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ABSTR ACT 

VI SCOUS REGION OF TURB UL E NT BOUNDARY L AYE R 

The nature of m ean a nd turbule nt motion in th e vi scous 

sublayer of a thick bounda ry laye r with zero pr e ssure gradient ha s 

been investigated. Measurements have been made of the mean motion, 

two of the turbule nt velocity components , the turbulent shear stress , 

and spectra of the longitudinal component of the velocity fluctuation. 

Traverses were made through approximately one-fifth of the boundary 

layer, which was approximat ely 32 inches thick. The boundary layer 

was developed along the floor of the wind tunnel test section for 85 feet. 

The turbulent shear stresses and the turbulence intensities 

were evaluated from a single rotated wire. A detailed account is given 

of the t heory conce rning the yawe d wir e ope rat ion. Included a r e cor 

rections for the r e sults from normal and yawed hot wires when operated 

in large mean velocity gradie nts and/ or turbule nc e intensity gradie nts. 

By assuming local similarity , the semilogarithmic v eloc ity 

distribution can be de rived. 

assumed , it is r equir ed that 

How ev e r, when local similarity is 
au 

'T 

ox = 0 or t hat 
o-r 
ay = 0 i n t he 

region whe r e t he law of t he wa ll i s valid . The m easure m ents c onfir m 

the e xis t e nc e of a consta nt s ear-stress r egi o n near the wall . How

eve r, the results show tha t t he cons tan t s hea r layer does not exi s t a s 

far out as whe r e t he s e milogar ithmi c ve locity d i stribut ion is valid . 

Cross-che cks we r e mad e b e twee n m ean fl ow m eas ur e m ent s , 

111 



turbulence measurements and wall shear-stress measurements. The 

results were compared with existing theories for boundary layer flow 

near the wall. 

Energy spectra of the streamwise turbulence component 

indicate that the theory of local isotropy can be a pplied to turbulent 

shear flows . This is especially true when the boundary layer is 

allowed to develop for a relatively long time. Measurements indicate 

that~ is much closer to ~ in magnitude as compared to the 

results from small scale boundary layers. This study was made irt 

connection with a program which intends to give criteria for the 

modeling of atmospheric boundary layers in the wind tunnel. 
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Chapt e r I 

INTRODUCTION 

Much progress has b een made in the m easurement of mean 

and fluctuating quantities of specialized turbulent shear flows. Most 

of the experiments have been made in free turbulent shear flows, 

because the absence of solid boundaries facilitates the measurements. 

Fully developed turbulent flow in pipes and channels has been investi 

gated in great detail by Laufer and other investigators . The research 

in two-dimensional boundary layers has been limited to relatively thin 

boundary layers. The characteristics and structure of the turbulent 

boundary layer with zero pressure gradient has been investigated by 

Klebanoff ( 19) and Townsend ( 39). A great deal of emphasis was 

placed on the turbulent energy balance in these experiments. Sandborn 

and Slogar ( 30) investigated the distribution of terms appearing in the 

equation of motion in a turbulent boundary layer with a progressively 

increas ing adverse pressure gradient . The results given by Schuba u e r 

and Klebanoff ( 34) show that the measured skin friction is higher than 

the expected values. This was observed in the region wher e the longi

tudinal pressure gradient was small. Sandborn and Slogar ( 30) report 

that the shear-stress measureme nts by Askenas, Riddell , and Rott at 

Cornell University we r e inconsiste nt with the expected values . They 

found that e ven for ze ro pressur e -gradie nt flow, t he m easure d shear 

stress curves show a max imum away from the wall . 
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An adequate model for the turbulence is not yet available. 

Great math e matical com plexiti es are encountered i n the solution of 

th e Navi e r-Stokes e quations . In order to make any progress, hypothe 

ses have been made. These hypotheses attempt to explain the physical 

processes occurring in turbulent boundary-layer flow. The mixing 

length theory is one of such attempts . Although this theory gives good 

engineering results, the theory does not give any insight into the phy

sical characteristics of the production and dissipation of turbulence. 

