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VIRTUAL MASS OF AN OSCILLATING SPHERE 

Wll'HIN A :FIXED CONCENTRIC SHELL 

By Norbert L. Ackermann and Anat Arbhabhirama 

.ABSTRACT 

.The virt:u:al mass of a sphere oscillating within a fixed concentric 
spherical shell filled with water was determined experimentally for seven 
sphere-to~she ll diame ter ratios between 0 and 0.865. Laboratory me asure
ments of the virtual mass for diame ter ratios less than 0.520 agreed closely 
with the theoretically predicted values based on a potential flow analysis. 
l{or ratios greater than 0.520 the virtual mass increased more rapidly than 
the potential flow theory indicated with an increase of 33% for a diameter 
ratio of 0.865 . 

INTRODUCTION 

When a solid body accelerates through a fluid the inertia of the body 
depends upon the mass of the solid and the effect of the surrounding media. 
l'he increase in the effective mass of the solid due to the presence of the 
fluid is called the hydrodyna.mic or · added mass. The mass of a solid plus 
its added mass is .called the virtual mass. The added mass is ·usually 
expressed as a fraction or multiple of the mass of fluid displaced by the 
submerged body; this multiplying factor is called the added mass factor. 
Analysis using potential flow theory indicates that a sphere in a!l ideal 
fluid of infinite e x tent has an added mass factor equal to one-half; a 
cylinder with an infinite length-to-diame ter ratio has an added mass factor 
equa l to one . The effective iner tia of a body i s also dependent upon the 
proximity _ of rigid boundaries . An oscillating sphere bounded ex t ernally by 
a concentric shell has an effective inertia which approaches that of an 
infinite mas s as the diameter s of the spher e and shell become equal . The 
inertia, as predicted by potential flow theory, is further increased when the 
effects of viscosi~y are included. 

Considerations of the added mass of a body are often of gr eat practical 
significance . 'The effective inertia of a body produced by the surrounding 
fluid is some time s far greater than the mass of the body itse lf. A bubble 
of air in wa ter has an inertia hundreds of t imes greater than that produced 
by the mass of the bubble itself. The motion of shi ps and submarines, the 
opening of parachutes, the flight of balloons, and the behaviour of two 
phase fluid flows are only a few examples of motion significantly affected 
by the increase in a body's inert i a due to the presence of a contiguous 
media. 

Mathematical difficulties, however, in the theoretical analysis of a 
body's virtua l mass, even when using ideal fluid theory, limit the number 
of geome tric configurations and t y pes of motion tha t are amenab le to an 
exact solution . When viscous effects are included the difficulties of 
analysis almost always be come insurmountab le. Simil ar ly, experimental 
efforts to measure the virtua l mass of a body have been confronted with 
problems of considerable difficulty . The s e paration of effects produced 
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by acceleration dependent or inertia forces from the velocity dep,2ndent or 
drag forces has been one of the major ex perimental complications. 

In the prese nt study the effects of a concent ric boundary on the virtual 
mass of a sphere were measured and compared to results predicted f rom a 
potential flow analysis. This geometr ic configuration can be varied between 
two limiting conditions both of which are often approached in physical pheno
menon. By varying the ratio of the diame ters of the sphere and the concentric 
shell between zer o and unity, geometric conditions are reproduced which, in 
their extremes, represent the case of a sphere in an infinite body of fluid 
and the case where the external boundary coincides with the sphere's surface. 
A .measurement device was developed, similar to one use d by Stelson and Mavis (1), 
which not only largely eliminated the drag effects of the supporting structure 
and sphere but also preserved the geome try of the system as a result of the 
l>ody's motion. 

