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ABSTRACT

SADDLEPOINT APPROXIMATION TO FUNCTIONAL EQUATIONS

IN QUEUEING THEORY AND INSURANCE MATHEMATICS

We study the application of saddlepoint approximations to statistical inference when

the moment generating function (MGF) of the distribution of interest is an explicit or an

implicit function of the MGF of another random variable which is assumed to be observed.

In other words, let W (s) be the MGF of the random variable W of interest. We study the

case whenW (s) = h{G (s) ;λ}, where G (s) is an MGF of G for which a random sample can

be obtained, and h is a smooth function. If Ĝ (s) estimates G (s), then Ŵ (s) = h{Ĝ (s) ; λ̂}

estimates W (s). Generally, it can be shown that Ŵ (s) converges to W (s) by the strong

law of large numbers, which implies that F̂ (t), the cumulative distribution function (CDF)

corresponding to Ŵ (s), converges to F (t), the CDF ofW , almost surely. If we set Ŵ∗ (s) =

h{Ĝ∗ (s) ; λ̂∗}, where Ĝ∗ (s) and λ̂∗ are the empirical MGF and the estimator of λ from

bootstrapping, the corresponding CDF F̂ ∗ (t) can be used to construct the con�dence band

of F (t).

In this dissertation, we show that the saddlepoint inversion of Ŵ (s) is not only fast,

reliable, stable, and accurate enough for a general statistical inference, but also easy to

use without deep knowledge of the probability theory regarding the stochastic process of

interest.

For the �rst part, we consider nonparametric estimation of the density and the CDF of

the stationary waiting times W and Wq of an M/G/1 queue. These estimates are computed

using saddlepoint inversion of Ŵ (s) determined from the Pollaczek-Khinchin formula. Our

saddlepoint estimation is compared with estimators based on other approximations, includ-

ing the Cramér-Lundberg approximation.
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For the second part, we consider the saddlepoint approximation for the busy period

distribution FB (t) in a M/G/1 queue. The busy period B is the �rst passage time for

the queueing system to pass from an initial arrival (1 in the system) to 0 in the system.

If B (s) is the MGF of B, then B (s) is an implicitly de�ned function of G (s) and λ, the

inter-arrival rate, through the well-known Kendall-Takács functional equation. As in the

�rst part, we show that the saddlepoint approximation can be used to obtain F̂B (t), the

CDF corresponding to B̂ (s) and simulation results show that con�dence bands of FB (t)

based on bootstrapping perform well.
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Summary of Dissertation

We study the application of saddlepoint approximations to statistical inference when the

moment generating function (MGF) of the distribution of interest is an explicit or an implicit

function of the MGF of another random variable which is assumed to be observed. In other

words, let W (s) be the MGF of the random variable W of interest. We study the case

when W (s) = h{G (s) ;λ}, where G (s) is a MGF of G for which a random sample can be

obtained, and h is a smooth function. If Ĝ (s) estimates G (s), then Ŵ (s) = h{Ĝ (s) ; λ̂}

estimates W (s). Generally, it can be shown that Ŵ (s) converges to W (s) by the strong

law of large numbers, which implies that F̂ (t), the cumulative distribution function (CDF)

corresponding to Ŵ (s), converges to F (t), the CDF ofW , almost surely. If we set Ŵ∗ (s) =

h{Ĝ∗ (s) ; λ̂∗}, where Ĝ∗ (s) and λ̂∗ are the empirical MGF and the estimator of λ from

bootstrapping, the corresponding CDF F̂ ∗ (t) can be used to construct the con�dence band

of F (t).

With bootstrapping in mind, it is clear that the success of this approach depends on

the existence of a fast, reliable, and stable method of inverting Ŵ (s) to obtain F̂ (t). Also,

one might consider deriving an asymptotic formula based on W (s) and attempt to use the

empirical version of that asymptotic formula with Ŵ (s). However, deriving asymptotic

formulas requires deep knowledge of the stochastic processes of interest and probability

theory and this may not be possible.

In this dissertation, we show that the saddlepoint inversion of Ŵ (s) is not only fast,

reliable, stable, and accurate enough for a general statistical inference, but also easy to use

without requiring deep knowledge of the probability theory regarding the stochastic process
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of interest. In the preface of An Introduction to the Bootstrap, it was remarked, "Statistics is

a subject of amazingly many uses and surprisingly few e�ective practitioners. The traditional

road to statistical knowledge is blocked, for most, by a formidable wall of mathematics. Our

approach here breeches that wall. The bootstrap is a computer-based method of statistical

inference that can answer many statistical questions without formulas. Our goal in this book

is to arm scientists and engineers, as well as statisticians, with computational techniques

that they can use to analyze and understand complicated data sets." Though the author

dares not compare his work to the "primary reference" of the bootstrap method, he believes

the approach in this dissertation is very similar to the remark in spirit - if the MGF is

available, it is possible to do meaningful statistical inference without seemingly formidable

knowledge of mathematics and probability, through the saddlepoint approximation.

The most famous such formula in queueing theory is the Pollaczek-Khinchin formula for

the classical M/G/1 queue. This queue has Poisson process input, general service time, and

a single server that uses FCFS (�rst-come, �rst-served) principle. The Pollaczek-Khinchin

formula speci�es W (s), the MGF of the stationary waiting time distribution, in terms of

G (s), the MGF of the general service time distribution. Chapter 1 considers nonparametric

estimation of the density and the CDF of the stationary waiting time W of an M/G/1

queue. These estimates are computed using saddlepoint inversion of Ŵ (s) determined from

the Pollaczek-Khinchin formula. The bootstrap is also used to construct a con�dence band

for the CDF. Implementation of the bootstrap becomes computationally feasible primarily

with the use of saddlepoint approximation.

The stationary waiting time in systemW consists of the stationary waiting time in queue

Wq plus the service time G. Chapter 2 considers estimation of the CDF for Wq, or Fq (t)

using saddlepoint methods similar to those in Chapter 1. This particular distribution has

received considerable attention in the area of insurance mathematics. Distribution Fq (t),

in the insurance context gives the probability of eventual ruin (bankruptcy) for the com-

pany when it starts with initial cash reserve t and is subject to a compound distribution

of claims. The prominence of such ruin computations has lead to various procedures in the
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insurance/applied probability literature for approximating Fq (t). Among the procedures is

the well-known Cramér-Lundberg approximation. Our saddlepoint estimation is compared

with estimators based on these other approximations including the Cramér-Lundberg ap-

proximation. The comparison shows that saddlepoint approximations are more accurate

than all other approximations when cash reserves are small to moderately large but not

excessively large. For very large cash reserves all approximations appear to work equally

well although saddlepoint approximation also shows wider applicability.

Chapter 3 considers saddlepoint approximation for the busy period distribution FB (t)

in a M/G/1 queue. The busy period B is the �rst passage time for the queueing system to

pass from an initial arrival (one in the system) to 0 in the system. If B (s) is the MGF of

B, then B (s) is an implicitly de�ned function of G (s) and λ, the inter-arrival rate, through

the well-known Kendall-Takács functional equation. As in Chapter 1, we show that the

saddlepoint approximation can be used to obtain F̂B (t), the CDF corresponding to B̂ (s)

and simulation results show that con�dence bands of FB (t) based on bootstrapping perform

well.

In Chapter 4, we re-direct our attention from the saddlepoint approximation to moment

estimators based on Ŵ (s) and B̂ (s). We investigate the bootstrap con�dence interval (CI)

of EW , VarW , EB, and VarB. We show that the CI based on the percentile is the only

viable method of the methods we consider and suggest a modi�ed bootstrap percentile CI

as a better method for these cases, based on simulation results.

3



Chapter 1

Saddlepoint Approximation to

Pollaczek-Khinchin Formula

1.1 Chapter overview

When the service time distribution and the arrival rate are given, the stationary waiting time

distribution can be recognized up to its moment generating function (or Laplace transform)

only by Pollaczek-Khinchin formula and because of this restriction, the cumulative distri-

bution function (CDF) or density function of the stationary waiting time distribution can

only be obtained by direct inversion if possible (see [47, 48], and [9] for the matrix-geometric

solution for phase type service distribution, �1.4 for Erlang service time distribution, [15]

and [7] for certain heavy tailed service time distributions, and [52] for Pareto service time

distribution), asymptotic approximation (see �2.1 and the reference therein), or through

numerical inversion methods ([6],[4],[62]). In fact, at least in queueing theory it has been a

prominent example to illustrate the numerical Laplace transform inversion method. For a

general overview of the numerical Laplace transform inversion method, see [20].

Let F (t) and f (t) = F ′ (t) be the unknown CDF and the density functions for the

stationary waiting time in a M/G/1 queueing system. This chapter shows how saddlepoint

approximation can be used to formulate nonparametric estimators F̂0 (t) and f̂0 (t) for these
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functions based on the data obtained from observation of the queue.

To obtain these saddlepoint estimators, we must �rst consider the MGFs involved, in

particular the MGF of f (t) denoted as W (s), the moment generating function (MGF) of

stationary waiting time in system (so waiting time W = Wq + G, where Wq is stationary

waiting time or delay and G is the subsequent service time.) Let G (s) be the moment

generating function of the service time distribution. Then, the Pollaczek-Khinchin formula

for M/G/1 is

W (s) =
(1− ρ) sG (s)

s+ λ− λG (s)
, (1.1.1)

where λ is the arrival rate, G′ (0) = 1/µ is the average service time, and ρ = λ/µ < 1 is the

stability parameter indicating stationarity when less than 1.

The saddlepoint inversion ofW (s) could lead to approximations F0 (t) and f0 (t) however

λ and G (s) in (1.1.1) are unknown. We assume it is possible to obtain a random sample of

service times, {Gj : j = 1 . . . , n} and inter-arrival times {Ij : j = 1, . . . , n} iid∼ Exp (λ). For

simplicity, we assume that the random sample sizes of {Ij} and {Gj} are both n though

this assumption can be relaxed. Let

ρ̂ =
λ̂

n

n∑
j=1

Gj =

∑
Gj∑
Ij

(1.1.2)

where λ̂ = 1/In is the maximum likelihood estimator of the rate of inter-arrival times. Then,

we obtain

Ŵ (s) =
(1− ρ̂)sĜ (s)

s+ λ̂− λ̂Ĝ (s)
, (1.1.3)

which is exactly the plug-in estimator of the MGF ofW , i.e., G (s) is replaced by its empirical

MGF

Ĝ (s) =
1

n

n∑
i=1

esGi . (1.1.4)

Ŵ (s) is inverted using saddlepoint methods to determine F̂0 (t), the saddlepoint CDF

approximation, and f̂0 (t), the saddlepoint density approximation, as approximations to

F0 (t) and f0 (t) which serve as approximations for F (t) and f (t).
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The remaining part of this chapter is organized as follows: In the rest of this section,

we introduce the saddlepoint approximation. In Section 2, we study the properties of the

plug-in estimators, Ŵ (s) and K̂ (s). They are locally uniformly a.s. convergent to W (s)

and K (s), respectively. We also investigate the limit behavior of n−δ{Ŵ (s) −W (s)} and

derive the result regarding the convergence rate of F̂0 (t)− F0 (t).

In Section 3, we show how the saddlepoint approximation can be used to obtain the

bootstrap con�dence interval for the CDF of W . In Section 4, we perform the parametric

estimation of the CDF and PDF of M/Ek/1 queue through analytic inverse Laplace trans-

form and compare with the saddlepoint approximations. In the Appendix we give the proof

of the theorems which are not directly related to the theme of this chapter but which we

use in Section 2.

1.1.1 Saddlepoint density and CDF approximation methods

Let K (s) be the cumulant generating function (CGF) of the stationary waiting time distri-

bution W such that

K (s) = logW (s) ,

and let Φ and φ be the CDF and PDF of the standard normal distribution respectively.

Then the Lugannani and Rice saddlepoint approximation for the CDF F (t) of W is de�ned

in [43] by

F0 (t) =


Φ (rt) + φ (rt) (1/rt − 1/ut) if t 6= K′ (0)

1
2 + K′′′(0)

6
√

2πK′′(0)3/2
if t = K′ (0) ,

where rt and ut are de�ned by

rt = sgn (st)
√

2 {stt−K (st)}

ut = st
√
K′′ (st),

6



and st denotes the unique solution to the saddlepoint equation,

K′ (st) = t (1.1.5)

over the range st ∈ (−∞, c), where (−∞, c) is the largest open neighborhood of 0 on which

K (s) is convergent. Using the same notation, the saddlepoint density estimation is de�ned

in [24] by

f (t) =
φ (rt)√
K′′ (st)

.

Since K′′ (s) > 0 over (−∞, c), the solution is well de�ned. However, it is worth noting

that the solution of the saddlepoint equation is meaningful only when st ∈ (−∞, c), which

should be considered when numerical implementations is involved. See the remarks of §1.1.4

of [17] for the related explanation.

Saddlepoint approximations require higher-order derivatives of K (s), K′ (s) and K′′ (s)

in particular. Using our plug-in estimator (1.1.3), we have

K̂ (s) = log Ŵ (s) = log
(1− ρ̂) sĜ (s)

s+ λ̂− λ̂Ĝ (s)
.

Taking the �rst derivative gives the estimators of K′ as

K̂′ (s) =
d

ds
{log Ŵ (s)} =

λ̂{1− Ĝ (s)}Ĝ (s) + s(s+ λ̂)Ĝ′ (s)
sĜ (s) {s+ λ̂− λ̂Ĝ (s)}

, (1.1.6)

where

Ĝ′ (s) =
d

ds
Ĝ (s) =

1

n

n∑
i=1

Gie
sGi .

Further di�erentiation gives the expression for second derivative of K̂ (s) needed in saddle-

point approximations. We also note that the empirical saddlepoint approximation is de�ned

by

F̂0 (t) =


Φ (r̂t) + φ (r̂t) (1/r̂t − 1/ût) if t 6= K̂′ (0)

1
2 + K̂′′′(0)

6
√

2πK̂′′(0)3/2
if t = K̂′ (0) ,

7



where K̂(j) (0), j = 1, 2, 3, 4 can be calculated with Lemma 23.

It is known that DkĜ (s)
a.s.−−→ DkG (s) for any �xed s and k ∈ N0, where D is the

di�erentiation operator (D0 is the identity operator) and N0 is the set of all natural numbers

and 0. Moreover, it has been proved in [31] that for any �nite interval of the region on which

G is convergent, DkĜ (s)
a.s.−−→ DkG (s) and Dk log Ĝ (s)

a.s.−−→ Dk log G (s) uniformly, which is

sometimes called locally uniform a.s. convergence in this paper.

From now on, we use F0 (t) for the Lugannani and Rice saddlepoint CDF approximation

using the true CGF, and F̂0 (t) for the Lugannani and Rice saddlepoint CDF approximation

using the empirical CGF. f0 (t) and f̂0 (t) are de�ned similarly.

The idea of using the empirical MGF for saddlepoint approximations was proposed in

[27] to apply to bootstrap simulation approximation. In [31], the properties of saddlepoint

approximation using the empirical CGF were investigated and considered useful when the

CGF of the interested distribution is intractable and only a sample from the distribution

is available. As in [31], we can decompose the error of using the empirical saddlepoint

approximation,

F̂0 (t)− F (t) = F̂0 (t)− F0 (t) + F0 (t)− F (t)

and it can be shown that F̂0 (t)
a.s.−−→ F0 (t), and F̂0 (t) is asymptotically biased unless F0 (t) =

F (t). However, as shown in [17], saddlepoint estimation is highly accurate and in most

instances this asymptotic bias is so small that it can be ignored for practical purposes.

1.2 Properties of empirical cgf and the plug-in estimator

We investigate properties of our plug-in estimator (1.1.3) and the resulting saddlepoint

estimate of the PDF and CDF of the stationary waiting time distribution of M/G/1 queues.

In our discussion, we assume the inter-arrival time distribution (Ii) and the service time

distribution (Gi) have �nite second moments and are independent of each other.

For the results regarding the asymptotic normality of Ŵ (s) and the asymptotic result

regarding F̂0 (t), we mostly follow the approach of [31] though most of the proofs are the

8



author's own.

1.2.1 Solvability of the saddlepoint equation

We now consider solvability of the saddlepoint equation (1.1.5) and its empirical counter

part t = K̂′ (ŝt) with the assumption that either G (s) is known or the empirical MGF Ĝ (s)

is obtained.

Note that K′ (s) (and its empirical counter part K̂′ (s)) is a strictly increasing continuous

function. Let (−∞, c) be the largest open connected set including 0 on which K′ (s) is

convergent. Because K′ (s) is continuous, K′ {(−∞, c)}, its image under K′, is also connected

(Theorem 23.5 of [46]).

Thus, for any t ∈ K′ {(−∞, c)}, the saddlepoint solution st exists by the intermediate

value theorem (Theorem 24.3 of [46]) and the fact K′ is a one to one function on (−∞, c).

Daniels ([24], §6) showed that F (t) = 0 for t < a if and only if K′ (st) = t has no real

root for t < a, which implies, with the fact mentioned above, that

lim
s→−∞

K′ (s) = inf {t : F (t) > 0} , (1.2.1)

the in�mum of the support of W , which will be denoted by w0. We investigate how w0 =

lims→−∞K′ (s) is related to G (s) �rst.

Lemma 1. The in�mum of the support of W is the same as the in�mum of the support of

G. Thus, w0 = g0, where g0 is the in�mum of the support of G.

Proof. We have

lim
s→−∞

d

ds
logW (s) = lim

s→−∞

λ {1− G (s)} G (s) + s (s+ λ)G′ (s)
sG (s) {s+ λ− λG (s)}

= lim
s→−∞

λ {1− G (s)}
s {s+ λ− λG (s)}

+ lim
s→−∞

{
s+ λ

s+ λ− λG (s)
· G
′ (s)

G (s)

}
= lim

s→−∞

G′ (s)
G (s)

= lim
s→−∞

d

ds
log G (s) .

9



Thus, for our plug-in estimator K̂ (s), using the same argument as in the proof of the

above lemma with the corresponding estimator instead, we obtain that G(1), the �rst order

statistic, is the in�mum of the support of K̂ (s) by Lemma 22.

If lims↗cK′ (s) = ∞, then the saddlepoint equation has a unique solution for any t ∈

(g0,∞), which is known as steepness (p. 86 and p.117 of [10]). We now show what property

of G (s) makesW (s) steep. To understand this better, we need to consider the behavior of a

MGF at the boundary point of the domain of the MGF. For any MGF (or CGF), the largest

connected set containing 0 will be called a convergence strip of that MGF (or the CGF).

There are two di�erent types of convergence strip, namely open interval, (−∞, b), and half

open (closed) interval, (−∞, b] (b <∞). We note that lims↗b G (s) =∞ if the convergence

strip is (−∞, b) and G (b) <∞ if the convergence strip is (−∞, b].

For the steepness property of K (s), we �rst note that by the de�nition of W (s), if

the service time distribution has MGF G (s) which is convergent on (−∞, b) (or (−∞, b]),

then the convergence strip of W (s) (and K (s) and K′ (s)) must be included in (−∞, b) (or

(−∞, b]), i.e., the convergence strip of W (s) must be a subset of the convergence strip of

G (s).

If c is the smallest positive root of D (s) = s+λ−λG (s), the denominator ofW (s), and

it exists in (0, b], then

lim
s↗c
K′ (s) =∞,

or W (s) is steep.

Note that 0 is a removable singularity of W (s) (see Lemma 23) and we actually under-

stand W (s) as

W (s) =


(1−ρ)sG(s)
s+λ−λG(s) if s 6= 0

1 if s = 0

,

which makes W (s) continuous on the convergence strip of W (s). The same interpretations

are used for K (s) = logW (s), K′ (s) = {logW (s)}′, etc and their corresponding estimator

Ŵ (s), and so on.

10



First, we check when c exists.

Lemma 2. Let G (s) have the open convergence strip (−∞, b) or (−∞, b] and de�ne D (s) =

s+λ−λG (s). Then, the unique positive root of D (s), c(≤ b) exists if and only if b > 0 and

lim
s↗b
D (s) ≤ 0.

Proof. Observing D (0) = 0, and D′ (0) = 1 − λG′ (0) = 1 − ρ > 0 (from the stability

condition), and G′ (s) is a strictly increasing function (G′′ (s) > 0), we can conclude that

D′ (s) = 1 − λG′ (s) has only one (positive) root d if it exists in (0, b) and D (d) > 0 is the

maximum by the �rst derivative test.

Therefore, by the intermediate value theorem, the unique positive root c of D (s) satis-

fying d < c ≤ b exists if and only if lims↗bD (s) ≤ 0.

Thus, the convergence strip of W (s) is (−∞, c) if c exists or is the same as the conver-

gence strip of G(s) (either (−∞, b) or (−∞, b]) if c does not exist. For Ŵ (s), ĉ, the positive

root of D̂ (s) = s+ λ̂− λ̂Ĝ (s), always exists because lims→∞ Ĝ (s) =∞. The existence of c

also depends on λ:

Example 3. Let G follow the inverse Gaussian distribution with EG = VarG = 1. Then

its CGF is

1−
√

1− 2s for s ≤ 1

2
,

which has �rst derivative, 1/
√

1− 2s for s ≤ 1/2. Thus, G (s) is steep. Solving the equation,

1/2 + λ− λG (1/2) = 1/2 + λ− λe = 0,

with respect to λ, we have λ = 1/{2(e−1)} ≈ 0.2909884. Because dD/dλ = d {s+ λ− λG (s)} /dλ =

1− G (s) < 0 for s > 0, we have

D (1/2)


< 0 if λ > 1/{2(e− 1)},

> 0 if λ < 1/{2(e− 1)}.

11
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Figure 1.2.1: The graphs of D (s) = s + λ − λG (s), where G (s) = exp(1 −
√

1− 2s) with λ = .2
(left), 1/{2(e− 1)} ≈ 0.2909884 (middle), and .4 (right).

Thus, if λ ≥ 1/{2(e− 1)}, then c exits and if λ < 1/{2(e− 1)}, c does not exist. See Figure

1.2.1 for the case of λ = 0.2, 0.290988, and 0.4 respectively.

Note that if the convergence strip of G (s) is (−∞, b), W (s) is steep since lims↗b G (s) =

∞ implies lims↗bD (s) = −∞. For the case of (−∞, b], if b > 0, we have

lim
s↗b
K′ (s) =

λ {1− G (b)} G (b) + b (b+ λ) lims↗b G′ (s)
bG (b) {b+ λ− λG (b)}

,

so that W (s) is steep if G (s) is steep at b or c (≤ b) exists. For the case of (−∞, b] and

b = 0, we have lims↗0K′ (s) = EW = EG + λEG2/{2 (1− ρ)} (see Lemma 23 or use

W =
∑N

j=1 Vj + G1), so that W (s) is steep if EG2 = ∞. These can be summarized as

follows.

Lemma 4. W (s) is steep if and only if one of the following holds:

1. c exists,

2. G (s) is steep at b > 0, or

3. b = 0 and EG2 =∞ .

In summary, we have the following proposition.
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Proposition 5. If W (s) is steep, then the saddlepoint equation (1.1.5) can be solved for

any t ∈ (g0,∞) where g0 = inf {t : G (t) > 0}. If not, then the saddlepoint equation (1.1.5)

can be solved for any t ∈ (g0,K′ (b)]. For the saddlepoint equation of the plug-in estimator

(1.1.6), it can be solved for any t ∈ (G(1),∞).

Proof. We only need to show the part for the plug-in estimator (1.1.6), which can be derived

from the fact that Ĝ (s) is convergent on R and lims→∞ Ĝ (s) =∞.

Example 6. Suppose G follows Pareto(.8,5) distribution which has the density,

5

(
4

5

)5 1

x6
1[4/5,∞) (x) .

Then, G (s) is de�ned only on (−∞, 0] and EG2 = 16/15. Thus, W (s) is not steep and

the saddlepoint equation can be solved for t ∈ (.8, 1] only. Because the nth raw moment

of the Pareto(α, β), βαn/ (α− n) exists for α > n, W (s) is steep at 0 if α ≤ 2. Note that

G (s) itself is not steep if α > 1 since lims↗0{log G (s)}′ = EG = βα/ (α− 1) < ∞. Thus,

Pareto(1.5, β) is an example for which G (s) is not steep but it makes W (s) steep.

1.2.2 Properties of the plug-in estimators

We note that EĜ (s) = 1
n

∑n
i=1Ee

sGi = G (s) and similarly, for any k = 0, 1, . . . ,

EDkĜ (s) = DkG (s) .

It is proved in [31] that in the space of continuous functions with the supremum norm,

√
n{DkĜ (s) −DkG (s)} converges weakly to a Gaussian process of zero mean and the co-

variance structure of

nCov{DkGn (s) , DkGn (r)} = D2kG (s+ r)−DkG (s)DkG (r)

on any compact subset of (−∞, b/2). Note that only on (−∞, b/2] the existence ofE{Ĝ (s)2} =

G (2s) is guaranteed and because of it, the central limit theorem (CLT) cannot be applied

13



outside of (−∞, b/2).

If b <∞, and s is on the outside of (−∞, b/2) (i.e., s ∈ (b/2, b)), then by Marcinkiewicz-

Zygmund strong law (see Theorem 3.2.3 of [65] or �6.7 of [35]),

Ĝ (s)− G (s) = o(n−δ), (1.2.2)

for any δ satisfying 0 ≤ δ < 1− s/b < 1/2. We note that this also holds for any s ∈ (−∞, b)

even if b =∞ with the condition 0 ≤ δ < 1/2.

As mentioned in [31], for s > b/2(< ∞)� ns/b−1
{
Ĝ (s)− G (s)

}
has a nondegenarate

limit distribution if and only if etG is in some domain of attraction (and the limit distribution

is stable. See �5 of Chapter 17 of [30] or �2 of Chapter 15 of [61]). Because we do not assume

etG to follow a stable law, for s ∈ (b/2, b), we will use (1.2.2) only to obtain the convergence

rates of DkŴ (s) and DkK̂ (s).

We now prove similar results for Ŵ (s) and K̂ (s). Since we are interested in applying the

saddlepoint approximation method, we �rst show that the the convergence strip of Ŵ (s)

converges to the convergence strip of W (s).

We �rst show that if c exists, then ĉ→ c a.s. For this, we �rst need the following lemma.

Lemma 7. Suppose the unique (and positive) root of the equation D′ (s) = 0 (, or G′ (s) =

λ−1), d exists on (−∞, b) and let d̂ be the unique (and positive) root of equation D̂′ (s) = 0

(, or Ĝ′ (s) = λ̂−1). Then d̂→ d a.s.

Proof. Because G′ (s) is a strictly increasing function, for any ε > 0 satisfying ε < d and

d+ ε < b, we have G′ (d− ε)− λ−1 < 0 < G′ (d+ ε)− λ−1. Since Ĝ′ (d± ε)→ Ĝ (d± ε) a.s.

and λ̂−1 → λ−1 a.s., we have

Ĝ′ (d− ε)− λ̂−1 < 0 < Ĝ′ (d+ ε)− λ̂−1

for all but �nite n.

Therefore, d̂ ∈ (d− ε, d+ ε) for all but �nite n and since ε > 0 can be arbitrary small,

d̂→ d a.s.

14



As we show in the proof of Lemma 2, D (s) has the maximum at d and D (s) is strictly

decreasing for s > d and c must be greater than d.

Lemma 8. Suppose c, the positive root of D (s) = 0, exists (c ≤ b) and let ĉ be the positive

root of D̂ (s) = s+ λ̂− λ̂Ĝ (s). Then ĉ
a.s.−−→ c.

Proof. Suppose �rst that c < b. and we follow the proof of Theorem 3.10.1 (page 95) of [8].

For any ε satisfying ε < b− c and ε < c, we have

D (c− ε) > 0 > D (c+ ε)

and since D̂ (c± ε) converges to D (c± ε) a.s., we have

D̂ (c− ε) > 0 > D̂ (c+ ε)

for any su�ciently large n in which, ĉ ∈ (c− ε, c+ ε). Because ε was arbitrary, ĉ converges

to c a.s.

For the case of c = b, or b + λ − λ lims↗b G (b) = 0, we have lims↗b G (b) = b/λ + 1, so

that G (b) is convergent at b with the value b/λ+ 1. Thus, D̂ (b)→ D (b) a.s. too.

The above argument is valid for showing ĉ > c− ε but cannot be used to show ĉ < c+ ε

since D (c+ ε) is not de�ned. For this, we use d which is de�ned in Lemma 7.

As remarked after Lemma 7, d < c and since d̂→ d a.s., we have d̂ < c for all but �nite

n. Therefore, D̂ (s) is decreasing on [c,∞) and D̂ (c+ ε) < D̂ (c) for all but �nite n.

Because D̂ (c)→ D (c) = 0 a.s., we conclude that D̂ (c+ ε) < 0 for all but �nite n, which

implies ĉ < c+ ε for all but �nite n.

Theorem 9. With the same notation as in Lemma 8, ĉ− c = o(n−δ) a.s. for any 0 ≤ δ <

min {1/2, 1− c/b}. If c < b/2, or c = b/2 and G (b) <∞, then

√
n (ĉ− c)⇒ N

[
0, λ2 {1− 2G (c) + G (2c)} /

{
1− λG′ (c)

}2
]
.
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Proof. Suppose �rst c ≤ b/2. Let {Ij} be iid observations of the inter-arrival time with

Exp (λ) distribution. By the multivariate CLT, if we set I = n−1
∑n

j=1 Ij and G =

n−1
∑n

j=1Gj , we have

√
n


 I

Ĝ (s)

−
 λ−1

G (s)


⇒ N (0,Σ) ,

where

Σ =

 λ−2 0

0 G (2s)− G (s)2

 .

De�ne h (x, y) = s + x−1 − x−1y and note h{λ−1,G (s)} = s + λ − λG (s) = D (s) and

h{I, Ĝ (s)} = s + λ̂ − λ̂Ĝ (s) = D̂ (s). By the multivariate delta method (Theorem 8.22 on

page 61 of [42]), we have

√
n
{
D̂ (s)−D (s)

}
=
√
n
[
h{I, Ĝ (s)} − h{λ−1,G (s)}

]
⇒ N

[
0, λ2 {1− 2G (s) + G (2s)}

]
.

By the mean value theorem, there exist c′ in between ĉ and c such that

ĉ− c =
D̂ (ĉ)− D̂ (c)

D̂′ (c′)
=

0− D̂ (c)

D̂′ (c′)
=
D (c)− D̂ (c)

D̂′ (c′)
. (1.2.3)

Since Ĝ′ (s) → G′ (s) locally uniformly a.s., it can be shown that D̂′ (s) = 1 − λ̂Ĝ′ (s)

converges uniformly to D′ (s) = 1 − λG′ (s) on any compact subset around c. Since c′ → c

a.s., D̂′ (c′) → D′ (c) (see Theorem 7.3.5 of [66] or �0.1 of [53]). Thus, by Slutsky's lemma,

we obtain

√
n (ĉ− c) =

−1

D̂′ (c′)
√
n
{
D (c)− D̂ (c)

}
⇒ N

[
0, λ2 1− 2G (c) + G (2c)

{1− λG′ (c)}2

]

Now, let 0 ≤ δ < max {1/2, 1− c/b}. Since we assume EI2
i < ∞, for 0 ≤ δ < 1/2, we

obtain λ̂ − λ = o(n−δ) by Marcinkiewicz-Zygmund strong law and Proposition 35. As we
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noted earlier, Ĝ (c)− G (c) = o(n−δ) for 0 ≤ δ < min {1/2, 1− c/b}. Because

∣∣∣D̂ (s)−D (s)
∣∣∣ ≤ ∣∣∣λ̂− λ∣∣∣+

∣∣∣λ̂Ĝ (s)− λ̂G (s)
∣∣∣+
∣∣∣λ̂G (s)− λG (s)

∣∣∣
=
∣∣∣λ̂− λ∣∣∣+ (|λ|+ 1)

∣∣∣Ĝ (s)− G (s)
∣∣∣+ |G (s)|

∣∣∣λ̂− λ∣∣∣
= (|G (s)|+ 1)

∣∣∣λ̂− λ∣∣∣+ (|λ|+ 1)
∣∣∣Ĝ (s)− G (s)

∣∣∣ (1.2.4)

we conclude D̂ (c) − D (c) = o(n−δ). Using (1.2.3) with the same argument about D̂′ (c′),

we obtain the desired result.

Example 10. For M/M/1 queue withG ∼Exp(µ), which has the MGF, G (s) = (1− s/µ)−1.

Therefore b = µ and solving D (s) = 0 with respect s, we have c = µ− λ. By Theorem 9, ĉ

is asymptotically normal if µ− λ < µ/2, or µ < 2λ.

We later learned 1 that our c coincides with the adjustment coe�cient (or the Lundberg

exponent) in ruin probability theory and some similar results of ours were established already.

See [33], [32], [55], or [8] for examples. Note that in the cited references, the arrival rate λ

was assumed to be �xed and in [32] and [55], the mode of convergence of ĉ is the convergence

in probability. [33] was acknowledged in [8] as the original source of the theorem.

We now consider the behavior of ĉ when c does not exist.

Proposition 11. 2If c does not exist, then ĉ→ b a.s.

Proof. As we showed in the proof of Lemma 4, the nonexistence of c implies either b = 0 or

D (b) > 0 (if b > 0). Suppose b = 0. Since G (ε) =∞ for any ε > 0, we have Ĝ (ε)↗∞ a.s.

as n→∞. Thus, for all but �nite n, 0 < ĉ < ε. Because ε is arbitrary, we have ĉ→ 0 a.s.

Now suppose b > 0. Because D̂ (b) → D (b) > 0 a.s., ĉ > b all but �nite n. Again, for

any ε > 0, we have Ĝ (b+ ε)→ G (b+ ε) =∞, which implies D̂ (b+ ε)→ D (b+ ε) = −∞.

Thus, b < ĉ < b+ ε for all but �nite n, which implies ĉ→ b a.s.

As we mentioned, for Ŵ (s), the convergence strip is (−∞, ĉ) since ĉ always exists. Thus,
1Theorem 9 was originally suggested by Dr. Butler for me to prove.
2This is suggested by Dr. Butler and gave the idea of the proof.
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the previous proposition with Lemma 8 shows that the convergence strip of Ŵ (s) converges

to the convergence strip of W (s).

Figure 1.2.2 shows boxplots and the histograms of 104 ĉ of di�erent sample sizes n = 50,

200, 103, 104, 105 with Pareto(0.8,5) service distribution and λ̂ = .5 (i.e., {Ij} were not

used and only {Gj}nj=1 were used). One can see that though the maximum and the the

interquartile range of {ĉ} are decreasing as n increases, the convergence of ĉ to 0(= b) would

be very slowly. Note that since G (s) is convergent on (−∞, 0] only, we do not have any

stochastic order of the convergence for ĉ.

We now show that Ŵ (s), K̂ (s), K̂′ (s), and K̂′′ (s) are reasonable estimators. First, we

have:

Lemma 12. For each s ∈ (−∞, c) and k ∈ N0,

DkŴ (s)
a.s.−−→ DkW (s)

DkK̂ (s)
a.s.−−→ DkK (s) ,

as n→∞.

Proof. Let {Ij} be iid of the inter-arrival time with Exp (λ) distribution and {Gj} be iid of

the stationary service time distribution with mean µ−1 and the variance σ2
G. By the strong

law of large number (SLLN), I
a.s.−−→ λ−1, G

a.s.−−→ µ−1, and DkĜ (s)
a.s.−−→ DkG (s) for each k ∈

N0. For �xed s ∈ (−∞, c), de�ne h : R3 → R by h (x, y, z) =
(
1− yx−1

)
sz/

(
s+ x−1 − x−1z

)
,

which is continuous.

Thus, by the continuous mapping theorem for the almost sure convergence,

Ŵ (s) = h{I,G, Ĝ (s)} a.s.−−→ h
{
λ−1, µ−1,G (s)

}
=W (s) .

The other cases can be shown in similar way.

Theorem 13. For k ∈ N0, D
kŴ and DkK̂ converges to DkW and DkK̂n respectively locally
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Figure 1.2.2: The boxplots and the histograms of 104 ĉ from {Gj}nj=1 with the di�erent sample sizes

n = 50, 200, 103, 104, 105 with Pareto(0.8,5) service distribution. λ̂ is �xed to be 0.5

19



uniformly a.s. on (−∞, c) (i.e., for any [s1, s2] ⊂ (−∞, c), and k ∈ N0,

sup
s1≤s≤s2

∣∣∣DkŴ (s)−DkW (s)
∣∣∣ a.s.−−→ 0

sup
s1≤s≤s2

∣∣∣DkK̂ (s)−DkK (s)
∣∣∣ a.s.−−→ 0).

