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ABSTRACT OF DISSERTATION

NONPARAMETRIC FUNCTION SMOOTHING: FIDUCIAL INFERENCE OF

FREE KNOT SPLINES AND ECOLOGICAL APPLICATIONS

Nonparametric function estimation has proven to be a useful tool for applied statis-

ticians. Classic techniques such as locally weighted regression and smoothing splines

are being used in a variety of circumstances to address questions at the forefront of

ecological theory.

We first examine an ecological threshold problem and define a threshold as where

the derivative of the estimated functions changes states (negative, possibly zero, or

positive) and present a graphical method that examines the state changes across a

wide interval of smoothing levels. We apply this method to macro-invertabrate data

from the Arkansas River.

Next we investigate a measurement error model and a generalization of the com-

monly used regression calibration method whereby a nonparametric function is used

instead of a linear function. We present a simulation study to assess the effectiveness

of the method and apply the method to a water quality monitoring data set.

The possibility of defining thresholds as knot point locations in smoothing splines

led to the investigation of the fiducial distribution of free-knot splines. After intro-

ducing the theory behind fiducial inference, we then derive conditions sufficient to for

asymptotic normality of the multivariate fiducial density. We then derive the fiducial

density for an arbitrary degree spline with an arbitrary number of knot points. We
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then show that free-knot splines of degree 3 or greater satisfy the asymptotic normal-

ity conditions. Finally we conduct a simulation study to assess quality of the fiducial

solution compared to three other commonly used methods.

Derek L. Sonderegger
Department of Statistics

Colorado State University
Fort Collins, Colorado 80523

Spring 2010
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Chapter 1

INTRODUCTION TO NONPARAMETRIC SMOOTHING

1.1 Introduction to locally weighted polynomials

Locally weighted polynomials were first introduced by Cleveland (1979) and have

been successfully used in many application areas. Researchers are often interested in

finding a functional relationship between a random variable Y and some predictive

variable x. If we assume that Y = f (x) + ε, then knowing that any continuous curve

can be accurately represented by a polynomial over short regions leads us to restrict

our attention to a small region around a point of interest, say x∗. Using points “close”

to x∗, we use the standard linear model methods to fit a degree p polynomial to

the data and use that polynomial to estimate f (x∗). We denote the polynomial as

g (x|α̂).

To address the question of what is meant by “close”, we weight the data points

using a kernel function K ([xi − x∗]h−1) where h is a parameter that controls how

close a data point must be to x∗ to have a large impact on the regression. The function

K (·) is usually a symetric positive function with K (x) decreasing as |x| increases.

The most common choice for K (·) is the standard normal density.

Once the data weights have been calculated, the weight matrix is

W x∗ = diag
{
K

(
x1 − x∗

b

)
, . . . , K

(
xn − x∗

b

)}
and the regression polynomial has coefficients α̂x∗ =

(
XTW x∗X

)−1
XTW x∗y. Tak-

ing f̂ (x) = g (x|α̂) we obtain a function estimate.
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Example of Local Polynomial Regression

Figure 1.1.1: An illustration of fitting a local polynomial regression.

The selection of the bandwidth parameter can be chosen by cross-validation and

or by the problem context. For example, if we are given yearly rainfall data and we

are interested in decadal osscilation, a bandwidth of h = 5 to 10 would capture that

trend better than a smaller bandwidth.

1.2 Introduction to smoothing splines

Given a interval of R say [a, b] and a knot point t ∈ [a, b], a spline on [a, b] is

defined by polynomials on [a, t] and [t, b] but a smoothness condition is enforced at

x = t. In general, if degree p polynomials are fit to the two sections, then the (p− 1)th

derivative should exist at x = t.



3

1.2.1 Truncated polynomial basis

We consider a degree p polynomial spline with κ knotpoints tk and m + κ coef-

ficients. Let t be the vector of knot points and α be the vector of coefficients and

θ =
{
αT , tT

}T . The spline can be written using many different basis functions, but

here we consider the piecewise polynomial definition:

g(xi|θ) =

p∑
j=0

αjx
j
i +

κ∑
k=1

αp+k (xi − tk)p+

where

(u)+ =

{
0 if u < 0

u otherwise

is the trunction operator which has higher precendence than exponentiation, ie

(−1)2
+ =

[
(−1)+

]2
= 0.

With known knot points, fitting the vector of coefficients α is straightforward

using standard linear models methods. Let X be the matrix

X =

 1 x1 . . . xp1 (x1 − t1)p+ . . . (x1 − tκ)p+
...

... . . . ...
... . . . ...

1 xn . . . xpn (xn − t1)p+ . . . (xn − tκ)p+


then α̂ =

(
XTX

)−1
XTy.

1.2.2 B-spline basis

B-splines are an appealing spline basis that are commonly used in numerical

applications because the basis vectors are close to orthogonal. The downside is that

the coefficient interpretation is not as obvious as in the truncated polynomial case.

The recursion based definition that is typically used was first given by deBoor 1972.

The order 1 (degree 0) B-splines are

B1
j (x) =

{
1 if tj ≤ x < tj+1

0 otherwise

The general formula for a B-spline of arbitrary order m is

Bm
j (x) = ωmj (x)Bm−1

j (x) + (1− ωmj+1(x))Bm−1
j+1 (x) (1.2.1)
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Figure 1.2.1: B-spline basis functions

where

ωmj (x) =
x− tj

tj+m−1 − tj
. (1.2.2)

1.2.3 Penalized Splines

If the knot point locations are known, then standard linear model theory applies.

Unfortunately the question of knot point location is not trivial. Typically too many

knot points are used and a penalty term is added during the minimiazation of the

squared error. This idea can be found in Parker and Rice 1985, O’Sullivan 1986)

and the penalized model commonly used today was given by Eilers and Marx (1996)

is often called P-splines. The b-spline basis functions are regression coefficients are

selected by minimizing
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S =
n∑
i=1

{yi − g (xi|α)}2 + λ

p+κ∑
j=3

(
∆2αj

)
where ∆2αj = αj − 2αj−1 + αj−2. The asymptotic theory addressed in the case of

increasing knots by Hall and Opsomer (2005).

1.2.4 Free Knot selection

The case where the knot points are not fixed, and are to be estimated is often

called free-knot splines. The asymptotic behavior maximum likelihood solution is

given by Stone and Huang (2002). Mao and Zhao (2003) discuss the free-knot splines

and the give confidence intervals for the parameters. They note that the likelihood

surface often has many saddle points and local maxima and therefore care must be

taken when finding the global maximum. They start the numerical optimization

program with a variety of initial knot point locations to try to avoid local maxima.

The optimization routine they used was the routine DBSVLS from software vender

International Mathematical and Statistical Libraries.

The Bayesian solution is to make the knot point locations be a regular model

parameter and the standard Bayesian method works quite well. DiMatteo et al. (2001)

add a model selection step for deciding on the optimal number of knot points by

using reversable-jump Markov Chain Monte Carlo and can therefore give a posterior

probability of a particular number of knots. Software is available from Robert Kass’s

website http://lib.stat.cmu.edu/~kass/bars/bars.html.



Chapter 2

USING SIZER TO DETECT THRESHOLDS IN ECOLOGICAL DATA

2.1 Preface

This chapter contains work that was done in collaberation with Haonan Wang,

Will Clements and Barry Noon and has been published elsewhere (Sonderegger et al.,

2008). My contribution to the work was in several parts. First, I contributed a solid

understanding of nonparametric function estimation. Secondly, I was solely responsi-

ble the software development of the SiZer package in R. Finally I was responsible for

synthesizing the information from each discipline and brought all the ideas together

into the resulting paper.

In the field of ecology, collaboration is common and a necessary part of the

advancement of the field (Ewel, 2001). As the field becomes more quantitative, there

is a need ’outsource’ the understanding of the finer technical details in statistical

theory to statisticians interested in ecology. This creates a professional niche space

that I intend to work in. The following work should not be viewed as my ecological

knowledge, but rather as a reflection of my ability to in an interdisciplinary setting.

2.2 Introduction

Theoretical and empirical studies suggest that some ecosystems may show

abrupt, non-linear changes in one or more response variables in response to envi-

ronmental drivers (May 1977; Connell and Sousa 1983; Knowlton 1992; Estes and

Duggins 1995; Groffman et al. 2006). Shifts to alternative stable states have been

reported in a variety of ecosystems, including lakes, coral reefs, deserts, and oceans



7

(Scheffer et al., 2001). These shifts can be triggered by natural disturbance, such as

fire or flooding, or anthropogenic factors, such as climate change, nutrient accumu-

lation, exotic species, and toxic chemicals. Although communities may recover from

natural disturbance through successional processes, human-induced disturbances are

often unprecedented and move ecological systems to novel, alternative states (Holling

1986; Folke et al. 2002). In addition, if ecosystems are chronically stressed due to

natural or anthropogenic disturbances, such systems may move to alternative states

that remain stable, even when the stressors are removed (eg Carpenter 2001; Scheffer

et al. 2001; van Nes et al. 2002; Scheffer and Carpenter 2003).

One can consider thresholds as ecological non-linearities, where substantial

changes in an ecological state variable are a consequence of small, continuous changes

in an independent (stressor) variable (Muradian 2001). The point or region at which

rapid change initially occurs defines the threshold. Near this point, small changes in

stressor intensity produce large effects on state variables. Unfortunately, there can

be an inherent arbitrariness to the threshold concept, because it does not take into

account whether the change in the value of the state variable is ecologically relevant.

Statistical models have been developed in other disciplines, to detect breakpoints in

non-linear response functions, but it is not always clear which models are appropriate

for a particular ecological dataset.

Here, we demonstrate a method by Chaudhuri and Marron (1999) that makes few

model assumptions and is therefore suitable for a broad range of ecological problems.

Their method, Significant Zero crossings (SiZer), applies a non-parametric smoother

to the stressor–response data, and then examines the derivatives of the smoothed

curve to identify the existence of a threshold. To illustrate this method, we consider

benthic macroinvertebrate data collected on the Arkansas River, a metal-polluted

stream in Colorado. We use SiZer to examine the nature of the threshold(s) and to

select between two competing threshold models. We then use SiZer in a multivariate

setting by examining the first axis of the canonical discriminant analysis for the same
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dataset. Similar to principal components analysis, this axis is the linear combination

of the 20 dominate taxa, that contains the most yearly variation.

2.3 Data

The Arkansas River (Figure 1) is located in the southern Rocky Mountain ecore-

gion of Colorado. Mining operations in this watershed have had a major impact since

the mid-1800s, when gold was discovered near Leadville, Colorado. Concentrations

of heavy metals, particularly cadmium (Cd), copper (Cu), and zinc (Zn), are greatly

elevated downstream from Leadville and often exceed acutely toxic levels (Clements,

2004a). Over the past 18 years (1989–2006), physiochemical characteristics, habitat

quality, heavy metal concentrations, and the responses of macroinvertebrate com-

munities were quantified at several stations in the Upper Arkansas River Basin. In

1993, 4 years after this research program began, state and federal agencies initiated

a large-scale restoration program designed to improve water quality in the Arkansas

River. To quantify recovery, we examined temporal changes in the abundance of

metal-sensitive mayflies (Ephemeroptera: Heptageniidae) collected in the fall from

1989 to 2004. During each of the 18 years, five replicate samples were taken. The

mayfly counts were transformed (square root) to stabilize the variance. Recovery

was defined as the threshold where mayfly abundance became asymptotic. While the

study was primarily concerned with the effect of heavy-metal pollution, this paper

uses time as the independent variable for clearer illustration of the method.

2.4 SiZer approach and derivative definition of thresholds

An intuitive way of defining a threshold for a state variable that is a continu-

ous function of an environmental driver is to consider where the function’s deriva-

tives change significantly. Non-parametric smoothers provide a method for finding

a smooth response function that is data driven and requires only weak assumptions.

Smoothing splines (Green and Silverman 1993; Wahba 1975), LOESS (Cleveland and
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Figure 2.3.1: The Arkansas River after restoration efforts, 200 meters downstream of
the confluence with the California Gulch.

Devlin, 1988), and locally weighted polynomial regression (Fan and Gijbels, 1996), are

well known. These techniques result in an estimated smooth response function, the

estimated derivative(s), and confidence intervals (CI) for the functions and deriva-

tives. The SiZer methodology can be implemented using any of these techniques,

but we have restricted our discussion to locally weighted polynomials. All SiZer CIs

in this chapter are reported at the 95% level, based on Hannig and Marron (2006)

row-wise intervals.

In the Arkansas River data, both a piecewise linear (PL; Barrowman and Myers

2000; Toms and Lesperance 2003) or bent-cable (BC; Chiu et al. 2006) model would

fit the data. Both models assume a linear relationship with a single threshold. The

difference is that the PL model assumes an abrupt transition between the linear

sections, while the BC model assumes a quadratic bend connecting the two linear

pieces. The PL model is a simple case of the BC model where the half-width of the

bend is zero.



