
7JNITED STATES DEP.\.RTMEH'r OF THE Il~TERIOR 

---·-------~ ---- --......----------·---·-.... - ··-

EXPLORATORY LABORATORY STPDY OF 

Lf ... TERAL TUREU;...ENT DIFFlJSION 

AT ':'HE S"JRFACE OF AN 

ALL tnTIP .i.. C~I.."~.NNEL 

oy 

VI. W. Say:e an::i A< H., Cramberlain 

----~----------~----- __ .__.._ __ ------------~-----

F,ort Collins, Colorado 

Open File .f?.ep:n.·t 

GEOLOGICAL SURVEY 

·wATER RESOUR.CES DIVISION 

Prop:'rtY of Civil Enqinttering 
Dopt. foot~·illo; ae .. ,J ny f":t Jr'l 

. ~ -1 v- 6 .s../ RecetvocL ................................. . 

60 
CER61ARC6& 

-------------------------·-----~---- --------------- -~-----· 

September l qe3 



UNITED STATES DEPARTMENT OF THE INTERIOR 

EXPLORATORY LABORATORY STUDY OF 

LATERAL TURBULENT DIFFUSION 

AT THE SURFACE OF AN 

ALLUVIAL CHANNEL 

Fort Collins, Colorado 

by 

W. W. Sayre and A. R. Chamberlain 

Open File Report 

GEOLOGICAL SURVEY 

WATER RESOURCES DIVISION 

September 1963 

CER61ARC66 

U18401 0593225 



CONTENTS 

Page 

Selected list of symbols 

Abstract 

. . . . . . . . . . . iii 

Introduction . 

Turbulent diffusion in open channels . 
Theory . . . . . . . . . . . . . . 
Turbulence measurements 
Diffusion at the water surface . . 
Alluvial channels 

Description of experiment 

. . . . . . . . . . . 
. . . . . . . . . 

. . . . . . 

1 

2 

3 

4 
s 

• • • . 11 
· • • • 13 

· · 13 

Results · • · · · · · · · · · · • · • · l 0 

Application to practical problems 

Conclusions · . . . . . . . . . . . . 
• • 27 

• • 28 

References • • • • • • • • 29 

ILL UST RATIONS 

Figure 1. Variance of the lateral distribution, (1' i (t), as a z 
function of relative dispersion time, t/L · . . . . . . . . 7 t 

2. Schematic diagram of the flume · . . . . . . . . . . 13 

3. Section of compartmented-sieve particle collector . . . . 15 

4. Cumulative distribution plots for x = 300 centimeters • . 18 

5. Variance of lateral distribution as a function of 

distance downstream from source . . 18 

6. Flume bed after the experiment . . . . . . . . . . 22 

7. Intensity and scale of turbulence as determined 

from limits of dispersion data • • • • • • • • • • • • · • 22. 

-i-



Figure 8. 

CONTENTS ------
ILLUSTRATIONS ------

Theoretical solution of diffusion equation with 

R ,{a) = e w 

- kl. 
Lt . . . . . . . . . . . . . . . . . . 

9. Standard deviation of lateral distribution as a 

function of dispersion time . . . . . . . . . . . . . . . 
10. Lateral diffusion coefficient as a function of 

distance from source . . . . . . . . . . . . . . . . . 

TABLES 

Page 

23 

24 

25 

Table 1. Lateral diffusion data and computed parameters • • • • 19 

-ii-



Symbol 

R ,(a) w 

t 

At 

u 

u s 

X 

X 
I"\ 

z 

SELECTED LIST OF SYMBOLS 

Definition 

Coefficient of lateral turbulent diffusion 

Lagrangian integral time scale of 

turbulence in the lateral direction 

L = t 
0 

R 1 ( a) da 
w 

Lagrangian correlation coefficient which correlates 

the instantaneous lateral turbulent velocity 

compbnents, w' , of a fluid particle, at the 

times t and t + a 
Dispersion time 

Time interval between release of particles 

Mean velocity of flow in the longitudinal 

direction 

Mean velocity of flow in the longitudinal 

direction at the water surface 

Longitudinal distance downstream from the source 

The x intercept of the extension 

of the straight portion of the er 2 (x) curve. z 

The mean of the squared instantaneous 

lateral turbulent velocity components, w' 

Lateral distance from the source which is located 

at X = 0, Z = 0 

-iii-

Units 

crn~/sec 

sec 

sec 

sec 

cm/sec 

cm/sec 

cm 

cm 

cm 



Symbol 

a 

6 
C 

(T 2 
z 

a- Z(t) 
z 

a- 2(x) z 

-;,-
z 

-er 
z 

Definition 

Delay time associated with the Lagrangian 

correlation coefficient R 1 (a) w 
Lateral deviation of the center of concentration 

of a group of dispersed particles 

from z = O 

Variance of the lateral distribution of a group of 

fluid particles which have passed through the 

point x = O , z = O • In the experiments, 

the variance of the lateral particle-concentration-

distribution curve was taken as an estimate of er 2 

er 2 as a function of t z 
er 2 as a function of x z · 

The mean variance of concentration 

distribution curves obtained for several values 

of 6t , other conditions remaining the same 

The mean standard deviation of concentration 

distribution curves obtained for several values 

of 6t, other conditions remaining the same 

-iv-

z 

Units 

sec 

cm 

cm2 

cm2 

cm2 

cm2 

cm 



EXPLORATORY LABORATORY STUDY OF LATERAL 

TURBULENT DIFFUSION AT THE SURFACE 

OF AN ALLUVIAL CHANNEL 

By W. VI. Sayre and A. R . Chamberlain 

ABSTtlACT 

In natural streams turbulent diffusion is one of the principal mecha.11-

isnis by which liquid and suspended-particulate contaminants are dis-

persed in the flow. A knowledge of turbulence characteristics is there-

fore essential in predicting the dispersal rates of contaminants in streams. 