Proof. We use the same notation as in the proof of Lemma 12. Let [s1, s2] be �xed. As

a MGF of the stationary waiting time distribution when the service time distribution fol-

lows the empirical CDF n−1
∑n

i=1 1[0,Gi] (t), Ŵ (s) is C∞, positive, and non-decreasing on

(−∞, ĉ)3.

Since ĉ
a.s.−−→ c > s2, by discarding �rst �nite Ŵ, we can assume that ĉ > s2 a.s.

We �rst show that Ŵ (s) are (uniformly) equicontinuous on [s1, s2]. Fix n0 such that

|Ŵ ′(s2) − W ′(s2)| < 1 for any n ≥ n0. Then, by the mean value theorem and the non-

decreasing property of Ŵ ′ (s) (Ŵ ′′ (s) > 0), we have that for any n ≥ n0 and r, s ∈ [s1, s2],

∣∣∣Ŵ (r)− Ŵ (s)
∣∣∣ ≤ ∣∣∣Ŵ ′ (s2)

∣∣∣ |r − s| ≤ (W ′ (s2) + 1
)
|r − s| ,

which give us the (uniform) equicontinuity.

Now, we claim that on [s1, s2], Ŵ (s) → W (s) a.s. Let Q be the set of all rational

numbers. By Lemma 12, and the countable sub-additivity of probability measure, for any

s ∈ Q ∩ (−∞, c), Ŵ (s) → W (s) a.s. Let s ∈ [s1, s2] and pick sn ∈ Q ∩ (−∞, c) such that

sn → s. Then,

∣∣∣Ŵ (s)−W (s)
∣∣∣ ≤ ∣∣∣Ŵ (s)− Ŵ (sn)

∣∣∣+
∣∣∣Ŵ (sn)−W (sn)

∣∣∣+ |W (sn)−W (s)| .

The �rst term on the right hand side of the above inequality can be majorized since Ŵ (s)

are (uniformly) equicontinuous. The second term can be majorized since Ŵ (sn)
a.s.−−→W (sn)

and the last term can be majorized since W (s) is continuous.

To be precise, let ε > 0 be given. Pick m0 such that |W (sm) −W (s) | < ε/3 for any

3In [31], the author use problem 13-A-7 of [54], whose proof was not provided in [54]. Even if the same
proof can be used here, we use a di�erent way.
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m ≥ m0. Also, pick m1 such that m ≥ m1 implies |Ŵ (s)−Ŵ (sm) | < ε/3 for any n. Then,

�nally, set m = max {m0,m1} and pick n0 such that |Ŵn (sm) − W (sm) | < ε/3 for any

n ≥ n0. Thus, |Ŵ (s)−W (s) | < ε for any n ≥ n0. Since ε > 0 is arbitrary, we proved the

claim.

From here, we can reach the desired result in several ways. We may use Ŵ (s) is convex

since the point-wise convergence of convex functions implies locally uniform convergence

(Theorem E of [54] or theorem 3.1.4 of [36]), which cannot be used generally in other cases.

We may use that pointwise convergence of equicontinuous function implies the locally

uniform convergence (Exercise 7.16 of [58]) or, we may use that the pointwise convergence

of non-decreasing functions implies the locally uniform convergence (Theorem 37), both of

which can be used for DkŴ cases.

Since log x is a smooth function, locally uniform a.s. convergence of Ŵ (s) transferred

to K̂ (s) = log Ŵ (s) too. For k ≥ 1, we note that

DkK̂ (s) = h{Ŵ (s) , Ŵ ′ (s) , · · · , DkŴ (s)}/{Ŵ (s)}2k,

where h (x1, · · · , xk) is a polynomial of x1, · · · , xk. Thus, locally uniform a.s. convergences

of DkŴ (s) transferred to DkK̂ (s) for any k by the argument like the delta method.

Lemma 14. The �nite dimensional distributions of
√
n{Ŵ (s) −W (s)} converges weakly

to multivariate normal distributions on (−∞,min {c, b/2}). If s ∈ (b/2, c), then {Ŵ (s) −

W (s)} = o
(
n−δ

)
a.s. for any 0 ≤ δ < min {1/2, 1− s/b}.

Proof. We use the multivariate CLT and the multivariate delta method to establish the weak

convergence of �nite dimensional distributions. For brevity, we only show 2-dimensional

convergence. The general cases can be shown in a similar way.
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By the multivariate CLT, we have

√
n





I

G

Ĝ (s)

Ĝ (r)


−



λ−1

µ−1

G (s)

G (r)




⇒ N (0,Σ) ,

where

Σ =



λ−2 0 0 0

0 σ2
G G′ (s)− µ−1G (s) G′ (r)− µ−1G (r)

0 G′ (s)− µ−1G (s) G (2s)− G (s)2 G (s+ r)− G (s)G (r)

0 G′ (r)− µ−1G (r) G (s+ r)− G (s)G (r) G (2r)− G (r)2


.

For �xed s and r, de�ne functions hi (x, y, z1, z2) (i = 1, 2) by

h1 (x, y, z1, z2) =

(
1− yx−1

)
sz1

s+ x−1 − x−1z1

h2 (x, y, z1, z2) =

(
1− yx−1

)
rz2

r + x−1 − x−1z2
.

Observe that Ŵ (s) = h1{I,G, Ĝ (s) , Ĝ (r)} and Ŵ (r) = h2{I,G, Ĝ (s) , Ĝ (r)}. Also, note

that W (s) = h1{λ−1, µ−1,G (s) ,G (r)} and W (r) = h2{λ−1, µ−1,G (s) ,G (r)}. By the

multivariate delta method,
√
n[{Ŵ (s) , Ŵ (r)}ᵀ − {W (s) ,W (r)}ᵀ] converges weakly to

N (0,Σ′), where

Σ′ =Jh

{
λ−1, µ−1,G (s) ,G (r)

}
ΣJh

{
λ−1, µ−1,G (s) ,G (r)

}ᵀ
.

Here, Jh{λ−1, µ−1,G (s) ,G (r)} denotes the 2× 4 Jacobin matrix of h = (h1, h2) evaluated

at {λ−1, µ−1,G (s) ,G (r)}.

Now, let 0 ≤ δ < min {1/2, 1− c/b}. By Marcinkiewicz-Zygmund strong law, we have

{I,G, Ĝ (s) , Ĝ (t)} −
{
λ−1, µ−1,G (s) ,G (t)

}
= o

(
n−δ

)
a.s.
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Apply Proposition 35 in the appendix to h1, we obtain the desired result.

Since we do not need multi-dimensional asymptotic normality of our estimator for our

applications of saddlepoint approximation, we now concentrate on 1-dimensional asymptotic

normality of our estimators.

However, we note that it can be shown that
√
n{DkŴ (s)−DkW (s)} and

√
n{DkK̂ (s)−

DkK (s)} converge weakly to Gaussian processes on C[s1,s2] for any [s1, s2] ⊂ (−∞,min {c, b/2})

(see Theorem 24 and the following remark), where C[s1,s2] is the metric space of continuous

functions on [s1, s2] with the supremum (uniform) norm.

Since log x is a smooth function, the asymptotic normality of
√
n{Ŵ (s) −W (s)} can

be transferred to K̂ (s) = log Ŵ (s) by the 1-dimensional delta method and we may use

Proposition 35 for a.s. convergence of the order, o
(
n−δ

)
:

Corollary 15.
√
n{K̂ (s)−K (s)} converges weakly to N{0, σ2

K (s)} on (−∞,min {c, b/2}),

where

σ2
K (s) = σ2

W (s) {W (s)}−2 .

If s ∈ (b/2, c), then {K̂ (s)−K (s)} = o
(
n−δ

)
a.s. for any 0 ≤ δ < min {1/2, 1− s/b}.

For simplicity, unlike Lemma (14), we concentrate on the 1-dimensional asymptotic

normality of K̂′ (s) and K̂′′ (s), respectively.

Theorem 16. Let K̂′ (s) be as in (1.1.6) and K̂′′ (s) = ∂K̂′ (s) /∂s. Then
√
n{K̂′ (s) −

K′ (s)} ⇒ N{0, σ2
K′ (s)} and

√
n{K̂′′ (s)−K′′ (s)} ⇒ N{0, σ2

K′′ (s)} on any s ∈ (−∞,min {c, b/2}),

where σ2
K′ and σ

2
K′′ are as in the proof. If s ∈ (b/2, c), {K̂′ (s)− K′ (s)} = o

(
n−δ

)
a.s. and

{K̂′′ (s)−K′′ (s)} = o
(
n−δ

)
a.s. for any 0 ≤ δ < min {1/2, 1− s/b}.

Proof. For �xed s, (esGi , Gie
sGi , G2

i e
sGi) are iid with the mean (G (s) ,G′ (s) ,G′′ (s)). The

covariance can be calculated as

Cov
(
esGi , Gie

sGi
)

= E
(
esGiGie

sGi
)
− EesGiE

(
Gie

sGi
)

= G′ (2s)− G (s)G′ (s) ,
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so that we have the covariance matrix Σ = (σij), where

σij = G(i+j−2) (2s)− G(i−1) (s)G(j−1) (s) .

By multivariate CLT, we have

√
n




Ĝ (s)

Ĝ′ (s)

Ĝ′′ (s)

−

G (s)

G′ (s)

G′′ (s)


⇒ N (0,Σ)

and by CLT and the delta method,

√
n
(
λ̂− λ

)
⇒ N

(
0, λ2

)
and note that λ̂ is independent of Ĝ(k) (s) for any k = 0, 1, . . . . Now, de�ne h1 (x1, x2, x3)

and h2 (x1, x2, x3, x4) by

h1 (x1, x2, x3) =
x1 (1− x2)x2 + s (s+ x1)x3

sx2 (s+ x1 − x1x3)

h2 (x1, x2, x3, x4) =
1

{sx2(s+ x1 − x1x2)}2

(
2x1(s+ x1)x3

2

− x2
1x

4
2 − {s(s+ x1)x3}2 + s2(s+ x1)x2

{
2x1x

2
3 + (s+ λ)x4

}
− x1x

2
2

[
2s+ λ+ s2 {2x3 + (s+ x1)x4}

])

and note that h1{λ,G (s) ,G′ (s)} = {logW (s)}′ and h2 {λ,G (s) ,G′ (s) ,G′′ (s)} = {logW (s)}′′.

By the multivariate CLT,
√
n{K̂′ (s)−K′ (s)} ⇒ N{0, σK′ (s)}, where using

Q = s+ λ− λG (s) ,
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σ2
K′ (s) can be written as

σ2
K′ (s) =λ2

{
∂h1

∂x1

(
λ,G (s) ,G′ (s)

)}2

+
2∑
i=1

2∑
j=1

σij
∂h1

∂xi+1

{
λ,G (s) ,G′ (s)

}
· ∂h1

∂xj+1

{
λ,G (s) ,G′ (s)

}
=

1

Q4

(
(s+ λ)4G (2s)G′ (s)2

G (s)4 + 2λ2G (s)
{
−1 + λG′ (s)

}
+

2(s+ λ)3G′ (s) {−2λG (2s)G′ (s)− (s+ λ)G′ (2s)}
G (s)3

+
2λ(s+ λ)2G′ (s) [G (2s) {1 + 2λG′ (s)}+ 3(s+ λ)G′ (2s)] + (s+ λ)4G′′ (2s)

G (s)2

+
2λ(s+ λ) (−2λG (2s)G′ (s) + (s+ λ) [{−1− 2λG′ (s)} G′ (2s)− (s+ λ)G′′ (2s)])

G (s)

+ λ2[1 + G (2s) + 2sG′ (s)− λ(2s+ λ)G′ (s)2 + (s+ λ){2G′ (2s) + (s+ λ)G′′ (2s)}]
)
.

By the similar way,
√
n{K̂′′ (s)−K′′ (s)} ⇒ N{0, σ2

K′′ (s)}, where using

A =2[λG (s)2 + (s+ λ) {s+ λ− 2λG (s)} G′ (s)]

B =2λG (s)3 − 4λ2G (s)3 G′ (s)

+ 2(s+ λ){(s+ λ)2 − 3λ(s+ λ)G (s) + 3λ2G (s)2}G′ (s)2

− (s+ λ)G (s) {s+ λ− 2λG (s)} {s+ λ− λG (s)} G′′ (s) ,
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σ2
K′′ (s) can be written as

σ2
K′′ (s) =λ2

[
∂h2

∂xi+1

{
λ,G (s) ,G′ (s) ,G′′ (s)

}]2

+
3∑
i=1

3∑
j=1

σij
∂h2

∂xi+1

{
λ,G (s) ,G′ (s) ,G′′ (s)

}
· ∂h2

∂xj+1

{
λ,G (s) ,G′ (s)′ G′′ (s)

}
=

1

Q6

(
λ2
[
−2
{
−1 + G (s)− sG′ (s)

}{
−1 + λG′ (s)

}
+QsG′′ (s)

]2
+
B(Bσ11 −QAG (s)σ12 +Q2(s+ λ)G (s)2 σ13)

G (s)6

− QA(Bσ12 −QAG (s)σ22 +Q2(s+ λ)G (s)2 σ23)

G (s)5

+
Q2 (s+ λ) (Bσ13 −QAG (s)σ23 +Q2 (s+ λ)G (s)2 σ33)

G (s)4

)
.

Now, let 0 ≤ δ < min {1/2, 1− c/b}. Apply Proposition 35 to g and h, we obtain the

desired result.

1.2.3 Asymptotic results of the saddlepoint approximation

Lemma 17. Let t be in the range of K′ (s) determined in Proposition 5, where the saddlepoint

equation for K′(st) = t can be solved and st ∈ (−∞, c) is the unique solution. Then, for

large enough n ∈ N, there exists a sequence ŝt such that K̂′(ŝt) = t and ŝt
a.s.−−→ st.

Proof. Fix t in the range determined in Proposition 5, and recall that saddlepoint equation

for K̂(st) = t can be solved if t > G(1). Since the empirical CDF of {Gi} at t is 0 if and only

if t < G(1), the Glivenko-Cantelli theorem implies G(1)
a.s.−−→ g0 = inf {t : G (t) > 0}. Thus,

ŝt is well-de�ned for large enough n ∈ N.

Let ε be any real number satisfying 0 < ε < min {c, b} − st, so that K′(st + ε) is

convergent. Recall that K′ (s) (and K̂′ (s)) is strictly increasing, we have

K′ (st − ε) < K′ (st) = t < K′ (st + ε) .
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Since K̂′(st ± ε)→ K′(st ± ε) a.s., for large enough n, we have

K̂′ (st − ε) < t = K̂′ (ŝt) < K̂′ (st + ε) ,

which implies

st − ε < ŝt < st + ε.

Because ε can be arbitrarily small, we conclude ŝt → st a.s.

Corollary 18. Let t be in the range determined in Proposition 5, where the saddlepoint

equation for K′ (st) = logW (st) = t can be solved, then

1. f̂0 (t)
a.s.−−→ f0 (t).

2. F̂0 (t)
a.s.−−→ F0 (t) for t 6= EW . For t = EW , we have

F̂0{K̂′n (0)} :=
1

2
+

K̂′′′ (0)

6
√

2π{K̂′′ (0)}3/2
a.s.−−→ F0 (EW ) .

Proof. By Lemma 17, f̂0 (t) and F̂ (t) are well-de�ned for large enough n. For given t, since

K̂′′ (s) → K′′ (s) and K̂ (s) → K (s) locally uniformly and ŝt
a.s.−−→ st, we have K̂′′(ŝt)

a.s.−−→

K′′(st) and K̂(ŝt)
a.s.−−→ K(st). Thus, by the continuous mapping theorem for a.s. convergence,

we have

f̂ (t) =
1√

2πK̂′′ (ŝt)
exp{K̂ (ŝt)− ŝtt}

a.s.−−→ 1√
2πK′′ (st)

exp {K (st)− stt} = f0 (t) .

Now, for F̂0 (t), the same argument holds if t 6= EW , which implies st 6= 0. The a.s.

convergence of F̂0{K̂′ (0)} to F0 {K′ (0)} comes from SLLN and the continuous mapping

theorem for a.s. convergence as in the remark after Lemma 23.

Theorem 19. Assuming the condition of Lemma 17, for st ∈ (−∞,min {c, b/2}), we have

√
n{ŝt − st} ⇒ N(0, σ2

st), where σ
2
st is shown in the proof. If st ∈ (b/2, c), then ŝt − st =

o
(
n−δ

)
a.s. for any 0 ≤ δ < min {1/2, 1− st/b}.
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Proof. From Theorem 16,
√
n{K̂′ (s)−K′ (s)} ⇒ N{0, σ2

K′ (s)} on any s ∈ (−∞,min {b/2, c}).

By the mean value theorem, there exist r̂ in between ŝt and st such that

ŝt − st =
K̂′ (ŝt)− K̂′ (st)

K̂′′ (r̂)
=
t− K̂′ (st)
K̂′′ (r̂)

=
K′ (st)− K̂′ (st)

K̂′′ (r̂)
. (1.2.5)

Since ŝt
a.s.−−→ st, we have r̂

a.s.−−→ st. Thus a.s. locally uniform convergence of K̂′′ (s)→ K′′ (s)

implies K̂′′ (r̂)→ K′′(st). Thus, by Slutsky's lemma, we obtain

√
n (ŝt − st) =

−1

K̂′′ (r̂)
√
n{K̂′ (st)−K′ (st)} ⇒ N

[
0,

σ2
K′ (st)

{K′′ (st)}2

]
.

Now, suppose 0 ≤ δ < min {1/2, 1− c/b}. Applying Theorem 16 to (1.2.5), we obtain

the desired result.

Theorem 20. If we assume the condition of Lemma 17. Then

1. f̂0 (t) − f0 (t) = Op(n
−1/2) for st ∈ (−∞,min {c, b/2}). If st ∈ (b/2, c), then f̂0 (t) −

f0 (t) = o(n−δ) for 0 ≤ δ < min {1/2, 1− st/b}.

2. If t 6= EW , then F̂0 (t)− F0 (t) = Op(n
−1/2) for st ∈ (−∞,min {c, b/2}) and F̂0 (t)−

F0 (t) = o(n−δ) for st ∈ (b/2, c) and 0 ≤ δ < min {1/2, 1− st/b}. If t = EW , then

F̂0{K̂′ (0)} − F0 (t) = Op(n
−1/2).

Proof. 1. We �rst show Op(n
−1/2) part. Since expx is a C∞ function on (0,∞), by

Proposition 36 , it su�ce to show log f̂0 (t)− log f0 (x) = Op(n
−1/2). We have

log f̂0 (t)− log f0 (t) =− 1

2
{log K̂′′ (ŝt)− logK′′ (st)}

+ {K̂ (ŝt)−K (st)} − t (ŝt − st) .

We note that

K̂ (ŝt)−K (st) = {K̂ (ŝt)− K̂ (st)}+ {K̂ (st)−K (st)}

= K̂′ (r̂) (ŝt − st) +Op(n
−1/2),
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where r̂ is in between ŝt and st.

Since K̂′ (s) converges locally uniformly to K′ (s) a.s. and r̂ → st a.s., for large enough

n, |K̂′n (r̂) | ≤ |K′ (st) | + 1, which implies K̂ (ŝt) − K (st) = Op(n
−1/2). A similar

argument can be used to show K̂′′ (ŝt) − K′′ (st) = Op(n
−1/2), which again implies

log K̂′′ (ŝt)− logK′′ (st) = Op(n
−1/2). Thus, we obtain the desired result.

For 0 ≤ δ < min {1/2, 1− c/b}, the similar argument to the above can be applied with

Proposition 35 to obtain op(n
−δ) part.

2. Again, we show Op(n
−1/2) part �rst. Let t 6= EW . Thus, st 6= 0 and rt, ut 6= 0. In

the above proof, we showed {stt−K (st)}−{ŝtw−K̂n (ŝt)} = Op(n
−1/2). Since st 6= 0

and ŝt
a.s.−−→ st, for large enough n, sgn ŝt = sgn st a.s. Since the function

√
2x is a C1

function on (0,∞), we conclude r̂t − rt = Op(n
−1/2).

To show ût − ut = Op(n
−1/2), we consider

log ût − log ut = log ŝt − log st +
1

2
{log K̂′′ (ŝt)− logK′′ (st)}.

As shown in part (1), log K̂′′ (ŝt) − logK ′′ (st) = Op(n
−1/2). Thus, we conclude

ût − ut = Op(n
−1/2).

Finally, observing F̂0 (w) = h (r̂t, ût), where h (x, y) = Φ (x) +φ (x) (1/x− 1/y) and h

is C1 function away from 0, Proposition 36 give us F̂0 (t)− F0 (t) = Op
(
n−1/2

)
.

For t = EW , as in Lemma 23, for j = 1, 2, 3, K(j) (0) can be written as hj(λ, µ
′
1, . . . , µ

′
j),

where hj is a continuous function and µ′i is ith (non-central) moment of the service

time distribution.

By CLT, µ′i − Ĝ(i) (0) = Op(n
−1/2) for each i. Now, observe

F̂0{K̂′ (0)} − F0 (EW ) =
K̂′′′ (0)

6
√

2πK̂′′ (0)3/2
− K′′′ (0)

6
√

2π (K′′ (0))3/2
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and

log
K̂′′′ (0)

6
√

2πK̂′′ (0)3/2
− log

K′′′ (0)

6
√

2π (K′′ (0))3/2
= log K̂′′′ (0)− logK′′′ (0)

− 3

2
{log K̂′′ (0)− logK′′ (0)}

and applying Proposition 36 repeatedly, we obtain the desired result.

For o(n1/r−1) part where 0 ≤ δ < min {1/2, 1− c/b}, a similar argument to the above

can be applied with Proposition 35.

Remark 21. If W (s) is not steep, the limit of F̂0 (t), F0 (t) may not exist. As we see in

Example 6, if we set G∼Pareto(.8,5), then F0 (t) exists only for t ∈ (.8, 1]. Thus, Corollary

18 and Theorem 20 are meaningful only when W (s) is steep.

1.2.4 Miscellaneous results

Lemma 22. If we use the empirical MGF n−1
∑n

i=1 e
sxi in the saddlepoint approximation

for the distribution of X, when xi's are random sample of X, the range of x of the saddle

point equation (1.1.5) is (mini {xi} ,maxi {xi}).

Proof. Since K̂X (s) = logn−1
∑n

i=1 e
sxi , we have

lim
s→∞

K̂′X (s) = lim
s→∞

∑n
i=1 xie

sxi∑n
i=1 e

sxi
= lim

s→∞

∑n
i=1 xie

s(xi−max{xi})∑n
i=1 e

s(xi−max{xi})

= lim
s→∞

max {xi} es

es
= max

i
{xi}

and the limit for the case of s→ −∞ can be handled similarly.

The following is needed to calculate F̂0{K̂′ (0)}, F0 (EW ), the second order Taylor poly-

nomial approximations of K′ and K′′ around 0, and the �rst order Taylor polynomial ap-

proximation of 1/rt − 1/ut around 0 for a numerical implementation.
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Lemma 23. Let K (s) = logW (s), where W (s) is de�ned as in (1.1.1) and de�ne µ′k =

G(k) (0) (i.e., µ1 = 1/µ and λµ1 = ρ. Note that µ′k is the kth (non-central) moment of the

service time distribution). Then,

lim
s↗0
K′ (s) =µ′1 +

λµ′2
2 (1− ρ)

,

lim
s↗0
K′′ (s) =

λ2µ′2
2

4 (1− ρ)2 +
λµ′3

3 (1− ρ)
+
(
µ′2 − µ′1

2
)
,

lim
s↗0
K′′′ (s) =2µ′1

3 − 3µ′1µ
′
2 + µ′3 −

µ′1
2µ′4 − 2µ′1µ

′
2µ
′
3 + µ′2

3

4µ′1
3

+
3µ′2

3 − 4µ′1µ
′
2µ
′
3 + µ′1

2µ′4
4µ′1

3 (1− ρ)
+

2µ′1µ
′
2µ
′
3 − 3µ′2

3

4µ′1
3 (1− ρ)2 +

µ′2
3

4µ′1
3 (1− ρ)3

lim
s↗0
K(4) (s) =

(
−6µ′1

4
+ 12µ′1

2
µ′2 − 4µ′1µ

′
3 + µ′4

)
+

3µ′2
4λ4

8 (1− ρ)4

+ µ′2
2
{

µ′3λ
3

(1− ρ)3 − 3

}
+

µ′5λ

5 (1− ρ)
+
λ2
(

2µ′3
2 + 3µ′2µ

′
4

)
6 (1− ρ)2 .

Proof. As s ↗ 0, K′ (s) becomes a 0/0 form. Applying L'Hospital's rule for the left-hand

limit (Theorem 30.2 of [57]) twice and using the fact, G (0) = 1, we obtain K′ (0). For

K′′ (0), K′′′ (0), and K(4) (0), we need to apply L'Hospital's rule 4 times, 6 times, and 8

times, respectively.

By the method of moments, we obtain the estimators of K(j) (0) for j = 1, 2, 3, 4. For

example

K̂′ (0) = Ĝ′ (0) +
λ̂Ĝ′ (0)

2 (1− ρ̂)

a.s.−−→ µ′1 +
λµ′2

2 (1− ρ)
= K′ (0) ,

where the a.s. convergence comes from the SLLN and the continuous mapping theorem for

a.s. convergence. The a.s. convergence also holds for K̂(j), j = 2, 3, 4.

Theorem 24.
√
n{Ŵ (s)−W (s)} converges weakly to a Gaussian process with zero mean

in the metric space C[s1,s2] for any [s1, s2] ⊂ (−∞,min {c, b/2}).

Proof. We �x [s1, s2] ⊂ (−∞,min {c, b/2}). Referring to Theorem 7.1 of [11] and previous

Lemma 14, we only need to show tightness, for which it is enough to show (see Theorem 7.5
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of [11]) that for any ε > 0,

lim
|s−r|→0

lim sup
n

P
(∣∣∣√n(Ŵ (s)−W (s)

)
−
√
n
(
Ŵ (r)−W (r)

)∣∣∣ ≥ ε) = 0. (1.2.6)

To this end, we split the term inside of P as following: De�ne function h (s, x, y, z) by

h (s, x, y, z) =

(
1− yx−1

)
sz

s+ x−1 − x−1z

and observe that Ŵ (s) = h{s, I,G, Ĝ (s)}. We set

qn (s) = h{s, λ−1, µ−1, Ĝ (s)} and qn (r) = h{r, λ−1, µ−1Ĝ (r)}

which give us

∣∣∣√n{Ŵ (s)−W (s)} −
√
n{Ŵ (r)−W (r)}

∣∣∣
≤
∣∣∣√n{Ŵ (s)− qn (s)} −

√
n{Ŵ (r)− qn (r)}

∣∣∣
+
∣∣√n{qn (s)−W (s)} −

√
n{qn (r)−W (r)}

∣∣ .
Referring to above inequality, we have

P (LHS ≥ ε) ≤P (RHS ≥ ε)

≤P
(∣∣∣√n{Ŵn (s)− qn (s)} −

√
n{Ŵn (r)− qn (r)}

∣∣∣ ≥ ε/2)
+ P

(∣∣√n {qn (s)−W (s)} −
√
n {qn (r)−W (r)}

∣∣ ≥ ε/2)
and (1.2.6) can be obtained by showing the the last two probabilities of the above inequalities

satis�es (1.2.6) by themselves.

As we mentioned before, it is proved that
√
n{Ĝ (s) − G (s)} converges to a Gaussian

process on C[s1,s2] in [23] and [31]. We �rst show that
√
n {qn (s)−W (s)} converges weakly

to a Gaussian process on C[s1,s2].

32



We use the functional delta method (Theorem 20.8 of [69]). De�ne φ : C[s1,s2] → C[s1,s2]

by

φ (θ) (s) = h{s, λ−1, µ−1, θ (s)} =
(1− ρ) sθ (s)

s+ λ− λθ (s)
.

First, we have

h
{
s, λ−1, µ−1,G (s) + tξt (s)

}
− h

{
s, λ−1, µ−1,G (s)

}
t

,

=
ξt (s) s (1− ρ) (s+ λ)

{s+ λ− λG (s)} [s+ λ− λ {G (s) + tξt (s)}]

which give us that the Hadamard derivative of φ at G would be

φ′G (ξ) (s) =
ξ (s) (1− ρ) s (s+ λ)

{s+ λ− λG (s)}2
.

It is clear that φ′G is a continuous linear map. We have

φ (G + tξt) (s)− φ (G) (s)

t
− φ′G (ξ) (s)

=
s (s+ λ) (1− ρ) [{s+ λ− λG (s) + tλξ (s)} ξt (s)− {s+ λ− λG (s)} ξ (s)]

{s+ λ− λG (s)}2 [s+ λ− λ {G (s) + tξt (s)}]
,

which implies ∥∥∥∥φ (θ + tξt) (s)− φ (θ) (s)

t
− φ′θ (ξ) (s)

∥∥∥∥→ 0

as t → 0 for every ξt → ξ, where ‖·‖ is the supremum on C[s1,s2]. Thus φ is Hadamard

di�erentiable and

√
n {qn (s)−W (s)} =

√
n
{
φ
(
Ĝ
)

(s)− φ (G) (s)
}
⇒ Ys (1− ρ) s (s+ λ)

{s+ λ− λG (s)}2
,

where Ys is the limit Gaussian process of
√
n{Ĝ (s) − G (s)}. Because

√
n{qn (s) −W (s)}

has the weak convergence limit, they are relatively compact. Note that C[s1,s2] is separable

and complete (Example 1.3 of [11]) on which the relative compactness implies tightness

(Theorem 5.2 of [11]). Therefore,
√
n{qn (s)−W (s)} is tight and satis�es (1.2.6).
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Now, using the multivariate mean value theorem again, we have

√
n
{
Ŵ (s)− qn (s)

}
−
√
n
{
Ŵ (r)− qn (r)

}
=
∂h

∂x
(bn)

√
n
(
I − λ−1

)
+
∂h

∂y
(bn)

√
n
(
G− λ−1

)
−
{
∂h

∂x

(
b′n
)√

n
(
I − λ−1

)
+
∂h

∂y

(
b′n
)√

n
(
G− µ−1

)}
=

{
∂h

∂x
(bn)− ∂h

∂x

(
b′n
)}√

n
(
In − λ−1

)
+

{
∂h

∂y
(bn)− ∂h

∂y

(
b′n
)}√

n
(
G− µ−1

)
⇒
{
hx
(
s, µ−1, λ−1,G (r)

)
− hx

(
t, µ−1, λ−1,G (s)

)}
N
(
0, σ2

G

)
+
{
hy
(
s, µ−1, λ−1,G (r)

)
− hy

(
t, µ−1, λ−1,G (s)

)}
N
(
0, σ2

I

)
,

where bn is a vector in between {s, I,G, Ĝ (s)} and {s, µ−1, λ−1, Ĝ (s)}, and b′n is a vector

in between {r, I,G, Ĝ (r)} and {r, µ−1, λ−1, Ĝ (r)} and N(0, σ2
G)⊥⊥N(0, σ2

I ).

We note that as a function of s, hx{s, µ−1, λ−1,G (s)} and hy{s, µ−1, λ−1,G (s)} satisfy

Lipschitz condition on [s1, s2] since hx and hy are di�erentiable with respect s on the compact

domain [s1, s2].

Therefore, we have

lim
|s−r|→0

lim
n→∞

P
(∣∣∣√n{Ŵ (s)− qn (s)} −

√
n{Ŵ (r)− qn (r)}

∣∣∣ ≥ ε/2) = 0

and conclude (1.2.6).

We note that the ways to prove Lemma 14 and Theorem 24 can be used to show that

√
n{DkŴ (s)−DkW (s)} and

√
n{DkK̂ (s)−DkK (s)}, k ∈ N converge weakly to Gaussian

processes on C[s1,s2] for any [s1, s2] ⊂ (−∞,min {c, b/2}).
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1.3 Estimation of the CDF and the PDF of stationary waiting

times

In this section, we show how the saddlepoint approximation can be used to estimate the PDF

and CDF of the stationary waiting time distribution of M/G/1 queues. The assumptions

remain the same as in the previous section. We observe the service times and inter-arrival

times so that the random sample of these can be used to get information about the waiting

time. To this end, we use the "empirical" moment generating function of (1.1.3).

We will show in �1.3.1 that we can obtain a simulated value whose MGF is Ŵ (s) and

we will denote this by Ŵ , which also can be used for the estimation of CDF and PDF of W

by the standard methods to estimate CDF and PDF, namely the empirical CDF and the

kernel density estimation. However, obtaining the random sample of Ŵ is time consuming

and we propose that the saddlepoint inversion of Ŵ (s) should be used instead.

We �x notations �rst. The plug in estimator, Ŵ (s) of W (s), the MGF of stationary

waiting time distribution, is de�ned by (1.1.3). Let F̂ be the corresponding (true) CDF for

Ŵ (s) such that Ŵ ∼ F̂ and let F̂ † (t) be the empirical CDF of Ŵ1, · · · , Ŵm
iid∼ F̂ (t). Also,

we recall that F̂0 (x) is the saddlepoint CDF approximation calculated from Ŵ (s) and F0 (t)

is the saddlepoint CDF approximation calculated from W (s).

Let A  B denote A approximates B. As we showed in the introduction section, the

following diagram holds;

{
F̂0 (t) n→∞

a.s. //

�� �O
�O
�O

F0 (t)
}

�� �O
�O
�O

{
Ŵ (s)

a.s.−−−→
n→∞

W (s)
}

3;oooooooooooo

oooooooooooo
ks +3

{
F̂ (t) n→∞

a.s. // F (t)
}

F̂ † (t)

m→∞a.s.

OO

F † (t)

m→∞a.s.

OO

Let {G∗j}nj=1 be a (non-parametric) bootstrap sample from {Gj}nj=1 (i.e., each G∗i is
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independently sampled from {Gj}nj=1) and λ̂
∗ = n/

∑n
j=1 I

∗
j , where {I∗j }nj=1 is a parametric

bootstrap sample from Exp(λ̂) (i.e., I∗j
iid∼ Exp(λ̂)). Then, we can construct Ŵ∗ (s), a

bootstrap replication of Ŵ (s) as in

Ŵ∗ (s) =
(1− ρ̂∗) sĜ∗ (s)

s+ λ̂∗ − λ̂∗Ĝ∗ (s)
,

where ρ̂∗ =
∑n

j=1G
∗
j/
∑n

j=1 I
∗
j and Ĝ∗ (s) = n−1

∑n
j=1 exp{sG∗j}. Let F̂ ∗ (t) be the corre-

sponding CDF of Ŵ∗ (s). Then, we expect that the bootstrap sampling of {F̂ ∗ (t)} approx-

imates the sampling distribution of {F̂ (t)} and since F̂ (t) converges to F (t), we may use

{F̂ ∗ (t)} to construct bootstrap con�dence intervals of F (t).

Because F̂ (t) and F̂ ∗ (t) are generally not known, we need to use an estimator of them

and using the empirical CDFs F̂ † (t) and F̂ ∗† (t) directly would be time consuming. We

propose to use instead the saddlepoint CDF estimator of F̂ (t) and F̂ ∗ (t) denoted as F̂0 (t)

and F̂ ∗0 (t) respectively. Rigorously, since F̂0 (t) converges to F0 (t), a con�dence interval

based on the bootstrapped saddlepoint CDF approximations, {F̂ ∗n (t)} is a CI of F0 (t) not

of F (t).

For this, we check whether F̂0 (t) approximates F̂ (t) well or not, which can be estimated

by F̂ † (t) with a su�ciently large sample size m of the simulated Ŵ ∗. If it is, then we may

assume {F̂ ∗0 (t)} approximates {F̂ ∗ (t)} well and the usage of {F̂ ∗0 (t)} to construct CI for

F (t) is legit.

Note that our saddlepoint estimator F̂0 (w) is in fact an estimator of F̂ (t), which we

believe is the best estimator of F (t)4, or

F̂0 (t) F̂ (t) F (t) .

