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ABSTRACT 

 

 

 

Telomeres are specialized nucleoprotein complexes that protect natural chromosomal 

termini from degradation and prevent their detection as of DNA damage.  Therefore, telomeres 

play critical roles in maintaining genomic stability. Telomeres are composed of tandem arrays of 

conserved repetitive sequences (TTAGGG in vertebrates), bound by a suite of proteins collectively 

termed "shelterin". Shelterin proteins are essential for telomere length regulation and end-capping 

structure/function. Due to their repetitive nature and together with telomeres possessing an 

abundance of heterochromatic marks, telomeres have long been regarded as silenced, non-

transcribed features of the genome.  

The relatively recent discovery of telomeric RNA (TElomere Repeat- containing RNA; 

TERRA) opened many new avenues of investigation. TERRA is a long, noncoding RNA (lncRNA) 

that serves a structural role at telomeres, as well as function in regulation of telomere length and 

telomerase activity, the specialized reverse transcriptase capable of elongating telomeres de novo. 

Further, TERRA participates in telomeric recombination in tumors that maintain telomere length 

in a telomerase independent fashion via the Alternative Lengthening of Telomeres (ALT) pathway. 

Emerging evidence also supports telomeric “DNA- TERRA hybrids” as indispensable for end 

protection and capping function; e.g., RNA interference mediated depletion of TERRA induced 

telomeric DNA damage responses (DDRs) and aberrations. Thus, TERRA participates in 

facilitating telomeric recombination and in preventing inappropriate telomeric DNA damage 

responses. We hypothesized that TERRA plays a critical role in the repair of telomeric DNA 

damage. To address the intriguing possibility that TERRA plays a role in the telomeric DNA 

damage response, we evaluated the colocalization of TERRA and γ-H2AX, a well-accepted 
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marker of double-strand breaks (DSBs), at broken telomeres in human Osteosarcoma U2OS-ALT 

cells in different phases of the cell cycle.  

To test our hypothesis, we generated U2OS-ALT cells that stably expressed FUCCI green 

fluorescent signals to label cells in G2 phase. Telomeric DSBs were then induced in FUCCI-U2OS 

cells utilizing the ENT endonuclease fused to Telomere Repeat Factor 1 TRF1 (ENT-TRF1), and 

validated via colocalization of telomeres with γ-H2AX-FLAG. Forty-eight hours following 

transfection, FUCCI-U2OS cells were also treated with EdU to label cells in S phase. Cells 

negative for both FUCCI and EdU identified cells in G1 phase. Using this powerful strategy to 

distinguish cells in G1, S and G2 phases of the cell cycle, we showed that FUCCI-U2OS cells 

accumulate in G2 phase following transient transfection with ENT-TRF1. We validated that 

expression of ENT-TRF1 generates telomeric DSBs in U2OS-ALT cells through detection of 

telomere- γ-H2AX-FLAG colocalization events. Importantly, our data revealed that telomeric 

DSB induction triggers enrichment of TERRA in G2 phase. Taken together, these observations 

suggested that TERRA is increased in cells transfected with ENT-TRF1; i.e., in U2OS cells 

harboring telomere-specific DSBs.  

TERRA recruitment to telomeric DSB damage sites in G2 was validated by assessing co-

localization between TERRA and ENT (FLAG). Similarly, TERRA recruitment to telomeric DSBs 

in G1/S was also evaluated.  Futhermore, non-denaturing Telomere DNA FISH was employed to 

visualize G-rich and C-rich single-stranded (ss)telomeric DNA. Treatment of U2OS ENT 

transfected cells with Rnase A and Rnase H to remove TERRA, uncovered elevated levels of 

resected 5’ C-rich (ss)telomeric DNA (complementary TERRA sequence), suggesting a potential 

role for TERRA in protecting resected telomeric DNA prior to cells entering G2 phase where 

Homologous Recombination (HR)-mediated elongation/repair would be possible.  
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Consistent with published reports, telomeric DSBs were also significantly induced in cells 

transfected with TRF1-only (positive control). However, although TERRA co-localized with 

FLAG/broken telomeres, resected (ss)telomeric DNA was not detected upon removal of TERRA. 

Therefore, our results further support induction of telomeric DSBs with overexpression of TRF1, 

and additionally indicate that they are repaired via a different pathway than those induced by ENT, 

potentially alternative End Joining (alt-EJ), as previously proposed.   

In conclusion, our work revealed for the first time that the telomeric RNA TERRA, is 

enriched specifically at telomeric DNA DSB sites in U2OS (ALT) cells.  
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CHAPTER 1  INTRODUCTION 

 

 

 

Telomere structure and function  

Telomere structure 

Telomeres are specialized nucleoprotein structures at the ends of linear chromosomes, 

composed of tandem arrays of repetitive sequence (5’-TTAGGG-3’ in mammalian cells) [2] [3], 

and associated with a variety of proteins, six of which are collectively called shelterin [4]. While 

telomere-specific proteins Telomere Repeat Factor 1 (TRF1) and Telomere Repeat Factor 2 (TRF2) 

bind double-stranded telomeric DNA as homodimers [5-7], Protection of Telomeres 1 (POT 1) 

binds only single-stranded telomeric G-rich DNA [8]. Repressor-activator protein 1 (RAP1) binds 

telomeres via its interaction with TRF2 [9]. TRF1 and TRF2/RAP1 are linked through TRF1-

Interacting Nuclear protein 2 (TIN2) [10]. TIN2- and POT1-organizing protein (TPP1) connects 

POT1 and TIN2 proteins [11]. A recent study discovered an additional regulator of telomere length, 

the telomeric zinc finger-associated protein (TZAP), which binds telomeric G-rich strands of long 

telomeres and trims them [12].  Telomeres can range in size from ~1Kbp-15Kbp [13]. 

Structural studies using Electron Micrographs in human cells revealed that chromosomal 

termini form large telomeric loops (T-loop), where the top single-strand (3’ G rich overhang) loops 

back and hybridizes to the telomeric double-stranded DNA. The invading double-stranded 

telomeric DNA with G-rich single strand also creates a smaller Displacement loop (D-loop; Figure 

1.1) [14-16]. In addition to T-loops, Nuclear Magnetic Resonance Spectroscopy (NMR) and X-

ray crystallography studies support G-quadruplexes as a secondary telomeric structure in human 

cells. Each G-quadruplex consists of four planes of Guanines linked by Hoogsteen hydrogen bonds 

[17-19].  
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Due to the repetitive nature of telomeres, they were long regarded as silent heterochromatin. 

However, the discovery of long non-coding (lnc)RNA Telomeric Repeat-containing RNAs 

(TERRA 5’-UUAGGG-3’) recently negated this notion [20-22]. It has also been observed that 

TERRA can directly bind telomeres via the C-rich strand, forming TeloDNA:TERRA hybrids, or 

indirectly by way of association with shelterin proteins [23, 24]. There is also a fraction of TERRA 

not bound to telomeres, or free TERRA [25] .  

 

 

Figure 1.1: A schematic of mammalian telomere structure. 
 

Homodimers of TRF1 and TRF2 bind directly to double-stranded telomeric DNA, while POT1 binds to single-

stranded G-rich telomeric overhangs. Shelterin proteins interact with the telomere sequences indirectly via protein-

protein interactions (lower left). The 3’ G-rich overhang invades the telomeric duplex, forming a t-loop and D- loop 

(Upper right) [26].  

 

Telomere Function 

Telomeres serve to solve two main problems resulting from the linearity of eukaryotic 

chromosomes; the challenge to replicate the very end of linear DNA molecules (the end replication 

problem) [27], and the threat of activating a DNA Damage Response (DDR) upon misidentifying 

the end of chromosomes as a double-strand break (DSB; the end protection problem) [26, 28]. 
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The End Replication Problem 

In order to synthesize a new DNA strand from the parental strands, RNA primase binds the 

3’ end of the parental leading strand to provide a primer (short RNA sequence) with a free 3’ OH 

group. DNA polymerase III requires that free 3’ OH group on the primer to add new deoxyribose 

nucleotides dNTPs spontaneously in the 5’ to 3’ direction toward the replication fork. Due to the 

nature of the antiparallel double stranded DNA, RNA primase binds various sites along the 

parental lagging strand to provide small pieces of primers with 3’ OH groups so DNA polymerase 

can add new dNTPs in the 3’ direction in between the primers. Eventually, the RNA primers are 

removed and replaced with DNA sequences using DNA polymerase I [29, 30].   

The DNA end -replication problem arises at the very end of telomeres after removing the 

5’ distal primer on the lagging-strand, which cannot be replaced with DNA sequence due to the 

lack of 3’OH group. Consequently, with every cell division telomere length progressively shortens 

by 30-200 base pairs [26, 31, 32]. Telomere shortening has been strongly associated with aging 

and age-related diseases [33]. Although the end replication problem is unavoidable, telomere 

shortening can be offset by telomerase, a specialized DNA polymerase capable of adding telomere 

sequence de novo onto newly replicated ends. However, telomerase is only sufficient to maintain 

telomere length in stem, germ-line, and cancer cells [34, 35]. 

Telomerase  

The discovery of telomerase in Tetrahymena contributed to better understanding of how 

cells maintain the length of telomeres [36]. Structurally, telomerase is a ribonucleotide enzyme 

comprised of three main subunits. First, the catalytic Telomere Reverse Transcriptase (TERT) 

protein encoded by the TERT gene in humans (hTERT). The second subunit is a long non-coding 

RNA called Telomerase RNA Component (TERC) with a sequence complementary to the G rich 
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telomeric strand (3’-AAUCCC-5’). A collection of proteins make up the third subunit, which play 

a role in telomerase stabilization and sequestration [37].  

Telomerase is well appreciated for its role in providing a template for DNA replication in 

order to maintain the length of telomeres [35, 38].  The recruitment of telomerase to telomeres is 

regulated by telomere length and cell cycle phase. Studies have demonstrated that telomerase is 

preferentially recruited to short telomeres in S phase/during replication when the T-loop is 

unfolded.  Additionally, some shelterin proteins participate in regulating telomerase-telomere 

binding. It has been proposed that long telomeres, which would be bound by more TRF1, would 

also recruit more PIN2 TRF1 Interacting Telomerase Inhibitor (PINX1), thereby blocking access 

of telomerase to the 3’end [39, 40].  

On the other hand, the POT1-TPP1 complex facilitates telomerase-telomere localization 

via its telomerase N-terminus (TEN) domain [41, 42]. In germ-line, stem, and cancer cells, high 

levels of telomerase activity ensure telomere length maintenance. Conversely, normal human cells 

lack sufficient telomerase activity to restore lost nucleosides, and thereby limit the number of cell 

divisions (Hayflick number) [43]. Critical telomere shortening in normal human cells triggers 

replicative senescence or apoptosis, preventing further cell division and providing an effective 

tumor suppressor mechanism [44]. 

The End-Protection Problem 

Functional telomeres cap linear chromosomes; they prevent recognition of natural DNA 

ends as DSBs by repair enzymes such as Ataxia-Telangiectasia-Mutated (ATM) and Ataxia 

Telangiectasia and Rad3- related (ATR) kinases, and Poly (ADP-Ribose) Polymerase 1 (PARP1), 

and so avoid triggering of inappropriate DDRs.  Functional telomeres block DSB repair pathways 

classical Nonhomologous End Joining (c-NHEJ), alternative alt-EJ, and Homologous 
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Recombination (HR), and limit telomere hyper-resection [26, 45, 46]. Each repair pathway will be 

discussed in greater detail below. 

Loss of telomere sequence or structure (e.g., the T-loop), and/or disrupting the shelterin 

complex results in compromised end-capping and inappropriate engagement of DSB repair 

pathways at telomeres. Telomere dysfunction-induced foci (TIF) are indicative of loss of end-

protection, potential consequences of which include end-fusions between chromosomes and/or 

sister chromatids (setting up Breakage-Fusion-Bridges cycles) and induction of genomic 

instability [47, 48].  

Telomeres, immortality, and cancer 

Normal cells in long-lived mammalian species with  short telomeres can stop dividing and 

remain in state of replicative senescence for years as a strategy to suppress carcinogenesis [44]. 

Human fibroblasts can escape the replicative senescence barrier and divide again by inactivating 

tumor suppressor genes such as p16INKa, Rb or p53. Some of the cells that emerge also pass a 

second barrier known as crisis [49], which involves loss of functional telomeres. Chromosomal 

fusions and rearrangements, genomic instability, telomerase activity upregulation, and ultimately 

cancer result [50, 51]. Ectopic expression of telomerase in telomerase silent human cell lines 

causes cells to bypass senescence and crisis, leading to immortalization - one of the hallmarks of 

cancer [52, 53].  

Telomere Length Maintenance via Telomerase reactivation or Alternative Lengthening of 

Telomere pathway (ALT). 

Telomerase positive tumors 

The Telomerase Repeat Amplification Protocol (TRAP) assay demonstrated that 85-90% 

of human tumors rely on reactivation of  telomerase to maintain telomere length and enable 
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replicative immortality [50, 54]. Upregulation of telomerase is attributed to mutations in the 

hTERT promoter in some types of cancers; e.g., 80-90% of gliomas, 70% of melanoma, and 60% 

of bladder cancers [55, 56].  Two single base-pair mutations located -146 and -124 upstream from 

the start codon of hTERT gene (c.−146C>T and c.−124C>T) have been reported to generate a new 

binding site for ETS transcription factor leading to upregulation of hTERT protein [57-59].  

In addition to the ETS transcription factor, chromatin marked with histone H3 Lysine4 di-

methylation H3K4me2/3 provides a site of GABPA/B1 transcription factors. GABPA/B1 

transcription factors were also involved in hTERT upregulation. Intriguingly, H3K4me2/3 was 

absent from wild-type hTERT promoter and replaced with Histone H3 Lysin27 trimethylation 

H3K27me3, the epigenetic signature of gene silencing indicating that mutant promoter is also 

accountable for the epigenetic changes. However, it is still unknown if the GABPA/B1 alone is 

sufficient to activate telomerase transcription, or if the transcription requires ETS and GABPA/B 

[60, 61]. 

On the contrary, other types of cancer such as breast, ovarian, and gastric cancers have very 

low frequencies of hTERT promotor mutation; these cancers do not require promoter mutations to 

reactivate telomerase [62].  

Alternative Lengthening of Telomere pathway (ALT) Tumors 

The remaining ~10% of tumors utilize an Alternative Lengthening of Telomeres (ALT) 

pathway to maintain telomere length [63-66]. These tumors represent aggressive cancer types; e.g., 

50% of osteosarcomas, 30% of soft tissue sarcomas, and 25% of primary brain tumors. Clinically, 

ALT tumors are less likely to metastasize, but a smaller fraction of patients survive compared to 

telomerase positive tumors [67, 68].  ALT cells can be identified by the presence of various 

characteristic hallmarks. In addition to telomerase activity being low or absent, telomere length is 
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very heterogeneous in ALT cells, as shown by Terminal Restriction Fragment (TRF) Southern 

blots [63].  ALT cells are also associated with discrete types of Promyelocytic leukemia (PML) 

nuclear bodies called ALT-associated PML bodies.  ALT-associated PML bodies are found in the 

nucleus, are ~0.1–1.0 μm in diameter, and contain telomeric DNA, TRF1, TRF2, and DNA repair 

proteins [69].  Compared to telomerase positive cells, a significantly elevated number of telomere-

sister chromatid exchange (T-SCE) events has been reported in ALT cells [64]. SCE is a common 

template-switching mechanism used by cells to resolve replication stress; SCE within telomeres 

can be detected by Chromosome Orientation Fluorescence In Situ Hybridization (CO-FISH) assay 

[70-72].  