In this study the theory of diffusion by continuous movements for homo-

geneous turbulence is applied to lateral diffusion at the surface of an open 

channel in which there is uniform flow. An exploratory laboratory 

investigation was conducted in which the lateral dispersion at the water 

surface of a sand-bed flume was studied by measuring the lateral spread 

from a point source of small floating polyethylene particles. The experi-

ment was restricted to a single set of flow and channel geometry conditions. 

The results of the study indicate that with certain restrictions lateral 

dispersion in alluvial channels may be successfully described by the 
• theory of diffusion by continuous movements. The experiment demonstrates 

a means for evaluating the lateral diffusion coefficient, and also methods 

for quantitatively estimating fundamental turbulence properties such as the 

intensity and the Lagrangian integral scale of turbulence iz:i an alluvial 

channel. 
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The experimental results show that with increasing distance from the 

source the coefficient of lateral turbulent diffusion increases initially, but 

tends toward a constant limiting value. This result is in accordance with 

turbulent diffusion theory, Indications are that the distance downstream from 

the source required for the diffusion coefficient to reach its limitin.:; value 

is actually quite small when compared to the length scale of most dif-

fusion phenomena in natural streams which are of practical interest. 

INTRODUCTION 

One of the many important functions of natural streams and rivers is 

to transport industrial and domestic wastes. Considering the increasing 

quantities of wastes which must be disposed of together with the increas-

ing demand on available water resources for many competing uses. it 

is obviously imperative that strict controls be imposed on the rates at 

which pollutants are released into streams. The establishment of realis-

tic control measures requires that adequate criteria be available for pre-

dicting the rates at which pollutants are dispersed by natural mechanisms 

once they have been discharged into streams. At present adequate cri-

teria are not available. The need for more knowledge concerning dis-

persion in open-channel flows is especially acute in relation to the dis-

posal of low-level liquid radioactive wastes. This is due at least in part 

to the fact that tolerance levels for radioactive contaminants are generally 

several orders of magnitude lower than tolerance levels for most other 

contaminants. Furthermore, many radioactive contaminants cannot be 

removed from thA water by conventional water-treatment practices. 
The U. s. Gc..,log.1.cal Survey, in cooperation with the DivisioP 0f 8.eactor 

Development of the Atomic Energy Commission, is engaged in several 

research projects which are concerned with the feasibility of using the natural 

environment for the disposal of certain kinds of radioactive wastes. One area 
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of investigation is concerned with developing criteria for predicting the 

rate of dispersal of low-level liquid radioactive wastes in natural 

waterways. 

In streams and rivers the initial dispersion of liquid and suspended-

particulate contaminants is accomplished principally by turbulence and 

convection. Turbulent diffusion occurs in all turbulent flows. Common 

examples of convective dispersion in natural streams are longitudinal 

dispersion caused by mean velocity gradients and the associated mass 

transfer. and dispersion induced by flow around bends. 

This paper is restricted to a discussion of turbulent diffusion in a broad 

open channel under conditions of steady, uniform flow. Experimental 

results are presented for one set of flow conditions in a laboratory-scale 

alluvial channel. The experiment was an exploratory one, conducted for 

the purpose of determining whether certain experimental techniques which 

have been successfully applied to the study of turbulence and diffusion in 

rigid-boundary open channels could be similarly applied to alluvial-

channel studies. 

TURBULENT DIFFUSION IN OPEN CHANNELS 

According to Hinze (1959), satisfactory solutions to transport problems 

in turbulent flows depend to a large extent on the adequacy with which 

Lagrangian statistical functions describing turbulent motion are deter-

mined. It follows that turbulent diffusion can be more effectively investi-

gated if the Lagrangian turbulence characteristics are also investigated . 

In turbulent flow, the relative positions of a group of neighboring fluid 

particles change in such a way that the particles tend to spread out or dis-

perse with the passage of time. Dispersion which is due to the random tur-

bulent motion of the fluid particles. as opposed to molecular diffusion or 

convective dispersion, is called turbulent diffusion. The dispersion of 
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dyes or small suspended particles which have inertial properties identical 

to those of the fluid particles are visible manifestations of turbulent dif-

fusion. 

The rate of dispersion due to turbulent diffusion depends on the turbulent 

motions of the fluid particles . In a wide, straight channel, with uniform 

flow, the turbulence characteristics depend on the geometrical characteris-

tics of the channel (i.e., cross-sectional dimensions, boundary roughness 

and slope) and the flow discharge. 

Diffusion theories which are based on the idealized concept of homogeneous 

turbulence may be applied to some extent in open channels because in 

channels such as described in the preceding paragraph, the turbulence is 

approximately homogeneous in planes which are parallel to the water surface~ 

except close to the channel boundaries. Homogeneity means here that the 

statistical properties of the turbulence are independent of position in a 

given plane. Due to the variation of mean shear stress with depth, however, 

the statistical properties of the turbulence do vary in the direction normal 
to the planes. 

Theory 

The following discussion is bases on Taylor I s ( 19 21) theory of diffu-

sion by continuous movements. In the discussion it is assumed that the 

turbulence field is at rest with respect to its coordinate system, and that 

the statistical properties of the turbulence do not vary with time. Although 

the discussion is restricted to a consideration of turbulent diffusion in the 

lateral or z direction, the concepts also apply to turbulent diffusion in 

the longitudinal or x direction. 