This section is organized as follows. In Subsection 1, we show how we can obtain the

random sample of Ŵ . In Subsection 2, we check the convergence of Ŵ (x) and ĉ for a M/M/1

queue case. In Subsection 3, we check how F0 (t) approximates F (t) well for service time

4Currently, this is just a claim by the author who does not know how to support this claim yet.
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distributions of Exp(2) and Gamma(3, 3), for which the stationary waiting time distributions

can be obtained analytically. In Subsection 4, we show how F̂0 (t) approximates F̂ (t) by

comparing to F̂ † (t). In Subsection 5, we show how the bootstrap CI's based on {F̂ ∗0 (t)} of

F (t) work by simulation studies. In Subsection 6, we show a case of why we need to check

whether F̂ (t) F (t) or not and why the blind usage of the saddlepoint CDF approximation

to F (t) may be dangerous.

Our choices of service time distributions in this section are in Table 1.3.1(see Table 4.1.2

for the PDF and CDF) but for Exp(1) service time, it is known that W ∼ Exp(.5), which

has a relatively large range (99.5th percentile is about 10.597) comparing to other cases and

we will use Exp(2) (with λ = 1) as the service time distribution for the M/M/1 queue case.

For the convenience of the reader, the following table summarize the symbols used in

this section.

F0 (t) saddlepoint CDF

simulated value W W (s)

::uuuuuuuuu
//

$$IIIIIIIII
oo F (t) true CDF

F † (t) empirical CDF

F̂0 (t) saddlepoint CDF

simulated value Ŵ Ŵ (s)

;;vvvvvvvvv
//

##HH
HH

HH
HH

H
oo F̂ (t) true CDF

F̂ † (t) empirical CDF

F̂ ∗0 (t) saddlepoint CDF

Ŵ∗ (s)

;;vvvvvvvvv
// F̂ ∗ (t) true CDF

After the majority of our work had been done, we later found that similar studies of
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nonparametric estimations using empirical service time to obtain the CI of the CDF of Wq,

the stationary waiting time in queue, were done in [33], [32] and [51].

In [33], bounds of the CDF ofWq were obtained from the asymptotic normality (Theorem

9) of ĉ, which is also an empirical estimation of the adjustment coe�cient or the Lundberg

exponent in ruin probability. See §2.1.3 for the related matter.

In [32], the Cramér-Lundberg approximation with the empirical MGF of the service time

is used with the jackknife method to obtain the CI of CDF of Wq. We added a comparison

of their estimators in chapter 2.

In [51], the properties of F̂q (t), as a nonparametric estimate of the CDF, of the stationary

waiting time in queue for a GI/G/1 queue were studied based on the empirical process

theory. The author showed that F̂q (t) converges to Fq (t) in the supremum norm and

√
n{F̂q (t) − Fq (t)} converges weakly to a Gaussian process in the supremum norm. A

numerical example of the bootstrap con�dence band of F̂q (t) in the GI/M/1 queue with a

Uniform(0,2) arrival time distribution was also given, where F̂q (t) was approximated by a

numerical inversion based on the fast Fourier transform.

1.3.1 A solution by simulation

When we have a random sample of service times and an estimate of λ, we can, in principle,

obtain a random sample of the stationary waiting time distribution approximation by run-

ning a queueing simulation with the empirical service time distribution instead of unknown

true service time distribution. Of course, as in most Monte Carlo methods, this simulation

needs burn-in to simulate stationary distributions and the outputs of this simulation are

not iid, so this is not an e�cient estimation and is rather time consuming. In [34], it is

reported that even the estimated mean waiting time in queue by simulation method is quite

inaccurate.

However, in our case of M/G/1, it is known that there is a better way to simulate. Write
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the Pollaczek-Khinchin formula (1.1.1) as

(1− ρ) sG (s)

s+ λ− λG (s)
=

(1− ρ)

1− ρµ
{

1−G(s)
−s

}G (s) .

Then, using the fact that µ {1− G (s)} / (−s) is the MGF of the equilibrium distribution

of G (x) (i.e., the distribution whose density is h (t) = µ {1−G (t)}) and (1− ρ) / (1− ρs)

is the generating function of a geometric distribution with mass function ρk (1− ρ), we

recognize that

W ∼ V1 + · · ·+ VN +G1, (1.3.1)

where P (N = k) = ρk (1− ρ), k = 0, 1, · · · , and {Vj} are iid with the density µ {1−G (t)},

and V , N , and G are independent.

Therefore, if we have random sample of {Gi}ni=1 at hand and plug-in its empirical CDF,

Ĝ (t), then the density of V is estimated by µ̂
{

1− Ĝ (t)
}
and the estimated CDF of V is

Ĥ (v) = µ̂

∫ v

0

(
1− Ĝ (t)

)
dt =


µ̂v if 0 ≤ v < G(1)

µ̂
{∑k

i=1G(i) + (n− k) v
}
/n if G(k) ≤ v < G(k+1)

1 if v ≥ G(n)

,

(1.3.2)

where G(k) means kth order statistic. A random sample V̂1, · · · , V̂N̂ of size N̂ is obtained

from CDF Ĥ (v) where N̂ has the probability mass function (PMF) ρ̂k (1− ρ̂), where ρ̂

given in (1.1.2). Each V̂i is computed by taking the probability integral transform Ĥ−1 (·)

of a uniformly distributed variable. If Ĝ is randomly generated from {Gj}nj=1, we obtain a

simulated value from F̂ (t) as Ŵ = V̂1 + · · · + V̂ N̂ + Ĝ. Clearly, if we know G (t), we can

obtain the random sample of W in similar way. See Table 1.3.1 and related remarks.

It can be shown that Ŵ ⇒ W . We showed that Ŵ (s) → W (s) almost surely (a.s.)

in Lemma 12. Because W ≥ 0, the Laplace transform of W , W (−s) exists for any s ≥ 0.

Thus, for any s ≥ 0

E
(
e−sŴ |Fn

)
= Ŵ (−s)→W (−s) a.s.,
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where Fn = σ {I1, · · · , In, G1, · · · , Gn}, the σ-�eld generated by {I1, · · · , In, G1, · · · , Gn}.

Note that because Ŵ (s) is strictly increasing, for s ≥ 0 and for any n ∈ N,

0 < Ŵ (−s) ≤ Ŵ (0) = 1,

so that Ŵ (−s) is uniformly bounded by the integrable function 1. Then, by the dominated

convergence theorem, we have that for any s ≥ 0,

lim
n→∞

E
(
e−sŴ

)
= lim

n→∞
E
{
E
(
e−sŴ |Fn

)}
= E

{
lim
n→∞

E
(
e−sŴ |Fn

)}
= E {W (−s)} =W (−s) ,

which implies Ŵ ⇒ W (i.e, Ŵ converges to W weakly) by the continuity theorem of the

Laplace transform (Theorem 2 (p. 431) of [30] or Example 5.5 of [11]).

Estimators for the CDF or PDF of W can be computed from the suggested simulation,

however not without a considerable amount of simulation. We show that alternative esti-

mators that use saddlepoint approximations require far less computing time and are much

simpler to compute without any loss in accuracy. Thus saddlepoint methods can replace the

simulation.

Example 25. For Pareto(xm,α), the mean is αxm/ (α− 1) and the PDF and the CDF are

g (x) =
αxαm
xα+1

1(xm,∞) and G (x) =
{

1−
(xm
x

)α}
1(xm,∞),

so that

ge (x) = µ {1−G (x)} =
α− 1

αxm

{
1[0,xm] +

(xm
x

)α
1(xm,∞)

}
and

Ge (x) =
α− 1

αxm

{
x1[0,xm] +

(
xm +

xm
α− 1

− xαm
α− 1

1

xα−1

)
1(xm,∞)

}
=
α− 1

αxm
x1[0,xm] +

(
1− xα−1

m

α

1

xα−1

)
1(xm,∞) .
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Figure 1.3.1: The true CGF and the estimated CGF of the the service time (left) and the stationary
waiting time (right) of M/M/1 queue. Left: The solid curve is the true CGF of the service time,

log (1− s/2)
−1

and the dashed (dotted) curve is the estimated CGF of the random sample size 200

(50) . Right: The solid curve is the true CGF of the stationary waiting times, log (1− s)−1
and the

dashed (dotted) curve is of its estimated CGF, Ŵn (s) of a random sample size n = 200 (50) .

Thus, by solving Ge (x) = t to obtain

G−1
e (t) =


t/µ if t ≤ 1− α−1

xm/ (α (1− t))1/(α−1) if t > 1− α−1

For example, if G∼Pareto(2
3 , 3), then G

−1
e (t) = t1[0,2/3] (t) + 2/

(
3
√

3 (1− t)
)
1(2/3,∞).

1.3.2 Convergence of Ŵ and ĉ

In the previous section, we study the convergence behavior of K̂ (s) and its isolated singu-

larity (pole) ĉ. We �rst examine these feature with a simulation study of M/M/1 queues

with the arrival rate, λ = 1 and the average service time, µ−1 = 1/2 (so, µ = 2 is the service

rate of the queue), which will give insight about how the convergence of K̂ (s) works.

In this case, the stationary waiting time follows Exp (µ− λ) ∼ Exp (1) distribution. In

our simulation study, n, the sample size of a random sample are set to either 50 or 200.
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The estimated log Ĝ (s) is drawn in Figure 1.3.1 with the true CGF, log (1− s/2)−1. It

is clear from the graph that the estimated CGF, log Ĝ (s), does not have the pole at 2, which

can be explained with the fact that it is an analytic function by the de�nition in (1.1.4).

See the right graph of Figure 1.3.1 for the estimated CGF and the true CGF of the

stationary waiting time. Recall that

lim
s↗c
K (s) =∞.

Clearly, the quality of our estimator K̂ (s) is governed by how well the pole of Ŵ (s), ĉ

estimates the pole of the true W (s), c, which Theorem 9 is about.

From Example 10, c = µ − λ and ĉ is asymptotically normal if µ < 2λ. To check the

convergence of ĉ to c, we obtain random samples of ĉn of size 105 for n = 50 and n = 200,

respectively but with setting λ = 3/2 and µ = 2 to make sure µ < 2λ (or c = .5 < µ/2 = 1).

See the top 4 graphs of Figure 1.3.2 for the histograms of
√
n (ĉ− .5) and the density curves

of the limiting distribution N (0, 27/4).

To see what happens when b/2 < c < b, we also obtain 105 ĉ for n = 50 and n = 200,

respectively with setting λ = 1/2 and µ = 2, which results in µ > 2λ (or 1 = µ/2 < c =

3/2 < 2 = µ. The graphs are the bottom 4 graphs of Figure 1.3.2, which show that though

ĉ are very close to following a normal distribution, the convergence of ĉ to 3/2 is rather

slower than c = .5 case (For c = .5 case, ĉ = .650 (.516) for n = 50 (200) and for c = 1.5

case, ĉ = 1.913 (1.701) for n = 50 (200)).

For case n = 200, one may inquire ĉ converges to a normal distribution even if c > b/2.

We simulate to obtain 105 ĉ with n = 103, 104, and 105 to see if the convergence is true.

Figure 1.3.3 shows the histograms of
√
n (ĉ− 3/2), QQ-plots of ĉ assuming the normal

distribution, and boxplots of them. From the boxplots, it is clear that ĉ converges to 1.5.

However, the histograms show that the convergence is slower than the order of O (
√
n) and

QQ-plots show that ĉ does not converge to a normal distribution.
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c = 0.5 , n = 50
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ĉ

Figure 1.3.2: Histograms and QQ-plots of simulated 105 ĉ. The top 4 graphs: Histograms of 105
√
n (ĉ− c) and QQ-plots of ĉ against N

(
.5, σ2

c/n
)
, where ĉ is the root of D̂ (s) = 0, for M/M/1

queue model. Here, λ = 3/2, µ = 2, c = 1/2 and the overlapped curve of the histogram is the
density of the limiting distribution of

√
n (ĉ− c), N (0, 27/4). The bottom 4 graphs: Histograms of

105
√
n (ĉ− c), whereλ = 1/2, µ = 2, c = 3/2. For the QQ-plots of ĉ, N

(
ĉ, S2

ĉ

)
(ĉ = 1.913 (1.701)

for n = 50 (200)) is used.
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1
.3

1
.4

1
.5

1
.6

n = 105
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Figure 1.3.3: The histograms of
√
n (ĉ− 3/2), QQ-plots of ĉ assuming a normal distribution, and

the boxplots of 105 ĉ with n = 103, 104, and 105 where whereλ = 1/2, µ = 2, c = 3/2.
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1.3.3 Saddlepoint approximations for W in M/Ek/1 queue

Exponential and gamma distributions have a closed form CGF, so that the corresponding

W (s) also has a closed form and saddlepoint approximations can be calculated directly from

W (s). See SFigure 1.3.4 for the saddlepoint PDF and CDF estimation of the stationary

waiting times with their the % relative errors when the service time distributions are Exp(2)

and Gamma(3, 3). The arrival rate λ is set to 1 and 2 respectively.

Note that for the % relative error for the PDF estimation with Exp(2) service time, the

normalized saddlepoint PDF approximation can be used with

f0 (0) = lim
s→−∞

1√
2πK′′ (s)

exp
(
K (s)− sK′ (s)

)
=

1√
2π

lim
s→−∞

exp

(
−s

1− s

)
=

exp (1)√
2π

≈ 1.084438.

since lims→−∞K′ (s) = 0. If f0 (0) is not analytically tractable, it can be estimated through

spline extrapolation estimation. All % relative errors are within �rst digit, which is a well

known characteristic for the saddlepoint approximation.

Gamma(3,3) service distribution is a case that the Laplace transform can be inverted

analytically. See Theorem 26. When the shape parameter α of Gamma(α, β) distribution

is a natural number k, it is known as a Erlang distribution in queueing theory and usually

denoted by Ek.

The true PDF f (t) and the CDF F (t) are compared with the saddlepoint approximations

f0 (t) and F0 (t) in Figure 1.3.4, which shows that % relative errors are �rst digit in either

of these cases too.

Note that for the % relative error of the CDF, the following formula is used;

100 (F0 (t)− F (t))

min {F (t) , 1− F (t)}
.
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Figure 1.3.4: Top: Saddlepoint (unnormalized) PDF approximations, f0 (t) of the waiting time
distribution of M/M/1 queue (left), where µ = 2 and λ = 1 and M/G/1 queue with Gamma(3, 3)
service time distribution with λ = .5 (right). The solid curves are the true densities. Middle:
Saddlepoint CDF approximations, F0 (t). The solid curve is the true CDF and the dotted curve
is the approximation from true CGF, F0 (t) and the dot-dashed curve of Gamma(3,3) case is the
asymptotic from Example 28. Bottom: The percentage absolute relative errors of normalized PDF
(dotted) and CDF (dashed) estimations from the top and the middle graphs. The dot-dashed and
long dash curves are of the asymptotic from Example 28.
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1.3.4 Comparison to the simulation method of (1.3.1)

In this section, we check the performance of the saddlepoint approximation as estimators of

the CDF F̂ (t) and the PDF of Ŵ .

Let m be the number of generated Ŵ to obtain F̂ † (t), the empirical CDF of Ŵ . For

our simulation study, we generally set m = 107.

See Figure 1.3.5 and 1.3.6 for the comparison of the saddlepoint CDF and PDF ap-

proximation with the empirical CDF, F̂ † (t), and the histogram of 107 Ŵ for the sample

sizes n = 50 and n = 200, respectively. The graphs show the characteristic of saddlepoint

approximations; Approximating closely the PDF and CDF as smooth functions.

Let

Ŵq ∼
N̂∑
j=1

V̂j , (1.3.3)

where V̂
iid∼ Ĥ (v) of (1.3.2) and N̂ has the PMF of ρ̂k (1− ρ̂). Since V̂ has the PDF

µ̂{1 − Ĝ (t)}, which is discontinuous only at �nite points, V̂ is a continuous r.v. and as a

random sum of V̂ , we may see that the CDF of Ŵq is (absolutely) continuous on (0,∞) (See

[63] and the reference therein for a formal proof).

Because Ĝj ∼ Ĝ (t), the empirical CDF of {Gj}nj=1, Ĝj acts as a discrete random variable.

Note that the CDF of Ŵq can be decomposed as

(1− ρ̂)1{0} (t) + ρ̂F̂+
q (t) ,

where F̂+
q (t) is the CDF of

∑N̂+

j=1 V̂j and N̂+ has the PMF of P (N̂+ = k)=ρ̂k−1 (1− ρ̂)

for k = 1, 2, · · · . Then, F̂+
q (t) is continuous but due to the point mass of (1 − ρ̂) at 0, the

CDF of Ŵ = Ŵq + Ĝ still has the discrete part. In Figure 1.3.5 and 1.3.6, the e�ect of

the discrete random variable part can be seen from the rougher lower quantile parts of the

empirical CDF's of Ŵ .

We check the performance of the saddlepoint approximation F̂0 (t) as an estimator of

F̂ (t) by checking the average of the relative errors against F̂ † (t). Obtaining each F̂ †k (t)
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W.50.decom

D
en

si
ty

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

1 2 3 4 5 6

0.
0

0.
4

0.
8
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Figure 1.3.5: Saddlepoint approximation for F̂ (t) and f̂ (t). Left: Empirical CDF's, F̂ †(t), of 107 Ŵ
using (1.3.1) and (1.3.2) with the saddlepoint CDF approximations F̂ (t) from Ŵ (s). The x-axes are

cut to include at least 99.5% of Ŵ of size m = 107. From the top, the Gj
iid∼ Exp (2), Gamma(3, 3),

Beta(2, 2), and Pareto(4/5, 5). Right: Histogram of the 107 Ŵ used in the left graphs with the
saddlepoint PDF approximation from Ŵ (s).
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CDF est. of Ŵ, G~Pareto(.8,5) Histogram of 107 Ŵ v.s. f̂ 0
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Figure 1.3.6: Same as Figure 1.3.5 but with the sample size n = 200.
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Figure 1.3.7: The average percentage relative absolute error of F̂0 (t)(n = 50, dotted) and F̂0 (t)
(n = 200, dashed) against F̂ † (t) from l = 103 random samples of {{Gj}nj=1, {Ij}nj=1}lk=1 for di�erent
service times. In each graph, N denotes a decile (from 10% to 90%) of the true distribution of W .

and F̂0k (t) from l = 103 random samples of {{Gj}nj=1, {Ij}nj=1}lk=1 as we did in Figure 1.3.5

and 1.3.6, we calculate the average of l = 103 percentage relative absolute errors of F̂0k (t)'s,

which is de�ned by

1

l

l∑
k=1

100
∣∣∣F̂0k (t)− F̂ †k (t)

∣∣∣
min

{
F̂ †k (t) , 1− F̂ †k (t)

}
and estimates the mean percentage relative absolute error of F̂0 (t) as an estimator of F0 (t).

Figure 1.3.7 shows the result. All of them show a �rst digit percentage relative error for the

tail area on average.
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1.3.5 CI of CDF by the saddlepoint approximation with bootstrapping

In this subsection, we compare the performances of di�erent bootstrap con�dence intervals

by simulation studies.

The number of samples for the simulation, l is set to 2500. Thus, with 90% con�dence,

the true coverage probability is within the observed coverage probability ±.01 by either

Wilson's con�dence interval (CI) or Agresti-Coull's CI for the binomial proportion p.

Because of the restricted range of 0 ≤ F̂ ∗0 (t) ≤ 1, the bootstrap sample size B = 104

should be enough for estimating the percentile of {F̂ ∗0 (t)}.

As we noted before, for Pareto service time distributions and beta service time distri-

butions, analytically closed forms of F (t) are not known (However, for a non-closed form

of Wq (t) with Pareto service time distribution, see [52]). Therefore, for the service time

distributions of Beta(2, 2) and Pareto(.8, 5), the true CDF of W are estimated by simulat-

ing m = 3 · 107 values of W . By Dvoretzky-Kiefer-Wolfowitz inequality (see [45] and the

reference therein), with ε = .0005 and m = 3 · 107,

P

(
sup
t

∣∣∣F (t)− F † (t)
∣∣∣ > ε

)
≤ 2e−2mε2 ≈ 6.118046× 10−7, (1.3.4)

so that theoretically, we can assure that |F (t) − F † (t) | < .0005 for any t with probability

of 0.9999994. If we �x the probability p0, then we have

2e−2mε2 = p0 =⇒ ε =

√
log 2/p0

2m
,

so that ε has the order of m−1/2.

We check (1.3.4) for Exp(2) and Gamma(3,3) service time distributions by comparing

F † (t) with F (t), where the latter is obtained from Theorem 26. See Figure 1.3.8 for log10-

scaled absolute errors of f † (t) (the kernel density estimations) and F † (t) (the empirical

CDF) from the random sample of 3·107W . We also add the absolute errors of the saddlepoint

approximations F0 (t) and f0 (t) for a comparison.

51



0 1 2 3 4 5 6

−
7

−
5

−
3

−
1

0

l og10(abs. err.) PDF est. G~Exp

x.array[x.array.exp]

0 1 2 3 4 5 6

−
7

−
5

−
3

−
1

0

l og10(abs. err.) CDF est. G~Exp

0 1 2 3 4 5 6 7

−
7

−
5

−
3

−
1

0

l og10(abs. err.) PDF est. G~Gam

x.array[x.array.gam]

f †

f 0

0 1 2 3 4 5 6 7

−
7

−
5

−
3

−
1

0

l og10(abs. err.) CDF est. G~Gam

F†

F0
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waiting time W of M/G/1 queue with Exp(2) (left) and Gamma(3,3) (right) service time distribu-
tions and ρ = .5. The dotted curves are of f† (t) (the kernel density estimation) and F † (t) (the
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Table 1.3.1: h (t) and H (t) of (1.3.1) for corresponding service time distributions.

G h (t) = µ {1−G (t)} H (t) =
∫ t

0 h (x) dx

Exp (2) 2e−2t 1− e−2t

Gamma (3, 3) 1
33e−3t + 1

39te−3t + 1
3

27
2 t

2e−3t 1− e−3t − 2te−3t − 3
2 t

2e−3t

Beta (2, 2) 2
(
1− 3t2 + 2t3

)
1 [0,1] (t) t

(
2− 2t2 + t3

)
1 [0,1] (t) + 1(1,∞)(t)

Pareto
(

4
5 , 5
)

1 [0,4/5] (t) +
(

4
5

)5
t−5 1 (4/5,∞) (t) t1 [0,4/5] (t) +

(
1− 256

3125t4

)
1 (4/5,∞) (t)

See Table (1.3.1) for the H(t)'s used for the random sample generation of V and W .

For Beta(2, 2) and Pareto(.8, 5) service time distribution, H (t) is a rational function and

H−1 (·) can be calculated analytically to be used for the inverse transform algorithms.

Note that for Gamma(3, 3) service time distribution, H−1 (·) does not have a closed

form but, since the distribution of V is a mixture of three Gamma distributions with the

probability of 1/3 each, we may use

V ∼ 1

3
Exp (3) +

1

3
Gamma (2, 3) +

1

3
Gamma (3, 3)

to obtain the random sample of V .

The bootstrap CI's we are testing are the bootstrap standard percentile CI (BP), BCa,

and the HDR method which are discussed in Chapter 4. Since the histogram for {F̂ ∗0j (t) :

1 ≤ j ≤ 104} is skewed to the left when t is large, the bootstrap standard CI is not

considered. Also due to the fact that {F̂ ∗0 (t)} are skewed, we found that the bootstrap basic

percentile con�dence intervals perform poorly in the tail area of W , which is excluded in

our simulation study.

The four example in Table 1.3.1(see table 4.1.2 for the PDF and CDF) are considered in

Figure 1.3.9, 1.3.10, 1.3.11, and 1.3.12, respectively. Each �gure shows one of the calculated

CI's from the 2500 random samples {Gj , Ij}nj=1 used, the average coverage probabilities,

and the average interval lengths.

Note that for the average interval lengths, we plot the average of U (t)−L (t), U (t)−F (t),

and L (t) − F (t), respectively, where L (t) and U (t) are the lower limit and upper limit of

the con�dence intervals. Thus, the top curves in the middle graphs are the average interval
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lengths, and the middle curves are the average distances between the upper limit of CI's,

U (t) and F (t), and the bottom curves are the average distances between the lower limit

L (t) and F (t). As mentioned, for the tail area of W , {F̂ ∗0 (t)} is skewed to the left, which

leads to F (t)− L (t) as the dominant part in the interval length for the tail area.

Two things need to be commented: First, the bigger sample size of n=200 gives us shorter

interval lengths compared to those of the sample size n=50 cases and also the better coverage

probabilities. Secondly, though HDR method has the shortest interval length among the

three di�erent CI's, its average coverage probabilities is still comparable to the bootstrap

standard percentile method.

There is no clear winner among the three di�erent CI's but if we need to choose one

method considering the coverage probabilities only, BCa method would be recommended

since it works consistently well over all the di�erent cases.

1.3.6 When saddlepoint approximations need a caution

From our simulation study and experience, the saddlepoint approximation works well for

either estimating F (t) (when the true MGF of G is available and is a closed form) or F̂ (t).

However, we recommend checking whether the saddlepoint approximation F̂0 (t) is close

to F̂ † (t) or not before constructing the bootstrap CI because the approximation does not

always give the percentage relative errors to �rst digits.

We recall that F̂0 (t) converges to F0 (t) but not to F (t). Since F̂ ∗0 (t) converges to F̂0 (t),

the bootstrap CI will be "biased" as much as the di�erence between F0 (t) and F (t).

There are two possible causes for F̂0 (t) not approximating F̂ † (t) (or F̂ (t)) well. One is

that the sample is just a "bad" sample and increasing the sample size will be the remedy for

this case. This is because as long as F0 (t), the limit of F̂0 (t), is close enough to F (t), the

limit of F̂ † (t) (as n,m → ∞), then F̂0 (x) will approximate F̂ † (t) (and F̂ (t) as a result)

when the sample size is large enough.

Another possible cause is that F0 (t) itself is not a good approximation of F (t) in which

case, just raising the sample size will not cure the problem since F̂0 (t) and F̂ † (t) converge
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Figure 1.3.9: CI's for F (t) where G∼Exp(2) and λ = 1. Top: Calculated CI's for a random sample
of {Gj , Ij}nj=1 for n=50 (left) and n=200 (right). Middle: the average coverage probabilities from
l=2500 random samples of {Gj , Ij}nj=1 for n=50 (left) and n=200 (right). Bottom: Average interval
lengths of CI's. The top curves are the interval lengths, U (t) − L (t) and the middle curves are of
U (t)−F (t) and bottom curves are of L (t)−F (t). In each graph, N denotes a decile (from 10% to
90%) of W , the stationary waiting distribution.
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Figure 1.3.10: Same as Figure (1.3.9) for G∼Gamma(3, 3).
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Figure 1.3.11: Same as Figure (1.3.9) for G∼Beta(2, 2).

57



0 1 2 3 4 5 6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

CI's for F(t ) G~Pareto  n=50

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 1 2 3 4 5 6

0
.8

0
0

.8
4

0
.8

8
0

.9
2

Average Coverage Probabilities

0 1 2 3 4 5 6

−
0

.3
−

0
.1

0
.1

0
.3

Average Interval Lengths

0 1 2 3 4 5 6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

CI's for F(t ) G~Pareto  n=200

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

F†

F̂0
BP
BCa
HDR

0 1 2 3 4 5 6

0
.8

0
0

.8
4

0
.8

8
0

.9
2

Average Coverage Probabilities

BP
BCa
HDR

0 1 2 3 4 5 6

−
0

.3
−

0
.1

0
.1

0
.3

Average Interval Lengths

BP
BCa
HDR

Figure 1.3.12: Same as Figure (1.3.9) for G∼Pareto(.8, 5).
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to F (t) while F̂0 (t) converges to F0 (t).

Here are two examples for the two cases we mentioned in the above. In the �rst example,

G∼LogNormal(−0.5, 1) and in the second example, G∼Uniform(0, 2). Note that in either

case, µ=1 and we set λ=.5 to get ρ=.5.

See Figure 1.3.13 for the graphs of F̂0 (t) and its percentage relative error for the both

cases. Here, the sample size of Ŵ to obtain F̂ † (t) as an estimator of F̂ (t) is set to m = 107.

We already mentioned that F̂0 (t) has higher relative errors on lower percentile area of

F0 (t) than the tail area due to the fact that Ŵ = Ŵq + Ĝ and Ĝ is discrete. However, these

high relative errors were reduced after around the 40th percentile in Figure 1.3.7 unlike the

G∼LogNormal(−.5, 1) case in Figure 1.3.13, in which the percentage relative errors are still

close to 10% in 90th percentile.

Similarly, for the G∼Uniform(0, 2) case in Figure 1.3.13, the relative errors are persis-

tently high till 70th percentile. Note that though the y-axis is cut to include -40% and

40% only to show the relative errors more clearly, the maximum was 193% which occurs at

t = .1. In both examples, the errors are rather larger than the cases we covered in Figure

1.3.7 however in both examples, relative errors are acceptable above the 50th percentile.

For the case of G∼LogNormal(−5, 1), we also suspect that the persistence of the relative

error to around 90th percentile area is due to the fact that the range of observed {Gj}nj=1 is

rather large compared to the sample size of n=50. Note that LogNormal distribution is one

of heavy-tail distributions (the MGF exists on the negative half axis only) and the range

of {Gj} used in Figure 1.3.13 was (.802, 6.79) with the interquartile range of (.358, .958).

Thus, the discreteness of Ĝ is rather severe in this case.

In other words, the sample {Gj} does not spread the range densely enough. The remedy

of this case was a bigger size for the random sample. When we increase the sample size

to 200 including the original sample of size 50, the percentage relative error between 30th

percentile and 90th percentile were reduced about half from the case of n=50.

The case of G∼Uniform(0, 2) is di�erent. Note that the domain of the distribution is

the bound set of (0, 2) so that the sample spreads densely on the interval enough unlike
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the �rst case of G∼LogNormal. Also note that in Figure 1.3.7, though Beta(2, 2) has a

similar characteristic of the restricted domain of (0, 1), the relative error was not severe as

G∼Uniform(0, 2) of Figure 1.3.13.

Figure 1.3.14 shows the relative errors of F0 (t) and F0 (t) = (1− ρ) + ρF+
0 (t) of W and

Wq against their empirical CDF estimation F † (t)'s where the simulation size is m = 3 · 107.

Plots of other approximation methods were also drawn, which will be dealt in Chapter

2. It is known that the uniform distribution is a distribution for which the saddlepoint

approximation dose not work exceptionally well, which can be seen by comparing the shape

of F † (t) and F0 (t) on (0, 2) of the top right graph in Figure 1.3.14. Also compare this

characteristic with the case of Wq in the the top left graph of the same �gure.

Because this high relative error is inherited from the poor performance of F0 (t), even for

the sample size of n=200, F̂0 (t) consistently overestimates from around 30th percentile till

around 70th percentile as F̂0 (t) of n = 50 case does though the percentage relative errors

are smaller and within 10%.

Thus, if raising the sample size does not improve the error, we may suspect that (un-

known) F0 (t) does not approximate (unknown) F (t) well.

1.4 Estimation of W and Wq in M/Ek/1 queues

In this section, we concentrate on the parametric estimations of W in M/Ek/1 queue and

compare the parametric bootstrap con�dence band using the parametric estimation to the

con�dence band of the previous section, the con�dence band based on (nonparametric)

bootstrap with the saddlepoint approximation.

1.4.1 Inverse Laplace transform of W (s) and Wq (s)

It is known that for M/G/1 queues, if the service time distribution is a phase-type distri-

bution, than the stationary waiting time distribution is also a phase type distribution. See

[9, 47, 48] for a proof.

Since W (s) of M/Ek/1 queue is a rational function, built-in routines of inverse Laplace
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transform of well-known symbolic mathematics programs like Mathematica can be used to

�nd the PDF and CDF of the stationary waiting time distribution.

In fact, we can calculate the PDF and the CDF by hand for Gamma(3,3) service time

distribution with λ = .5. We have

L{f (t)} (s) =W (−s) =
13.5

13.5 + s (22.5 + s (8.5 + s))

=
13.5

(s+ .840474) (s2 + 7.65943s+ 16.0624)
,

which can be decomposed into partial fractions.

Then, using the Laplace transform of (s+ a)−1 is e−at and the (inverse) Laplace trans-

form is linear, we can obtain the PDF. See the appendix of [41] for related explanation and

examples.

This result is known as the expansion theorem (see [20] or [25]): Let a Laplace transform

L{f (t)} be a rational function having a form of

B (s)

A (s)
,

where degree of A (s) is greater than B (s). Suppose

A (s) = (s− a1) (s− a2) · · · (s− ak) ,

where aj are all distinct. Then, the partial fraction expansion of L{f (t)} is

L{f (t)} (s) =

k∑
j=1

B (aj)

(s− aj)A′ (aj)
,

which implies

f (t) =

k∑
j=1

B (aj)

A′ (aj)
eajt.
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Note that

L{F (x)} (s) =
L{f (x)}

s
,

so that the CDF of W can be obtained similarly.

Generally, we can invert the Laplace transform of W (−s) of M/Ek/1 queue analytically

to get the CDF and the PDF as a closed form using the expansion theorem.

Theorem 26. 5For M/Ek/1 queues with the service time distribution of Gamma(k, β), the

CDF and the PDF of the waiting time distribution are

f (t) = (1− ρ)βk
k∑
j=1

(aj − β)2 exp (aj − β) t

kak−1
j (aj − β) (aj − β − λ) + λ

(
akj − βk

)
F (t) = 1− (1− ρ)βk

k∑
j=1

exp (aj − β) t

ak−1
j {k (λ+ β)− (k + 1) aj}

,

where aj's are the (distinct) roots of polynomial of r,

rk+1 − (λ+ β) rk + λβk, (1.4.1)

which is not β (β is a root of rk+1 − (λ+ β) rk + λβk).

For Wq, the stationary waiting time in the queue, we will use Fq (t) for the CDF and

fq (t) for the PDF. Then we have

fq (t) = (1− ρ)1 {0} (x) + λ (1− ρ)
k∑
j=1

(
akj − βk

)
(aj − β) exp (aj − β) t

kak−1
j (aj − β) (aj − β − λ) + λ

(
akj − βk

) .
Fq (t) = 1− (1− ρ)

k∑
j=1

aj exp (aj − β) t

k (λ+ β)− (k + 1) aj
.

5Originally, I was sure that this theorem should have been obtained already but was not able to �nd
such result in any queuing theory textbook - Because M/Ek/1 queue is one of the standard example used
in texts, I assumed that if the theorem was known before, it should appear in some of the textbooks. Since
I could not �nd any reference other than [47, 48], and [9] of the matrix-geometric solution for phase type
service distributions, which is clearly an overkill, I decided to prove it myself. Of course, later I found a
reference which is dated back to 1953 (see Remark 27).
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Proof. The MGF of Gamma(k, β) is

(
1

1− s/β

)k
,

so that the Laplace transform of the PDF f (t) is

L{f (t)} (s) =W (−s) =
(1− λk/β) sG (−s)
s− λ+ λG (−s)

= · · ·

=
(β − kλ)βk−1s

s (s+ β)k − λ (s+ β)k + λβk
=

(1− ρ)βks

s (s+ β)k − λ (s+ β)k + λβk
.

Let

Q (s) := s (s+ β)k − λ (s+ β)k + λβk (1.4.2)

and because Q (0) = 0, we know Q (s) has the s term, which can be seen also by

Q (s) = s
k∑
j=0

(
k

j

)
sk−jβj − λ


k−1∑
j=0

(
k

j

)
sk−jβj + βk

+ λβk

= s
k∑
j=0

(
k

j

)
sk−jβj − λs


k−1∑
j=0

(
k

j

)
sk−j−1βj


= s


k∑
j=0

(
k

j

)
sk−jβj − λ

k−1∑
j=0

(
k

j

)
sk−j−1βj


and we have

L{f (t)} (s) = (β − kλ)βk−1


k∑
j=0

(
k

j

)
sk−jβj − λ

k−1∑
j=0

(
k

j

)
sk−j−1βj


−1

. (∗)

By the fundamental theorem of algebra, there are k + 1 roots of Q (s) including 0. We

now show that Q (s) has simple roots only so that the roots are all distinct. To simplify

calculations, let r = s+ β. Then

Q (s) = (r − β) rk − λrk + λβk = rk+1 − (λ+ β) rk + λβk =: Q1 (r) (1.4.3)
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and if a is a root of Q1 (r) then a − β is a root of Q (s) and vice versa. Note that a and

(a− β) has the same multiplicity as a root of Q1 (r) and Q (s), respectively.

