
THESIS

REDUCING OFF-CHIP MEMORY ACCESSES OF WAVEFRONT PARALLEL

PROGRAMS IN GRAPHICS PROCESSING UNITS

Submitted by

Waruna Ranasinghe

Department of Computer Science

In partial fulfillment of the requirements

For the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Fall 2014

Master’s Committee:

Advisor: Sanjay Rajopadhye

Wim Bohm
Iuliana Oprea

Copyright by Waruna Ranasinghe 2014

All Rights Reserved

ABSTRACT

REDUCING OFF-CHIP MEMORY ACCESSES OF WAVEFRONT PARALLEL

PROGRAMS IN GRAPHICS PROCESSING UNITS

The power wall is one of the major barriers that stands on the way to exascale computing.

To break the power wall, overall system power/energy must be reduced, without affecting the

performance. We can decrease energy consumption by designing power efficient hardware

and/or software. In this thesis, we present a software approach to lower energy consumption

of programs targeted for Graphics Processing Units (GPUs). The main idea is to reduce

energy consumption by minimizing the amount of off-chip (global) memory accesses. Off-

chip memory accesses can be minimized by improving the last level (L2) cache hits. A

wavefront is a set of data/tiles that can be processed concurrently. A kernel is a function

that get executed in GPU. We propose a novel approach to implement wavefront parallel

programs on GPUs. Instead of using one kernel call per wavefront like in the traditional

implementation, we use one kernel call for the whole program and organize the order of

computations in such away that L2 cache reuse is achieved. An strip of wavefronts (or a

pass) is a collection of partial wavefronts. We exploit the non-preemptive behavior of the

thread block scheduler to process a strip of wavefronts (i.e., a pass) instead of processing a

complete wavefront at a time. The data transfered by a partial wavefront in a pass is small

enough to fit in L2 cache, so that, successive partial wavefronts in the pass reuse the data

in L2 cache. Hence the number of off-chip memory accesses is significantly pruned. We also

introduce a technique to communicate and synchronize between two thread blocks without

limiting the number of thread blocks per kernel or SM. This technique is used to maintain

the order of wavefronts.

ii

We have analytically shown and experimentally validated the amount of reduction in off-

chip memory accesses in our approach. The off-chip memory reads and writes are decreased

by a factor of 45 and 3 respectively. We have shown that if GPUs incorporate L2 cache with

write-back cache write policy, then off-chip memory writes also get reduced by a factor of

45. Our approach provides 98% and 74% L2 cache read hits and total cache hits respectively

and the traditional approach reports only 2% and 1% respectively.

iii

TABLE OF CONTENTS

Abstract . ii

List of Tables . vi

List of Figures . vii

Chapter 1. Introduction . 1

1.1. Problem . 1

1.2. Why problem is important? . 1

1.3. Approach . 2

1.4. Contributions . 3

1.5. Summary of results . 4

1.6. Related Work . 4

Chapter 2. Background . 9

2.1. GPU Architecture and Programming Model . 9

2.2. Components of Energy Consumption . 12

2.3. Stencil Computations . 12

2.4. Tiling of programs and wavefront parallelism . 13

2.5. Smith Waterman. 14

2.6. Energy models for GPU. 16

Chapter 3. Implementing Wavefront Parallelism on GPUs . 18

3.1. Tiling Smith Waterman . 18

3.2. Parallelization within a tile . 19

3.3. Traditional Implementation of Wavefront Parallelization for GPUs 21

iv

3.4. Energy Efficient Implementation of Wavefront Parallelization 22

Chapter 4. Energy modeling . 30

4.1. Traditional implementation . 30

4.2. Energy efficient implementation . 32

Chapter 5. Micro-benchmarking . 35

5.1. Methodology. 35

5.2. Implementation . 36

5.3. Challenges . 37

Chapter 6. Results . 42

6.1. Experimental Setup . 42

6.2. Validation of Number of Off-chip Memory Transfers . 43

6.3. Energy Consumption. 45

6.4. Conclusion . 48

Bibliography . 50

Appendix A. CUDA Implementation. 60

A.1. Synchronization patterns for wavefront parallelization. 60

A.2. Explore Memory Space . 61

v

LIST OF TABLES

2.1 Description of symbols . 13

5.1 Table of the energy parameter values from the micro-benchmark approach 37

6.1 Configurations of NVIDIA GTX 480 and K20c GPUs . 42

6.2 Program parameter values for the memory access validation experiment 45

6.3 Program parameters specific to our implementation. 45

6.4 Description of profiling events. 46

6.5 Performance counter values . 47

6.6 Average energy contribution for a tile by different energy components. 48

vi

LIST OF FIGURES

3.1 Dependencies of a cell in dynamic programming table H of Smith Waterman 18

3.2 Orthogonal tiling for Smith Waterman. 19

3.3 Parallelization within a pass . 24

3.4 Passes of tiles. 26

5.1 Instantaneous power curve. 40

5.2 Instantaneous power curve for 3 consecutive kernel calls. 41

vii

CHAPTER 1

INTRODUCTION

In this chapter, we describe the problem, why it is important, the approach we propose

to solve the problem, contributions of the thesis, a summary of results, and related work.

1.1. Problem

Reducing the energy consumption of wavefront parallel programs targeted for GPUs.

1.2. Why problem is important?

There have been several studies carried out on the feasibility of exascale computing [1, 2].

DARPA IPTO Division supported the first study [1] in 2008 and then MITRE Cooperation

presented a mid evaluation [2] of the challenges for exascale computing in 2013. The first

study identified four major technical challenges for exascale computing and energy and power

wall is one of them. If the power consumption of current technologies, is simply extrapolated

to exascale computing, it is impossible to practically achieve such deployment. It would

require about 400 Megawatts to operate. They have identified the cost of moving data from

processor to memory or processor to processor as the main issue. There are two main research

areas in order to reduce the energy consumption of data transfers between off-chip memory

and processor. They are, a) hardware architecture; b) software implementation.

Accelerators are used in supercomputers and contribute 35% of the total TOP500 perfor-

mance. In addition, 7 out of 9 most energy efficient architectures in TOP500 supercomputers

are powered by GPUs [3]. While GPUs contribute towards the performance, they also play

a key role in producing energy efficient supercomputers. Therefore, reducing the energy

1

consumption of programs targeted for GPUs will further increase the energy efficiency and

contribute towards breaking the exascale power wall.

Apart from exascale challenges, reducing energy consumption also reduces the component

failure rate of GPUs [4] as well as provides economic gains by reducing the operational costs

(like power consumption for the hardware and power consumption for the cooling system) [5].

In stencil computations, array elements are updated according to a fixed pattern of values

of the neighboring elements. Almost all the stencil like programs are parallelized using

wavefront parallelism introduced by Lamport in 1974 [6]. The applications of stencils and

wavefront parallelism are spread over many areas including particle physics simulations [7],

parallel iterative solvers [8], and triangular systems of linear equations. Therefore, reducing

the energy consumption of wavefront parallel programs affects the energy consumption of

decent amount of applications in various disciplines.

1.3. Approach

Off-chip memory accesses can be reduced by improving the last level (L2) cache hits. The

typical way of implementing wavefront parallel programs is by using multiple GPU kernel

calls (one per wavefront) sequentially. For large enough wavefronts, data required by the

wavefront does not fit in L2 cache, therefore, each successive kernel calls read data from

off-chip memory, instead of L2 cache.

We introduce a novel mechanism to communicate and synchronize between pairs of thread

blocks. By using this communication mechanism, programs can be implemented using one

kernel call instead of using multiple kernel calls. In GPUs, only a fixed number of thread

blocks get executed concurrently. By exploiting this behavior and by forcing one thread block

to process a row of data/tiles, we can ensure that the data/tile space is processed in passes

2

of certain width Ph. Now, size of the partial wavefronts is Ph which is small enough to fit in

L2 cache. Therefore, next partial wavefront reads the data from L2 cache. After finishing

the first pass, it will move on to the next pass. The proposed implementation reduces the

amount of off-chip memory accesses. The idea of multi-pass approach was introduced by

Rajopadhye et al. [9] where they propose a GPU-like accelerator called Stencil Processing

Unit (SPU) for implementing stencil computations in an energy efficient manner.

1.4. Contributions

The main contributions of this thesis are as follows,

(1) A new approach to implement wavefront parallel programs in GPUs, so that, the

amount of off-chip accesses are reduced.

(2) A novel way to communicate and synchronize between two CUDA thread blocks,

that enforces the order of execution of computations between two thread blocks,

independent of the scheduling decisions of the runtime system.

(3) A careful analysis for savings of off-chip memory accesses, both analytically and

experimentally using profiling tools.

(4) An energy model for our proposed energy efficient implementation. This is an exten-

sion of our joint work done on developing an energy model for tiled GPU programs

that implement wavefront parallelization of stencil computations, by Rajopadhye et

al. [10].

(5) A micro-benchmark suite to determine the energy consumption of various GPU

operations.

(6) A tool to measure the energy consumption of kernels on NVIDIA GPUs

3

1.5. Summary of results

We have analytically shown and experimentally validated the amount of reduction in off-

chip memory accesses in our approach. The off-chip memory reads and writes are reduced by

a factor of 45 and 3 respectively. The disparity is because the GPU caches use write-through

cache write policy. If GPUs incorporate L2 cache with write-back cache write policy, then off-

chip memory writes also get reduced by a factor of 45. Our approach provides 98% and 74%

of L2 cache read hits and total cache hits respectively and the traditional approach reports

only 2% and 1% respectively. We have also experimentally shown that despite the significant

reduction in off-chip memory accesses, the total energy consumption savings are modest. The

contribution of energy of off-chip memory accesses in the traditional implementation must

be in the same order as the contribution of energy from other components like computations.

When this is the case we will see considerable amount of dynamic and total energy savings

using our approach.

1.6. Related Work

1.6.1. Techniques to synchronize thread blocks. Even though GPUs started off

as graphics processors, today’s GPUs are general purpose parallel processors with support

for programing interfaces and languages like C. The massive computing power of GPUs

attracts more and more complex applications (GPGPU)1 to be ported and developed for

GPUs. While the programming constructs in GPUs are sufficient for embarrassingly parallel

programs, it is lack of programming constructs to implement more complex programs. For

example, absence of a proper mechanism to communicate among thread blocks. There are

a number of studies on techniques to synchronize among thread blocks. Xiao et al. [11]

1See http://gpgpu.org for an exhaustive list of GPGPU applications

4

propose a synchronizing mechanism among thread blocks by using atomic instructions in

CUDA. Since they seek to synchronize among all the thread blocks, they restrict the number

of the thread blocks per kernel to the number of SMs and thread blocks per SM to one,

to avoid deadlocks. This could affect the performance, since GPU may need more than

one thread block per SM to overlap the compute and memory operations. Later, Xiao and

Feng [12] proposed a similar technique which has the same flaw in performance.

In many instances like in wavefront parallelized tiled computations, we do not need

to barrier synchronize among all the thread blocks at once, but just producer-consumer

synchronization between pairs of thread blocks is sufficient. We just need to know whether

a thread block has finished its computations up to a certain point. Then the next thread

block can start processing. Most of the stencil like wavefront parallel programs have similar

execution patterns and do not need a method to synchronize among all the thread blocks at

once. Therefore, method we propose does not impose a restriction on the number of thread

blocks per kernel. Our technique also may deadlock, but we have taken care of it without

restricting the number of thread blocks as well as thread blocks per SM. One Drawback of

our method compared to the related work is that, the memory complexity of our method is

O(threadblocks), more precisely, equal to the number of thread blocks instead of having just

one memory location. Since, the number of thread blocks is much smaller than the problem

(input) sizes and GPUs has relatively large off-chip memory capacity, this is not an issue.