A better mode l for the turbulence, which is consistent with recent 

observations conce rning the detailed structure of the turbulence, is 

not yet available. 

In the last two or three decades the statistical treatment of 

homogeneous isotropic t urbulenc e has been quite successful . 

Kolmogoroff 's theory ( 1) of local similarity of the small scale eddies 

of the turbulence has led to this success. Much time and effor t has 

been spent to find an acceptable theory for t he transfer of energy of 

large eddies to the small eddies. Based on existing evidence, the 

eddy-viscosity transfer theory due to Heisenberg ( 16) has been gen

erally accepted. Many attempts have been mad e to apply similar 

methods to the study of turbulen t s hear flow . The merits of thes e 

methods have not been fully ass essed, due to the difficulties encoun 

t e r e d in m eas uring th e energy dissipation a nd e ne rgy transfer of the 

turbulent energy . 
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Hot wir e t e chnique s have been used quit e successfully to 

obta in an understanding of th e m e cha ni s ms which a r e th e cause of 

production and dissipation of th e turbul e nc e . How ever th e unc e rtain ty 

in the measur e m e nts using hot-wir e t e chniques is appreciable and not 

completely evaluated . A number of assumptions are necessary to 

evaluate turbulent quantities from hot-wire anemometer measurements . 

Under direction of Professor Sandborn ( 32), a long term project has 

been undertaken at Colorado State University to improve on existing 

hot-wire techniques. 

In this report, experimental studies of the operation of hot 

wires in turbulent shear flow are described. The experiment was 

carried out in connection with a program which has as its goal the 

modeling of atmospheric boundary layers in the wind tunnel. 

A detailed account is made of the sensitivity of hot-wire output with 

respect to change s in velocity and angle of yaw. The turbulent velocity 

component in the y-dir e ction and turbulent shear stress are evaluate d 

from yawe d wir e m easurements. Cross checks are made be tween 

turbulenc e measurements, mean flow measure m ents and wall-shear 

measur e m e nts. The r esults cast doubt on the us e of th e basic as

sumpti ons in th e eva luation of yawed wir e or cross ed-wir e da ta. Th e 

uncertainty in th e m easure m ents is e spe cially true in th e prese nc e of 

large mean-ve locity gradi e nts and large gradie nts of t urbul ence in te n

sity which occ ur in th e viscous sublayer . Fina lly, e n e r gy spect r a 
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were measured in the viscous sublayer to see how far the theory of 

locally isotropic turbulence can be applied to tur bulent shear flow. 
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Cha pte r II 

THEORETIC Al , BACKGROUND 

2. 1 The Turbulent Boundary f ,aye r 

At the turn or th t' ct ' 11 1ury, l 'randtl showed how viscosity affects 

the flow pas t a solid body. For f1 uid s with a low viscosity, this effect 

is l imited to a thin layer in th e immediate neighborhood of the solid 

boundary called the boundary layer. The flow in this layer can either 

be turbulent or laminar. The laminar boundary-layer problem has 

been solved. However, at the present the problem of the turbulent 

boundary layer is still far from solved. Attempts have beeh made to 

uti· ize the information from the laminar boundary-layer theory in the 

turbulent layer. Although several models have been introduced, a 

consistent model for the turbulent flow is still missing, 

The development of the boundary layer is greatly influenced by 

the free-stream pressure gradient and the nature of the surface rough

ness . In order to keep the case simple, the boundary layer developing 

along a smooth flat plate with zero pressure gradient is being con

sidered. When the flow is also considered to be two-dimensional and 

steady, the Reynolds e quations of motion reduce to 

u au vau a2 u auv -2 
1 ap au 

+ = v-- - - -- -ox ay ayz ay ox p ox (2-1) 

and 

auv 8v 2 1 8P 
+ =-ox ay p ay { 2-2) 
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Neglecting the term 
ouv 
ox , one may obtain after integration of ( 2-2) 

p 
= 

p 
(X) -2 

- V 
p p 

( 2- 3) 

The x- and z-axes coincide with the surface of the flat plate , the x -axis 

being in the direction of the mean flow, and y-axis is at right angles to 

the surface (Figure 1). The Reynolds equations of motion are the re

sult of the statistical averaging of the general Navier-Stokes equations 

and the required continuity condition. A mathematical solution for 

these equations has not been obtained due to their non-linear character . 