Suppose that there is a root aj whose multiplicity is greater than 1, which implies that

Q1 (aj) = Q′1 (aj) = 0.

Because we have

Q′1 (r) = (k + 1) rk − k (λ+ β) rk−1 = rk−1 {(k + 1) r − k (λ+ β)} ,

the roots of Q′1 (r) are either 0 of multiplicity k − 1 or

r =
k

k + 1
(λ+ β) .

Since Q1 (0) = λβk 6= 0, aj must be (λ+ β) k/ (k + 1).

We now show (λ+ β) k/ (k + 1) cannot be a root of Q1 (r) when the stationary condition

ρ < 1 is satis�ed, which gives us that there is no root whose multiplicity is greater than 1.

To this end, we de�ne Q2 (λ) by

Q2 (λ) := Q1

{
k

k + 1
(λ+ β)

}
= λβk − 1

k

(
k

k + 1

)k+1

(λ+ β)k+1 .

Then, we �nd a real root of Q′2 (λ) by calculating

dQ2 (λ)

dλ
= βk −

(
k

k + 1

)k
(λ+ β)k = 0⇐⇒ βk =

(
k

k + 1

)k
(λ+ β)k

=⇒ β =

(
k

k + 1

)
(λ+ β) =⇒ λ =

β

k

so that the (only) real root of Q′2 (λ) is β/k because λ, β, k > 0. Since Q′′2 (β/k) 6= 0 and

Q2 (β/k) = 0, we can see that β/k is the only real root of Q2 (λ) of the multiplicity 2. Since

Q′′2 (λ) < 0, Q′2 (λ) is non-increasing.

66



Thus, with the fact that β/k is the only real root of Q′2 (λ), we conclude that

Q′2 (λ)


> 0 if λ < β/k

< 0 if λ > β/k

,

so that Q2 (λ) has the global maximum 0 at β/k. Because of the stationary condition

ρ = λ
k

β
< 1⇐⇒ λ <

β

k
,

Q2 (λ) will be always less than 0 so that (λ+ β) k/ (k + 1) cannot be a root of Q1 (r).

Therefore, every root of Q1 (s) is distinct and we can apply the expansion theorem. From

(∗), instead of using

d


k∑
j=0

(
k

j

)
sk−jβj − λ

k−1∑
j=0

(
k

j

)
sk−j−1βj

 /ds

directly, we use

d {Q (r) /s}
ds

=
ks (s+ β)k−1 (s− λ) + λ

(
−βk − (s+ β)k

)
s2

=
krk−1 (r − β) (r − β − λ) + λ

(
rk − βk

)
(r − β)2

for simplicity of our formula and we obtain the desired result.

For F (t), using

L{F (t)} (s) =
L{f (t)} (s)

s
=

(1− ρ)βk

Q (s)

and

Q′ (0) = βk − kλβk−1 = (1− ρ)βk,

we have

F (t) = (1− ρ)βk

 e0·x

Q′ (0)
+

k∑
j=1

e(aj−β)w

Q′ (aj − β)

 ,
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which results in the desired result.

For Wq, the stationary waiting time in the queue, it is known that

Wq (s) =
(1− ρ) s

s+ λ− λG (s)
,

so that we have

L{fq (t)} (s) =Wq (−s) =
(1− kλ/β) s

s− λ+ λG (−s)

=
(1− ρ) s (s+ β)k

s (s+ β)n − λ (s+ β)k + λβk
= (1− ρ)

1 +
λ
{

(s+ β)k − βk
}

Q1 (r)

 ,
Using the previous calculation and the fact that L{1{0} (x)} = 1, we have

fq (t) = (1− ρ)1{0} (x) +

k∑
j=1

λ (1− ρ)
(
akj − βk

)
(aj − β) e(aj−β)wq

kak−1
j (aj − β) (aj − β − λ) + λ

(
akj − βk

) .
Again, since L{Fq (t)} (s) = L{fq (t)}/s, we have

L{Fq (t)} (s) =
(1− ρ) rk

Q1 (r)

and in a similar way, we obtain

Fq (t) = (1− ρ)

 βk

(1− ρ)βk
+

k∑
j=1

akj e
(aj−β)t

ak−1
j {(k + 1) aj − k (λ+ β)}


= 1− (1− ρ)

k∑
j=1

aje
(aj−β)wq

k (λ+ β)− (k + 1) aj
.

Remark 27. We later found that in [64], the formula of the PDF of the waiting time dis-

tribution for G/G/1 queue were obtained when both MGF of the service time distribution

and the inter-arrival time are reciprocals of polynomial functions, which includes M/Ek/1 .
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See theorem 4 and the example in �5.3 therein. However, the roots of Q1 (s) being distinct

were supposed, which we proved in Theorem 26.

Example 28. For a M/M/1 queue, k = 1 and β = µ and

r2 − (λ+ µ) r + λµ = 0

implies a1 = λ and

f (t) =

(
1− λ

µ

)
µ

(λ− µ)2 e(λ−µ)t

(λ− µ) (−µ) + λ (λ− µ)
= (µ− λ) e−(µ−λ)t

and

F (t) = 1−
(

1− λ

µ

)
µ

e(λ−µ)t

(λ+ µ)− 2λ
= 1− e−(µ−λ)t,

which coincides the known result of W∼Exp(µ− λ). For Wq, we have

fq (t) = (1− ρ)1 {0} (x) + λ (1− ρ) e−(µ−λ)t.

Fq (t) = 1−
(

1− λ

µ

)
λe−(µ−λ)x

µ− λ
= 1− ρe−(µ−λ)t.

For G∼Gamma(3,3) with λ = .5, we have a1 − β = a1 − 3 = −0.8404738 and a2 − 3 and

a3 − 3 are −3.8297631± 1.1812212i. Recall that for x, y ∈ R,

ex+yi = ex (cos y + i sin y) ,

and if b < a < 0, then

c1e
ax + c2e

bx = c1e
ax

{
1 +

c2

c1
e(b−a)x

}
= c1e

ax
{

1 +O
(
e(b−a)x

)}
= c1e

ax
{

1 + o
(
e−εx

)}
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for any ε < |b− a|. Thus, we have

F (t) = 1− 1.5547537e−0.8404738t
{

1 + o
(
e−εt

)}
Fq (t) = 1− 0.57992693e−0.8404738t

{
1 + o

(
e−εt

)}
for any ε < 2.9892893.

We can have the similar results for the PDF's, which are the derivatives of the above

asymptotic approximation.

For the graph of the asymptotic of F (t) and f (t), see Figure 1.3.4.

Remark 29. As we saw in the previous example, aj can be a complex number. However,

F (t) and the others given in Theorem 26 are all real valued; For a ∈ C, let a be conjugate

of a (i.e., x+ yi = x− yi for x, y ∈ R).

It is known that if aj is a root of real polynomial function, then aj is also a root of the

polynomial ( 0 = Q1(aj) = Q1(aj) in our case). Thus,

F (t) =

1− (1− ρ)βk
k∑
j=1

e(aj−β)t

ak−1
j {k (λ+ β)− (k + 1) aj}


= 1− (1− ρ)βk

k∑
j=1

e(aj−β)t

(aj)
k−1 {k (λ+ β)− (k + 1) aj}

= F (t) ,

so that F (t) is a real number.

The above example of the asymptotic result can be generalized:

Corollary 30. Among the roots {aj}kj=1 of (1.4.1) other than β, there exists only one

positive real roots and it has the maximum absolute value and the maximum real part among

all the roots. Thus, if we call the real root a1, then

1− F (t) = (1− ρ)βk
e(a1−β)t

ak−1
1 {k (λ+ β)− (k + 1) a1}

{
1 + o

(
e−εt

)}
,

1− Fq (t) = (1− ρ)
a1e

(a1−β)x

k (λ+ β)− (k + 1) a1

{
1 + o

(
e−εt

)}
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for any ε > max2≤j≤k{a1 −<aj}.

Proof. First, we show that there exists only one real root of Q1 (r) other than β. De�ne

D (s) as in the proof of Lemma 8 by

D (s) := s+ λ− λG (s) = s+ λ− λ
(

β

β − s

)k
.

Then for s 6= β, D (s) = 0 implies

0 = s (β − s)k + λ (β − s)− λβk = −Q (−s) ,

where Q (s) is de�ned in (1.4.2). Thus, if ai−β is a root of Q (s) (, or ai is a root of Q1 (r)),

then β−ai is also a root of D (s). In Lemma 2, we showed that there exists a unique positive

real root of D (s), c which is smaller than b = β. Thus, a1 − β must be −c.

Let <a be the real part of a (i.e., < (x+ yi) = x for x, y ∈ R). We note that since F (t)

and Fq (t) are CDF's, < (aj − β) < 0, or

<aj < β (∗)

(if not, e(aj−β)t ↗∞ as t→∞).

For each root aj , j > 1, we have

Q1 (aj) = 0⇐⇒ akj {aj − (λ+ β)} = −λβk,

which implies

|aj |k |aj − (λ+ β)| = λβk.

By (∗), we have <aj − (λ+ β) < −λ so that

|aj − (λ+ β)| > λ,
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which implies |aj |k < βk, or

|aj | < β.

Since (λ+ β) > 0, we have

|aj − (λ+ β)| ≥ ||aj | − (λ+ β)| ,

which implies

|aj |k ||aj | − (λ+ β)| ≤ λβk,

so that we have

Q1 (|aj |) = |aj |k {|aj | − (λ+ β)}+ λβk = − |aj |k ||aj | − (λ+ β)|+ λβk > 0.

From the result of proof of Lemma 2, we have the following table of Q1 (r):

r 0 ... a1
k(λ+β)
k+1 β ... λ+ β

Q′1 (r) 0 - - 0 + + +

Q1 (r) λβk + 0 - 0 + λβk

Because 0 < |aj | < β and Q1(|aj |) > 0, we conclude that

|aj | < a1 and <aj < a1

and the argument of Example 28 can be applied to obtain the desired results.

Example 31. The asymptotic result for Fq (t) in Corollary 30 coincides with the Cramér-

Lundberg approximation. Recall that γ = (1− ρ) / {λG′ (c)− 1} and G (s) = {β/ (β − s)}k.

We have

G′ (s) =
k

β

(
β

β − s

)k+1

=
k

β − s
G (s) .
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Then, using c = β − a1 and λ− λG (c) + c = 0, we obtain

λG′ (c)− 1 =
k

a1
λG (c)− 1 =

k (λ+ β − a1)

a1
− 1 =

k (λ+ β)− (k + 1) a1

a1
,

which implies

γ = (1− ρ)
a1

k (λ+ β)− (k + 1) a1
.

1.4.2 Parametric estimation of the CDF and the PDF of W and Wq

Theorem 26 gives us estimators of CDF and PDF of W and Wq when we know that the

queues in question is M/Ek/1 and the random sample of inter-arrival {Ij} and the service

time {Gj} are available.

From the sample, we obtain λ̂ and β̂, which give us

Q̂1 (r) = rk+1 −
(
λ̂+ β̂

)
rk + λ̂β̂k.

Solving Q̂1 (r) = 0, we obtain âj and by replacing aj , λ, and β with âj , λ̂, and β̂ in the

formula in Theorem 26, we have the estimator of the PDF's and CDF's. For example,

F̂ (t) = 1− (1− ρ̂) β̂k
k∑
j=1

(
âj − β̂

)2
e(âj−β̂)t

kâk−1
j

(
âj − β̂

)(
âj − β̂ − λ̂

)
+ λ̂

(
âkj − β̂k

) (1.4.4)

The validity of our estimators comes from following:

Theorem 32. Suppose {Gj}nj=1
iid∼Gamma(k, β) with k known and {Ij}nj=1

iid∼Exp(λ). If we

de�ne λ̂ = n/
∑
Ij and β̂ = nk/

∑
Gj, then we have the following:

1. As a complex function, Q̂1 (z) = zk+1 − (λ̂ + β̂)zk + λ̂β̂k converges locally uniformly

to Q1 (z) = zk+1 − (λ+ β) zk + λβk.

2. For any z ∈ C, |Q̂1 (z)−Q (z) | = Op
(
n−1/2

)
.
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3. Moreover, for each r ∈ R,

√
n
{
Q̂1 (r)−Q1 (r)

}
⇒ N

{
0, λ2

(
tk − βk

)2
+ kβ2(tk − kλβk−1)2

}

4. The roots of the equation Q̂1 (r) = 0 converges to the roots of Q1 (r) = 0 a.s.

5. Let â1 be the unique positive real root of Q̂1 (r) = 0 which converges to a1 which is the

unique positive real root of Q1 (r) = 0. Then,

√
n (â1 − a1)⇒ N

0,
λ2
(
ak1 − βk

)2
+ kβ2(ak1 − kλβk−1)2[

ak−1
1 {(k + 1) a1 − k (λ+ β)}

]2

 .

6. Let âj be a root of Q̂ (r) = 0, j > 1, which converges to aj. Then, âj−aj = Op
(
n−1/2

)
.

Proof. We show (1) �rst. Observe that if D is a compact set in C, then for any z ∈ D,

∣∣∣Q̂1 (z)−Q1 (z)
∣∣∣ =

∣∣∣zk (λ̂+ β̂ − λ− β
)

+
(
λ̂β̂k − λβk

)∣∣∣
≤
∣∣∣zk∣∣∣ (∣∣∣λ̂− λ∣∣∣+

∣∣∣β̂ − β∣∣∣)+ λ̂
∣∣∣β̂k − βk∣∣∣+ βk

∣∣∣λ̂− λ∣∣∣
≤ sup

z∈D
|z| ·

(∣∣∣λ̂− λ∣∣∣+
∣∣∣β̂ − β∣∣∣)+ (λ+ 1)

∣∣∣β̂k − βk∣∣∣+ βk
∣∣∣λ̂− λ∣∣∣ (∗)

for large enough n. Because λ̂→ λ and β̂ → β a.s., the last line in the inequality converges

to 0 a.s. and we conclude (1).

For (2), note that λ̂− λ = Op
(
n−1/2

)
and β̂ − β = Op

(
n−1/2

)
, where the latter implies

β̂k − βk = Op
(
n−1/2

)
by Proposition 36. Because Op

(
n−1/2

)
+ Op

(
n−1/2

)
= Op

(
n−1/2

)
,

(∗) implies the desired result.

For (3), use multivariate CLT as in the proof of Theorem 9; We have

√
n


 I

G

−
 λ−1

kβ−1


⇒ N

0,

 λ−2 0

0 k/β2


 ,
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and de�ne

h (x, y) := rk+1 −
(
x−1 + ky−1

)
rk + x−1

(
ky−1

)k
.

Then, (
∂h

∂x
,
∂h

∂y

)
=
[
x−2

{
rk − (k/y)k

}
, krky−2 − (k/y)k+1 x−1

]
and we have

√
n
{
h
(
I,G

)
− h

(
λ−1, kβ−1

)}
⇒ N

{
0, λ2

(
tk − βk

)2
+ kβ2

(
tk/k − λβk−1

)2
}
.

For (4), let C(aj,ε) be a circle of radius of ε at aj (i.e., C(aj,ε) := {z ∈ C : |aj−a| = ε}).

Then, since Q̂1 (z) converges to Q1 (z) locally uniformly a.s., by the residue theorem, if

ε < min
k 6=j
|aj − ak| ,

then we have

∫
C(aj ,ε)

1

Q̂1 (z)
dz →

∫
C(aj ,ε)

1

Q1 (z)
dz = lim

z→aj

(z − aj)
Q1 (z)

6= 0 a.s.

Recall that
∫
C(aj ,ε)

1
Q̂1(z)

dz = 0 unless a root of Q̂1 (z) = 0 is inside of C(aj , ε) since 1/Q̂j (z)

is analytic on C\{âj}k+1
j=1 by Cauchy's theorem. Since ε can be arbitrary, there is a sequence

of roots of Q̂1 (z) = 0 which converges to aj a.s.

For (5), an almost same argument we used in the proof of Theorem 9 can be used here

and we obtain
√
n (â1 − a1) =

−1

Q̂′1 (â′1)

√
n
{
Q̂1 (a1)−Q1 (a1)

}
,

which converges to the normal distribution of the desired result.

For (6), similarly to the proof of Theorem 19, we write

|âj − a| =

∣∣∣∣∣0− Q̂1 (a)

Q̂′1 (z′)

∣∣∣∣∣ =

∣∣∣∣∣ 1

Q̂′1 (z′)

∣∣∣∣∣ ∣∣∣Q1 (a)− Q̂1 (a)
∣∣∣ ,
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where z′ is a complex number between âj and a. Thus, z
′ → a a.s. and a similar argument

to the proof of (1) can be used to show that Q̂′1 (z) converges locally uniformly a.s. to Q′1 (z),

which implies Q̂′1 (z′)→ Q′1 (a) 6= 0 a.s. Thus, we obtain the desired result.

Remark 33. 1. Note that λ̂ = n/
∑
Xj and β̂ = nk/

∑
Gj are the MLE, so that Q̂1 (t)

is the MLE too. Moreover, because aj 's only depends on k, λ, and β, we may write

aj = aj (k, β, λ) .

Then, we have

âj = aj

(
k, β̂, λ̂

)
,

so that âj is also the MLE of aj , which implies F̂ (t), f̂ (t), F̂q (t), and f̂q (t) are all

the MLE's of F (t), f (t), Fq (t), and fq (t).

2. Though we assume that k is known, if k̂ is a natural number valued estimator of k and

converges to k a.s., then Theorem 32 is still valid with k being replaced by k̂ because

the a.s. convergence of k̂ to k as a sequence of natural numbers implies k̂n = k all but

�nite n.

Corollary 34. Assuming the condition of Theorem 32, let F̂ (t) be the estimators of F (t)

as in (1.4.4), and let f̂ (t), F̂q (t), and f̂q (t) be the similarly de�ned estimators of F (t),

f (t), Fq (t), and fq (t), respectively. Then the following holds:

1. The convergence is locally uniformly a.s.

2. F̂ (t) − F (t) = Op
(
n−1/2

)
, and the same relation also hold for the estimators, f̂ (t),

F̂q (t), and f̂q (t).

Proof. The arguments we used in the proof of Theorem 13 and Theorem 20 can be applied

here.
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1.4.3 Parametric bootstrap CI and comparisons to the saddlepoint ap-

proximations

The bootstrap method of constructing CI we used in the previous subsection can be used

for the parametric estimators of F (t) de�ned in (1.4.4).

However, because G is known to follow a gamma distribution, we use parametric boot-

strapping instead to compute resampled estimators ρ̂∗, {â∗j}, β̂∗, and λ̂∗ used in (1.4.4) to

determine F̂ ∗ (t). The same methods (BP, BCa, and HDR) are used to construct CI but

using the parametric bootstrap.

Using the same random sample we used for Figure 1.3.9 and Figure 1.3.10, we obtain

three parametric bootstrapped CI's for Exp(2) and Gamma(3,3) service time as shown in

Figure 1.4.1 and 1.4.2. As we did in Figure 1.3.9 and Figure 1.3.10, the average coverage

probabilities and the average interval lengths are computed.

The parametric coverage probabilities in these �gures are slightly better than those in

Figure 1.4.1 and 1.4.2 using the nonparametric bootstrap except for gamma service time

with n = 200.

However, the average lengths of CI of parametric estimators are very similar to those of

the nonparametric saddlepoint approximation estimators. Figure 1.4.3 and 1.4.4 shows the

comparisons of the average and the sample standard deviation of the lengths of the methods

for all cases and one can see that the non-parametric CI lengths are very compatible to the

lengths of parametric CI's in terms of the mean and standard deviation.

Figure 1.4.5 shows the estimated absolute biases and MSE of the parametric estimates

and the saddlepoint approximation of F (t) for G∼Exp(2) (with λ = 1) and G∼Gamma(3,3)

(with λ =.5) on log10-scale from l = 104 random samples. Again, as a estimator of F (t),

the saddlepoint approximation is on a par with the parametric estimation considering that

k is assumed to be known in the parametric estimation method.

Perhaps what is most impressive about the nonparametric bootstrap CI's is that they

match the performance of their parametric counterparts well into the tail of F (t).

Figure 1.4.6 shows the estimated % relative absolute bias of Figure 1.4.5. Each graphs
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Figure 1.4.1: Parametric bootstrapped CI's for F (t) where G∼Exp(2) and λ = 1. Top: Calculated
CI's for the same random sample of {Gj , Ij}nj=1 for n=50 (left) and n=200 (right) of the top graphs
of Figure 1.3.9. Middle: the average coverage probabilities from the same l=2500 random samples
of {Gj , Ij}nj=1 of Figure 1.3.9 for n=50 (left) and n=200 (right). Bottom: Average interval lengths
of each CI's. The top curves are the interval lengths, U (t) − L (t) and the middle curves are of
U (t)−F (t) and bottom curves are of L (t)−F (t). In each graph, N denotes a decile (from 10% to
90%) of W , the stationary waiting distribution.
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Figure 1.4.2: Same as Figure 1.4.1 for G∼Gamma(3, 3).
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Figure 1.4.3: The mean and the standard deviation of the lengths of the parametric (Figure 1.4.1)
and the non-parametric (Figure 1.3.9) bootstrapping CI's for F (t) where G∼Exp(2) and λ = 1.
Top: Bootstrapped percentile (BP) CI's. Middle: BCa CI's. Bottom: HDR CI's.
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Figure 1.4.4: Same as Figure 1.4.3 for G∼Gamma(3, 3).
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Figure 1.4.5: Estimated absolute biases and MSE's of the parametric estimations and the saddlepoint
approximation of F (t) for M/M/1 queue and M/Ek/1 queues in log10-scale from l = 104 random
samples. Top: G∼Exp(2) with λ = 1. Bottom: G∼Gamma(3,3) with λ = .5.

82



0 1 2 3 4 5 6

0
5

1
0

1
5

2
0

2
5

3
0

% rel | Bi as^ |   G~Exp

Para n=50
Saddlept n=50
Para n=200
Saddlept n=200

0 1 2 3 4 5 6 7
0

5
1

0
1

5
2

0
2

5
3

0

% rel | Bi as^ |   G~Gam

Figure 1.4.6: The estimated % relative bias from �gure 1.4.5.

shows that the relative bias is lower than 5% till 90th percentile but grows exponentially for

the tail area. This is not unexpected. Note that from Corollary 30, the asymptotic functions

in each case have the form 1− ae−cx so that after 50th percentile, the relative bias is

100 |BiasF (t)|
min {F (t) , 1− F (t)}

∼ 100 |BiasF (t)|
(
a−1ect

)
.

However, rather surprisingly, the performance of the saddlepoint approximation is slightly

better than the parametric estimation for the lower quantile areas for our cases in the view

of the relative bias.

Because the estimated Biases and MSE's are very close to each other, we may suspect

that both F̂0 (t) and the parametric estimation of F̂ (t) are, in fact, very close to each other,

which we �nd true. See Figure 1.4.7 for the sample mean and the sample standard deviation

of the absolute di�erence of two estimators from Figure 1.4.5 on log10-scale. Both cases

show that the di�erences become smaller as the sample sizes become bigger.

In summary, our simulation study for the M/Ek/1 case shows that the saddlepoint ap-
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Figure 1.4.7: The sample mean (Avg) and the sample standard deviation (SD) of the absolute
di�erence of the parametric estimators and the saddlepoint approximations from Figure 1.4.5 on
log10-scale. The left is of G ∼Exp(2) case and the right is of G ∼Gamma(3,3) case.

proximation as a non-parametric estimator of F (t) performs equally well with the parametric

estimator of (1.4.4) and it bolsters the validity of the saddlepoint approximation with the

bootstrapping as a good statistical inference method.

1.5 Conclusion

We showed that the saddlepoint approximation with the empirical MGF can be used as a

reliable approximation method.

It was remarked that as a smooth approximation method, the performance of the esti-

mation will be hindered if the estimated CDF is not smooth. However, even in that case, the

saddlepoint approximation can be regarded as a good smooth approximation as we showed

in estimating F̂ (t), the distribution of Ŵ .

Though a simulation approach may be possible in certain cases, it is not a time-e�cient

method. In our case, using R, to draw one of 8 graphs in Figure 2.4.1, took about 130-170

hours to obtain l = 103 independent simulations of F̂ † (t) using the sample size m = 107
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on our computer.6 However, it took only about 68 minutes to obtain the corresponding

saddlepoint approximations to draw the graph for G∼Gamma(3,3) and n = 200, which

needs to solve the saddlepoint equation 140 times for 140 grid points of (1/20, 2/20, · · · , 7)

in Figure 2.4.1. This was the maximum time taken among the 8 graphs.

The saddlepoint approximation can be used as a good, general purpose, and stable

approximation without a deep knowledge of probability and statistics theory. With the

bootstrapping method, many statistical inferences can be made without referring to asymp-

totic normality results, which are hard to derive without deep insight into how the stochastic

process works.

With the advance of empirical process theory, which will provide the validity of the using

the empirical MGF in more general setting, we believe that the saddlepoint approximation

will become an important tool to use and appealing to general practitioners of statistical

inference.

1.6 Appendix

Here we collect technical results we used in the proofs of Section 2. We believe these must

be known results but we could not �nd references during our search and decide to provide

the proofs for completeness.

Proposition 35. Let Xn =
(
X1
n, . . . , X

m
n

)
be m-dimensional random vector and a ∈ Rm

and assume Xn − a = o (rn) a.s. in the sense of

sup
1≤i≤m

Xi
n − ai

rn

a.s.−−→ 0 as n→∞,

where rn → 0 as n→∞. If g : Rm → R is C1 at a and g′ (a) 6= 0. Then

g (Xn)− g (a) = o (rn) a.s.

6The computer is equipped with AMD Athlon R© 64 X2 4000+. Because the R we used is a single thread
program, only one core was used for the calculations and the simulations.
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Proof. By the multivariate mean value theorem,

g (Xn)− g (a) = g′ (Yn) (Xn − a) =
m∑
i=1

∂g

∂xi
(
Y i
n

) (
Xi
n − ai

)
,

whereYn ism-dimensional random vector such that Y i
n's are all in betweenX

i
n and a

i. Since

Xi
n−ai = o (rn) a.s., Xi

n
a.s.−−→ ai, which implies Y i

n
a.s.−−→ ai, or ∂g

(
Y i
n

)
/∂xi

a.s.−−→ ∂g
(
ai
)
/∂xi.

Then, we have

lim
n→∞

g (Xn)− g (a)

rn
=

m∑
i=1

lim
n→∞

∂g

∂xi
(
Y i
n

) Xi
n − ai

rn
= 0,

which is the desired result.

Proposition 36. Let Xn =
(
X1
n, . . . , X

m
n

)
be m-dimensional random vector and a ∈ Rm

and assume and Xn − a = Op (rn) in the sense of

Xi
n − ai = Op (rn) as n→∞ for any 1 ≤ i ≤ m,

where rn → 0 as n→∞. If g : Rm → R is C1 at a and g′ (a) 6= 0. Then

g (Xn)− g (a) = Op (rn) .

Proof. We show that Xi
n

p−→ ai for each i as n→∞ by contradiction. Suppose Xi
n does not

converges to ai in probability, which implies that there exists ε > 0 such that

lim sup
n

P
(∣∣Xi

n − ai
∣∣ > ε

)
→ c > 0. (∗)

Since Xi
n − ai = Op (rn), we can pick M ∈ N such that

P

(∣∣Xi
n − ai

∣∣
rn

> M

)
< c/2 for any n ≥ n0.

Since rn → 0, we can pick n1 such that rnM ≤ ε for any n ≥ n1. Thus, for any n ≥
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max {n0, n1}, we have

P
(∣∣Xi

n − ai
∣∣ > ε

)
≤ P

(∣∣Xi
n − ai

∣∣ > rnM
)
< c/2,

which contradicts to (∗). Thus, we conclude Xi
n

p−→ ai.

Now, by the multivariate mean value theorem,

g (Xn)− g (a) = g′ (Yn) (Xn − a) =
m∑
i=1

∂g

∂xi
(
Y i
n

) (
Xi
n − ai

)
,

where Yn is m-dimensional random vector such that Y i
n's are all in between Xi

n and ai.

Thus, Y i
n

p−→ ai, which implies ∂g
(
Y i
n

)
/∂xi

p−→ ∂g
(
ai
)
/∂xi, or

∂g

∂xi
(
Y i
n

)
=

∂g

∂xi
(
ai
)

+ op (1) .

Thus, we have

m∑
i=1

∂g

∂xi
(
Y i
n

) (
Xi
n − ai

)
=

m∑
i=1

∂g

∂xi
(
ai
) (
Xi
n − ai

)
+

m∑
i=1

op (1)
(
Xi
n − ai

)
=

m∑
i=1

∂g

∂xi
(
ai
) (
Xi
n − ai

)
+ op (rn) ,

7which implies the desired result because Op (rn) + Op (rn) = Op (rn), Op (rn) op (1) =

Op (rn), and Op (rn) + op (rn) = Op (rn).

The following result can be used for the theorem known as Pólya's lemma (Exercise 7.2

of [61]. See also Exercise 7.13 of [58]), which is that Fn uniformly converges to F if Fn ⇒ F

and F is continuous.

Theorem 37. Let fn : R → R, n ∈ N be a sequence of non-decreasing functions. If f is

continuous and fn (x)→ f (x) pointwise for a countable dense set in R, then
7After completing the proof, I found Proposition 6.1.5 of Time Series: Theory and Methods, which has a

more generalized result. Note that g′ (x) does not need to be continuous as in the Delta method (Theorem
1.8.12 of [42]). However, a function whose derivative is not continuous is barely occurred in statistics so that
the applicability of the proposition will not be weakened generally.
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1. fn (x)→ f (x) for any x ∈ R,

2. f is non-decreasing, and

3. fn → f locally uniformly.

Proof. 1. Let S be the countable dense set on which fn converges to f pointwise. Let

x be any real number. For any ε > 0, there δ > 0 such that |x− y| < δ implies

|f (x)− f (y)| < ε due to the continuity of f . Since S is dense in R, there exists

y1, y2 ∈ S such that |yi − x| < δ for i = 1, 2 and y1 ≤ x ≤ y2. Because fn is

non-decreasing, we have

fn (y1) ≤ fn (x) ≤ fn (y2) ,

which implies

lim sup
n→∞

fn (x) ≤ lim sup
n→∞

fn (y2) = lim
n→∞

fn (y2) = f (y2) < f (x) + ε

and similarly,

f (x)− ε < lim inf
n→∞

fn (x) .

Because ε is arbitrary, limn→∞ fn (x) = f (x).

2. We now show f is non-decreasing. Suppose there exists x, y ∈ R such that x < y but

f (x) > f (y). Let ε = {f (x)− f (y)}/2 and pick n ∈ N such that |fn (x)− f (x) | < ε

and |fn (y)−f (y) | < ε. Then by our choice of ε, fn (y) < f (y)+ε < f (x)−ε < fn (x),

which contradicts to the fact fn is non-decreasing.

3. For the locally uniform convergence of fn, let [a, b] be given. It su�ce to show fn

converges to f continuously on [a, b] (see theorem 7.3.5 of [66] or �0.0 of [53]), which

can be shown similarly to the proof (1).
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Chapter 2

Saddlepoint Approximation to

Pollaczek-Khinchin Formula of Wq

In the previous chapter, we showed that the saddlepoint approximation with (non-parametric)

bootstrapping is an e�cient tool for statistical inference. In this chapter, we compare the

saddlepoint approximation with other known methods of estimating the CDF of Wq, the

waiting time in queue. We show that the saddlepoint CDF approximation F̂q0(t) is a bet-

ter approximation to Fq (t) and F̂q (t), the CDF's of Wq and Ŵq, respectively, than the

Cramér-Lundberg approximation and other known asymptotic approximations.

2.1 Waiting time in queue and its CDF estimation

As mentioned in the previous chapter, the smoothness of saddlepoint approximation hinders

the performance of approximations for the lower quantile area where the e�ect of the discrete

part, Ĝj is dominant. Let Wq be the stationary waiting time in the queue and Fq (t) the

CDF of Wq.

In insurance mathematics, it is known that there is a connection between ruin probability

and the stationary waiting time of M/G/1 queue. Following [68], let S (τ) be a compound
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Poisson process with rate λ for the total claims in the time interval [0, τ ] de�ned by

S (τ) =

N(τ)∑
j=1

Cj ,

where Cj represents successive claims with Cj
iid∼ FC (t) and ECj = µ−1. We assume that

the insurance company's reserve increases at constant rate σ > 0 and σ > λ/µ.

If the company's initial reserve is t > 0, then the surplus of the company at time τ is

t+ στ − S (τ) and the probability that the the company will be ruined eventually is

ψ (t) = P {S (τ) > t+ στ for some τ ≥ 0} .

It is known that if we set Gj = Cj , then

1− Fq (t) = ψ (σt) .

In this chapter, we compare the saddlepoint approximation to other known approximations.

We note that �4 of Chapter 1 in [8] gives a birds-eye view on the related result and method

of �nding the CDF. For a review and a comparison for the performance of several known

numerical inversion methods of Ŵq (s), see [63].

2.1.1 Saddlepoint approximation

As we did for W (s), because

Wq (s) =
(1− ρ) s

s+ λ− λG (s)
,

we have

Ŵq (s) =
(1− ρ̂) s

s+ λ̂− λ̂Ĝ (s)
,

where ρ̂, λ̂, and Ĝ (s) are de�ned as in Ŵ with the sample size n suppressed.

The saddlepoint approximation can be calculated as usual and are denoted as F̂q0 (t) and
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f̂q0 (t). See Figure 2.1.1 and 2.1.2 for these saddlepoint CDF and PDF approximations of

Ŵq, which accurately approximate the tail areas of the empirical CDFs, and the histograms

of 107 Ŵq values. These approximations are not so accurate around 0 since there is a point

mass (atom) at 0 as

P (Wq = 0) = P (N = 0) = (1− ρ) .

As a smooth function, the saddlepoint approximation tries to connect the point mass

smoothly, which is evident by comparing the histograms and the PDF estimations.

A better way to approach is to get rid of the point mass at 0. Following [6], let F+
q (t)

be de�ned by

F+
q (t) =

Fq (t)− (1− ρ)

ρ
(2.1.1)

(i.e, Fq (t) = (1− ρ) + ρF+
q (t)). Then the MGF of F+

q (t), W+
q (s) is

W+
q (s) =

W (s)− (1− ρ)

ρ
=
µ (1− ρ) {G (s)− 1}
s+ λ− λG (s)

.

Denote the plug-in estimator as Ŵ+ (s). Since

lim
s→−∞

{
logW+

q (s)
}′

= lim
s→−∞

{log Ŵ+
q (s)}′ = 0,

the saddlepoint equation can be solved for any t > 0 which is unlike the case of W (s) (see

Corollary 1).

Let F̂+
q0 (t) be the saddlepoint CDF approximation and f̂+

q0 (t) be the saddlepoint PDF

approximation using Ŵ+ (s). Then, (1− ρ̂) + ρ̂F̂+
q0 (t) and ρ̂f̂+

q0 (t) are the the better ap-

proximations of F̂q (t) and f̂q0 (t)1 (0,∞) (t) respectively, which can be seen in Figure 2.1.1

and 2.1.2.

2.1.2 E�cient simulation method for Wq

We observed that (1− ρ) + ρF+
q0 and (1− ρ̂) + ρ̂F̂+

q0 can be used in lieu of a simulation

approach based on sampling values of Wq and Ŵq. If m = 107 values of Wq and Ŵq are
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CDF est. of Ŵq, n=50, G~Gamma(3,3)

x.50.array
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CDF est. of Ŵq, n=50, G~Pareto(.8,5) Hist. of 107 Ŵq v.s. f̂ q0 and f̂ q0
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Figure 2.1.1: Left: The empirical CDFs, F̂ †q (t), of 107 Ŵq values as in (1.3.3) with the saddle-

point CDF approximations F̂q0 (t) from Ŵq (s) and (1− ρ̂) + ρ̂F̂ †q0 (t) in (2.1.1). From the top, the

Gj
iid∼ Exp (2), Gamma(3, 3), Beta(2, 2), and Pareto(4/5, 5). Right: Histogram of 107 Ŵq values as

compares with the saddlepoint PDF approximation from Ŵq (s) and ρ̂f̂+
q0 (t). The t-axes are cut to

include at least 99.5% of W ∗q .