The state of dispersion of a group of fluid particles at any given time 

may be described statistically as the variance, <ra(t) , of their distribu-

tion about the center of concentration. In a homogeneous turbulence field, 
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the fundamental equation of turbulent diffusion derived by Taylor (1921) 

and expressed in terms of lateral diffusion in the z direction is: 

CT 2 ( t) : 2 WI z 
z 

t :t' 

1 i 6 
(1) 

Kampe de Feriet ( 19 39) transformed equation 1 to a simpler form 

through integration by parts and obtained 

in which 

t 
(j z (t) : 2 ~ f (t- Q') .l~ I b) da, 

Z \V 
(la) 

0 

CT 
2(t) is the variance at time t of the lateral distribution z 

of a group of fluid particles which were located at 

z = O at time t = O 

w' z is the mean of the squared instantaneous turbulent 

velocity components in the z direction 

t is the dispersion time 

w' (t ) w' (t + ~) 
.R.w ' (a) = -------- is the Lagrangian cor-

~z""V t:w'(t +a)]2 
relation coefficient 

which correlates values 

of w' for a fluid particle 

at the times t and 

t + Q' 

Lt = J00 

.R.w' (;,} d:, is the Lagrangian integral time scale of 

turbulence 
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Exact solutions of equation 1 are possible only when the Lagrangian 

correlation function, R 1 (Cl'), is known; usually the form of R 1 (Q) is w w 
not known. However, even when the form of R 1 (Cl') is not known, there w 
are some approximate solutions of equation 1 which apply over limited 

ranges of dispersion time. For example, when the relative dispersion 

time, t/Lt , is very small, the correlation coefficient, Rw, (Cl'), is 

nearly one and equation 1 reduces to 

er 2 (t) z 

When t/Lt is large, equation 1 reduces t o 

CX) 

<Tz 2 (t) ,_ 2 ~ Lt t - 2 ~ J 
0 

a R , (a) dQ w 

(2) 

(3) 

In a turbulent flow with a given wi"'Z and a finite Lagrangian correlation 

function, the last term in equation 3 is a constant. When t/Lt is very 

large, this constant is small relative to the other terms in the equation, 

and equation 1 reduces further to 

(4) 

At intermediate relative dispersion times, the variance, er z (t) , z 
depends on the nature of the Lagrangian correlation function. The general 

functional form of equation 1 is indicated on figure 1; there may be 

some variation, depending on the form of the Lagrangian correlation 

function. 
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Figure 1. --Variance of the lateral distribution, (1' 
2(t) , as a function of z 

relative dispersion time, t/Lt 

Batchelor (1949) has shown that turbulent diffusion can be described by 

a simple Fickian diffusion equation provided that the one-dimensional con-

centration distribution of a contaminant released from a point source 

conforms to the normal distribution law. According to Hinze ( 1959) the 

experimental evidence of many investigators shows that for diffusion in 

homogeneous turbulence the concentration distribution is normal for both 

long and short dispersion times. It is reasonable to assume that this 

result applies for intermediate dispersion times also. 

The one-dimensional Fickian diffusion equation for lateral dispersion is 

ac - = at (5) 

in which 

K is the coefficient of lateral turbulent diffusion z 
C = C(z, t) is the amount o! contaminant per unit 

width at tturn t, a> a /2.nc--h'bn Pr Z- ~ r7c1- i: · 
Assuming that K is a constant• the solution of equation 5 for the case z 
of a quantity of contaminant, q • released from an instantaneous point 

source at time t = O into a homogeneous turbulence field is 

C (z, t) = q / 4 1r Kzt 
e 

.! z2 
2 {2 K t) z 

which is a normal distribution function with variance 

'1' 2 =2Kt z z 
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Figure !.--Variance of the lateral distribution, az2 (t) , as a function of relative 
dispersion time, t/Lt • 



Equating this variance to equation 4 results in 

K z = 
er 2 ( t) z 

2t = w' 2 L t 
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This relationship which assumes that the diffusion coefficient is a constant 

and states that it is equal to the product of the Lagrangian velocity variance 

and the Lagrangian integral time scale of turbulence has been found by 

many investigators to be approximat ely true when t/Lt >> 1. For short 

and intermediate dispersion times the diffusion coefficient, in keeping 

with the theory of diffusion by continuous movements, is usually defined as 

K = z 
1 
2 

d er 2 (t) z 
d t 

and is in general a function of dispersion time. 

Solutions of equation 5 for this and various other initial and boundary 

conditions are available in the literature (e.g. Frenkiel, 1953; Hinze, 1959; 

and Scull and Mickelsen, 1957). 

The foregoing discussion of turbulent diffusion pertains to a turbulence 

field which is stationary with respect to its coordinate system. However, 

with the transformation 

X = U t 

the theory applies also to a homogeneous turbulence field which is being 

transported bodily at a constant velocity, U , in the x direction. The 

discussion has also been simplified to the extent that complicating factors 

such as confining boundaries and velocity gradients, which influence the 

diffusion process in open channels, have not been considered . In spite 

of these simplifications , the concepts presented constitute a theoretical 

framework for studying turbulent diffusion in open channels. 



Turbulence Measurements 

In experimental fluid mechanics, studies of turbulence in water have 

lagged considerably behind corresponding studies in air. The lag is at 

least partially due to the fact that instruments such as the hot-wire ane-

mometer, which has proven satisfactory for turbulence measurements 
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in air, have not been developed to the level of adequacy required for tur-

bulence measurements in water. Without such instruments, measure-

ments of dispersion afford one of the most promising means by which 

fundamental turbulence characteristics can be quantitatively estimated . 