Differentiation of equation ( 2-3) with respect to x and substitu

tion in equation (2-1) gives 

u au + v au = 
ax ay 

ouv ---ay 
a 
ox 

1 
p 

oP 
(X) 

ox 

( 2-4) 

Experimental evidence, such as given by Sandborn and Slogar ( 30), 

av 2 au 2 

indicates that the terms °""ax and °""ax are unimportant as long 

as separation is not approached. When the condition of zero pressure 

gradient outside the boundary layer is imposed, the governing 

momentum equation becomes 

ouv u au + v au = 
ax ay - - = 

1 
p 

The boundary conditions are 

for y = 0 

for y-ro 

U = V = 0 

u = u 
(X) 

ay 

UV = 0 

UV = 0 

OT 
ay ( 2-5) 
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ThE m o m e ntum e quation i s to b e used in comb ina tion wi t h t h e 

c ontinuity equation, 

au 
ax + 

av 
ay = 0 ( 2-6 ) 

The momentum e quation is similar to t he one for th e laminar boundary 

layer, except for the t e rm with the correlation of u and v The 

term -puv is known as the turbulent shear stress in the x-direction; 

also known as one of the Reynolds stresses. The total shear stress i s 

made up of a turbulent part and a viscous part. Adjacent to the solid 

surface the viscous shear dominates, and away from the wall the tur-

bulent shear dominates . 

The momentum equation for the turbulent boundary layer to

gether with the continuity equation form a set of equations which is 

indeterminate. There are mor e unknowns than there are equations . 

The problem is now to find a relation between the Reynolds stre ss and 

the mean flow. So far, a satisfactory solution to this problem has not 

been obt ained . 

2. 1 . 1 Flow near the wall - Clos e to the wall, the flow is greatly 

influenced by the presence of the solid boundary. When the wall is 

approached, the effect of viscosity gradually increases with the result 

tha ': the turbulenc e b ecomes l e ss important. Consequently, t he vi s cous 

shear stress increas e s in importanc e with r e spe ct to the turbulent 

shear str e ss . At the wall i t s e lf it is assumed that th e turbule nt s hear 

stre ss va nishe s completely. Th e wa ll- s hear s tr ess can be ex pr e ss ed as 
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Tw 
O u(:~)ro How ever, the region adjacent to t he wall. wh e r e 

the viscous shear cannot b e neglected . is relatively small with r es pE'ct 

to the entire boundary-layer thickness . This means that th e change 

from almost completely viscous flow to fully t urbulent flow takes place 

in the "viscous sublayer ". This sublayer may be subdivided into two 

regions. The first is the "linear sublayer 
11 

where the velocity profile is 

almost linear when no longitudinal pressure gradi ent is pres e nt . The 

remainder of the viscous sublayer includes the region where the turbu

lent shear stress cannot be ignored. At the outer edge of the viscous 

sublayer, the viscous shear becomes negligibly small in comparis·on 

with the turbulent shear . 

Close to the solid boundary, the mean flow must be parallel to 

the floor . Consequently, the magnitude of the vertical component of 

the mean flow is zero or nearly zero. Away from the wall , the vertical 

component becomes larger but it always will be small compared to the 

longitudinal component of the mean velocity . If V :: 0 near th e wall, 

the continuity e quation demands that ~~ has an extremely small 

magnitude . An examination of the momentum equation shows tha t the 

slope of the shear stress at th e wall is zero . It will be s hown later 

that the term 
auv ay i s zero at the wall. This requir es that at t he 

wall the term 
a 2 u 

v ayz is zero, which leads to th E' r e qu irement that 

au j = constant . 
oy y=O In the vi scous sublayer. the viscous s hea r 

changes from a la r ge value at th e wa 11 to a negligib le m 2.g nitud P at thP 

edge of the viscous s ublayer . In th e same distance, th e t urbule n t 
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shear stress varies from a zero value at the wall to a large value. 