92



0 1 2 3 4 5

0
.4

0
.6

0
.8

1
.0
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Figure 2.1.2: Same as Figure 2.1.1 but with the sample size n = 200.
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simulated to obtain the random sample following (1.3.2), about m (1− ρ) of the simulated

values will be 0. Thus, for the estimator of Fq or F̂q, it is more e�cient to use

(1− ρ) + ρF+†
q or (1− ρ̂) + ρ̂F̂+†

q ,

where F+†
q is the empirical CDF of

W+
q = V1 + · · ·VN+

and the PMF of N+ is de�ned by

P
(
N+ = k

)
= ρk−1 (1− ρ) , k = 1, 2, · · · ,

or

N+ ∼ N + 1.

In this way, all of the simulated values are non-zero and can be used to estimate F+†
q or

F̂+†
q . Note that in this dissertation, the method of simulating W+

q was not used to make

our simulation method consistent through di�erent chapters.

2.1.3 Cramér-Lundberg approximation

In risk theory or ruin probability literature, there is a well-known approximation for ψ (t),

the Cramér-Lundberg approximation (see [30], [68], [55], or [8]): Let

Ge (s) = µ

∫ ∞
0

est {1−G (t)} dt

be the MGF of V (this is usually denoted by Ge), the equilibrium distribution of G. Suppose

Ge (s) is �nite for some s > 0 and if

lim
s→s′
Ge (s) =∞,
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where

s′ := sup {s : Ge (s) <∞} ,

then with the assumption of σ = 1,

ψ (x) = 1− Fq (t) ∼ γe−δt

where δ is the unique solution of equation

Ge (δ) = ρ−1 (2.1.2)

on (0, s′) and

γ =
1− ρ

ρδµ
∫∞

0 teδx {1−G (t)} dt
.

Here "∼" means that limx→∞{1− F (t)}/γe−δt = 1.

Note that the above equations are normally how δ and γ are presented in the ruin

probability literature. The following proposition is useful to calculate δ and γ, and we later

found that a similar representation appeared in [8]. It is well known that

Ge (s) =
µ {1− G (s)}

−s
. (2.1.3)

Note that s = 0 is a removable singularity, so that G (s) < ∞ if and only if Ge (s) < ∞.

Thus, the convergence strip of Ge (s) is the same of G (s) and s′ = b.

Proposition 38. Suppose the condition of Cramér-Lundberg approximation is satis�ed.

Then, the root δ of (2.1.2) is c of Lemma 2. Moreover, if there is an integrable function l (t)

such that

tes1t {1−G (t)} ≤ l (t)

for some c satisfying c < s1 < b then

µ

∫ ∞
0

tect{1−G (t)}dt = G′e (c) , (2.1.4)
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and

γ =
1− ρ

λG′ (c)− 1
. (2.1.5)

Proof. Equation (2.1.2) can be written as

Ge (δ) =
µ {1− G (δ)}

−δ
= ρ−1 =

µ

λ
,

which implies

λ− λG (δ) + δ = 0, (∗)

Therefore, δ must be c because the root is unique by Lemma 2.

For the second part, note that the function

ϕ (s, t) := est {1−G (t)}

is integrable on (0, b− ε) for some ε > 0 by the assumption and di�erentiable with respect

to s. Because dϕ (s, t) /ds is dominated by the integrable function l (t), we conclude (2.1.4)

(see p.154 of [38]).

Thus, we have

µ

∫ ∞
0

tect {1−G (t)} dt = G′e (c) =
d

ds

[
µ {1− G (s)}

−s

] ∣∣∣
s=c

= µ

{
G′ (s) s+ 1− G (s)

s2

} ∣∣∣
s=c

=
µ {G′ (c) c+ 1− G (c)}

c2
,

and

γ =
1− ρ

ρδµ
∫∞

0 teδt{1−G (t)}dt
=

1− ρ

ρc
[
µ{G′(c)c+1−G(c)}

c2

]
=

(1− ρ) c

λ {1− G (c) + cG′ (c)}
=

(1− ρ) c

λ {1− G (c)}+ λcG′ (c)
(∗)
=

(1− ρ) c

−c+ λcG′ (c)
=

1− ρ
λG′ (c)− 1

,
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which is the desired result.

Note that the assumption of the Cramér-Lundberg approximation and proposition 38 are

satis�ed for the empirical MGF of Ĝ (s). For more detailed information and generalizations

of this approximation, see [1], [2], [8], [55], and [72].

If we substitute ρ, λ, c, G (s) with estimators, ĉ, λ̂, p̂, Ĝ (s) as we did for the saddlepoint

approximations Ŵ (s), the Cramér-Lundberg approximation can be used to estimate Fq (t)

and F̂q (t). For example,

γ̂ :=
1− ρ̂

λ̂Ĝ′ (ĉ)− 1
. (2.1.6)

We note that our estimator γ̂ of γ is di�erent from the estimator in [32], in which λ is

assumed to be known and set to 1. Their estimate is

γ̂GJ :=
Ĝ′′ (0) /2 + R̂1/ĉ

Ĝ′′ (0) /2 + Ĝ′′′ (0) ĉ/2 + R̂2

, (2.1.7)

where

R̂1 :=
1

n

n∑
j=1

{eĉGj − 1− ĉGj − (ĉGj)
2 /2},

R̂2 := −R̂1 +
ĉ

n

n∑
j=1

Gj{eĉGj − 1− ĉGj − (ĉGj)
2 /2}.

Our nonparametric estimation of the Cramér-Lundberg approximation can be regarded

as the Cramér-Lundberg approximation of F̂q (t), which is not the case for 1 − γ̂GJe
−ĉt.

Moreover, for λ = 1, we have

γ =
1− EG
G′ (p)− 1

=⇒ γ̂ =
1−G

n−1
∑
GjeGj ĉ − 1

,

which is much simpler than γ̂GJ and intuitively, γ̂ will have a smaller MSE.

Figure 2.1.3 shows density estimates of the sampling distributions for (γ̂−γ) and (γ̂GJ−γ)

by simulating 104 values with λ = 1. In other words, from the sample service time {Gj}nj=1

only (i.e., λ̂ is �xed as 1), values for γ̂ and γ̂GJ are calculated 104 times to give the density
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estimates shown. They clearly show that the mean squared error (MSE) of γ̂ is smaller and

from now on, we only consider γ̂ when we deal with the Cramér-Lundberg approximation.

In [33], a approximate CI for γe−ct was given as

{
γ̂ exp

(
−ĉ−

zα/2σ̂c√
n

)
t, γ̂ exp

(
−ĉ+

zα/2σ̂c√
n

)
t

}

by observing

γ̂ exp (−ĉt)
γ exp (−ct)

=
γ̂

γ
exp (c− ĉ)

√
n
t√
n
⇒ e−N(0,σ2

c)

if t/
√
n converges to a �nite number.
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Figure 2.1.3: The density estimation of the sampling distribution for (γ̂ − γ) and (γ̂GJ − γ) by
simulating 104 values with λ = 1 from the same service time sample of {Gj}nj=1. Top: G∼Exp(2).
The left graph is for n = 50 and the right graph is for n = 200. Bottom: G∼Gamma(3,6).
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2.1.4 Tijms approximation

Tijms ([68]) suggested adding another exponential term to improve Cramér-Lundberg ap-

proximation. Tijms' approximation for 1− F (t) is

γe−ct + (ρ− γ) e−βt, (2.1.8)

where

β =
ρ− γ

EWq − γ/c
. (2.1.9)

Note that the �rst term of Tijms approximation (2.1.8) is the exponential term of

Cramér-Lundberg approximation and it was mentioned that the Tijms approximation can

be applied only if

β > c (2.1.10)

since then for large t, the approximation would agree to the Cramér-Lundberg approxima-

tion, which is an asymptotic expansion of 1− Fq (t).

If t = 0, the value of Tijms approximation is ρ, which is the true value of 1−Fq (0) and

β is chosen to match the �rst moment of Wq, i.e. β is the solution of the equation,

∫ ∞
0

{
γe−ct + (ρ− γ) e−βt

}
dt =

γ

c
+
ρ− γ
β

= EWq.

Example 39. For M/M/1 queue, c = µ − λ and γ = ρ. By Example 28, the Cramér-

Lundberg approximation is exact. For the Tijms approximation, the second terms in the

Tijms approximation has weight ρ− γ = 0.

For Erlang service time distribution (i.e., G∼Gamma(k, β)), see Example 31.

Again, if we use β̂ = (ρ̂− γ̂)/(ÊWq − γ̂/ĉ), where ÊWq is the moment estimator de�ned

by

ÊWq := Ŵ ′q (0) =
G2

2(I −G)
=

Ĝ′′ (0)

2{I − Ĝ′ (0)}
,

then the empirical version of the Tijms approximation can be used as the approximation
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of F̂q (t). Figures 2.1.4 and 2.1.5 show the Cramér-Lundberg approximation and the Tijms

approximation of F̂q (t) of Figure 2.1.1 and 2.1.2 on the left graphs and their % absolute

relative errors against F̂ †q (t).

2.1.5 Other approximations - Willmot's and Sakurai's

Based on the idea of the Tijms approximation, Willmot ([71]) proposed that

P (Wq ≥ t) ∼ γe−ct + (ρ− γ)C (t) ,

where 1− C (x) is a distribution function satisfying

(ρ− γ)

∫ ∞
0

C (t) dt = EWq −
γ

c
,

so that the �rst moment is matched. Thus, his approximation also preserves P (Wq = 0)

and EWq as with Tijms' approximation.

The suggested choice of distribution of C is Gamma(k, θ), where k and θ are selected to

match the �rst two moments of Wq. Let µ
′
j be the jth non-central moment of G. Solving

the following equations simultaneously,


(ρ− γ)

k

θ
=
(
EWq −

γ

c

)
(ρ− γ)

(
k + k2

θ2

)
+ γ

(
2

c2

)
= EW 2

q ,

where

EW 2
q =

λ {3µ′2λ+ 2µ′3 (1− ρ)}
6 (1− ρ)2 ,

we have the solutions,

k =

(ρ− γ)
(
EW 2

q −
2γ
c2

)
(
EWq − γ

c

)2 − 1


−1

θ = k
(ρ− γ)(
EWq − γ

c

) .
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Figure 2.1.4: Left: The empirical CDF's, F̂ †q (t), of Figure (2.1.1) with the Cramér-Lundberg ap-
proximations, the Tijms approximation, the Willmot approximation, and the Sakurai approximation.
Right: % relative Absolute errors of each approximation against F̂ †q (t). In each graph, N denotes a

decile (from 10% to 90%) of the sampling distribution of Ŵq.
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Figure 2.1.5: Same as Figure 2.1.4 with n = 200.
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or

k =

{
β2

ρ− γ

(
EW 2

q −
2γ

c2

)
− 1

}−1

θ = kβ,

where β is de�ned in (2.1.9).

In [71], it was noted that his approximation is asymptotically valid if

k > 1− ρ− cEWq

(ρ− γ)
(2.1.11)

and if the calculated k is negative or not satisfying the above condition, the smallest positive

integer satisfying the above condition is used as k.

Note that the right term of the inequality in the above condition (2.1.11) can be simpli�ed

as

1− ρ− cEWq

(ρ− γ)
=
ρ− γ − ρ+ cEWq

ρ− γ
=

(
EWq − γ/c
ρ− γ

)
c =

c

β
,

so that the Willmot's condition (2.1.11) can be written as

k >
c

β
.

Comparing (2.1.11), Tijms' condition (2.1.10) can be regarded as Willmot's condition

with k �xed as 1 and the Willmot's approximation is more �exible than Tijms' condition.

We also note that if k is chosen to be 1, then θ = β, so that the Willmot's approximation

coincides with the Tijms' approximation.

Sakurai's approximation ([59]) is based on truncating the argument of Ge ([13] and [18]),

the equilibrium distribution of G.

Let Ge (t) = µ
∫ t

0 {1−G (x)} dx. Sakurai proposed an approximation,

P (Wq > t) ≈ γte−δtt +
ρ

1− ρGe (t)
{1−Ge (t)} ,
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where γt and δt are similarly de�ned for truncated Ge. In other words, δt is the solution of

∫ t

0
eδtxdGe (x) = ρ−1 (2.1.12)

and

γt :=
1− ρ

ρδt
∫ t

0 xe
δtxdGe (x)

.

Note that sinceGe (0) = 0, the Sakurai's approximation also preserves P (Wq = 0) = 1−ρ

assuming γ0 = 0. Though this approximation was developed for asymptotic approximation

with heavy-tailed service time distributions where Cramér-Lundberg approximation cannot

be used, it was also claimed to be useful for light tailed service distributions.

Since
∫ t

0 e
δtxdGe (x) and

∫ t
0 xe

δtxdGe (x) do not always have closed forms, it was sug-

gested to use numerical integrations or moments based estimators in [59]. However, for the

case of the empirical MGF, δt and γt can be calculated by the following proposition.

Proposition 40. Let G(j) be the jth order statistic of {Gj}nj=1. Then the following hold:

1. δ̂t is the root of the equation λ̂− λ̂Ĝt(δ̂t) + δ̂t = 0 and γ̂t is given by

γ̂t =
1− ρ̂

λ̂Ĝ′t(δ̂t)− 1
,

where

Ĝt (s) =
1

n

 n′∑
j=1

expG(j)s+
(
n− n′

)
exp(ts)



is the empirical MGF of

G(1), G(2), · · · , G(n′), t, · · · , t︸ ︷︷ ︸
n−n′

 with

n′ := max
{
j : G(j) < t

}
.

2. For t ≥ inf {t : G (t) = 1} (t > G(n) := maxGi), the Sakurai approximation coincides

with the Cramér-Lundberg approximation. Thus, for the empirical approximation, if
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t ≥ G(n), the empirical Sakurai approximation coincides with the empirical Cramér-

Lundberg approximation.

Proof. Let n′ := max
{
j : G(j) < t

}
. Then, since Ĝ (t) = n′/n, we have

∫ t

0
esxdĜe (x) =µ̂

(∫ t

G(n′)

+

∫ G(n′)

G(n′−1)

+ · · ·+
∫ G(1)

0

)
esx
{

1− Ĝ (x)
}
dx

=
µ̂

s

{
n− n′

n

(
exp st− exp sG(n′)

)
+
n− n′ + 1

n

(
exp sG(n′) − exp sG(n′−1)

)
+ · · ·+ exp sG(1) − 1

}

=
µ̂

s

n− n′n
exp st+

1

n

n′∑
j=1

exp sG(j) − 1

 .

and solving (2.1.12) implies

µ̂

δ̂t

n− n′n

(
exp δ̂tt

)
+

1

n

n′∑
j=1

exp δ̂tG(j) − 1

 =
µ̂

λ̂

=⇒ 1

δ̂t

n− n′n

(
exp δ̂tt

)
+

1

n

n′∑
j=1

exp δ̂tG(j) − 1

 =
1

λ̂

=⇒ λ̂

n− n′n

(
exp δ̂tt

)
+

1

n

n′∑
j=1

exp δ̂tG(j) − 1

− δ̂t = 0.

Observing that n−n′
n exp st+ 1

n

∑n′

j=1 exp sG(j) is the empirical MGF of

G(1), G(2), · · · , G(n′), t, · · · , t︸ ︷︷ ︸
n−n′

 ,

then δ̂t solves λ̂{Ĝt(δ̂t)− 1} − δ̂t = 0.

For γ̂t, we just point out that the conditions of Proposition 38 are satis�ed in this case.

For (2), we note that if t ≥ inf {t : G (t) = 1}, then

∫ t

0
eδtxdGe (x) = Ge(δt),
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which implies δt = c and γ̂t = γ. Also, we note Ge (t) = 0 because µ{1−G (t)} = 0. Thus,

the Sakurai approximation coincides with the Cramér-Lundberg approximation.

2.2 Comparisons of the approximation of Fq (t) with gamma

and uniform service distributions

For the comparison of the approximations, we �rst use Gamma (3,3) service time distribution

with λ = .5, which is the only common example of the primer references of each approxi-

mation ([68], [71], [59]). See Table 2.2.1 for the values of each approximation of P (Wq > x)

calculated from the true MGF and Figure 2.2.1 for their the percentage absolute errors and

absolute errors.

We also compare those approximations for Uniform(0,2) service time distribution with

λ=.5 in Figure 1.3.14.

Each �gure shows that good performance of the saddlepoint approximation method over

all the range of Wq.

Note that since G has the bounded range of (0, 2), the Sakurai approximation coin-

cides with the Cramér-Lundberg approximation for t > 2 in the Uniform(0,2) service time

distribution case.

Table 2.2.1: Comparison of various approximations of P (Wq > x), where Wq is the stationary
waiting time in queue with Gamma(3,3) service time and λ=.5. C-L denotes the Cramér-Lundberg
approximation.

t P (Wq > t) Saddlepoint C-L Tijms Willmot Sakurai

.005 .4987 .4987 .5775 .4989 .4982 .4988

.1 .4744 .4743 .5332 .4764 .4728 .4752

.25 .4342 .4338 .4700 .4361 .4344 .4367

.5 .3664 .3644 .3809 .3665 .3672 .3711

.75 .3033 .3006 .3088 .3026 .3037 .3089

1 .2484 0.2460 .2502 .2476 .2484 .2536

2 .107988 .107620 .107981 .107896 .107950 .109327

3 .046595 .046682 .046594 .046592 .046594 .046751

4 .02010579 .02021472 .02010577 .020105684 .02010577 .02011895

6 .003743644 .003783579 .003743644 .003743644 .003743644 .003743713

8 .000697057 .000707296 .000697057 .000697057 .000697057 .000697057
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2.3 Comparisons of the empirical approximations as estima-

tors of Fq (t)

We now look into the performance of empirical versions of the approximations as estimators

of Fq (t). Figure 2.3.1 and 2.3.2 shows the estimated absolute bias and the MSE on log10-

scales of each approximation of the l = 104 random samples.

Note that all estimators of constants from the 4 di�erent approximations mentioned

above (γ and c of the Cramér-Lundberg approximation, β of the Tijms approximation, k

and θ of the Willmot approximation, and δx and γx of the Sakurai approximation) based

on the empirical MGF, converge to their true values a.s. so that their resulting empirical

approximations all converge a.s. to their true approximations. This can be shown in a

similar way to the proof of the a.s. convergence of F̂q0 (t) to Fq0 (t) (Corollary 18).

Thus, as with the saddlepoint approximation, empirical versions of these approximations

can be regarded as the estimators of Fq (t) and also of F̂q (t).

We �rst note that the Tijms condition is not satis�ed all the time and the Willmot

approximation has a similar defect too, which will be explained. Therefore, if the Tijms'

condition is not satis�ed for a sample {{Gj}nj=1, {Ij}nj=1}, the Cramér-Lundberg approxi-

mation for that sample is counted as the Tijms approximation for that sample and the same

goes for the Willmot approximation.

However, the Willmot approximation still has the several unusual cases which make

the average bloating in the tail area as one can see in the graphs of G∼Exp(2), and

G∼Pareto(.8,5) with n = 200 case of Figure 2.4.1. From the result of [71], the tail of

the Willmot approximation should be very close to the Cramér-Lundberg approximation

when the Willmot condition is satis�ed, which can always be done by choosing a accord-

ingly unless β ≤ 0.

Because the purpose of the chapter is to evaluate the performance of the saddlepoint

approximation and compare it to four other approximation methods, we did not investigate

why this behavior of the Willmot approximation happens.
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Table 2.3.1: The estimated probability of β̂ ≤ ĉ (the case not satisfying Tijms' condition) and

β̂ ≤ 0 (the case that the Willmot approximation cannot be used) from l = 104 random samples of
{{Gj}nj=1, {Ij}nj=1}lk=1 for di�erent service times.

G ∼Exp G ∼Gamma G ∼Beta G ∼Pareto
n 50 200 50 200 50 200 50 200

P̂
(
β̂ ≤ ĉ

)
.1164 .1987 .0058 .0078 .0000 .0000 .0197 .0879

P̂
(
β̂ ≤ 0

)
.0424 .0994 .0027 .0062 .0000 .0000 .0180 .0736

The defect of the Willmot approximation we mentioned is that there is a chance that

β̂ ≤ 0, in which case, the Tijms condition cannot be met, but Willmot's condition is still

met with k̂ = 1. However, θ̂ becomes negative so that the Willmot approximation cannot

be used.

Note that {β̂ ≤ 0} ⊂ {β̂ ≤ ĉ}. Thus, in summary, if the Willmot approximation cannot

be used, then the Tijms approximation cannot be used but not vice versa and there is a

chance that the Willmot approximation cannot be used for a random sample of {{Gj}, {Ij}}.

Table 2.3.1 shows the estimated probability of β̂ ≤ ĉ and β̂ ≤ 0 from l = 104 random samples

of {{Gj}nj=1, {Ij}nj=1}lk=1 for di�erent service times and di�erent sample sizes n=50, 200.

The true CDFs of the exponential and the gamma service time distributions were ob-

tained from Theorem (26) but for the beta and the Pareto service time distribution, the

empirical CDF F †q (t) was used from a sample of simulated Wq of the size m = 3 · 107 in

place of Fq (t).

Again, if the Tijms' condition is not satis�ed for a sample {{Gj}nj=1, {Ij}nj=1}, the

Cramér-Lundberg approximation for that sample is counted as the Tijms approximation

for that sample and the same goes for the Willmot approximation.

A more clear way to see the estimated bias would be comparing the bias to the true

value of Fq (t). Figure 2.3.3 shows the % relative absolute bias of di�erent approximations.

For example, the % relative absolute bias of the saddlepoint CDF approximation is de�ned

by

100
∣∣∣E{F̂q0 (x)} − Fq (t)

∣∣∣
min {Fq (t) , 1− Fq (t)}

, (2.3.1)
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Figure 2.3.1: The estimated absolute bias of the di�erent empirical approximations in log10-scale
for Wq from the l = 104 random samples of {{Gj}nj=1, {Ij}nj=1}lk=1 used in Table 2.3.1. The x-axis
is cut o� to include at least 99.5% of Wq.
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Figure 2.3.2: The estimated MSE from Figure 2.3.1.
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and is estimated by

100

min{Fq (t) , 1− Fq (t)}

∣∣∣∣∣∣1l
l∑

j=1

F̂q0,j (t)− Fq (t)

∣∣∣∣∣∣
=

100

min{Fq (t) , 1− Fq (t)}

∣∣∣ ˆBias
∣∣∣ ,

where F̂q0,j (t) is the saddlepoint CDF approximation from jth set of the random sam-

ple. One can see the saddlepoint approximation is competitive well with the asymptotic

approximation in the tail areas.

Graphs for the exponential, gamma, and beta service times with n = 200 show that the

% relative absolute bias is smaller than 10% till 90th percentile but it grow exponentially for

the tail area. This is not unexpected. Note that for the light tail service time distribution,

by Cramér-Lundberg approximation, 1−F (t) ∼ γ exp−ct. Thus, after 50th percentile, the

relative bias is

100 |BiasF (t)|
min {F (t) , 1− F (t)}

∼ 100 |BiasF (t)|
(
γ−1ect

)
.

Unless |BiasF (t) | decreases exponentially faster than e−ct, the % relative absolute bias

will increase exponentially. A similar argument is possible for Pareto service time distribu-

tion case. By the result of [49], we have

1− F (t) ∼ ρ

1− ρ
{1−Ge (t)} =

256

3125t4
1 (4/5,∞) (t) ,

so that the % relative absolute bias will be |BiasF (t) |O
(
t4
)
.

From each �gures we conclude that the saddlepoint approximation is the best approxi-

mation among 5 di�erent approximations in the cases we compared.
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Figure 2.3.3: The estimated % relative absolute bias of the empirical approximations of Figure 2.3.1.
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2.4 Comparisons of the empirical approximations as estima-

tors of F̂q (t)

We now look into to the performance of the empirical versions of the 5 di�erent approxima-

tion methods as estimators of F̂q (t). Figures 2.1.4 and 2.1.5 show the Willmot approximation

and the Sakurai approximation of F̂q (t) on the left graphs and their % absolute relative er-

rors against F̂ †q (t) on the right. All of the graphs show that the saddlepoint approximation

performs better than the other methods if x is smaller than 90th percentile of Ŵq and still

perform comparatively in the tail areas. Note each end point of the x-axes is greater than

99.8th percentile for each Ŵq.

As we did in Figure 1.3.7, we obtained each empirical approximation from the random

samples we used in Figure 1.3.7 and compute the the average of the percentage absolute

relative errors against F̂ †q (t) , which is obtained from the random sample of Ŵq of the size,

m = 107. See Figure 2.4.1 for the graphs.

We remark one thing regarding the graphs. For G∼Exp(2) with n = 50 case, there is one

sample whose estimated CDF is 1 at t = 4.8 and at t = 6, 6 out of 1000 have the estimated

CDF value 1. In this case, the estimated relative error becomes ∞ so that the average was

not drawn after t = 4.8.

2.5 Conclusion

We have shown that the saddlepoint approximation with the empirical MGF can be used

as a reliable approximation method to approximate the CDF (and the PDF) of Wq as

we did in Chapter 1. Comparing the known asymptotic approximations speci�cally for

Fq (t) and F̂q (t), the saddlepoint approximation performs on par with them even in the tail

area, where those approximation methods have been targeted to work. Note that obtaining

asymptotic approximations for a speci�c stochastic process requires a deep knowledge of

probability theory and real (and complex) analysis and is not always possible. Saddlepoint
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Figure 2.4.1: The average percentage relative absolute error of the di�erent approximation methods
against F̂ †q (t) from the l = 103 random samples used in Figure 1.3.7. In each graph, N denotes a
decile (from 50% to 90%) of the distribution of Wq .
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approximation does not require such knowledge to apply but shows the superior performance.

The summary of our �ndings is as follows. When Wq (s) is steep, then Fq0 (t), as a

probability approximation to Fq (t), works better than its four competitors when t is smaller

than the 90th percentile. Above the 90th percentile, the Cramér-Lundberg approximation

and its variations dominate. As a statistical estimator, F̂q0 (t) is more accurate than all

other plug-in estimators for all t ≥ 0. From the examples, this appears to hold for both

light-tailed and heavy-tailed distributions. It even appears to hold for cases in whichWq (s)

is not steep (so Fq0 (t) cannot be computed) although F̂q0 (t) can always be computed since

Ŵq (s) is always steep.

We consider the two cases Wq (s) steep and Wq (s) not steep separately.

• Wq (s) steep: If 0 < c < b/2, then F̂q0 (t) is a Op
(
n−1/2

)
consistent estimator of Fq0 (t)

which, by regularity of the saddlepoint theory involved, should be very close to Fq (t)

for all t. If 0 < b/2 < c < b, then F̂q0 (t) is a Op
(
n−δ

)
(0 ≤ δ < min {1/2, 1− c/b})

consistent estimator and still Fq0 (t) ≈ Fq (t). So, F̂q0 is justi�ed. If b = 0, then

Ŵq (−s) → W (−s) as n → ∞. So, from a less rigorous perspective, we expect

F̂q (t) ≈ Fq (t). However, Ŵ (s) converges on <s < ĉ(> 0) so approximation F̂q0 (t) ≈

F̂q (t) is still a regular case for saddlepoint approximation for which great accuracy can

still expected. Thus, F̂q0 (t) ≈ F̂q (t) ≈ Fq (t) and we anticipate F̂q0 (t) still performs

well as an estimate of Fq (t), despite the fact that Fq (t) may have a heavy tail.

From another perspective, steepness assumes that Fq0 (t) exists and if Fq0 (t) ≈ Fq (t),

then albeit slowly, F̂q0 (t)→ Fq0 (t) a.s. (follows from Ŵ (s)→W (s) a.s. for <s ≤ 0).

So again, F̂q0 (t) ≈ Fq0 (t) ≈ Fq (t).

• Wq (s) not steep: Numerical computations and simulations suggest F̂q0 (t) remains

a good estimator of Fq (t) even when Fq0 (t) does not exist and Wq (s) is not steep.

When claim size follows a Pareto(0.8, 5) distribution, thenWq (s) is not steep and b = 0

but F̂q0 (t) still demonstrates excellent performance under simulations. Nonrigorous

justi�cation follows the case in which b = 0 and W (s) is steep. Essentially, F̂q (t) ≈

Fq (t) by Ŵ ⇒ W and F̂q0 (t) ≈ F̂q (t) is still a regularly setting for saddlepoint
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approximation.

In conclusion, there are good reasons to expect that F̂q0 (t) will provide a good estimator of

Fq (t) even for settings in which Wq is heavy-tailed and perhaps lacking steepness.

2.6 Appendix

Here, we summarize some results we �nd after the author's PhD defense was done. By

Theorem 20, if c ≤ b/2, then F̂0 (t)− F0 (t) = Op
(
n−1/2

)
for any t ∈ R as in our simulation

examples of G∼Exp(2) (c = 1 = b/2), G∼Gamma(3,3) (c = .840474 < 1.5 = b/2), and

G∼Beta(2,2) (b = ∞) cases. When G∼Pareto(0.8,5), we cannot have any rate of the

convergence result for t > EWq. However, from Figure 2.3.1 and 2.3.2 we do not observe

any slow convergence rate of F̂0 (t) on t > 8/15 = EWq for G∼Pareto(0.8,5) case comparing

to the other three service time distribution cases. In fact, the convergence rates look all the

same for those 4 cases.

This phenomenon can be explained by considering the behavior of F̂q (t) instead of

F̂q0 (t). First, we show the uniform convergence of F̂q (t).

Theorem 41. F̂q (t) converges to Fq (t) uniformly on [0,∞).

Proof. In a similar way shown in §1.3.1, we can show Ŵq ⇒ Wq. Note that Fq (t) is

continuous. Thus, by the theorem known as Pólya's lemma (Exercise 7.2 of [61]. See

also Exercise 7.13 of [58], which can be proved by Theorem 37), F̂q (t) converges to Fq (t)

uniformly.

In [51], F̂q was regarded as an image of {Ĝ (t) , Î (t)} under an operator map Φ, where

Ĝ (t) and Î (t) are the empirical CDF estimates of the service time distribution and the

inter-arrival distribution, respectively. Theorem 41 can be proved using Theorem 3.1 and

Lemma 3.2 of [51] though it requires EGγ <∞ for some γ > 2.

Let D∞ be the space of all cádlág (right-continuous with the existence of left limits)

functions on [0,∞] with the supremum norm and the open ball σ-�eld. For f ∈ D∞,

f (∞) := limt→∞ f (t). The following can be obtained from Theorem 4.3 of [51].
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Theorem 42. If EGγ <∞ for some γ > 4, then

√
n
(
F̂q − F

)
⇒ Z as n→∞ in D∞

where Z is a Gaussian process.

Proof. By the proof of Theorem 4.3 of [51] with Theorem 4.1 and Lemma 4.2 of [51], we only

need to show that for any β > 2,
√
n{Î (t)−I (t)} converges weakly to a continuous stochastic

process in Dβ , where Dβ is a subspace of D∞ contains all the cádlág real-valued function

f on [0,∞] such that (1 + x)β f (x) ∈ D∞ with the metric ‖f‖β = ‖ (1 + x)β f (x) ‖∞ and

Î (t) = 1 − e−λ̂t (i.e., instead of using the empirical CDF of Ij 's, we use the parametric

estimate).

We use the functional delta method (Theorem 20.8 of [69]). De�ne φ : (0,∞) → Dβ

by φ (a) = e−at. For a �xed t, regarding e−λt as a function of λ, we use Tayler's theorem

(Theorem 5.15 of [58]) to get

e−(λ+h)t = e−λt − e−λth+
e−λ

′
tt

2
h2,

where |λ′t − λ| ≤ h. This suggests that the Fréchet derivative of φ at λ, φ′λ : (0,∞)→ Dβ ,

will be φ′λ (h) = −e−λth and we show that it actually is.

Clearly, φ′λ is linear and continuous. Moreover, we have that for any t ≥ 0,

∣∣φ (λ+ h)− φ (λ)− φ′λ (h)
∣∣ =

∣∣∣∣∣e−λ
′
tt

2
h2

∣∣∣∣∣ ≤ h2

∣∣∣∣∣e−(λ−|h|)t

2

∣∣∣∣∣ ,
which implies

∥∥φ (λ+ h)− φ (λ)− φ′λ (h)
∥∥
β
≤ h2

2
· sup
x∈[0,∞)

∣∣∣(1 + t)β e−(λ−|h|)t
∣∣∣ = O

(
h2
)

as |h| ↘ 0.

Thus, φ′λ is the Fréchet derivative of φ at λ and by the functional delta method, we have

−
√
n
{
Î (t)− I (t)

}
=
√
n
{
φ
(
λ̂
)
− φ (λ)

}
⇒ φ

′
λ (Y ) = −te−λtY,
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where Y ∼ N
(
0, λ2

)
is the limit distribution of

√
n(λ̂− λ).

Therefore
√
n{Î (t)− I (t)} ⇒ Y te−λt in Dβ and we complete the proof.

The previous theorem give us

sup
t∈[0,∞]

∣∣∣F̂q (t)− Fq (t)
∣∣∣ = Op

(
n−1/2

)
,

so that

sup
t∈[0,∞]

∣∣∣F̂q0 (t)− Fq (t)
∣∣∣ ≤ sup

t∈[0,∞]

∣∣∣F̂q0 (t)− F̂q (t)
∣∣∣+Op

(
n−1/2

)
.

In a regular circumstance, as n increases, F̂q (t) is getting smoother and F̂q0 (t), as a smooth

estimate of F̂q (t), will approximate F̂q (t) better. Thus, even in the case of G∼Pareto(0.8,5),

F̂q0 (t) still behaves similarly to the other three cases and acts as a good estimate of Fq (t).
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Chapter 3

Saddlepoint Approximation to

Kendall's Functional Equation

3.1 Introduction

In this chapter, we consider the application of the saddlepoint approximation to nonpara-

metric estimation of M/G/1 queue busy time period distributions.

A saddlepoint approximation is used to obtain a nonparametric CDF estimator of this

distribution using the empirical moment generating function of the service time distribution.

Also, using the bootstrap method, we calculate a con�dence interval (CI) for the saddlepoint

estimation that occurs at each point of the CDF. We note that the CDF we estimate is not

directly computable but its MGF can be derived by Kendall's functional equation as an

implicit function of the MGF of the service time distribution which we assume can be

estimated from data.

Kendall's functional equation for M/G/1 and an empirical MGF of sta-

tionary service times

Let B (s) be the moment generating function of the duration of the busy period B in the

M/G/1 queue and let G (s) be the moment generating function of service time distribution.
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Then Kendall-Takács functional equation for M/G/1 is

B (s) = G{s− λ+ λB (s)}, (3.1.1)

where λ is the arrival rate. It can be shown (Example (a), XIII.4 of ([30]) and p. 232 of

[21]) that for s ∈ (−∞, 0], the equation (3.1.1) has a unique root B (s) and the distribution

of busy time period is proper i� ρ = λ/µ < 1, where µ = 1/G′ (0) is the service rate of the

queue. In [3], it was shown that an iteration method of solution for B (s) can be used even

for complex s if <s < 0.

Example 43. If G (s) has a simple form as in the M/M/1, B (s) can be calculated in the

following way. The MGF of the exponential(µ) distribution is (1− s/µ)−1. By setting

x = B (s), then (3.1.1) requires the solution of

x =

(
1− s− λ+ λx

µ

)
,

a quadratic equation with respect to x. Solutions are

x =
(λ+ µ− s)±

√
(λ+ µ− s)2 − 4λµ

2λ
.

Since B (0) must be 1, the solution must be

B (s) =

{
(λ+ µ− s)−

√
(λ+ µ− s)2 − 4λµ

}
/2λ.

Clearly, (λ+ µ− s)2 − 4λµ must be non-negative, which gives us the convergence strip for

B (s),

(−∞, µ+ λ− 2
√
λµ] = (−∞, (√µ−

√
λ)2]. (3.1.2)

Unless G (s) has a simple closed form as in M/M/1 queues, obtaining B (s) analytically

is seldom possible.

Because we need to obtain B (s) for s ≥ 0 to use saddlepoint approximations, a stable
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numerical method other than the iteration method mentioned above is needed. Moreover,

Example 43 shows that the convergence strip of B (s) should be considered in the numerical

method. These will be dealt with later.

Note that there is a series representation of the CDF and PDF of the busy period B.

Let FB (t) be the CDF and fB (t) be the PDF of T . Then, it is known that

fB (t) =

∞∑
j=0

e−λt
(λt)j

(j + 1)!

dG
(j+1)∗

dt
(t) , (3.1.3)

where dG(n+1)∗ (t) /dt is the PDF of
∑n+1

i=1 Gi with iid service times Gi. Equation (3.1.3)

is called the Takács series representation for the M/G/1 busy period density though it was

independently obtained in [22] and [67].