ALT cells are also associated with telomeric C-circles, which were first detected in 

osteosarcoma patients; C-circles are not present in telomerase positive cells, so they are specific 

for ALT tumors [73, 74]. A recent study showed that mutated α-thalassemia/mental retardation 

syndrome X-linked (ATRX) and death domain-associated protein (DAXX), which are associated 

with decompacted telomeric chromatin, are also hallmarks of ALT [75-78]. One possible 

explanation is that functional ATRX and its physical partner DAXX facilitate histone variant 

H3K9me3 deposition. Therefore, altered ATRX/DAXX hinders H3K9me3 incorporation, which 

can change the chromatin state [79, 80].  One potential consequence, increased transcription 

through telomeres, would result in elevated levels of telomeric RNA,TERRA when compared to 

telomerase positive tumors with functional ATRX/DAXX and compact chromatin [81-83]. 

ALT-mediated telomeric DNA synthesis by Break-Induced Replication (BIR) 

Gaining mechanistic understanding of how cells maintain telomere length independently 

of telomerase activity, can lead to novel strategies for ALT cancer therapy.  Over the last several 

decades, significant progress has been made in understanding the molecular mechanism of ALT 
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[84-86].  Appreciation for an ALT mechanism in human cancer and normal mouse cells was first 

gained using fluorescently tagged DNA sequences inserted into telomeres. FISH analysis showed 

that the passage doubling number of ALT cultures is positively correlated with the number of 

tagged telomeres. For instance, in human ALT cells with passage number 23, the fluorescent 

tagged DNA was found only on three telomeres. This cell culture was subcultured 40 times, the 

fluorescent tagged DNA was then detected on 5 telomeres indicating that telomeres can exchange 

their own sequences.  However, the same observation was not detected when tagged DNA was 

inserted at centromeres, nor in telomerase-dependent cells [87-89]. This unique telomeric 

recombination event had been previously described in telomerase-independent saccharomyces 

cerevisiae yeast when Dunn et al [90] introduced a short linearized DNA fragment lacking 

telomere sequence. They found that short DNA fragments became longer and more stable by 

gaining yeast telomeric DNA sequence in the presence of RAD52.   

Walmsley et al  [91] also demonstrated that telomere maintenance can be accomplished by 

using another telomere as a template. In addition to the role of recombination in maintaining 

telomeres, investigation focused on the role of telomeric recombination in telomeric DSBs in S. 

cerevisiae. Bosco and Haber [92] used HO endonuclease to cut off telomeres on specific 

chromosomes, generating a one ended-DSB. They reported that the broken chromosome was 

repaired using either the homologous telomere sequence on the same chromosome in haploid 

genome, or the non-sister telomere in diploid genome only in the presence of RAD52, which is 

necessary for recombination. Furthermore, cutting telomeres using HO in S. cerevisiae showed 

that BIR requires polymerase Delta, pol δ, and its subunit pol32, enhanced by Pif1-PCNA complex, 

to primase DNA synthesis within the migrating D-loop [93, 94]. Collectively, these results suggest 

a model for the Break-Induced Replication (BIR) repair pathway. BIR is the recombination-
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dependent DNA replication pathway in which RAD52 binds resected 3’ ends and promotes the 

homologous telomeric double-stranded DNA invasion and formation of a D-loop, a critical step 

during BIR followed by DNA synthesis (Figure 1.2) [95].  

 

Figure 1.2: A model of telomere repair, via BIR pathway, in the absence of telomerase enzyme 

in Saccharomyces cerevisiae.  
 

One ended-double strand break generated after inducing a site-specific HO. Rad52 and Rad59 are required for 

successful strand annealing and D-loop formation. The Pif1-PCNA complex primase DNA synthesis within the 

migrating D-loop [95].   

 

A similar cleavage strategy has been used in ALT Osteosarcoma- U2OS mammalian cells 

by employing endonuclease protein FOKI fused to telomere shelterin protein TRF1 (FOKI -TRF1) 

[96].  Inducing telomeric-specific DSBs gave a direct answer as to whether the BIR pathway uses 

another homologous telomere as a template to repair the damage. This intriguing study used BrdU 

incorporation to measure telomeric DNA synthesis in cycling cells. Following induction of 

targeted telomeric DSBs, the length of nascent telomeres ranged between 5 - 70 kb in the presence 
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or absence of RAD51, suggesting two different BIR pathways; one being RAD51-dependent and 

one RAD51-independent. In the presence of RAD51, recombination between telomeres of 

different chromosomes was detected and contributed to DNA synthesis. In RAD51 deficient cells, 

BIR relied on the POLD3 subunit of human pol δ to synthesize DNA without detecting any 

recombination activity. Other supporting evidence includes telomerase positive cells treated with 

BIBR1532,telomerase inhibitor; over a six week times period, sustained telomeric DSBs showed 

longer telomeres compared to cells that were not treated with BIBR1532 [97]. 

 

 

Figure 1.3: A model of telomere repair, via BIR pathway, in the absence of telomerase enzyme 

in ALT cancer cells.  
 

A one ended-DSB generated after expressing telomere-specific endonuclease FokI is depicted above. Homology 

search in presence of Rad51 was detected between telomeres on different chromosomes.  In absence of Rad51, 

PCNA-POLD3 promotes telomere DNA synthesis [96]. 
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In addition to the role of RAD51 in BIR, a recent study revealed that the efficiency of BIR 

was drastically reduced in RAD52-KO G2 U2OS (ALT) clones, but not in RAD52-KO G2 

telomerase positive clones [98].  In agreement with Dilley et al [96], they showed that BIR 

efficiency was not impaired in RAD51-KO G2 ALT clones in the presence of POLD3, confirming 

that RAD51-independent BIR pathway is mediated by pol δ in ALT.  

Overall, the exploitation of developed experimental approaches has allowed for improved 

understanding of BIR as a mechanism of ALT in different organisms and different cell stages, as 

well as the roles of recombination and replication proteins in maintenance of telomere length [98]. 

Chromatin landscape changes and increased Telo:TERRA hybrids mediate telomere 

elongation in ALT cells 

While endonuclease FOKI-induced telomeric DSBs has refined our understanding of how 

recombination mediated telomere synthesis occurs in ALT cells, the endogenous events that 

provoke ALT remain unclear. Most studies concede that modification of telomere chromatin 

conformation may be the main factor that initiates ALT. Specifically, it has been reported that 

inhibition of the histone chaperon Anti-Silencing Factor1 (ASF1) in  telomerase positive cells 

represses expression of endogenous hTERT and promotes telomeric recombination [99]. 

Additionally, the telomere chromatin remodeler (ATRX) and its partner (DAXX) facilitate 

assembly of H3 histone variant H3.3 and H3 lysine 9 trimethylation (H3K9me3) to establish 

heterochromatin marks at telomeres. Mutation of the ATRX-DAXX complex, a hallmark of ALT, 

results in relaxed telomeric chromatin, facilitating access of BIR proteins to achieve telomere 

maintenance [79, 80]. Decompaction of telomeric DNA due to ATRX mutation has been 

associated with low levels of H3K9me3 and elevated levels of TERRA in ALT cells. In support 
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of such a role, RNAi KO of ATRX in telomerase positive cancer cells displays increased levels of 

TERRA [81-83].  

The next question examined was whether ALT cells possess elevated levels of TERRA 

compared to telomerase positive cells.  Fragmented DNA extracted from U2OS cells was subjected 

to DNA ImmunoPrecipitation (DIP) to detect Telo-RNA hybrids. This was done using S9.6 

antibody to compare it to amount of TERRA in HeLa cells as a model of telomerase positive cells. 

The results showed that in contrast to telomerase positive cells, a significant increase of 

Telo:TERRA hybrids and elevated level of C-circles were observed. Interestingly, removing 

hybridized TERRA by overexpression of endogenous RnaseH1 in ALT cells resulted in telomere 

lengthening.  These results support the contribution of elevated levels of Telo:TERRA hybrids in 

ALT-mediated BIR to maintain the length of telomeres [100]. TERRA has also been implicated in 

telomere mobility, in both ALT and telomerase positive cells, and to facilitate physical telomere-

telomere interaction required for recombination [101, 102]. 

Increasing evidence suggests that Telo:TERRA hybrids are engaged in recombination- 

mediated telomere elongation in yeast. Depleted telomerase recruitment factor (Coiled-Coil 

protein Quantitatively ccq1) in Schizosaccharomyces Pombe cells have shown to have elevated 

levels of TERRA and Telo:TERRA hybrids associated with efficient telomeres recombination. 

[102]. On the other hand, repression of Telo:TERRA hybrids by way of overexpression RnaseH1 

led to a sever growth crisis [102]. It has also been suggested that in S. cerevisiae, Telo:TERRA 

hybrids could contribute to stabilizing the D-loop to promote telomere recombination [103, 104]. 

Together, these observations suggest that Telo:TERRA hybrids can serve as substrates for 

recombination- mediated telomere elongation. 
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Long Non-coding RNAs 

Over the past decade,  molecular biology studies have discovered that  98% of the genome 

is transcribed into non-coding RNAs [105, 106]. Long non-coding (lnc)RNAs are a type of non-

coding RNAs that interact with different proteins to achieve cellular functions [20, 21, 82, 107]. 

The telomeric lncRNA TERRA is important for telomere structure and function.  

Long non-coding Telomeric repeat-containing RNA: TERRA 

TERRA Biogenesis 

Telomeres were long thought to be transcriptionally silent due to their hypermethylated, 

inhibitive chromatin status [21, 107]. Discovery of the long non coding RNA, TERRA, challenged 

this historic and central tenet of telomere biology [20]. It is now known that TERRA transcription, 

driven by RNA polymerase II (RNAPII), can progress several kilobases through the C-rich 

telomeric strand before releasing the final product (Figure 1.4) [108]. Work In U2OS has shown 

that cohesion, and CCCTC-Binding Factor (CTCF) transcription factor work in concert to 

positively regulate TERRA transcription via their roles in RNA Pol II recruitment [109].   

TERRA has been detected in yeast, mouse, human, zebrafish and plants.  [20, 108, 110, 

111].  Human TERRA is very heterogeneous in length, ranging from ~100bp to 9kb of 5’-

UUAGGG-3’ repeats, suggesting different promoter location sites [20, 108]. In support of this 

view, two sets of TERRA promoters within subtelomeres have been characterized. Detection of 

pSer2 and pSer5 (active form of RNA pol lI) binding sites 1Kb from telomere repeats helped 

identify the first set of TERRA subtelomeric promoters. Notably, these promoters are rich in 

dinucleotide CpG islands upstream of the Transcription Start Site (TSS) [109, 112]. RNA-seq 

approaches in HeLa cells revealed a second set of TERRA promoters located 5-10kb from 

telomeres on 10 different chromosomes [113]. 
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Utilizing CRISPR-Cas9 genome editing to remove 8 kbp on the long arm subtelomere of 

chromosome number 20 in human U2OS cells resulted in significant TERRA depletion, indicating 

that a significant amount of TERRA is transcribed from one chromosome [114]. Similarly, the 

majority of mouse TERRA has been shown to be transcribed from chromosome number 18 [115]. 

Other recent work demonstrates that human TERRA is transcribed from many chromosomes [116] 

TERRA Structure 

Structurally, while the 5’ end of TERRA is capped with 7-methylguanosin (m7G), a 

specific fraction of the 3’ end of total TERRA is polyadenylated, leaving the remaining 3’ ends 

nonpolyadenylated. Polyadenylation is an important factor in determining the half-life and the 

binding status of TERRA. That is, nonPoly A TERRA has a shorter half-life (3h), but localizes to 

telomere tracks forming Telo:TERRA hybrids (bound TERRA). This is in contrast to poly A 

TERRA, which has a longer half-life (8h), but does not associate with telomeres (free or unbound 

TERRA) [25].  

TERRA Decay 

Telo:TERRA hybrids can be advantageous to ALT cells; however, replication stress 

associated with Telo:TERRA hybrids in ALT and telomerase positive cells has been reported.  

Thus, regulation of TERRA levels and binding activities are important for maintaining stability.  

For instance, in addition to RnaseH1, HeLa cells deficient in UP-Frameshift 1 (UPF1), a 

member of the nonsense-mediated mRNA decay pathway, display elevated levels of Telo:TERRA 

hybrids with no associated increase in TERRA transcription, revealing UPF1 as a negative 

regulator of bound TERRA [20]. A recent study identified TRF1, which facilitates replication 

through telomeres, as another negative regulator of bound TERRA [117]. In contrast to TRF1, 

depletion of TRF2 results in upregulation of TERRA transcription [113].  The NONO/SFPQ 
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heterodimer complex has also been proposed as a suppressor of undesirable levels of Telo:TERRA 

hybrids  in U2OS cells [118].  
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Figure 1.4: A model of TERRA transcription through telomere.  
 

RNA Pol II drives transcription of UUAGGG long non coding telomeric RNA through telomeres [1]  

 

TERRA dynamics through the cell cycle in Telomerase positive and ALT cells 

Shortly after the discovery of TERRA, intense investigation into TERRA transcription and 

localization commenced, in both telomerase positive and ALT cells; reviewed in [119]. Porro et. 

al. evaluated TERRA levels from four different telomeres in synchronized HeLa (telomerase 

positive) G1/S cells, compared to TERRA levels from the same four telomeres in cells in S and 

G2/M phases. Results revealed that TERRA transcription is cell cycle dependent, with levels 

peaking in G1/S and decreasing through the cell cycle until cells reenter G1 and levels start to 

increase again [25].  

Many reports gave insights into the necessity of having regulated levels of TERRA through 

the cell cycle in telomerase positive cells. Flynn et al observed that replication protein A (RPA) 

was able and sufficient to displace the shelterin POT1-TPP1 complex from telomeric ssDNA. 

However, the reverse experiment revealed that the POT1-TPP1 complex did not replace RPA 
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[120].  Knowing that RPA plays a role in ATR-mediated telomeric DNA repair activation, the 

investigation of how RPA released from telomeres was needed.   

Biochemical studies showed that RPA is displaced from telomeric ssDNA when 

heterogeneous nuclear ribonucleoproteins (hnRNPs) bind telomeric ssDNA, which occurs only in 

the absence or low concentration of TERRA. Further investigation showed that elevated levels of 

TERRA bind and sequester hnRNPs, allowing RPA to displace POT1-TPP1 complex from ssDNA 

[120].  Taken together, published results provide an attractive model explaining why TERRA 

levels are tightly regulated through the cell cycle in telomerase positive cells (Figure 1.5).  

In this model elevated levels of TERRA in G1 and G1/S sequester hnRNPs, allowing RPA 

to antagonize POT1-TPP1 complex binding to telomeres. Bound RPA is critical for DNA 

replication during S phase. Reduced levels of TERRA in S/G2 are insufficient to sequester hnRNPs, 

thereby facilitating RPA binding. An increase in TERRA during M/G1 leads to sequestering 

hnRNPs, again allowing the POT1-TPP1 complex to bind, cap telomeres and prevent the activation 

of ATR  [119].   

In conclusion, regulated levels of TERRA through the cell cycle in telomerase positive 

cells play an important role in telomere replication and end-capping [121]. In contrast, in ALT 

U2OS cells synchronized in S phase (via thymidine block), RNA FISH detected elevated levels of 

TERRA in S phase compared to what had been observed in telomerase positive HeLa cells. 

