesulted in 4
desirable fields whiclvereused to construct the average NDVI curve shown in Figurt dvéhs
observed that there were 3 cutting cycles of alfalfa until the beginning ohSepteAccording
to FAO-56, the growing season for alfalfa can be estimatéegdgn on thelay thelast-4 °C
temperature happenadspring, which was on April 6 in 2016. The lengthf alfalfa growth
stagesnentioned in FAO-56 for Idaho, USAre 10,30, 25, and 1daysfor initial,
development, mid and late growdtages respectively for the first cutting cycle; and®,and
10daysfor initial, development, mid and late growgtages respectively for all other cutting

cycles.
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Figure 14 Alfalfa pastures crop growth (related to NDVI) with time
The crop growing season starts from Apr{l&st-4 °C), but from figurel4, it was observed that
from March 8to April 7, NDVI increasedraduallyperhaps referring to the perennial crop
grean-up periodlnitial growth stage was not seen for any cut{ifog the first cutting cycle as
well as subsequent cycles, right after each cutting). This could be due to rapid croprdenel
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after the crop greeanp before the firstycle, and for other cycles — perhaps the crop does not
need that initial stage since it is already an establishedAngpher reason could be that the
crops were notutall the waydown their entire height ks such a case, anitial growth stage is
not needed. The numbef days for thedevelopment stagat thefirst cycle on averagavas

found to be 42which is equivalent to number of dalgs FAO-56 initial (10) and developmén
(30) stagesForthesecond and third cutting cycles, the number of days in each period was 22
and 21, respectively, which is equivalent to FAO-56(20). Mid and late growth statjesleng
highly variable, depending on farmers’ condition and decisiacwbk related to factors like
size of the field (&, if the size of field is very big, cutting will take several days), grazing
patterns (g.., animals maybe let out for grazing as soon as the crops reach peak graltbrfo
one/more than ongf thecutting cycleshowmany animals graze a field, hd@ng animals are

let out in the field for grazingetc. Theaverage number of day®y mid and late stages
combined, were found to be 18, 18, and 24 for first, second adcctliting cycleswhich is
roughly similar to FAG56 (35, 20, and 20It is also noted that this information maybe specific
to the limited number of ground-truthed and filtered fields used, and additional arwadysiore

number of fields and for more number of years needs to be done in the future.

3.3 Reflectanc®ased empirical model for grass pastures

Thefiltered fieldsin section 3.2.1vere utilized to generate an empirical model between Kc and
NDVI. The scatter plot obtained between ReS&tefived Kc’'s and NDVI is shown iigure 15

and the linear equation for line-bést fit is:

Kc=1.195 NDVI - 0.057 (&= 0.72) (3.1)
Thisis an empirical regressianodelthatcan be utilized with reflectandeessed crop coefficient
approachSince this model is developed from ReSET, it inherently contains the errorseof ReS
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(perhaps due to low wind speedabmospheric lapse rate correctioiany. The model has a
NSCE of 0.71, MBE of -0.05% and RMSE of 20%nc® it was difficult to determine surface
conditions (dry or wet) of fields used in model formulation, the Kc bsed is a single crop
coefficient which is the sum of basal crop coefficient (Kcb), and the contribution of soill
evaporation (Ke)Since diferent surface condition are considered togetiner magnitude of
variance (or RMSE) about the best line of fiaisorelatively high. The modehaybe improved

in the future using known surface conditions (perhaps utilizing an index like Normalized
Difference Moisturendexthat is sensitive to wet/moisture conditicagut in thacase, when
applying the pecific-surface conditions modé.g., Kcb for conditions where soil is not wet and
evaporation isdw), the surface condition of the fields should be known too. The model derived
herein its current form can be utilized talculate neareal timeET without the need of thermal

band, perhaps with other multispectral satellites like Sentinel 2 MSIreaise the temporal

resolution.
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Figure 15 Scatter plot between Kc and NDVI
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3.4 Evaluation of reflectandeased empirical models

3.4.1 Grass pastures

Reflectancebased empirical model developed in section 3.3 was applied to both full and limited
plots at Montrose site, which is approximately 5 km away from a weather stftien.