If we replace G (s) by its empirical moment generating function

Ĝ (s) =
1

n

n∑
i=1

esGi ,

and use the numerical solution of Kendall-Takács functional equation (3.1.1) with G (s)

replaced by Ĝ (s), we obtain the derivative estimators of B̂(k) (s) , k = 0, 1, 2,3, which are

needed for saddlepoint approximation. For example, B̂ (s) is de�ned by the solution of

B̂ (s) = Ĝ{s− λ̂+ λ̂B̂ (s)}, (3.1.4)

where λ̂ = 1/I is the maximum likelihood estimator of λ using the inter-arrival times,

Ij
iid∼ Exp (λ). Note that we assume that the sample size of {Ii} and {Gi} are the same n to

simplify the notation.
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3.2 Solving the Kendall-Takács functional equation for sad-

dlepoint approximations

To use the saddlepoint approximation, we need to �nd B(k) (s), k = 0, 1, 2, which require

solving the Kendall-Takács functional equation (3.1.1). In this section, we discuss how it

can be solved generally and exploit the properties of B (s) and B̂ (s). We note that in

our discussion, we assume that either λ and G (s) are known or λ̂ and Ĝ (s) are obtained

from data. Also we assume that the inter-arrival time distribution (Ii) and the service

time distribution (Gi) have �nite second moments, are independent of each other, and

ρ = λ/µ = EGi/EIi < 1.

3.2.1 Solvability of the Kendall-Takács functional equation

Di�erentiate both sides of the Kendall-Takács functional equation (3.1.1) using the chain

rule and solve for B′ (s), to obtain

B′ (s) =
G′{s− λ+ λB (s)}

1− λG′{s− λ+ λB (s)}
. (3.2.1)

Higher-order derivatives B(k) (s) for k = 2, · · · can be obtained in a similar way. See Propo-

sition 49. Thus, the empirical estimator of B′ (s) is

B̂′ (s) =
Ĝ′{s− λ̂+ λ̂B̂ (s)}

1− λ̂Ĝ′{s− λ̂+ λ̂B̂ (s)}
.

Suppose d, the (unique) positive root of G′ (s) = λ−1, exists on (−∞, b), where b is the

supremum of the convergence strip of G (s) (i.e., d ≤ b). Then d determines the convergence

strip of B (s).

Lemma 44. Suppose ρ = λ/µ < 1 and (−∞, b) is the convergence strip of G (s). If d,

the (unique) positive root of the equation G′ (s) = λ−1, exists on (0, b), then, the Kendall-

Takács functional equation (3.1.1) has a solution satisfying B (0) = 1 on the domain of
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(−∞, d+ λ− λG (d)] only (or, the convergence strip of B (s) is (−∞, d+ λ− λG (d)]) and

B{d+ λ− λG (d)} = G (d) . (3.2.2)

Proof. The �rst step is to show that the Kendall-Takács functional equation (3.1.1) admits

a solution BI (s) i� s ∈ (−∞, c1], with c1 = d+λ−λG (d), such that BI (0) = 1. The second

step requires showing that BI (s) = B (s) for s ∈ (−∞, c1].

For the �rst step, suppose there exists an s > 0 for which BI (s) > 0 is de�ned. Set

r = s− λ+ λBI (s) and rewrite the Kendall-Takács functional equation (3.1.1) as

G (r) = BI (s) =
r

λ
+
(

1− s

λ

)
. (3.2.3)

Since G (r) is convex, the line r/λ + {G (r) − d/λ} in r is tangent to G (s) at s = d and

parallel to the line in (3.2.3). Therefore, (3.2.3) admits one or two solutions i� (1− s/λ) ≥

G (d)− d/λ, or s ≤ c1.

A value of s > c1 contradicts to the assumption that BI (s) is well-de�ned and is therefore

outside of the convergence strip of BI (·). If s < c, then there are 2 solutions to (3.2.3) in

r and BI (s) is taken as the intersection with r < d. Note that if s = 0, then r = 0 and

BI (0) = 0/λ+ (1− 0/λ) = 1 so the lower solution is the correct one to give a MGF. Thus,

BI (s) is well-de�ned for s < c1. If s is in the boundary, (3.2.3) gives the relationship

BI (c1) = G (r). The implicit function theorem assures that BI (s) is analytic for <s < c1.

For the second step, we use an analytic continuation argument from complex variables.

Since B (s) = BI (s) on s ∈ (−∞, 0] and both functions are analytic, the analytic continu-

ation of B (s) to <s < c1 must agree with BI (s). Since BI (s) is left continuous at s = c,

then so also is B (s). Hence (−∞, c] must be the convergence strip of B (·).

Example 45. For M/M/1 queue, solving the equation,

G′ (s) =
µ

(s− µ)2 =
1

λ
,
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we have

d =
√
µ
(√

µ−
√
λ
)
,

(the other root of the equation,
√
µ(
√
µ+
√
λ) > µ is outside of the domain of the saddlepoint

equation for G). Since

G (d) = G{√µ(
√
µ−
√
λ)} =

√
µ

λ
,

the domain of the saddlepoint equation for B (s) is

(−∞,√µ(
√
µ−
√
λ) + λ− λ

√
µ

λ
] = (−∞, (√µ−

√
λ)2],

which coincides with the previous result (3.1.2).

Remark 46. From now on, we will use D (s) = s+ λ− λG (s) as in Lemma 2. If d exists on

(0, b), then the supremum of the convergence strip of B (s) is D (d). From Lemma 44,

lim
s↗D(d)

B (s) = G (d) <∞,

which indicates that the busy period B has a heavy tail.

Note that D′ (s) = 1− λG′ (s) is a strictly decreasing function with D′ (0) = 1− λ/µ =

1−ρ > 0. As withW (s), there is a easy way to check the existence of d. By the intermediate

value theorem, D′ (s) has a zero at d if and only if lims↗bD′ (s) ≤ 0 and b > 0.

Lemma 47. The positive root d of G′ (s) = λ−1 (or D′ (s) = 0) exists if and only if b > 0

and lims↗b G′ (s)− λ−1 ≥ 0.

It is clear that if d does not exist, then we need to consider how b will be related to the

convergence strip of B (s). For this and simpler formulas regarding B(k) (s), k = 1, 2, 3, we

will use the following function.

Lemma 48. If we de�ne a function R of s by

R (s) = s− λ+ λB (s) ,
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then R (s) is a strictly increasing continuous function.

Proof. We have

R′ (s) = 1 + λB′ (s) > 1

since B′ (s) ≥ 0.

Proposition 49. Let R (s) be the function de�ned in Lemma 48 and let K (s) = logB (s).

For any s, let r = R (s). Then, we have

B′ (s) =
G′ (r)

1− λG′ (r)

B′′ (s) =
G′′ (r)

{1− λG′ (r)}2

B′′′ (s) =
3λG′′ (r)2 + {1− λG′ (r)}G′′′ (r)

{1− λG′ (r)}3

and

K′ (s) =
G′ (r)

G (r) {1− λG′ (r)}

K′′ (s) =
G (r)G′′ (r)− G′ (r)2 {1− λG′ (r)}

G (r)2 {1− λG′ (r)}3

K′′′ (s) =
1

G (r)3 {1− λG′ (r)}5
[2λ2G′ (r)5 − 4λG′ (r)4 + 2G′ (r)3 + 3λG (r)G′ (r)2 G′′ (r)

+ G (r)2 {3λG′′ (r)2 + G′′′ (r)} − G (r)G′ (r) {3G′′ (r) + λG (r)G′′′ (r)}]

Proof. To get B (s), di�erentiate both sides of Kendall-Takács functional equation (3.1.1)

B′ (s) = G′{s− λ+ λB (s)}{1 + λB′ (s)}

and solve for B′ (s) to get

B′ (s) =
G′{s− λ+ λB (s)}

1− λG′{s− λ+ λB (s)}
. (∗)

Replacing s− λ+ λB (s) with r, we obtain the desired formula.
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B′′ (s) can be obtained by di�erentiating both sides of (∗), and replacing B′ (s) with the

formula we obtained and using

B (s) = G (r)

we get the result for B′′ (s). B(3) can be obtained similarly.

Using

K′ (s) =
B′ (s)
B (s)

K′′ (s) =
B (s)B′′ (s)− B′ (s)2

B (s)2 ,

and so on, we obtain the results for K(k), k = 1, 2, 3.

Corollary 50. Let K (s) = logB (s) and de�ne µ′k = G(k) (0) (i.e., µ′1 = 1/µ and λµ1 = ρ.

Note that µ′k is the kth (non-central) moment of the service time distribution). Then,

K′ (0) =
µ′1

(1− λµ′1)
=

µ′1
(1− ρ)

,

K′′ (0) =
µ′2 − µ′1

2 (1− λµ′1)

(1− λµ′1)3
=
µ′2 − µ′1

2 (1− ρ)

(1− ρ)3 ,

K′′′ (0) =
2λ2µ′1

5 − 4λµ′1
4 + 2µ′1

3 + 3λµ′1
2µ′2 − µ′1(3µ′2 + λµ′3) + 3λµ′2

2 + µ′3
(1− ρ)5 .

Now, we consider what happens if d does not exist. Using the above function, the

Kendall-Takács functional equation can be written as

B (s) = G {R (s)} . (3.2.4)

If the convergence strip of G (s) is (−∞, b) for b > 0 then lims↗b G (s) =∞, which implies

lim
s↗b
G′ (s) = lim

s↗b

∫ ∞
0

xexsdG (x) ≥ lim
s↗b

∫ ∞
ε

xexsdG (x)

≥ lim
s↗b

ε

∫ ∞
ε

exsdG (x) =∞.

Thus d ∈ (0, b) exists as the root G′ (d) = 1/λ > 1/µ. Therefore only for setting in which

the convergence strip of G (s) is half open, or (−∞, b], can d potentially not exists.

Suppose such a setting in which G (s) converges on (−∞, b] for b ≥ 0. Clearly, by (3.2.4),
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R (s) cannot be greater than b. Because G◦R is is a strictly increasing function, the mapping

s 7→ B (s) in (3.2.4) is a bijection of

(−∞,R−1 (b)]

onto the range of B (·) with boundary value

B{R−1 (b)} = G (b) (3.2.5)

in this case.

We now show the relationship between R (s) and D (s). Fix s in the convergence strip

of B (s). We have

r = R (s) = s− λ+ λB (s) =⇒ r = s− λ+ λG (r)

=⇒ r + λ− λG (r) = s

=⇒ D (r) = s, (3.2.6)

which implies

D {R (s)} = s

or D is a left inverse of R;

r = R (s) =⇒ D (r) = s.

Generally, D (s) is not the inverse of R (s) because D (s) is decreasing on (d, b). Note that

as a function of G (s), the domain of D (s) is the same as the convergence strip of G (s). By

the same argument, the domain of R (s) is the convergence strip of B (s). To simplify the

notation, we de�ne

〈d〉b =


d if d exists in (0, b) for b > 0,

b otherwise.

(3.2.7)

Because D (s) has its maximum at d, D (s) is a 1-1, strictly increasing function on (−∞, 〈d〉b].
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Moreover, if d exists, D (d) = d + λ − λG (d), is the supremum of the convergence strip of

B (s). Also, if d does not exist, D is a 1-1, strictly increasing function on (−∞, b]. From

(3.2.5) and (3.1.1), we have b = R−1 (b)− λ+ λG (b), which implies

R−1 (b) = b+ λ− λG (b) = D (b) .

Thus, the domain ofR is the same as the range of D and the restriction of D (s) on (−∞, 〈d〉b]

is the inverse function of R (s). If we de�ne 〈D(d)〉D(b) in a similar way to (3.2.7), then the

convergence strip of B (s)(and the domain of R (s)) is (−∞, 〈D(d)〉D(b)].

Theorem 51. On the convergence strip of B (s), (−∞, 〈D(d)〉D(b)], we have B (s) = G (r),

where r is the (unique) root on (−∞, 〈d〉b] of

s = D (r) = r + λ− λG (r) ,

or

B (s) = G{D|−1
(−∞,〈d〉b] (s)} =

D|−1
(−∞,〈d〉b] (s)− s

λ
+ 1, (3.2.8)

where D|(−∞,〈d〉b] (s) is the restriction of D on (−∞, 〈d〉b].

Proof. We only need to show the last equality. From D (s) = s+ λ− λG (s), we have

G (s) =
s−D (s)

λ
+ 1,

so that

G{D|−1
(−∞,〈d〉b] (s)} =

D|−1
(−∞,〈d〉b] (s)−D{D|−1

(−∞,〈d〉b] (s)}
λ

+ 1

and we obtain the last equality.

Remark 52. The author found later that the �rst equality of (3.2.8) was shown using mar-

tingale method in [56], as "a new explicit formula" without any consideration for the con-

vergence strip of B (s). It was mentioned that D−1 (s) exists around 0 because D′ (0) > 0.

The relationship between R (s) and D (s) (3.2.6) was also found in [12] (equation (32)).
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3.2.2 Solvability of the saddlepoint equation

We are now ready to check the solvability of the saddlepoint equation. Following the dis-

cussion for the solvability of the saddlepoint equation for the Pollaczek-Khinchin formula,

we check the in�mum of the support of B.

Lemma 53. The in�mum of the support for K (s) = logB (s) is the same as the in�mum

of support for log G (s), or inf {t : FB (t) = 0} = g0 := inf {t : G (t) > 0}

Proof. As a MGF, lims→−∞ B (s) = 0, so that we have

lim
s→−∞

{s− λ+ λB (s)} = −∞.

Since r : s 7→ s− λ+ λB (s) is a continuous function of s on (−∞, 0),

lim
s→−∞

K (s)′ = lim
s→−∞

B′ (s)
B (s)

= lim
s→−∞

G′{s− λ+ λB (s)}
1− λG′{s− λ+ λB (s)}

[
1

G{s− λ+ λB (s)}

]
= lim

r→−∞

[
G′ (r)

G (r) {1− λG′ (r)}

]
= lim

r→−∞

{
G′ (r)
G (r)

}
= lim

s→−∞
{log G (s)}′,

in which lims→−∞ G′ (s) = 0 is used and we obtain the desired result.

Thus, as in the case of Pollaczek-Khinchin formula case, the in�mum of s, where the

empirical saddlepoint equation can be solved is miniGi. We now investigate the steepness

property of B (s).

Proposition 54. Let b be the supremum of the convergence strip of G (s). Then, B (s) is

steep if and only if one of the following holds:

1. d exists.

2. b = 0 and EG =∞.

Proof. It is clear that the existence of d implies the steepness of B (s). Suppose b > 0 and d

does not exist, or lims↗b{1− λG′ (s)} > 0, which must be �nite. Thus, G′ (b) is well de�ned
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and �nite and G (b)− 1 =
∫ b

0 G
′ (s) ds is �nite too. Thus,

lim
s↗D(b)

K′ (s) = lim
s↗D(b)

G′ (R (s))

G (R (s)) {1− λG′ (R (s))}
= lim

s↗b

G′ (s)
G (s) (1− λG′ (s))

<∞.

Thus, for b > 0, K (s) cannot be steep unless d exists.

When b = 0, the convergence strip of B (s) is (−∞, 0] becauseD (0) = 0 and lims↗0K′ (s) =

EG/ (1− ρ) implies that B (s) is steep at 0 only if EG =∞.

Proposition 55. If B (s) is steep, then the saddlepoint equation (3.2.9) can be solved for

any t ∈ (g0,∞) where g0 = inf {t : G (t) > 0}. If not, then the saddlepoint equation (3.2.9)

can be solved for any t ∈ (g0,G′ (b) /[G (b) {1− λG′ (b)}]). The saddlepoint equation of the

plug-in estimator (3.1.4), can be solved for any t ∈ (minGi,∞).

To use the saddlepoint approximation, it is necessary to calculate B(k) (s) k = 0, 1, 2. It

may seem daunting at �rst since to solve the saddlepoint equation

K′ (st) =
B′ (st)
B (st)

= t (3.2.9)

numerically, any root �nding algorithm must use a convergent sequence {sj} → st and for

each iteration, B (sj) and B′ (sj) need to be calculated. This requires solving the Kendall-

Takács functional equation, which requires another root �nding algorithm. For example,

suppose one needs on average n iterations (i.e., s1, s2, · · · , sn) for solving the saddlepoint

equation and in each iteration, one needs to solve sj = D (r) to calculate B (sj) and B′ (sj).

Assuming we need n iteration on average for the inside iterations (i.e., rj1, rj2, · · · , rjn),

then a total of n2 iterations are needed to solve the saddlepoint equation.

From Proposition 49, we can see that if we know r, then B (s) is not needed for K(k),

k = 1, 2, 3, which are the quantities needed for saddlepoint approximation. Of course, we

need to �nd st for given t in the convergence strip of B (s) not just r. However, by the

following theorem, we actually do not need at all to solve the Kendall-Takács functional

equation (3.1.1) (,or equivalently sj = D (rj)) to use the saddlepoint approximation.
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Theorem 56. For any t in the range of K′ (s) described in Proposition 55, the solution of

the saddlepoint equation st is given by

st = rt + λ− λG(rt) = D(rt), (3.2.10)

where rt is the (unique) solution of the equation

t =
G′(rt)

G (rt) {1− λG′ (rt)}
. (3.2.11)

Thus, B (st) = G (rt) and B(k) (st) and K(k) (st) k=1,2,3 can be obtained by plugging rt into

argument r in the formulas of Proposition 49.

Proof. We can prove this in two ways. Let t be as in the assumption and st the unique

solution of the saddlepoint equation K′ (st) = t. De�ne rt by rt := R (st), which is de�ned

in Lemma 48. Because R is strictly increasing, there is no other s satisfying R (st) = rt, so

that rt is 1-1 with st. Using B (st) = G (rt), we have

rt = R (st) = st − λ+ λB (st) = st − λ+ λG (rt) ,

which gives us equation (3.2.10).

Also, we can prove it in a more direct manner. De�ne a real valued function h by

h (x) =
G′ (x)

G (x) {1− λG′ (x)}
(3.2.12)

on the domain (−∞, d) if d exists and (−∞, b) if d does not exist. Then,

K′ (s) = h ◦ R (s) .

Because K′ and R are strictly increasing function, h is strictly increasing function too (Or,

we may just use

h′ (x) =
G′ (x)2 {1− λG′ (x)}+ G (x)G′′ (x)

G (x)2 {1− λG′ (x)}2
> 0).
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Since t is in the range of K′ (s), it is also in the range of h, so that there exists unique rt

satisfying equation (3.2.11) and R−1 (rt) = st satis�es the saddlepoint equation.

Remark 57. If we use this R function to solve h (r) = t, the domain of h given by (−∞, 〈d〉b]

should be used. Note that using Theorem 56, we can draw the graph of the saddlepoint CDF

and PDF approximation. For example, the saddlepoint CDF approximation can be written

as a function of st, K(k)(st), k = 1, 2, 3, which are all functions of r by Theorem 56 and

Proposition 49. Thus, the graph can be drawn by the parametric curve r 7→ {K′ (r) , FB0 (r)}

for r ∈ (−∞, 〈d〉b] without ever solving a saddlepoint equation.

3.2.3 Non-normal based saddlepoint density and CDF approximations

Theorem (44) implies that the CDF of the busy period will have a relatively heavy right tail.

Experience shows us that the "usual" saddlepoint approximation performs poorly for the

relatively heavy tailed distribution. In [73] and [14], it was shown that for the �rst passage

distribution for a random walk, the inverse Gaussian (IG) based saddlepoint approximation

works well. This is understandable because the IG is the distribution of the �rst passage

time of Brownian motion with positive drift. A heuristic derivation of this fact can be seen

in [70]. It is also shown in [5] that IG distribution approximates the CDF of the busy period

of M/M/1 queue for large t.

For the derivation and other non-normal based saddlepoint approximations, see [73] and

[17]. Following their approach, we set λ = 1, one of two parameters of IG, to make IG

distribution considered a one parameter distribution. Then, the PDF and the CDF become

fIG (x;α) =
1√

2πx3
exp

{
− (x− α)2

2α2x

}

FIG (x;α) = Φ

(√
x

α
− 1√

x

)
+ exp

(
2

α

)
Φ

(
−
√
x

α
− 1√

x

)

and its CGF becomes

L (s) =
1

α
−
√

1

α2
− 2s for s ≤ 1

2α2
.
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Let FIG (x;α) be the CDF of IG. The IG based saddlepoint approximation of the cumulative

distribution function for random variable B with its CGF K (s) is

FB0 (t) =


FIG (zt;αt) + fIG (zt;αt)

(
1
st
− z

3/2
t
ut

)
if t 6= EB

FIG

{
K′′′(0)2

9K′′(0)3
; K
′′′(0)2

9K′′(0)3

}
if t = EB,

where

ut = st
√
K′′ (st)

wt = sgn (st)
√

2 {stt−K (st)}

αt =
K′′′ (st)2

3K′′ (st)3

(
3 + wt

√
K′′′ (st)2

K′′ (st)3

)−1

for K′′′ (st) > 0

zt = αt +
α2
t

2

(
w2
t + wt

√
w2
t +

4

αt

)
st =

1

2

(
α−2
t − z

−2
t

)
and st is the root of the usual saddlepoint equation

K′ (st) = t.

Note that the parameter of the base distribution αt is not �xed and varies over t, which is

di�erent from the usual normal-based saddlepoint approximation case. Also, note that it

is assumed that K′′′ (st) > 0, which holds if B is a non-negative r.v. Finally, we note that

non-normal base saddlepoint CDF approximation is invariant under a�ne transformation

as the normal base saddlepoint CDF approximation is.

Note that for the saddlepoint density approximation, the inverse Gaussian (IG) based

saddlepoint is given by

fB0 (t) = fIG (zt)

√
L′′ (st)

K′′ (st)
= fIG (zt)

√
z3
t

K′′ (st)
,
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which is, in fact, exactly the same as the normal-based saddlepoint PDF approximation. In

other words, it can be shown that

fIG (zt)

√
z3
t

K′′ (st)
=

1√
2πK′′ (st)

exp{K (st)− stt},

which is the normal based saddlepoint PDF approximation. Therefore, for the PDF approx-

imations, we will just use the normal- based saddlepoint approximation.

3.3 Convergence of the Plug-in estimators

Here we study the convergence properties of the plug-in estimators DkB̂ (s) and DkK̂ (s) for

k = 0, 1, 2, 3. We consider the convergence properties of d �rst. It was shown in Lemma 7

that d̂→ d a.s. As for the case of ĉ, d̂ is asymptotically normal.

Proposition 58. d̂ − d = o(n−δ) a.s. for any 0 < δ < min {1/2, 1− d/b}. If d < b/2, or

d = b/2 and G (b) <∞, then

√
n
(
d̂− d

)
= N

[
0,
G′′ (2s)− G′ (s)
{G′′ (d)}2

]
.

Proof. As we mentioned in Chapter 1,
√
n{Ĝ′ (s) − G′ (s)} is asymptotically normal on

(−∞, b/2) (and also on b/2 if G (b) <∞). For d < b/2 (or d = b/2 and G (b) <∞), by the

mean value theorem,

d̂− d =
Ĝ′
(
d̂
)
− Ĝ′ (d)

Ĝ′′ (d′)
=
λ−1 − Ĝ′ (d)

Ĝ′′ (d′)
=
G′ (d)− Ĝ′ (d)

Ĝ′′ (d′)
.

Because Ĝ′′ (s) converges to G′′ (s) locally uniformly and d′ → d a.s., Ĝ′′ (d′) → G′′ (d). By

Slutsky's lemma, we have

√
n
(
d̂− d

)
=
−1

Ĝ′′ (d′)
√
n
{
G′ (d)− Ĝ′ (d)

}
⇒ N

[
0,
G′′ (2s)− G′ (s)
{G′′ (d)}2

]
.

For d > b/2 and 0 < δ < δ < min {1/2, 1− d/b}, d̂− d = o
(
n−δ

)
is implied by the fact that
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G′ (d)− Ĝ′ (d) = o
(
n−δ

)
and Ĝ′′ (d′)→ G′′ (d) < 0 a.s.

Proposition 59. If d does not exist, then d̂→ b a.s.

Proof. As we showed in the proof of Lemma 47, b > 0 and lims↗b G′ (s) − λ−1 ≥ 0. the

nonexistence of c implies either b = 0 or G′ (b) < λ−1 (if b > 0). Note that if b = 0, then

G′ (b) = G′ (0) = µ−1 < λ−1 by the stability condition ρ = λ/µ < 1. Suppose b = 0. Since

G′ (ε) = ∞ for any ε > 0, we have Ĝ′ (ε) ↗ ∞ a.s. as n → ∞. Thus, for all but �nite n,

0 < d̂ < ε. Because ε is arbitrary, we have d̂→ 0 a.s.

Now suppose b > 0. Because Ĝ′ (b) → G′ (b) < λ−1 a.s., d̂ > b all but �nite n. For any

ε > 0, we have Ĝ′ (b+ ε)→ G′ (b+ ε) =∞, which implies ĉ < b+ ε eventually. Altogether,

we conclude b < d̂ < b+ ε for all but �nite n, which implies d̂→ b a.s.

We now consider the convergence properties of DkB̂ (s) = B̂(k) (s) and DkK̂ (s) =

K̂(k) (s). Note that we de�ne B̂ (s) = Ĝ (r̂), where r̂ is the (unique) root on (−∞, 〈d̂〉b̂]

of

s = D̂ (r̂) = r̂ + λ̂− λ̂Ĝ (r̂) .

B̂(k) (s) and K̂(k) (s) are de�ned accordingly too. Thus, we need to check the convergence

properties of

D|−1
(−∞,〈d〉b] (s) = R|(−∞,〈D(d)〉D(b)]

(s)

�rst. We showed that D (s) is strictly increasing on (−∞, 〈d〉b]. Because λ̂ → λ a.s. and

Ĝ (s)→ G (s) locally uniformly a.s., we have that D̂ (s) converges to D̂ (s) locally uniformly

a.s. In the proof of Theorem 9, we showed that D̂ (s) − D (s) = o(n−δ) a.s. for any

0 < δ < min {1/2, 1− s/b} and if s < b/2, or s = b/2 and G (b) <∞, then

√
n
{
D̂ (s)−D (s)

}
⇒ N [0, λ2 {1− 2G (s) + G (2s)}].

In fact, for any s1 < s2 < b/2,
√
n{D̂ (s) − D (s)} weakly converges to a Gaussian process

on C[s1,s2] because
√
n{Ĝ (s)−G (s)} converges weakly to a Gaussian process on C[s2,s2] and

λ̂→ λ a.s. by Slutsy's lemma.
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Because D̂ (s)→ D (s) pointwise, we can show D̂−1 (s)→ D−1 (s) pointwise on (−∞, 〈d〉b].

One way to show this is using a similar argument to the proof of Lemma 17 though other

arguments without using the di�erentiability of D̂ is possible. See the proof of Theorem 63.

With Theorem 37, we have D̂−1 (s) → D−1 (s) locally uniformly on (−∞, 〈d〉b]. We state

here formally as a proposition.

Proposition 60. For any s ∈ (−∞, 〈D(d)〉D(b)], D̂−1 (s)→ D−1 (s) locally uniformly a.s.

With Proposition 60, we have the following result.

Theorem 61. For any s ∈ (−∞, 〈D(d)〉D(b)] and k ∈ N0, D
kB̂ (s) and DkK̂ (s) converges

to DkB (s) and DkK (s) locally uniformly a.s., respectively.

Proof. We start with the case of DkB̂ (s) �rst. Invoking Theorem 37, we only need to show

that for any s, DkB̂ (s) converges to DkB (s) a.s. because DkB̂ (s) are all increasing function

for any k. By Proposition 60, we have D̂−1 (s) → D−1 (s). Because Ĝ (s) → G (s) locally

uniformly, B̂ (s) = Ĝ{D̂−1 (s)} → G{D−1 (s)} = B (s).

Similarly, we have Ĝ(k){D̂−1 (s)} → G(k){D−1 (s)} because Ĝ(k) (s) → G (s) locally uni-

formly a.s. From Proposition 49, we have

DkB̂ (s) = h1,k

{
λ̂, Ĝ (r) , Ĝ′ (r) , · · · , Ĝ(k) (r)

}
/{1− λG′ (r)}k

∣∣∣
r=D̂−1(s)

,

where h1,k(x1, · · · , xk+1) is a polynomial of x1, · · · , xk+1. By the continuous mapping the-

orem, DkB̂ (s)→ DkB (s), which complete the case of DkB̂ (s).

For DkK̂ (s), it is not obvious that DkK̂ (s) is an increasing function for k ≥ 3. Thus,

instead of using Theorem 37, we observe that for each k,

DkK̂ (s) = h2,k

{
λ̂, Ĝ (r) , Ĝ′ (r) , · · · , Ĝ(k) (r)

}
/G (r)k

{
1− λG′ (r)

}2k+1
∣∣∣
r=D̂−1(s)

,

where h2,k(x1, · · · , xk+1) is a polynomial of x1, · · · , xk+1. Thus, D
kK̂ (s)→ DkK (s) point-

wise a.s. on (−∞, 〈D(d)〉D(b)]. For the locally uniform convergence, it su�ce to show K̂ (s)

converges to K (s) continuously on [s1, s2] for any s1 < s2 ≤, 〈D(d)〉D(b) (see theorem 7.3.5
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of [66] or �0.0 of [53]). If sn → s, then Ĝ(k)
n {D̂−1

n (sn)} → G(k){D−1(s)} as before and by

the continuous mapping theorem, DkK̂n(sn) → DkK (s) under the function h2,k and we

complete the proof.

Thus, as we shown in chapter 2, the previous result give us B̂ ⇒ B or

Proposition 62. F̂B (s)→ FB (s). Moreover, if the service time distribution G is continu-

ous, then F̂B converges uniformly.

Proof. IfG is continuous, so is FB by (3.1.3). The theorem known as Pólya's lemma (Exercise

7.2 of [61]. See also Exercise 7.13 of [58], which can be proved by Theorem 37) gives

sup
x≥0

∣∣∣F̂B (x)− FB (x)
∣∣∣→ 0 as n→∞.

We now have the following theorem regarding the convergence of F̂B0 (t).

Theorem 63. F̂B0 (t) converges to FB0 (t) locally uniformly a.s.

Proof. By the de�nition of F̂B0 (t), we may write

F̂B0 (t) = H
{
K̂ (rt) , t, K̂′ (rt) , K̂′′ (rt) , K̂′′′ (rt)

}
,

where H : R5 → R is a continuous function.

If we de�ne h as in (3.2.12) and de�ne

ĥ (x) =
Ĝ′ (x)

Ĝ (x) {1− λĜ′ (x)}
,

then we have

r̂t = ĥ−1 (t) .

One can show that for each t, ĥ−1 (t) → h−1 (t) as in proof of Lemma 17. Another way to

show without using the di�erentiability of h but using the monotonicity of h is as follows.

138



We claim that ĥn (xn) → h (y) implies xn → y. Then setting xn = ĥ−1
n (x) and y =

h−1 (x) we get the desired result. Suppose that ĥn (xn) → h (y) but xn 6→ y. The latter is

equivalent to that there exist ε > 0 and an in�nite sequence n′ such that |xn′ − y| > ε. So,

we have ĥn′ (xn′)→ h (y) but |xn′ − y| > ε. Note that the latter implies

∣∣∣ĥn′ (xn′)− ĥn′ (y)
∣∣∣ ≥ min

{∣∣∣ĥn′ (y − ε)− ĥn′ (y)
∣∣∣ , ∣∣∣ĥn′ (y + ε)− ĥn′ (y)

∣∣∣}
→ min {|h (y − ε)− h (y)| , |h (y + ε)− h (y)|} > 0

though |ĥn′ (xn′)− hn′ (y) | → 0. Thus, we get the contradiction.

By Theorem 37, we have ĥ−1 (t) → h−1 (t) locally uniformly on (−∞, 〈d〉b] and point-

wise on (−∞, 〈D(d)〉D(b)]. Thus, F̂B0 (t) → FB0 (t) pointwise on (−∞, 〈D(d)〉D(b)] by the

continuous mapping theorem. For the locally uniform convergence, if tn → t, then we have

ĥ−1
n (tn)→ h−1 (t)

and

K̂(j)
n

{
ĥ−1
n (tn)

}
→ K(j)

{
h−1 (t)

}
for j = 1, 2, 3.

By the continuous mapping theorem, we have

F̂B0 (tn)→ FB0 (t) ,

which completes the proof.

3.4 Estimation of the CDF and the PDF of busy periods

In this section, we show how the saddlepoint approximation can be used to estimate the

PDF and CDF of the busy time periods of M/G/1 queues as we did in the previous chapter.

Our choice of the service time distributions for the study is the same as before. Because the

MGF's of exponential distribution and gamma distribution have closed form, we are able to
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calculate FB0 (t) and fB0 (t) explicitly.

3.4.1 True CDF and PDF for M/M/1 queue and M/Ek/1 queue

Note that for M/M/1 queues, the PDF of the busy time period has a explicit form: Let

modi�ed Bessel functions (or the hyperbolic Bessel functions) Iα (x) be de�ned by

Iα (x) =

∞∑
k=0

1

k!Γ (k + α+ 1)

(x
2

)2k+α
,

which is i−αJα (ix), where

Jα (x) =

∞∑
k=0

(−1)k

k!Γ (k + α+ 1)

(x
2

)2k+α

is "ordinary" Bessel function of the �rst kind. It is known (p. 474 and p. 483 of [30]) that

for M/M/1 case, the density of the busy period is

√
µ

λ

exp{− (µ+ λ) t}
t

I1

(
2
√
λµt
)
. (3.4.1)

One can obtain the CDF of the busy period through the numerical integration of (3.4.1) or

the following method:

A gamma distribution service time is one of the case that (3.1.3) can be used to obtain

an approximation of the CDF; Using
∑j

i=1Gi∼Gamma(α, jk) if Gi∼Gamma(α, k),

fB (t) =

∞∑
j=0

e−λt
(λt)j

(j + 1)!
dG

(j+1)∗
(t) =

∞∑
j=0

e−λt
(λt)j

(j + 1)!

[
αk(j+1)tk(j+1)−1

Γ{k(j + 1)}
e−αt

]

=

∞∑
j=0

e−(λ+α)t λ
jαk(j+1)tkj+k+j−1

(j + 1)!Γ{k(j + 1)}
. (3.4.2)

Let γ (s, t) :=
∫ t

0 x
s−1e−xdx, the lower incomplete Gamma function. Using

∫ t

0
xs−1e−axdx =

∫ at

0

1

a

(x
a

)s−1
e−xdx = a−sγ (s, at) ,
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we have

FB (t) =

∫ t

0
fB (x) dx =

∞∑
j=0

λjαk(j+1)

(j + 1)!Γ{k(j + 1)}

∫ t

0
e−(λ+α)xxkj+k+j−1dx

=
∞∑
j=0

λjαk(j+1)

(j + 1)!Γ{k(j + 1)} (λ+ α)kj+k+j
γ{kj + k + j, (λ+ α)t}. (3.4.3)

Thus, if G∼Gamma(3,3) and I ∼Exp(1/2), then we have

FB (t) =

∞∑
j=0

216j+1

(j + 1)!Γ{3(j + 1)}74j+3
γ(4j + 3, 7t/2),

and using the �nite summation of j up to n, we obtain the approximation. The case of

G∼Exp(2) can be done in similar way.

For Gamma(3,3) and Exp(2) service time distribution, the approximation of FB (t) was

obtained by setting n = 42 using R because the largest integer allowed for the argument in

the Gamma function in R was 172(= 4 · 42 + 3).

3.4.2 Simulation method

Let Ij ∼Exp(λ) be inter-arrival times and Gj be the service time, j ∈ N. Suppose at time

t = 0, there are no customers in the queue. Then, the server becomes busy when the �rst

customer arrives, which is at time I1. When the server �nishes serving the �rst customer,

(i.e., at time I1 +G1) if there is no customer in the queue (or the second customer did not

arrive in between I1 + G1 and I1, which means I1 + I2 > I1 + G1), then the server is o�

and the busy time period is G1 . If not and there is no customer in the queue at the time

I1 +G1 +G2 (,or the third customer did not arrive in between I1 + I2 and I1 +G2 +G2, ),

then the busy time period is G1 +G2 and so on. Thus,

B ∼
N∑
j=1

Gj , where N = min

{
m ∈ N :

m+1∑
1

Ij > I1 +

m∑
1

Gj

}
.
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Note that Ij are identically distributed so that

N = min

{
m ∈ N :

m+1∑
2

Ij >

m∑
1

Gj

}
∼ min

{
m ∈ N :

m∑
1

Ij >

m∑
1

Gj

}
.