Specifically, the intensity and the integral scale of turbulence can be 

determined, and the Lagrangian correlation coefficient can be estimated 

on the basis of a statistical analysis of dispersion data . Baldwin and 

Mickelsen (1962) have demonstrated that these Lagrangian properties 

can be related empirically to the corresponding Eulerian properties 

which are usually obtained from anemometer measurements. 

Considering again, the lateral diffusion in the xz plane of a contami-

nant released from a point source in a uniform flow having a uniform 

mean velocity, U = x/t , the intensity of turbulence is given by: 

= lim ( cr/t)l 
x-> 0 X 

The Lagrangian integral time sca.1 .... of turbulence is given by 

L = t 
u lim 

x ->oo 

Once w'z is known, the Lagrangian correlation coefficient can be 

estimat ed graphically by successive differentiations of a er z 2 (t) curve, 

since by applying Leibnitz' rule to equation I and differentiating twice, 

R ,(t) = 
w 

1 

Zw'z 

dz cr z (t) 
z 

dtZ 

(6) 

(7) 

(8) 
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If the form of the Lagrangian correlation function is known or assumed 

in advance, and is integrable. the intensity and scale of turbulence can be 

determined from diffusion data obtained at intermediate values of t/Lt , 

say (0.1 < t/Lt < 10). This technique is useful when, as is often the case, 

it is difficult or impossible to obtain diffusion data at the limiting condi-

tions specified by equations 6 and 7. 

·1 nere 1s experimental evidence. llPflc•l amt Ka1cn1en, 1m,·7J tnat at 

large Reynolds numbers the correlation coefficient may be approximated 

reasonably well by an equation of the form 

R ,(a) = e 
w 

By converting equation 1 to the dimensionless form 

CT Z(t) 
z 

w'z. L z. 
t 

t/Lt 

= Z J (t/Lt - a/Lt) Rw,(a) d (r;-) 
0 

and by making the substitution indicated by equation 9, Frenkiel ( 1953) 

obtained the following approximate solutions to equation 10. 

O < t/Lt ~ o. 030 
CT Z(t) 

z 
w'z. L z 

t 

(9) 

( 10) 

( 10a) 

0.030 < t/L < 3.63 t -

(T z (t) 
z 

L z. 
t 

= 2 ( - t/ L l 
e t + t/ Lt - 1 ( lOb) 

3.63 < t/Lt < 101 

lOl<t/Lt 

CT 2.(t) 
z 

L z. 
t 

z. 
CT Z (t) 

L z. 
t 

= 2 ( t/ Lt - 1 l ( 10c) 

( 10d) 
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The intensity and scale of turbulence can now be determined graphically 

by superimposing a er (t) curve, based on experimental data and represen-z er 
ted on logarithmic coordinates, on the theoretical z ( ~ ) curve 'YL t 

t 
as determined from equation 10 a-d, so that the curves match. The ratios 

of the respective ordinates and abscissas then define the ratios t/t/Lt and 

er (t) z from which Lt and ~ may be evaluated. 

The corresponding parameters describing the longitudinal turbulence 

characteristics may be obtained in an analogous manner by observing the 
longitudinal diffusion in the xz plane of a contaminant released instan-

taneously from a point source, or a line source which is parallel to the 

z axis. 

Application ofthese and similar techniques to the determination of tur-

bulence characteristics in open channels has been pioneered by Kalinske 

and Pien (1944) and Or lob (1959). Kalinske and Pien ( 1944) obtained 

measurements of the lateral diffusion of a hydrochloric acid-alcohol mix-

ture (sp. gr. = 1) in a 3-dimensional turbulence field in a laboratory 

flume. Ol'lob (1959) studied the lateral diffusion of small polyethylene 

particles ('sp. gr. = o. 975) in a 2-dimensional turbulence field defined by 

the water surface in a laboratory flume. 

Diffusion at the Water Surface 

The water surface ( or a plane parallel thereto) of a wide channel in 

which there is uniform flow constitutes a 2-dimensional, nondecaying, 

turbulence field in which the turbulence may be assumed to be statistically 
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homogeneous except in regions very close to the sidewalls. These con-

ditions conform approximately to the restrictions by which diffusion 

theory for homogzneous turbulence is limit eel. Therefore , the ,vat er surface 

of a channel such as the one defined above is a good medium for the quan-

titative determination of turbulence characteristics from dispersion 

observations. Furthermore, measurements of dispersion on the water 

surface of a laboratory flume may be easily and accurately obtained, 

as Orlob ( 1959) has demonstrated. 

the extent to which the diffusion patterns at the water surface reflect 

the diffusion process and turbulence characteristics beneath the surface 

is questionable, particularly in alluvial channels. The experimental 

results of Kalinske and Pien (1944), however, tend to confirm the 

Reynolds analogy that the local diffusion coefficient, K(y), and the kine-

matic eddy viscosity, € , in the equation 

du 
T = -dy 

are essentially equivalent. In the above equation 

T (1-)l) 
o D is the mean intensity of the local shear, 

where T is the mean intensity of shear at the bed and 
0 

· D is the mean depth of flow. 

p is the mass density of the fluid. 

u is the mean velocity at distance, y , above the bed. 

If the Reynolds analogy is indeed a reasonable approximation, measured 

velocity profiles could be used to predict K(y) , and perhaps other turbu-

lence characterictics, as functions of y. 
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Alluvial Channels 

In general, diffusion phenomena in open alluvial channels should be 

similar to the corresponding phenomena in rigid-boundary open channels. 