1.6.2. Techniques for Improving Energy Efficiency. The area of energy con-

sumption in CPUs has been explored over many years. Although the area of energy con-

sumption in GPUs is a hot topic nowadays, it is yet to be deeply explored. Mittal and Vetter

has recently surveyed on state of the art for improving energy efficiency of GPUs [13]. The

5

techniques can be classified into five main categories, a) dynamic voltage/frequency scal-

ing (DVFS); b) CPU-GPU work load balancing; c) architectural improvements; d) dynamic

resource allocation; and e) programming level techniques.

DVFS is a technique where the power/energy is controlled by dynamically changing the

voltage of a processor. This change in voltage affects the frequency of the core as well. Anzt

et al. [14] propose an technique which based on using DVFS on CPUs while waiting for GPU

to finish its kernels. Jiao et al. [15] explore the space of applying DVFS on both GPU cores

as well as off-chip memory. Lin et al. [16] propose an approach based on using software

pre-fetching together with DVFS.

The next technique is to balance CPU-GPU work load based on the energy consumption.

It has been observed that CPU has better energy efficiency for some operations and GPU

has better energy efficiency for others. Based on this, by dynamically selecting the best

option (out of CPU and GPU) for a given kernel, energy consumption can be reduced. Ma

et al. [17] propose a technique to load balance work load among CPU and GPU based on

the execution time, so that, both CPU and GPU finish at the same time. Therefore, we

can minimize the energy consumed while the CPU is idling. Rofouei et al. [18] describe a

technique to chose between CPU and GPU based on the energy efficiency of the kernel.

Improve GPU architecture to provide better energy efficiency while running kernels. This

is achieved by changing different architectural components to optimize the energy consump-

tion. Wang et al. [19] propose to put L1 and L2 cache into state-preserving low leakage

mode when ever there are no threads scheduled to access L1 and L2 cache. This is a vital

improvement when programs are executed with caches disabled or without any shared mem-

ory. Gebhart et al. [20] describe an technique to reduce the amount of memory required to

6

store thread context. Gebhart et al. [21] propose to unify the L1 cache and shared mem-

ory. Therefore, before starting the kernel, the proportion of L1 and shared memory can be

configured which increase the resource utilization. Rhu et al. [22] propose a technique to

find the optimal granularity of off-chip memory transactions, thereby, reducing the unused

data fetches. Gilani et al. [23] propose a fused multiply-add unit for integers and a scalar

unit to compute common operation with same operands for all the threads within a warp.

Rajopadhye et al. [9] propose a GPU-like architecture called Stencil Processing Unit (SPU),

for implementing dense stencil computations in an energy-efficient manner. The multi-pass

technique, we are using in this thesis was proposed by them.

Dynamic resource allocation is determining the optimal amount of resources for a given

kernel based on the fact that some of the programs may not utilize all the resources available

in GPUs. Hong and Kim [24] describe a power model and use of the model to determine the

optimal number of cores to achieve highest power efficiency. Wang et al. [25, 26] also propose

techniques to determine the optimal number of cores. Energy consumption can be reduced

by shutting down the unused cores. Song et al. [27] has gone one step beyond and has

proposed a technique to throttle the number of thread blocks per Streaming Multiprocessor.

Jararweh and Hariri [28], and Wang and Chen [29] propose techniques to manage energy

consumption of GPU based clusters.

Programming level techniques are programming transformations and application specific

optimizations that reduce the energy consumption of GPU kernels. My technique also belong

to this category. Wang et al. [30] describe a technique to save energy by using kernel fusion.

In order to find a successful fusion, there should be kernels which are underutilizing the

resources of GPU as well as complement the resources utilized by each other. Alonso et

al. [31] propose to put the CPU thread in a blocking state rather than in a busy wait polling

7

loop while waiting for the GPU to finish the computation. Yang et al. [32] study several

opensource GPU projects to identify the inefficient code patterns and suggest alternatives

so that it improves the energy efficiency of the kernel.

While some of the techniques reduce the performance of the GPU kernel, our technique

does not reduce the performance but may improve it. Our technique is also orthogonal to

almost all available techniques and complements them.

8

CHAPTER 2

BACKGROUND

In this chapter we present background information that may help to follow the rest

of the thesis. We specifically discuss the GPU architecture, the different components of

energy/power, tiling and wavefront parallelism, and Smith-Waterman algorithm.

2.1. GPU Architecture and Programming Model

A GPU consists of an array of Streaming Multiprocessors (SMs) each one consisting of

a set of Scalar Processors (CUDA cores). The number of CUDA cores can vary from 8 to

192 depending on the GPU architecture. All SMs share an off-chip global memory and have

its own shared memory and a register file. Modern GPUs are also equipped with a last level

cache L2 and L1 cache. The size of the cache is much smaller compared to the CPUs because,

GPUs are originally designed for streaming or throughput computing which has limited data

reuse [33]. The programming model consists of a grid of thread blocks. The threads of a thread

block execute concurrently on one SM and multiple thread blocks may execute concurrently

on one SM (depending on the availability of shared memory and registers). As thread blocks

terminate, new thread blocks are launched [34]. It is expected that the computations in a

thread block is independent of the computations in other thread blocks. In other words,

one cannot assume the execution order for the grid of thread blocks, and in fact, the GPU

runtime system schedules a thread block through to completion without any pre-emption.

This enable GPUs to have an extremely lightweight runtime system. Within a thread block,

all the threads can access shared memory collaboratively and explicitly synchronize to have a

uniform view of shared memory amongst each other. Within a thread block, code is executed

in groups of 32 threads called warp. Each thread has its private registers. GPUs consist

9

of different types of memory spaces designed to cater to various types of access patterns of

data. A summary of different memory spaces of GPUs is given below. Please refer to the

CUDA C programming guide [34] for more details.

(1) Global memory

Global memory is high capacity and shared among all the streaming multipro-

cessors (SMs) and persistent across multiple kernel calls. It is used to store the

input and output data of kernels. Global memory accesses are cached in L2 cache

which is shared across all the SMs. Global memory accesses are also cached in L1

cache which is local to each SM. L1 cache is not coherent. Global memory accesses

must be coalesced (threads in a warp must access consecutive elements in an array)

to have the best performance.

(2) Shared memory

Shared memory is shared among all the threads within a thread block. There is

one shared memory per SM. The capacity of the shared memory is low. Therefore,

it should be used carefully so that we have enough resources left to accommodate

multiple thread blocks in the same SM. So that, the memory latency can be hidden.

Shared memory is highly banked to increase the concurrent accesses. Therefore, we

need to make sure that there are no bank conflicts from accesses of a warp (or half a

warp) of threads to shared memory. All the conflicted access will be serialized and

degrade the performance. Shared memory and L1 cache reside in the same physical

memory. Prior to launch the GPU kernel, one can configure the amount of L1 and

shared memory sizes out of a predefined set of configurations. Data is persistent

within a lifetime of a thread block.

(3) Registers

10

Located closest to the functional units and have the minimum access latency. A

register is bound to a single thread and not shared among the threads. Number of

registers per SM is limited and this is critical resource which limits the number of

thread blocks per SM. Size of a register is 32bits. Each thread has a hard limit on

the number of registers that can be used. Whenever this limit is exceeded, all the

remaining register data are spilled in to local memory which resides in device mem-

ory, therefore has a high latency. Local memory get cached in L1 cache. Register

spilling can also happen when we declare large register arrays, this can be resolved

by declaring the array as volatile, but this may prevent the compiler optimizations.

(4) Constant memory

Constant memory resides in the device memory and has a constant cache. Con-

stant memory is read only. Threads in a warp should access the same memory

location in constant memory to have the best performance.

(5) Texture memory

Texture memory resides in device memory and has a cache. This is a read

only memory. The texture cache is optimized for 2D spatial locality. Unlike other

memories, texture has the capability of returning processed data.

(6) Read-only memory

Read-only memory is available in Kepler GPUs. This is the same memory space

as texture memory, but has direct access to memory and no need to use texture

in-built functions.

11

2.2. Components of Energy Consumption

The energy consumption of GPUs consists of two main parts, namely static energy and

dynamic energy. Static power refers to the power consumption even when the GPU is

idling. Dynamic power is the power consumed by different components of the GPU while in

operation. Dynamic power can be decomposed into power consumed by memory operations

and power consumed by compute operations. Power consumed by memory operations can

be further decomposed into power consumed by off-chip data transfers and on-chip data

transfers. We can keep on expanding this further. But I’m going to stop right here and

derive the formulas corresponding the above description. The symbols are defined in the

Table 2.1

Ealg = Estat + Edyn

Edyn = Emem + Eops

Emem = Eoffchp + Eonchp

Eoffchp = Mioegr (1)

The total energy of the program depends the amount of off-chip data transfers. Therefore,

by reducing the off-chip data transfers, we can reduce the total energy consumption.

2.3. Stencil Computations

In stencil computations, values of elements are updated according to a fixed pattern of

values of the neighboring elements. In other words, computation can be represented using

a recurrence. The values of the elements are updated iteratively. Jacobi is an example for a

stencil and Smith-Waterman algorithm is an example for a stencil like program.

12

Table 2.1. Description of symbols

.

Symbol Description

Ealg Total energy consumption of the program
Estat Static energy consumption of the program
Edyn Dynamic energy consumption of the program
Emem Energy consumed by memory operations of the program
Eops Energy consumed by compute operations of the program
Eoffchp Energy consumed by off-chip data transfers of the program
Eonchp Energy consumed by on-chip data transfers of the program
Etile Dynamic energy consumed by a tile
pstat static power of device
egr Energy for a off-chip↔register transfer
esr Energy for a shared↔register transfer
egs Energy for a off-chip↔shared transfer
esync energy for a single synchronization
ej Energy per operation of type j

Moffchp Number of off-chip data transfers of the program
Ntiles Number of tiles in the program
Egs Energy consumed for off-chip, shared memory transfers per pass
Els Energy consumed for L2, shared memory transfers per pass
Esr Energy consumed for register, shared memory transfers per pass
Ear Energy consumed for computations per pass
Esync Energy consumed for thread synchronizations per pass
Mio Number of off-chip data transfers per pass
Ph Height of a pass in tiles
Pw Width of a pass in tiles
NP Number of passes in the program
Talg Execution time of the program
Voc Volume of data related to off-chip accesses of the program
S Space dimention
T Time dimention
opj Number of operations of type j in loop body.
tS Tile size along space dimention
tT Tile size along time dimention
k Number of thread blocks that get scheduled concurrently at time
Mmax

smem Shared memory available per a SM
Mmax

reg Registers available per a SM
Malg

smem Shared memory consumed by program per thread block
Malg

reg Registers used by program per thread

2.4. Tiling of programs and wavefront parallelism

Tiling [35? , 36] is a program transformation to improve the locality of memory accesses.