= min

{
m ∈ N :

m∑
1

(Ij −Gj) > 0

}

Thus, the following algorithm gives us a random sample {Bj}:

1. Generate random vectors (I1, I2, · · · , Il) of the inter-arrival times and (G1, G2, · · · , Gl)

of the service times, where l is a �xed number.

2. Calculate the cumulative sums

(
I1,

2∑
1

Ij ,

3∑
1

Ij , · · · ,
l∑
1

Ij

)
and

(
G1,

2∑
1

Gj ,

3∑
1

Gj , · · · ,
l∑
1

Gj

)
.

3. Find the minimum N such that

N∑
j

Gj <
N∑
j=1

Ij

and set

B1 =

N∑
j=1

Gj .

If
∑n

j Gj >
∑n

j=1 Ij for all n = 1, 2, · · · , l, generate more random vectors of Ij and

Gj to get (I1,
∑2

1 Ij ,
∑3

1 Ij , · · · ,
∑2l

1 Ij) and (G1,
∑2

1Gj ,
∑3

1Gj , · · · ,
∑2l

1 Gl) until ob-

taining N .

4. Repeat the step 1 through 3 to obtain B2, · · · , Bm.

3.4.3 The saddlepoint approximations from the true MGF and the ap-

proximated MGF

See Figure 3.4.1 for the saddlepoint PDF and CDF estimation of the busy time periods with

their the % relative errors when the service time distributions are Exp(2) and Gamma(3, 3).
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The arrival rate λ is set to 1 and 2 respectively. For M/M/1 case, the (true) CDF is calculated

by numerical integration of the true PDF (3.4.1) and FΦ denotes the normal based CDF

saddlepoint approximation. For Gamma(3,3) service time distribution, the approximated

PDF and CDF were obtained using (3.4.2) and (3.4.3). Also the empirical CDF, F †B and

the kernel density estimation f †B were obtained from the random sample B of size 3 · 107 to

check their percentage relative errors.

For Beta(2,2) and Pareto(.8,5) service distribution cases, the true CDFs were approxi-

mated from the average of 50 F †B (t), each of which is calculated from a random sample of

B size m = 3 · 107. For beta and Pareto distribution, the empirical MGF of the service time

distribution from
(
105 − 1

)
quantile points of

{
F−1

(
i ∗ 10−5

)
: 1 ≤ i ≤ 10−5 − 1

}
are used to obtain F̃B0 and f̃B0, which are approximations of F0 and f0, respectively. This

approximation was used in [62] to compute the waiting time distribution by numerical

inversion of the Laplace transform. It is clear that F̃B0 (t) works in the tail area. The

t-axes are cuto� to include 99.5 percentile of B and we checked the relative errors of F̃B0 (t)

up to 99.95 percentile of B, which are still close to 0. Thus, at least for our cases, when the

MGF of G is not steep (Pareto distribution), one may obtain the asymptotic result by using

the approximated MGF of G with the saddlepoint approximation.

We note that the irregularity of the tail area of % relative error for the f̂0 (x) of Exp(2)

and Gamma(3,3) service times indicates that the kernel density estimation is not smooth

for that tail area and suggests to use di�erent bandwidths for that area or "transform."

3.4.4 Con�dence Band of the CDF of B

As we did in Chapter 1, we can build the con�dence band using {F̂ ∗B0(t)}. We do simulation

studies using the same service time distributions as in Chapter 1. Because the numerical

routine to calculate the saddlepoint approximation F̂B0 is substantially slower than the

calculation of F̂0, the number of sample for the simulation, l is set to 1000. Also, the
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Figure 3.4.1: The percentage relative errors of FB0 and fB0 against true CDF and PDF (left:

G∼Exp(2)) and empirical CDF, F †B and the kernel density f†B (t) (right: G∼Gamma(3,3)). In
each graph, N denotes a decile (form 10% to 90%) of the distribution of the busy periods. Top:
Saddlepoint (unnormalized) PDF approximations with the histogram of the busy period random
sample of the size 3 × 107 for G ∼Gamma(3,3). Middle: The inverse Gaussian distribution based
saddlepoint CDF approximations F0 and the normal based saddlepoint CDF approximation FΦ.
Bottom: The percentage relative errors of PDF (dotted) and CDF (dashed) estimations from the
top and the middle graphs. t-axes are cuto� to include up to 99.5 percentile of B.
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Figure 3.4.2: Similar to Figure 3.4.1 with beta and Pareto service time distribution.

145



bootstrap sample size B# is set to 5 · 103 for n = 50. See Figure 3.4.3 and 3.4.4 for an

example, the average coverage probabilities, and the average interval lengths of each service

time distributions. As in the case of the con�dence band of F (t), there is no clear winner

in our simulation result. For example, the HDR method does not work well for G∼Exp(2)

and Gamma(3,3) cases but works well for beta and Pareto service time distributions. The

estimated coverage probabilities and the average lengths of BP and BCa method are very

close to each other.
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Figure 3.4.3: CI's for FB (t) where G∼Exp(2) (λ = 1) and G∼Gamma(3, 3) (λ = .5) Top: Calculated
CI's for a random sample of {Gj , Ij}nj=1 for n=50. Middle: the average coverage probabilities from
l=1000 random samples of {Gj , Ij}nj=1 for n=50. Bottom: Average interval lengths of each CI's.
The top curves are the interval lengths, U (t)−L (t) and the middle curves are of U (t)−FB (t) and
bottom curves are of L (t)− FB (t). In each graph, N denotes the deciles (from 10% to 90%) of B,
the busy period. t-axes are cuto� to include up to 99.5 percentile of B.
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Figure 3.4.4: Same as Figure 1.3.9 for G∼Beta(2, 2) and G∼Pareto(.8, 5).
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Chapter 4

Estimation of EW , VarW , EB, and

VarB

4.1 Estimates of the mean and the variance of stationary wait-

ing times

In this chapter, we compare the performance of the di�erent bootstrap con�dence intervals

for EW , VarW , EB, and VarW and propose a new bootstrap modi�ed percentile CI. We

show that the proposed method yields better coverage probabilities than standard bootstrap

CI's.

4.1.1 Moment estimators and its features

Let µ′k := EGk (i.e., µ′1 = 1/µ and λµ′1 = ρ. Note that µ′k is the kth (non-central) moment

of the service time distribution). Using EW k = lims→0W(k) (s), where W(k) (s) is the kth
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derivative of W (s) with Lemma 23, we obtain

EW =µ′1 +
λµ′2

2 (1− ρ)
= µ′1 +

µ′2
2 (λ−1 − µ′1)

.

Var (W ) =

{
λµ′2

2 (1− ρ)

}2

+
λµ′3

3 (1− ρ)
+ VarG

=

{
µ′2

2 (λ−1 − µ′1)

}2

+
µ′3

3 (λ−1 − µ′1)
+ {µ′2 − µ′1

2}.

By replacing µ′k, the kth moment of the service time distribution, with its kth sample

moment Ĝ(k) (0) := n−1
∑n

j=1G
k
j and λ

−1 with I, where the inter-arrival time, Ij
iid∼ Exp (λ)

(note that I is also the maximum likelihood estimator of λ), we obtain the method of

moments (MOM) estimators for EW as

ÊW =Ĝ′ (0) +
Ĝ′′ (0)

2{I − Ĝ′ (0)}
,

V̂ar (W ) =

 Ĝ′′ (0)

2
(
I − Ĝ′ (0)

)


2

+
Ĝ′′′ (0)

3{I − Ĝ′ (0)}
+ {Ĝ′′ (0)− Ĝ′ (0)2}.

By Lemma 12, we know

ÊW
a.s.−−→EW

V̂ar (W )
a.s.−−→Var (W ) ,

so that the MOM estimators are strongly consistent. Theorem 16 implies the following

corollary:

Corollary 64. With the same assumption as in Theorem 16, we obtain

√
n(ÊW − EW )⇒ N

(
0, σ2

EW

)
,

√
n(V̂arW −VarW )⇒ N

(
0, σ2

VarW

)
.
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σ2
EW and σ2

VarW can be calculated using Theorem 16. For example,

σ2
EW =

{
µ′2λ

2 (1− ρ)2

}2

+B{CA+ (µ′2 − µ′1
2
)B}+A{(µ′4 − µ′2

2
)A− CB}

with

A =
λ

2 (1− ρ)
, B = 1 +

µ′2λ
2

2 (1− ρ)2 , C = µ′3 − µ′1µ′2.

The above corollary gives us approximate (1− α) con�dence intervals,

ÊW ± zα/2
σEW√
n
, and V̂ar (W )± zα/2

σVarW√
n

. (4.1.1)

However, as ρ approaches to 1,

σEW = O((1− ρ)−2), and, σVarW = O
(

(1− ρ)−3
)
,

which will result in intervals that are too wide to be of practical sue when ρ is very close to

1. This has been con�rmed by our simulation study.

Figure 4.1.1 shows the histograms of 105 random sample of
√
n(ÊW −EW ) for M/M/1

queue with µ = 1 and λ = .1, .5, and .9 from the top to the bottom (thus, the corresponding

ρ's are .1, .5, and .9 respectively) and n = 25 and 100 from the left to the right. Note that

if the calculated ρ̂ = G/X > 1, the sample {X1, · · · , Xn, G1, · · · , Gn} is discarded and the

random samples we use always satisfy the condition ρ̂ < 1.

The overlapping smooth curves are the density curves of the limiting distributions

N(0, σ2
EW ). Also note that for ρ = .5 only up to 93.61% (n = 25) and 82.58% (n = 100) of

the samples are shown in the histograms due to the relatively large ranges. For ρ = .9, only

95.86% (n = 25) and 87.23% (n = 100) of the random sample of size 105 are shown. See

Figure 4.1.2 for their boxplots using log transform.

For ρ = .5 and ρ = .9, the feature of a heavy right-hand tail is even more clear from

Figure 4.1.3 giving QQ-plots of ÊW against its limiting distribution N(EW,σ2
EW /n). The

plots show that ÊW is biased. Also, the observed heavy outliers in Figure 4.1.2 have a
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100 (EŴ− EW)

−10 −5 0 5 10 15 20 25

0
.0

0
0

.0
4

0
.0

8
0

.1
2

ρ = 0.9 , n = 25

−100 −50 0 50 100 150 200 250

0
.0

0
0

0
.0

1
5

0
.0

3
0

ρ = 0.9 , n = 100

−100 −50 0 50 100 150 200 250

0
.0

0
0

0
.0

1
5

0
.0

3
0

Figure 4.1.1: Histograms and density curve of the limiting distribution of
√
n(ÊW−EW ) for M/M/1

queue where µ = 1 and λ = .1, .5, .9 from the top to bottom.
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Figure 4.1.2: Boxplots of 105log10 ÊW for M/M/1 queues with µ = 1 and λ = .5, .9. The shaded
boxes are the the intervals between the 5% quantile and the 95% quantile for each case and the
square points represent the locations of the true EW 's.

strong e�ect on estimation of the sample mean and the sample SD of ÊW , which can be

seen in Table 4.1.1. Moreover, the magnitude of the sample standard deviations for ρ = .9

in Table 4.1.1 suggests that ÊW may not have second moments. In fact, generally, even the

�rst moments of ÊW do not exist.

Theorem 65. If the distribution of the service time G is not one point distributed at 0,

(i.e., P (G = 0) < 1) and P (I > G) > 0, then conditional the expectation of ÊW given

event {I > G} does not exist.

Proof. Applying Jensen's inequality, we obtain (
∑
Gj/n)2 ≤

∑
G2
j/n, we have

E(ÊW | I > G) ≥ 1

2
E(G

2
/(I −G) | I > G).

Let E (X; A) denote E (X 1A). Pick any a > 0 such that P
(
G > a

)
> 0. Then we have

E

(
G

2

I −G
| I > G

)
≥ E

(
a2

I −G
;G > a | I > G

)
=

a2

P (I > G)

∫ ∞
a

∫ ∞
y

1

x− y
fI (x) fG (y) dxdy

=
a2

P (I > G)

∫ ∞
a

fG (y)

(∫ ∞
y

fI (x)

x− y
dx

)
dy

Because nI ∼ Gamma (n, λ), fI (x) > 0 on [a,∞) so that the inside integral of the last line

diverges for any y > a, which completes the proof.
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Figure 4.1.3: QQ-plots of ÊW for for M/M/1 queue where µ = 1 and λ = .1, .5, .9 from the top to
bottom with the limiting distribution, N(EW,σ2

ÊW
). The solid line is the graph of the line y = x.
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Table 4.1.1: Table for the sample mean, sample median, and sample standard deviation (SD) of

the random sample of ÊW of size 105, which is the same random sample used in Figure 4.1.1, 4.1.2,
and 4.1.3. E, G, B, and P mean Exp(1), Gamma(3, 1/3), Beta(2, 2), and Pareto(.8, 5), respectively.

Mean Med
EW

SD σ
ÊW√
n

G ρ n ÊW ẼW ÊW ẼW ÊW ẼW

E

.1
25 1.12 1.12 1.10 1.12

1.11
0.25 0.24 0.21

100 1.11 1.11 1.11 1.11 0.13 0.13 0.10

.5
25 3.77 4.60 1.94 2.03

2.00
192.86 468.91 0.72

100 2.08 2.08 1.98 2.01 0.67 0.54 0.36

.9
25 31.05 28.92 4.24 4.49

10.00
2186.73 1398.40 24.68

100 204.01 41.01 7.11 7.21 53032.81 3314.66 12.34

G

.1
25 1.08 1.08 1.07 1.08

1.07
0.14 0.14 0.12

100 1.07 1.07 1.07 1.07 0.07 0.07 0.06

.5
25 2.03 2.12 1.68 1.69

1.67
13.67 29.65 0.37

100 1.70 1.71 1.67 1.67 0.25 0.25 0.18

.9
25 27.73 19.74 3.92 3.92

7.00
2562.92 678.04 13.66

100 25.61 26.44 5.74 5.74 1021.21 1083.82 6.83

B

.1
25 0.54 0.54 0.53 0.53

0.53
0.05 0.05 0.05

100 0.53 0.53 0.53 0.53 0.03 0.03 0.02

.5
25 0.93 1.01 0.81 0.81

0.80
3.24 20.93 0.15

100 0.81 0.81 0.80 0.80 0.09 0.09 0.07

.9
25 10.55 7.91 1.91 1.91

3.20
502.01 133.34 5.85

100 10.16 15.09 2.71 2.70 303.56 665.62 2.93

P

.1
25 1.06 1.06 1.05 1.06

1.06
0.06 0.06 0.05

100 1.06 1.06 1.06 1.06 0.03 0.03 0.03

.5
25 1.81 1.72 1.54 1.55

1.53
17.41 2.04 0.25

100 1.56 1.56 1.53 1.54 0.15 0.15 0.12

.9
25 39.56 31.92 3.64 3.66

5.80
6768.93 3043.94 9.90

100 20.57 28.47 5.02 5.02 530.67 2376.56 4.95
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See Figure 4.1.4 for the boxplots of 103 ÊW and ÊW
2
. For ρ ≥ .5, the sample mean

of 104 iid sample of ÊW and ÊW
2
are varying too widely except for Beta(2, 2) service

distribution of ρ = .5, which supports Theorem 65.

It is worth checking whether this feature of heavy right-hand tail is just for exponential

service distributions or common for any other service distributions; if the latter is true,

our approach to the inference regarding EW should be based on this feature. We suspect

the latter is true; Since ÊW is a function of
(
I, Ĝ′ (0) , Ĝ′′ (0)

)
, it depends more on the

distribution of the means of {Ij , Gj , G2
j}nj=1 than the distribution of Ij and Gj themselves.

By CLT, we have

√
n


 G

G2

−
 µ′1

µ′2


⇒ N

0,

 µ′2 − (µ′1)2 µ′3 − µ′1µ′2

µ′3 − µ′1µ′2 µ′4 − (µ′2)2




and it is known that

nI ∼ Gamma (n, λ) .

Thus, if we de�ne ẼW as

ẼW = Y1 +
Y2

2 (X ′/n− Y1)
,

where  Y1

Y2

 ∼ N

 µ′1

µ′2

 ,
1

n

 µ′2 − µ′1
2 µ′3 − µ′1µ′2

µ′3 − µ′1µ′2 µ′4 − µ′2
2




and

X ′ ∼ Gamma (n, λ) ,

then we may expect that the conditional distribution

ẼW |Y1, Y2,
(
X ′/n− Y1

)
> 0

will approximate the conditional distribution of ÊW |
(
I −G

)
> 0.

Figure 4.1.5 shows that the distribution of ẼW approximates the distribution of ÊW
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Figure 4.1.4: Boxplots of 103ÊW and ÊW
2
for ρ = .1, and log10(ÊW ) and log10(ÊW

2
) for ρ = .5

and .9. Here, ÊW =
∑104

j=1 ÊW j/104 and ÊW
2

=
∑104

j=1 ÊW
2

j/104. The service time distributions
used are Exp(1), Gamma(3, 3), Beta(2, 2) and Pareto(4/5, 5) respectively.
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Figure 4.1.5: QQ-plots of 105 random sample of ÊW against 105 random sample of ẼW forM/M/1
queue with µ = 1 and λ = .1, .5, and .9 from the top to the bottom. The solid line is the graph of
the line y = x.
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well for M/M/1 case. The other service distributions we also consider are Beta(2, 2) which

has the bounded range of (0, 1) and Pareto(4/5, 5) which is known to have heavy right-hand

tail (the nth raw moment of Pareto(α, β) exists only for n < β). See Figure 4.1.6, which also

con�rms our �nding that even with di�erent service time distributions, ẼW approximates

ÊW well. Also, since we only use the �rst 4 moments for ẼW , the behavior of ÊW on the

right hand tail is more or less independent of service time distribution but depends on ρ.

In summary, we �nd that the distribution of ÊW has a heavier right hand tail as ρ

approaches 1, E(ÊW ) does not exist, and these facts hold regardless of the distribution of

G, the service times.

4.1.2 Con�dence intervals of EW

Here, we introduce several ways of constructing 100 (1− α) % con�dence intervals of ÊW

based on bootstrap sampling and compare their performances. For properties and applica-

tions of bootstrapping method in general, we refer to [29, 26] and [60].

Bootstrap sampling of ÊW

We explain how we obtain the bootstrap sample ÊW
∗
from the sample of the inter-arrival

times of {Ij}nj=1 and the service times of {Gj}nj=1 with the assumptions of M/G/1 queue

model. We also add two more requirements to the regular assumption of M/G/1 model.

First, we assume that ρ < 1, so that Pollaczek-Khinchin formula (1.1.1) is valid to use

and EW < ∞. We also assume that the sample we obtained satis�es the requirement of

ρ̂ =
∑
Ij/
∑
Gj < 1.

Secondly, though the sample size of Ij and Gj does not need to be the same in the our

bootstrap sampling process, we assume they are for the brevity of the notation.

Also note that in this dissertation, we follow the convention that the PDF of Exp(λ) is

λ exp (−λx) and similarly for Gamma(n, λ). Thus, if Ij
iid∼ Exp(λ), then from our convention,

EIj = λ−1 and
∑n

j=1 Ij ∼ Gamma(n, λ). We obtain the bootstrap sampling of ÊW as

follows:
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Figure 4.1.6: QQ-plots of 105 random sample of ÊW against 105 random sample of ẼW for M/G/1
queue with ρ = .1, .5, and .9 from the top to the bottom for n = 25. The left graphs are of
G ∼ Beta (2, 2) (µ = 1/2 and λ = .2, 1, 1.8) and the right graphs are of G ∼ Pareto (.8, 5) (µ = 1
and λ = .1, .5, .9). The solid line is the graph of the line y = x.
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1. Find the sample mean, I of {Ij} and set λ̂ = 1/I, which is the maximum likelihood

estimator of λ.

2. Pick a random sample of size n, {I∗j }nj=1 from Exp(λ̂) (or, one random sample of

Gamma(λ̂, n) and assign it as
∑n

j=1 I
∗
j ) and pick a random sample of size n, {G∗j}nj=1

from {Gj}nj=1 with replacement.

3. If  n∑
j=1

I∗j −
n∑
j=1

G∗j

 ≤ 0

(or ρ̂∗ =
∑n

j=1G
∗
j/
∑n

j=1 I
∗
j ≥ 1), we discard the bootstrap random samples and repeat

2. If not, calculate ÊW
∗
by

ÊW
∗

= G∗ +

∑n
j=1

(
G∗j

)2

2
(∑n

j=1 I
∗
j −

∑n
j=1G

∗
j

) .

4. Repeat the steps 2 and 3 till we obtain {ÊW
∗
} of the size of B#.

This is called parametric bootstrapping, when we use the knowledge of Ij
iid∼ Exp(λ). The

bootstrap sampling of G∗ is called a nonparametric bootstrapping. Because of the assump-

tion ρ < 1, we discard the bootstrap random sample {I∗j , G∗j}∗j=1 if (
∑n

j=1 I
∗
j −
∑n

j=1G
∗
j ) < 0

in the step 3, and ÊW
∗
is always �nite.

Traditional bootstrap con�dential intervals

The most recognized bootstrap con�dence intervals (CI) are of standard bootstrap, per-

centile bootstrap, bootstrap-t, and BCa methods. We brie�y explain their constructions

and short comings for our case. For general introduction of bootstrap con�dence intervals,

we refer to [29, 26, 60] and [44].

• Standard bootstrap CI: The limits of CI are

ÊW ± zα/2 · SD(ÊW
∗
),
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where SD(ÊW
∗
) is the sample standard deviation of ÊW

∗
, or

SD(ÊW
∗
) =


n∑
j=1

(ÊW
∗
j − ÊW

∗
)2/ (B − 1)


1/2

.

As noted in [44], this method requires that ÊW follows approximately normal distri-

bution and SD(ÊW
∗
) is a a good approximation of σEW (Bias adjustment can be used

if ÊW − ÊW
∗
is not closed to 0 as noted in [26]).

• Percentile intervals: There are two types of this method; Let ÊW
∗(α)

be α-quantile of{
ÊW

∗
j

}B#

j=1
. Then the (1− α) percentile intervals is

(
ÊW

∗(α/2)
, ÊW

∗(1−α/2)
)
. (4.1.2)

Suppose that there exists an increasing function g (x) such that g(ÊW
∗
) is symmetric

around g (EW ), so that the exact con�dence interval, (L,U) can be obtained. It can

be shown that g−1 (L) = ÊW
∗(α/2)

and g−1 (U) = ÊW
∗(1−α/2)

(see [60]) because the

percentile interval is transformation-respecting ([29]). The other interval is based on

the observation that if the distribution of ÊW − EW can be approximated by the

distribution of ÊW
∗
− ÊW , then the resulting approximate interval would be

(
2ÊW − ÊW

∗(1−α/2)
, 2ÊW − ÊW

∗(α/2)
)
, (4.1.3)

which is called the basic con�dence interval in [26]. Since ÊW
∗
is heavily skewed to

the right, it is even possible to have negative lower end limit for the latter interval.

• Bootstrap-t CI: For each of ÊW
∗
1, · · · , ÊW

∗
B#, de�ne T

∗
j by

T ∗j :=
ÊW

∗
j − ÊW

SD(ÊW
∗
j )
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and the bootstrap-t CI is de�ned by

(
ÊW − T ∗(α/2)SD

(
ÊW

∗)
, ÊW − T ∗(1−α/2)SD

(
ÊW

∗))
,

where T ∗(α/2) and T ∗(1−α/2) are (α/2) and (1− α/2) quantile of T ∗j . Unless there is a

known simple formula for SD
(
ÊW

∗
j

)
, it needs to be calculated from nested bootstrap

sampling.

• BCa (bootstrap accelerated bias-corrected percentile) CI: We �rst introduce bias-

corrected percentile CI. Suppose there is an increasing function g such that

g(ÊW
∗
)− g (EW ) + z 0 ∼ N (0, 1) ,

which is more general assumption than we had for the bootstrap percentile method.

Let Φ (x) be the CDF of the standard normal distribution and F̂
ÊW

∗ be the empirical

CDF of ÊW
∗
. Then we have

P (ÊW
∗
≤ EW ) = P{g(ÊW

∗
)− g (EW ) + z0 ≤ z0} = Φ (z0) ,

which implies

z0 = Φ−1
(
F̂
ÊW

∗(ÊW )
)

and similar calculation give us the CI,

(
F̂−1

ÊW
∗{Φ(2z0 − zα/2)}, F̂−1

ÊW
∗{Φ(2z0 + zα/2)}

)
, (4.1.4)

which is a precursor ([28]) of BCa CI, which assumes an increasing function g (x) and

constant a such that

g(ÊW
∗
)− g (EW )

1 + ag (EW )
+ z0 ∼ N (0, 1) .
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Then, we can �nd the limits of CI in a similar way to the above to obtain

(
F̂−1

ÊW
∗

{
Φ

(
z0 +

z0 − zα/2
1− a

(
z0 − zα/2

))} , F̂−1

ÊW
∗

{
Φ

(
z0 +

z0 + zα/2

1− a
(
z0 + zα/2

))})

and a is called the acceleration constant. There are several estimators of it and one

used in [29] is ∑n
j=1

(
ÊW− − ÊW−j

)3

6

{∑n
j=1

(
ÊW− − ÊW−j

)2
}3/2

,

where ÊW−j is the estimator of EW with jth observed random sample (Ij , Gj) deleted

and ÊW−=
∑n

j=1 ÊW−j/n.

A somewhat naive1 simulation study of these 4 di�erent bootstrap CI's of the means of

the stationary waiting time distributions with phase-type service distributions was done in

[19]. They reported that though the standard bootstrap CI performed best at coverage

probability, only the percentile bootstrap CI is practical to use since for ρ ≥ .5, the average

width of the other three CI methods was too wide. In one of their simulation results, they

report that for M/H4/1 (H4 means a mixture of 4 exponential distribution, which is a

hyper-exponential distribution) queue with ρ = .9 and n = 20, the average width of BCa CI

was 53,393.57 while the average width of percentile bootstrap CI was 27.97. However, they

did not explain why this occurs.

By Theorem 65, we cannot expect that the sample moment of bootstrapped sample

ÊW
∗
is converging to any number and the estimated moments are unreliable to use, which

is why the bootstrap CI methods other than percentile method give too wide widths. As

we saw in the previous section any method which needs moment estimates will result in too

1Although their result is also con�rmed by our simulation study that the percentile method will be the
recommended choice among 4 bootstrap CI's, we believe that their simulation study has three drawbacks;
Even though M/G/1 queue is assumed (so that the inter-arrival time follows exponential distribution) they
used non-parametric bootstrap for I∗j 's. Secondly, it seems that they follows [29] word for word literally
so that their B, the number of bootstrap sample is only 1000 (and for the estimation of standard error of

bootstrap-t interval, B = 25), which are not big enough considering heavy tail of ÊW
∗
. Thirdly, they did

not investigate why the other three (standard, bootstrap-t, and BCa) have much wider average lengths but
their coverage probabilities still perform poorly comparing the percentile method. They only reported the
result of their simulation study.
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wide width because the estimator does not have the moments of any orders.

For an example, we observed in Figure 4.1.1, 4.1.3, and 4.1.6 that the distribution of ÊW

is heavily skewed as ρ gets close to 1 regardless of the service time distributions. See Table

(4.1.1) for the sample mean, sample median, and sample standard deviation (SD) of ÊW of

M/G/1 queue with µ = 1 and λ = .1, .5, .9 for 4 di�erent service time distributions. The

heavy right hand tail has a strong e�ect on the estimation of sample mean and the sample

SD of ÊW and because of it, any CI based on the estimation of the standard deviation of

ÊW will be too wide.

The percentile method is robust against skewness (in Table 4.1.1, the sample median is

much closer to EW than the sample mean for ρ = .5 and ρ = .9) and does not require any

moment estimation, which is why it gives relatively practical widths and performs better

than the other three method for 90% CI in [19].

Note that the choice of lower and upper limit of percentile method (4.1.2) is not the only

way to pick the limits. If f (x) be the density function of a random variable X, 100 (1− α) %

highest density region (HDR) is the subset R(fα) satisfying

R (fα) = {x : f (x) ≥ fα} ,

where fα is the largest constant such that

P {X ∈ R (fα)} ≥ 1− α.

By the de�nition, the HDR is allowed to be the union of disjoint intervals and has the

smallest possible volume in the sample space of X (see [37] for more discussion and its usage

to data representations). In [40], HDR with bias correction methods was used to obtain

bootstrap con�dence intervals, where the bootstrap sampling distribution has the similar

characteristic of ÊW , heavily skewed right tail.
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Because the sampling distribution of ÊW is unimodal and heavily skewed to the right,

a direct application of the HDR method will result in an interval close to

(
ÊW

∗0
, ÊW

∗(1−α)
)
.

To reduce this e�ect, we may use the HDR method after a transform like the Box-Cox power

transform. It seems log transform works well, which is also heuristically appealing; by the

mean value theorem, if we set ÊW
∗
(k) to be the kth order statistic of ÊW

∗
, then

log ÊW
∗
(k+1) − log ÊW

∗
(k) =

(
1

a

)(
ÊW

∗
(k+1) − ÊW

∗
(k)

)
,

where a is a constant satisfying

ÊW
∗
(k) ≤ a ≤ ÊW

∗
(k+1).

Since the magnitude of ÊW
∗
is mostly a�ected by the term (I

∗ − G∗)−1 , the reciprocal

factor (1/a) reduce the skewness and (1/a) gets smaller as k gets bigger.

If (L,U) is a 100 (1− α) % HDR of log ÊW
∗
, then the 100 (1− α) % con�dence interval

of EW is (eL, eU ). Note that unlike the bootstrap percentile interval, HDR method is not

transform-respecting and di�erent transforms will result in di�erent upper limits and lower

limits for the con�dence intervals.

Though generally �nding HDR interval needs kernel density estimation (, which requires

a transform because of skewness of ÊW
∗
and we �nd log works well for this too), we may

use the discrete version of HDR because of the unimodality of ÊW
∗
. For (1− α) 100% HDR

interval, let a0 be de�ned by

a0 := argmin
0≤a≤α

{
ÊW

∗(1−a)
− ÊW

∗(a)
}
,

then (
ÊW

∗(a0)
, ÊW

∗(1−a0)
)
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Table 4.1.2: Service time distribution considered

G PDF µ′1, µ
′
2, µ
′
3, µ
′
4

Exp (1) e−x 1, 2, 6, 24

Gamma (3, 3) 33x2e−3x/Γ (3) 1, 11
3 , 22

9 , 44
9

Beta (2, 2) 6x (1− x) 1
2 ,

3
10 ,

1
5 ,

1
7

Pareto
(

4
5 , 5
)
{5
(

4
5

)5
/x6}1[4/5,∞) (x) 1, 16

15 ,
32
25 ,

256
125

will be the HDR interval.

4.1.3 Simulation study of the �rst round

Here, we show our own simulation study for the bootstrap percentile con�dence intervals,

asymptotic con�dence intervals, and HDR after log transform for the mean of the station-

ary waiting time distribution with a con�dence level α = .1 (i.e., 90% con�dence inter-

vals). The service time distributions we consider are Exp (1), Gamma (3, 3), Beta (2, 2), and

Pareto (4/5, 5). See the table for the PDF's and the moments µ′j , j = 1, · · · , 4. We com-

pare the estimated coverage probabilities and the estimated expected lengths from l = 2500

random samples of size n = 25 and 100 respectively for di�erent ρ = .1, .5, .9, and di�erent

service time distributions of Table 4.1.2. Among the con�dence intervals for a binomial

proportion recommended in ([16]), the Wilson interval and the Agresti-Coull interval have

relatively easy formula to decide the sample size needed to obtain a preassigned interval

width (for the sample size for other CI intervals reviewed in [16], see [50]). We set the re-

quired interval length w = .02 with the con�dence level α = .1 and assume the true coverage

probability p = .9 to decide the sample size l = 2500, which is enough for either of Wilson's

and Agresti-Coull's intervals. Thus, with 90% con�dence, the true coverage probability is

within the observed coverage probability ±.01. The bootstrap sample size B# = 105 for

each case. Note that because the sampling distribution of ÊW
∗
has the heavy right tail as

we saw in the previous subsection, we suggest the bootstrap sample size B# to be at least

greater than 105.

From Table 4.1.3, one would pick the standard bootstrap percentile con�dence interval

as the best method; its observed coverage probabilities are close to the nominal level of
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Table 4.1.3: The observed coverage probabilities of the bootstrap percentile con�dence intervals
(BP1 of (4.1.2, the standard) and BP2 of (4.1.3, the basic), HDR after log transform, and the bias-
corrected percentile CI (BC of (4.1.4)), and the asymptotic CI (Asym of (4.1.1) of 90% con�dence
level. av.c denotes the average coverage probabilities and av.l denotes the average length of the
con�dence intervals.

BP1,2 HDR BC Asym

G ρ n av.c1 av.c2 av.l av.c av.l av.c av.l av.c av.l

E

.1
25 .861 .858 0.79 .868 0.80 .866 0.80 .804 0.66
100 .880 .878 0.41 .881 0.41 .878 0.41 .815 0.34

.5
25 .884 .772 8.32 .890 5.68 .833 9720.56 .781 124.75
100 .879 .853 2.02 .897 1.85 .878 2.09 .839 1.35

.9
25 .820 .312 25.69 .692 15.49 .754 120076.71 .538 6995.21
100 .908 .510 45.75 .844 26.81 .791 161050.93 .684 159452.15

G

.1
25 .866 .866 0.44 .866 0.44 .868 0.44 .814 0.38
100 .887 .886 0.22 .886 0.22 .886 0.22 .835 0.19

.5
25 .886 .828 4.17 .915 2.86 .852 957.85 .838 80.20
100 .894 .881 0.87 .915 0.83 .897 0.87 .865 0.66

.9
25 .885 .389 21.84 .772 12.40 .772 62361.73 .622 104061.46
100 .942 .594 35.63 .887 20.21 .805 73351.31 .760 16514.90

B

.1
25 .884 .893 0.17 .879 0.17 .893 0.17 .849 0.15
100 .894 .892 0.08 .891 0.08 .894 0.08 .854 0.08

.5
25 .897 .879 1.52 .943 1.06 .880 163.34 .888 1.86
100 .891 .890 0.33 .904 0.32 .888 0.33 .871 0.27

.9
25 .914 .412 10.26 .809 5.75 .799 21308.35 .646 18959.37
100 .944 .593 16.19 .888 9.11 .802 38522.58 .757 1163.32

P

.1
25 .852 .826 0.19 .844 0.18 .848 0.19 .800 0.16
100 .873 .867 0.10 .874 0.10 .870 0.10 .825 0.09

.5
25 .902 .812 2.39 .922 1.60 .884 799.77 .867 3.44
100 .891 .864 0.53 .906 0.50 .887 0.53 .880 0.44

.9
25 .928 .408 19.37 .816 10.43 .796 74585.97 .664 21958.32
100 .944 .606 29.40 .892 16.37 .807 63381.32 .768 3426020.91

.9 over di�erent values of ρ and the mean length of intervals are within practical range of

usage (HDR after log transform has the smallest mean lengths but the observed coverage

probabilities for ρ = .9 case are not close to the nominal level). However, as we will see

in Table 4.1.5, when ρ = .95, the performance deteriorates to an unacceptable level for a

reasonable 90% CI. In the next subsection, we examine why this occurs and suggest better

CI methods.
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Figure 4.1.7: Boxplots of 2500 F̂
ÊW

∗(ÊW ) and F̂
ÊW

∗(EW ) from the simulation of the Table 4.1.3
with the service time distribution of Exp(1). The shaded boxes are the the intervals between the 5%
quantile and the 95% quantile for each case. For F̂

ÊW
∗(EW ), they are (0.0677, 0.9842), (0.0856,

0.9824), and (0.7188, 0.9878), respectively from the left to the right (ρ = .1, .5, .9).

4.1.4 Varied percentile limit CI

Close look at percentile methods

Let F̂
ÊW

∗ be the sampling distribution of ÊW
∗
(i.e, F̂

ÊW
∗ in the previous subsection, the

empirical CDF of ÊW
∗
). Figure 4.1.7 shows boxplots of 2500 F̂

ÊW
∗(ÊW ) and F̂

ÊW
∗(EW )

for di�erent ρ (=.1, .5, and .9) of M/M/1 queue case, which are obtained from the simulation

of the previous subsection and Table 4.1.3.