10

Figure 2.4.1: The Arkansas River mayfly data fit by the piecewise linear (black, solid,
threshold = 1996.7, CI = (1994.6, 1997.5)) and bent-cable (red, dashed, threshold =
1996.1, CI = (1989.0, 2000.0)) models.
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Traditional model selection methods, such as Akaike’s information criterion

(Burnham and Anderson, 2002) do not decisively rate one model over the other. The

difference between AIC values is 1.82 in favor of the PL model. However, an inverted

likelihood ratio test (Seber and Wild, 1989) resulted in a 95% confidence interval for

the half-width of the quadratic bend that does not contain zero(0.04, 5.52). Point

estimates of the threshold were similar for the PL and BC models (1996.7, 1996.1),

but 95% bootstrap confidence intervals for the threshold were (1994.6, 1997.5) and

(1989.0, 2000.0) respectively.

Using a non-parametric smoother, every point along the independent axis can

be classified into one of three states: the estimated slope is positive (ie the CI of the

first derivative contains only positive values), possibly zero (the CI contains zero),

or negative (the CI contains only negative values). Each point could be similarly

classified using the estimated second (or higher order) derivative.

Many interesting relationships can be found by examining the state changes of

the derivatives. By noting how many times the state of the first derivative changes,

inference about where the true relationship is increasing or decreasing can be made.

The Arkansas River data show that abundance of mayflies is clearly increasing, then

flattens out and seems to decrease slightly near x = 2002. The second derivative

contains information about the curvature of the data. At small x values, the second

derivative could be zero, indicating that there is little or no curvature. However,

between 1994 and 2000, the second derivative is significantly negative, indicating

that the function is concave down and providing support in the data for the BC

model.

There is no mathematical reason to partition the curve by where the derivative

is different than zero. A similar procedure could be implemented to partition the x-

axis into segments that have a derivative different than 5, for example. However, the

choice to partition on f̂ ′(x) = 0 is appropriate in many ecological problems in which

the increase or decrease of the response variable is of interest. Moreover, detecting a
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change in the rate of increase (or decrease) can be made by second derivative, because

a change of rate causes curvature.

Given a small number of models that are thought to quantify a researcher’s

beliefs and hypotheses about a system, traditional model selection methods such as

AIC, AICc, Mallows Cp, and goodness-of-fit tests (Kutner et al., 2005) fail to directly

explain why one model is selected over another. By using a derivative-based method

in the process of model selection, the researcher can investigate how the data support

one model over the other, or what assumptions in a model are being violated. The

non-parametric implementation allows the researcher to examine a broad range of

questions, including the number of thresholds in a system.

2.5 Smoothing bandwidths

One complication of the derivative approach is the estimation of the smoothed

function and its derivative(s). Most non-parametric smoothing algorithms, including

smoothing splines and locally weighted polynomial regression, have a tuning param-

eter that controls the smoothness of the resulting curve. By manipulating this pa-

rameter, the resulting smoothing function can range from a simple linear regression

to perfectly (over)fitting the data. There are several methods for selecting the tuning

parameter (Fan and Gijbels 1995; Ruppert et al. 1995; Hengartner et al. 2002), but

none are uniformly superior.

SiZer, as proposed and implemented by Chaudhuri and Marron (1999) and Han-

nig and Marron (2006), uses the idea of locally weighted polynomial regression (Fan

and Gijbels 1996; Loader 1999). When the weight function (also called a kernel func-

tion) is the normal density curve, the level of smoothing is controlled by the standard

deviation of the kernel. For a given tuning parameter h, and a given point x0, f̂ ′ (x0)

is obtained by weighting the data points according to a normal curve centered at x0,

with a standard deviation σ = h. This means that data close to x0 (eg within ±h)

have a large influence over the smoothing function, data between h and 2h away are
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less influential, and data farther than 2h from x0 have only a slight influence. In lo-

cally weighted polynomial regression, the tuning parameter h is the width parameter

of the kernel function and is commonly referred to as the bandwidth. Other com-

mon choices for the kernel function include the uniform density and triangle density

functions. Here, we use the normal kernel.

The novel aspect of SiZer (Chaudhuri and Marron, 1999) is that it considers

all reasonable bandwidth values and exploits the notion that different values provide

different information about the data. The SiZer approach explores how the derivative

changes along the independent axis, as well as across the range of bandwidth values,

and displays this information in one image (Figure 3). To read the SiZer map, first

notice that the y-axis represents the bandwidth parameter h, displayed in units of

log(h) for visual clarity. Wherever the map is blue, the derivative is significantly

increasing; wherever it is purple, the derivative is possibly zero, and wherever it is

red, the derivative is significantly decreasing. At very small bandwidths, f̂ ′ (x0) is

influenced by a small number of data points, and gray areas in the SiZer map indicate

that the estimated effective sample size (Chaudhuri and Marron, 1999) is less than

5. The white lines give a visual representation of the size of the bandwidth. The

horizontal distance between the lines is drawn to be 2h, indicating the effective width

of the locally weighted polynomial.

To demonstrate the effect of bandwidth on the smoothing function, Figure 3

displays Arkansas River data with three different choices of bandwidth h, each high-

lighted by the horizontal black line in the adjacent SiZer maps. The top row of graphs

represents a smoothing parameter that is too large (h = 7) and has over-smoothed

the data and fails to detect the transition from an increasing to a flat (or possibly

decreasing) function. At this scale of view, the first derivative SiZer row is completely

blue, suggesting an increasing function with no threshold. The second derivative is

negative (red), indicating that there is downward curvature in the function. At an

intermediate level of smoothing (h = 2), the smoother captures the initial increasing
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section and transition to a flat function, as indicated by the first derivative SiZer map.

The second derivative map shows that the function is reasonably linear, except for a

region of concavity in the middle and a second region of convexity near 2004. The

piecewise linear and bent-cable models presented in Figure 2 capture features that are

visible at this scale. At a very low level of smoothing (h = 0.75), at any given point,

the smoother is being influenced by a very small number of data points (estimated

effective sample size ~15). Consequently, the power of testing if the derivative(s) are

not equal to zero is low. In this study, researchers were not particularly interested in

annual variation, but wanted to detect trends occurring over multiple years associated

with recovery of this system; therefore, bandwidths h > 1, (log10 h > 0) should be

considered. After considering each of these bandwidths, particularly h near 2, the

data support the bent-cable model over the piecewise linear model, because of the

curvature near the threshold at the intermediate bandwidths. However, the SiZer

analysis suggests considering a model with two threshold points to account for the

decrease near 2003.

Because the SiZer map contains information at many different scales, there is

seldom a “best” bandwidth to examine. Therefore, we recommend an evaluation of

the derivative at different resolutions of the data. Just as, when viewing a tree from

a distance, at large bandwidths only gross features are discernible, so, as the observer

gets closer to the tree (ie as the bandwidth decreases), the overall pattern cannot be

seen, but smaller features come into focus. Only by examining the function across a

range of bandwidths can a researcher gain a clear understanding of the data.

SiZer cannot, however, always estimate the location of the threshold. Because

f̂ is calculated from nearby values, if f has a threshold at x = α, then f̂ is not

necessarily first affected by the threshold at x = α. Furthermore, where f̂ is affected

by the threshold changes with the bandwidth. This phenomenon can be seen in the

Arkansas River example. The threshold from an increasing to a flat function drifts

from near 1995 to 2004 as the bandwidth increases.
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Figure 2.5.1: SiZer maps of the Arkansas River data and associated smoothing func-
tions at three different bandwidths. SiZer maps categorize the derivative as positive
(blue), negative (red), or possibly zero (purple). The black lines in the SiZer maps
show bandwidth parameter corresponding to the three smoothing functions. The
bandwidth h = 7 is clearly over-smoothing the data and does not capture the flatness
(or decrease) in the second half of the data. The bandwidth h = 0.75 is under-
smoothing the data and is being affected by random perturbations in the data.
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Figure 2.6.1: A scatterplot of the first axis of a canonical discriminate analysis of
the Arkansas River data versus time, along with its first and second derivative SiZer
maps.

2.6 Using SiZer to identify multiple thresholds

Multivariate analysis of macroinvertebrate data collected from the Arkansas

River provided an opportunity to investigate ecological thresholds in community com-

position over the duration of the monitoring project. In this example, canonical dis-

criminant analysis was used to examine differences among years, based on abundance

of the 20 dominant taxa. A threshold response in this example represents an abrupt

shift in community composition from one year to the next. Ignoring the issue of

non-independence of observations in multivariate space, we applied SiZer to the first

canonical axis, which explained 58.2% of the total variation (Figure 4). The first

derivative shows a generally increasing function, but there is a sharp decreasing trend

between 1995 and 1997. These results reflect macroinvertebrate community responses

to changes in water quality from 1989 to 2006. Heavy metal concentrations declined

from 1989–1994, increased abruptly in 1995 and 1996, and then declined again as a

result of ongoing restoration in the Arkansas River (Clements, 2004a).

The second derivative from the SiZer plot shows two distinct thresholds. The

first, near 1996, is a change from concave down to concave up. The second, near 2000,

is a change from concave up to concave down. At intermediate smoothing levels near

1996, the 95% CI goes from being less than zero, to containing zero, to being greater
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than zero. For the second threshold near 2000, which is a result of macroinvertebrate

community recovery after improvements in water quality, the 95% CI changes from

being greater than zero, to containing zero, to being less than zero.

2.7 Discussion

Fitting mathematical models to observed data is difficult, in part because of the

uncertainty in model selection. Traditional model selection methods tend to encour-

age examination of vast numbers of models. Burnham and Anderson (2002) address

this issue by differentiating exploratory studies from confirmatory ones. When this

is not possible, inference must be made carefully to avoid inflated Type I errors (in-

cluding a variable in the model when, in fact, it has no effect on the response), due to

picking the “best” model for the data. As presented here, SiZer is most naturally used

in exploratory studies, but if sufficient data are available, part of the data may be

used for exploratory model selection and the other part used for inference. Burnham

and Anderson (2002) also strongly advocate only examining models that have sound

scientific explanations. Since SiZer encourages the practitioner to create an appropri-

ate response function from the SiZer map, the ecological justification and empirical

evidence for a particular form of the response function can be combined. This should

result in small numbers of models, to be used in subsequent model selection steps or

model averaging. SiZer also separates the question of statistical significance from eco-

logical significance, by showing the statistically significant features at each bandwidth

and then allowing the researcher to decide which features are important.

Fitting threshold models is particularly difficult, because researchers often as-

sume that the existence and number of thresholds is known. For example, a piecewise

linear analysis will always find a single threshold, regardless of whether the true func-

tional relationship contains no threshold or multiple thresholds. SiZer can provide

insight into the number of thresholds and general form of the relationship. Unfor-

tunately, SiZer cannot provide estimates and confidence regions for the thresholds it
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detects. SiZer can only be used to select a model; a model fitting procedure such

as maximum likelihood estimation must be used subsequently. Furthermore, by def-

inition, SiZer can only address thresholds in the context of changes in state of the

derivative. Uniform or gradual changes that lead to irreversible state changes are not

detectable by SiZer.

The mathematics that SiZer employs can be readily extended to multiple di-

mensions by using the multidimensional gradient rather than the one-dimensional

derivative (Godtliebsen et al., 2002); however, SiZer’s main strength, its graphical

presentation, cannot be easily extended past two dimensions. Covariates can be ac-

counted for in an additive fashion, by using SiZer on the nonparametric portion of

a generalized additive model (GAM). Finally, one direction for future research is to

extend SiZer to work with local quantile regression instead of local mean regression.

Pointwise estimates of the quantile function should not be difficult to obtain, but

appropriate row-wise confidence intervals might be.

A Matlab implementation of SiZer has been made available by S Marron

(www.stat.unc.edu/faculty/marron/marron_software.html). An R package of SiZer,

along with code for the piecewise linear and bent-cable models, is available on the

Comprehensive R Archive Network (www.cran.r-project.org).



Chapter 3

EFFECTS OF MEASUREMENT ERROR ON THE STRENGTH OF

CONCENTRATION-RESPONSE RELATIONSHIPS IN AQUATIC

TOXICOLOGY

3.1 Preface

This chapter contains work that was done in collaboration with Haonan Wang,

Hwang Yao, and Will Clements and has been published elsewhere (Sonderegger et al.,

2009). Much of the initial statistical initial was done by Hwang Yao (Yao, 2008), but

was not presentable to non-statisticians. My contribution was first to consider what

simulations would be of most interest to ecologists and second to apply the method

to field data and present the statistical and ecological reasons for modeling the Fall

and Spring CCU values in the manner that we did. Finally I was responsible for

combining the statistical and ecological information for the resulting paper.

3.2 Introduction

In ecological risk assessment, it is common to take a measurement of contaminant

concentration and use that single observation to represent exposure that an organism

would experience over some duration of time. This is a legitimate practice if there is

very little temporal or spatial variation in contaminant concentrations, however, that

is rarely the case. While spatial variation in contaminant concentrations resulting

from patchy distributions in the field may be quantified by taking replicate sam-

ples, experimental designs rarely account for significant temporal variation. Because



20

of natural variation in stream discharge, temperature, pH and other physicochemi-

cal characteristics, water contaminant concentrations often show significant temporal

variation. Clements (2004a) reported significant seasonal variation in heavy metal

concentrations associated with stream discharge. Researchers measuring diel (24 h)

cycles of heavy metals have reported that concentrations of Zn can increase by a fac-

tor of five from afternoon minimum values to early morning maximum levels (Nimick

et al., 2003). While every attempt can be made to collect water quality samples at

the same time every year, natural fluctuations will cause the samples to be taken at

different points of the daily and annual cycles.