Furthermore, RNA dot blots of U2OS cells treated with a CDK1 inhibitor to enrich for cells in G2, 

did not show any reduction of TERRA levels as cells released from S into G2 [81]. These results 

indicate that in contrast to telomerase positive cells, TERRA levels in ALT cells are not regulated 

through cell cycle.  
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Figure 1.5: Regulated levels of TERRA through the cell cycle in telomerase positive cells is the 

main key to switch from (protected) closed to (replication) open status.  

 
Increased levels of TERRA through G1 and S act to sequester hnRNP A1, allowing RPA to replace POT1 and bind 

telomeric ssDNA. Downregulation of TERRA through S and S/G2 phases releases hnRNPA1, which in turn 

displaces RPA by binding telomeric ssDNA. TERRA levels increase in M/G1 to repeat the cycle. 

 

TERRA is required to establish telomeric heterochromatin in ALT cells 

Telomerase positive cells rely on the ATRX/DAXX complex to deposit H3K9me3, the 

signature of telomeric heterochromatin [75-78]. The absence of functional ATRX/DAXX 

complexes in ALT cells raises the question of how ALT cells compact telomeric chromatin. 

Montero, J.J., et al [122] proposed a model in which the level of TERRA works as a sensor to 

compact the chromatin. TERRA binds Polycomb Repressive Complex 2 (PRC2) and guides it to 

telomeres. TERRA-PRC2 at telomeres induces H3K27 methylation, which in turn facilitates 

recruitment of H3K9me3, H4K20me3, and anchoring of HP1to telomeric chromatin. However, 

neither PRC2 nor any telomeric heterochromatin marks were observed on 20q telomeres in 
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TERRA-knockout U2OS clones. These findings suggest that TERRA interacts with a variety of 

players to ensure end-capping and protection of chromosome ends [122]. 

TERRA maintain telomeres  

Emerging evidence suggests that the main role of regulated levels of TERRA is in telomere 

maintenance, as dysregulated levels of TERRA contribute to genome instability. To understand 

the role of TERRA in telomere maintenance, downregulation TERRA has been achieved in various 

cell lines utilizing a variety of approaches. The first attempt to deplete TERRA was in 2009, two 

years following its discovery. Small interference RNA (siRNA) mediated depletion of TERRA 

significantly reduced TERRA transcripts in U2OS cells measured by RNA-FISH, RNA dot-blot 

and Northern blot. [113]. In 2014 Lopez de Silanes, et al [115] employed LNA gapmeR AntiSense 

Oligonucleotide (ASO) to cleave mouse TERRA. Forty-eight hours post transfection with ASO, 

TERRA transcripts were measured by RT-qPCR and RNA dot-blot, which showed 50%reduction 

in total TERRA.  The same group targeted the TERRA locus on subtelomere 20q in U2OS cells 

utilizing CRISPR/Cas9 technology.  TERRA-20q U2OS clones displayed dramatic decreases in 

TERRA levels compared to parental U2OS cells [114]. In all mentioned studies [113] [114] [115], 

reduced levels of TERRA were associated with telomere fusions, telomere free ends, telomere 

duplications, telomere double minutes, and dysfunctional Telomere-Induced Foci (TIFs).  Such 

observations support a protective role of TERRA at telomeres by inhibiting the telomeric DDR via 

its role in telomere capping; specifically, by facilitating heterochromatin mark deposition and 

displacing RPA with the POT1-TPP1 complex [119]. Paradoxically, it has been shown that 

TERRA is involved in the telomeric DDR upon TRF2 depletion in HeLa cells. In TRF2 deficient 

HeLa cells, it was observed that TERRA molecules interacted with Lysine-specific demethylase 1 
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(LSD1). TERRA-LSD1 complexes increased the affinity of MRE11 to bind telomeric damage 

sites, process 3’ G overhangs, and sustain activation of ATM signals at uncapped telomeres [123].  

TERRA response to cellular stress 

Crosstalk between cellular stress and the DNA Damage Response (DDR) has been reported 

in many studies [124, 125].  In line with this notion, TERRA expression was induced in HeLa 

Wild Type (WT) cells upon incubating cells at 40 C° for an hour (Heat Shock). Strikingly, TERRA 

induction was dependent on recruiting the transcription factor Heat Shock 1 (HS1) to subtelomeres. 

However, TERRA induction was suppressed in HS1-knockout HeLa cells associated with 

telomeric DNA damage and detected TIF signals [126].  

Moreover, nutrient deprivation (culturing human colon cancer HCT116 cells in serum-free 

media) has also been shown to promote TERRA expression. Similar to what has been shown in 

HeLa cells, TERRA induction in HCT116 cells was also a dependent behavior. TERRA induction 

with nutrient deprivation was associated with the presence of p53 transcription factor, the key 

protein in tumor suppression. Notably, depletion of p53 subtelomeric binding sites prevented 

TERRA induction and induced telomere damage [127]. Such evidence suggests that TERRA is 

part of tumor suppressor network in response to cellular stress [128]. In another study, treatment 

of adenocarcinomic human alveolar basal epithelial (A549) cells with Bleomycine, a radiomimetic 

drug that induces DSBs, and measuring TERRA expression by PCR demonstrated elevated levels 

of TERRA [129]. It remains to be investigated whether TERRA is induced in response to other 

DSB-inducing agents like ionizing radiation (IR). In conclusion, findings to date suggest that 

induced TERRA expression contributes to telomere protection. 
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DNA Double Strand Break repair pathways 

Cells experience DNA DSBs with exposure to IR or treatment with site-specific 

endonucleases. DNA DSBs are appreciated as the most lethal form of DNA lesion, and they 

contribute to genome instability and thereby cancer (reviewed in [130, 131]).  However, cells are 

equipped with an arsenal of different mechanisms to repair DSBs such as c-NHEJ, HR, alt-EJ and 

BIR reviewed in [132]. In the next section, we will briefly introduce each pathway and comment 

on their presence or absence when DSBs occur within telomeres.  

Classical non-homologous end joining (c-NHEJ) 

It has been well documented that c-NHEJ is the dominant DSB repair pathway in 

mammalian cells, particularly in G1 when a homologous template (sister chromatid) is not readily 

available. In S/G2 phases, c-NHEJ pathway proteins are expressed but the pathway itself is 

inhibited when Cell cYcle REgulator of NHEJ (CYREN) binds Ku70-Ku80 heterodimer (early c-

NHEJ pathway proteins) [133]. In response to DSBs and in the absent of CYREN, Ku70-Ku80 

heterodimers rapidly bind the DSB sites to stabilize the two ends and recruit the DNA-dependent 

protein kinase catalytic subunit (DNA-PKcs). Auto-phosphorylated DNA-PKcs phosphorylates 

ATM, and the histone variant H2AX on serine 139 to form γ-H2AX, the signature of DSBs.  

These critical phosphorylation events are required to initiate and sustain the DNA damage 

response so that the cell cycle slows down  [134]. Cells then commit to c-NHEJ when the 3′ to 5′ 

nucleolytic activity of MRE11, EXO1 and Artemis processes the two ends to generate two 3′ single 

stranded DNA overhangs, typically < 4bp. In c-NHEJ, extensive end resection is limited by 

binding of 53BP1, RIF1 and the shieldin complex [135]. Lastly, XRCC4 and Ligase IV align and 

ligate the two compatible ends. The c-NHEJ pathway results in deletion or insertion in the repaired 

product, and thus is considered as error- prone repair pathway.  
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Functional telomeres take advantage of shelterin proteins to prevent triggering of a 

telomeric DDR. TRF2 prevents ATM signaling and the c-NHEJ repair pathway via two 

mechanisms. TRF2 is sufficient for remodeling of the single-stranded telomeric G-rich overhang 

to form a T-loop – essential for preventing binding of the MRN complex and Ku70/80 heterodimer. 

TRF2 showed the ability to bind and block Ku70, preventing the tetramerization of Ku70/80 

complex and thereby preventing initiation of c-NHEJ [132, 134]. 

Homologous Recombination (HR)   

When sister chromatids are available after replication, 53BP1 is antagonized by BRCA1 

allowing for extensive resection >100 bp [136]. Resection is promoted by the activity of 

endonuclease protein MRE11, one of the members of the MRN complex (MRE11-RAD50-NBS1) 

and the C-terminal binding protein interacting protein (CtIP), EXO1 and DNA2 helicase/nuclease. 

Following resection, the two ss-DNA ends become coated with RPA, which is eventually replaced 

with Rad51 [137].  Rad51-coated DNA invades and anneals to the homologous template forming 

holliday junctions. Lastly, DNA polymerase binds the 3’ end of the invading allowing DNA 

synthesis and eventually resolving holliday junctions [138]. HR is considered less error-prone 

pathway that utilizes a homologous template. Comparison reports between telomerase positive 

cells and ALT cells have shown that HR is elevated in ALT cells due to reduced shelterin saturation 

[78, 132].  

Alternative-End Joining (alt-EJ) 

In addition to studies characterizing the pathways of C-NHEJ and HR, Liang and Jasin 

discovered alt-EJ as an alternative pathway to compensate for the loss of C-NHEJ pathway in 

XRCC4 or Ligase IV deficient cells [139, 140]. However, different studies have shown that Alt-

EJ occurs in C-NHEJ proficient cells as well [141]. Mechanistically, Alt-EJ starts with processing 
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the two ends to expose microhomology that < 21 bp using the same proteins that used in HR. Next, 

the two main proteins in this pathway poly (ADP-ribose) polymerase 1 and polymerase θ 

(Polθ) facilitate DNA synapsis and strands annealing.  Following the annealing, nuclease enzymes 

remove the non-complementary 3’ flap and Ligase 1 and Ligase 3 ligate the two ends [141-143]. 

In cancer cells, Alt-EJ pathway have been implicated in insertions, deletions and chromosome 

fusions. In particular, recent studies have demonstrated that removing TRF2 or POT1/TPP1 

shelterin protein from telomeres in Ku70/80 deficient cells results in a mild telomere fusions 

phenotype.  Telomere fusions were observed involving every telomere after depleting all shelterin 

proteins in Ku70/80 deficient cells [4, 144]. 

Break-induced Replication (BIR) 

BIR differs from the HR DSB repair pathway due to its unique ability in repairing DSBs 

with only one end. The BIR pathway has been discussed in a previous section. 

The choice of the appropriate pathway can be determined firstly by the cell cycle phase in 

which the DSBs occurs [133]; the cell cycle takes a leading role in regulating the DNA end 

resection following the damage [145].  In G1 phase, the end- resection independent pathway NHEJ 

is the dominant pathway. Recent studies show that inhibition of resection in G1 has been associated 

with the activity of RPA-DNA Helicase B complex. This complex works, independently of 53BP1, 

to prevent the binding of exonuclease-mediated resection proteins including; EXO1, and BLM-

DNA2 [146].  It is also well documented that expression of HR genes is downregulated in G1 

phase [147]. In G2 phase, the opposite scenario was reported to promote the end- resection 

dependent pathways HR or alt-NHEJ [147].   

In addition to cell cycle phase, accumulated evidence implies the sequence context at the 

DSB site can also impact the choose of the repair pathway [148]. NHEJ pathway has been shown 
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to be strictly blocked within telomeres through the cell cycle [96, 97, 130]. Alternatively , 

telomeric hyper resection HR and telomeric hypo resection alt-EJ pathways have been utilized by 

cells to repair the telomeric DSBs [96, 97, 130]. 

The balance between telomere protection and telomere repair in mammalian cells 

The highly protective system of inhibiting DDRs and repair within telomeres made 

biologists question how telomeric DSBs are repaired following damage within telomeres 

themselves.  Early experiments exposed proliferating fibroblasts to high doses of IR (10, 20 Gy, 

X-rays) to induce DSBs genome wide. [149]. Interestingly, while DNA damage at non-telomeric 

sites decreased over time, targeted telomeric DNA damage accumulated, indicating that telomeric 

DSBs are irreparable [149] . The main pitfall of using this approach is the need of extremely high 

doses of IR to generate DSBs within relatively rare telomeric DNA, which may alter gene 

expression and/or cause mitochondrial dysfunction/oxidative stress, known contributors to 

telomere damage [130, 131]. Thus, IR exposure cannot discriminate whether the detected 

telomeric damage response is a result of DSB within telomere sites or the indirect impact of high 

doses on telomeres. To address this obstacle and answer the question, telomeric site-specific 

endonucleases have been developed and employed in recent studies.  Expression of FokI-TRF1, 

and Cas9 in mouse fibroblasts and human ALT cancer cells, results in TIFs (broken telomeres) 

with no associated loss of telomeres or telomere fusions in metaphases spreads, indicative of the 

ability of the cells to repair DSBs within telomeres, independent of c-NHEJ [96, 97, 150-152].  

Other supportive evidence for the strict prevention of c-NHEJ following endogenous 

telomeric DSBs has been reported after expressing FokI-TRF1 in Lig4-/- mouse cells. Frequencies 

of TIFs in Lig4-/- mouse embryonic fibroblasts (MEFs) were not altered compared to TIFs 

following damage in WT-Lig4 control cells [151]. Our studies also found no evidence of c-NHEJ 
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following telomeric DSBs generated via transient transfection of the silkworm endonuclease 

TRAS1-EN (ENT) fused to TRF1 to target telomeres in human BJ1-hTERT fibroblasts and EJ-30 

telomerase positive cancer cells (unpublished). Because c-NHEJ is the dominant repair pathway 

in G1, we monitored localization of 53BP1 at telomeric DSBs in G1. The lack of 53BP1 at 

telomeric damage sites, both in the presence of TRF2 and after depleting TRF2, supports 

suppression of c-NHEJ in G1 human fibroblasts and cancer telomerase positive cells. This 

hindrance to the c-NHEJ pathway within telomeres is attributed to the fact that c-NHEJ can 

contribute to genome instability [130, 153]. 

Since c-NHEJ is not the preferred pathway of DSB repair within telomeres, resection 

dependent repair pathways (HR, alt-EJ and BIR) were also investigated. Although we observed 

that fibroblast and telomerase positive cells undergo extensive resection in G1 following induced 

telomeric-specific damage, neither BIR-induced HR repair proteins, nor DNA synthesis was 

detected (unpublished). 

While similar findings in G1 HeLa cells have been reported, sustaining TIF signals upon 

depleting PARP1 or Lig3 suggests potential participation of alt-EJ pathway at telomeric DSB in 

MEFs cells [151]. The repetitive nature of telomeric regions may make alt-NHEJ an attractive 

option for repairing telomeric DSBs.   

 In contrast to alt-EJ in fibroblasts, endonuclease-induced telomeric DSBs have been 

implicated in triggering extensive resection, homology-searching and pairing interaction between 

sister chromatids in S phase and non-sister telomeres in G1 phase and DNA synthesis in ALT cells 

[96, 97, 150]. Inhibiting or depleting Rad51 precludes the physical interaction between non-sister 

telomeres and thereby telomere shortening [96]. Cells exposed to long-term telomeric DSBs 

preferentially utilize recombination between non-sister telomeres, rather than sister chromatids, to 
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elongate telomeres [96, 97, 150]. Thus, telomeric recombination can occur between non sister 

telomeres in G1 when sister chromatids are not available. 

At present, it appears that alt-EJ or BIR-induced HR may be involved in repair of telomeric 

DSBs in human ALT and non-ALT cells. However, whether TERRA plays a role in telomeric 

DSB repair has not been elucidated.  Our work here revealed for the first time an increase in 

TERRA in response to IR exposure, as well as colocalization of TERRA at telomeric DSBs 

following induction of telomere-specific damage. 
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CHAPTER 2  RESULTS 

 

 

 

Telomeres are special nucleoprotein structures at the ends of linear chromosomes [2, 3].  