Therefore, it can be expected that the terms and 
ouv 
ay 

are 

large in magnitude relative to the other terms in the momentum equa

tion. For part of the viscous sublayer it can be assumed that 

= 
1 
p 

or 
ay 

0 ( 2-7) 

Upon integration of this expression, one obtains immediately 

au ,,. 
V - - UV = 

ay P 

T 
w 

p 
( 2-8) 

This means that the total shear stress in this region is constant and 

equal to the wall shear stress. The simplification of the momentum 

equation in the viscous sublayer can be interpreted as the vanishing 

of the inertia terms u au 
ox and v au 

ay 
. If it is known how the 

-term uv varies with respect to y , or how uv is related to the 

mean flow, then equation ( 2-8) may be integrated to obtain the velocity 

distribution in the region where it applies. Data taken by Sandborn ( 32) 

show that near the edge of the viscous sublayer the terms au'v anq ay 
a2u 

v oy 2 are also relatively small in magnitude. Therefore, it can be 

expected that all the terms in the momentum equation are of the same 

order of magnitude. Consequently, equation (2-8) is no longer valid, 

and no further information can be obtained from this simplified 

momentum equation. 

Beyond the viscous sublayer the viscous term in the equation 

of mot ion becomes negligibly small with respect to the other terms . 

The momentum equation reduces to 
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u au + v au 
ax ay 

ouv 
= - --oy = 

1 

p 
(2 - Q) 

This equation is similar to the e qua tion of motion for the laminar 

boundary layer with z e ro pressur e gradient. The exception is t ha t 

ouv 
the turbulent term 

ay 
has taken the place of the vis c ous term 

The difficulty with equation ( 2-9) is the proper specifica-

ti.on of its boundary conditions near the wall . If similarity for t he 

velocity distribution exists and the term uv can be related to the 

mean flow, a solution for equation ( 2-9) may be found. Measurements 

made by Sandborn ( 32) in the Army wind tunnel indicate that the magni

tude of the term U ~~ is larger than the other inertia term V !~ 
au 

The term U ax· . . h"l V au 1s negative w 1 e ay 

in the necessity that 
1 OT 
P ay 

be negative . 

is positive, which results 

Consequently, as soon as 

the inert ia terms can no longer be neglected , the shear stress , 

- puv = T , decr ease s in magnitude, until it vanishes near the edge 

of the boundary layer . 

2 . 1. 2 Similarity considerations - For laminar boundary - layer 

flow with a z ero-pressure gradient , t he velocity profiles are all of 

similar shape if a dimensionless coordinate system is i ntroduc ed. For 

this type of flow, the profiles a r e identical, forming th e w e ll-known 

Blasi.us profile. This similarity will be maintai n ed r egardl e ss of the 

Reynolds numbe r of the flow or of the loca l ski n fri ct ion . A similarity 

whe re the ve loci ty profil e is a universa l function of one s :ngle param

eter has not b een found for t h e turbul e nt boundary laye r . The solution 
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o f the· ,-:: quations is not as simp le for tu rbul ent bou ndary layers as for 

the laminar boundary laye r . For t urbul e nt lay e rs the pr esenc e of the 

t urbulc:n ce i. n troduc e:s a new unknow n. the tu rbulent shear stress. The 

assum ptions which are m ad e for t he d ist ribution of t he tur bul ent shear 

str ess are bas e d on experime nt . 