Measurement error is a commonly studied topic in statistics (Fuller, 1987; Carroll

et al., 2006; Cheng and van Ness, 1999). The most well known result is that for

simple linear regression, uncertainty in measuring the predictor variable leads to a

substantial underestimation of the relationship between the predictor and response

variable. Consequently, if measurement errors are present but unaccounted for in a

statistical model, the resulting inference will be less likely to detect an association

between contaminants and responses and the magnitude of the association between

contaminants and responses will typically be underestimated.

Nimick et al. (2003) recommends modifying traditional field sampling methods in

order to account for measurement error but this presupposes that the error mechanism

is known and that the increased sampling is practical. Yuan (2007) provides a post-

hoc method of including measurement error in data analysis. For the method we

describe, the sampling design is created with measurement error in mind, and the

additional fieldwork is not too burdensome.

Regression calibration is a common method for addressing measurement error and

it relies on using an auxiliary covariate that is measured without error to estimate the

covariate with error. Cai et al. (2000) introduced the idea of using a nonparametric

smoother to do this estimation and Yao (2008) first applied the methods to this

system.
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3.3 Methods

Data used for this analysis were collected from the Arkansas River, a metal-

polluted stream located in central Colorado. Elevated concentrations of heavy met-

als (Cd, Cu, and Zn) were consistently reported downstream of Leadville, CO and

frequently exceeded acutely toxic levels (Clements, 2004a). From 1989 to 2004 wa-

ter chemistry, habitat quality, and abundance of macroinvertebrates were measured

at several monitoring stations upstream and downstream from metal sources. In

1991, after two years of monitoring, state and federal agencies began a comprehen-

sive restoration effort to improve water quality in the river.

The goal of this long-term study was to use the relationship between metal

concentration and macroinvertebrate community structure to assess effectiveness of

remediation and resulting improvements in water quality. Because the stream receives

a mixture of heavy metals (Cd, Cu, Zn), we used cumulative criterion units (CCU)

to quantify metal contamination (Clements et al., 2000). CCU is defined as the ra-

tio of the measured metal concentration to the hardness adjusted chronic criterion

concentration, summed for each metal. In this research, the abundance of metal-

sensitive mayflies (Ephemeroptera:Heptageniidae) was used as an indicator of stream

health. We used a square-root transformation of mayfly abundances to stabilize the

variance. In this paper we report data from station AR1 (Clements, 2004a) collected

from 1989-2004. During the spring and fall of each year, 5 replicate macroinverte-

brate samples were collected along with a single water sample for analysis of heavy

metals. Because metal concentrations were represented by a single water sample on

each sampling occasion, and because those measurements show considerable diel and

seasonal variability (Clements, 2004b), significant measurement error may exist in

these data.

Because of seasonal variation in metal contamination and invertebrate coloniza-

tion from an upstream source, spring and fall mayfly densities show surprisingly little
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correlation. To more clearly demonstrate the method used, in this paper we analyze

only the fall mayfly samples. Spring CCU values tend to be higher and are more

variable than the fall values and that any yearly averaging necessitates a statistical

modification similar to the method being proposed.

Due to the remediation efforts above the Arkansas River, we expected a long-term

decreasing trend in CCU, but the exact shape of this relationship is unknown. We

modeled this relationship in two ways. First, we examined only the fall CCU values

and fit a non-parametric function with no constraints on its shape. Second, created

a model that incorporates both the spring and fall water quality measurements and

our knowledge that a strong remediation effort occurred in the summer of 1991. The

remediation is modeled by allowing a discontinuity in the smoothing function, but

unfortunately this leaves only 4 data points to estimate the curve before remediation.

Due to this data scarcity, we restrict our smoothing function to a flat line over this

region.

We refer to the regression of mayfly counts on the raw CCU values as the naive

estimator of the slope parameter, the regression onto the smoothed fall CCU values as

the de-noised estimator of the slope parameter, and the regression onto the smoothed

CCU values where we used both fall and spring CCU values and allow a discontinuity

in 1991 as the sophisticated de-noised model.

3.4 Mathematical Details

Consider the simple regression model where

Y = α + βx+ ε where ε ∼ N(0, σ2) (3.4.1)

Suppose that we observe the data {Xi, Yi}where Xi = xi + δi and δi ∼ N (0, τ 2) for i

in {1, . . . , n}. In addition, auxiliary information (such as time) is available such that

x = g (t). It is reasonable to use the observed data {Xi, ti} to estimate the true values



23

of the covariate {xi}. The observed {Yi} can then be regressed onto these de-noised

estimates {x̂i}.

Regression calibration is typically done by performing a linear regression of {Xi}

onto{ti} in order to estimate {xi}, but more sophisticated modeling methods could

also be used. Nonparametric smoothers are often more convenient because the re-

searcher does not have worry about imposing a functional form on the relationship,

only restrictions on the continuity or smoothness. Because the relationship between

{Xi} and {ti} is typically not of interest, the difficulty of interpretation of the non-

parametric smoother is not an issue. The smoother could also incorporate system

knowledge to impose physical constrains on the prediction (e.g. the smoothed values

must be positive, the relationship form is known over an interval but is unknown over

the rest).

The two most common approaches to finding the de-noised or ‘smoothed’ version

of {Xi} using nonparametric function estimation are kernel estimation (Fan and Gij-

bels, 1996) and regression splines (Green and Silverman, 1993; Ruppert et al., 2003).

Although both approaches are appropriate, preliminary analyses showed similar re-

sults and due to computational advantages, we restrict our discussion to regression

splines.

Cai et al. (2000) introduced the methodology of regressing the response onto the

smoothed predictor using a wavelet smoother and Cui et al. (2002) extended these

ideas to the kernel regression smoother. Both papers demonstrated the asymptotic

normality and consistency of the slope parameter of the de-noised variable.

A researcher cannot simply use the de-noised version of an explanatory variable

in subsequent analysis and inference without adjustment. While it is possible to derive

the asymptotic distribution of β̂ in certain instances, in general, bootstrap methods

are easily used to calculate desired confidence intervals (CI). Because observations

were collected at specific time points, the simple method of re-sampling the vectors

{Xi, Yi, ti} does not work. Instead, a bootstrap sample is created by independently
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Parameters Ignoring Measurement Error De-noising Procedure
σ δ N Bias Length Coverage Bias Length Coverage

30 −0.006 0.480 0.952 −0.002 0.441 0.934
0.02 60 −0.002 0.340 0.950 0.003 0.326 0.939

120 −0.005 0.240 0.951 0.000 0.235 0.946
30 −0.281 0.538 0.442 0.004 0.671 0.943

0.2 0.2 60 −0.293 0.372 0.125 0.003 0.476 0.940
120 −0.301 0.262 0.004 0.006 0.340 0.946
30 −0.611 0.488 0.002 0.030 1.631 0.940

0.4 60 −0.628 0.329 0.000 0.010 0.885 0.944
120 −0.635 0.228 0.000 0.003 0.568 0.939

Table 3.1: Simulation results comparing the naive estimator that ignores measurement
error with the proposed de-noising procedure for a variety of parameter combinations.
The bias column is difference between the mean estimate and the true parameter
value. Length is the average length of the resulting 95% CI. Coverage is the proportion
of simulations whose 95% CI contained the true parameter value.

re-sampling estimates of the measurement errors di = Xi − x̂i and process errors

ei = Yi − ŷi and then adding those errors to the estimated values. To be explicit, for

the ith observation of the bootstrap sample, two indices are randomly selected (say

j, k) and the bootstrap observation is
{
X̂i + dj, Ŷi + ek, ti

}
.

3.5 Simulation study

To demonstrate the effect of ignoring measurement error, we examine three ex-

amples of the measurement error model 3.4.1 where α = 0, β = 1, and g (t) = (1− t)2

for t ∈ [0, 1]. In the first case δ is small (attenuation factor λ ≈ 0.81) reflecting an

instance where measurement error should not have a substantial effect. The second

case shows δ = σ (λ ≈ 0.29) and the third case has δ = 2σ (λ ≈ 0.17). We ran 2000

simulations for each case. For the de-noising procedure, each simulation inference was

based on 500 bootstrap samples. The output of this simulation is shown in Table 1.

When measurement error was the same or greater than the response error, the

de-noising procedure was clearly superior to the naive estimator. The bias of the

naive estimator was quite large and the confidence interval coverage rates (percent

of CIs that contain the true parameter value) were far from the desired 95% rate.
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β̂ 95% CI
Naive Estimator −2.14 (−3.21,−1.07)

De-noised Estimator −2.88 (−4.06,−1.95)
Sophisticated De-noised −2.45 (−3.74,−1.55)

Table 3.2: Slope parameter estimates and corresponding 95% confidence intervals for
the naive versus the de-noised estimators for the Arkansas River field data.

The de-noising procedure handled the measurement error reasonably well in that the

observed bias is quite small. The observed coverage rates were close to the desired

95% level.

In the case where the measurement error standard deviation δ was small, the de-

noising procedure did not provide any benefit over standard linear model procedure;

however, the procedure did not perform substantially worse. Neither procedure had

appreciable bias, the average lengths of the 95% CIs were roughly equivalent, and

coverage rates were close to the desired 95%.

3.6 Results and Discussion

Metal concentrations (as CCU) decreased over time as a result of remediation

activities in the Arkansas River (Figs. 1 and 2). Standard errors and confidence

intervals for the naive estimator were based on assumed asymptotic normality of the

error terms. Confidence intervals for the both de-noised estimators were based on

n = 10000 bootstrap samples. The confidence interval lengths for the naive and

de-noised estimators are similar, indicating the small loss of power associated with

using the more complicated estimator (Table 2). The most important difference is

that the naive estimator has a much smaller magnitude than either of the de-noised

estimators. The boundaries of the CI for the de-noised estimator have a substantially

larger magnitude than those of the naive estimator. These results indicate that by

ignoring measurement error, scientists risk underestimating the relationship between

the abundance of metal-sensitive mayflies and heavy metal pollution.
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Figure 3.6.1: Left: CCU versus time along with the smoothing function. Right:
CCU versus time for both spring (triangles) and fall (circles) data. The smoothing
function was forced to be flat until the remediation and then a smoother was fit to
the remaining data.

3.7 Conclusions

The relationship between chemical concentrations and biological responses is an

integral component of ecological risk assessment. Thus, any factor that consistently

affects the nature of this relationship has the potential to fundamentally alter our un-

derstanding of how chemicals impact ecosystems. Nimick et al. (2003) suggested that

because of temporal variation in contaminant concentrations, it might be necessary to

modify traditional field sampling protocols in aquatic ecosystems. We agree with this

recommendation, but feel the potential effects of unmeasured temporal variation may

be considerably more insidious. Our results suggest that temporal variation in con-

taminant concentrations introduces significant bias into the concentration-response

relationship. This bias typically results in an underestimation of the strength of

the relationship between contaminants and biological responses. Field data from the

Arkansas River showed that the slope estimates (β̂) of the relationship between abun-

dance of mayflies and metal concentration increased in magnitude by approximately

14-34% when we accounted for measurement error. While this systematic bias is rel-

atively small if the measurement error is small compared to the overall variability, it
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increases as measurement errors increase. Our simulation results indicated that the

naive estimator consistently provided more biased estimates of slope parameters and

misleading CIs as the amount of measurement error increased. While the lengths of

the CIs for the de-noised estimator were longer in high measurement error cases, the

estimator was effectively unbiased and provided CIs that contained the true parameter

value at the desired 95% rate.

Although this research has only illustrated the 1-dimensional case, this procedure

can easily be extended to the multivariate case in several ways. First, equation (1)

could include other covariates that do not have measurement error. Second, the

smoothed variable could be a function of 2 or more auxiliary variables. Third, the

auxiliary variable could be used to smooth several covariates.

The de-noising procedure’s success is based on the smoother being a consistent

estimator of {xi}. For both the spline and local polynomial regression smoothers, all

that is necessary is for the measurement errors to have mean 0. If that is not the

case, an appropriate adjustment to the modeling of g (t) must be made.

The procedure suggested here is applicable in a large number of situations and

is relatively easy to implement. There appears to be little cost in inferential power

when measurement error is small, and reduces bias in parameter estimates when

measurement error is moderate to large. As such, there is little reason not to use

such a procedure in situations where appropriate covariates are available.
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FIDUCIAL INFERENCE FOR FREE-KNOT SPLINES

4.1 Background

We are interested in the nonparametric regression model

yi = g(xi) + σεi

where εi
iid∼ N(0, 1) and σ > 0 is unknown. There are several ways to estimate

g(·), including local polynomial fitting (Fan and Gijbels, 1996), wavelets (Picard and

Tribouley, 2000) and spline models (Wahba, 1975). We will assume that g(·) is in

the class of spline functions of order m (degree p = m − 1). This assumption is not

burdensome because every continuous function on the closed interval [a, b] can be

approximated arbitrarily well by a spline of order m, provided enough knot points

are allowed (Schumaker, 2007).