Tile is a group/block of computations. There are many ways to tile programs. Orthogonal

13

tiling [35] is performed by making the tile boundaries parallel to the boundaries of the original

domain. While, orthogonal tiling works for Smith-Waterman like programs, it is not legal

for programs with Jacobi like dependences. Jacobi like stencils can be tiled easily by tiling

the space dimensions, but it results in memory bound programs rather than compute bound.

There are other tiling techniques like diamond tiling [36], hybrid hexagonal tiling [37], and

time skewing [38–40] followed by rectangular tiling to obtain compute bound tiles. Once

tiling is applied, we can find wavefronts where tiles within an wavefront can be processed

simultaneously. The idea of wavefronts was introduced by Lamport [6] and he named it as

hyperplane method.

2.5. Smith Waterman

Smith Waterman [41] is a dynamic programing solution to find the optimal local align-

ments between two nucleotide sequences. Two nucleotide sequences are represented by

A = a1a2 . . . aN and B = b1b2 . . . bM . Substitution matrix is given by s(ai, bj) which provides

the similarity scores between two nucleotides. The weight for the deletions of length k (gap

penalty) is given by Wk. The optimal alignment score is given by the maximum score in

table H (see equation 2).

H(i, 0) = 0, 0 ≤ i ≤M

H(0, j) = 0, 0 ≤ j ≤ N

H(i, j) = max

0

H(i− 1, j − 1) + s(ai, bj)

max(k≥1){H(i− k, j)−Wk}

max(l≥1){H(i, j − l)−Wl}

, 1 ≤ i ≤M and 1 ≤ j ≤ N (2)

14

There are two types of gap penalties, affine and profile based. In this study, we only

consider affine gap penalties. Therefore, equation 2 can be simplified to equation 3.

H(i, 0) = 0, 0 ≤ i ≤M

H(0, j) = 0, 0 ≤ j ≤ N

H(i, j) = max

0

H(i− 1, j − 1) + s(ai, bj)

H(i− 1, j)−W

H(i, j − 1)−W

, 1 ≤ i ≤M and 1 ≤ j ≤ N (3)

W = ρ+ kσ

where ρ is the gap open penalty and σ is the gap extension penalty. Affine gap penalty

introduces another set of equations 4, where, the number of gaps are not tracked explicitly.

Therefore, reduces the amount of branch statements in the implementation. This is achieved

by retaining the previous row and column sums called F and E, m × n tables [42]. This

is the preferred algorithm for GPUs since branch divergence1 serializes the execution, the

performance of the CUDA kernel is reduced.

H(i, 0) = 0, 0 ≤ i ≤M

E(i, 0) = 0, 0 ≤ i ≤M

H(0, j) = 0, 0 ≤ j ≤ N

F (0, j) = 0, 0 ≤ j ≤ N

1Branch divergence is threads within a warp taking different execution paths.

15

E(i, j) = max

E(i, j − 1)− σ

H(i, j − 1)− ρ

 , 0 ≤ i ≤M and 1 ≤ j ≤ N (4)

F (i, j) = max

F (i− 1, j)− σ

H(i− 1, j)− ρ

 , 1 ≤ i ≤M and 0 ≤ j ≤ N (5)

H(i, j) = max

0

E(i, j)

F (i, j)

H(i− 1, j − 1) + s(ai, bj)

, 1 ≤ i ≤M and 1 ≤ j ≤ N (6)

From here onwards, the set of equations 4 with tables F , E and H are considered.

2.6. Energy models for GPU

Energy model is a cost model to compute the energy consumed by a program. Studies on

CPU energy models have been carried out for more than a decade. There are energy models

based on empirical data, performance counters and instruction mix [43–45], architectural

simulations and event counters [46–49] and energy models for cache and RAM [50–52]. There

are energy models which take the temperature into account as well [47, 48]. Shao [53]

has described an instruction level energy model for another state of the art many core

accelerator/processor, Xeon Phi.

Hong and Kim [24] presented a GPU power model to predict the number of optimal

GPU cores to achieve the peak memory bandwidth for a kernel. An analytical model is used

to predict the execution time [54] which has enabled prediction of the power consumption

statically. They have also discussed the effects of temperature changes. However, they have

predicted the minimum number of cores required for a program to achieve the peak memory

16

bandwidth of GPU. While this approach may work for memory bandwidth bound programs,

it is unlikely to produce better results for compute-bound programs like tiled stencil com-

putations. The model proposed by Rajopadhye et al. [10] is much simpler, because their

model does not depend on warp,thread level parameters and number of ptx level instruc-

tions. Nagasaka et al [55] has modeled GPU power of kernels using performance counters.

Lim et al [56], GPUWattch [57] and GPUSimPow [58] are simulation based power models.

McPAT [49] is the basis for Lim et al [56] and GPUWattch [57] uses GPGPUSim [59] to

simulate execution time. Simulation and performance counters based models are not feasible

solutions when it requires to take decisions at compile time. Specially cycle accurate simu-

lation methods take huge amount of time (i.e. GPGPUsim takes 11 hours to simulate 50ms

kernel) to simulate a very short program [60]. Therefore, most of the time it is not feasible

to use simulations to measure or model energy consumption of GPU kernels.

There are studies on energy models [61, 62] focused on reducing the energy for both CPU

and GPU. Energy models are used to determine how to balance the load among CPU and

GPU, so that it reduces the energy consumption.

17

CHAPTER 3

IMPLEMENTING WAVEFRONT PARALLELISM ON GPUS

In this chapter, we first explain the tiling of the iteration space (or dynamic programing

table), then, we show how to come up with sub-tiles within a tile. Tiling and sub-tiling is

common for both traditional and energy efficient (our) implementations. Then, we describe

the traditional approach of implementing wavefront parallel programs and derive formulas for

the amount of off-chip memory accesses. Finally, we describe our approach of implementing

wavefront parallel programs and discuss the issues and solutions.

We use Smith Waterman as the reference wavefront parallel program and explain the

tiling and implementation. The derivation of formulas for off-chip memory accesses are

specific to rectangular tiling. These formulas can be derived for other tiling mechanisms in

a similar way.

3.1. Tiling Smith Waterman

A cell in dynamic programming table H of Smith Waterman depends on the west, south

and southwest cells (see Figure 3.1). Orthogonal tiling [35] is legal (no cyclic dependences

Figure 3.1. Dependencies of a cell in dynamic programming table H of Smith Waterman

18

Figure 3.2. Orthogonal tiling for Smith Waterman. A tile depends on (blue
arrows) the West, South and southwest tiles. Therefore, all the tiles in a
wavefront (red lines) can be computed in parallel. Wavefronts are executed
sequentially from southwest corner to northeast corner.

among tiles) for this dependence pattern. Therefore, the table space is tiled using rectangular

tiles. All the tiles along a wavefront (northwest- southeast) can be computed in parallel (see

Figure 3.2). A tile depends on the last column of tile to the west, last row of tile to the

South and top right corner element of the tile to the southwest. The wavefronts are executed

sequentially from southwest to northeast. Aforementioned execution order of wavefronts

suffer from pipeline fill-flush stages. This is inherent to Smith Waterman due to the nature

of the dependences (the tile is the southwest corner should be computed before computing

any other tile). Therefore, diamond tiling [36] and hexagonal tiling [63] cannot be used for

Smith Waterman algorithm.

3.2. Parallelization within a tile

In the previous section 3.1 we talked about the parallelization of tiles. In this section we

are going to discuss the parallelization within a tile. Within a tile the dependences are shown

in Figure 3.1. Therefore, all the elements in a diagonal can be processed in parallel. If we

19

implement in a naive manner, after computing each cell, a synchronization is needed. It may

decrease the performance due to the overwhelming number of synchronizations. Therefore,

we use sub-tiles within the tile. Sub-tiling for optimizing the Smith-Waterman on GPUs

was introduced by Hains et al [64]. Instead of computing just one row of cells per thread,

a few rows of cells (sub-tile height) are computed by a thread. A thread computes cells

in column-major order. After computing a specified number of columns (sub-tile width),

a synchronization is done. Then the next thread can start computing the sub-tile just

above the current sub-tile. Therefore, a synchronization is done only per a sub-tile, upon

the completion of the processing all the cells within a sub-tile. We can use Figure 3.2 to

visualize sub-tiling as well. In the figure, green rectangles refer to sub-tiles and a row of sub-

tiles processed by a thread. Steady-state wavefront is a large enough wavefront where all the

threads are busy processing a sub-tile. Sub-tiling should make sure that number of columns

of sub-tiles is large enough (or there exists steady-state wavefronts), so that, most of the time

all the threads are busy processing cells. Having more threads than the number of columns

of sub-tiles increases the number of idle threads and leads to poor performance. Therefore, in

our experiments we do not consider data points corresponding to aforementioned inefficient

sub-tiles. The data from the sub-tile to the left is produced by the same thread, therefore,

registers can be used to transfer data. But data from the sub-tile below is generated by

the previous thread, therefore, we need to use shared memory to transfer data among two

adjacent threads. A thread can read data produced by another thread only if that thread

has done a synchronization. The syncthreads() [34] function of CUDA is used to synchronize

among threads in a thread block. By executing syncthreads() function, the data produced

by a thread can be make visible to all the other threads in the thread block. One should

take extra care when working with syncthreads() since there can be undefined behavior when

20

synchronizations are not used/placed properly. Most importantly, we should make sure that

a syncthread() in our kernel is executed by all the threads in a thread block. In other words,

we cannot use syncthreads() within code blocks with branch divergence. These limitations

in CUDA programming model are mentioned in the appendix.

3.3. Traditional Implementation of Wavefront Parallelization for GPUs

The table space is first tiled as mentioned in section 3.1. All the cells in a tile are

computed by a thread block. The tiles also have the same dependence pattern as shown in

Figure 3.1. Therefore the tiles in a diagonal can be processed in parallel (one tile per thread

block). Let the height and the width of a tile denoted by tS and tT respectively. The arrows

show the data flow among tiles. Each tile (except for the tiles in the first row and first

column) reads a column of size tS from the tile to the left and reads a row of size tT from

the tile right below it. In addition, each tile reads a sequence of size tS and a sequence of

size tT, the total length of sequences is S and T respectively. The red diagonal lines refer to

the set of tiles that can be processed in parallel (see Table 2.1 for the definition of symbols).

Ntiles =
ST

tStT

In traditional implementation of Smith Waterman algorithm in GPU, a kernel call is made

for each wavefront and the wavefronts are executed one after the other (sequentially) in the

host (cpu) code. This sequential execution of the kernel calls ensure that the scheduling

of tiles respects the data dependences among the tiles. We consider programs with large

enough input sizes, so that, the amount of data accessed by a single wavefront does not fit

in the last level (L2) data cache in GPUs. Therefore, for each wavefront, input and output

data are fetched from global memory (off-chip). The amount of global memory access for

21

Smith-Waterman algorithm is given by equation 7

Number of kernel calls = Nw =
S

tS
+

T

tT
− 1

DNA sequence data fetched per tile = tS + tT characters = tS + tT bytes

Table data fetched and written per tile = 4(tS + tT) integers = 16(tS + tT) bytes

Voc = 17(tS + tT)
ST

tStT
(7)

3.4. Energy Efficient Implementation of Wavefront Parallelization

The traditional implementation of wavefront parallel programs uses a GPU kernel call per

wavefront. As described in section 3.3 all the data that is required for the whole wavefront

must be fetched from off-chip memory. If we can compute a piece of a wavefront (partial

wavefront) at a time, we can improve the reuse in L2 cache. If we can make sure that the

data required by partial wavefront is small enough to fit in L2 cache, then data required by

the partial wavefront of the next wavefront is fetched from the L2 cache. After sweeping

through the first set of partial wavefronts across all wavefronts, we can move on to the next

set of partial wavefronts. We can visualize these sets of partial wavefronts as passes (see

Figure 3.4).