In humans, telomeres consist of 5-15 kb of repetitive DNA sequence (5’-TTAGGG-3’) bound by 

a specific protein-complex known as shelterin, made up of TRF1, TRF2, TIN2, TPP1, RAP1, 

POT1, and TZAP [8-12].  Due to the inability of conventional polymerases to replicate to the very 

end of linear DNA molecules (the end-replication problem), the telomeric G-rich strand ends with 

a 3’ single-stranded (ss)overhang [16].  TRF2 has been shown to play a role in looping and 

facilitating invasion of the 3’ (ss)overhang into telomeric double stranded (ds)DNA, forming a T-

loop [15], an effective solution to the end-protection problem [26].   

Telomerase is the specialized reverse transcriptase (TERT) capable of de novo elongation 

of telomeres [35].  Telomerase activity is significantly reduced in normal somatic mammalian cells 

[37]. Hence, telomeres shorten with cell division, and therefore with aging. Furthermore, as 

telomeres become critically short, they activate cell cycle checkpoints, cell cycle arrest, and 

senescence or apoptosis [52].  In contrast, ~85-90 % of cancers reactivate telomerase to maintain 

telomere length and enable unlimited cell division, some by way of mutations in the promoter of 

TERT [54]. The remaining ~10-15% of cancers maintain telomere length via an homologous 

recombination (HR)-mediated Alternative Lengthening of Telomeres (ALT) pathway [68, 81, 86].  

Telomeres are transcribed into the telomeric long noncoding RNA TERRA, which is 

transcribed from start sites (CpG islands) originating within subtelomeric regions [20]. While a 

proportion of TERRA is found bound to telomeres, the remainder is not associated with telomeric 

chromatin  [25, 154].  Interestingly, ALT cells have elevated levels of TERRA as compared to 



 

28 

telomerase positive cells [100].  In vitro and in vivo studies have shown that TERRAs is involved 

in maintaining both telomere length and telomere protection [113, 121, 122, 128].   

It has also been demonstrated that conventional DNA repair is inhibited at telomeres [108].   

Misrepair or non-repair of deleterious DSBs, such as those induced by ionizing radiation (IR) 

exposure, is known to give rise to chromosomal aberration and genomic instability[132] . This 

prompted us to investigate how human cells handle DSBs occurring within telomeres themselves.  

Understanding DSB repair within telomeres has become an intriguing topic, investigated by many 

research groups [96, 97, 130, 151].  However, the role of telomeric RNA (TERRA) is not well 

understood.  

Here, we hypothesized that TERRA plays a role in repair of telomeric DSBs.  To test this, 

we utilized human U2OS (ALT) cells, which have high levels of TERRA.  Our aims included 

characterizing TERRA response to global DNA DSBs induced by IR, as well as to enzymatically-

induced DSBs targeted specifically to telomeres. 

Increased TERRA following Ionizing Radiation exposure 

Increased TERRA transcription following treatment with Bleomycine, a radiomimetic drug 

that induces DSBs, has been demonstrated [129]. We investigated whether TERRA might also be 

influenced by IR exposure, a potent inducer of prompt DSBs.  RNA FISH analysis revealed a 

significant increase in the number of TERRA foci in U2OS cells exposed to 2 Gy γ-rays compared 

to unirradiated controls (Figure 2.1 A, B). To validate these findings, irradiated and unirradiated 

U2OS cells were also treated with RnaseA and RnaseH to remove TERRA; TERRA foci were 

significantly diminished (Figure 2.1 C,D).  Results demonstrate that TERRA responds to IR 

exposure and genome-wide induction of DSBs.  
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A.                                                                       D. 

 

 

B. 

 

C. 

 

Figure 2.1: TERRA and IR in cycling U2OS (ALT) cells.  

 
A, B, C. TERRA foci were significantly increased four hours after IR exposure (2 Gy) compared to 0 Gy controls. 

Treatment with RnaseA + RnaseH removed TERRA from irradiated and unirradiated cells.  D, Quantification of 

nuclear TERRA foci; 3 experiments each (n = 50), error bars represent SEM. T test  ***P < 0.001; **P < 0.01; *P < 

0.05.  

 

Telomere-specific DSBs induce telomeric DDR involving TERRA  

To better understand ALT DDRs involving TERRA at telomere-specific DSBs, we 

employed our validated system utilizing transient transfection of a plasmid encoding a flag-tagged 

telomere repeat-specific endonuclease fused to the human TRF1 gene (TRAS1-EN-TRF1: 

hereafter referred to as ENT-TRF1) that produces blunt ended DSBs within telomeres [155, 156].  

Here, we used the EN-T system in U2OS (ALT) cells to characterize the telomeric DDR to targeted 
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DSBs.  For controls, U2OS cells were transfected with plasmids that expressed TRF1-only, empty 

vector, or were un-transfected.  In experiments interrogating TERRA, a combination of Rnase A 

and Rnase H was used to remove TERRA as a negative control.  

First, we sought to establish transfection efficiencies in U2OS cells, determine phase of the 

cell cycle in which cells accumulate following transfection, and establish TERRA response to 

cellular stress of transfection. Additionally, we confirmed and quantified ENT-TRF1 induction of 

telomeric DSBs via co-localization of telomeres, EN-T (FLAG) and the DSB marker γ-H2AX, 

evaluated whether TERRA co-localized at telomeric DSB sites via co-localization of TERRA and 

FLAG, and evaluated potential role of the cell cycle on TERRA recruitment to damaged telomeres.  

Distinguishing cell cycle phase in FUCCI - U2OS interphase cells  

In order to monitor the effects of transfection on TERRA distribution throughout the cell 

cycle, we employed a Fluorescent Ubiquitination-based Cell Cycle Indicator (FUCCI) strategy to 

readily distinguish G1, S, and G2 phase in interphase nuclei. A stable U2OS cell line expressing 

Geminin protein fused to Green Fluorescence Protein (Geminin-GFP) [157] was generated to 

positively identify cells in G2 phase.  Colocalization of the G2 markers Geminin-GFP and 

Centromere protein F (CENP-F) confirmed that the FUCCI plasmid had not been lost, and that 

absence of Geminin-GFP signals in each negative (unlabeled) cell represented a cell in G1 or S 

phase.  Results also confirmed that cells labeled with CENP-F were also positive for Geminin-

GFP and so were in G2, and cells negative for CENP-F did not express Geminin-GFP and so were 

in G1/S (Figure 2.2 A).  To definitely label cells in S phase, cells were incubated with EdU for 30 

min, after transfection; cells negative for Geminin-GFP and EdU were in G1 (Figure 2.2 B).   

A.  
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B. 

 
 

Figure 2.2: FUCCI – U2OS cell line to identify cell cycle phase.  

 
A. Co-localization of nuclear CENP-F protein (red) and Geminin-GFP (green) in U2OS cells stably expressing 

Geminin-GFP confirms that the FUCCI plasmid had not been lost, and that negatively staining cells (blue) were in G1 

or S.  B. Simple schema for discriminating cell cycle in interphase nuclei: G1 cells negative for EdU and Geminin-

GFP/CENP-F (blue); S phase cells positive for EdU (red); G2 cells positive for Geminin-GFP/CENP-F (green). 

 

Transfection efficiencies in FUCCI- U2OS cells 

Utilizing lipofectamine, populations of U2OS cells expressing FUCCI were transfected 

with either ENT-TRF1, TRF1-only, or empty vector, and as a negative control, no transfection. 
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Following transfection (48 hr), FUCCI-U2OS cells were fixed, and Anti- FLAG antibody used to 

evaluate transfection efficiencies. Transfection efficiencies of ~25-30% were observed (Figure 

2.3A). There were no significant differences in average number of FLAG foci in cells transfected 

with ENT-TRF1 or TRF1-only (Figure 2.3B).  

The low efficiency of transient transfection in U2OS cells may be attributable to the 

particular cell line, and/or the lipid-based delivery method used, which does have lower efficiency 

compared to viral-based delivery approaches. Another consideration is that cells were fixed 48 

hours after transfection using Lipofectimine 2000, while expression of the gene starts 6-8 hours 

after transfection. The number of expressed FLAG foci in FUCCI-U2OS cells transfected with 

ENT-TRF1 or TRF1-only did not show any significant difference, indicating that the two different 

populations were exposed to the same level of stress (size of plasmid, transfection reagent).  
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A. 

 

B. 
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C. 

 

Figure 2.3: FUCCI-U2OS transfection efficiencies.    
 

A. Representative images of transiently transfected FUCCI-U2OS cells co-stained for nuclei (DAPI; blue) and 

(FLAG; red).  B. Quantitation of average number FLAG foci/cell. Data represent 3 experiments each; error bars are 

SEM (n = 12-200). Significance of one-way ANOVA and Holm-sidak Test ***p,0.001; **p<0.01; *P<0.05. ns, not 

significant 

 

FUCCI-U2OS cells accumulate in G2 following transfection 

We have previously shown that normal human, non-ALT BJ1-hTERT fibroblasts 

transfected with ENT-TRF1 or TRF1-only arrest in G1 (manuscript under review). Here we find 

that FUCCI-U2OS cells transiently transfected with ENT-TRF1, TRF1- only, or empty vector 

accumulate in G2 compared to untransfected cells; specifically, 48 hour following transfection the 

fraction of cells in G2 increased (Figure 2.4 A, B). The enrichment of positively transfected cells 

in G2 phase suggests that transfected cells undergo DNA damage and /or cellular stress response.  

These results are consistent with U2OS cells having a permissive G1 checkpoint [158, 159] . 

A. 
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B. 

 

  

ENT-
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C. 

 

Figure 2.4: FUCCI-U2OS cell cycle distribution following transfection.   

 
A. Representative images of untransfected FUCCI-U2OS cells labeled with only DAPI (G1 phase), EdU (S phase), 

Geminin-GFP and CENP-F (G2 phase), FLAG (untansfected), merged views with DAPI (blue) B. Representative 

images of transiently transfected FUCCI-U2OS cells labeled with with only DAPI (G1 phase), EdU (S phase), 

Geminin-GFP and CENP-F (G2), FLAG (transfected), and merged views with DAPI (blue). C. Histogram represents 

the relevant percentage of FUCCI-U2OS cells in each cell cycle phase with and without transfection. Data was 

analyzed from 3 experiments. 

 

TERRA distribution in FUCCI-U2OS cells following transfection 

Next, we examined the effect of transient transfection of ENT-TRF1, TRF1-only, and 

empty vector on the distribution of TERRA through the cell cycle in FUCCI-U2OS cells. Total 

TERRA foci were evaluated by RNA-FISH in positively (25-30%) and negatively (65-70%) 

transfected cells for each treatment and compared to un-transfected controls. Consistent with the 

cell cycle profiles, TERRA foci were highly enriched in G2 compared to un-transfected cells 

(Figure 2.5 A, B, C). Treatment with RnaseA and RnaseH diminished TERRA signals, confirming 
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TERRA presence (Figure 2.5 D, E). The accumulated levels of total TERRA in G2 positively 

transfected as compared to un-transfected control cells suggest TERRA involvement in the DNA 

damage and/or cellular stress response. 

A. 

 

B.  
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C. 

 
D. 
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E. 

 

F. 

 

Figure 2.5: TERRA accumulates in G2 following transfection.   
 

A. Representative images of transiently transfected FUCCI-U2OS cells labeled for FLAG and TERRA. Total TERRA 

was scored in positively (25-30%) and negatively (65-70%) transfected cells from each treatment B. Representative 

images of transiently transfected FUCCI-U2OS cells stained for EdU (S phase), Geminin-GFP and CENP-F (G2), 

FLAG, or TERRA, and merged views with DAPI (blue). B. Representative images of transiently transfected FUCCI-

U2OS cells stained for EdU (S phase), Geminin-GFP and CENP-F (G2), FLAG, or TERRA, and merged views with 

DAPI (blue).  C.  Histogram shows the corresponding percent of TERRA in each cell phase with and without 

transfection.  D. Representative images of transiently transfected FUCCI-U2OS cells, treated with Rnase A and Rnase 

H and labeled for EdU, Geminin-GFP and CENP-F, FLAG, TERRA and merged views with DAPI.  F. Histogram 

shows the corresponding percentage of TERRA in each cell phase with and without transfection. Data was analyzed 

from 3 experiments. 

ENT-
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Telomere-specific DSBs in FUCCI-U2OS cells 

The enrichment of transfected cells and accumulation of total TERRA in G2 phase 

provided evidence that transfected cells experienced DNA damage. Combining telomere FISH 

with fluorescence immunostaining against FLAG and the DNA DSB marker γ-H2AX (FLAG/γ-

H2AX/Telomere co-localized foci) confirmed that ENT-TRF1 localized to telomeres and induced 

telomere-specific DSBs. Consistent with previous reports in telomerase positive cells [160-162] , 

we also observed that overexpression of TRF1 induced telomeric DSBs in ALT cells.  Only cells 

with > 20 FLAG foci were counted as positive transfected cells (Figure 2.6 A, C). Taken together 

with the absence of γ-H2AX foci in cells transfected with empty vector or untransfected cells 

(Figure 2.6 B), results validated that expression of ENT-TRF1, or TRF1-only, in FUCCI-U2OS 

cells induces telomere-specific DSBs. Consistent with expectation, treatment with RNAse A + 

H did not influence results (Figure 2.6 C). 

 

A. 
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B. 

 

C. 

 

Figure 2.6: Telomere-specific DSBs in FUCCI-U2OS cells.  
 

A. Representative images of FUCCI-U2OS cells transfected with empty vector and untransfected cells, and then 

labeled for FLAG, γ-H2AX- and telomeres, and merged images with DAPI (blue) confirming induction of telomeric 

DSBs.  B. Representative images of FUCCI-U2OS cells transfected with either ENT-TRF1 or TRF1 only, and then 

labeled for FLAG, γ-H2AX- and telomeres, and merged images with DAPI (blue) confirming induction of telomeric 

DSBs. C.  Histogram represents the corresponding percentages of colocalized foci in cells with >20 FLAG foci (n= 

30). Treatment with RNAse did not influence results. 
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TERRA accumulates at telomere-specific DSBs  

We then evaluated the question of whether TERRA participated in the telomeric DDR by 

responding to telomeric DSBs in FUCCI-U2OS cells. To ensure that TERRA-FLAG 

colocalization events (broken telomeres) were induced by ENT-TRF1 or TRF1-only, scoring was 

restricted to positively transfected ENT-TRF1 and TRF1-only cells (Figure 2.7A). In order to 

visualize TERRA at telomeres in cells transfected with empty vector or un-transfected cells that 

lack FLAG, another means of detecting telomeres was necessary.  The telomere-specific binding 

factor TRF2 was selected, as this approach was compatible with RNA-FISH (Figure 2.7 B).  

Although FLAG signals from ENT-TRF1 and TRF1-only populations colocalized often with 

telomeres (Figure 2.6 C, D), fewer telomeric FLAG signals were detected using TRF2 (Figure 

2.7 C). This can likely be attributed to the observation of faint or absent TRF2 fluorescent signals 

in some positively transfected ENT-TRF1 and TRF1-only cells compared to TRF2 signals in 

controls (Figure 2.7 C).  Three distinct TERRA colocalization events were detected in ENT-TRF1 

and TRF1-only populations: TERRA-TRF2, FLAG-TRF2(telomere)-TERRA, and FLAG-

TERRA (Figure 7 C, D).  Results clearly demonstrated that TERRA accumulates at telomeric 

DSBs, a finding supported by treatment with RnaseA and RnaseH, which removed TERRA signals 

(Figure 2.7 E). Summing up the average number of foci for the three different types of TERRA 

events (Figure 2.7 F), our data provides direct evidence of TERRA at telomeric DSBs. 
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A.  

