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VIRTUAL MASS OF AN OSCILLATING SPHERE
WITHIN A FIXED CONCENTRIC SHELL

f By Norbert L. Ackermann and Anat Arbhabhirama

ABSTRACT

The virtual mass of a sphere oscillating within a fixed concentric
spherical shell filled with water was determined experimentally for seven
sphere~to~shell diameter ratios between 0 and 0.865. Laboratory measure-
ments of the virtual mass for diameter ratios less than 0.520 agreed closely
with the theoretically predicted values based on a potential flow analysis.
For ratiocs greater than 0.520 the virtual mass increased more rapidly than
the potential flow theory indicated with an increase of 337 for a diameter
ratio of 0.865.

INTRODUCTION

When a solid body accelerates through a fluid the inertia of the body
depends upon the mass of the solid and the effect of the surrounding media.
The increase in the effective mass of the solid due to the presence of the
fluid is called the hydrodynamic or-added mass. The mass of a solid plus
its added mass is .called the virtual mass. The added mass is usually
expressed as a fraction or multiple of the mass of fluid displaced by the
submerged body; this multiplying factor is called the added mass factor.
Analysis using potential flow theory indicates that a sphere in an ideal
fluid of infinite extent has an added mass factor equal to one-half; a
cylinder with an infinite length-to-diameter ratio has an added mass factor
equal to one. The effective inertia of a body is also dependent upon the
proximity of rigid boundaries. An oscillating sphere bounded extermally by
a concentric shell has an effective inertia which approaches that of an
infinite mass as the diameters of the sphere and shell become equal. The
inertia, as predicted by potential flow theory, is further increased when the
effects of viscosity are included.

Considerations of the added mass of a body are often of great practical
significance. The effective inertia of a body produced by the surrounding
fluid is sometimes far greater than the mass of the body itself. A bdbble
of air in water has an inertia hundreds of times greater than that produced
by the mass of the bubble itself. The motion of ships and submarines, the
opening of parachutes, the flight of balloons, and the behaviour of two
phase fluid flows are only a few examples of motion significantly affected
by the increase in a body's inertia due to the presence of a contiguous
media. :

Mathematical difficulties, however, in the theoretical analysis of a
body's virtual mass, even when using ideal fluid theory, limit the number
of geometric configurations and types of motion that are amenable to an
exact solution. When viscous effects are included the difficulties of
analysis almost always become insurmountable. Similarly, experimental
efforts to measure the virtual mass of a body have been confronted with
problems of considerable difficulty. The separation of effects produced



by acceleration dependent or inertia forces from the velocity dependent or
drag forces has been one of the major experimental complications.

In the present study the effects of a concentric boundary on the virtual
mass of a sphere were measured and compared to results predicted from a
potential flow analysis. This geometric configuration can be varied between
two limiting conditions both of which are often approached in physical pheno-
menon. By varying the ratio of the diameters of the sphere and the concentric
shell between zero and unity, geometric conditions are reproduced which, in
their extremes, represent the case of a sphere in an infinite body of fluid
and the case where the external boundary coincides with the sphere's surface.
A measurement device was developed, similar to one used by Stelson and Mavis (1),
which not only largely eliminated the drag effects of the supporting structure
and sphere but also preserved the geometry of the system as a result of the

body's motion.
APPARATUS AND TESTING PROCEDURE

Figures 1 and 2 show the apparatus used to measure the virtual mass of
a sphere surrounded by a fixed concentric shell. The sphere, 3.12 inches
in diameter, was attached to the end of a slender vertical rod fixed to the
center of a simply supported beam. By adding weights to the vertical rod,
with the sphere removed, a calibration was obtained between the natural
frequency of the beam and the mass supported by the rod. The frequency was
determined with an oscillograph which recorded the movement of a bar magnet
fixed to the simply supported beam. When the beam was vibrated the bar
magnet oscillated within the core of a solenoid which was independently
supported. The voltage produced by this motjon was amplified and recorded

on the oscillograph. Subsequently, the sphere was suspended inside and
concentric with a spherical shell filled with water. The natural frequency
of the beam, supporting the rod and submerged sphere, was then measured.
Using this frequency measurement the total or virtual mass of the submerged
sphere was determined from the added mass-frquency calibration for the beam.
The added mass was calculated by subtracting the mass of the sphere from

the virtual mass.

Tests of the sphere in air with the surrounding shell removed showed an
exact agreement between values of the mass obtained by the mass-frequency
curve and those obtained by a direct weight measurement using a scale.
these tests the added mass due to the presence of the air was calculated as
less than one~tenth of one percent of the mass of the sphere and could
therefore be neglected. The effect of the viscous drag on the frequency
determination was also negligible. This was concluded from the fact that
the frequency response on the oscillograph record was sinusoidal in shape
with no measurable distortion and that the logarithmic decrement measured
from the oscillograph record was less than 8 percent in all instances.