obtaining the reflectaneleased crop coefficient from (3.1), thHalfareference ETETr) from
weather station was multiplied with it to determine actualEhle4 shows theerformance of

this approach on dailgveragebasis with respect teesetderiveddaily ET. The model

performed better for the fulirigation plot (average MBE and RMSE of 0.64 and 1.02 mm/day,
respectivelyNSCE of 0.63than at the limited plofaverage MBE and RMSE of 0.69 and 1.09
mm/day, respective]yNSCE of 0.52becausehortierm stresses may natfect the NDVI, but
affects the ET rate®verdl, the performance of this method for grass pasturssnsar to

ReSETon a daily basiand has a potential to be utilized with a combination of several

multispectral satellites to get a higher temporal resolution ET product in almoseaktime.

Table 4 Grass pastures: Error analysis of Reflectance-based daily ET with respect to ReSET-derived daily ET

Full irrigation field Limited irrigation field
MBE (mm/day) 0.64 0.69
MBE (%) 13 21
RMSE (mm/day) 1.02 1.09
RMSE (%) 15 23
NSCE 0.63 0.52
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3.42 Alfalfa pastures
Singh and Irmak (2009) alfalfaased empirical model derived in Nebraska was evaluated with

respect to ReSET outpud$3 alfalfa sites approximately km away from weather statiofts
2015 and 2016Table5 summarizes the MBERMSE and NSCE of théaily ET outputs of this
method with respect to ReSET-derived daily ET. The performance of this metredthffa is
similar to ReSET anbas a potential tbe utilized with acombination of several multispectral
satellitesto geta higher temporal resolution ET product in almost meaktime The errors
observed from alfalfa model were slightly lower than that for loeddlyeloped grass modehis
was attributed to the higher number of alfalfa fields used in Singh and Irmak (B&@89)ged in

this study.

Table 5 Alfalfa pastures: Error analysis of Reflectance-based daily ET with respect to ReSET-derived daily ET

MBE (mm/day) 0.16
MBE (%) 3
RMSE (mm/day) 1.13
RMSE (%) 22
NSCE 0.60
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CHAPTER 4: CONCLUSION&ND RECOMMENDATIONS

This study performed a preliminary evaluation of ReSET model for @gnatological
conditions of the Western Slope. Wind sensitivity analysis revealed thatigrady ET was not
very sensitive to wind speed, especially at lower values. Evaluztgnass daily ETwith

ground sensors pordto an underestimation by about 25%. But it was also noted that the
ground instrumesthad their own limitationgBesides, as hdseen noted in previous studies,
these errors may decrease on an average for a longer time period, like nfostidge based
evaluationof grass E'lwas also done for peak growth stage and it was observed tlid Stel
model performed well for the Uncontpgre Overall,this preliminary evaluatiorevealsa high
potential of ReSET to be utilized the Uncompahgrior the estimation odaily CU at large

spatial scales for alternate water transfer wdstHike water banks.

It is recommended that further evaluation of ReSET under both full and limiteationg
conditions on a monthly timescale, which is practically more appropriate for an operation water
bank needs to be carried out. Although CCU estimated showed expected trendedession

of irrigation, further validation needs to be done using lysimeter or neutron probe ET estimation.

The selection of anchor pixels for calibrating the Gunnison imagery wasomadsé due to

complex agrenydrological area. For geographically complex Gunnisoa, duture research

should explore other energy-based models like Two Source model which do not rely on anchor
pixels. But nonetheless, the plethora of narrow water bodies, and type of irrigiatal) (i the

Gunnison area may reduce the thermal signaticanopy in the image, and may present a
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challenge to any remote sensing based methodology. For Gunnison area, a coshlisaten
is thus needed to determine the use of remote sensing methodologies in reliableapi@antf

CU for water sharingrrangements

Crop growth stages’ lengths were tracked with Landsat and Sentinetesteltid provide
important information regarding local growth stage lengths for grass fatfd glastures in the
area. A NDV1KCc relationshigfor grass pasturesasalso developed. This relationship was
evaluatedor energy and water limiting conditions on grass, and results showedgbdbitmed
similar to ReSET daily estimatdstrors were higher for stressed crop because NDVI does not
capture shorterm/immediatestressesPreviously developeNebraskabased NDVIKc
relationship for alfalfa was also evaluated, and it also performed similaitydRéSET
estimatesThe errors observed from alfalfa model were slightly lower than that fotylocal
developed graswmodel; this was attributed to the higher number of alfalfa fields ustbe in

Nebraskabasedstudythan used in this study.