Wh en an obs tac l e is plac ed in a laminar boundary layer. th e 

ve locity profiles downstream from t h is disturbance do not resemble 

the Blasius profile. How ever , if the laye r is allowed to develop far 

enough downstream, the velocit y profiles slowly return to the Blasi.us 

profile. In turbule nt layers , t he effect of upstream disturbances is 

wiped out quit e soon, and the velocity pr ofiles return to a "normal " 

boundary layer profile. This phenomenon was experimentally inves ti 

gated by Klebanoff and Diehl (18) . Their results show that the inner 

portion of the turbulent layer returns more quickly to "normal'' than 

the outer portion of t h e layer . This suggests that the flow close t o t he 

wall is relatively insensitive to t he flow conditions away from the wall 

and to the upstream conditions. On the other hand, the flow away from 

t he boundary is affec ted a great deal by upstream conditions . This 

leads to t he two-layer concept for t he turbulent boundary layer. and 

one cannot expect the entir e boundary laye r to be represented by a 

single universal profile as is t he case in laminar boundary layers . The 

examination of the momentum equa tion in t he previous section seems 

to support th e ab ove arguments for a two - layer conc e pt. 
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Rotta (2~) points out t hat t he flow near the wall is completely 

determined by the distance from the wall , the wall-shear stress and 

the kinematic viscosity. Consequently, the mean velocity distribution 

can be expressed by the similarity law 

u 
u 

'T 

- ( yU 'T I - f --
v 

(2-10) 

which is called the law of the wall. This means that in a region close 

to the wall the flow is solely determined by the conditions existing at 

the wall. In the previous section, it was shown how integration of the 

equation of motion within the viscous sublayer led to equation ( 2-8). 

A subsequent integration of this equation will lead to 

u 
u = 

'T 

yU 
'T 

V 
dy . (2-11) 

This equation is valid as long as the inertia terms in the equation of 

motion are negligibly small with respect to the other terms, and as 

long as the shear stress does not vary in the y-direction. If the tur

bulent shear stress can be expressed in terms of local flow conditions 

and of the wall shear, one may expect the law of the wall to be appli

cable in part of the viscous sublayer. For fully developed turbulent 

pipe flow, the turbulent shear stress can be expressed as 

UV = 
au r 

V -- + 
8r a (2-12) 

where a is the radius of the pipe and r the radial coordinate. In 

this case, the turbulent shear stress is ex pressed in term.:; of local 

flow conditions and the shear velocity. If t he flow near thE' wall is 
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affec t ed very little by the flow in the outer layer, it c an be ass umed 

t hat all wall flows art> si mi br ( ror I he case a P /ax = 0). Conse -

quently , th e t urbuk nt s lwa r st rTss of' a t urbulent bo undary laye r in 

the region near thP wa ll can be expected to d e pend on loca l flow condi 

tions and the wall-shear s t r ess only . Therefor e , the law of the wall 

is compatible with t he equation of motion in a r egion of t he viscous 

sublayer where the inertia te r ms can be ignored . Experimental dat a 

seem to confirm the existenc e of a similarity law in the region adja-

cent to the solid boundary . The results also indicate that this simi

larity exists not only in the viscous sublayer but extends well out into 

the turbulent part of the boundary layer . 

If the similarity law, e quation ( 2-10), and the continuity 

requirement are introduced in the momentum equation (2-5), the 

following expression rp.ay be obtained. 

[! U: l, 
T)V 

au o(U/U ) Ju; u d~] = 
OT T 'T u ax ari u ari 

0 'T 

(2-13) 

yU 
T 

f I y~T ) where . Assume the function r) = 
V 

is a truly 

universal function for turbulent boundary-layer flow near a smooth 

wall. Now one may expect that when thi s unive rsal func tion is intro

duced in the momentum equation an expression is ob ta ined whic h is 

inde pendent of x . Only wh en the d e riYative of t he wall s hear stress 

with respe ct to x is a constant can true s imila rity of th e form 

U: = f ( y~ T l exist . For flow wi t h in the v i scous s ublayer , t he 
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au 
term U-,::,- was neglected, which is basically the sam e as neglecting 

uxau 
T 

the term ox The true 

Reynolds numbers where U 
T 

similarity can only exist for very large 
au 

T 
is nearly constant. The term u~ 

1s extremely small in magnitude so that the deviation of the shear 

stress from its value at the wall is necessarily small . Therefore , 

the assumption of constant shearing stress leads to similarity . Even 

in regions where the wall-shear stress is no longer constant wtth d is 

tance away from the wall, similarity of prescribed form may still be 

successful. 