Since E(ÊM) = ∞, the mean bias is meaningless in estimating EW and we rather

consider the median bias instead;

Median Bias of θ̂ = Median of θ̂ − θ.

Because

Med ÊW
∗
− ÊW < (>) 0⇐⇒ F̂

ÊW
∗(EW ) > (<) .5,

Figure 4.1.7 con�rms that when ρ = .9, ÊW
∗
is median biased in most of the 2500 random

samples and we also see this phenomenon in Table 4.1.1 , to which one may attribute the

lower average coverage probability of the bootstrap percentile CI. This suspicion may be

supported by the observation that the equal tail 90% percentile of 2500 F̂
ÊW

∗(EW ) for
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Figure 4.1.8: Left: Histogram of 105
(
I −G

)
conditional on

(
I −G

)
> 0 for M/M/1 queue with

ρ = .9 and n = 25 (Gj ∼ Exp (1) and Xj ∼ Exp (.9)). The dotted curve is the kernel density

estimation of unconditional 105
(
I −G

)
. Middle: log(ÊW ) against ρ̂ from the simulation of Table

4.1.3 for M/M/1 with ρ = .9. The solid curve is of log{.9 (1− x)
−1}. Right: q̂ of (4.1.6) against ρ̂

from the simulation of Table 4.1.3 for M/M/1 with ρ = .9.

ρ = .9 is (0.7188, 0.9878), which means that if we set the bootstrap percentile CI to be

(ÊW
∗(.7188)

, ÊW
∗(.9878)

), then the estimated coverage probability will be .9 for the 2500

random samples we used for Table 4.1.3 (Note that the 90% quantile of F̂
ÊW

∗(EW ) for

ρ = .9 is 0.9714 so that the upper limit of the 90% bootstrap percentile CI should be greater

than .9714 to have the average coverage probability not smaller than .9).

The reason why there is the median bias for ρ being close to 1 is because we impose the

requirement of (I
∗ − G∗) > 0 for the bootstrap sampling. Thus, the resulting ÊW

∗
is in

fact conditional on (I
∗ − G∗) > 0. See Figure 4.1.8 for the histogram of 105 (I25 − G25)

conditional on I25 − G25 > 0 with the assumption of M/M/1 queues with ρ = .9. By

comparing the overlapped dotted curve, which is the kernel density estimation of 105 values

of
(
I −G

)
unconditionally, to the histogram, one can see that

(
I −G

)
|
(
I −G

)
> 0 will be

mean (and median) biased against the mean (and the median) of the unconditional
(
I −G

)
.

We note that the condition was also imposed for the 2500 random samples of {Ij} and

{Gj} of the simulation study of Table 4.1.5. See Table 4.1.4 for the sample mean and the
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median of ρ̂ of Table 4.1.5.

Table 4.1.4: The sample mean and the sample median of ρ̂ of the simulation of Table (4.1.5)

Exp(1) Gamma(3, 3) Beta(2, 2) Pareto(.8, 5)

ρ ρ̂ Med ρ̂ ρ̂ Med ρ̂ ρ̂ Med ρ̂ ρ̂ Med ρ̂

.1 0.105 0.100 0.105 0.102 0.104 0.101 0.104 0.101

.5 0.517 0.498 0.523 0.508 0.520 0.506 0.518 0.504

.9 0.778 0.791 0.810 0.824 0.816 0.827 0.826 0.834

From the de�nition of ÊW , when ρ is close to 1, ÊW = O((1− ρ̂)−1), or equivalently,(
I −G

)
will be dominant. See the graph in the middle in 4.1.8, which shows log(ÊW )

against ρ̂ of M/M/1 queue with ρ = .9 from the simulation of Table 4.1.3. Note that

ÊW − µ′1 =
λµ′2

2 (1− ρ)
=

.9

1− ρ

for G ∼ Exp (1) and λ = .9 and the overlapped curve is of log{.9/ (1− x)}, which con�rms

that (1− ρ̂) is dominant in the estimator ÊW when ρ is close to 1 and we can see that the

median (or mean) bias of
(
I −G

)
|
(
X −G

)
> 0 will result in the median bias of ÊW for ρ

being close to 1.

As we mentioned, one can try to apply a bias correction method within bootstrap sam-

pling estimation of ÊW
∗
but the adjustment may push the sample to the unstationary

condition ρ̂∗ ≥ 1. For this, one possible remedy is using Kilian's method ([39]) but we �nd

that the bias correction is unnecessary.

Varied percentile limit con�dence interval

We propose one variation of bootstrap percentile CI, which we call varied percentile limit

(VPL) CI. There are two requirements we consider to develop this method. First, it is based

on the percentiles of ÊW
∗
and for a (1− α)100% con�dence interval, our proposed interval

should contain (1− α)100% of ÊW
∗
. Secondly, the calculations of the lower limit and upper

limit of the CI should be simple; we choose a CI with a simple formula with a reasonable

coverage probability rather than a CI of more complicated formula with a possibly better

performance.
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Since we are considering CI of (1− α)100%, the limits of the CI will have the form of

(
ÊW

∗(a)
, ÊW

∗(1−α+a)
)

a ∈ (0, α). (4.1.5)

See Figure 4.1.9 for the graphs of observed average coverage probabilities of CI having

the form of 4.1.5 with the con�dence level α=.1 for di�erent a from the simulation of Table

4.1.3. It is clear that a percentile CI with a �xed a will not have uniformly good coverage

probabilities over di�erent service time distributions and di�erent ρ's. In other words, we

need to consider a CI whose limits are adjustable.

Let q be the probability of
(
I −G

)
> 0, which can be estimated by

q̂ =
B#

total #of
(
I
∗ −G∗

) , (4.1.6)

where B is the bootstrap sample size of ÊW
∗
satisfying (I

∗ −G∗) > 0. Thus, q̂ is the rate

of taking {I∗j , G∗j} in bootstrap sampling step 3. Clearly, q̂ will be smaller as ρ̂ is getting

close to 1 as we can see the right graph in Figure 4.1.8, which shows ρ̂ against q̂ from the

simulation of Table 4.1.3 for M/M/1 with ρ = .9. The varied percentile limit CI is the CI

having the form of 4.1.5, where the constant a is de�ned by

a = .9αq̂. (4.1.7)

Note that the constant of .9 is multiplied to avoid the case of a = α, which will result in the

upper limit of ÊW
∗(1)

, the maximum of ÊW
∗
.

We now explain why our choice of a works (and how we derived formula (4.1.7)). See

Figure 4.1.10 for the graphs of F̂
ÊW

∗ (EW ) against q̂ from the simulation of Table 4.1.3

for M/M/1 with di�erent ρ=.1 , .5, and .9. We notice that for a lower q̂, F̂
ÊW

∗ (EW ) is

low too. Note that the low value of q̂ means that ÊW
∗
is more (median) biased against

EW and ÊW . Then intuitively one may think that a higher upper limit of the CI will be

needed to capture the true value of EW . Thus that observation contradicts our intuition.
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Figure 4.1.9: Observed average coverage probabilities of (ÊW
∗(a)

, ÊW
∗(.9+a)

) for di�erent a from
the simulation of Table 4.1.3.

173



0.90 0.94 0.98

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

ρρ == 0.1

q̂

F̂
∗∗ ((E

W
))

0.5 0.7 0.9
0

.0
0

.2
0

.4
0

.6
0

.8
1

.0

ρρ == 0.5

q̂

F̂
∗∗ ((E

W
))

0.5 0.7 0.9

0
.6

0
.7

0
.8

0
.9

1
.0

ρρ == 0.9

q̂

F̂
∗∗ ((E

W
))

Figure 4.1.10: F̂
ÊW

∗ (EW ) against q̂ from the simulation of Table 4.1.3 for M/M/1 with di�erent
ρ=.1 , .5, and .9.

Our explanation is that if the true value of ρ is as high as .9, a "good" random sample of

{Ij} and {Gj} will result in higher ρ̂ (i.e., ρ̂ is close to ρ) and lower value of q̂. Thus, even

if ÊW
∗
will be biased, the true value of EW will not be far from ÊW and within 90% of

ÊW
∗
. As one can see, a high value of F̂

ÊW
∗ (EW ) only happens for a high value of q̂ when

ρ = .9 so that to capture EW in CI, a higher upper limit percentile is needed and this also

holds for ρ=.5 case. Clearly, there is not much of pattern between q̂ and F̂
ÊW

∗ (EW ) when

ρ=.1 but our strategy of making the limit adjust according to the value of q̂ inversely still

works.

See Table 4.1.5 for the average coverage probabilities, average lengths, and the sample

standard deviations of lengths of the varied percentile limit CI for n = 25 and B# = 106.

Note that the random samples used are the same as in Table 4.1.3 and we add ρ=.3, .5, and

.95 cases to see how the performance of CI's are varies over di�erent ρ more thoroughly.

For n = 100 case, see Table 4.1.6. In either cases, we can see that the average coverage

of varied percentile limit CI are always higher than those of the standard percentile CI.
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Table 4.1.5: Average coverage probabilities, the average length, and the sample standard deviation
of lengths of standard percentile (BP1), varied percentile limit, and varied percentile limit (VPL)
with lower limit adjustment of EW for di�erent ρ=.1, .3, .5, .7, .9, .95 with di�erent service time
distribution of Table 4.1.3 with n = 25 and B# = 106.

BP1 Varied percentile limit VPL with Lo limit adj

G ρ EW av.c av.l SD av.c av.l SD av.c av.l SD

E

.1 1.11 0.86 0.79 0.28 0.89 0.95 0.38 0.93 1.00 0.39

.3 1.43 0.86 1.97 2.54 0.89 3.73 6.53 0.92 3.81 6.55

.5 2.00 0.88 8.32 11.14 0.93 18.41 18.66 0.93 18.50 18.65

.7 3.33 0.91 18.64 16.24 0.97 33.04 18.57 0.97 33.09 18.51

.9 10.00 0.82 25.69 16.04 0.95 38.26 14.03 0.95 38.24 13.95
.95 20.00 0.64 26.63 15.59 0.91 38.58 13.11 0.91 38.55 13.03

G

.1 1.07 0.87 0.44 0.10 0.87 0.51 0.13 0.92 0.54 0.13

.3 1.29 0.87 0.89 0.67 0.87 1.43 1.93 0.92 1.48 1.94

.5 1.67 0.89 4.17 5.94 0.90 9.75 10.76 0.93 9.82 10.76

.7 2.56 0.95 13.10 11.58 0.99 24.31 13.31 0.98 24.35 13.27

.9 7.00 0.89 21.83 13.02 0.98 31.82 9.94 0.98 31.80 9.86
.95 13.67 0.75 23.13 12.71 0.96 32.49 9.00 0.96 32.45 8.92

B

.1 0.53 0.88 0.17 0.02 0.88 0.19 0.02 0.92 0.20 0.02

.3 0.63 0.89 0.32 0.20 0.87 0.48 0.55 0.92 0.50 0.56

.5 0.80 0.90 1.52 2.09 0.88 3.67 4.15 0.92 3.70 4.15

.7 1.20 0.96 5.85 5.26 0.99 10.96 5.88 0.98 10.98 5.86

.9 3.20 0.91 10.26 5.84 0.99 15.16 4.15 0.99 15.15 4.12
.95 6.20 0.80 11.23 5.80 0.98 15.74 3.71 0.98 15.72 3.67

P

.1 1.06 0.85 0.19 0.11 0.89 0.22 0.14 0.92 0.24 0.14

.3 1.23 0.89 0.45 0.43 0.89 0.71 1.10 0.93 0.74 1.11

.5 1.53 0.90 2.39 3.71 0.89 5.91 7.65 0.93 5.94 7.65

.7 2.24 0.97 9.99 9.61 1.00 19.17 11.30 0.98 19.20 11.27

.9 5.80 0.93 19.36 11.37 0.99 28.28 8.01 0.99 28.26 7.95
.95 11.13 0.82 21.06 11.05 0.98 29.42 6.99 0.98 29.38 6.93

Lower limit adjustment

From Table 4.1.5 and 4.1.6, one can see that the nominal coverage probabilities will not be

(1− α) for either of the standard percentile method or varied percentile limit method (we

remind you that with 90% con�dence, the true coverage probability is within the observed

coverage probability ±.01). Also, we would like to remind you that even though the varied

percentile limit CI has the higher estimated coverage percentiles than the standard bootstrap

percentile CI for all the cases in our simulation study, it was devised to perform well for

higher ρ.
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Table 4.1.6: Same as Table 4.1.5 with n = 100.

BP1 Varied percentile limit VPL with Lo limit adj

G ρ EW av.c av.l SD av.c av.l SD av.c av.l SD

E

.1 1.11 0.88 0.40 0.07 0.89 0.47 0.09 0.93 0.50 0.10

.3 1.43 0.88 0.74 0.23 0.89 0.92 0.32 0.93 0.97 0.33

.5 2.00 0.88 2.02 1.67 0.90 3.46 4.81 0.93 3.55 4.83

.7 3.33 0.90 14.37 18.87 0.93 33.19 32.69 0.94 33.33 32.68

.9 10.00 0.91 45.76 31.24 0.98 74.34 28.39 0.98 74.35 28.25
.95 20.00 0.83 51.98 30.46 0.97 78.73 24.27 0.97 78.69 24.13

G

.1 1.07 0.89 0.22 0.03 0.90 0.25 0.03 0.94 0.27 0.03

.3 1.29 0.89 0.36 0.07 0.90 0.43 0.09 0.94 0.46 0.09

.5 1.67 0.89 0.87 0.41 0.89 1.26 0.94 0.94 1.31 0.95

.7 2.56 0.90 6.24 8.70 0.90 15.44 18.45 0.93 15.54 18.46

.9 7.00 0.94 35.62 24.57 0.99 58.63 22.07 0.99 58.64 21.96
.95 13.67 0.89 43.22 24.77 0.98 64.54 18.34 0.98 64.50 18.20

B

.1 0.53 0.89 0.08 0.00 0.89 0.09 0.01 0.94 0.10 0.01

.3 0.63 0.89 0.13 0.02 0.89 0.16 0.02 0.93 0.17 0.02

.5 0.80 0.89 0.33 0.13 0.89 0.47 0.25 0.93 0.49 0.26

.7 1.20 0.89 2.58 4.08 0.89 6.19 7.91 0.93 6.23 7.91

.9 3.20 0.94 16.18 11.53 0.99 26.88 10.47 0.99 26.88 10.42
.95 6.20 0.90 20.19 11.89 0.99 30.17 8.71 0.99 30.15 8.65

P

.1 1.06 0.87 0.10 0.03 0.90 0.12 0.04 0.93 0.12 0.05

.3 1.23 0.89 0.19 0.08 0.90 0.23 0.11 0.94 0.24 0.11

.5 1.53 0.89 0.53 0.35 0.88 0.76 0.86 0.93 0.79 0.87

.7 2.24 0.89 4.06 6.54 0.89 9.87 13.67 0.93 9.94 13.68

.9 5.80 0.94 29.38 21.45 0.99 49.48 20.03 0.99 49.49 19.94
.95 11.13 0.90 37.37 22.05 0.99 56.34 16.48 0.99 56.30 16.37

To obtain the nominal level of α, the restriction of (4.1.5), including only 100(1− α)%

CI's of ÊW
∗
, needs to be loosened. We suggest to use the following adjusted lower limit:

ÊW
∗(α/(2q̂))

, (4.1.8)

which would be the α/2 quantile of unconditioned ÊW
∗
since in the bootstrap sampling

processes B#/q̂ is the total number of bootstrap random samples of (I
∗ − G∗) needed to

obtain B# for which (I
∗ − G∗) > 0. Because q̂ ≤ 1, the adjusted lower limit (4.1.8) will

be always greater than or equal to the lower limit of the standard bootstrap percentile CI.
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Note that

.9αq̂ ≤ α

2q̂
⇐⇒ q̂ ≤

√
5

3
≈ .745,

so that the adjusted lower limit (4.1.8) is higher than the lower limit of plain VPL CI if

q̂ < .745. See Table 4.1.5 and 4.1.6 for the simulation study result of the varied percentile

limit (VPL) method with lower limit adjustment. The estimated coverage probabilities

are the best among the three methods with comparable average lengths and the standard

deviation of the lengths to VPL method and for high ρ, the average lengths of VPL with

the lower limit adjustment is slightly smaller than those of VPL CI.

4.1.5 CI of VarW

We compare the performances of the three methods, the standard bootstrap percentile, the

varied percentile limit, and the varied percentile limit with the lower limit adjustment of

(4.1.8). See Table 4.1.7 and 4.1.8. Note that the bootstrap random sample size, B# is 106

again. Though VPL with lower limit adjustment still perform the best among the three.

4.2 Estimation of the mean and the variance of busy time

periods

From Corollary 50, we obtain the moment estimator of ET and VarT as

ÊB =
µ̂1

(1− ρ̂)
=

G(
1−G/I

) ,
V̂arB =

µ̂2 − µ̂2
1 (1− ρ̂)

(1− ρ̂)3 =
G2(

1−G/I
)3 − G

2(
1−G/I

)2 .
The a.s. convergence comes from SLLN. As with the moment estimators of EW and VarW ,

ÊB and V̂arB also has (1 − ρ̂) as the denominator term. Thus, we can expect that these

estimators will have similar behaviors to ÊW and V̂arW . In similar way, one can show that

E(ÊB) =∞ and the same goes for V̂arB.

We compare the performances of the three methods, the standard bootstrap percentile,
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Table 4.1.7: Average coverage probabilities, the average length, and the sample standard deviation
of lengths of standard percentile (BP1), varied percentile limit, and varied percentile limit (VPL)
with lower limit adjustment of VarW for di�erent ρ=.1, .3, .5, .7, .9, .95 with di�erent service time
distribution of 4.1.3 with n = 25 and B = 106.

BP1 Varied percentile limit VPL with Lo limit adj

G ρ VarW av.c av.l SD av.c av.l SD av.c av.l SD

E

.1 1.23 0.68 1.78 1.83 0.76 2.23 2.62 0.77 2.31 2.64

.3 2.04 0.77 13.87 88.47 0.84 64.16 401.11 0.87 64.31 401.14

.5 4.00 0.86 214.11 610.50 0.93 734.33 1231.4 0.93 734.51 1231.4

.7 11.11 0.90 660.30 1007.1 0.97 1523.4 1352.1 0.97 1523.4 1351.9

.9 100.00 0.81 983.28 1029.2 0.95 1758.3 1071.4 0.95 1758.2 1071.1
.95 400.00 0.63 1019.7 1007.2 0.91 1757.8 1004.1 0.91 1757.7 1003.8

G

.1 0.42 0.75 0.45 0.31 0.81 0.55 0.39 0.83 0.58 0.40

.3 0.73 0.84 2.11 6.55 0.88 7.42 45.24 0.91 7.48 45.25

.5 1.52 0.88 60.40 225.11 0.90 229.91 448.94 0.93 230.01 448.93

.7 4.48 0.94 335.39 533.42 0.99 823.04 686.08 0.98 823.09 685.96

.9 43.00 0.88 699.31 687.31 0.98 1188.0 598.88 0.98 1187.88 598.64
.95 174.85 0.75 752.51 675.22 0.96 1214.7 552.97 0.96 1214.58 552.73

B

.1 0.07 0.87 0.04 0.01 0.91 0.05 0.01 0.93 0.05 0.01

.3 0.12 0.90 0.24 0.88 0.90 0.74 5.60 0.93 0.75 5.61

.5 0.27 0.91 7.90 30.91 0.90 33.97 70.40 0.93 33.98 70.40

.7 0.85 0.97 68.33 109.16 1.00 166.63 136.97 0.98 166.64 136.94

.9 8.54 0.91 151.58 143.74 0.99 264.94 115.99 0.99 264.91 115.94
.95 35.07 0.80 173.27 147.19 0.98 280.32 107.71 0.98 280.28 107.65

P

.1 0.12 0.65 0.18 0.63 0.77 0.23 0.85 0.78 0.23 0.85

.3 0.30 0.86 0.88 3.96 0.93 2.59 22.50 0.95 2.61 22.51

.5 0.78 0.90 23.65 105.09 0.90 104.16 291.99 0.94 104.21 291.99

.7 2.61 0.96 214.28 374.65 1.00 537.03 559.36 0.98 537.07 559.29

.9 26.95 0.93 551.52 556.78 0.99 932.14 459.53 0.99 932.03 459.35
.95 110.86 0.82 618.13 556.98 0.98 986.42 410.16 0.98 986.29 409.97

the varied percentile limit, and the varied percentile limit with the lower limit adjustment

of (4.1.8). See Table 4.2.1, 4.2.2, 4.2.3, and 4.2.4. Again B# is set to 106.

4.3 Conclusion

The di�culty in the constructing CI for EW , VarW , EB and VarB comes from two facts.

First, having a reciprocal form, the expected values for their sample moments are in�nite.

Any CI using the empirical moments cannot be used and a CI based on the bootstrap

percentile method is the only viable method. Secondly, by imposing the stable condition
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Table 4.1.8: Same as table 4.1.5 with n = 100.

BP1 Varied percentile limit VPL with Lo limit adj

G ρ VarW av.c av.l SD av.c av.l SD av.c av.l SD

E

.1 1.23 0.80 1.09 0.64 0.86 1.32 0.83 0.88 1.39 0.85

.3 2.04 0.82 2.51 1.78 0.87 3.38 2.69 0.90 3.51 2.73

.5 4.00 0.86 13.61 36.51 0.89 47.89 280.00 0.92 48.18 280.09

.7 11.11 0.90 638.07 1787.2 0.94 2348.7 3673.0 0.95 2349.2 3672.9

.9 100.00 0.91 3337.3 3751.1 0.98 6764.1 3879.6 0.98 6763.9 3878.6
.95 400.00 0.84 3933.2 3727.7 0.97 7244.2 3431.3 0.97 7243.7 3430.3

G

.1 0.42 0.84 0.26 0.10 0.88 0.31 0.13 0.91 0.32 0.13

.3 0.73 0.88 0.58 0.23 0.89 0.75 0.32 0.93 0.78 0.33

.5 1.52 0.89 2.57 2.95 0.90 5.00 17.00 0.94 5.09 17.02

.7 4.48 0.90 137.02 511.16 0.90 637.82 1340.6 0.94 638.13 1340.6

.9 43.00 0.94 2047.1 2325.8 0.99 4208.5 2362.7 0.99 4208.4 2362.0
.95 174.85 0.89 2699.0 2512.8 0.98 4822.6 2088.9 0.98 4822.2 2088.1

B

.1 0.07 0.89 0.02 0.00 0.91 0.02 0.00 0.94 0.03 0.00

.3 0.12 0.90 0.07 0.02 0.90 0.09 0.03 0.94 0.09 0.03

.5 0.27 0.89 0.38 0.31 0.89 0.66 0.84 0.93 0.68 0.85

.7 0.85 0.90 27.67 121.24 0.89 111.78 263.08 0.93 111.83 263.08

.9 8.54 0.94 432.59 505.39 0.99 894.00 518.50 0.99 893.98 518.35
.95 35.07 0.90 597.83 567.45 0.99 1058.27 463.65 0.99 1058.17 463.45

P

.1 0.12 0.71 0.12 0.23 0.80 0.15 0.31 0.81 0.15 0.31

.3 0.30 0.84 0.29 0.58 0.90 0.39 0.90 0.93 0.40 0.91

.5 0.78 0.89 1.35 4.66 0.89 2.79 27.83 0.94 2.84 27.84

.7 2.61 0.89 72.16 371.92 0.89 317.21 867.05 0.93 317.39 867.08

.9 26.95 0.94 1454.5 1765.0 0.99 3066.5 1841.3 0.99 3066.4 1840.8
.95 110.86 0.90 2055.6 1965.1 0.99 3703.2 1645.1 0.99 3702.9 1644.5

ρ̂ < 1, the resulting bootstrap resamples of {I∗j , G∗j}nj=1 were biased. Thus, the performance

of the bootstrap standard percentile method will be hindered by its equal tailed construction.

We showed that by considering variable percentile limit based on the estimation of q =

P (I − G) > 0, our percentile methods work better than the bootstrap standard percentile

method.

However, we need to mention two observations regarding our suggested CI. When ρ is

close to 1, the CI based on a larger sample size works poorly. For n = 100, their average

length and standard deviation are bigger than those of n = 25 case without much improve-

ment on the coverage probability due to the fact that the estimator has the reciprocal form

of 1/ (1− ρ̂), which dominates the estimates as we showed in Figure 4.1.8 (Because a larger

179



Table 4.2.1: Average coverage probabilities, the average length, and the sample standard deviation
of lengths of standard percentile (BP1), varied percentile limit, and varied percentile limit (VPL)
with lower limit adjustment of EB for di�erent ρ=.1, .3, .5, .7, .9, .95 with di�erent service time
distribution of Table 4.1.3 with n = 25 and B = 106.

BP1 Varied percentile limit VPL with Lo limit adj

G ρ EB av.c av.l SD av.c av.l SD av.c av.l SD

E

.1 1.11 0.87 0.81 0.26 0.90 0.99 0.35 0.93 1.04 0.37

.3 1.43 0.88 2.10 2.57 0.89 4.05 6.63 0.93 4.13 6.65

.5 2.00 0.90 9.05 12.05 0.92 20.19 19.83 0.93 20.28 19.82

.7 3.33 0.93 20.17 17.26 0.98 36.05 19.28 0.98 36.09 19.21

.9 10.00 0.85 27.88 17.17 0.96 41.79 14.40 0.96 41.77 14.32
.95 20.00 0.67 28.80 16.47 0.92 42.05 13.31 0.92 42.02 13.23

G

.1 1.11 0.87 0.48 0.11 0.87 0.57 0.14 0.92 0.60 0.15

.3 1.43 0.87 1.20 0.99 0.87 2.03 2.88 0.92 2.09 2.89

.5 2.00 0.89 6.28 9.05 0.89 14.91 16.52 0.92 15.00 16.52

.7 3.33 0.95 20.07 17.82 0.99 37.34 20.31 0.98 37.40 20.25

.9 10.00 0.89 33.54 20.05 0.99 48.97 15.07 0.99 48.92 14.95
.95 20.00 0.76 35.51 19.53 0.96 49.96 13.61 0.96 49.90 13.49

B

.1 0.56 0.89 0.19 0.03 0.88 0.22 0.03 0.92 0.23 0.03

.3 0.71 0.89 0.48 0.34 0.87 0.77 0.96 0.92 0.79 0.96

.5 1.00 0.89 2.55 3.57 0.88 6.30 7.18 0.92 6.34 7.18

.7 1.67 0.97 9.97 9.10 0.99 18.71 10.17 0.97 18.74 10.14

.9 5.00 0.91 17.31 9.96 0.99 25.61 7.20 0.99 25.59 7.14
.95 10.00 0.80 18.90 9.87 0.98 26.52 6.46 0.98 26.48 6.40

P

.1 1.11 0.87 0.22 0.10 0.89 0.27 0.13 0.93 0.28 0.14

.3 1.43 0.89 0.72 0.66 0.88 1.19 1.78 0.93 1.22 1.79

.5 2.00 0.90 4.31 6.57 0.89 10.74 13.24 0.93 10.81 13.25

.7 3.33 0.97 18.61 17.64 1.00 35.83 20.32 0.97 35.88 20.27

.9 10.00 0.93 36.49 20.97 0.99 53.43 14.24 0.99 53.38 14.12
.95 20.00 0.82 39.87 20.51 0.98 55.78 12.46 0.98 55.70 12.33

sample size n results in a smaller the variance of ρ̂, we would have a shorter 90% CI for

1− ρ̂, which would be more close to 0 comparing to the n = 25 case).

Also note that for VarW , we found that B# should be greater that 106 at least in our

case. For example, with B# = 105, the observed coverage probabilities were .019, .075, and

.075 for the standard percentile CI, the VPL, and the VPL with lower limit adjustment,

respectively when G∼Beta(2,2) and ρ = .3 with n = 100. When we set B# = 106, we

observed the acceptable coverage probabilities for all three di�erent CI's. For EW , this

phenomenon was not observed. The observed result were comparable for both B# = 105

and B# = 106, which is explained by ÊW = O((1− ρ̂)−1) but V̂arW = O((1− ρ̂)−2).
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Table 4.2.2: Same as Table 4.2.1 with n = 100.

BP1 Varied percentile limit VPL with Lo limit adj

G ρ EB av.c av.l SD av.c av.l SD av.c av.l SD

E

.1 1.11 0.88 0.41 0.07 0.89 0.47 0.08 0.93 0.51 0.08

.3 1.43 0.88 0.74 0.19 0.88 0.93 0.27 0.93 0.98 0.28

.5 2.00 0.89 2.04 1.64 0.89 3.51 4.79 0.93 3.60 4.81

.7 3.33 0.91 14.67 19.28 0.93 33.96 33.17 0.94 34.11 33.17

.9 10.00 0.92 46.81 31.89 0.99 76.11 28.58 0.99 76.12 28.43
.95 20.00 0.84 53.12 31.06 0.97 80.60 24.23 0.97 80.56 24.07

G

.1 1.11 0.89 0.24 0.03 0.90 0.27 0.03 0.94 0.29 0.03

.3 1.43 0.89 0.46 0.09 0.89 0.56 0.11 0.94 0.59 0.12

.5 2.00 0.90 1.24 0.61 0.89 1.81 1.41 0.94 1.88 1.43

.7 3.33 0.91 9.34 13.10 0.90 23.24 27.81 0.93 23.38 27.83

.9 10.00 0.94 53.75 37.11 0.99 88.51 33.25 0.99 88.52 33.09
.95 20.00 0.89 65.20 37.33 0.98 97.41 27.55 0.98 97.35 27.36

B

.1 0.56 0.89 0.09 0.01 0.89 0.11 0.01 0.94 0.11 0.01

.3 0.71 0.89 0.19 0.03 0.89 0.23 0.04 0.93 0.24 0.04

.5 1.00 0.89 0.54 0.23 0.89 0.77 0.44 0.93 0.80 0.45

.7 1.67 0.89 4.36 6.91 0.89 10.49 13.43 0.93 10.56 13.44

.9 5.00 0.94 27.17 19.40 0.99 45.13 17.68 0.99 45.14 17.60
.95 10.00 0.90 33.80 19.97 0.99 50.51 14.71 0.99 50.48 14.60

P

.1 1.11 0.88 0.11 0.03 0.90 0.13 0.04 0.94 0.14 0.04

.3 1.43 0.89 0.28 0.07 0.88 0.35 0.09 0.93 0.37 0.10

.5 2.00 0.89 0.91 0.46 0.88 1.31 1.07 0.92 1.36 1.08

.7 3.33 0.89 7.40 11.64 0.89 18.05 24.64 0.93 18.18 24.67

.9 10.00 0.94 55.03 40.02 0.99 92.73 37.24 0.99 92.76 37.08
.95 20.00 0.90 70.27 41.42 0.99 105.94 30.72 0.99 105.88 30.50
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Table 4.2.3: Average coverage probabilities, the average length, and the sample standard deviation
of lengths of standard percentile (BP1), varied percentile limit, and varied percentile limit (VPL)
with lower limit adjustment of VarB for di�erent ρ=.1, .3, .5, .7, .9, .95 with di�erent service time
distribution of Table 4.1.3 with n = 25 and B = 106.

BP1 Varied percentile limit VPL with Lo limit adj

G ρ VarB av.c av.l SD av.c av.l SD av.c av.l SD

E

.1 1.51 0.75 2.73 2.94 0.82 3.89 5.28 0.84 4.00 5.32

.3 3.79 0.84 284.91 4760.8 0.89 2792.0 25565 0.92 2792.3 25565

.5 12.00 0.89 14063 62521 0.93 57565 113893 0.94 57566 113893

.7 62.96 0.92 52656 103650 0.98 139543 135392 0.98 139543 135390

.9 1900 0.85 88127 116888 0.96 174655 111789 0.96 174654 111787
.95 15600 0.66 91303 112208 0.92 175786 103849 0.92 175785 103848

G

.1 0.59 0.81 0.78 0.51 0.86 1.05 0.75 0.89 1.09 0.76

.3 1.85 0.87 25.32 269.99 0.89 340.17 4564.9 0.92 340.33 4565.0

.5 6.67 0.89 5968.4 37357 0.89 27932 71078 0.93 27933 71077

.7 38.27 0.95 45388 100043 0.99 126104 125458 0.99 126104 125457

.9 1233 0.89 111207 141292 0.99 202090 119257 0.99 202088 119254
.95 10267 0.76 121785 139573 0.96 208998 111170 0.96 208996 111167

B

.1 0.10 0.89 0.09 0.03 0.90 0.12 0.05 0.93 0.13 0.06

.3 0.36 0.90 3.17 50.56 0.89 34.40 751.16 0.93 34.43 751.17

.5 1.40 0.90 798.82 5693.4 0.89 4543.6 12885 0.93 4543.7 12885

.7 8.33 0.97 10975 24352 1.00 29872 30780 0.98 29872 30779

.9 275.0 0.92 27508 34815 0.99 51902 28692 0.99 51902 28692
.95 2300 0.80 32319 36149 0.98 55709 27201 0.98 55709 27201

P

.1 0.23 0.83 0.34 0.80 0.90 0.48 1.22 0.93 0.49 1.22

.3 1.07 0.90 11.08 207.07 0.90 126.88 3222.5 0.94 126.96 3222.6

.5 4.53 0.91 2552.1 21885 0.89 14088 45189 0.93 14088 45189

.7 28.40 0.97 37802 87392 1.00 106030 114361 0.98 106030 114359

.9 966.7 0.93 118856 148916 0.99 213749 113517 0.99 213747 113514
.95 8133 0.82 136977 152398 0.98 231727 106130 0.98 231724 106127
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Table 4.2.4: Same as Table 4.2.3 with n = 100.

BP1 Varied percentile limit VPL with Lo limit adj

G ρ VarT av.c av.l SD av.c av.l SD av.c av.l SD

E

.1 1.51 0.83 1.41 0.72 0.87 1.75 0.95 0.90 1.84 0.98

.3 3.79 0.87 6.37 4.46 0.89 9.63 7.89 0.93 9.89 8.01

.5 12.00 0.88 157.88 1410.7 0.90 2097.7 29765 0.94 2098.8 29766

.7 62.96 0.91 73789 321887 0.93 341606 659446 0.94 341609 659444

.9 1900 0.92 537288 782133 0.98 1225335 821770 0.98 1225331 821758
.95 15600 0.84 655950 806161 0.97 1345360 737670 0.97 1345353 737657

G

.1 0.59 0.87 0.38 0.13 0.89 0.46 0.16 0.93 0.49 0.17

.3 1.85 0.89 2.10 0.96 0.90 2.95 1.48 0.94 3.05 1.52

.5 6.67 0.90 25.26 84.94 0.89 103.77 1598.6 0.93 104.29 1598.7

.7 38.27 0.91 21801 160336 0.90 145351 404630 0.93 145354 404630

.9 1233 0.94 589325 883035 0.99 1361443 926579 0.99 1361438 926565
.95 10267 0.89 823988 999743 0.98 1615795 850111 0.98 1615785 850094

B

.1 0.10 0.89 0.04 0.01 0.90 0.05 0.01 0.93 0.05 0.01

.3 0.36 0.90 0.34 0.14 0.89 0.48 0.21 0.93 0.49 0.22

.5 1.40 0.89 4.16 5.84 0.89 9.87 26.11 0.93 9.97 26.16

.7 8.33 0.89 6055.4 44202 0.89 30476 97892 0.93 30477 97891

.9 275.0 0.94 146314 226194 0.99 337517 240478 0.99 337516 240475
.95 2300 0.90 215933 267135 0.99 413778 225346 0.99 413776 225341

P

.1 0.23 0.82 0.18 0.24 0.88 0.23 0.34 0.91 0.24 0.34

.3 1.07 0.89 1.15 1.06 0.89 1.61 1.88 0.93 1.67 1.90

.5 4.53 0.89 14.33 72.21 0.88 63.53 1398.4 0.93 63.86 1398.5

.7 28.40 0.89 14802 132149 0.89 91525 328265 0.93 91528 328265

.9 966.7 0.94 573151 924861 0.99 1351858 977923 0.99 1351854 977908
.95 8133 0.90 872311 1093736 0.99 1713439 926400 0.99 1713428 926380
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