The NDM-Kc approaclktan be gromisingtool for estimating neareal time ET in the future

for water sharing arrangemengspecilly when utilized with a combination of Landsat 7,

Landsat 8, Sentinel 2a MSI and Sentinel 2b MSI(to be launched in 2017) satellites. The monthly
CU (and subsequently CCU) estimation using this approach on an enhanced tempdnakszale
potentialto overcome the limitations of using the energy balance approach which relies on the

thermal bands thus a limited temporal frequency of only Landsat satellites.
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APFENDICES

Appendix 1
Table 6 COAGMET Weather Stations
S.NO. Weather Station Name Elevation(m)
1 Montrose 1722
2 Delta 1527
3 Eckert 1683
4 CSU Fruita Exp. Station 1378
5 CSU Rogers Mesa Exp Stati( 1691
6 Orchard Mesa 1402
7 Olathe 1 1623
8 Olathe 2 1662
9 Gunnison 2406
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Appendix 2

ReSET model

1. Hourly alfalfa reference ET was first computed from the weather statiar{@ahprising of
temperature, relative humidity, vapor pressure, wind speed and solar radiatgniReft T
software (Allen, 2002).

2. Dalily alfalfa reference ET was calculated by summing up the hourly ET values.

3. Spatially interpolated reference ET (hourly and daily) and wind speed frahe alleather
stations was createding the Inverse Distance Weight (IDW) function.

4. After calculating reflectance and brightness temperdiig)elandsat bands, surface

radiometric temperature (Tgjascalculatel by:

Th
TS - s0.25
NB

Whereeyg is barrow bans surface emissivity = 0.97 +0.0088. LAl is the Leaf area indext

LAl is >3, this value is set equal to 0.98.

5. The surface radiometric temperature wean corrected using atmospheric lapse rate
correction, as seen in equation (2.1).

6. Net radiation flux (Rn) wadetermined by:

Rn =R, — aRgy + Ry — Ry = (1 —eo)Ryy

WhereRg, is incoming shortvave radiation (W m), a is surface albedo (dimensionlesR), is

incoming longwaveradiation (W n¥), Ri;is outgoing longwvave radiatio(W m?) and g is

broadband surface thermal emissivity.

7. Ground heat flux was determined by the following equation:

= = 0.005 + 0.18E0521LAT (LAI>0.5)

n
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£ o W29 1 0,084 (LAI<0.5)
8. Sensible heat fluwas given by

H = pCpdT
Tah

where dT is the near surface temperature difference(i)the air density (kg/i), Cp is the
specific heat of ai(1004 J/kg/K), andaris the aerodynamic resistance to heat tranpon)

9. The near surface temperature differer®E) (s assumed to be linearly related with Ts

dT=aTs +b

This linear equation has two unknowns thus needs two conditions to be solved. This is where the
concept of hot and cold pixels comes in. Ir'BE&, more than once hot and cold pixels are

selected, and then amterpolationbetween them produces hot and cold rasters, such that the
above equation is solved for every pixel.

10.The aerodynamic resistance to heat transpgytwes given by

InG;2)

uxk

Tah
where z and z are near surface levels, 0.1 and 2 m respectively, k is von karman constant equal
to 0.4, and u* is friction velocity

11.The friction velocity (u*)was given by

ku,

- ln(zix

)

Whereuw is wind sped (m/s) at height above the ground, and.zis the momentum roughness
length (m)

12. The momentum roughness lengthdjavas calculated as a function of LAI

Zom = 0.018 LAI

A minimum value of 0.005 is set foswwhen LAI tends to zero.