We consider a degree p polynomial spline with κ knotpoints tk and m + κ coef-

ficients. Let t be the vector of knot points and α be the vector of coefficients and

θ =
{
αT , tT

}T . The spline can be written using many different basis functions, but

here we consider the piecewise polynomial definition:

g(xi|θ) =

p∑
j=0

αjx
j
i +

κ∑
k=1

αp+k (xi − tk)p+

where

(u)+ =

{
0 if u < 0

u otherwise

is the truncation operator which has higher precedence than exponentiation, ie

(−1)2
+ =

[
(−1)+

]2
= 0.
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A spline can be thought of as function that is a polynomial of degree p in be-

tween adjacent knot points but enforces a smoothness constraint between adjacent

polynomial sections.

For model identifiability, we assume that the knot points are distinct and not on

the boundaries. Furthermore we assume that the coefficients associated with a knot

point are not zero, ie the knot point is a real change.

4.1.1 Spline History

Spline models are an extremely popular method for estimating g(·). The mathe-

matical literature on splines exploded after the 1960’s (Schumaker, 2007). Of particu-

lar interest was the recurrent relationships that define the numerically stable B-spline

basis (de Boor, 1972). Wahba (1975) introduces smoothing splines by including a

large number of knot locations and finding the spline function g(x|θ̂) that minimizes

1

n

n∑
i=1

(
g(xi|θ̂)− yi

)2

+ λ

ˆ (
g(m)(x|θ̂)

)2

dx

This is the typical sum of squares estimator with a penalty term for extreme

changes in the mth derivative. Wahba recommends selecting the value of λ using the

cross-validation method. There is a connection between the smoothing parameter λ

and the model degrees of freedom and many smoothing spline software packages allow

a user to specify the model degrees of freedom or use generalized cross-validation to

select it.

This solution is quite practical, but lacks interpretability. Because the knot place-

ment is selected by the user and the number of knots is often large, how the individual

regression coefficients affect the resulting function is not necessarily obvious. Further,

the knot location can be the primary research interest. For example, a knot point

might be regarded as a change point.

Spline models where the knot locations are estimated in the same manner as the

regression coefficients are known as free-knot splines. DiMatteo et al. (2001) intro-

duced a Bayesian solution to the problem along with a convenient software package
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(Wallstrom et al., 2007). Their solution uses a uniform prior on the knot point loca-

tions, a unit-information Normal prior for the regression coefficients and the improper

prior σ−1 for the standard deviation. Unfortunately the software only allows for de-

gree 3 polynomials and the users ability to control how many knot points are allowed

is limited.

The maximum likelihood solution to the problem was given in Mao and Zhao

(2003). However the process of exploring the likelihood surface is non-trivial because

of the large number of local maximums (Jupp, 1978). (Mao and Zhao, 2003) address

this by examining a large number of starting points for the knot locations and using

a proprietary function from the International Mathematical and Statistical Libraries.

They use the asymptotic normality of the MLE to calculate confidence intervals for

the function f (x). They did not address the quality of a confidence interval for a

knot point.

4.1.2 Fiducial History

Fisher (1930) first introduced his idea of fiducial inference in order to address

what he felt was the major shortcoming of Bayesian inference. His goal was to invent

a posterior-like distribution without the need for a prior distribution. He did not

succeed in developing a general theory for finding these fiducial distributions and his

idea was met with extreme skepticism. In the 1990’s generalized confidence intervals

(Weerahandi, 1993) were found to have very good small sample properties and Hannig

et al. (2006b) showed the connection between generalized confidence intervals and

Fisher’s fiducial inference. Hannig (2009) went on to develop a general theory for

developing fiducial solutions which has been used in a variety of contexts (Hannig

et al., 2006a; E et al., 2008).

The general framework of fiducial inference assumes that the n observed data

can be written in a structural equation X = G(ξ,U), where ξ is a p length vector of

parameters, and U is a random vector of with a completely known distribution.
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Setting X0 = (X1, . . . , Xp), Xc = (Xp+1, . . . , Xn), U0 = (U1, . . . , Up) and Uc =

(Up+1, . . . , Un) the structural equation can be factorized as

X0 = G0(ξ,U0) and Xc = Gc(ξ,Uc).

Assuming that for each ξ ∈ Ξ that G0(ξ, ·) and Gc(ξ, ·) are one-to-one and dif-

ferentiable and that G0(ξ, ·) also invertible, then Hannig (2009) showed that the

generalized fiducial distribution is

r(ξ|x) =
fx(x|ξ)J0(x0, ξ)´

Ξ
fx(x|ξ′)J0(x0, ξ′)dξ′

where

J0 (x0, ξ) =

∣∣∣∣∣∣
det
(
d
dξ

G−1
0 (x0, ξ)

)
det
(

d
dx0

G−1
0 (x0, ξ)

)
∣∣∣∣∣∣

and fx(x|ξ) is the density function. Since the selection to use the first p data coor-

dinates to use in G0, we could select any p coordinates that satisfy the one-to-one,

differentiable, and invertible conditions. Hannig (2009) suggests letting J be the

average of all possible values of J0 and using

r(ξ|x) =
fx(x|ξ)J(x0, ξ)´

Ξ
fx(x|ξ′)J(x0, ξ′)dξ′

This distribution is similar to a Bayesian posterior distribution with the Jacobian

taking the role of the prior. It is not surprising the the integral in the denominator is

often impossible to calculate and we often must turn to the same numerical methods

that Bayesians do.

4.2 Asymptotic properties

Estimators often have an asymptotic normal distribution and fiducial estimators

do as well. Conditions A0-A6 in the appendix are sufficient to prove that the maxi-

mum likelihood estimators to have an asymptotic normal distribution (Lehmann and

Casella, 1998).
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Theorem 1. Under assumption A0-A6, the maximum likelihood estimators ξ̂n are

consistent and
√
n(ξ̂n − ξ) is asymptotically normal with mean 0 and covariance

matrix [I(ξ)]−1 where I (ξ) is the Fisher information matrix.

Conditions found in Ghosh and Ramamoorthi (2003) give sufficient conditions

for the Bayesian posterior distribution to be asymptotically normal. Hannig (2009)

gives sufficient conditions for the asymptotic normality of the fiducial distribution in

the univariate parameter case. The extension to the multiparameter case is straight-

forward. Let Rξ be an observation from the fiducial distribution r(ξ|x) and denote

the density of s =
√
n
(
Rξ − ξ̂n

)
by π∗ (ξ,x).

Theorem 2. Under assumptions A0-A6, B1-B2, and C1-C2

ˆ
Rp

∣∣∣∣∣π∗ (s,x)−
√
det |I (ξ0)|√

2π
e−s

T I(ξ0)s/2

∣∣∣∣∣ ds Pθ0→ 0 (4.2.1)

Proof. Assume without loss of generality that Ξ = Rp. We denote Jn (xn, ξ) as the

average of all possible Jacobians over a sample of size n and π (ξ) = Eξ0J0 (x, ξ). As-

sumption C2 and the uniform strong law of large numbers for U-statistics imply that

Jn (x, ξ)
a.s.→ π (ξ) uniformly in ξ ∈ B̄ (ξ0, δ) and that π (ξ) is continuous. Therefore

sup
ξ∈B̄(ξ0,δ)

|Jn (xn, ξ)− π (ξ)| → 0 Pξ0 a.s.

We now follow the proof of the univariate case. Let

π∗ (s,x) =
Jn

(
xn, ξ̂n + s√

n

)
f
(
xn|ξ̂n + s√

n

)
´

Rp Jn

(
xn, ξ̂n + t√

n

)
f
(
xn|ξ̂n + t√

n

)
dt

=
Jn

(
xn, ξ̂n + s√

n

)
exp

[
Ln

(
ξ̂n + s√

n

)]
´

Rp Jn

(
xn, ξ̂n + t√

n

)
exp

[
Ln

(
ξ̂n + t√

n

)]
dt

=
Jn

(
xn, ξ̂n + s√

n

)
exp

[
Ln

(
ξ̂n + s√

n

)
− Ln

(
ξ̂n

)]
´

Rp Jn

(
xn, ξ̂n + t√

n

)
exp

[
Ln

(
ξ̂n + t√

n

)
− Ln

(
ξ̂n

)]
dt
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and just as Ghosh and Ramamoorthi (2003), we let H = − 1
n

∂
∂ξ∂ξ

Ln

(
ξ̂n

)
and we

notice that H → I (ξ0) a.s. Pξ0 . It will be sufficient to prove

ˆ
Rp

∣∣∣∣Jn(xn, ξ̂n +
t√
n

)
exp

[
Ln

(
ξ̂n +

t√
n

)
− Ln

(
ξ̂n

)]
−π (ξ0) exp

[
−tT I (ξ0) t

2

]∣∣∣∣ dt Pξ0→ 0 (4.2.2)

Let ti represent the ith component of vector t. By Taylor’s Theorem, we can

compute

Ln

(
ξ̂n + t/

√
n
)

= Ln

(
ξ̂n

)
+

p∑
i=1

(
ti√
n

)
∂

∂ξi
Ln

(
ξ̂n

)
+

1

2

p∑
i=1

p∑
j=1

(
titj

(
√
n)

2

∂

∂ξi∂ξj
Ln

(
ξ̂n

))

+
1

6

p∑
i=1

p∑
j=1

p∑
k=1

(
titjtk

(
√
n)

3

∂

∂ξi∂ξj∂ξk
Ln (ξ′)

)

= Ln

(
ξ̂n

)
− t

THt

2
+Rn

for some ξ′ ∈
[
ξ̂n, ξ̂n + t/

√
n
]
. Notice that Rn = Op

(
‖t‖ /n3/2

)
.

Given any 0 < δ < δ0 and c > 0, we break Rp into three regions:

A1 =
{
t : ‖t‖ < c log

√
n
}

A2 =
{
t : c log

√
n < ‖t‖ < δ

√
n
}

A3 =
{
t : δ
√
n < ‖t‖

}
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On A1 ∪ A2 we compute

ˆ
A1∪A2

∣∣∣Jn (xn, ξ̂n + t/
√
n
)

exp
[
Ln

(
ξ̂n + t/

√
n
)
− Ln

(
ξ̂n

)]
−π (ξ0) exp

[
−1

2
t′I (ξ0) t

]∣∣∣∣ dt
≤
ˆ
A1∪A2

∣∣∣Jn (xn, ξ̂n + t/
√
n
)
− π

(
ξ̂n + t/

√
n
)∣∣∣

· exp
[
Ln

(
ξ̂n + t/

√
n
)
− Ln

(
ξ̂n

)]
dt

+

ˆ
A1∪A2

∣∣∣π (ξ̂n + t/
√
n
)

exp
[
Ln

(
ξ̂n + t/

√
n
)
− Ln

(
ξ̂n

)]
−π (ξ0) exp

[
−1

2
t′I (ξ0) t

]∣∣∣∣ dt
Since π (·) is a proper prior on A1∪A2, then the second term goes to 0 by the Bayesian

Bernstein-von Mises theorem. Next we notice that

ˆ
A1∪A2

∣∣∣Jn (x, ξ̂n + t/
√
n
)
− π

(
ξ̂n + t/

√
n
)∣∣∣

· exp
[
Ln

(
ξ̂n + t/

√
n
)
− Ln

(
ξ̂n

)]
dt

≤ sup
t∈A1∪A2

∣∣∣Jn (x, ξ̂n + t/
√
n
)
− π

(
ξ̂n + t/

√
n
)∣∣∣

·
ˆ
A1∪A2

exp
[
Ln

(
ξ̂n + t/

√
n
)
− Ln

(
ξ̂n

)]
dt

Since
√
n
(
ξ̂n − ξ0

)
D→ N

(
0, I (ξ0)−1), then

Pξ0

[{
ξ̂n + t/

√
n; t ∈ A1 ∪ A2

}
⊂ B (ξ0, δ0)

]
→ 1.

Furthermore, since Ln
(
ξ̂n + t/

√
n
)
− Ln

(
ξ̂n

)
= − tTHt

2
+Rn then the integral con-

verges in probability to 1. Since maxt∈A1∪A2 ‖t/
√
n‖ ≤ δ and Jn → π, then the term

→ 0 in probability.
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Next we turn to

ˆ
A3

∣∣∣∣Jn(xn, ξ̂n +
s√
n

)
exp

[
Ln

(
ξ̂n +

s√
n

)
− Ln

(
ξ̂n

)]
−π (ξ0) exp

[
−tT I (ξ0) t

2

]∣∣∣∣ dt
≤
ˆ
A3

Jn

(
xi, ξ̂n +

s√
n

)
exp

[
Ln

(
ξ̂n +

s√
n

)
− Ln

(
ξ̂n

)]
dt

+

ˆ
A3

π (ξ0) exp

[
−tT I (ξ0) t

2

]
dt

The second integral goes to 0 in Pξ0 probability because minA3 ‖t‖ → ∞. As for the

first integral,

ˆ
A3

Jn

(
x, ξ̂n +

s√
n

)
exp

[
Ln

(
ξ̂n +

s√
n

)
− Ln

(
ξ̂n

)]
dt

=
1

n

n∑
i=1

ˆ
A3

J

(
xi, ξ̂n +

s√
n

)
exp

[
Ln

(
ξ̂n +

s√
n

)
− Ln

(
ξ̂n

)]
dt

=
1

n

n∑
i=1

ˆ
A3

J

(
xi, ξ̂n +

s√
n

)
f

(
xi|ξ̂n +

s√
n

)
exp

[
Ln

(
ξ̂n +

s√
n

)
− Ln

(
ξ̂n

)
− log f

(
xi|ξ̂n +

s√
n

)]
dt

Because J (·) is a probability measure, then so is J (·) f (·). Assumption C1 assures

that the exponent goes to −∞ and therefore the integral converges to 0 in probability.