Let’s look at the implementation of aforementioned passes. We have two choices; 1) Use

one kernel call per pass, 2) Use one kernel call for the whole program. We will first discuss

about the 1st method and then move on to the 2nd method.

3.4.1. One kernel call per pass. Since a pass comprises of multiple rows of tiles, we

can use one thread block to process a complete row of tiles (see Figure 3.3). Assuming that

two issues relating to the correctness are addressed (and we will show how to do this later),

22

all the communication within the row of tiles (denoted by horizontal blue arrows) can be

done through registers except for the data read by the first tile and the data written by the

last tile. For the data transfers represented by blue arrows, we don’t even need to lookup L2

cache. All the red and green arrows within a pass still refer to off-chip memory, but since

data required by the wavefronts fits in L2 cache, all the off-chip memory references will hit

L2 cache except for the first and last row of a pass. Therefore, we can avoid most of the

off-chip communications as compared to the traditional implementation.

But, still we need a mechanism to retain the order of partial wavefronts. We present

our mechanism in the section 3.4.3. If we make sure that the number of thread blocks or

rows of tiles per pass is less than or equal to the number of thread blocks allowed to execute

concurrently at a given time in the GPU, then we will not get into deadlocks as described in

section 3.4.4 because, all the thread blocks in the kernel get scheduled to run concurrently.

The amount of kernel calls is equal to the number of passes, NP. Passes are executed

sequentially one after the other. The pth pass starts only after p− 1th pass completely finish

its computations. There are couple of issues with this approach,

• Performance issues due to pipeline filling and flushing for each and every pass de-

pends on the architecture of the GPU. Hence leaving thread blocks idling at the

beginning and end of each pass; and

• The code will be architecture dependent, since the number of kernel calls depend

on Ph. NP = S
tSPh

and Ph = Nsmk, where k is the number of thread blocks that

get scheduled concurrently per SM. k = min
{⌊

Mmax
reg

Malg
reg

⌋
,
⌊
Mmax

smem

Malg
smem

⌋
, β
}

, where β is the

maximum number of thread blocks allowed per SM for a given GPU architecture.

Both k and Nsm depends on the architecture of the GPU.

23

j

i

Figure 3.3. Parallelization within a pass. A thread block computes a whole
row of tiles. A small green square represents a tile and arrow direction repre-
sents the data flow among tiles. Each gray rectangle represents a thread block.
All 4 rows in the diagram belongs to the first pass of the program and this
diagram shows only the first pass. Data flow shown by blue horizontal arrows
can be done through registers (within same thread block). Therefore, it won’t
even need to lookup L2 cache. All the red and green arrows within the pass
still refer to off-chip memory, but since data required by the wavefronts fits in
L2 cache, all the off-chip memory references will hit L2 cache. Orange lines
represent partial wavefronts.

3.4.2. One kernel call for the whole program. We can solve both issues that

we have discussed in the end of previous approach (section 3.4.1) by using one kernel call for

the whole program. In this section, we discuss the problems we face in this approach and the

solutions to the problems that we faced in the previous approach as well as the techniques

we introduce to maintain the wavefront order.

A GPU has Nsm streaming multiprocessors. If there are enough resources in a streaming

multiprocessor to accommodate k number of thread blocks concurrently, then, Ph = Nsm ∗ k

thread blocks will be executed simultaneously in the GPU.

Due to the thread block scheduling mechanism of CUDA runtime in streaming multipro-

cessors, only Ph thread blocks get scheduled at a time. If we assume that, thread blocks are

scheduled in the order of tile row number (in general this is not true, but we resolve this

problem later.), then, it will first schedule the first Ph rows of tiles starting from the bottom

of Figure 3.4. This scenario automatically divides the whole tile space into passes, each with

24

Ph consecutive rows of tiles. Therefore, we no longer depend on the architectural parameters

like in the previous approach. Now, each pass is executed in wavefronts as shown in Fig-

ure 3.4. Once a pass is completed, then the next pass is processed. If we do this carefully,

the next pass will not wait till the previous pass is completely finished. Instead, whenever a

thread block finishes a row of tiles, the next available thread block (which start processing

a row of tiles from the next pass) will be scheduled. Therefore, the overhead of pipeline

filling and flushing is no longer an issue. The number of off-chip memory accesses are same

as when we use one kernel call per pass (see section 3.4.1).

Let’s derive the formula for the amount of off-chip memory accesses for the Smith-

Waterman algorithm. The DNA sequence, aligned to the vertical axis of the dynamic pro-

gramming table, fetched once per all the tiles. The first tile in each row fetches an array

of size tS of DNA sequence to registers, all the subsequent tiles in the same row reuse the

same register array. The DNA sequence aligned to the horizontal axis must be fetched from

global memory per pass, within the pass, it hits L2 cache without going for global memory.

Following formulas represent the amount of off-chip memory accesses for both DNA sequence

data as well as table data. Usually, stencil computations do not involve read only data like

DNA sequences.

Total volume of DNA sequence data fetched = S +
ST

tSNP

bytes

Total table data fetched and written = 16S +
16ST

tSNP

bytes

Voc = 17S +
17ST

tSNP

bytes (8)

If we assume that tT = tS then our energy efficient implementation provides a factor of

NP reduction of off-chip memory accesses compared to the traditional implementation. The

25

1

2

3

4

j

i

Figure 3.4. Passes of tiles. The diagram shows 4 passes. Starts from the
first pass and moves on to the next pass as the current pass finishes comput-
ing. Within the pass, same wavefront parallelism is there, but with shorter
wavefronts (partial wavefronts), so that, the data required by the wavefront
fits in L2 cache. All the arrows between two passes represent a L2 cache miss
and red and green arrows within a pass represent L2 cache hit. The partial
wavefronts are shown in orange color.

formulas 8 are true if L2 cache has a write-back write policy. But most of the NVIDIA GPUs

has a write-through cache, which make each write operation in L2 cache to go to off-chip

memory. This will increase the number of global memory transfers compared to write-back

cache policy. Let’s derive the formulas again for this scenario.

Total volume of DNA sequence data fetched = S +
ST

tSNP

bytes

Total table data fetched = 8S +
8ST

tSNP

bytes

26

Total table data written = 8S +
8ST

tS
bytes

Voc = 17S +
ST

tS

(
9

NP

+ 8

)
bytes (9)

But, achieving this reduction in off-chip memory accesses is not trivial. Let’s recall that

in the traditional implementation, wavefront order is maintained by using one kernel call per

each wavefront and by executing kernel calls one after the other. Since we are using just one

kernel call for a pass or for the whole program, now we have to maintain the wavefront order

explicitly.

3.4.3. Maintaining the execution order of wavefronts. One of the main chal-

lenges of the implementation described in Section 3.4 is maintaining the execution order of

the wavefronts explicitly. This requires a mechanism to synchronize or communicate among

CUDA thread blocks. Although CUDA does not provide any straight forward constructs to

synchronize among thread blocks, we can implement a simple lock which can be used to main-

tain the order of the wavefronts. In general, a thread block should starts its computations

only if the blocks that it depends on have already finished their computations.

To achieve this, one master thread in each thread block updates a variable in global

memory upon end of the execution of a tile and waiting on a condition based on the value

of a variable before starting the computations of a tile. The update of the variable indicates

the successors (thread blocks who are waiting for the predecessors to finish the execution)

to start the computation. The code structure of the locking/synchronization mechanism is

shown in the code listing 3.1. We disabled the level 1 (L1) cache of the GPU, so that, all

the local changes within the SM get flushed to higher level caches. Therefore, changes made

27

Listing 3.1. Code structure for the locking mechanism

if (threadId == 0) {

while(lock[my_row -1] <= column_of_tile)

{} //spin wait

}

// Compute a tile here

// release/update the lock

if (threadId == 0) {

lock[my_row]++;

}

within the SM are visible to the thread blocks in other SMs. We marked the arrays defined

in global memory with volatile keyword to skip L1 cache1.

3.4.4. Avoiding deadlocks. The other main challenge is to avoid deadlocks caused by

the locking mechanism combined with the scheduling mechanism of CUDA thread blocks.

CUDA assumes that thread blocks are independent therefore, order of execution of thread

blocks is undefined. Hence, if we statically map 1st thread block to process 1st row of tiles, 2nd

thread block to process 2nd row of tiles and so on, then, this mapping works only if the thread

blocks are scheduled in in ascending order. This means that we make an assumption about

the scheduling order of the thread blocks, and this contradicts with the CUDA programing

semantics. Therefore, there is a chance for the last set of thread blocks get scheduled

first, these thread blocks will wait till previous thread blocks update the corresponding

global variable. But, these global variables will never be updated, since the thread blocks

responsible to update the variables will not be scheduled until currently scheduled thread

blocks finish their computation. This leads to a deadlock situation. Therefore, we need a

dynamic mechanism to assign the row number of the tiles to the thread blocks as thread

1We also tried to disable L1 cache by using a compiler option. But it did not work. The kernel was either
hanging or generating incorrect results depending on the GPU architecture (GTX 480, K20c). We currently
do not have an explanation for this, but we hypothesize that the compiler command we used, does not work.
We also saw similar behavior for some of the data points even when the arrays are defined as volatile.

28

Listing 3.2. Assign the row number of the tiles to be processed by
the thread block dynamically

if (threadId == 0) {

row_of_tile = atomicInc (&tileRowNo , noOfRowsOfTiles);

}

blocks get scheduled in the GPU. We use a simple mechanism based on atomic increment

function in CUDA which is proposed by Yan et al. [65]. As the first computation in the

thread block, we increment a variable in global memory by 1 using one of the threads in the

thread block (see listing 3.2). The thread block process the row of tiles which correspond to

the result of atomic increment function. Therefore, which ever the thread block get scheduled

next, will pick up the next row of tiles to process.

Since the main objective of reducing off-chip memory accesses is to reduce the energy con-

sumption of the program, in the next chapter we derive models for the energy consumption

of both traditional and our approach, using the hardware and software parameters.

29

CHAPTER 4

ENERGY MODELING

In this chapter, we describe energy models for both traditional and energy efficient im-

plementations of wavefront parallel programs. We model only the energy consumption of the

GPU. The results in this chapter were developed in collaboration with Prajapati et al. [10],

and are part of a larger project. Here, we only deal with the case where we use rectangular

tiles for programs with one dimensional data space, and extend the results to also model the

optimized code that we described in Chapter 3. We also developed models for other types

of tiling like hexagonal and for higher dimensions, but those results are not relevant to the

work in this thesis.

The total energy consumed by a GPU is divided into two parts: static energy which

is the energy consumed even when the GPU is powered on but idle, and dynamic energy

which is the energy consumed for operations excluding the static part. Table 2.1 describes

the parameters that have been used in our formulas. Static energy is proportional to the

execution time. Estat = pstatTalg. The dynamic energy is the weighted sum of different types

of operations carried out during the program execution.