APPAR.A11JS AND TESTING PROCEDURE 

Figures 1 and 2 show the apparatus used to measure the virtual mass of 
a sphere surrounded by a fixed concentric she ll . The sphere, 3.12 inches 
in diame ter, was attached to the end· of a. slender vertical rod f ixed to the 
center of a simply supported be am . By adding weights to the vertical rod, 
with the sphere r emoved, a calibration was obtained be t ween the natural 
frequency of the beam and the mass suppor ted by the rod. The frequency was 
determined -with an oscillograph which r ecorded the movement of a bar magnet 
fixed to the simply supported be am . When the beam was vibrated the bar 
magnet oscillated within the core of a solenoid which was independently 

. supported. The voltage produced by this motion was amplified and recorded 
on the oscillograph. Subsequently , the sphere was suspended inside and 
concentric with a spher i ca l shell filled with water. The natural freque.1.cy 
of the beam, supporting the rod and submerged sphere, was then measured. 
Using this frequency measurement the total or virt.u2.l mas s of the submerged 
sphere was determined from the added mass ~frquency calibration for the beam . 
The added mass was calculated by subtractin0 the mass of the sphere from 
the virtual mass. 

Tests of the sphere in air with the surrounding she ll removed showed an 
exact agreement bebveen va lues of the mass obtained by the mass-frequency 
curve and those obtained by a direct weight measurement using a scale. In 
these tests the added mass due to the presence of the air was calculated as 
less than one-tenth of one percent of t he mass of the sphere and could 
therefore be neglected. The effect of the viscous drag on the frequency 
determination was also negligible . This was concluded from the fact that 
the frequency response on the os cillogra ph r ecord was sinusoidal in shape 
with no measurable distortion and that the logar ithmic decrement me asured 
from the oscillogr aph record was less th~n 8 percent in all instances. 
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Figure 1. Schematic diagram of apparatus 
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Figure 2·. App~ra tus: the concentric spheres, 
disass embled, the beam and· its supports 
electr ical trans ducer and oscillogra ph. 
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A solid body of mass M moving with velocity v throug2 an inviscid 
incompressible fluid h :1.s a kinetic ene.rgy equal to 1/2 Mv. The kinetic 
energy of the fluid surc·ounding the body depends upon the fluid density pf 
a.nd on the velocity di.st!t"ibution of the fluid. The latter may be descrioed 
by a velocity potential¢ . The total kinetic energy T of the system con
sisting of the solid and the fluid has been presented by Lamb (2) in the 
following form: 

1 · 2 pf 
T = - Iv - ~ 2 2 I ~ o~ dS 

s on (1) 

where dS is a surface ele filent of the boundary which encloses the liquid and 
n is the direction of its normal. 

For a 
potential) 

moving sphere concentric wi th a fixed spheric a l shell the velocity 
as given by Lamb (3)J is 

• = 
3 

(r + _]2__) cos e 
16r

2 (2) 

where d and Dare the diame ters of the sphere and shell respectively; rand 
0 are t he spherical coordinates of any point in the· flow field. Employing 
this po ~ential function, equation (1) becomes 

~ l - . 2 [ _!, n3 + 2d
3 

] 2 
· = 2 ( P s ¥: ) v + ( Pf ¥ ) .4 D 3 _ d 3 v (3) 

where ¥ and p are the olu:me and dens ity of the moving sphere respectively. 
A force F act~ng upon the moving sphere docs work equal to the time rate of 
change of the. system's kinetic energy and can be determined from equation (3). 

d "T ( p ¥ ' d V ( ) 
1 n3 

+ 2d3 
] d V Fv = = ) v dt + pf¥ [2 3 ~3 vdt d t ·s 

.. D 
- Hence the force acting on the sphere is 

F {¥PS + ¥ pf [ 1 n3 
+ 2d3 

]) d V (5) = 
2 _D3 d3 d t 

'!'his force is cons idere d an inertia force because it is dependent on the 
acceleration . 1be firs t t erm of the right hand member of equation (5) is 
the mass of the solid an d the second term is the added mass. The added 
mass is expressed as a factor K times the mass of fluid displaced by the 
moving body. For the geome tric conf igurat ion us ed in the present 
investigation~ equation (5) b ecomes 

where the adde d mass 

K = 

f a ctor is given by the ex pression 

1 (D
3 + 2d.