Owing to the differences in the mechanics of flow associated with the two 

types of channels, however, certain differences are to be expected. For 

example, in alluvial channels there is a mutual interaction between the 

boundary form and both the turbulence characteristics and the velocity 

distribution (the flow characteristics determine the bed form and vice 

versa}; in rigid-boundary channels, the form and roughness of the bounq-

ary tnfluence, the turbulence characteristics and the velocity distribution, 

but there is no reciprocal effect. Another important difference is that the 

individual ripples and dunes, which usually make up the dominant rough-

ness elements in alluvial channels, migrate in the direction of flow and 

undergo continuous transformation in shape and size, although a certain 

statistical constancy prevails. The extent to which factors such as thes~ 

affect the diffusion process and the turbulence characteristics in open 

alluvial channels has not been systematically investigated. 

DESCRIPTION OF EXPERIMENT 

An exploratory experiment was conducted in an 8-ft wide, 150-ft long, 

laboratory flume. The bed of the .flume was covered with sand to a depth 

of about 8 inches. A schematic diagram of the flume circulation system 

is shown in figure 2. 

Figure 2. --Schematic diagram of the flume 
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Diffusion data were obtained for one set of flow conditions, Data 

describing the flow conditions are as follows: 

Discharge - 7. '11 cubic feet per second 

Average depth - O. 58 feet 

Average water- surface and bed slope - o. 00071 

Water temperature - 17. 4 · degrees centigrade 

Total sediment concentration - 63 . parts per million 

Bed configuration - small dunes 

Average dune length - 2. 8 feet 

Average dune height - o. 029 .feet 

Average dune velocity - o. 067 feet per minute 

Bed material 

Median fall diameter - o. 93 :.millimeters 

( 

'd 
Gradation coefficient - ½ d 50 + 

15.9 
) = I. 53 

The equipment and procedures employed in obtaining the above data 

1 <. 

are described by Simons, a.. Richardson ( HHS I):. o/d /J/b,erkon (196/ ). 

The experimental techniques for studying lateral diffusion were 

similar to those employed by Or lob ( 1959). Polyethylene particles were 

released one at a time from a point source located on the water surface 

at a point on the center line of the flume, 30 feet downstream from the 

head box. As the particles floated down the flume, their paths, which 

tended to diverge, defined a lateral dispersion pattern . The dispersion 

pattern was det ermined by intercepting the particles at definite distances 

downstream from the source and noting their lateral positions. 

The polyethylene particles were disc-shaped, having a diameter of 

1/ 8-inch and a thickness of 1/ 16-inch. The specific gravity of the 

particle~ was approximately O. 96. Therefore, there was little density 

effect in the inertial response of the particles to turbulent impulses. 
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The particles were sufficiently large to eliminate any appreciable effect 

due to molecular diffusion, but probably not too large to trace the motions of 

the larger turbulent eddies at the water surface. The effect of particle size 

was not investigated in this study, however, recent and as yet unpublished 

data obtained by the senior author in the same flume and at about the same 

Reynolds number indicate that there is little difference in the lateral dis-

persion patterns of 1/8" polyethylene particles dispersing on the surface 

and .Rhodamine - B dye dispersing beneath the surface. This would indicate 

that the particles were not too large . 

The particles were released into the flow through a funnel which was 

mounted on a point-gage assembly. The 3/16-inch diameter tip of the fun-

fel was located just above the water surface. The particles were ejected 

sequentially in lots of 100 into the funnel at a constant rate from a manually-

operated dispenser. In order to detect any effect due to periodicity in the 

turbulence, the experiment was repeated for several lots at different rates 

of release, by varying the time interval, ~ t , between releases from 1 

to 5 seconds. No periodicity effect was detected. The particle-intro-

duction method simulated continuous release from a point source in a 2-

dimensional system, or if diffusion in the y direction is neglected, a 

vertical line source in a 3-dimensional system. 

The particles were caught in a compartmented sieve which was inserted 

in the flow , normal to the flow direction. The collector extended across 

the entire width of the flume . The collector was divided into 1-centimeter 

compartments as shown in figure 3, and each compartment was numbered. 

Figure 3 . --Section of compartmented-sieve particle collector 

Because only the bottom 1 /2 inch, or less, of the collector was immersed in 

the flow, disturbance to the flow was assumed to be negligible. The lateral 

distribution of particle paths for each 100-particle lot was determined by 
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Figure 3.--Section of compartmented sieve :particle collector. 
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counting and recording the number of particles trapped in each compart-

ment . Lateral distributions of 3 to 5 lot s of 100 particles were deter-

mined in this manner for source-to-collector distances of 15, 30, 48, 60, 

120, 240, 300 , -150, 600, 900, 1500, 1950, 24 00, 2850, and 3300 centi-

meters. 

The diffusion theory discussed in the previous s ection is based on the 

Lagrangian reference system in which attention is focused on the displace-

ment histories of individual particles with respect to time. If the data had 

been obtained in strict accordance with the theory, the lateral position of 

each particle at a specified dispersion time , t , following release would 

have been determined, and the extent of dispersion would be described as 

the variance, er 2 (t) , of the lateral distribution of particles about the z 
mean lateral position at time t. Actually the lateral position of each par-

ticle was determined at a specified distance, x , downstream from the 

source, rather than at a specified t , and the extent of dispersion was 

described as er 2 (x) . Because the flow was uniform (x = U t ) , and x z 
was large compared to the lateral deviations from the mean path, z , it 

· seemed reasonable to assume that er 2 (t) = er 2 (x) . In the analysis which z z 
follows, no distinction between er 2 (t) and er 2 (x) is made, and er 2 is z z z 
substituted for er 2 (x) . z 