 

B. 

 

C.  
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D. 

 

E. 
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F. 

 

Figure 2.7: ERRA accumulates at telomeric DSBs.    
 

A. Representative images of transiently transfected FUCCI-U2OS cells labeled for FLAG and TERRA. Hybridized 

TERRA was scored in only positively (25-30%) transfected cells from each treatment B. Representative images of 

untransfected and empty vector transfected FUCCI-U2OS cells labeled for FLAG, TERRA (grey), and TRF2 

(telomeres, green), and merged views with DAPI (blue). C. Representative images of transiently transfected FUCCI-

U2OS cells labeled for FLAG (red), TERRA (grey), and TRF2 (telomeres, green), and merged views with DAPI 

(blue). D. Histogram represents the average number of foci (TERRA-TRF2, FLAG-TRF2-TERRA, or FLAG-

TERRA)/cell.  E. Histogram represents the average number of foci/cell following treatment with Rnase A and H. Data 

was analyzed from 3 experiments. F. Histogram represents the average number of hybridized TERRA/cell.   
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TERRA plays a protective role at telomeric DSBs 

Our unpublished work showed that induction of targeted telomeric DSBs in normal human 

G1 non-ALT fibroblasts (BJ1-hTERT), which have low levels of TERRA compared to ALT 

(U2OS) cells, was associated with a significant increase in 5’ C-rich single-stranded (ss)telomeric 

DNA (manuscript in preparation/under review). Interestingly, extensive resection was not detected 

in BJ1-hTERT cells transfected with TRF1-only. Here, we present evidence that transfecting 

FUCCI-U2OS cells with either ENT-TRF1 or TRF1-only induces telomeric DSBs, and further 

that TERRA accumulates at the damage sites (Figure 2.6 B, C). Utilizing native (non-denaturing) 

DNA FISH to detect 5’ C-rich (ss)telomeric DNA in FUCCI-U2OS transfected cells, combined 

with immunostaining to detect FLAG in cells presumably in G1 (negative for green FUCCI, so 

not in G2), no induction of C-rich (ss) telomeric DNA was observed (Figure 2.8 A, C).  However, 

treatment with RnaseA and RnaseH to remove TERRA (5’-UUAGGG-3’) revealed a significant 

increase in telomeric resected C-strands (5’-CCCTAA-3’) in cells transfected with ENT-TRF1, 

but not with TRF1-only (Figure 2.8 B, C). Taken together, these results suggest a protective role 

for TERRA at telomeric DSB sites in G1, as well as a different mechanism of telomeric repair in 

ALT (U2OS) vs non-ALT (BJ1-hTERT) cells dependent on the particular type of telomeric DSB. 
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A.                                                                                   B.  

 

C.  

 

Figure 2.8: Transfection of FUCCI-U2OS cells with ENT-TRF1 and removing TERRA revealed  

significant induction of 5’ C-rich single-stranded (ss)telomeric DNA 
 

A. Representative images of transiently transfected FUCCI-U2OS cells labeled for ENT-TRF1 or TRF1 only using  

FLAG (red), C-strand telomeric sequence (AATCCC) using  G-rich probe (green), and merged views. B. 

Representative images of transiently transfected FUCCI-U2OS cells, treated with RnaseA+RnaseH, and labeled for 

ENT-TRF1 or TRF1 only using FLAG (red), C-strand telomeric sequence (AATCCC) using G-rich probe (green), 

and merged views.  C. Quantitation of average number telomeric C-strand foci. Data represents three experiments and 

values are expressed as SEM (n = 120-200). One-way ANOVA and Holm-sidak Test ***p,0.001; **p<0.01; *P<0.05. 

ns, not significant  
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CHAPTER 3 DISCUSSION AND CONCLUSION 

 

 

 

Over the last decade, transcription of telomeres has been intensely investigated. Since its 

discovery, heterogeneous lengths of the telomeric RNA TERRA (3’-UUAGGG-5’) have been 

visualized in yeast, human and mouse [20, 108, 110]. The discovery of TERRA was corroborated 

by Chromatin immunoprecipitation analysis, which also revealed RNA pol II binding at various 

subtelomeric promoter sites [109, 112].  Functionally, TERRA has been shown to be involved in 

telomere replication [81, 120], telomere protection [109, 114, 115, 122], telomeric 

heterochromatin mark deposition [23] , and telomere length maintenance by homologous 

recombination (HR) [100].  Human cancer cells that maintain their telomeres using the telomerase-

independent ALT pathway are characterized by a number of hallmarks [163], including elevated 

levels of TERRA [81-83], and telomere length maintenance via a HR-dependent mechanism [96, 

97, 150]. Indeed, work by Arora et al has shown that TERRA promotes HR in human 

osteosarcoma U2OS (ALT) cells [100].  However, the role of TERRA in response to DNA damage, 

and specifically in response to telomeric DSBs, has not been elucidated.   

TERRA in response to genomic DNA DSBs   

Ionizing radiation (IR) is a well-established inducer of prompt DSBs. We investigated the 

response of TERRA to genomic DNA DSBs resulting from IR exposure (2Gy; γ-rays) in U2OS 

(ALT) cells. Interestingly, TERRA foci were significantly increased in irradiated vs. non-

irradiated control cells (Figure 2.1).  This finding is consistent with a recent study reporting that 

genomic DSBs induced by the radiomimetic drug Bleomycine showed elevated levels of TERRA 

[129].  
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However, considering the small fraction of the genome that telomeric DNA represents, this 

relatively low dose of IR would be expected to directly “hit” and “break” telomeres only very 

rarely.  Therefore, we employed an approach to enzymatically-induce telomere-targeted DSBs 

using the endonuclease ENT fused to the telomeric protein TRF1, which was developed and 

validated in U2OS cells [164].   

TERRA in response to transient transfection  

We employed a FUCCI-based system to positively identify cell cycle phase of interphase 

nuclei, which revealed that the stress of transient transfection significantly influenced U2OS cell 

cycle profiles.  Cell cycle analyses demonstrated that transfected cells accumulate in G2 (Figure 

2.4 ), similar to the G2 arrest observed following exposure to IR [165], or treatment with the 

radiomemetic drug-neocarzinostain [166, 167]. A linear correlation between the amount of DNA 

damage induced, and the stringency of the activated G2 checkpoint/halting of cell cycle 

progression, has been previously demonstrated in U2OS cells [166, 167].  A permissive G1/S 

checkpoint in U2OS cells, resulting from truncated WIP1(wild-type p53-induced phosphatase 1) 

and p16 deficiency (a cyclin-dependent kinase inhibitor essential for regulating the cell cycle), also 

likely contributes to the enrichment of G2 cells observed  [158, 159].  

We then evaluated whether TERRA levels were elevated in G2 phase following 

transfection. Consistent with the cell cycle analysis, the distribution of total TERRA shifted, 

accumulating in G2 in response to induction of telomeric DSBs and/or the stress stimuli of 

transfection (Figure 2.5).  It has been previously shown that adenovirus-mediated transfection of 

U2OS cells with ENT-TRF1 activates a p53-dependent pathway [164], and that activation of 

subtelomeric p53 in response to cellular stress can induce TERRA transcription [127]. A more 

recent study demonstrated a direct role for long non-coding (lnc)RNA p53-induced NC RNA 
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(PINCR) in G1 arrest in colorectal cancer cells; PINCR was found to regulate the expression of 

genes implicated in G1 arrest [168].  Several p53-induced lncRNAs, including LED, p53- 

regulated lncRNA (PR lncRNA), and lncRNA p21, have been shown to be required for checkpoint 

activation and cell cycle arrest; reviewed in [169].  Considering that U2OS cells are p53 positive 

[170] and have a disrupted G1 checkpoint [158, 159], accumulation of TERRA in G2 following 

transfection (ENT-TRF1 or TRF1-only) supports TERRA responsiveness to p53, as well as 

suggests a potential role for TERRA in activation of the G2 checkpoint in U2OS (ALT) cells.  

TERRA in response to telomere-specific DSBs 

We validated the telomere-targeting/DSB-inducing capabilities of the ENT-TRF1 system 

in U2OS (ALT) cells [164]. Since ENT-TRF1 also increases endogenous levels of TRF1, FUCCI-

U2OS cells transfected with a TRF1-only plasmid that overexpressed TRF1 were used as a control.  

Consistent with previous reports, TRF1-only also induced co-localization with γ-H2AX, 

indicative of telomeric DSB induction (Figure 2.6 ), which could be due to the fact that TRF1 

plays a critical role in telomere protection and telomere length regulation [160-162].  In particular, 

telomerase positive cells overexpressing TRF1 experience telomere shortening [160], telomere 

bridges, and DNA DSBs [171].  In telomerase independent ALT cells, it has been shown that non 

telomeric phosphorylated (T371)TRF1 is crucial for promoting homologous recombinational (HR) 

repair upon induction of global DNA damage (IR exposure) [172].  Furthermore, overexpression 

of TRF1 in TRF1 knockdown ALT cells suppressed the reduction of C-circles [173], which have 

been associated with HR activity [97].  Our results provide additional support for a role of TRF1 

in promoting telomeric HR following induction of telomeric DSBs.   

Our controls (empty vector and un-transfected) required a different shelterin component in 

order to visualize potential hybridization of TERRA to telomeres in control populations; the 
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telomere repeat factor 2 (TRF2) was selected. Again, a significant increase of TERRA co-

localized at broken telomeres was observed in U2OS cells expressing ENT-TRF1 and TRF1-only 

(Figure 2.7).  It is also worth noting that the TERRA detected here was hybridized (co-localized) 

at telomeric DSBs (Figure 2.7).  Hybridized TERRA at telomeric DSBs is distinct from 

free/unbound TERRA (foci not co-localized at telomeres), which was detected in response to 

transfection (Figure 2.4) and in cells transfected with empty vector. 

TERRA is required to protect telomeric DSBs in G1 cells 

Our previous work in normal G1-human fibroblasts, which have low levels of TERRA, 

demonstrated increased frequencies of 5’ C-rich single-stranded (ss)telomeric DNA (indicative of 

extensive resection) at telomeric DSB sites (manuscript under review). In light of the 

complementary sequence of TERRA, we hypothesized that hybridized TERRA at telomeric DSBs 

in ALT cells may well protect the exposed C-rich (ss)overhangs from being extensively resected. 

Consistent with such a notion and with our previous findings, a significant induction of 5’ C-rich 

(ss)telomeric DNA was observed in G1 U2OS (ALT) cells experiencing ENT-TRF1 induced 

DSBs (Figure 2.8), (Figure 3.1).  

Emerging evidence, in both yeast and mammalian cells, supports a link between 

RNA:DNA hybrids and DNA end resection. For example, inhibiting DNA-end resection by 

knocking down either EXO1 or CtIP after inducing a site-specific DSB in U2OS cells impairs 

formation of RNA:DNA hybrids [174]. In  Schizosaccharomyces pombe, RNA:DNA hybrids at 

DSBs have been shown to limit resection of ssDNA and regulate the binding of replication protein 

A (RPA) [175]; overexpression of Rnase H1 stabilized RNA:DNA hybrids and impaired 

recruitment of RPA [175].  Phosphorylated RPA at (ss)telomeric DSB sites in G1 human cells was 

also observed in our previous work. Of relevance in this regard, a recent work identified RPA as a 
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sensor of RNA:DNA hybrids in non-S phase HeLa cells [176]; RPA enhanced the binding of 

RnaseH1 and RNA:DNA hybrids [176]. Additionally, stabilized RNA:DNA hybrids at I-SceI-

induced DSBs in U2OS cells have been observed to avert RPA binding [177]. Removal of RNA 

from RNA:DNA hybrids significantly reduced BRCA1 and RAD51 recruitment in G2 [174].  

Interestingly, in contrast to the extensive resection observed at ENT-TRF1 induced 

telomeric DSBs and the evidence in support of HR-mediated repair in G2, only minimal resection 

was detected at broken telomeres induced by TRF1-only, potentially implicating alt-EJ in their 

repair [130]. In either case, hybridized TERRA would be expected to protect the vulnerable 

(ss)telomeric overhangs.  

Although the role of long noncoding (lnc)RNA in response to genomic DSBs has been 

recently investigated, our data are the first to demonstrate a role for the telomeric lncRNA, TERRA, 

in telomeric DSB repair.  We propose that TERRA binds exposed 5’ C-rich (ss)telomeric DNA at 

extensively resected telomeric DSBs, presumably to preserve/protect them until S/G2 when HR-

mediated elongation/repair is possible, perhaps by providing a homologous template.  
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Figure 3.1: Telomeric RNA TERRA protects exposed ss telomeric DNA. 
 

Expression of ENT-TRF1 induces blunt ended telomeric DSBs in U2OS (ALT) cells results in extensive resection 

and generating C-rich overhangs which protected by pairing to telomeric RNA (TERRA) in G1.  Previous work 

demonstrated that telomeric DSB-induced hyper resection can be repaired via HR [151]. Our model here also showed 

that over expression TRF-only induces telomeic DSBs by unknown mechanism. Although hybridized TERRA was 

accumulated at the damage sites, the C-rich overhangs was not detected in G1. The accumulated TERRA and 

undetectable resection provide another strong evidence for what has been reported; that U2OS-ALT cells repair 

telomeric DSBs damage in G2 via alt-EJ pathway which require limited resection and perfect homology within 

telomeres sequences [151]. Finally, while  POT1was suggested to  protect G-strands [151]our model illustrates the 

role of TERRA in protecting C-strands in G1.  

 

Conclusion 

In summary, the work presented here provides evidence supportive of a role for the 

telomeric RNA TERRA in response to telomeric DNA DSBs in U2OS (ALT) cells. IR-induced 

genomic DSBs increased frequencies of TERRA foci. Furthermore, enzymatically-induced 

telomere-specific DSBs resulted in increased co-localization of (bound) TERRA to broken 

telomeres.  ALT (U2OS) cells experiencing telomeric DSBs accumulated in G2, as did TERRA; 

cells also accumulated in G2 in response to the cellular stress of transfection. TRF1-only induced 

telomeric DSBs resulted in TERRA accumulation at the break sites, but no (ss)telomeric DNA was 
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observed. A protective role of hybridized/bound TERRA at resected telomeric DSBs in G1 human 

cells is proposed, which likely contributes to preserving vulnerable (ss)telomeric DNA until G2 

when HR-mediated elongation/repair is a possibility.   Our work also provides additional support 

for overexpression of TRF1 inducing telomeric DSBs in U2OS (ALT) cells.  
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CHAPTER 4 FUTURE DIRECTIONS 

 

 

 

The work reported here characterizes the response of the telomeric lncRNA, TERRA, in 

the DNA damage response, specifically to DSBs induced by either ionizing radiation (globally) or 

targeted specifically to telomeres (ENT-TRF1) in human U2OS (ALT; telomerase independent) 

cells. TERRA levels were elevated following induction of DSBs by both treatments.  Our results 

revealed that TERRA associates with telomeric DSB sites (suggestive of TERRA: telomere DNA 

hybrids), and that cells suffering telomeric DSBs accumulate in G2.  We also found evidence in 

support of a role for hybridized TERRA in protecting (ss)telomeric DNA in G1.  

Methodological limitations of the current study include low transfection efficiencies in 

U2OS cells utilizing the ENT-TRF1 plasmid-based approach, and losing expression of the vector 

in a majority of cells 72 hours after transfection. Therefore, establishment of a tetracycline (Tet)-

inducible (On/Off) U2OS (ALT) cell line expressing ENT-TRF1 would represent a valuable 

improvement, as it would facilitate stable levels of transfection and control of expression.  