3
) 

2 ,(D3 _ d3 .) · 

(6) 

(7) 

(4) 

t' ·--- "•• - - - · 
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If the moving body has a constant velocity it is seen from equation (6) that 
the force on the solid becomes zero. This conclusion, which applies to all 
solids moving at a constar-t velocity in an inviscid fluid, is known as 
d'Alcmbcrt's paradox. For motion in a viscous fluid, Lamb (4) found that 
the added mass factor for d/D = 0 is 

K 
1 9 j) 1/2 

= i + 2a· < rr f ) (8) 

where f denotes the frequency of vibration and 'V is the kinematic viscosity 
of the fluid. The writers know of no analytic solution giving the virtual 
mass effect in a real fluid where d/D > 0. 

EXPERIMENIAL RESULTS 

Figure 3 is a graph showing both the theoretical and experimentally 
determine d relationships between the ratio of the diame ter of the sphere 
to the diame ter of the she ll ci/D and the added mass factor K. The 
theoretically determined curve was computed from equation (7) and the 
experimental results were obtaine d from laboratory tests. The difference 
between these two curves is b e lieved to represent the effect of viscosity 
on the added mass factor since this variable is not· included in the 
potential flow analysis. Table I summarizes the r_esul ts o f the experiments 
and gives the corresponding theore tically determined values. 

~ABLE I: Summary of Results 

Theoretically Percentage in-
determined added Experimentally 

crease of the 
Diameter ratio mass factor K for de termined added 

added mass in 
sphere in mass factor K that d/D in water. 

water over 

Ideal I Water(l) 
predicted for 
ideal fluid. 

fluid ·' 

0 0.50 0.51 0.51 2% 

0.260 0.53 (2) 0.53(3 ) 0% 

0.445 
. 

0.64 (2) 0.65 °1% 

0.520 0.74 (2) 0 . 75 1% 

0.693· 1.24 (2) 1.37 -10% 

0.780 1.84 (2) 2.32 26% 

0.865 3.22 (2) 4.28 33% 
-- -

(1) Calculated for fr~qu c ncy cf vibration and viscosity of fluid corres
ponding to tha t us ed in the laboratory. 

(2) Theor.etical solution not known. 

(3) The she ll used in th i s t est run was not completely spherical; hence 
this result is questionable . 

an 

" 

.... -- ... ... ,. .. 

5. 



... 

"O 
C 
0 
C 

C. 
(J) 

5.0 ----.,..-------------------

-o ~ 4.0 ----
G,) 

.c .. -
0 

c:, 

+- ... Ex.peri ment 
Cl) 

'f) .c 3.0 
U) C. 

· O Cl) 

E 
CD 

"t:J .r.: 
G,) +-

' 
"t:J ~ 
"0 0 
C ,,, 
C) fl) 

.r.: 0 - E 

.._ 
0 

0 --0 . 
~ 

0 ---~--__.__ ___ __.._. _ _ _ _._ ____ _. ___ _ 

0 0.2 0 . 4 0.6 0.8 1.0 

Ratio of the diameter of the spher e 

. t o t h e d i a m e t e r o f · t h e s h e 11 , = d/ D 
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I . CONCLtrSIONS 

The following conclusions are based upon 
cxpcri~ntal and theoretical investigations. 
effects arc based upon the test results using 
approximately 80°F. 

the results obtained from the 
Conclusions concerning viscous 

tap water at . a temperature of 

(a) ' The apparatus used in the investigation provi des a simple and 
accurate me thod of measuring the virtual mass·. of a submerged 
body. 

(b) 

(c) 

The added mass factors predicted from a theoretical analysis based 
on the assU111ption that the fluid is inviscid and incompressible 
were duplicated to within 2% for d/D ratios less than 0.520. This 
result confirms the validity of the potential flow analysis within 
this range. ¥or d/D ratios greater than 0.520 the virtual mass of 
the sphere increases much more rapidly than that . indicated by the 
inviscid fluid theory . 

The theoretica lly determined viscous correction for the added mass 
factor when d/D = 0 was conf~rmed experimentally. 
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