13.The LAl was derived as a function of Soil Adjusted Vegetation I{8é&w/1)
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ll,1(0.69—SAVI)

LAl = ———0s2 —
0.91

14.Initially, the sensible heat flux was calculated assuming neutral atmospbrediti@ns.
Atmospheric stability corrections were done using the Monin-Obukho@)Eimilarity

Theory (MOST). TheM-O length (L) was calculated using the following equation:

_ pCpux3Tg
kgH

L=
whereg is gravitational constant. If L>0, the atmosphere is stable; if L=0tth@sphere is
neutral, if L<0, atmosphere is unstable. The stability iterations weratespentil the H
stabilizes (change in H between two consecutive iterations in <5%)

15.Then, the latent heat flux (LEyas computed as a residual of the energy balance:
LE=R\-G-H

16. Instantaneous(hourly) ET was then computed from the LE

ETy, . = 3600 %

wherep,, is 1,000 kg/rd, andA is given by (2.501 — 0.002364T— 273.15)). 18(J/kg)
17.Reference ET fraction (ETrF) was then computed by dividing tkebl spatially

interpolated hourly reference ET raster

ET_inst
ET,

ETrF =

18. Daily ET(ETq) was then calculated by using the ETrF function as follows:
ETy = ETrF X ET, 4
Where ETr_d is the spatially interpolated reference daily reference ET rastethe weather

stations
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LAS description and calculations

The LAS operates byansmittinga neasinfrared (880 nm) electromagnetic beamamxn a
transmitter and receiver, which is affected by “scintillations” or turizden the beam path
caused by variations in the air refractive index(Meijninger, 2003)The receiver captures the
strergth of the transmitted signal and correspondingly accounts for the variation @frthke s
strength in timeThe LAS was installed ditmited irrigation plot at a height of approximately
2.17 m, and the distance between the transmitter and receiver being 192 m. Tdreshgati
between the measured variance of the natural logarithm of intensity fluctuations (cin®) and the
structure parameter of the air refractive index (@n?) exists:

C2 =1.120%,; D7/3L73 (1)
where D is the aperture diameter, L is the distance between transmitter aner rigeetv
length).

Cr? can be decomposed into the strucpaeameters alemperaturgand humidity. For NIR

wavelengths, temperature fluctuations{@&. m??) are the main contributors to €n

T? c3
Cé = —03 (2)

AF (1422
where B is bowen ratio (H/LE), /= -0.78.10‘5BT—1’+0.126.1(‘55 R/g and T is air temperature (K),

BP is barometric pressurey, R water vapor gas constant and g is specific humidity. Subsequent
application of Monin-Obukhov (M3) similarity theory (MOST) permits the determination of

the temperature scale (T*, K).
0.5

2
Tee (M) 3)

z1.As—d
fr(5>—)
mo
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ZLas is the effective LAS beam height (m), d is the zero displacement heiyrar{chf
represents thMIOST similarity function for CT? and T*. In order taletermine Hadditional

input of the friction velocity (u*, ns ') is required.

ky.(u2—u1)
W= o) (4)

In(Z2=8) -y (35S

The equation for u* above represents the logarithmic wind profile model, whisréhle Von
Karmanconstant (~0.41), U represents horizontal wind speesi {hat two heights, z1 and z2
(m), and y represents the M-O similarity functions for u*. Both T* and u* are dependent (in a
thermally stratified surface layer) on similarity functions of the buoygarameter (z/ikho),
where z (m) represents the measurement height less the zero displacement,haigimtiddmo
is the Monin-Obukhov length (mJhecomputationsre different ér unstable and stable
atmospheric conditions; independent determinatidh@atmospheric stability condition was
made from ancillary data from two thermometers installed vertically at the studyatier*
and u* are dependent (in a thermally stratified surface layer) on simiianictions of the
buoyancy parameter (z#k), where Zm) represents the measurement height less the zero
displacement height (d, m) anddis theMonin-Obukhov length (m). ko is also dependent on
T* and u*, thus requiring an iterative computation to obtiftom Crf measurement.

H= —p,icpu*T* ©))
where ispairdensity of air andgs the specific heaif dry air at constant pressure (,005 J.

Kgt K.
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