The times of transit over various known distances was recorded for 

27 particles. The mean surface velocity computed from these data was 

U = 62. 5 centimeters per second. Extrapolation of three measured 
s 

velocity profiles to the water surface indicated a mean surface velocity of 

65 . 8 centimeters per second. The velocity as determined by the particle-

timing method was used in analyzing the data • 

. Data on longitudinal diffusion were also collected at distances from the 

source of 240, 600 and 900 centimeters. Particles were released from 
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the source at 10-second intervals and times of transit for each longitudinal 

distance were determined indirectly by measuring the times between ar-

rival of successive particles at the end station . This procedure was 

repeated with 100 or more particles for each of the three longitudinal 

distances. This method , although theoretically sound, did not prove to be 

sufficiently accurate in practice, because operator errors were of the 

same order of magnitude as the spread about the mean transit time. The 

results were therefore, inconclusive. 
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RESULTS 

The lateral diffusion data were plotted on arithmetic probability paper. 

A typical set of data, for a source-to-collector distance of 300 centi-

meters, is shown in figure 4. These results indicate that the distribution 

of particle paths along the z axis followed the normal probability law. 

Figure 4. - -Cumulative distribution plots for x = 300 centimeters 

This was typical of all runs. It was also typical that no systematic variation 

of distribution due to variation of the time interval, t:.. t , between particle 

releases could be detected. The center of concentration of the particles 

deviated from the center line of the flume by an amount 6 . In nearly all 
C 

runs this deviation was to the left. The standard deviation, CT , of the z 
particle distributions was determined from the cumulative distribution plots 

according to the relationship 

z84. l -zl5.9 
CT : z 2 

where z 84 _ 1 and z 15 _ 9 are the positions along the z axis where the 

84. 1 and 15. 9 percentile lines intersect the distribution curves. The 

procedure for determining CT is illustrated in figure 4. The parameters z 
determined from the cumulative distribution plots and other experimental 

data are listed in table 1. 

In figure 5. the variance of lateral spread, CT 2 
z is shown as a function 

Figure 5. --Variance of lateral distribution as a function of distance down-

stream from source 
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TABLE 1 

LATERAL DIFFUSION DATA AND C8MPUTED PARAMETERS 

er 2 
2 

~ ;-a z 
c5 r t=x/U er er - er-Run X .6t z z z z X z C C s cm 2 cm 2 --No. cm sec sec cm cm cm X cm cm 

15. 1 15 4 o. 240 0;70 0. 490 0. 74 0,548 . 0366 . 0493 1, 40 1, 25 
15,2 3 0,77 0,593 1. 45 
15,3 2 0:77 0.593 1, 15 
15.4 1 0 , 72 0,518 1.00 

14. 1 30 4 0.480 1:50 2.25 1. 42 2,02 • 0673 . 0473 1. 70 1. 74 
14,2 3 1.'40 1. 96 1. 70 
14.3 2 1. 35 1. 82 1,90 
14,4 1 1. 42 2. 03 1. 65 

13. 1 48 4 o. 769 1;70 2, 89 1, 71 2. 92 • 0608 . 0356 1. 95 1. 84 
13, 2 3 1. 75 3.06 2,50 
13. 3 2 1. 80 3,24 1. 05 
13, 4 1 1. 58 2. 50 1. 85 

7. 1a 60 3 0:960 2, 38 5,66 2. 22 4,94 . 0823 • 0370 2,50 2,28 
7. 1b 3 2. 42 5.86 2. 45 
7~ 2a 2 2. 19 4,80 2.45 
7. 2.b 2 2.29 5.24 1. 98 
7,3a 1 1. 97 3.88 2,00 
7. 3b 1 2.05 4.20 2. 30 

6.· 1 120 3 1. 92 4, 10 16.8 3,94 15,5 . 129 • 0328 3. 8 3,4 
6.- 2 2 3; 92 15.4 3,4 
6.3 1 3. 80 14,4 3, 0 

..... 
(0 



TABLE 1 - continued 

LATERAL DIFFUSION DATA AND COMPUTED PARAMETERS 

;a-
CT 2 ;a z 

0 6 ~t t=x/U 
CT er- -- ~ Run X z z z z X z C C s cm' cm 2 -No. cm sec sec cm cm cm X cm cm 

5. 1 240 5 3. 84 7. 3 53. 3 6. 87 47,3 .197 . 0286 7, 2 7. 1 
5,2 3 6.6 43. 6 6.6 
5. 3 2 6,9 47. 6 6. 3 
5.4 1 6. 7 44,9 8. 3 

4~ 1 300 5 4.80 8.5 72. 3 8, 28 68. 8 . 229 . 0276 8. 0 8. 2 
4.2 4 7. 8 60.8 9. 8 
4. 3 3 7. 7 59. 3 6.4 
4.4 2 8.5 72.2 8. 8 
4,5 1 8.9 79.2 7. 8 

2. 1 450 5 7.20 10.5 110. 2 10.6 112.6 • 250 • 0236 3. 5 7.4 
2. 2 1 1 o. 3 106. 1 5.4 
2. 3 4 11. 3 127. 7 7,5 
2.4 3 1 o. 9 118. 8 11. 4 
2. 5 2 10. 0 100.0 9. O 

3. 1 600 5 9.60 13. 8 190.4 12. 9 1o6. 9 . 278 . 0215 1 o. 0 9. 0 
3~ 2 4 13. 6 185. 0 8. 8 
3. 3 3 12. 0 144.0 10,0 
3~4 2 12. 7 161. 3 6,9 
3.5 1 12. 4 153. 8 9.4 

1. 1 900 5 14.4 18. 4 339 17. 0 289 • 322 . 0189 8,4 8. 0 
1. 2 4 17. 4 303 7.7 
1. 3 3 16.3 266 13. 0 