Although treatment with RnaseA and RnaseH in combination as performed here effectively 

removed TERRA, more permanent depletion of TERRA would also be an important next step in 

analyzing the response to telomeric DSBs – in both ALT and telomerase positive cancer cells.  

Development of CRISPR-Cas9 genome editing strategies against TERRA would be an important 

advancement, as it would facilitate additional analyses on repair pathway choice (e.g., HR-BIR, 

alt-EJ) and telomere length dynamics (changes over time).   

In light of recent controversy regarding the chromosomal origin(s) of TERRA [114, 116] 

it would be of particular interest to characterize and identify specific TERRAs responding to 

telomere DNA damage; are such TERRA transcripts unique?  It might be possible to identify them 
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based on unique sub-telomeric sequences they possess, which could be determined using state-of-

the-art RNA-seq approaches.   

Together, such studies would improve mechanistic understanding and provide insights into 

the potential of TERRA as a novel therapeutic target for a variety of different cancers. 
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CHAPTER 5 MATERIALS AND METHODS 

 

 

 

Cell culture and Transfections 

U2OS cell lines and Fucci- U2OS cells were used in this study. The two cell lines were 

grown in Dulbecco's Modified Eagle Medium (DMEM, Hyclone) with 10% Fetal Bovine Serum 

(FBS) and 3% GlutaMAX-100X (Gibco). The cells were cultured at 5% CO2,37C and 95% 

humidified incubator.  

Plasmids 

In this study two plasmids were used to generate stable cell lines: Fucci-S-G2-M-Green 

plasmid (AM-V9016, Amalgaam)[157] obtained from Dr. Jac Nickoloff (Colorado State 

University).  For transient transfection, TRAS1-EN-TRF1 plasmid obtained from Dr. Haruhiko 

Fujiwara (University of Tokyo), TRF1 plasmid constructed from TRAS1-EN-TRF1 plasmid, and 

mutated Cas9 pSpCas9m(BB)-2A-Puro (PX462) V2.0  a gift from Feng Zhang (Addgene plasmid 

#62987 ; http://n2t.net/addgene:62987 ; RRID:Addgene_62987) and  obtained from Dr. Claudia 

Wiese (Colorado State University) were used.  

Transfections 

Stable Transfection to generate FUCCI-U2OS: U2OS expressing FUCCI-Germinin (Green 

for S-G2 and M-phase) and U2OS expressing Fucci-G1-Orange were established by transfecting 

cells with 0.5 ug of Kan-Fucci-Green (S-G2-M) plasmid. Plasmid were delivered 

using Lipofectamine 3000 ( Invitrogen) following the manufacture’s instruction. Eight hours 

following transfection, Opti-MEM media was replaced with fresh DMEM media. A week later, 

cells were trypsinized and each individual cell was seeded in 96-well plate. A positive single clone 

was identified, using the fluorescence Microscope, and expanded in presence of 800 μg/ml G-418 
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sulfate (GoldBio). After reaching 90% confluency, cells were splited into 24 well plate, 10 days 

later into 12 well plate, a week after into 6 well plate. Then, the cells were transferred into T-25 

flask and finally into a T-75 flask after 6 days. The DMEM media containing 800 μg/ml G-418 

sulfate was changed every 2 days.  

Transient transfections: Fucci-U2OS transiently expressing TRAS1-EN-TRF1 or TRF1:  

U2OS cells stably expressing FUCCI G2-Green were transfected with TRAS1-EN-TRF1 

or TRF1 using Lipofectamine 2000 (Invitrogen) following the manufacture’s instruction. Eight 

hours following transfection, Opti-MEM media was replaced with fresh DMEM media. Then, cells 

were fixed 48 h post transfection. 

Gamma Irradiation  

U2OS cells were seeded in 4 well chamber slides (Nunc Lab-Tek II 154526) at a density 

of 50,000 cell/ well. In a Mark I irradiator at Colorado State University, cells were rotated and 

exposed to 137Cs γ-rays at a dose of 2Gy. Cells then were placed back in CO2 incubator for Four 

hours preceding fixation. 

Single Stranded telomeric DNA fluorescence in-situ hybridization ssTelo-FISH and RNA 

fluorescence in-situ hybridization RNA FISH 

For combined Telomeric C rich strand detection and flag staining, U2OS expressing Fucci-

S-G2-M-Green cells were grown on 4 well chamber slides (MilliCell EZ). 48 hours following 

transfection, slides were washed with Cytoskeleton (CSK) buffer (100 mM NaCl, 1 mM EGTA, 

10 mM PIPES pH 6.8, 3 mM MgCl2, 300 mM sucrose) containing 200mM Vanadyl for 30 second. 

Cells were then fixed in freshly prepared 3% Paraformaldehyde in 10X PBS for 12 minutes at 

room temperature. Next cells were permeabilized with 0.5% Triton X-100 in CSK containing 200 

mM Vanadyl for 7 minutes at room temperature. Following permeabilization, cells were washed 
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with 70% Ethanol and dehydrated in a graded series of alcohol (85%,95% and 100% Ethanol). For 

C -rich strand (CCCTAA) detection, 0.5uM (TelG-Cy3, Bio-Synthesis) Peptide Nucleic Acid 

(PNA-GGGATT) telomere probe 0.5uM (TelC-Alexa 488, Bio-Synthesis) or (TelC- Alexa 647, 

Bio PNA 1013) Peptide Nucleic Acid (PNA-CCCTAA) telomere probe was added to the 

hybridization buffer for TERRA (UUAGGG) detection in 50% (vol/vol) formamide, 2X(vol/vol) 

Saline Sodium Citrate (SSC) hybridization buffer and 200mM Vanadyl) hybridization buffer was 

denaturated at 85oC for 10 min and cooled on ice. 200 ul hybridization buffer was added to each 

slide and slides then were placed in humidified chamber and incubated at 37oC for 6 hours. Slides 

then were washed in twice in 50% formamide in 2X SSC (2.5 minutes 42oC), twice in 4X SSC 

(2.5 minutes 42oC) and once in 2X SSC + 0.1% NP-40 (2.5 minutes 42oC). 

Pre-hybridization Rnase A and Rnase H treatment 

To remove TERRA molecules, fixed and permeabilized U2OS and U2OS expressing 

Fucci-S-G2-M-Green cells were treated with (1mg/ ml Rnase A and 15 Unit Rnase H) in 1X Rnase 

H buffer at 37oC for one hour.   

Immunofluorescence staining 

Blocking nonspecific immunoglobulin binding was carried out, following FISH, with 10% 

Goat Normal Serum (GNS) for 30 min in humidified chamber at room temperature. Following 

blocking, slides were incubated with primary antibody in 5% GNS overnight at 4C. slides were 

washed 3 times with 1XPBS at room temperature.  protein signals were visualized by incubating 

slides with fluorophore-conjugated secondary antibody for 40 min in humidified chamber   at room 

temperature and washed again 3 times in 1XPBS. Lastly, slides were mounted and counterstained 

with prolong gold antifade reagent with DAPI (Invitrogen). Primary antibodies and concentrations 

used in this study: Mouse Anti-Flag (Sigma M2 F1804, 1:2000), Rabbit Anti-Human FLAG 
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(1:300), Mouse Anti-Human TRF2 (Santa Cruz B-5, 1:200) and Mouse Anti-Human Mitosin (BD 

Biosciences 610768, 1:500). Secondary antibodies and concentrations used in this study: Alexa-

647 Goat anti-Mouse (ThermoFisher A21236, 1:750), Alexa-594 Goat anti-Mouse (ThermoFisher 

A11005, 1:750), Alexa-488 Goat anti-Rabbit (ThermoFisher A11008, 1:750) and Alexa-488 Goat 

anti-Mouse (ThermoFisher A11005, 1:750). For EdU detection, the click-iT EdU Alexa Flour 555 

was used as described by the manufacture. 

Cell cycle analysis  

The detection of cells in S phase was achieved through the incorporation of the thymidine 

analog 5-Ethynyl-2´-deoxyuridine (EdU) into DNA. Thirty min before fixation, 10uM EdU (Click-

iT, Invitrogen) was added into the culture at 37C.  Cells were considered to be in G2 when it is 

positive to FUCCI or when it is positive to FUCCI and EDU. Cell was considered to be in S phase 

cells were identified when they showed only positive stain for EdU. Finally, cells were considered 

to be in G1 when they were negative for both FUCCI and EdU.  

To evaluate the enrichment of transfected U2OS cells in G1, G2 and S phase; U2OS cells 

labeled with EdU represent S phase. Likewise, any transfected cell negative for green FUCCI and 

EdU was considered cell in G1 phase. The colocalization between FLAG and DAPI (G1 cells), 

FLAG and EdU, (S cells), and FLAG and Geminin-GFP (G2 cells), represented transfected cells 

in each phase of the cell cycle analyzed.  

Data analysis 

Telomeric RNA FISH (TERRA) analysis following IR treatment: TERRA foci number 

was counted in treated and control groups using Metamorph 7.7. The student t test was performed 

to calculate the statistical significance of number of TERRA foci between treated and control 

groups. Statistical analysis was performed with Microsoft Office Excel, n=50. 
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ENT-TRF1 and TRF1 transfection analysis: For (FLAG-DAPI) immunostaining analysis, 

cells were considered to be positively transfected when they had >20 FLAG foci. One-way 

ANOVA and Holm-Sidak test (multiple comparison test of means with 95% confidence interval), 

using the statistical software GraphPad Prism 8.0  

Immunofluorescence plus Telomeric DNA FISH and immunofluorescence plus telomeric 

RNA FISH: For (FLAG - γ-H2AX- C-strand) and (TRF2-TERRA, FLAG-TERRA, FLAG-TRF2 

-TERRA) immunostaing analysis, the number of multiple colocalization events were counted from 

the sum of 21 Z-stacks. Quantitative analysis was performed using imageJ and Cell Profiler. One-

way ANOVA was used to evaluate Statistical analysis using the statistical software GraphPad 

Prism 8.0  

Native telomeric C-Strand FISH analysis following ENT-TRF1 transfection, with and 

without RNAse treatment: C-strand foci number were counted in cellular objects using Cell 

Profiler image analysis software 3.1.5. using designed segmentation-based pipeline [178]. Our 

pipeline designed to create mask around nuclei positively transfected with FLAG and identify and 

quantify the C-strand in the same nuclear region.  One-way ANOVA and Holm-Sidak test 

(multiple comparison test of means with 95% confidence interval), using the statistical software 

GraphPad Prism 8.0  

Microscopy and Quantitative Analysis 

Images were captured blindly using 63X/1.4 N.A objective in a Zeiss Axio Imager .Z2 epi-

fluorescent microscope using Zen Blue software. Image for colocalizations were captured in 0.2 

intervals in a total of 21 z-stacks in combinations of 4 colors at the time. Quantitative analysis was 

performed using Fiji (ImageJ2) and Cell Profiler using customized pipeline for reconstructions in 

3D and simultaneous triple and dual colocalizations of the different markers. 



62 

REFERENCES 

 

 

 

1. Schoeftner, S. and M.A. Blasco, A 'higher order' of telomere regulation: telomere 

heterochromatin and telomeric RNAs. Embo j, 2009. 28(16): p. 2323-36. 

2. Meyne, J., R.L. Ratliff, and R.K. Moyzis, Conservation of the human telomere sequence 

(TTAGGG)n among vertebrates. Proc Natl Acad Sci U S A, 1989. 86(18): p. 7049-53. 

3. Moyzis, R.K., et al., A highly conserved repetitive DNA sequence, (TTAGGG)n, present at 

the telomeres of human chromosomes. Proc Natl Acad Sci U S A, 1988. 85(18): p. 6622-

6. 

4. de Lange, T., Shelterin-Mediated Telomere Protection. Annu Rev Genet, 2018. 52: p. 223-

247. 

5. Bianchi, A., et al., TRF1 binds a bipartite telomeric site with extreme spatial flexibility. 

Embo j, 1999. 18(20): p. 5735-44. 

6. Broccoli, D., et al., Human telomeres contain two distinct Myb-related proteins, TRF1 and 

TRF2. Nat Genet, 1997. 17(2): p. 231-5. 

7. Chong, L., et al., A human telomeric protein. Science, 1995. 270(5242): p. 1663-7. 

8. Lei, M., E.R. Podell, and T.R. Cech, Structure of human POT1 bound to telomeric single-

stranded DNA provides a model for chromosome end-protection. Nat Struct Mol Biol, 

2004. 11(12): p. 1223-9. 

9. Li, B., S. Oestreich, and T. de Lange, Identification of human Rap1: implications for 

telomere evolution. Cell, 2000. 101(5): p. 471-83. 

10. Ye, J.Z., et al., TIN2 binds TRF1 and TRF2 simultaneously and stabilizes the TRF2 

complex on telomeres. J Biol Chem, 2004. 279(45): p. 47264-71. 

11. O'Connor, M.S., et al., A critical role for TPP1 and TIN2 interaction in high-order 

telomeric complex assembly. Proc Natl Acad Sci U S A, 2006. 103(32): p. 11874-9. 

12. Li, J.S., et al., TZAP: A telomere-associated protein involved in telomere length control. 

Science, 2017. 355(6325): p. 638-641. 

13. Harley, C.B., A.B. Futcher, and C.W. Greider, Telomeres shorten during ageing of human 

fibroblasts. Nature, 1990. 345(6274): p. 458-60. 

14. Greider, C.W., Telomeres do D-loop-T-loop. Cell, 1999. 97(4): p. 419-22. 

15. Griffith, J.D., et al., Mammalian telomeres end in a large duplex loop. Cell, 1999. 97(4): 

p. 503-14. 

16. Makarov, V.L., Y. Hirose, and J.P. Langmore, Long G tails at both ends of human 

chromosomes suggest a C strand degradation mechanism for telomere shortening. Cell, 

1997. 88(5): p. 657-66. 

17. Henderson, E., et al., Telomeric DNA oligonucleotides form novel intramolecular 

structures containing guanine-guanine base pairs. Cell, 1987. 51(6): p. 899-908. 

18. Lin, C. and D. Yang, Human Telomeric G-Quadruplex Structures and G-Quadruplex-

Interactive Compounds. Methods Mol Biol, 2017. 1587: p. 171-196. 

19. Parkinson, G.N., M.P. Lee, and S. Neidle, Crystal structure of parallel quadruplexes from 

human telomeric DNA. Nature, 2002. 417(6891): p. 876-80. 

20. Azzalin, C.M., et al., Telomeric repeat containing RNA and RNA surveillance factors at 

mammalian chromosome ends. Science, 2007. 318(5851): p. 798-801. 



 

63 

21. Baur, J.A., et al., Telomere position effect in human cells. Science, 2001. 292(5524): p. 

2075-7. 

22. Blasco, M.A., The epigenetic regulation of mammalian telomeres. Nat Rev Genet, 2007. 

8(4): p. 299-309. 

23. Deng, Z., et al., TERRA RNA binding to TRF2 facilitates heterochromatin formation and 

ORC recruitment at telomeres. Mol Cell, 2009. 35(4): p. 403-13. 

24. Feuerhahn, S., et al., TERRA biogenesis, turnover and implications for function. FEBS Lett, 

2010. 584(17): p. 3812-8. 

25. Porro, A., et al., Molecular dissection of telomeric repeat-containing RNA biogenesis 

unveils the presence of distinct and multiple regulatory pathways. Mol Cell Biol, 2010. 