4.1. Traditional implementation

Dynamic energy can be represented as the dynamic energy consumed per a tile multiplied

by the number of tiles Edyn = NtilesEtile. The energy per tile can be further divided into

energy for off-chip memory transfers, energy for on-chip transfers, i.e., between shared and

register memory, energy for computations and energy for synchronizations among threads.

During validation of the model, Prajapati et al. noticed that the contribution of energy

towards Etile from Esync is negligible compared to other parameters. Therefore, the term

30

Esync is safely dropped.

Etile ≈ Egs + Esr + Ear

= egsMio + Esr + EiterVtile (10)

Having computed the static and dynamic energy the total energy is just

Ealg = Estat + Edyn = pstatTalg +NtilesEtile, (11)

where, Ntiles() = ST
Vtile

, and Vtile is the volume of (number of computations in) a tile, Vtile =

tStT.

4.1.1. Rectangular Tiling. The following equations expand on the components of

energy per tile equation 12. Mio = α (tS + tT). α = 4.25 for Smith-Waterman. The integer

part and fractional part of the constant 4.25 refers to the data transfers to/from integer

arrays and char array (represented in 4byte units) respectively.

Egs = α (tS + tT) egs

Esr =

(
Vtile + 5tT

tS
sS

)
esr

Eiter = 5eadd + 5emax

Etile = Egs + Esr + Ear

= α (tS + tT) egs +

(
Vtile + 5tT

tS
sS

)
esr

+ 5Vtile (eadd + emax)

where, Vtile = tStT

31

4.2. Energy efficient implementation

In this section, we extend the above energy model to represent the energy efficient imple-

mentation that is described in the section 3.4. There are two main differences in the energy

model compared to the energy model for the tradition implementation: the granularity of

dynamic energy is presented per pass instead of per tile, and in addition to the dynamic en-

ergy components modeled above, we introduce a new energy parameter: energy for memory

transfers between L2 cache and registers.1

As before, we ignore the energy for synchronization, and the corresponding formula is,

Epass = Egs + Els + Esr + Ear. (12)

The formulas for Esr and Ear are same as before but need to multiply by the number of

tiles per pass, Ntilepass.

Ph =
S

tSNP

Pw =
T

tT

Ntilepass = PhPw

The computation of height of pass, width of pass, energy for off-chip transfers and energy

for L2 transfers depend on the tiling technique. In this report, we consider simple rectangular

tiling and derive the corresponding formulas.

Egs = (αPhtS + βPwtT) egs

1Here onward, all the symbols represent quantity per pass, instead of per tile.

32

where α and β correspond to the number of arrays (with element of size 4bytes) accessed

along the perimeter of a pass in parallel to S and T dimensions respectively. Most of the real

world samples like stencil like programs, α = β, therefore, we only use α by substituting for

Ph and Pw we get,

Egs = α

(
S

NP

+ T

)
egs

Since a thread block computes a row of tiles, all the transfers along a row of tiles can be

done through registers. Therefore, to count the number L2 cache hits we just need consider

the transfers between row of tiles.

Els = αT (Ph − 1)

= αT

(
S

tSNP

)

The formula for Els is true if the write policy of L2 cache is write-back. Both read and

write requests hit the cache and write hits are not immediately written to off-chip memory.

If the cache write policy of L2 cache is write-through then despite the write hit in cache, it

will be written back to off-chip memory immediately by reducing the energy savings of our

technique. Then,

Egs =
(
αPhtS + αPwtT +

α

2
PwtT (Ph − 1)

)
egs

= αPhtS +
α

2
PwtT (Ph + 1)

= αPhtS +
α

2
T (Ph + 1)

Els =
α

2
T (Ph − 1) .

33

NVIDIA Fermi and Kepler GPUs have a L2 cache with write through write policy. We

have not validated the proposed model experimentally, but, we strongly believe the accuracy

of the model since this is a expansion to a thoroughly validated model.

34

CHAPTER 5

MICRO-BENCHMARKING

Data sheets provided by NVIDIA [66, 67] do not reveal information on the hardware

parameters that we are interested in. In this chapter, we describe the approach we followed

to determine hardware level energy parameters listed in Table 2.1. We use micro-benchmarks,

which are small pieces of code each having an operation of interest stressed, and the NVIDIA

NVML library to measure instantaneous power at any time of the execution of a micro-

benchmark. Total consumed energy is equal to the product of the average measured power

and the execution time of the micro-benchmark.

5.1. Methodology

We wrote micro-benchmarks for each hardware energy parameter in Table 2.1 to deter-

mine the values of these parameters experimentally. Micro-benchmarks are implemented

in such away that the operation in focus is stressed, so that, the execution time and total

energy consumption is dominated by the focused operation.

Before the execution of micro-benchmark, GPU is heated to a higher temperature. The

execution time of the micro-benchmarks are large enough, for temperature of the GPU to

reach a steady state. We obtain instantaneous power readings at different time instances of

execution time while the micro-benchmark is being executed in the GPU. The average of

power readings taken during the steady state temperature is considered as the average power

of the micro-benchmark. Then, the total consumed energy is computed by multiplying the

average power by the time period in which the average power is computed. Finally, by using

the formula 13

ej =
Edyn

opj
=
Ealg − Estat

opj
=
Ealg − pstatTalg

opj
(13)

35

where the parameters in the formula are as defined in Table 2.1, the energy ej for operation

j can be calculated.

5.2. Implementation

We need static power consumption (pstat) to compute all other energy parameters. There-

fore, the static power consumption of the GPU is measured first. The static power of the

GPU is obtained while the device is idle but operates in its highest performance state.

Micro-benchmarks are carefully implemented in such away that there are no shared mem-

ory bank conflicts and all the global memory accesses are coalesced. The body of the bench-

mark is repeated to make the focused operation dominant in both execution time and total

energy consumption. These computations are simple enough so that nvcc compiler can easily

optimize away most of the computations. Therefore, we have introduced minimum complex-

ities to the micro-benchmarks to avoid aforementioned optimizations (see listing 5.1). We

checked the ptx [68] code of the micro-benchmarks to validate that the computations are not

optimized away.

NVIDIA NVML [69] library is used to obtain power readings of the GPU. The library

reads power of the GPU once every 16 milliseconds in milliwatts for NVIDIA Kepler GPUs.

The length of the interval depends on the GPU architecture and NVIDIA driver. We use the

approach proposed by Lang et al. [70] to determine the interval. Average power is computed

by taking the average of power readings over the time duration where the temperature is in

steady state. Finally the equation (13) is used to compute energy parameters. The resulting

parameter values are provided in the Table 5.1

36

Listing 5.1. Structure of a micro-benchmark. This particular
micro-benchmark is for the single precision “add” operation. “k”
is a very large number. Statements that correspond to line numbers
8 and 11 change the values of the registers so that main computations
(line 2-5) do not get optimized away

1 for (t = 0; t < k; t++) {

2 c_0_0 += a_0+b_0;

3 c_0_1 += a_0+b_1;

4
...

5 c_2_2 += a_2+b_2;

6
7 a_0 = (a_0 +1.1f)+1.7f;

8
...

9
10 b_0 = (b_0 +1.1f)+1.7f;

11
...

12 }

Table 5.1. Table of the energy parameter values from the micro-benchmark approach

Parameter
Name [unit] Value

pstat [W] 48
egs [J] 2.2×10−9

esr [J] 2.23×10−10

efadd [J] 5.3×10−11

efmultiply [J] 3.7×10−11

eiadd [J] 7.2×10−11

eimax [J] 4.8×10−11

5.3. Challenges

This section describes the challenges faced while implementing micro-benchmarks and

measuring energy/power consumption.

5.3.1. Challenges in implementing micro-benchmarks. The main challenge is to

avoid optimization of computations. Since the computations in micro-benchmarks are simple

and the dependencies among the computations are trivial, nvcc compiler optimizes the loops

that we introduce to repeat computations, resulting in less amount of computations which

is not we desire. Therefore, we need to introduce dependencies between iterations of the

37

loop so that loop does not get optimized away. There are few things that we need to be

aware of before introducing dependencies. The loop body should be large enough, so that,

we have enough instruction level parallelism (ILP). The computations that we introduce to

change values of registers at the end of each iteration must use the same operation that is

being benchmarked. One must go through the generated ptx code to verify that the loops

are not optimized away and the loop body is dominated by the operation in focus. Finally,

the performance of the micro-benchmark (in GFLOPS, GOPS, GB/s) must be comparable

with the specification of GPU.

5.3.2. Challenges in measuring energy-consumption. NVIDIA announced their

new power measurement functionality in NVML library at the end of 2013. It was a good

news despite the limited support for GPU architectures, since we do not have to use ex-

ternal instruments or third party power modeling libraries to measure power of GPUs. We

started off with implementing a C function to report power consumption of a GPU kernel

(matrix multiplication using cuBLAS library [71]). Then we plotted instantaneous power

readings against the time (see Figure 5.1). The shape of the power curve was not what we

expected. Our expectation was sudden increase in power at the start and then constant

power consumption, and at the end of the execution sudden drop of the power readings. But

actual result is not the same as we expected. In the beginning power is gradually increasing

with a inverse exponential slope (i.e. y = lnx). It reaches the steady state power. At

the end of the GPU kernel, power gradually decreases again following a exponential decay

slope. Burtscher et al. [72] reported the same behavior and they claimed that the power

readings at the beginning and the end of the kernel shows this exponential behavior due to

the discrepancy in the power sensor of the NVIDIA Kepler GPUs. They have proposed a

formula to correct the power readings where true power at a given time is proportional to

38

the measure power and slope of the power curve at that point in time, Ptrue = CPmeas
dP
dt

where C is a constant. However, we conjecture that this could also be a result of thermal

effect on the power consumption of the GPU.

The aforementioned behavior of the NVML library can be further illustrated by executing

few kernels back to back and recording the instantaneous power (see Figure 5.2). At the

start of the first kernel call we see the gradual increase in power as before. Once it reaches

steady state, it retain in the same power until all three kernel calls are finished. At the

end, after finishing third kernel call, power decays similar to Figure 5.1. Therefore, if we

need to measure the instant power consumption accurately, first, we need to run the kernel

multiple times so that it reaches and retains in steady state of power/temperature. We

take power reading at least for 40 seconds and we use all the readings after 15 second time

stamp to compute the average power. Therefore the final energy consumption of the kernel is

measured by maintaining nearly a constant temperature. Each hardware energy parameter is

measured under a constant temperature. But actual benchmarks may operate in a different

temperature. Using formulas suggested by Hong and Kim [24] we can compute the hardware

energy parameters at different operating temperatures of the GPU.

39

Figure 5.1. Instantaneous power curve for cuBLAS matrix multiplication of
size 19456. Execution of the kernel starts at time stamp 0ms and ends (red
line) at 6065.6ms. During the first ∼3 seconds power consumption increases
gradually with an inverse exponential slope. Then, it reaches steady state.
Just after the end of kernel, power gradually drops with a decaying expo-
nential slope. Temperature also follows a similar pattern. NVIDIA NVML’s
temperature readings are in integers, therefore, there are discrete steps in the
curve.