N 
L4 2 18, 4 339 6.0 0 

1. 5 1 14.2 202 4,7 



Run X .6t 
Ne,.. cm sec 

8; 1 1500 3 
8.2 2 
8. 3 1 

9 . 1 1950 3 
9 . 2 2 
9.3 1 

10~ 1 2400 3 
10,2 2 
1 o. 3 1 

12. 1 2850 3 
12. 2 2 
12. 3 1 

11. 1 3300 3 
11. 2 2 
11. 3 1 

TABLE 1 - continued 

LATERAL DIFFUSION DATA AND COMPUTED PARAMETERS 

;z 
(T 2 r ~ z 

t =x/U 
(T - er z z z z X z s cm 2 cm 2 -sec cm cm cm X 

24. 0 28. 3 801 26. 8 723 .482 . 0179 
25. 0 625 
27. 1 734 

31. 2 28. 7 824 31. 3 981 .503 • 0161 
32, 1 1030 
33. 0 1089 

38,4 32.4 1050 34 . 6 1202 . 501 • 0144 
33 . 7 1136 
37. 7 1421 

45 , 6 37.0 1369 37. 1 1377 . 483 • 0130 
39 . 2 1537 
35 . 0 1225 

52.8 40.6 1648 39.6 1571 . 476 • 0120 
38. 8 1505 
39,5 1560 

0 
C 

cm 

7,6 
10.4 
13. 7 

13. 7 
14. 3 
10 . 4 

13,2 
10.5 
-4.0 

6.0 
9.0 
5.0 

8.4 
12. 0 

8. 0 

6 
C 

cm 

10,6 

12. 8 

6.6 

6. 7 

9.5 

N -
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of distance downstream from the source, x • The plotted experimental 

data follow a peculair trend in that the data fall consistently below the 

curve obtained from equation 10 in the range (450 < x < 900) and cons~s-

tently above the curve in the range {x > 1500) with an apparent break 

occurring somewhere in the range (900 < x < 1500). It is believed that 

the break was due to a change in turbulence characteristics induced by a 

change in bed roughness. This hypothesis is supported by the photo-

graphs in figure 6 which show the condition of the flume bed after the 

Figure 6. --Flume bed after the experiment 

experiment. Both photographs show a path, approximately 2-feet wide, 

of comparatively smooth bed extending for some distance down the flume. 

This path, which extended from the head box to about 9 meters down-

stream from the source, conceivably could have caused a reduction in dis-

persion in the range (0 < x < 900) as indicated by the data in figure 5. It 

is not known definitely if the condition of the bed indicated by the photo-

graphs persisted throughout the entire experiment , however, previous 

experience with the same flume suggests the possibility. As the distance 

downstream from the source increases the s lope of the er z (x) curve be-z 
comes constant, which indicates a constar..t coefficient of lateral diffusion, 

K = 15. 1 square centimeters per second. z 
.F'igure 7 illustrates the use of equations 6 and 7 in determining the 

Figure 7. --Intensity and scale of turbulence as determined from limits of 

dispersion data 

magnitudes of the intensity and integral scale of turbulence from experi-

mental dispersion data obtained close to and far from the source. Due to 

the apparent shift in turbulence characteristics in the range (900 < x < 1500)/ 



B . View of 
bed looking 
downstream 
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Figure 6 . - -Flume bed after the experiment . 
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use of experimental data obtained at the limiting distances from t he source 

would in this case require that estimates of Q/'0
8 

and Lt be based 

on different sets of turbulence characteristics. Also, in view of the limi-

tations of the polyethylene-particle technique, the reliability of the dis-

persion measurements obtained near the source, where small scale motion 

is important, is questionable. Specifically, the measurements obtained at 

x = 15 and 30 centimeters are open to question because the diameter of the 

particles, the compartment spacing, er , and the diameter of the tip of z 
the funnel through which the particles were ejected, were all of the same 

order of magnitude. 

Consequently, the method of estimating turbulence characteristics which 

uses an assumed Lagrangian correlation function is considered preferable 

for interpreting the results of this experiment. This method is illustrated 

by figures 8 and 9 • The correlation function 

R 1 (a) w = e 

Figure 8. --Theoretical solution of diffusion equation with 

R ·· 1 (a) 
w = e 

.w 
Lt 
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Figure 9. --Standard deviation of lateral distribution as a function of 

dispersion time 
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was assumed and solutions 10b and 10c of equation 10 were used to plot 

the theoretical 
(j z 

~Lt 
(r:!-) curve in figure 8. In figure 9, 

the experimental data indicating the (T {t) relationship obtained by experi-z 
ment were plotted. Figure 9 was superimposed on figure 8 in the posi-

tion which corresponded to the best fit of the entire range of data to the 

theoretical curve. The ratio of the abscissas then defined the integral 

scale of turbulence 

= 2. 8 seconds 

and the ratio of the ordinates defined the intensity of turbulence 

1 
-u s 

(j z 
::I 1 

Z.8x62.5(6.5) =0.037 
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The principal advantage of this method is that it involves the entire range 

of data, not only data obtained at limiting distances from the source. 
1-===· 

With the values of Lt and"\} w'z as determined in the preceding para-

graph, equations 10a, !Ob, and 10c were used to construct the theoretical 

curves shown in figures 5 and 7. 