30(20): p. 4808-17. 

26. de Lange, T., How telomeres solve the end-protection problem. Science, 2009. 326(5955): 

p. 948-52. 

27. Olovnikov, A.M., A theory of marginotomy. The incomplete copying of template margin in 

enzymic synthesis of polynucleotides and biological significance of the phenomenon. J 

Theor Biol, 1973. 41(1): p. 181-90. 

28. McClintock, B., The Stability of Broken Ends of Chromosomes in Zea Mays. Genetics, 

1941. 26(2): p. 234-82. 

29. Diffley, J.F., Once and only once upon a time: specifying and regulating origins of DNA 

replication in eukaryotic cells. Genes Dev, 1996. 10(22): p. 2819-30. 

30. Stillman, B., Cell cycle control of DNA replication. Science, 1996. 274(5293): p. 1659-64. 

31. Levy, M.Z., et al., Telomere end-replication problem and cell aging. J Mol Biol, 1992. 

225(4): p. 951-60. 

32. Allsopp, R.C., et al., Telomere shortening is associated with cell division in vitro and in 

vivo. Exp Cell Res, 1995. 220(1): p. 194-200. 

33. Blackburn, E.H., E.S. Epel, and J. Lin, Human telomere biology: A contributory and 

interactive factor in aging, disease risks, and protection. Science, 2015. 350(6265): p. 

1193-8. 

34. Blasco, M.A., Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genet, 

2005. 6(8): p. 611-22. 

35. Greider, C.W. and E.H. Blackburn, A telomeric sequence in the RNA of Tetrahymena 

telomerase required for telomere repeat synthesis. Nature, 1989. 337(6205): p. 331-7. 

36. Greider, C.W. and E.H. Blackburn, Identification of a specific telomere terminal 

transferase activity in Tetrahymena extracts. Cell, 1985. 43(2 Pt 1): p. 405-13. 

37. Autexier, C. and N.F. Lue, The structure and function of telomerase reverse transcriptase. 

Annu Rev Biochem, 2006. 75: p. 493-517. 

38. Nakamura, T.M., et al., Telomerase catalytic subunit homologs from fission yeast and 

human. Science, 1997. 277(5328): p. 955-9. 

39. Soohoo, C.Y., et al., Telomerase inhibitor PinX1 provides a link between TRF1 and 

telomerase to prevent telomere elongation. J Biol Chem, 2011. 286(5): p. 3894-906. 

40. Zhou, X.Z. and K.P. Lu, The Pin2/TRF1-interacting protein PinX1 is a potent telomerase 

inhibitor. Cell, 2001. 107(3): p. 347-59. 

41. Wang, F., et al., The POT1-TPP1 telomere complex is a telomerase processivity factor. 

Nature, 2007. 445(7127): p. 506-10. 

42. Zaug, A.J., et al., Functional interaction between telomere protein TPP1 and telomerase. 

Genes Dev, 2010. 24(6): p. 613-22. 



 

64 

43. Hayflick, L. and P.S. Moorhead, The serial cultivation of human diploid cell strains. Exp 

Cell Res, 1961. 25: p. 585-621. 

44. Campisi, J., Cellular senescence as a tumor-suppressor mechanism. Trends Cell Biol, 2001. 

11(11): p. S27-31. 

45. d'Adda di Fagagna, F., et al., A DNA damage checkpoint response in telomere-initiated 

senescence. Nature, 2003. 426(6963): p. 194-8. 

46. Denchi, E.L. and T. de Lange, Protection of telomeres through independent control of ATM 

and ATR by TRF2 and POT1. Nature, 2007. 448(7157): p. 1068-71. 

47. Murnane, J.P., Telomere dysfunction and chromosome instability. Mutat Res, 2012. 730(1-

2): p. 28-36. 

48. O'Sullivan, R.J. and J. Karlseder, Telomeres: protecting chromosomes against genome 

instability. Nat Rev Mol Cell Biol, 2010. 11(3): p. 171-81. 

49. Wright, W.E., O.M. Pereira-Smith, and J.W. Shay, Reversible cellular senescence: 

implications for immortalization of normal human diploid fibroblasts. Mol Cell Biol, 1989. 

9(7): p. 3088-92. 

50. Kim, N.W., et al., Specific association of human telomerase activity with immortal cells 

and cancer. Science, 1994. 266(5193): p. 2011-5. 

51. Shay, J.W. and W.E. Wright, Role of telomeres and telomerase in cancer. Semin Cancer 

Biol, 2011. 21(6): p. 349-53. 

52. Bodnar, A.G., et al., Extension of life-span by introduction of telomerase into normal 

human cells. Science, 1998. 279(5349): p. 349-52. 

53. Hanahan, D. and R.A. Weinberg, Hallmarks of cancer: the next generation. Cell, 2011. 

144(5): p. 646-74. 

54. de Lange, T., Activation of telomerase in a human tumor. Proc Natl Acad Sci U S A, 1994. 

91(8): p. 2882-5. 

55. Huang, F.W., et al., Highly recurrent TERT promoter mutations in human melanoma. 

Science, 2013. 339(6122): p. 957-9. 

56. Romaniuk, A., et al., The non-canonical functions of telomerase: to turn off or not to turn 

off. Mol Biol Rep, 2019. 46(1): p. 1401-1411. 

57. Borah, S., et al., Cancer. TERT promoter mutations and telomerase reactivation in 

urothelial cancer. Science, 2015. 347(6225): p. 1006-10. 

58. Huang, F.W., et al., TERT promoter mutations and monoallelic activation of TERT in 

cancer. Oncogenesis, 2015. 4: p. e176. 

59. Rachakonda, P.S., et al., TERT promoter mutations in bladder cancer affect patient 

survival and disease recurrence through modification by a common polymorphism. Proc 

Natl Acad Sci U S A, 2013. 110(43): p. 17426-31. 

60. Heidenreich, B. and R. Kumar, TERT promoter mutations in telomere biology. Mutat Res, 

2017. 771: p. 15-31. 

61. Stern, J.L., et al., Mutation of the TERT promoter, switch to active chromatin, and 

monoallelic TERT expression in multiple cancers. Genes Dev, 2015. 29(21): p. 2219-24. 

62. Killela, P.J., et al., TERT promoter mutations occur frequently in gliomas and a subset of 

tumors derived from cells with low rates of self-renewal. Proc Natl Acad Sci U S A, 2013. 

110(15): p. 6021-6. 

63. Bryan, T.M., et al., Telomere elongation in immortal human cells without detectable 

telomerase activity. Embo j, 1995. 14(17): p. 4240-8. 



 

65 

64. Cesare, A.J. and R.R. Reddel, Alternative lengthening of telomeres: models, mechanisms 

and implications. Nat Rev Genet, 2010. 11(5): p. 319-30. 

65. De Vitis, M., F. Berardinelli, and A. Sgura, Telomere Length Maintenance in Cancer: At 

the Crossroad between Telomerase and Alternative Lengthening of Telomeres (ALT). Int J 

Mol Sci, 2018. 19(2). 

66. Draskovic, I. and A. Londono Vallejo, Telomere recombination and alternative telomere 

lengthening mechanisms. Front Biosci (Landmark Ed), 2013. 18: p. 1-20. 

67. Henson, J.D., et al., A robust assay for alternative lengthening of telomeres in tumors 

shows the significance of alternative lengthening of telomeres in sarcomas and 

astrocytomas. Clin Cancer Res, 2005. 11(1): p. 217-25. 

68. Muntoni, A. and R.R. Reddel, The first molecular details of ALT in human tumor cells. 

Hum Mol Genet, 2005. 14 Spec No. 2: p. R191-6. 

69. Yeager, T.R., et al., Telomerase-negative immortalized human cells contain a novel type 

of promyelocytic leukemia (PML) body. Cancer Res, 1999. 59(17): p. 4175-9. 

70. Bailey, S.M., M.A. Brenneman, and E.H. Goodwin, Frequent recombination in telomeric 

DNA may extend the proliferative life of telomerase-negative cells. Nucleic Acids Res, 

2004. 32(12): p. 3743-51. 

71. Bailey, S.M., et al., Strand-specific postreplicative processing of mammalian telomeres. 

Science, 2001. 293(5539): p. 2462-5. 

72. Goodwin, E. and J. Meyne, Strand-specific FISH reveals orientation of chromosome 18 

alphoid DNA. Cytogenet Cell Genet, 1993. 63(2): p. 126-7. 

73. Henson, J.D., et al., DNA C-circles are specific and quantifiable markers of alternative-

lengthening-of-telomeres activity. Nat Biotechnol, 2009. 27(12): p. 1181-5. 

74. Henson, J.D. and R.R. Reddel, Assaying and investigating Alternative Lengthening of 

Telomeres activity in human cells and cancers. FEBS Lett, 2010. 584(17): p. 3800-11. 

75. Heaphy, C.M., et al., Altered telomeres in tumors with ATRX and DAXX mutations. Science, 

2011. 333(6041): p. 425. 

76. Lovejoy, C.A., et al., Loss of ATRX, genome instability, and an altered DNA damage 

response are hallmarks of the alternative lengthening of telomeres pathway. PLoS Genet, 

2012. 8(7): p. e1002772. 

77. Schwartzentruber, J., et al., Driver mutations in histone H3.3 and chromatin remodelling 

genes in paediatric glioblastoma. Nature, 2012. 482(7384): p. 226-31. 

78. Tardat, M. and J. Déjardin, Telomere chromatin establishment and its maintenance during 

mammalian development. Chromosoma, 2018. 127(1): p. 3-18. 

79. Lewis, P.W., et al., Daxx is an H3.3-specific histone chaperone and cooperates with ATRX 

in replication-independent chromatin assembly at telomeres. Proc Natl Acad Sci U S A, 

2010. 107(32): p. 14075-80. 

80. Udugama, M., et al., Histone variant H3.3 provides the heterochromatic H3 lysine 9 tri-

methylation mark at telomeres. Nucleic Acids Res, 2015. 43(21): p. 10227-37. 

81. Flynn, R.L., et al., Alternative lengthening of telomeres renders cancer cells hypersensitive 

to ATR inhibitors. Science, 2015. 347(6219): p. 273-7. 

82. Koch, L., Non-coding RNA: A protective role for TERRA at telomeres. Nat Rev Genet, 

2017. 18(8): p. 453. 

83. Nguyen, D.T., et al., The chromatin remodelling factor ATRX suppresses R-loops in 

transcribed telomeric repeats. EMBO Rep, 2017. 18(6): p. 914-928. 



 

66 

84. Apte, M.S. and J.P. Cooper, Life and cancer without telomerase: ALT and other strategies 

for making sure ends (don't) meet. Crit Rev Biochem Mol Biol, 2017. 52(1): p. 57-73. 

85. Juhasz, S., et al., ATRX Promotes DNA Repair Synthesis and Sister Chromatid Exchange 

during Homologous Recombination. Mol Cell, 2018. 71(1): p. 11-24.e7. 

86. Londono-Vallejo, J.A., et al., Alternative lengthening of telomeres is characterized by high 

rates of telomeric exchange. Cancer Res, 2004. 64(7): p. 2324-7. 

87. Dunham, M.A., et al., Telomere maintenance by recombination in human cells. Nat Genet, 

2000. 26(4): p. 447-50. 

88. Gaspar, T.B., et al., Telomere Maintenance Mechanisms in Cancer. Genes (Basel), 2018. 

9(5). 

89. Neumann, A.A., et al., Alternative lengthening of telomeres in normal mammalian somatic 

cells. Genes Dev, 2013. 27(1): p. 18-23. 

90. Dunn, B., et al., Transfer of yeast telomeres to linear plasmids by recombination. Cell, 

1984. 39(1): p. 191-201. 

91. Walmsley, R.W., et al., Unusual DNA sequences associated with the ends of yeast 

chromosomes. Nature, 1984. 310(5973): p. 157-60. 

92. Bosco, G. and J.E. Haber, Chromosome break-induced DNA replication leads to 

nonreciprocal translocations and telomere capture. Genetics, 1998. 150(3): p. 1037-47. 

93. Buzovetsky, O., et al., Role of the Pif1-PCNA Complex in Pol delta-Dependent Strand 

Displacement DNA Synthesis and Break-Induced Replication. Cell Rep, 2017. 21(7): p. 

1707-1714. 

94. Wilson, M.A., et al., Pif1 helicase and Poldelta promote recombination-coupled DNA 

synthesis via bubble migration. Nature, 2013. 502(7471): p. 393-6. 

95. Simon, M.N., D. Churikov, and V. Geli, Replication stress as a source of telomere 

recombination during replicative senescence in Saccharomyces cerevisiae. FEMS Yeast 

Res, 2016. 16(7). 

96. Dilley, R.L., et al., Break-induced telomere synthesis underlies alternative telomere 

maintenance. Nature, 2016. 539(7627): p. 54-58. 

97. Liu, H., et al., Telomeric Recombination Induced by DNA Damage Results in Telomere 

Extension and Length Heterogeneity. Neoplasia, 2018. 20(9): p. 905-916. 

98. Zhang, J.M., et al., Alternative Lengthening of Telomeres through Two Distinct Break-

Induced Replication Pathways. Cell Rep, 2019. 26(4): p. 955-968.e3. 

99. O'Sullivan, R.J., et al., Rapid induction of alternative lengthening of telomeres by depletion 

of the histone chaperone ASF1. Nat Struct Mol Biol, 2014. 21(2): p. 167-74. 

100. Arora, R., et al., RNaseH1 regulates TERRA-telomeric DNA hybrids and telomere 

maintenance in ALT tumour cells. Nat Commun, 2014. 5: p. 5220. 

101. Arora, R., C.M. Brun, and C.M. Azzalin, Transcription regulates telomere dynamics in 

human cancer cells. Rna, 2012. 18(4): p. 684-93. 

102. Hu, Y., et al., RNA-DNA hybrids support recombination-based telomere maintenance in 

fission yeast. bioRxiv, 2019. 

103. Balk, B., et al., The differential processing of telomeres in response to increased telomeric 

transcription and RNA-DNA hybrid accumulation. RNA Biol, 2014. 11(2): p. 95-100. 

104. Balk, B., et al., Telomeric RNA-DNA hybrids affect telomere-length dynamics and 

senescence. Nat Struct Mol Biol, 2013. 20(10): p. 1199-205. 

105. Dhanoa, J.K., et al., Long non-coding RNA: its evolutionary relics and biological 

implications in mammals: a review. J Anim Sci Technol, 2018. 60: p. 25. 



 

67 

106. Wilusz, J.E., H. Sunwoo, and D.L. Spector, Long noncoding RNAs: functional surprises 

from the RNA world. Genes Dev, 2009. 23(13): p. 1494-504. 

107. Gottschling, D.E., et al., Position effect at S. cerevisiae telomeres: reversible repression of 

Pol II transcription. Cell, 1990. 63(4): p. 751-62. 

108. Schoeftner, S. and M.A. Blasco, Developmentally regulated transcription of mammalian 

telomeres by DNA-dependent RNA polymerase II. Nat Cell Biol, 2008. 10(2): p. 228-36. 

109. Deng, Z., et al., A role for CTCF and cohesin in subtelomere chromatin organization, 

TERRA transcription, and telomere end protection. Embo j, 2012. 31(21): p. 4165-78. 

110. Luke, B., et al., The Rat1p 5' to 3' exonuclease degrades telomeric repeat-containing RNA 

and promotes telomere elongation in Saccharomyces cerevisiae. Mol Cell, 2008. 32(4): p. 

465-77. 