40

Figure 5.2. Instantaneous power curve for 3 consecutive kernels of cuBLAS
matrix multiplication of size 19456. Execution of the first kernel starts at
time stamp 0ms and ends (red line) at vertical red line. Vertical red lines
indicate the end of a kernel call and beginning of the next kernel call. Similar
to the Figure 5.1, during the first ∼3 seconds, power consumption increases
gradually with an inverse exponential slope. Then, it reaches steady state and
retains the steady state until 3 kernel calls are done. Just after the end of 3rd

kernel, power gradually drops with a decaying exponential slope. Temperature
also follows a similar pattern. NVIDIA NVML’s temperature readings are in
integers, therefore, there are discrete steps in the curve.

41

CHAPTER 6

RESULTS

In the previous chapter, we discussed about the calibration of hardware energy parameters

and measuring energy consumption of GPU kernels experimentally. In this chapter, we

present the experimental validation results for the number of off-chip memory accesses for

both traditional and our implementation. Finally, we present the experimental results for

the energy consumption.

6.1. Experimental Setup

Our experiments are run on NVIDIA GTX 480 (Fermi) and K20c (kepler) GPUs. The

configuration of GPUs and the environment are provided in Table 6.1. All the experimental

results are based on implementations of Smith-Waterman algorithm.

Table 6.1. Configurations of NVIDIA GTX 480 and K20c GPUs

Parameter Name [unit] GTX 480 K20c

GPU architecture Fermi Kepler
Manufacturing technology [nm] 40 28
CUDA compute capability 2.0 3.5
Off-chip (global) memory [GB] 1.5 4.68
SMs 15 13
Cores per SM 32 192
Clock rate [MHz] 1401 706
L2 cache [KB] 768 1280
Shared memory [KB] per SM 48 48
Registers per SM 32768 65536
Max. concurrent thread blocks per SM 8 16
Max. registers per thread 63 255

CUDA version 6.0 6.0
CUDA driver 340.46 331.89
Power profiling support No Yes
gcc version 4.6.3 4.4.7
OS Fedora 20 (3.16.3-200) Red Hat 4.4.7-4
CPU Intel Q9550 Xeon E5-2620 v2
CPU Clock [GHz] 2.83 2.10

42

6.2. Validation of Number of Off-chip Memory Transfers

In sections 3.3 and 3.4, we have analytically showed the amount of off-chip memory

accesses for both traditional and our energy efficient implementations. In this section, we

experimentally validate the number of off-chip memory accesses predicted by our analytical

models. NVIDIA nvprof [73] profiler is used to read the hardware performance counters (or

events according to nvprof terminology) and get the amount of off-chip memory accesses.

The target GPU is NVIDIA GTX 480. The Table 6.2 provides the program parameter values

used for this experiment.

6.2.1. Computing the volume of off-chip memory transfers analytically.

Using the formulas and substituting data from Table 6.2, we get,

Volume of off-chip data for traditional approach = 408GB

Volume of off-chip data for our approach (WT cache) = 66GB

Volume of off-chip data for our approach (WB cache) = 4GB

where WT refers to write-through cache policy and WB refers to write-back cache policy. As

we can see there is a significant reduction (factor of 6) in the global memory data volume,

in our implementation. If we can use WB policy, then we will have two orders of magnitude

reduction in global memory accesses. This could be an interesting design choice that GPU

hardware designers should take into account.

6.2.2. Computing the amount of off-chip memory transfers experimen-

tally. Table 6.4 lists the events and corresponding symbols that we used to find the off-chip

and the L2 cache accesses. Table 6.5 reports the experimental values of each counter listed

43

in Table 6.4 for both implementations. The data volume correspond to off-chip memory

transfers are listed below.

Number of off-chip memory accesses (32byte) = ROC0 +ROC1 +WOC0 +WOC1

Volume of off-chip data for traditional approach = 409GB

Volume of off-chip data for multi-pass (WT cache) = 70GB

Volume of off-chip data for our approach (WB cache) = 7GB

If we compare the analytical and the experimental results, they almost equal to each other

which validates the claims of reduction in off-chip memory accesses. The volume of off-chip

transfers with WB cache is computed by extrapolating the performance counter results for

WT cache.

Table 6.5 reports additional information that shows the improvement in savings of off-

chip memory accesses. It shows 45 factor of reduction in off-chip memory reads. We have

also gained 3 factor of reduction in off-chip memory writes despite the WT cache policy.

This is due to the fact that we are using one thread block to process a complete row of tiles,

so that all the data dependencies along the row, are transfered through registers instead of

using off-chip memory. The number of L2 cache write requests are also reduced by a factor

of 3 due to the same reason. There is only a small reduction in L2 cache read requests. This

is caused by the mechanism we use to maintain the order of wavefronts (see section 3.4.4).

During the pipeline fill stage, thread blocks in the first pass, spin on a busy-wait checking a

value in off-chip memory which is cached in L2 cache. This busy-wait on data in L2 cache

increases the number of L2 cache read requests resulting in small reduction in L2 cache

read requests. One can reduce the effect of this problem by designing thread interruption

44

Table 6.2. Program parameter values for the memory access validation experiment

Parameter
Name [unit] Value

S 221

T 221

tS 512
tT 256
sS 8
sT 1

Table 6.3. Program parameters specific to our implementation.

Parameter Our
Name [unit] Implementation

Number of rows of tiles 4096
Threads per thread block 64
Malg

reg 63
Malg

smem 5552
k 8
Ph 120
NP 34

techniques, but it will take GPUs more closer toward CPUs and increase the complexity of

GPU hardware.

6.3. Energy Consumption

In the previous section, we validated the significant savings of off-chip memory transfers.

In this section, we present the experimental energy consumption results for the traditional

and our implementations. The energy consumption of Smith-Waterman program is measured

using the approach discussed in section 5.

Although, we expected the execution time of the kernel to be similar for both implemen-

tations, most of the time our implementation shows 22% better performance1. Now, let’s find

out the reasons behind this improvement. When we implement our approach, we were able

to avoid one of the shared memory arrays. Therefore, traditional approach consume more

1The percentage improvement is averaged over all the data points

45

Table 6.4. Description as it appear in the help command of nvprof tool, of
profiling events used to validate the amount of off-chip memory and L2 cache
accesses. Symbol is used in the formulas of section 6.2

Event Name Symbol Description

fb subp0 read sectors ROC0

Number of DRAM read requests to sub
partition 0, increments by 1 for 32 byte
access.

fb subp1 read sectors ROC1

Number of DRAM read requests to sub
partition 1, increments by 1 for 32 byte
access.

fb subp0 write sectors WOC0

Number of DRAM write requests to
sub partition 0, increments by 1 for 32
byte access.

fb subp1 write sectors WOC1

Number of DRAM write requests to
sub partition 1, increments by 1 for 32
byte access.

l2 subp0 total read sector queries RL20

Total read requests to slice 0 of L2
cache. This includes requests from L1,
Texture cache, system memory. This
increments by 1 for each 32-byte access.

l2 subp1 total read sector queries RL21

Total read requests to slice 1 of L2
cache. This includes requests from L1,
Texture cache, system memory. This
increments by 1 for each 32-byte access.

l2 subp0 total write sector queries WL20

Total write requests to slice 0 of L2
cache. This includes requests from L1,
Texture cache, system memory. This
increments by 1 for each 32-byte access.

l2 subp1 total write sector queries WL21

Total write requests to slice 1 of L2
cache. This includes requests from L1,
Texture cache, system memory. This
increments by 1 for each 32-byte access.

shared memory per tile. But, the number of concurrent thread blocks per SM, k depends on

the amount of shared memory utilization per thread block. Therefore, almost all the time,

k of traditional is less than k of our implementation. This is one of the main reasons behind

this improvement.

46

Table 6.5. Profiler values for the events listed in table 6.4 for both traditional
and our implementation. The corresponding program parameters are given in
the table 6.2

Counter Traditional Our
Symbol Implementation Implementation

ROC0 3.63×109 8.29×107

ROC1 3.64×109 8.03×107

Total off-chip reads 7.27×109 1.63×108

WOC0 3.24×109 1.09×109

WOC1 3.24×109 1.09×109

Total off-chip writes 6.47×109 2.18×109

RL20 3.71×109 3.36×109

RL21 3.71×109 3.45×109

Total L2 reads 7.41×109 6.82×109

WL20 3.24×109 1.09×109

WL21 3.24×109 1.09×109

Total L2 writes 6.48×109 2.18×109

L2 cache read hits % 2 98
L2 cache write hits % 0 0
Total L2 cache hits % 1 74

We see average of 13% energy savings in our method. It is obvious since, our imple-

mentation performs better compared to the traditional implementation. Even though we

reduced off-chip memory accesses significantly, we do not see similar reduction in energy

consumption for Smith-Waterman. Actually, for Smith-Waterman, the reduction in off-chip

memory accesses does not help in reducing the energy consumption significantly. Let’s see

why. The first row of the Table 6.6 shows the contribution of different energy components

(in Jules and percentage within parentheses) towards a tile of Smith-Waterman. The energy

consumption is dominated by both shred-to-register transfers and computations (max-add).

The contribution of off-chip memory transfers is less than 2%. Therefore, even if we avoid all

the off-chip memory accesses, we merely get 2% reduction in dynamic energy consumption

which is negligible.

47

Table 6.6. Average energy contribution for a tile by different energy components.

Benchmark Egs (%) Esr (%) Ear (%)

Smith-Waterman [J] 1.9×10−5 (2) 4.6×10−4 (41) 6.5×10−4 (57)
Jacobi 2D [J] 2.5×10−5 (21) 8.1×10−5 (67) 1.5×10−5 (12)

The static power (pstat) is another factor that affects the percentage energy savings com-

pared to the total energy consumption. If the contribution of static power is high such that

the contribution of dynamic energy becomes small, then again our approach of reducing

off-chip memory accesses will not help to reduce overall energy consumption significantly.

In summary, our approach reduces energy consumption significantly, only if the contri-

bution of the energy for off-chip memory transfers are at-least in the same order as other

energy components. For example, second row if Table 6.6 shows the contribution of energy

by different components for Jacobi 2D 5 point stencil. In this case, the contribution of energy

of off-chip memory transfers is 21% when implemented in traditional approach. If we assume

6 factor of reduction in global memory transfers (which was the case for Smith-Waterman

in a GPU with L2 cache with WT cache policy, see section 6.2), we will see 17.3% reduction

in dynamic energy, and 5% reduction in total energy consumption.

6.4. Conclusion

We introduced a novel way of implementing wavefront parallel programs to reduce the

number of off-chip memory accesses significantly for GPUs. Our validation analysis confirms

the significant savings of off-chip memory accesses compared to the traditional implementa-

tion. We have experimentally showed that, significant reduction in off-chip memory accesses

does not necessarily reduce the off-chip memory accesses significantly. If we are to expect

considerable savings in energy after reducing the off-chip memory transfers, then the con-

tribution of energy for off-chip memory transfers in the traditional implementation must be

48

in the same order as other energy components.The energy savings will be significant for the

programs implemented with traditional approach where the contribution of energy from off-

chip memory transfers in the same order as other energy components like energy for register

to shared memory transfers. Jacobi2D is an example for afore mentioned situation and will

be able to save more energy by using our approach of implementation. Off-chip memory

accesses and the energy consumption can be further reduced by designing last level cache

with write-back cache write policy which results in 45 times reduction in off-chip memory

accesses compared to a factor of 6 with write-though policy.