Figure 10 was plotted to indicate the manner in which the coefficient of 

Figure 10. --Lateral diffusion coefficient as a function of distance from 

source 

lateral diffusion, K , approaches a constant as the distance from the z 
source increases. The manner of approach depends in part on how K is z 
defined. The K (x) relationship is shown in figure 10 for the two alternate z 
definitions 

I 
do- a u do- z 

K z s z = = - -z 2 dt 2 dx 
( 11) 

and 
er z u IT z 

K z s z = - --z Zt 2 X 
(I la) 

The experimental values of K corresponding to equation 11 were obtained z 
by graphical differentiation of the data plotted in figure 5. Values of K z 
corresponding to equation l la were computed directly from the data. The 

theoretical curves were obtained from equations I0b and 10c by using the 

computed values of Lt = 2. 8 seconds and w'z = 5. 38 square centimeters 

per second squared. Although the diffusion coefficient as defined in equation 
l la appears frequently in the literature and the coefficients defined in equa-

tions 11 and l la both approach the same limiting value as the distance 

from the source increases, the definition given in equation 11 is prefer-

able because it is consistent with the theory of diffusion by continuous move-

ments and because it approaches the limiting value, 

lim K = constant, more rapidly. z 
'· x-> oo 
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Semi-empirical equations which relate the limiting value of K to mean z 
flow parameters in a broad rigid-boundary open channel have been derived 

by both Orlob (1961) and Elder (1959). Orlob 1s equation (1961), which was 

based on experimental observations of lateral turbulent diffusion at the 

water surface of a laboratory flume with extreme bottom roughness is 

in which 

In these equations 

K z = 0. 085 cf, (f) EI/ 3 ( L U) 4/3 
t s 

~)(f) = f5/ 6 ( l _ ..!, -vifs\- I/ 3 
K 'I 

E = UgS 
e 

E is the rate of energy dissipation per unit mass of fluid in a 

broad open channel 

f is the Darcy-Weisbach friction factor 

K is the von Karman turbulence constant and equals o. 4 

U is the mean flow velocity 

g is the acceleration of gravity 

S is the slope of the energy gradient e 

U is the mean flow velocity at the water surface. s 

Elder 1s equation (1959), which was confirmed experimentally in a small 

flume with a smooth boundary for very small flow depths, is 

( 12) 

( 13) 

( 14) 



Kz = 0.23 D ~ 

in which 

D is the mean depth of flow 

V .,. ,£ p = -f'inse is the shear velocity at the bed of the channel. 
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( 15) 

If values of the mean flow parameters determined in this experiment 

are used, equation 12 yields K = 20. 4 square centimeters per second z 
and equation 15 yields K = 14. 3 square centimeters per second. Both z 
of these values of K compare quite well with the value K = 15.1 square z z 
centimeters per second determined from the data in this experiment. 

Equation 12 is based on Kolmogoroff' s similarity hypothesis for small-

scale turbulence components whereas the extent of dispersion at large 

times is generally believed to be controlled mainly by the large-scale com-

ponents. Due to this apparent contradiction there may be conceptual advan-

tages to a relationship of the form of equation 15. 

Application to Practical Problems 

In order to predict the lateral diffusion pattern in a channel in which the 

mean flow conditions are known, the first and most important requirement 

is to estimate K by using a relationship such as equation 12 or equation z 
15. The second requirement is to estimate X (see figure 5), which 

0 

defines the point at which an extension of the straight-line portion of the 

er z (x) curve intersects the x axis. Next, by using 2K / if as a slope z z s 
and X as an intercept, CT z is established as a function of x which is 

0 Z 
valid for large distances from the source. If the Lagrangian correlation 

function is known, CT z (x) can be established for the range of values of x z 
where K varies. z 



If the correlation function R , (a) = e w is assumed then, 

X = -fi:1 Lt . K is constant for x > 6 X , and equations 10a 0 S . Z ......, 0 

2.nd lOb may be used to predict the diffusion pattern near the source. 
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A::rnuming that the numerical value of K = w' 2. L is known application z t • . 
of eque.ticns 10a and 10b requires knowledge of either L or~. Lt ,-- t 
present neither Lt nor -V ~,--;-z can be determined for alluvial channels, 

except by experiment. Fo!' predicting dispersion at very large distances 

from the source the error introduced by assuming X = 0 would gener-o 

CONCLUSIONS 

A review of the theory of turbulent diffusion by continuous movements as 

applied to open cha.nnels coupled wit h the analypis of experimental diffusion 

data for one set of flow conditions in a laboratory alluvial channel gives rise 

to the following conclusions: 

1. The statistical theory of diffusion by continuous movements in a homo-

geneous turbulence field appears to have useful application in the study of 

lateral turbulent diffusion in alluvial channels. 

2. The scale and intensity of the lateral turbulence components at the 

surface of an alluvial channel with uniform flow earl be estimated by analy-

zing observations of the lateral dispersion of small polyethylene particles 

floating on the surface. 

3. The coefficient of lateral diffusion in an alluvial channel reaches a 

limiting constant value, in accordance with turbulent diffusion theory, as 

the distance from the source is increased. Indications are that the dis-

tance required for the diffusion coefficient to become contstant is quite 

small in comparison to the length scale of most diffusion phenomena in 

natural s t reams which are of practical interest . 
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4. The assumption that the Lagrangian velocity correlation function is 

exponential in form appears to be a useful first approximation in consider-

ing turbulent diffusion in an alluvial channel. This assumption permits an 

approximate prediction of the diffusion pattern near the source. 

5. It appears that it will be possible to derive for alluvial channels a 

relationship between the limiting value of the lateral diffusion coefficient 

and mean flow, channel-geometry, and sediment parameters which is ana-

logous to the semi-empirical relationships for rigid-boundary open chan-

nel::·. derived by -:rlob (1961} anJ. E hler ( I::5 0). 
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