111. Xie, X. and D.E. Shippen, DDM1 guards against telomere truncation in Arabidopsis. Plant 

Cell Rep, 2018. 37(3): p. 501-513. 

112. Nergadze, S.G., et al., CpG-island promoters drive transcription of human telomeres. Rna, 

2009. 15(12): p. 2186-94. 

113. Porro, A., et al., Functional characterization of the TERRA transcriptome at damaged 

telomeres. Nat Commun, 2014. 5: p. 5379. 

114. Montero, J.J., et al., Telomeric RNAs are essential to maintain telomeres. Nat Commun, 

2016. 7: p. 12534. 

115. Lopez de Silanes, I., et al., Identification of TERRA locus unveils a telomere protection 

role through association to nearly all chromosomes. Nat Commun, 2014. 5: p. 4723. 

116. Feretzaki, M., P. Renck Nunes, and J. Lingner, Expression and differential regulation of 

human TERRA at several chromosome ends. Rna, 2019. 

117. Lee, Y.W., et al., TRF1 participates in chromosome end protection by averting TRF2-

dependent telomeric R loops. Nat Struct Mol Biol, 2018. 25(2): p. 147-153. 

118. Petti, E., et al., SFPQ and NONO suppress RNA:DNA-hybrid-related telomere instability. 

Nat Commun, 2019. 10(1): p. 1001. 

119. Maicher, A., A. Lockhart, and B. Luke, Breaking new ground: digging into TERRA 

function. Biochim Biophys Acta, 2014. 1839(5): p. 387-94. 

120. Flynn, R.L., et al., TERRA and hnRNPA1 orchestrate an RPA-to-POT1 switch on telomeric 

single-stranded DNA. Nature, 2011. 471(7339): p. 532-6. 

121. Azzalin, C.M. and J. Lingner, Telomere functions grounding on TERRA firma. Trends Cell 

Biol, 2015. 25(1): p. 29-36. 

122. Montero, J.J., et al., TERRA recruitment of polycomb to telomeres is essential for histone 

trymethylation marks at telomeric heterochromatin. Nat Commun, 2018. 9(1): p. 1548. 

123. Porro, A., S. Feuerhahn, and J. Lingner, TERRA-reinforced association of LSD1 with 

MRE11 promotes processing of uncapped telomeres. Cell Rep, 2014. 6(4): p. 765-76. 

124. Barzilai, A. and K. Yamamoto, DNA damage responses to oxidative stress. DNA Repair 

(Amst), 2004. 3(8-9): p. 1109-15. 

125. Muralidharan, S. and P. Mandrekar, Cellular stress response and innate immune signaling: 

integrating pathways in host defense and inflammation. J Leukoc Biol, 2013. 94(6): p. 

1167-84. 

126. Koskas, S., et al., Heat shock factor 1 promotes TERRA transcription and telomere 

protection upon heat stress. Nucleic Acids Res, 2017. 45(11): p. 6321-6333. 

127. Tutton, S., et al., Subtelomeric p53 binding prevents accumulation of DNA damage at 

human telomeres. Embo j, 2016. 35(2): p. 193-207. 



 

68 

128. Bettin, N., C. Oss Pegorar, and E. Cusanelli, The Emerging Roles of TERRA in Telomere 

Maintenance and Genome Stability. Cells, 2019. 8(3). 

129. Sadhukhan, R., et al., Expression of Telomere-Associated Proteins is Interdependent to 

Stabilize Native Telomere Structure and Telomere Dysfunction by G-Quadruplex Ligand 

Causes TERRA Upregulation. Cell Biochem Biophys, 2018. 76(1-2): p. 311-319. 

130. Doksani, Y., The Response to DNA Damage at Telomeric Repeats and Its Consequences 

for Telomere Function. Genes (Basel), 2019. 10(4). 

131. Sun, L., et al., Targeted DNA damage at individual telomeres disrupts their integrity and 

triggers cell death. Nucleic Acids Res, 2015. 43(13): p. 6334-47. 

132. Lieber, M.R., The mechanism of double-strand DNA break repair by the nonhomologous 

DNA end-joining pathway. Annu Rev Biochem, 2010. 79: p. 181-211. 

133. Arnoult, N., et al., Regulation of DNA repair pathway choice in S and G2 phases by the 

NHEJ inhibitor CYREN. Nature, 2017. 549(7673): p. 548-552. 

134. Betermier, M., P. Bertrand, and B.S. Lopez, Is non-homologous end-joining really an 

inherently error-prone process? PLoS Genet, 2014. 10(1): p. e1004086. 

135. Chapman, J.R., et al., RIF1 is essential for 53BP1-dependent nonhomologous end joining 

and suppression of DNA double-strand break resection. Molecular cell, 2013. 49(5): p. 

858-871. 

136. Paudyal, S.C. and Z. You, Sharpening the ends for repair: mechanisms and regulation of 

DNA resection. Acta Biochim Biophys Sin (Shanghai), 2016. 48(7): p. 647-57. 

137. Daley, J.M. and P. Sung, 53BP1, BRCA1, and the choice between recombination and end 

joining at DNA double-strand breaks. Mol Cell Biol, 2014. 34(8): p. 1380-8. 

138. Isono, M., et al., BRCA1 Directs the Repair Pathway to Homologous Recombination by 

Promoting 53BP1 Dephosphorylation. Cell Rep, 2017. 18(2): p. 520-532. 

139. Kabotyanski, E.B., et al., Double-strand break repair in Ku86- and XRCC4-deficient cells. 

Nucleic Acids Res, 1998. 26(23): p. 5333-42. 

140. Liang, F. and M. Jasin, Ku80-deficient cells exhibit excess degradation of 

extrachromosomal DNA. J Biol Chem, 1996. 271(24): p. 14405-11. 

141. Truong, L.N., et al., Microhomology-mediated End Joining and Homologous 

Recombination share the initial end resection step to repair DNA double-strand breaks in 

mammalian cells. Proc Natl Acad Sci U S A, 2013. 110(19): p. 7720-5. 

142. Sallmyr, A. and A.E. Tomkinson, Repair of DNA double-strand breaks by mammalian 

alternative end-joining pathways. J Biol Chem, 2018. 293(27): p. 10536-10546. 

143. Verma, P. and R.A. Greenberg, Noncanonical views of homology-directed DNA repair. 

Genes Dev, 2016. 30(10): p. 1138-54. 

144. Sfeir, A. and T. de Lange, Removal of shelterin reveals the telomere end-protection 

problem. Science, 2012. 336(6081): p. 593-7. 

145. Ceccaldi, R., B. Rondinelli, and A.D. D'Andrea, Repair Pathway Choices and 

Consequences at the Double-Strand Break. Trends Cell Biol, 2016. 26(1): p. 52-64. 

146. Tkac, J., et al., HELB Is a Feedback Inhibitor of DNA End Resection. Mol Cell, 2016. 61(3): 

p. 405-418. 

147. Orthwein, A., et al., A mechanism for the suppression of homologous recombination in G1 

cells. Nature, 2015. 528(7582): p. 422-6. 

148. Chen, W., et al., Massively parallel profiling and predictive modeling of the outcomes of 

CRISPR/Cas9-mediated double-strand break repair. Nucleic acids research, 2019. 47(15): 

p. 7989-8003. 



 

69 

149. Fumagalli, M., et al., Telomeric DNA damage is irreparable and causes persistent DNA-

damage-response activation. Nat Cell Biol, 2012. 14(4): p. 355-65. 

150. Cho, N.W., et al., Interchromosomal homology searches drive directional ALT telomere 

movement and synapsis. Cell, 2014. 159(1): p. 108-121. 

151. Doksani, Y. and T. de Lange, Telomere-Internal Double-Strand Breaks Are Repaired by 

Homologous Recombination and PARP1/Lig3-Dependent End-Joining. Cell Rep, 2016. 

17(6): p. 1646-1656. 

152. Tang, J., et al., Acetylation limits 53BP1 association with damaged chromatin to promote 

homologous recombination. Nat Struct Mol Biol, 2013. 20(3): p. 317-25. 

153. Maciejowski, J., et al., Chromothripsis and Kataegis Induced by Telomere Crisis. Cell, 

2015. 163(7): p. 1641-54. 

154. Le, P.N., et al., TERRA, hnRNP A1, and DNA-PKcs Interactions at Human Telomeres. 

Frontiers in oncology, 2013. 3: p. 91-91. 

155. Anzai, T., H. Takahashi, and H. Fujiwara, Sequence-specific recognition and cleavage of 

telomeric repeat (TTAGG)(n) by endonuclease of non-long terminal repeat 

retrotransposon TRAS1. Molecular and Cellular Biology, 2001. 21(1): p. 100-108. 

156. Yoshitake, K., H. Aoyagi, and H. Fujiwara, Creation of a novel telomere-cutting 

endonuclease based on the EN domain of telomere-specific non-long terminal repeat 

retrotransposon, TRAS1. Mobile DNA, 2010. 1(1): p. 13. 

157. Sakaue-Sawano, A., et al., Visualizing spatiotemporal dynamics of multicellular cell-cycle 

progression. Cell, 2008. 132(3): p. 487-98. 

158. Diller, L., et al., p53 functions as a cell cycle control protein in osteosarcomas. Mol Cell 

Biol, 1990. 10(11): p. 5772-81. 

159. Stott, F.J., et al., The alternative product from the human CDKN2A locus, p14(ARF), 

participates in a regulatory feedback loop with p53 and MDM2. The EMBO journal, 1998. 

17(17): p. 5001-5014. 

160. Munoz, P., et al., TRF1 controls telomere length and mitotic fidelity in epithelial 

homeostasis. Mol Cell Biol, 2009. 29(6): p. 1608-25. 

161. Palm, W. and T. de Lange, How shelterin protects mammalian telomeres. Annu Rev Genet, 

2008. 42: p. 301-34. 

162. van Steensel, B. and T. de Lange, Control of telomere length by the human telomeric 

protein TRF1. Nature, 1997. 385(6618): p. 740-3. 

163. Dilley, R.L. and R.A. Greenberg, ALTernative Telomere Maintenance and Cancer. Trends 

in cancer, 2015. 1(2): p. 145-156. 

164. Yoshitake, K., H. Aoyagi, and H. Fujiwara, Creation of a novel telomere-cutting 

endonuclease based on the EN domain of telomere-specific non-long terminal repeat 

retrotransposon, TRAS1. Mobile DNA, 2010. 1(1): p. 13-13. 

165. Pawlik, T.M. and K. Keyomarsi, Role of cell cycle in mediating sensitivity to radiotherapy. 

Int J Radiat Oncol Biol Phys, 2004. 59(4): p. 928-42. 

166. Chao, H.X., et al., DNA damage checkpoint dynamics drive cell cycle phase transitions. 

bioRxiv, 2017: p. 137307. 

167. Chao, H.X., et al., Orchestration of DNA Damage Checkpoint Dynamics across the Human 

Cell Cycle. Cell systems, 2017. 5(5): p. 445-459.e5. 

168. Chaudhary, R., et al., Prosurvival long noncoding RNA PINCR regulates a subset of p53 

targets in human colorectal cancer cells by binding to Matrin 3. eLife, 2017. 6: p. e23244. 



 

70 

169. Mello, S.S. and L.D. Attardi, Neat-en-ing up our understanding of p53 pathways in tumor 

suppression. Cell cycle (Georgetown, Tex.), 2018. 17(13): p. 1527-1535. 

170. Diller, L., et al., p53 functions as a cell cycle control protein in osteosarcomas. Molecular 

and cellular biology, 1990. 10(11): p. 5772-5781. 

171. Lisaingo, K., E.-J. Uringa, and P.M. Lansdorp, Resolution of telomere associations by 

TRF1 cleavage in mouse embryonic stem cells. Molecular biology of the cell, 2014. 25(13): 

p. 1958-1968. 

172. McKerlie, M., et al., Phosphorylated (pT371)TRF1 is recruited to sites of DNA damage to 

facilitate homologous recombination and checkpoint activation. Nucleic Acids Res, 2013. 

41(22): p. 10268-82. 

173. Ho, A., et al., TRF1 phosphorylation on T271 modulates telomerase-dependent telomere 

length maintenance as well as the formation of ALT-associated PML bodies. Sci Rep, 2016. 

6: p. 36913. 

174. D'Alessandro, G., et al., BRCA2 controls DNA:RNA hybrid level at DSBs by mediating 

RNase H2 recruitment. Nature communications, 2018. 9(1): p. 5376-5376. 

175. Ohle, C., et al., Transient RNA-DNA Hybrids Are Required for Efficient Double-Strand 

Break Repair. Cell, 2016. 167(4): p. 1001-1013.e7. 

176. Nguyen, H.D., et al., Functions of Replication Protein A as a Sensor of R Loops and a 

Regulator of RNaseH1. Molecular cell, 2017. 65(5): p. 832-847.e4. 

177. Domingo-Prim, J., et al., EXOSC10 is required for RPA assembly and controlled DNA end 

resection at DNA double-strand breaks. Nat Commun, 2019. 10(1): p. 2135. 

178. Carpenter, A.E., et al., CellProfiler: image analysis software for identifying and 

quantifying cell phenotypes. Genome Biol, 2006. 7(10): p. R100. 

 


	Chapter 1  Introduction
	Telomere structure and function
	Telomere structure
	Telomere Function
	The End Replication Problem
	Telomerase
	The End-Protection Problem
	Telomeres, immortality, and cancer

	Telomerase positive tumors
	Alternative Lengthening of Telomere pathway (ALT) Tumors
	ALT-mediated telomeric DNA synthesis by Break-Induced Replication (BIR)
	Chromatin landscape changes and increased Telo:TERRA hybrids mediate telomere elongation in ALT cells
	Long Non-coding RNAs
	Long non-coding Telomeric repeat-containing RNA: TERRA
	TERRA Biogenesis
	TERRA Structure
	TERRA Decay
	TERRA dynamics through the cell cycle in Telomerase positive and ALT cells
	TERRA is required to establish telomeric heterochromatin in ALT cells
	TERRA maintain telomeres
	TERRA response to cellular stress
	DNA Double Strand Break repair pathways
	Classical non-homologous end joining (c-NHEJ)
	Homologous Recombination (HR)
	Alternative-End Joining (alt-EJ)
	Break-induced Replication (BIR)
	The balance between telomere protection and telomere repair in mammalian cells


	Chapter 2  Results
	Increased TERRA following Ionizing Radiation exposure
	Telomere-specific DSBs induce telomeric DDR involving TERRA
	Distinguishing cell cycle phase in FUCCI - U2OS interphase cells
	Transfection efficiencies in FUCCI- U2OS cells
	FUCCI-U2OS cells accumulate in G2 following transfection
	TERRA distribution in FUCCI-U2OS cells following transfection
	Telomere-specific DSBs in FUCCI-U2OS cells
	TERRA accumulates at telomere-specific DSBs
	TERRA plays a protective role at telomeric DSBs

	Chapter 3 Discussion and Conclusion
	TERRA in response to genomic DNA DSBs
	TERRA in response to transient transfection
	TERRA in response to telomere-specific DSBs
	TERRA is required to protect telomeric DSBs in G1 cells
	Conclusion

	Chapter 4 Future Directions
	Chapter 5 Materials and Methods
	Cell culture and Transfections
	Plasmids
	Transfections
	Gamma Irradiation
	Single Stranded telomeric DNA fluorescence in-situ hybridization ssTelo-FISH and RNA fluorescence in-situ hybridization RNA FISH
	Pre-hybridization Rnase A and Rnase H treatment
	Immunofluorescence staining
	Cell cycle analysis
	Data analysis
	Microscopy and Quantitative Analysis