Even though we can apply this technique to wide class of programs, we have only used

Smith-Waterman for the experiments. We can consider more programs to validate the re-

sults in our future work. If we are going to use this technique to reduce the total energy

consumption, then, we will also need to look at techniques to identify programs where the

energy consumption of off-chip memory transfers are in same order as other energy compo-

nents. A code generator to generate code for our implementation is another task that is in

our future work.

49

BIBLIOGRAPHY

[1] K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau, P. Franzon,

W. Harrod, K. Hill, J. Hiller, et al., “Exascale computing study: Technology challenges

in achieving exascale systems,” Defense Advanced Research Projects Agency Information

Processing Techniques Office (DARPA IPTO), Tech. Rep, vol. 15, 2008.

[2] D. McMorrow and M. Corporation, Technical Challenges of Exascale Computing.

MITRE Corporation, 2013.

[3] TOP500, “TOP500 list presented at ISC’14,” June 2014.

[4] D. Anderson, J. Dykes, and E. Riedel, “More than an interface—SCSI vs. ATA,” in

Proceedings of the 2Nd USENIX Conference on File and Storage Technologies, FAST

’03, (Berkeley, CA, USA), pp. 245–257, USENIX Association, 2003.

[5] R. Bianchini and R. Rajamony, “Power and energy management for server systems,”

Computer, vol. 37, pp. 68–76, Nov 2004.

[6] L. Lamport, “The parallel execution of DO loops,” Commun. ACM, vol. 17, pp. 83–93,

Feb. 1974.

[7] K. R. Koch, R. S. Baker, and R. E. Alcouffe, “Solution of the first-order form of the

3-D discrete ordinates equation on a massively parallel processor,” Transactions of the

American Nuclear Society, vol. 65, no. 108, pp. 198–199, 1992.

[8] M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems,

vol. 49. National Bureau of Standards Washington, DC, 1952.

[9] S. Rajopadhye, G. Iooss, T. Yuki, and D. Connors, “The Stencil Processing Unit:

GPGPU done right,” 2013.

50

[10] N. Prajapati, W. Ranasinghe, V. Tandrapati, R. Andonov, H. Djidjev, and S. Rajopad-

hye, “Energy modeling and optimization for GPU stencil computations,” in Manuscript

submitted for publication, 2014.

[11] S. Xiao, A. Aji, and W. chun Feng, “On the robust mapping of dynamic programming

onto a graphics processing unit,” in Parallel and Distributed Systems (ICPADS), 2009

15th International Conference on, pp. 26–33, Dec 2009.

[12] S. Xiao and W. chun Feng, “Inter-block GPU communication via fast barrier synchro-

nization,” in Parallel Distributed Processing (IPDPS), 2010 IEEE International Sym-

posium on, pp. 1–12, April 2010.

[13] S. Mittal and J. S. Vetter, “A survey of methods for analyzing and improving GPU

energy efficiency,” CoRR, vol. abs/1404.4629, 2014.

[14] H. Anzt, V. Heuveline, J. Aliaga, M. Castillo, J. Fernandez, R. Mayo, and E. Quintana-

Orti, “Analysis and optimization of power consumption in the iterative solution of sparse

linear systems on multi-core and many-core platforms,” in Green Computing Conference

and Workshops (IGCC), 2011 International, pp. 1–6, July 2011.

[15] Y. Jiao, H. Lin, P. Balaji, and W. Feng, “Power and performance characterization of

computational kernels on the GPU,” in Green Computing and Communications (Green-

Com), 2010 IEEE/ACM Int’l Conference on Int’l Conference on Cyber, Physical and

Social Computing (CPSCom), pp. 221–228, Dec 2010.

[16] Y. Lin, T. Tang, and G. Wang, “Power optimization for GPU programs based on soft-

ware prefetching,” in Trust, Security and Privacy in Computing and Communications

(TrustCom), 2011 IEEE 10th International Conference on, pp. 1339–1346, Nov 2011.

51

[17] K. Ma, X. Li, W. Chen, C. Zhang, and X. Wang, “GreenGPU: A holistic approach

to energy efficiency in GPU-CPU heterogeneous architectures,” in Parallel Processing

(ICPP), 2012 41st International Conference on, pp. 48–57, Sept 2012.

[18] M. Rofouei, T. Stathopoulos, S. Ryffel, W. Kaiser, and M. Sarrafzadeh, “Energy-aware

high performance computing with graphic processing units,” in Proceedings of the 2008

Conference on Power Aware Computing and Systems, HotPower’08, (Berkeley, CA,

USA), pp. 11–11, USENIX Association, 2008.

[19] Y. Wang, S. Roy, and N. Ranganathan, “Run-time power-gating in caches of GPUs for

leakage energy savings,” in Design, Automation Test in Europe Conference Exhibition

(DATE), 2012, pp. 300–303, March 2012.

[20] M. Gebhart, D. R. Johnson, D. Tarjan, S. W. Keckler, W. J. Dally, E. Lindholm, and

K. Skadron, “Energy-efficient mechanisms for managing thread context in throughput

processors,” in Proceedings of the 38th Annual International Symposium on Computer

Architecture, ISCA ’11, (New York, NY, USA), pp. 235–246, ACM, 2011.

[21] M. Gebhart, S. W. Keckler, B. Khailany, R. Krashinsky, and W. J. Dally, “Unify-

ing primary cache, scratch, and register file memories in a throughput processor,” in

Proceedings of the 2012 45th Annual IEEE/ACM International Symposium on Microar-

chitecture, MICRO-45, (Washington, DC, USA), pp. 96–106, IEEE Computer Society,

2012.

[22] M. Rhu, M. Sullivan, J. Leng, and M. Erez, “A locality-aware memory hierarchy for

energy-efficient GPU architectures,” in Proceedings of the 46th Annual IEEE/ACM

International Symposium on Microarchitecture, MICRO-46, (New York, NY, USA),

pp. 86–98, ACM, 2013.

52

[23] S. Gilani, N. S. Kim, and M. Schulte, “Power-efficient computing for compute-intensive

GPGPU applications,” in High Performance Computer Architecture (HPCA2013), 2013

IEEE 19th International Symposium on, pp. 330–341, Feb 2013.

[24] S. Hong and H. Kim, “An integrated GPU power and performance model,” in Proceed-

ings of the 37th Annual International Symposium on Computer Architecture, ISCA ’10,

(New York, NY, USA), pp. 280–289, ACM, 2010.

[25] P.-H. Wang, C.-L. Yang, Y.-M. Chen, and Y.-J. Cheng, “Power gating strategies on

GPUs,” ACM Trans. Archit. Code Optim., vol. 8, pp. 13:1–13:25, Oct. 2011.

[26] Y. Wang and N. Ranganathan, “An instruction-level energy estimation and optimization

methodology for GPU,” in Computer and Information Technology (CIT), 2011 IEEE

11th International Conference on, pp. 621–628, Aug 2011.

[27] S. Song, M. Lee, J. Kim, W. Seo, Y. Cho, and S. Ryu, “Energy-efficient scheduling

for memory-intensive GPGPU workloads,” in Proceedings of the Conference on Design,

Automation & Test in Europe, DATE ’14, (3001 Leuven, Belgium, Belgium), pp. 19:1–

19:6, European Design and Automation Association, 2014.

[28] Y. Jararweh and S. Hariri, “Power and performance management of GPUs based clus-

ter,” Int. J. Cloud Appl. Comput., vol. 2, pp. 16–31, Oct. 2012.

[29] H. Wang and Q. Chen, “Optimization power consumption model of reliability-aware

GPU clusters,” The Journal of Supercomputing, vol. 67, no. 1, pp. 153–174, 2014.

[30] G. Wang, Y. Lin, and W. Yi, “Kernel fusion: An effective method for better power

efficiency on multithreaded GPU,” in Green Computing and Communications (Green-

Com), 2010 IEEE/ACM Int’l Conference on Int’l Conference on Cyber, Physical and

Social Computing (CPSCom), pp. 344–350, Dec 2010.

53

[31] P. Alonso, M. Dolz, F. Igual, R. Mayo, and E. Quintana-Orti, “Reducing energy con-

sumption of dense linear algebra operations on hybrid CPU-GPU platforms,” in Paral-

lel and Distributed Processing with Applications (ISPA), 2012 IEEE 10th International

Symposium on, pp. 56–62, July 2012.

[32] Y. Yang, P. Xiang, M. Mantor, and H. Zhou, “Fixing performance bugs: An empirical

study of open-source GPGPU programs,” in Proceedings of the 2012 41st International

Conference on Parallel Processing, ICPP ’12, (Washington, DC, USA), pp. 329–339,

IEEE Computer Society, 2012.

[33] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and A. Moshovos, “Demystifying

GPU microarchitecture through microbenchmarking,” in Performance Analysis of Sys-

tems Software (ISPASS), 2010 IEEE International Symposium on, pp. 235–246, March

2010.

[34] NVIDIA Corporation, CUDA C Programming Guide v6.0, Apr. 2014. v6.0.

[35] R. Andonov and S. Rajopadhye, “Optimal orthogonal tiling of 2-D iterations,” Journal

of Parallel and Distributed Computing, vol. 45, pp. 159–165, September 1997.

[36] V. Bandishti, I. Pananilath, and U. Bondhugula, “Tiling stencil computations to maxi-

mize parallelism,” in Proceedings of the International Conference on High Performance

Computing, Networking, Storage and Analysis, SC ’12, (Los Alamitos, CA, USA),

pp. 40:1–40:11, IEEE Computer Society Press, 2012.

[37] T. Grosser, A. Cohen, J. Holewinski, P. Sadayappan, and S. Verdoolaege, “Hybrid

hexagonal/classical tiling for GPUs,” in Proceedings of Annual IEEE/ACM Interna-

tional Symposium on Code Generation and Optimization, CGO ’14, (New York, NY,

USA), pp. 66:66–66:75, ACM, 2014.

54

[38] M. E. Wolf and M. S. Lam, “A data locality optimizing algorithm,” in Proceedings of the

ACM SIGPLAN 1991 Conference on Programming Language Design and Implementa-

tion, PLDI ’91, (New York, NY, USA), pp. 30–44, ACM, 1991.

[39] J. McCalpin and D. Wonnacott, “Time skewing: A value-based approach to optimizing

for memory locality,” tech. rep., Technical Report DCS-TR-379, Department of Com-

puter Science, Rugers University, 1999.

[40] D. Wonnacott, “Achieving scalable locality with time skewing,” Int. J. Parallel Pro-

gram., vol. 30, pp. 181–221, June 2002.

[41] T. Smith and M. Waterman, “Identification of common molecular subsequences,” Jour-

nal of Molecular Biology, vol. 147, no. 1, pp. 195 – 197, 1981.

[42] O. Gotoh, “An improved algorithm for matching biological sequences,” Journal of

Molecular Biology, vol. 162, no. 3, pp. 705 – 708, 1982.

[43] C. Isci and M. Martonosi, “Runtime power monitoring in high-end processors: Method-

ology and empirical data,” in Proceedings of the 36th Annual IEEE/ACM International

Symposium on Microarchitecture, MICRO 36, (Washington, DC, USA), pp. 93–, IEEE

Computer Society, 2003.

[44] G. Contreras and M. Martonosi, “Power prediction for Intel XScale reg; processors

using performance monitoring unit events,” in Low Power Electronics and Design, 2005.

ISLPED ’05. Proceedings of the 2005 International Symposium on, pp. 221–226, Aug

2005.