Having shown 4.2.2, we now follow Ghosh and Ramamoorthi (2003) and let

Cn =

ˆ
Rp

∣∣∣∣Jn(xn, ξ̂n +
t√
n

)
exp

[
Ln

(
ξ̂n +

t√
n

)
− Ln

(
ξ̂n

)]∣∣∣∣ dt
then the main result to be proved 4.2.1 becomes

C−1
n

{ˆ
Rp

∣∣∣∣Jn(xn, ξ̂n +
s√
n

)
exp

[
Ln

(
ξ̂n +

s√
n

)
− Ln

(
ξ̂n

)]
.

−Cn
√
det |I (ξ0)|√

2π
e−s

T I(ξ0)s/2

∣∣∣∣∣
}
ds

Pξ0→ 0(4.2.3)
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Because
ˆ

Rp
Jn

(
xn, ξ̂n

)
exp

[
−s

THs

2

]
ds = Jn

(
xn, ξ̂n

)ˆ
Rp

exp

[
−s

THs

2

]
ds

= Jn

(
xn, ξ̂n

) √
2π√

det (H)

a.s.→ π (ξ0)

√
2π

det (I (ξ0))

and 4.2.2 imply that Cn
P→ π (ξ0)

√
2π

det(I(ξ0))
it is enough to show that the integral in

4.2.3 goes to 0 in probability. This integral is less than I1 + I2 where

I1 =

ˆ
RP

∣∣∣∣Jn(xn, ξ̂n +
s√
n

)
exp

[
Ln

(
ξ̂n +

s√
n

)
− Ln

(
ξ̂n

)]
−Jn

(
xn, ξ̂n

)
exp

[
−sTHs

2

]∣∣∣∣ ds
and

I2 =

ˆ
RP

∣∣∣∣∣Jn (xn, ξ̂n) exp

[
−sTHs

2

]
− Cn

√
det |I (ξ0)|√

2π
e−s

T I(ξ0)s/2

∣∣∣∣∣ ds.
Equation 4.2.2 shows that I1 → 0 in probability and I2 is

I2 =

∣∣∣∣∣Jn (xn, ξ̂n)− Cn
√
det |I (ξ0)|√

2π

∣∣∣∣∣
ˆ

RP
exp

[
−sTHs

2

]
ds

P→ 0

because Jn
(
xn, ξ̂n

)
P→ π (ξ0) and Cn

P→ π (ξ0)
√

2π
det(I(ξ0))

.

4.3 Fiducial free-knot splines

We first define

g(xi|θ̂) =

p∑
j=0

α̂jx
j
i +

κ∑
k=1

α̂p+k
(
xi − t̂k

)p
+

and let ξ =
{
θT , σ2

}T . To derive the form of the Jacobian we first recognize that

G−1
0 (yi, ξ) =

1

σ
(yi − g(xi|θ))
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and therefore

∂G−1
0 (yi, ξ)

∂α
= − 1

σ

(
1, xi, . . . , x

p
i , (xi − t1)p+ , . . . , (xi − tκ)

p
+

)
∂G−1

0 (yi, ξ)

∂t
=
p

σ

(
αp+1 (xi − t1)p−1

+ , . . . , αp+κ (xi − tκ)p−1
+

)
∂G−1

0 (yi, ξ)

∂σ2
= − 1

2σ3
(yi − g(xi|θ))

∂G−1
0 (yi, ξ)

∂yi
=

1

σ

Using these results, then for any selection of data points that satisfies the necessary

criteria, say y0 =
{
y(1), . . . , y(l)

}
where l = p+ κ+ 2, the Jacobian is

J0 (y0, ξ) =

∣∣∣∣∣ 1

σ2
pκ

[
κ∏
j=1

αp+κ

]
det
[
Bα Bt Bσ2

]∣∣∣∣∣
where

Bα =

 1 x(1) . . . xp(1) (x(1) − t1)p+ . . . (x(1) − tκ)p+
...

... . . . ...
... . . . ...

1 x(l) . . . xp(l) (x(l) − t1)p+ . . . (x(l) − tκ)p+

 ,

Bt =


(
x(1) − t1

)p−1

+
. . .

(
x(1) − tκ

)p−1

+
... . . . ...

p
(
x(l) − t1

)
. . .

(
x(l) − tκ

)p−1

+

 ,
and

Bσ2 =

 −
1
2

(
y(1) − g(x(1)|θ)

)
...

−1
2

(
y(l) − g(x(l)|θ)

)
 .

However the question of what sets of indices satisfy the one-to-one, and inverta-

bility requirements is not obvious. We opted to only consider the sets of indices that

include at least two observations from each inter-knot region. Since calculating the

average Jacobian value of all possible sets of indices was infeasible, we take a random

sample of suitable sets of indices and average the resulting Jacobian values.

In order to examine the fiducial distribution, we turn to Markov Chain Monte

Carlo methods. The approach that we took was to take the current knot locations and

add a random normal deviate. Then treating the knot points as known constants,
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the fiducial distribution of the regression coefficients is known and we can sample

from that distribution. Likewise once the knots points and regression coefficients

are known, the fiducial distribution of the variance component is known and can be

sampled from. Together these steps create a proposed value ξ∗ from the previous ξ

and the density function for selecting ξ∗ given ξ is denoted p (ξ∗|ξ). If the ratio

f (y|ξ∗)
f (y|ξ)

p (ξ|ξ∗)
p (ξ∗|ξ)

is greater than a Uniform(0, 1) random deviate, we accept the proposed value as the

next value in the Markov chain.

Theorem 3. Let θ be the parameters of a free-knot spline of degree 3 or greater with

truncated polynomial basis functions. Define ξ = (σ2,θ). Let π∗ (ξ,y) be the fiducial

distribution of Rξ. Then

ˆ
Rp

∣∣∣∣∣π∗ (s,y)−
√
det |I (ξ0)|√

2π
e−s

T I(ξ0)s/2

∣∣∣∣∣ ds Pθ0→ 0

Proof. It suffices to show that the free-knot spline satisfies assumptions A0-A6, B1-

B2, C1-C2. These are shown in appendix A.

4.4 Simulation Study

First we consider the single knot case with order m = 4 and examine the confi-

dence intervals for the knot point. We consider the spline

Yi = 0 + 1.2 (xi)− 3
(
x2
i

)
+ 1.4

(
x3
i

)
+ 4.8

(
xi −

1

2

)3

+

+ σεi

on x ∈ [0, 1] and n is the sample size. For each parameter combination, we created

1000 data sets and for each data set calculated the the minimum confidence level

that would capture the true knot point value and can therefore consider the actual

coverage rate versus the nominal coverage rate for any confidence level.
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Figure 4.4.1: Truncated polynomial basis results. The top row gives two examples of
the data sets fit. Three sample sizes (20, 100, 500) and two error standard deviations
(σ = 0.1, 0.5) were considered N = 1000 simulations were run for each combination.
The bottom rows are plots of the actual coverage rates versus nominal coverage rates
for the knot point location. The closer to the y = x, the better performance of
the confidence interval. The red bands give the area of natural fluctuation due to
randomness.
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The truncated polynomial basis appears to work well for large sample sizes, but

in the case of a small sample size and large variability, the knot point confidence

interval was a little more liberal than can be explained by simulation variability.

Unfortunately the truncated polynomial basis has drastic numerical deficiencies.

Because changing the coefficient on the basis function xp drastically affects the func-

tion value on all sections on which the spline is defined, this basis is unsuitable for

serious computation. For example, the variance of Rαi increases with increasing

values of i.

B-splines provide a more numerically stable set of basis functions but are harder

to work with algebraically due to their recursive nature. The derivatives can be

calculated but become increasingly more cumbersome to write in closed form. We

performed the same simulation study using the b-spline basis.

The confidence interval lengths for this simulation are quite interesting. In the

small variance case, the interval lengths decrease as expected, but the lengths appear

to stay the same in the large variance case. Investigating individual model fits shows

that the models fit the data quite well. The large interval widths reflect extreme

flexibility of high order splines and the large amount of data relative to the error

variance necessary to accurately estimate the knot point.

In the final simulation we only consider the b-spline basis. We consider the

case of multiple knots (κ = 3), and the spline with α = {0, 2, 1,−3, 4,−3, 1} and

t = {0.3, 0.5, 0.8}. Since there are 11 parameters in the model, it is unsurprising that

the confidence intervals remain large in the high variance case, however the coverage

rates tend to be acceptable. The extreme flexibility of the high order splines continues

to make the knot point confidence intervals quite wide.

Finally we consider fitting a spline to a data generated by a non-spline function.

For this example we consider yi = Φ (xi) + σεi where εi ∼ N(0, 1). We fit these data

with a degree 1 spline with 2 knot points. The spline that minimizes the integrated

squared difference has knot points at ±1.2.
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(σ = 0.1, 0.5) were considered and N = 200 simulations were run for each combi-
nation.
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Figure 4.4.4: Two sample sizes (20, 100) and two error standard deviations
(σ = 0.1, 0.5) were considered and N = 200 simulations were run for each combi-
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Figure 4.4.5: Two sample sizes (20, 100) and two error standard deviations
(σ = 0.1, 0.5) were considered and N = 200 simulations were run for each combi-
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At both variance levels the confidence intervals are converging towards zero in-

dicating that the fiducial spline is converging to the optimal spline. The bias of the

coverage rate is not surprising given that the data were not generated from the model

we are fitting.

4.5 Selecting the number of Knots

The number of knot points is often not known and must be estimated. Mao and

Zhao (2003) addressed this question using a model selection procedure. They used a

modified criteria to pick the model with the number of knots that minimized

GCV (κ) =

∑{
yi − f̂ (xi)

}2

{n− (2κ+ 4)}2 /n

and this criteria worked slightly better than using AIC value of Akaike (1973) and

was comparable to using the small sample AICc value of Hurvich and Tsai (1989).

We also used AIC, AICc, MDL, BIC, GCV and DIC to select the optimal number

of knot points and also note the heuristic behavior of the MCMC algorithm in cases

of too many or too few knots. It should be noted that since the various information

criterion are derived for the maximum likelihood solutions and as such, do not have

a strong theoretical justification.

There are several behaviors of the MCMC algorithm that are indicative of having

selected the wrong number of knots. If the selected number of knots is too small,

convergence of the algorithm is often very slow. For example if the true number of

knot points is 2 and only 1 is fit, then the trace of the Markov chain shows the knot

point jumping from one knot to the other. If the selected number of knots is too large,

convergence is also slowed but the additional knots tend to cluster towards ends of

range of x-values.

In investigating AIC, it is not clear whether to calculate the AIC value at each

chain step and then use the mean of these AIC values (we denote this as Mean AIC)
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n = 20 n = 100 n = 500
κ selected κ selected κ selected

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Mean AIC 0 48 44 0 8 0 18 82 0 0 0 0 98 2 0

AIC of Mean 0 47 46 0 7 0 14 85 1 0 0 0 98 1 1
Mean AICc 0 100 0 0 0 0 0 0 100 0 0 100 0 0 0

AICc of Mean 0 98 2 0 0 0 19 80 1 0 0 0 100 0 0
Mean GCV 0 0 100 0 0 0 0 0 100 0 0 100 0 0 0

GCV of Mean 0 64 35 0 1 0 16 83 1 0 0 0 98 1 1
Mean MDL 0 0 100 0 0 0 100 0 0 0 0 100 0 0 0

MDL of Mean 0 55 42 0 3 0 40 60 0 0 0 0 100 0 0
Mean BIC 0 100 0 0 0 0 100 0 0 0 0 100 0 0 0

BIC of Mean 0 58 39 0 3 0 42 58 0 0 0 0 100 0 0
DIC 0 0 100 0 0 0 0 0 100 0 0 0 0 0 100

Table 4.1: For each sample size N = 100 data sets were created and analyzed
assuming different numbers of knot points.

or to calculate the mean value of fiducial distribution for each parameter and use

the parameter’s point estimate to calculate an AIC value (we denote this as AIC of

Mean). We repeat this naming convention for AICc, BIC, GCV, and MDL as well.

We compare these 11 approaches in a simulation study (table 1). The true model

for the data was the same as in the multiple knot study (i.e. κ = 3) and the error

standard deviation was σ = 0.2. For each of 3 sample sizes (n ∈ {20, 100, 500})

N = 100 data sets were generated and then analyzed 5 separate times, each assuming

a different number of knots (κ ∈ {1, . . . , 5}).