In
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Figure 1. Schematic diagram of apparatus
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Figure 2. Apparatus: the concentric spheres,
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MR ©  THEORY

A solid body of mass M moving with velocity v througB an inviscid
incompressible fluid has a kinetic energy equal to 1/2 Mv™. The kinetic
energy of the fluid surrounding the body depends upon the fluid density p
and on the velocity distribution of the fluid. The latter may be descriged
by a velocity potential ¢. The total kinetic energy T of the system con-
sisting of the solid and the fluid has been presented by Lamb (2) in the
following form:

_ 1 2 °Ps o)
T = 5 W -5 fs¢ands (1)

where dS is a surface elemeat of the boundary which encloses the liquid and
n is the direction of its normal.

For a moving sphere concentric with a fixed-spherical shell the velocity
potential, as given by Lamb (3), is

d3v D3

¢ = (r + ) cos 8 (2)
D3-d3 ' 16r2
where d and D are the diameters of the sphere and shell respectiveiy; r and

@ are the spherical coordinates of any point in the flow field. Employing
this potential functiom, equation (1) becomes :

3 3
_ 1, 2 1D 4+ 2d° , 2
T—z(ps‘s‘t)V+(pf’%")[4D3-d3]v (3)

where ¥ and pg are the volume and density of the moving sphere respectively.
A force F acting upon the moving sphere does work equal to the time rate of
change of the system's kinetic energy and can be determined from equation (3).

3 3

dT _ d v 1D + 24 dv
Fv dt ( P ¥ )V E=§'+,( P ¥ ) [2 D3 - d3 lv i (4)
~ Hence the force acting on the sphere is '
3 3
_ 1D + 2d d v

This force is considered an inertia force because it is dependent on the
acceleration. The first term of the right hand member of equation (5) is
the mass of the solid and the second term is the added mass. The added
mass is expressed as a factor K times the mass of fluid displaced by the
moving body. For the geometric configuration used in the present
investigation, equation (5) becomes

d v
= X i
F {¥ps+§pf1§]dt (6)
where the added mass factor is given by the expression
g = L @ 1 24%) (7)
T2 3 3 ¢ ‘
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1f the moving body has a constant velocity it is seen from equation (6) that
This conclusion, which applies to all

the force on the solid becomes zero.
solids moving at a constant velocity in an inviscid fluid, is known as

d'Alembert's paradox.

the added mass factor for d/D = 0 is

K

D 1/2
1 9
2t 53‘( £ )

For motion in a viscous fluid, Lamb (4) found that

(8)

where f denotes the frequency of vibration and 2) is the kinematic viscosity

of the fluid.

mass effect in a real fluid where d/D > 0.

EXPERIMENTAL RESULTS

The writers know of no analytic solution giving the virtual

Figure 3 is a graph showing both the theoretical and experimentally
determined relationships between the ratio of the diameter of the sphere

" to the diameter of the shell d/D and the added mass factor K.

- theoretically determined curve was computed from equation (7) and the
The difference

experimental results were obtained from laboratory tests.
between these two curves is believed to represent the effect of viscosity
on the added mass factor since this variable is not included in the

potential flow analysis.

TABLE T:

Summary of Results

The

_ Table I summarizes the results of the experiments
and gives the corresponding theoretically determined values.

Diameter ratio

Theoretically
determined added
mass factor K for
sphere in

Experimentally
determined added
mass factor K

Percentage in-
crease of the
added mass in
water over that

¢/p Ideal (1) in MageK, predicted for an
Fluid Water ideal fluid.

0 0.50 0.51 0.51 2%
0.260 0.53 (2) 0.53(3) 0%
©0.445 0.64 (2) 0.65 1%
0.520 0.74 2) 0.75 1%
0.693 1.24 2) 1.37 -10%
0.780 1.84 (2) 2.32 267
0.865 3.22 ) 4.28 33%

(1) calculated for frequency of vibration and viscosity of fluid corres-
ponding to that used in the laboratory.

(2) Theoretical solution not known.

(3) The shell used in this test run was not completely spherical;

this result is questionable.
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experimental and theoretical investigations.

f CONCLUSIONS

fhc folldwing conclusions are based upon the results obtained from the

effects are based upon the test results using tap water at a temperature of
approximately 80°F. :

(a)

(b)

(c)

(1)

(2)

3)
4)

The apparatus used in the investigation provides a simple and
accurate method of measuring the virtual mass of a submerged

body.

The added mass factors predicted from a theoretical analysis based
on the assumption that the fluid is inviscid and incompressible
were duplicated to within 2% for d/D ratios less than 0.520. This
result confirms the validity of the potential flow analysis within
this range. TFor d/D ratios greater than 0.520 the virtual mass of
the sphere increases much more rapidly than that indicated by the
inviscid fluid theory.

The theoretically determined viscous correction for the added mass
factor when d/D = 0 was confirmed experimentally.
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