[45] G. QU, N. KAWABE, K. USAMI, and M. POTKONJAK, “Code coverage-based power

estimation techniques for microprocessors,” Journal of Circuits, Systems and Comput-

ers, vol. 11, no. 05, pp. 557–574, 2002.

55

[46] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: a framework for architectural-level

power analysis and optimizations,” in Computer Architecture, 2000. Proceedings of the

27th International Symposium on, pp. 83–94, June 2000.

[47] Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadron, and M. Stan, “Hotleakage: A

temperature-aware model of subthreshold and gate leakage for architects,” tech. rep.,

2003.

[48] K. Skadron, M. R. Stan, K. Sankaranarayanan, W. Huang, S. Velusamy, and D. Tarjan,

“Temperature-aware microarchitecture: Modeling and implementation,” ACM Trans-

actions on Architecture and Code Optimization, vol. 1, pp. 94–125, 2004.

[49] S. Li, J.-H. Ahn, R. Strong, J. Brockman, D. Tullsen, and N. Jouppi, “McPAT: An

integrated power, area, and timing modeling framework for multicore and manycore

architectures,” in Microarchitecture, 2009. MICRO-42. 42nd Annual IEEE/ACM Inter-

national Symposium on, pp. 469–480, Dec 2009.

[50] M. Kamble and K. Ghose, “Analytical energy dissipation models for low power caches,”

in Low Power Electronics and Design, 1997. Proceedings., 1997 International Sympo-

sium on, pp. 143–148, Aug 1997.

[51] P. Shivakumar and N. P. Jouppi, “Cacti 3.0: An integrated cache timing, power, and

area model,” tech. rep., Technical Report 2001/2, Compaq Computer Corporation, 2001.

[52] S. J. E. Wilton and N. Jouppi, “Cacti: an enhanced cache access and cycle time model,”

Solid-State Circuits, IEEE Journal of, vol. 31, pp. 677–688, May 1996.

[53] Y. S. Shao and D. Brooks, “Energy characterization and instruction-level energy model

of Intel’s Xeon Phi processor,” in Proceedings of the 2013 International Symposium on

Low Power Electronics and Design, ISLPED ’13, (Piscataway, NJ, USA), pp. 389–394,

IEEE Press, 2013.

56

[54] S. Hong and H. Kim, “An analytical model for a GPU architecture with memory-level

and thread-level parallelism awareness,” in Proceedings of the 36th Annual International

Symposium on Computer Architecture, ISCA ’09, (New York, NY, USA), pp. 152–163,

ACM, 2009.

[55] H. Nagasaka, N. Maruyama, A. Nukada, T. Endo, and S. Matsuoka, “Statistical power

modeling of GPU kernels using performance counters,” in Green Computing Conference,

2010 International, pp. 115–122, Aug 2010.

[56] J. Lim, N. B. Lakshminarayana, H. Kim, W. Song, S. Yalamanchili, and W. Sung,

“Power modeling for GPU architectures using McPAT,” ACM Trans. Des. Autom. Elec-

tron. Syst., vol. 19, pp. 26:1–26:24, June 2014.

[57] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim, T. M. Aamodt, and V. J.

Reddi, “GPUWattch: Enabling energy optimizations in GPGPUs,” in Proceedings of

the 40th Annual International Symposium on Computer Architecture, ISCA ’13, (New

York, NY, USA), pp. 487–498, ACM, 2013.

[58] J. Lucas, S. Lal, M. Andersch, M. Alvarez-Mesa, and B. Juurlink, “How a single chip

causes massive power bills GPUSimPow: A GPGPU power simulator,” in Performance

Analysis of Systems and Software (ISPASS), 2013 IEEE International Symposium on,

pp. 97–106, Apr 2013.

[59] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt, “Analyzing CUDA workloads

using a detailed GPU simulator,” in Performance Analysis of Systems and Software,

2009. ISPASS 2009. IEEE International Symposium on, pp. 163–174, April 2009.

[60] J.-C. Huang, L. Nai, H. Kim, and H.-H. Lee, “TBPoint: Reducing simulation time for

large-scale GPGPU kernels,” in Parallel and Distributed Processing Symposium, 2014

IEEE 28th International, pp. 437–446, May 2014.

57

[61] D. Q. Ren, “Algorithm level power efficiency optimization for CPU-GPU processing

element in data intensive SIMD/SPMD computing,” Journal of Parallel and Distributed

Computing, vol. 71, no. 2, pp. 245 – 253, 2011. Data Intensive Computing.

[62] D. Q. Ren and R. Suda, “Global optimization model on power efficiency of GPU and

multicore processing element for SIMD computing with CUDA,” Computer Science -

Research and Development, vol. 27, no. 4, pp. 319–327, 2012.

[63] T. Grosser, A. Cohen, J. Holewinski, P. Sadayappan, and S. Verdoolaege, “Hybrid

hexagonal/classical tiling for GPUs,” in Proceedings of Annual IEEE/ACM Interna-

tional Symposium on Code Generation and Optimization, CGO ’14, (New York, NY,

USA), pp. 66:66–66:75, ACM, 2014.

[64] D. Hains, Z. Cashero, M. Ottenberg, W. Bohm, and S. Rajopadhye, “Improving CUD-

ASW++, a parallelization of Smith-Waterman for CUDA enabled devices,” in Proceed-

ings of the 2011 IEEE International Symposium on Parallel and Distributed Processing

Workshops and PhD Forum, IPDPSW ’11, (Washington, DC, USA), pp. 490–501, IEEE

Computer Society, 2011.

[65] S. Yan, G. Long, and Y. Zhang, “Streamscan: Fast scan algorithms for GPUs without

global barrier synchronization,” in Proceedings of the 18th ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming, PPoPP ’13, (New York, NY, USA),

pp. 229–238, ACM, 2013.

[66] NVIDIA Corporation, NVIDIA’s Next Generation CUDA Compute Architecture: Ke-

pler GK110, 2012. v1.0.

[67] NVIDIA Corporation, NVIDIA’s Next Generation CUDA Compute Architecture:

Fermi, 2009. v1.0.

[68] NVIDIA Corporation, Parallel Thread Execution ISA, Aug. 2014. v6.5.

58

[69] NVIDIA Corporation, NVML Reference Manual, Mar. 2014. vR331.

[70] J. Lang and G. Rünger, “High-resolution power profiling of GPU functions using low-

resolution measurement,” in Euro-Par 2013 Parallel Processing, pp. 801–812, Springer,

2013.

[71] NVIDIA Corporation, cuBLAS, Aug. 2014. v6.5.

[72] M. Burtscher, I. Zecena, and Z. Zong, “Measuring GPU power with the K20 built-

in sensor,” in Proceedings of Workshop on General Purpose Processing Using GPUs,

GPGPU-7, (New York, NY, USA), pp. 28:28–28:36, ACM, 2014.

[73] NVIDIA Corporation, Profiler User’s Guide, Aug. 2014. v6.5.

59

APPENDIX A

CUDA IMPLEMENTATION

A.1. Synchronization patterns for wavefront parallelization

The popular barrier synchronization code patterns do not work with CUDA syncthreads

function. For example, code Listing A.1 either deadlock or produce incorrect results.

Most of us confuse syncthreads() in CUDA as a regular barrier for threads in a thread

block. But this is not a regular barrier of threads, because according to NVIDIA program-

ming guide [34], all the threads should reach the same syntactic syncthreads() function

in-order to produce correct results (to function as a barrier). Otherwise the output is unde-

fined. This is also can be explained as there cannot be any syncthreads() inside branched

code unless all the threads evaluate to the same branch.

Listing A.1. Synchronization pattern for wavefronts with pipeline
filling and flush

for (t = 0; t < tId; t++) {

syncthreads ();

}

for (t = tId; t < tId + SUBTILES; t++) {

int x = t - tId;

for (s = 0; s < SUBTILE_WIDTH; s++) {

// process sth column of sub -tile;

}

syncthreads ();

}

for (t = tId; t < THREADS -1; t++) {

syncthreads ();

}

60

A.2. Explore Memory Space

In this section, we discuss the use of memory hierarchy for different input and temporary

variables used in the Smith Waterman kernel. All the input data (two DNA sequences)

initially reside in global memory.

(1) Global Memory

Global memory is used to initially store the inputs, two DNA sequences. Even

though DNA sequences supposed to be a sequence of alphabet A, C, G, T, in the host

the character sequence is encoded with 0, 1, 2, 3 casted to 8bit length integers. This

enables to access the substitution matrix without using any conditional statements.

Therefore, it reduces the branching and increase the performance.

(2) Shared Memory

Shared memory is used to store an array of length x of DNA sequence aligned

to horizontal axis. Since this array of data is accessed by all the threads in a thread

block, shared memory is chosen.

There is another level of tiling (level 2 tiles) within the first level of tiles. Each

thread in a thread block responsible for a row of second level of tiles. The last row

of each second level tile is read by a different thread other than the thread who

produce this data. Therefore the same set of data is accessed by more than one

thread. Hence the last row correspond to a row of second level tiles is stored in

shared memory.

Substitution matrix is read only. By intuition, we tend to use constant memory

to store substitution matrix. But, as described in section 2.1, to use constant

memory with optimal performance, all the threads in a warp should access the

same address in the constant memory. But in the case of substitution matrix, the

61

threads in a warp may access different addresses (depending on the sequence data).

Therefore, shared memory is a better place for substitution matrix.

(3) Register (local) Memory

The portion of the array (length of y) of DNA sequence aligned to vertical axis

is stored in registers. For a row of tiles, each thread access distinct portion of the

array. Therefore, each thread reuse the same set of data throughout a row of tiles.

Each thread maintain a column of data correspond to the table of Smith Waterman

in registers. A thread progress on processing the sub-table column by column.

Therefore it’s enough to maintain a column of height equal to the height of sub-tile

amount of data in registers. An extra register is used to store the element read from

the sub-tile tile above.

(4) Constant Memory

Performance of accessing constant memory is optimal when all the threads in a

warp access the same address in the constant memory. Therefore, gap penalty and

gap extension penalty is stored in constant memory. Even though the substitution

matrix is read only, we cannot use constant memory as described in section 2.1.

(5) L1 Cache

L1 cache in GPUs are not coherent within the same kernel call. Since we use only

one kernel call and data written by a streaming multiprocessor is read by another

streaming multiprocessor, the later processor may read outdated data from global

memory or from L2 cache. There are few resolutions for this issue.

(a) Disable L1 cache using compiler option -dlcm=cg. Therefore, all the memory

requests are served by L2 cache which is coherent.

62

(b) Use special ptx instructions within the CUDA kernel to by pass L1 cache, using

asm instruction. This option is almost equal to (a), except that L1 cache can

be used if the data is only accessed by a single streaming multiprocessor.

(c) Use memory fence functions available in CUDA to flush L1 cache. Therefore,

the coherency of L1 cache can be enforced.

In this implementation, the option (a) is used as the resolution. Investigation

on the other two options are left for the future work.

(6) L2 Cache

We select the tile sizes such that the volume of data accessed by P rows of tiles

fits in the L2 cache.

(7) Texture Memory

As explained in section 2.1 , texture memory is optimized for 2D spatial locality.

Therefore, substitution matrix is a good candidate for texture memory. Due to

the variety of ways we can use texture memory, we have not explored the texture

memory within the scope of this paper and have left it for future work.

63