The first thing to notice is that calculating a criterion value at each step of the

chain and then using the average value tends to select a model with too few knots

this bias gets worse as the sample size increases. Of the methods that calculate the

criterion value using the parameter point estimates, the AIC method selected the

correct number of knots the most often at the n = 20, 100 levels. DIC selected the

correct number of knots at a small sample size, but overestimates the number of knots

at larger sample sizes.
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4.6 Discussion

The fiducial solution to the free-knot spline problem is asymptotically correct

and performs well in simulation studies. The number of knots can be selected via a

model selection procedure such as AIC, AICc, BIC or MDL.

Unfortunately the MCMC method of evaluating the fiducial density is computer

intensive. For every proposed step of the chain, the Jacobian must be estimated,

which requires a large number of determinants to be calculated. In the Jacobian

calculation, most of the matrix columns have a linear dependence on α and thus the

can be factored out, but the column Bσ2 depend on both α and t in a non-linear

fashion.

If the variance parameter was a known quantity, the dimension of the parameter

space that the Jacobian depends on would be greatly reduced. In this case, there is

considerable computation savings to be had by creating a grid of points in [xmin, xmax]
κ

and evaluate the Jacobian at each point. Because the Jacobian function is continuous

in t, a linear interpolation of near-by grid points will suffice to estimate the Jacobian

value at any given set of knots. Further computational savings can be had by only

calculating the Jacobian at a particular grid point once the value is requested. In this

manner long chains could be calculated in an efficient manner.

Using a consistent estimator of σ2 in the likelihood and Jacobian calculations

would lead to computational savings but at a cost of generally under-estimating the

variability of the other parameters. A simulation study of this method should be

undertaken to examine how strong this effect is.

The question of model selection is not yet complete. While AIC, AICc, BIC, or

MDL provide a method of selecting the number of knot points, a fully fiducial solutions

would be desirable. Hannig and Lee (2009) used ideas similar to the reversible-jump

MCMC methods for model selection in wavelet regression and a similar methodology

should be applicable.
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The final question to be resolved is to compare the fiducial method to the compet-

ing Bayesian and maximum likelihood methods. The comparison with the Bayesian

method BARS (Wallstrom et al., 2007) is not a fair comparison because BARS focuses

on the resulting curve values and not the knot point locations or number of knots.

Once the model selection question is solved in the fiducial method, a simulation study

to compare the predicted values of the fiducial method versus the Bayesian method

will be undertaken.

4.6.1 Software

Software to preform the fiducial knot selection is available via Comprehensive R

Archive Network (CRAN) as the package fiducialSplines. It is my belief that in

order to influence the methodology of applied statisticians and researchers in other

fields, the statistical tools must be made available in a format that is easy to use and

acquire.

The package is has routines for fitting the fiducial spline model, assessing conver-

gence of the Markov chain, calculating statistics from the fiducial distribution, and

comparing splines of different order and number of knots.

• fiducial.spline calculates several chains and uses the Gelman and Rubin

convergence diagnostic Gelman et al. (2003) to assess convergence.

• fiducial.spline.simple calculates one chain with a set length.

• plot, confint, predict, AIC, BIC methods are implemented.

– plot displays the chain path and can be used to assess convergence.

– confint gives either confidence intervals for the parameter values or a

confidence band of the spline at a given set of x-values. All confidence

intervals are calculated element-wise with no correction for creating many

(or an infinite) number of intervals.
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– predict gives median spline values for a given set of x-values.

– AIC calculates the AIC (Akaike, 1973) value for each element of the chain.

• display plots the input data along with the predicted function along with a

confidence band.

• lengthen, merge, trim provide methods to easily manipulate chains during an

interactive procedure of assessing chain convergence.

4.7 Appendix A

We start with several assumptions. The assumptions A0-A6 are sufficient for the

maximum likelihood estimate to converge asymptotically to a normal distribution

and can be found in Lehmann and Casella (1998) as 6.3 (A0)-(A2) and 6.5 (A)-(D).

The assumption B2 shows that the Jacobian converges to a prior (Hannig 2009) and

B1 is the assumption necessary for the Bayesian solution to converges to that of the

MLE Ghosh and Ramamoorthi (Theorem 1.4.1).

4.7.1 Assumptions

4.7.1.1 Conditions for asymptotic normality of the MLE

(A0) The distributions Pξ are distinct.

(A1) The set {x : f(x|ξ) > 0} is independent of the choice of ξ.

(A2) The data X = {X1, . . . , Xn} are iid with probability density f(·|ξ).

(A3) There exists an open neighborhood about the true parameter value ξ0

such that all third partial derivatives (∂3/∂ξi∂ξj∂ξk) f(x|ξ) exist in the

neighborhood, denoted by B(ξ0, δ).
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(A4) The first and second derivatives of L(ξ, x) = log f(x|ξ) satisfy

Eξ

[
∂

∂ξj
L(ξ, x)

]
= 0

and

Ij,k(ξ) = Eξ

[
∂

∂ξj
L(ξ, x) · ∂

∂ξk
L(ξ, x)

]
= −Eξ

[
∂2

∂ξj∂ξk
L(ξ, x)

]
.

(A5) The information matrix I(ξ) is positive definite for all ξ ∈ B(ξ0, δ)

(A6) There exists functions Mjkl(x) such that

sup
ξ∈B(ξ0,δ)

∣∣∣∣ ∂3

∂ξj∂ξk∂ξl
L(ξ, x)

∣∣∣∣ ≤Mj,k,l(x) and Eξ0Mj,k,l(x) <∞

4.7.1.2 Conditions for the Bayesian posterior distribution to be close to
that of the MLE.

Let π(ξ) = Eξ0J0(X0, ξ) and Ln(ξ) =
∑
L(ξ, Xi)

(B1) For any δ > 0 there exists ε > 0 such that

Pξ0

{
sup

ξ/∈B(ξ0,δ)

1

n
(Ln(ξ)− Ln(ξ0)) ≤ −ε

}
→ 1

(B2) π (ξ) is positive at ξ0

4.7.1.3 Conditions for showing that the fiducial distribution is close to
the Bayesian posterior

(C1) For any δ > 0

inf
ξ/∈B(ξ0,δ)

mini=1...n L(ξ, Xi)

|Ln(ξ)− Ln(ξ0)|
Pξ0−→ 0

(C2) Let π(ξ) = Eξ0J0(X0, ξ). The Jacobian function J (X, ξ)
a.s.→ π (ξ) uni-

formly on compacts in ξ. In the single variable case, this reduces to

J (X, ξ) is continuous in ξ, π (ξ) is finite and π (ξ0) > 0, and for some δ0

Eξ0

(
sup

ξ∈B(ξ0,δ)

J0 (X, ξ)

)
<∞.
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In the multivariate case, we follow Yeo and Johnson (2001). Let

Jj (x1, . . . , xj; ξ) = Eξ0 [J0 (x1, . . . , xj, Xj+1, . . . , Xk; ξ)] .

(C2.a) There exists a integrable and symmetric functions g (x1, . . . , xj) and com-

pact space B̄ (ξ0, δ) such that for ξ ∈ B̄ (ξ0, δ) then |Jj (x1, . . . , xj; ξ)| ≤

g (x1, . . . , xj) for j = 1, . . . , k.

(C2.b) There exists a sequence of measurable sets SkM such that

P
(
Rk − ∪∞M=1S

k
M

)
= 0

(C2.c) For each M and for all j ∈ 1, . . . , k, Jj (x1, . . . , xj; ξ) is equicontinuous in

ξ for {x1, . . . , xj} ∈ SjM where SkM = SjMS
k−j
M .

4.7.2 Proof of assumptions for free-knot splines using a truncated poly-
nomial basis.

We now consider the free-knot spline case. Suppose we are interested in a p

degree (order m = p + 1) polynomial spline with κ knot points, t = {t1, . . . , tκ}T

where tk ∈ (a+ δ, b− δ) and |ti − tj| ≤ δ for i 6= j and some δ > 0. Furthermore, we

assume that the data points {xi, yi} are such that the xi values are equally spaced

along a grid in [a, b]. This assumption could be relaxed to an assumption about the

rate at which data points are added to any arbitrary region must be proportional to

the length of the region, but for simplicity we use equally spaced data.

Denote the truncated polynomial spline basis functions as

N(x, t) = {N1(x, t), . . . , Nκ+m(x, t)}T

= {1, x, . . . , xp, (x− t1)p+, . . . , (x− tκ)
p
+}

T

and let yi = N(xi, t)
Tα+ σεi where εi

iid∼ N(0, 1) and thus the density function is

f(y, ξ) =
1√

2πσ2
exp

[
− 1

2σ2

(
y −N(x, t)Tα

)2
]

where ξ = {t,α, σ2} and the log-likelihood function is

L(ξ, y) =
1

2
log 2π − 1

2
log σ2 − 1

2σ2

(
y −N(x, t)Tα

)2
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4.7.2.1 Assumptions A0-A4

Assumptions A0-A2 are satisfied. We now consider assumption A3 and A4. We

note that if p ≥ 4 then the necessary three continuous derivatives exist and now

examine the derivatives. Let θ = {t,α} and thus

Eξ

[
∂

∂θj
L(ξ, y)

]
= Eξ

[
− 1

2σ2
2
(
y −N(x, t)Tα

)(
− ∂

∂θj
N(x, t)Tα

)]
= − 1

2σ2
2
(
Eξ [y]−N(x, t)Tα

)(
− ∂

∂θj
N(x, t)Tα

)
= 0

and

Eξ

[
∂

∂σ2
L(ξ,y)

]
= Eξ

[
− 1

2σ2
+

1

2 (σ2)2

(
y −N(x, t)Tα

)2
]

= − 1

2σ2
+

1

2 (σ2)2

(
σ2
)

= 0.

Next we consider information matrix. First we consider the θ terms.

Eξ

[
∂

∂θj
L(ξ,y)

∂

∂θk
L(ξ,y)

]
= Eξ

[
1

σ4

(
y −N(x, t)Tα

)2
(
∂

∂θj
N(x, t)Tα

)(
∂

∂θk
N(x, t)Tα

)]
=

1

σ4
Eξ

[(
y −N(x, t)Tα

)2
]( ∂

∂θj
N(x, t)Tα

)(
∂

∂θk
N(x, t)Tα

)
=

1

σ2

(
∂

∂θj
N(xi, t)

Tα

)(
∂

∂θk
N(xi, t)

Tα

)
The j, k partials for the second derivative are

∂2

∂θj∂θk
L(ξ, y)

=
∂

∂θj

[
− 1

2σ2
2
(
y −N(x, t)Tα

)(
− ∂

∂θk
N(x, t)Tα

)]
=

∂

∂θj

[
− 1

σ2

(
−yi

(
∂

∂θk
N(x, t)Tα

)
+N(x, t)Tα

(
∂

∂θk
N(x, t)Tα

))]
= − 1

σ2

[
−y ∂2

∂θj∂θk
N(x, t)Tα+

(
∂

∂θj
N(x, t)Tα

)(
∂

∂θk
N(x, t)Tα

)
+N(x, t)Tα

∂2

∂θj∂θk
N(x, t)Tα

]
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which have expectation

Eξ

[
∂2

∂θj∂θk
L(ξ, y)

]
= − 1

σ2

(
∂

∂θj
N(x, t)Tα

)(
∂

∂θk
N(x, t)Tα

)
= −Eξ

[
∂

∂θj
L(ξ, y)

∂

∂θk
L(ξ,y)

]
as necessary. Next we consider

Eξ

[
∂

∂θj
L(ξ, y)

∂

∂σ2
L(ξ, y)

]
= Eξ

[
1

σ2

(
y −N(x, t)Tα

) ∂

∂θj
N(x, t)Tα

[
− 1

2σ2
+

1

2σ4

(
y −N(x, t)Tα

)2
]]

= Eξ

[
− 1

2σ4

(
y −N(x, t)Tα

) ∂

∂θj
N(x, t)Tα+

1

2σ6

(
y −N(x, t)Tα

)3 ∂

∂θj
N(x, t)Tα

]
= 0

which is equal to

Eξ

[
∂

∂θj∂σ2
L(ξ,y)

]
= Eξ

[
2

2σ4

(
y −N(x, t)Tα

) ∂

∂θj
N(x, t)Tα

]
= 0.

Finally

Eξ

[
∂

∂σ2
L(ξ, y)

∂

∂σ2
L(ξ, y)

]
= Eξ

[{
− 1

2σ2
+

1

2σ4

(
y −N(x, t)Tα

)2
}{
− 1

2σ2
+

1

2σ4

(
y −N(x, t)Tα

)2
}]

= Eξ

[
1

4σ4
− 2

4σ6

(
y −N(x, t)Tα

)2
+

1

4σ8

(
y −N(x, t)Tα

)4
]

=
1

4σ4
0

− 2

4σ6
0

σ2
0 +

1

4σ8
0

3σ4
0

=
2

4σ4
0

which is equal to

Eξ

[
∂

∂σ2∂σ2
L(ξ, y)

]
= Eξ

[
1

2
σ−4 − 2

2
σ−6

(
y −N(x, t)Tα

)2
]

=
1

2
σ4 − 2

2
σ4.

Therefore the interchange of integration and differentiation is justified.
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4.7.2.2 Assumptions A5

To address whether the information matrix is positive definite, we notice that

since Eξ
[
∂
∂σ2L(ξ, y) ∂

∂σ2L(ξ, y)
]
> 0 and Eξ

[
∂
∂θj
L(ξ, y) ∂

∂σ2L(ξ, y)
]

= 0, we only need

to be concerned with the sub-matrix

Ij,k(θ) =
n∑
i=1

Eξ

[
∂

∂θj
L(ξ, yi)

∂

∂θk
L(ξ, yi)

]
=

1

σ2

n∑
i=1

(
∂

∂θj
N(xi, t)

Tα

)(
∂

∂θk
N(xi, t)

Tα

)
.

where the σ−2 term can be ignored because it doesn’t affect the positive definiteness.

First we note
∂

∂tj
N(xi, t)

Tα = −p (xi − tj)p−1
+ αp+j+1

∂

∂αj
N(xi, t)

Tα = Nj(xi, t).

If we let

X =

 N1 (x1, t) · · · Nm+κ (x1, t)
∂
∂t1
N(x1, t)

Tα · · · ∂
∂tκ
N(x1, t)

Tα
... . . . ...

... . . . ...
N1 (xn, t) · · · Nm+κ (xn, t)

∂
∂t1
N(xn, t)

Tα · · · ∂
∂tκ
N(xn, t)

Tα


then I(θ) = XTX. Then I(θ) is positive definite if the columns of X are linearly

independent. This is true under the assumptions that tj 6= tk and that αm+j 6= 0.

4.7.2.3 Assumptions A6

We next consider a bound on the third partial derivatives. We start with the

derivatives of the basis functions.

∂2

∂tj∂tk
N(x, t)Tα = 0 if j 6= k

∂2

∂tj∂tj
N(x, t)Tα = p(p− 1) (x− tj)p−2

+ αp+j+1

∂2

∂αj∂αk
N(x, t)Tα = 0



55

∂2

∂tj∂αp+j+1

N(x, t)Tα = −p (x− tj)p−1
+

∂3

∂tj∂tj∂tj
N(x, t)Tα = −p(p− 1)(p− 2) (x− tj)p−3

+ αp+j+1

∂3

∂tj∂tj∂αp+j+1

N(x, t)Tα = p(p− 1) (x− tj)p−2
+

Since x is an element of a compact set, then for ξ ∈ B(ξ0, δ) all of the above partials

are bounded as is N(x, t)Tα. Therefore

∂3

∂θj∂θk∂θl
L(ξ, x)

= − 1

σ2

[
−y ∂3

∂θj∂θk∂θl
N(x, t)Tα+

(
∂2

∂θj∂θk
N(x, t)Tα

)(
∂2

∂θl
N(x, t)Tα

)
+

(
∂2

∂θj∂θl
N(x, t)Tα

)(
∂2

∂θk
N(x, t)Tα

)
+

(
∂2

∂θl∂θk
N(x, t)Tα

)(
∂2

∂θj
N(x, t)Tα

)
+N(x, t)Tα

(
∂3

∂θj∂θk∂θl
N(x, t)Tα

)]
and

∂3

∂θj∂θk∂σ2
L(ξ, x)

=
1

σ4

[
−y ∂2

∂θj∂θk
N(x, t)Tα+

(
∂

∂θk
N(x, t)Tα

)(
∂

∂θj
N(x, t)Tα

)
+N(x, t)Tα

∂2

∂θj∂θk
N(x, t)Tα

]
and

∂3

∂θj∂σ2∂σ2
L(ξ, y) = − 2

σ6

(
y −N(x, t)Tα

)(
− ∂

∂θj
N(x, t)Tα

)
and

∂3

∂σ2∂σ2∂σ2
L(ξ,y) = − 1

σ6
+

3

σ8

(
y −N(x, t)Tα

)2

are also bounded ξ ∈ B(ξ0, δ) since σ2
0 > 0 by assumption. The expectation of the

bounds also clearly exists.
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4.7.2.4 Lemmas

To show that the remaining assumptions are satisfied, we first examine the be-

havior of

g(θ0,θ, xi) = N(xi, t0)Tα0 −N(xi, t)
Tα.

Notice that for xi chosen on a uniform grid over [a, b] then

1

n

n∑
i=1

(g(θ0,θ, xi))
2 → 1

b− a

ˆ b

a

(g(θ0,θ, x))2 dx.

Furthermore we notice that g (θ0,θ, x) is also a spline. The sum of the two splines

is also a spline. Consider the degree p case of g (x|α, t) + g (x|α∗, t∗) where t < t∗.

Then the sum is a spline with knot points {t, t∗} and whose first p+ 1 coefficients are

α+α∗ and last two coefficients are
{
αp+1, α

∗
p+1

}
.

At this point we also notice

E
[
n−1

∑
g (θ,θ0, xi) εi

]
= n−1

∑
g (θ,θ0, xi)E [εi]

= 0

V
[
n−1

∑
g (θ,θ0, xi) εi

]
= n−2V

[∑
g (θ,θ0, xi) εi

]
= n−2

∑
V [g (θ,θ0, xi) εi]

= n−2
∑

g (θ,θ0, xi)
2 V [εi]

= n−2
∑

g (θ,θ0, xi)
2

→ 0

and that
∑
ε2i ∼ χ2

n and thus n−1
∑
ε2i converges in probability to the constant 1.

Therefore, by the SLLN,

1

n

n∑
i=1

[g (θ0,θ, xi) + σ0εi]
2 =

1

n

n∑
i=1

[g (θ0,θ, xi)]
2 +

2σ0

n

n∑
i=1

εig (θ0,θ, xi) +
σ2

0

n

n∑
i=1

ε2i

=
1

n

n∑
i=1

[g (θ0,θ, xi)]
2 +Op

(
n−1
)

+
σ2

0

n

n∑
i=1

ε2i

a.s.→ 1

b− a

ˆ b

a

(g(θ0,θ, x))2 dx+ σ2
0.
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Lemma 4. Given a degree p polynomial g(x|α) on [a, b] with coefficients α, then

∃ λn,m, λn,M > 0 such that ||α||2λ2
n,m ≤ 1

n

∑n
i=1 [g(xi|α)]2 ≤ ||α||2λ2

n,M .

Proof. If α = 0, then g (x|α) = 0 and the result is obvious. If g (x|α) is a polynomial

with at least one non-zero coefficient, it therefore cannot be identically zero on [a, b]

and therefore for n > p then 1
n

∑
[g(xi|α)]2 > 0 since the polynomial can only have

at most p zeros. We notice that

ˆ b

a

[g(x|α)]2 dx =

ˆ b

a

[
p∑
i=0

α2
ix

2i + 2

p−1∑
i=0

p∑
j=i+1

αiαjx
i+j

]
dx

=

p∑
i=0

α2
i

i+ 1
x2i+1 + 2

p−1∑
i=0

p∑
j=i+1

αiαj
i+ j + 1

xi+j+1

∣∣∣∣∣
b

x=a

= αTXα

where the matrix X has i, j element (bi+j − ai+j) /(i+ j). Since
´ b
a

[g(x|α)]2 dx > 0

for all α then the matrix X must be positive definite. Next we notice that

1

n

n∑
i=1

[g(xi|α)]2 =
1

n

n∑
i=1

αTX iα

= αT
(

1

n

∑
X i

)
α

= αTXnα

and thereforeXn →X and therefore, denoting the eigen-values ofXn as λn and the

eigenvalues of X as λ, we have λn → λ

Letting λn,m and λn,M be the minimum and maximum eigen-values ofXn be the

largest, then λ2
n,m ‖α‖

2 ≤ 1
n

∑
[g(x|α)]2 ≤ λ2

n,M ‖α‖
2.

The values λn,m, λn,M depend on the interval that the polynomial is inte-

grated/summed over and that if a = b, then the integral is zero. In the following

lemmas, we assume that there is some minimal distance between two knot-points and

between a knot-point and the boundary values a, b.
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Lemma 5. Given a degree p spline g(x|θ) with κ knot points on [a, b], let τ =

(|a| ∨ |b|)κ. Then ∀ δ > 2τ, ∃ λn > 0 such that if ‖θ‖ > δ then 1
n

∑
[g(xi|θ)]2 >

(δ2 + τ 2)λn.

Proof. Notice that ||θ||2 > δ2 > 4τ 2 implies ||α||2 > δ2−τ 2. First we consider the case

of κ = 1. If α2
0 + · · · + α2

p > (δ2 + τ 2) /9 then 1
n

∑
[g(xi|θ)]2 1[a,t] (xi) > λn (δ2 + τ 2)

for some λn > 0. If α2
0 + · · ·+α2

p ≤ (δ2 + τ 2) /9 then α2
p+1 ≥ 3 (δ2 + τ 2) /4. Therefore

(αp + αp+1), the coefficient of the xp term of the polynomial on [t1, b] is

‖αp + αp+1‖2 > ‖αp+1‖2 − ‖αp‖2

>
3 (δ2 + τ 2)

4
− (δ2 + τ 2)

4

>
1

2

(
δ2 + τ 2

)
and thus the squared norm of the coefficients of the polynomial on [t1, b] must also

be greater than 1
2

(δ2 + τ 2) and thus 1
n

∑
[g(xi|θ)]2 1[t,b] (xi) > λn (δ2 + τ 2) for some

λn > 0. The proof for multiple knots is similar, only examining all κ + 1 polynomial

sections for one with coefficients with squared norm larger than some fraction of

(δ2 + τ 2).

Lemma 6. For all δ > 0, there exists λn > 0 such that for all θ /∈ B(θ0, δ) then

1
n

∑
(g(θ0,θ, xi))

2 > λnδ.

Proof. By the previous lemma, for all ∆ > 2τ there exists ∃Λn > 0 such that for all

θ /∈ B(θ0,∆) then 1
n

∑
(g(θ0,θ, xi))

2 > Λn∆. We now consider the region

C = closure [B (θ0,∆) \B (θ0, δ)]

Assume to the contrary that there exists δ > 0 such that ∀λn > 0, ∃ θ ∈ C such

that 1
n

∑
(g(θ0,θ, xi))

2 ≤ λnδ and we will seek a contradiction. By the negation,

there exists a sequence θn ∈ C such that 1
n

∑
(g(θ0,θ, xi))

2 → 0. But since θn is

in a compact space, there exists a sub-sequence θnk that converges to θ∞ ∈ C and
1
n

∑
(g(θ0,θ, xi))

2 = 0. But since θ0 /∈ C this is a contradiction.
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Corollary 7. There exists λ such that for any δ > 0 and θ /∈ B(θ0, δ)

1

n

n∑
i=1

[g (θ0,θ, xi) + σ0εi]
2 ≥ λ2

nδ
2 +Op

(
n−1/2

)
+ σ2

0.

We now focus our attention on the ratio of the maximum value of a polynomial

and its integral.

Lemma 8. Given a degree p polynomial g (x|α) on [a, b], then

maxi∈{1,...,n} [g (xi|α)]2

1
n

∑n
i=1 [g (xi|α)]2 dx

≤ λ2
M

λ2
n,m

→ λ2
M

λ2
m

for some λM , λm > 0.

Proof. Since we can write [g (x|α)]2 = αTWxα for some non-negative definite matrix

Wx which has a maximum eigen-value λM,x, and because the the maximum eigen-value

is a continuous function in x, let λM = supλM,x. Then the maximum of [g (x|α)]2

over x ∈ [a, b] is less than ‖α‖2 λ2
M . The denominator is bounded from below by

‖α‖2 λ2
n,m.

Lemma 9. Given a degree p spline g (x|θ) on [a, b], then

max [g (x|θ)]2´ b
a

[g (x|θ)]2 dx
≤ λ2

M

λ2
m

for some λM , λm > 0.

Proof. Since a degree p spline is a degree p polynomial on different regions defined

by the knot-points, and because the integral over the whole interval [a, b] is greater

than the integral over the regions defined by the knot-points, we can use the previous

lemma on each section and then chose the largest ratio.

Lemma 10. Given a degree p spline g (x|θ) on [a, b] then

n−1/2 maxi [εiσ0 + g (θ,θ0, xi)]
2

n−1
∑n

i=1 [εiσ0 + g (θ,θ0, xi)]
2 = Op (1) (4.7.1)

uniformly over θ.
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Proof. Notice

n−1/2 maxi [εiσ0 + g (θ,θ0, xi)]
2

n−1
∑n

i=1 [εiσ0 + g (θ,θ0, xi)]
2 ≤ 2n−1/2 maxi [ε

2
iσ

2
0] + 2n−1/2 maxi [g (θ,θ0, xi)]

2

n−1
∑n

i=1 [εiσ0 + g (θ,θ0, xi)]
2

=
2σ2

0n
−1/2 maxi ε

2
i + maxi [g (θ,θ0, xi)]

2

n−1
∑n

i=1 [εiσ0 + g (θ,θ0, xi)]
2

=
Op

(
logn√
n

)
+ maxi [g (θ,θ0, xi)]

2

n−1
∑n

i=1 [εiσ0 + g (θ,θ0, xi)]
2

and since n−1
∑n

i=1 [εiσ0 + g (θ,θ0, xi)]
2 P→ 1

b−a

´ b
a

(g(θ0,θ, x))2 dx + σ2
0, and lemma

8 bounds the ratio of the terms that involve θ, this ratio is bounded in probability

uniformly over θ.

4.7.2.5 Assumptions B1

Returning to assumption B1, we now consider ξ /∈ B(ξ0, δ) and

Ln (ξ) =
∑

log

{
1√
2πσ

exp

[
−1

2σ

∑(
yi −N(xi, t)

Tα
)2
]}

= −n
2

log (2π)− n log σ − 1

2σ

∑[
yi −N(xi, t)

Tα
]2

= −n
2

log (2π)− n log σ − 1

2σ

∑[
N(xi, t0)Tα0 + σ0εi −N(xi, t)

Tα
]2

= −n
2

log (2π)− n log σ − 1

2σ

∑
[g (θ,θ0, xi) + σ0εi]

2

and therefore

1

n
(Ln(ξ)− Ln(ξ0))

= − log σ − 1

2nσ2

∑
[g (θ,θ0, xi) + σ0εi]

2 + log σ0 +
1

2nσ0

∑
[g (θ0,θ0, xi) + σ0εi]

2

= log
σ0

σ
− 1

2nσ2

∑
[g (θ,θ0, xi) + σ0εi]

2 +
1

2nσ2
0

∑
[σ0εi]

2

= log
σ0

σ
− (λn (θ,θ0))2

2σ2
− σ2

0

2σ2
+

1

2n

∑
[εi]

2

where

[λn (θ,θ0)]2 =
1

n

∑
[g (θ,θ0, xi) + σ0εi]

2 − σ2
0
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which converges in probability to 1
b−a

´ b
a

[g (θ,θ0, x)]2 dx. The function goes to −∞

as σ → 0 and σ →∞. Taking the derivative

d

dσ

[
log

σ0

σ
− 1

2σ2

[
(λn)2 + σ2

0

]
+

1

2n

∑
ε2i

]
= − 1

σ
+

1

σ3

[
(λn)2 + σ2

0

]
and setting it equal to zero yields a single critical point of at σ2 =

[
(λn)2 + σ2

0

]
which

results in a maximum of

log

 σ0√
(λn)2 + σ2

0

− 1

2
+

1

2
n−1

∑
ε2i (4.7.2)

which bounded away from zero in probability for ξ /∈ B(ξ0, δ)

4.7.2.6 Assumption C1

Assumption C1 is

inf
ξ/∈B(ξ0,δ)

mini=1...n L(ξ, Xi)

|Ln(ξ)− Ln(ξ0)|
Pξ0−→ 0

First notice

L(ξ, Yi) = −1

2
log (2π)− log σ − 1

2σ2

(
Yi −N(xi, t)

Tα
)2

= −1

2
log (2π)− log σ − 1

2σ2

(
εiσ0 +N(xi, t0)Tα0 −N(xi, t)

Tα
)2

= −1

2
log (2π)− log σ − 1

2σ2
(εiσ0 + g(θ0,θ, xi))

2

and we consider C = {ξ : ξ /∈ B(ξ0, δ)}. Define

fn (ξ) =
min L (ξ, Yi)

|Ln (ξ)− Ln (ξ0)|

=
−1

2
log (2π)− log σ − 1

2σ2 max [εiσ0 + g(θ0,θ, xi)]
2

n · 1
n
|Ln (ξ)− Ln (ξ0)|
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and notice that the denominator is bounded away from 0 by 4.7.2.

fn (ξ) =
−1

2
log (2π)− log σ − 1

2σ2 max [εiσ0 + g(θ0,θ, xi)]
2

−n · 1
n

(Ln (ξ)− Ln (ξ0))

=

1√
n

[
−1

2
log (2π)− log σ − 1

2σ2 max [εiσ0 + g(θ0,θ, xi)]
2]

−
√
n · 1

n

[
n log σ0

σ
− 1

2σ2

∑
[g (θ,θ0, xi) + σ0εi]

2 + 1
2

∑
ε2i
]

=
1√
n
·
− 1

2
√
n

log (2π)− 1√
n

log σ − 1
2
√
nσ2 max [εiσ0 + g(θ0,θ, xi)]

2

− log σ0

σ
+ 1

2nσ2

∑
[g (θ,θ0, xi) + σ0εi]

2 − 1
2n

∑
ε2i

=
1√
n

[
− 1

2
√
n

log (2π)

− log σ0

σ
+ 1

2nσ2

∑
[g (θ,θ0, xi) + σ0εi]

2 − 1
2n

∑
ε2i

+

− 1√
n

log σ − 1
2
√
nσ2 max [εiσ0 + g(θ0,θ, xi)]

2

− log σ0

σ
+ 1

2nσ2

∑
[g (θ,θ0, xi) + σ0εi]

2 − 1
2n

∑
ε2i

]

We consider the infimums of the terms inside the brackets separately.

For the first term, since the denominator is bounded in probability above 0

uniformly in θ, and the numerator goes to zero, the infimum of the first term goes to

0 in probability.

The second term is uniformly bounded over θ by lemma 9. Notice that the

numerator is

− 1√
n

log σ − 1

2
√
nσ2

max [εiσ0 + g(θ0,θ, xi)]
2

≥ − 1√
n

log σ − max [εiσ0]2√
nσ2

− max [g(θ0,θ, xi)]
2

√
nσ2

= − 1√
n

log σ − σ2
0 Op (log n)√

nσ2
− max [g(θ0,θ, xi)]

2

√
nσ2

≥ − log n√
n

log σ − σ2
0 Op (log n)√

nσ2
− max [g(θ0,θ, xi)]

2

√
nσ2

and all three terms of the numerator converge to 0 for every σ. Therefore for σ ∈ [0, d]

for some large d, the infimum converges to 0. For σ > d, the log σ terms dominate

and the infimum occurs at σ = d which also converges to 0. Therefore

inf
ξ/∈B(ξ0,δ)

minL (ξ, Yi)

|Ln (ξ)− Ln (ξ0)|
P→ 0.
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4.7.2.7 Assumptions C2

Finally we turn our attention to the Jacobian. Recall that the Jacobian is

J0 (y0, ξ) =

∣∣∣∣∣ 1

σ2
pκ

[
κ∏
j=1

αp+κ

]
det
[
Bα Bt Bσ2

]∣∣∣∣∣
where

Bα =

 1 x(1) . . . xp(1) (x(1) − t1)p+ . . . (x(1) − tκ)p+
...

... . . . ...
... . . . ...

1 x(l) . . . xp(l) (x(l) − t1)p+ . . . (x(l) − tκ)p+

 ,

Bt =


(
x(1) − t1

)p−1

+
. . .

(
x(1) − tκ

)p−1

+
... . . . ...

p
(
x(l) − t1

)
. . .

(
x(l) − tκ

)p−1

+

 ,
and

Bσ2 =

 −
1
2

(
y(1) − g(x(1)|θ)

)
...

−1
2

(
y(l) − g(x(l)|θ)

)
 .

Following the notation of Yeo and Johnson, we suppress parenthesis and 0 sub-

scripts. We consider the ξ in compact space B̄(ξ0, δ). We notice that for δ < σ−2

that J(y; ξ) ≤ δκ+1pκg(y) for some g(y) because Bα and Bt are functions of x, t

which are bounded.

We let SlM be the unit square in Rl of radius M .

Finally we notice that Jj(y1, . . . , yj; ξ) = E [J (y1, . . . , yj, Yj+1, . . . , Yl; ξ)] is a

polynomial in θ scaled by σ2, which is equicontinuous on compacts of ξ where σ is

bounded away from 0.



Chapter 5

A GENERALIZATION OF PIECEWISE LINEAR MODELS:

FREE-KNOT SPLINES AND FIDUCIAL INFERENCE

5.1 Introduction

Changes in environmental drivers can cause some ecosystems to show sudden

non-linear changes (May 1977; Connell and Sousa 1983; Knowlton 1992; Estes and

Duggins 1995; Groffman et al. 2006) and modeling these events is an important

research area. Toms and Lesperance (2003) suggest modeling ecological thresholds

using a piecewise linear model. As its name suggests, linear functions are fit on

adjacent regions of the independent axis but constrained so as the resulting function

is continuous. Often referred to as the ’broken stick’ model, the piecewise linear model

is the simplest case of free-knot splines. This approach has been successfully used

in a variety of studies (Homan et al. 2004; Walsh et al. 2005; Carbone et al. 2007;

Kinupp and Magnusson 2005).

Toms and Lesperance (2003) suggest three methods for calculating confidence

intervals for the threshold. Asymptotic normality, inverted F-test, and bootstrapping

were investigated and the authors suggested that the inverted F-test was better in

large sample cases and bootstrapping was better for small sample sizes. We further

investigate the performance of the latter two tests along with the Bayesian and fiducial

solutions to the free-knot spline problem.

We believe that there is also a second type of threshold that is often of interest.

A change in the second derivative from increasing to decreasing or vice-verse can be
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seen in a sigmoid curve. The piecewise linear model is not applicable here, but a

free-knot spline of degree two is.

5.2 Simulations

We performed a simulation study with two levels of variance, three levels of

sample size, and two locations of the change point for both the piece-wise linear and

sigmoid cases.

We first consider coverage rates of the various methods. In the ’coverage plots’

presented, the x-axis denotes the desired confidence level and the y-axis is the observed

coverage rate in the experiment. If the observed coverage rate is below the equivalence

line (y = x), then the method is considered liberal and if the observed rate is above

the equivalence line then the method is conservative. Ideally a method would lie

exactly on the equivalence line but a conservative method is more preferable to a

liberal because claiming a 95% coverage rate when in truth the coverage rate is less

is a more serious error than having the true coverage rate being larger than claimed.

The only complaint against a conservative method is that the lengths of confidence

intervals are larger than necessary to achieve the desired confidence level.

5.2.1 Centered Knot Point

We first consider the case with the true knot point in the center of the indepen-

dent axis. At larger sample sizes all the methods performed reasonably, however the

bootstrap method was abnormally liberal compared to the other methods at small

sample sizes and small variance. At a small sample size and large variability all the

methods had issues but the Fiducial and Bayesian methods performed better than

the bootstrap and inverse-F methods in the piecewise-linear case. In the cases where

the bootstrap method was not significantly liberal, the median confidence interval

length was longer than the other methods.
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Figure 5.2.1: Examples of the simulated datasets.
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Figure 5.2.2: Coverage plots for piecewise linear, center knot point simulation. Each
graph is a plot of the nominal confidence level versus the observed coverage rate. The
thin straight line is the equivalence line and the curved thin black lines give the region
of coverage rates that could reasonably occur by chance.
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Figure 5.2.3: Coverage plots for the sigmoid curve with center knot point.
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Figure 5.2.4: Confidence interval lengths for piecewise-linear with center knot point.

Next we compare the mean length of a confidence interval for each method. In

general the bootstrap method has smaller variability than the other methods, and in

when the bootstrap method was liberal, the confidence interval length was shorter

than other methods. Among the other three methods, the Bayesian and fiducial

methods tend to have a similar mean and variance for the confidence interval length.

The inverted-F test performed well with slightly smaller confidence interval widths

than the fiducial or Bayesian.
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Figure 5.2.5: Confidence interval lengths for sigmoid with center knot point.
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Figure 5.2.6: Coverage plots for piecewise linear, edge knot point simulation

5.2.2 Edge Knot Point

The next set of simulations is where the knot point is not in the center of the

data but rather off to one edge. This is a harder problem because of unequal sample

sizes before and after the knot point.

The bootstrap method performed quiet well considering how poorly it performed

in the centered knot case. The Bayesian method consistently had conservative cover-

age rates, but had larger interval lengths than the fiducial in the degree 2 case.

The fiducial method had good coverage rates in all but the large sample, large

variance edge knot case. The Bayesian method consistently had coverage rates were

either indistinguishable from the nominal value or was at least no worse than the

other methods. The Bayesian and fiducial methods generally had similar coverage

rates.
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Figure 5.2.7: Coverage plots for the sigmoid curve with edge knot point.

5.3 Conclusions

The simulation study shows that the Bayesian method is superior to the boot-

strap and inverse-F test. The bootstrap and inverse-F test both had instances where

the observed converge rates were significantly liberal. When the two methods were

not liberal, the interval lengths were generally comparable to the Bayesian and fidu-

cial methods. The fiducial method had liberal coverage rates in the large variance

large sample edge knot case one and the reason is unclear. Further research into the

selection of data points for the Jacobian calculation will hopefully reveal the problem.

While the Bayesian and fiducial methods do have a significant computation over-

head compared to the inverse-F test, the more accurate coverage rates are sufficient

to justify using their use in free-knot spline problems.
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Figure 5.2.8: Confidence interval lengths for piecewise-linear with edge knot point.
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Figure 5.2.9: Confidence interval lengths for sigmoid with edge knot point.
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