Rotta (29) argues that the self preservation of the velocity 

profile in a turbulent boundary layer is a justification for the assump

tion of local similarity . The flow is locally similar when the distribu-

tion of the mean flow quantities, expressed in non-dimensional form, 

is independent of the x-coordinate. From experiment and general 

dimensional arguments, it was generally found that a similari ty law 
U-U 

for the out e r part of the turbulent boundary layer exists when 

and l 
0 

are used as coordinates. 

U-U 
CD 

u 
T 

= 

CD 

(2-14) 

This similarity law for the fully turbul ent part of the boundary layer is 

usually referred to as the velocity-defect law . However, there is a 

great difference between the ve locity-de fect law and the Blasius pro

file. For the laminar layer. th e ra tios of momentum thi c~ kness and 
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displacement thickness with !'espect to the boundary layer thickness 

are constants. For turbulen layers, the ratios of the various thick

nesses will vary with the skin friction. The velocity-defect law cannot 

be valid close to the wall, since the flow next to the wall must depend 

on the absolute value of the velocity and not on the velocity defect . For 
u 

small values of y , the function F(y/o) approaches Uro . At the 
T 

other end of the boundary layer when y approaches o , the function 

F(y/o) goes to zero. For turbulent boundary-layer flow with a zero-

pressure gradient, F(y/o) is only a truly universal function when 

u 
00 

is independent of x 
u,, au 

or when 
au 

T 
- = 0 ox Previously, it was 

T 
concluded that ""ax had to be at least a constant in order that the 

law of the wall should be truly a similarity law. In order to have com

plete similarity throughout the turbulent boundary layer, the shear 

velocity must be independent of x . In other words, the wall shear 

stress must be a constant in the x direction. These conditions can 

only be approached when the boundary layer Reynolds number, Rex , 

has a very large value. These high Reynolds numbers have never been 

obtained in laboratory exper iments . However, experimental results 

indicate that the variables UU 
T 

wall region, and the variable s 

and 
U-U 

00 

u 
T 

yU 
T 

V 

and 

correlate the data in the 

L 
0 

correlate the 

data in the outer region . There is an overlap region where both 

methods of correlation can be us ed success fully. This leads to the 

conclusion that some relation b etween the two sets of parameters 
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must exist. Clauser (5) has shown tha t on ly wh e n t he fun c t ion F a nd 

f are logarithmic a r egion of ove rlap can exist . F or t h is region onf' 

has 

and 

U-U 
00 

u 
'T 

u 
u 

'T 

= A log ( 1 ) + B 
0 

( 2-15) 

(2-16) 

Equation ( 2- 16) is only valid in the overlap region where the flow is 

fully turbulent. Adjacent to the wall in the linear sublayer, th e veloc

ity varies linearly with the distance away from the wall. Between the 

overlap region and the linear sublayer there exists a transition region 

where the velocity profile blends smoothly from the linear form into 

the semilogarithmic form. 

In the large Army wind tunne l, the velocity profiles also s how 

similarity in the outer region when UU is plotted versus y/o 
00 

This similarity can be written as UU = F ( l ) Close to t he 
1 o 

00 

wall, t he law of the wall applies. Again the r e is an overlap region 

where both correlation methods can be used . The correlati on for the 

outer region can be written in the following form . 

u 
u 

'T 

= 
u 

00 

u 
'T 

The law of th e wa ll ca n be wri t t en as 

u 
u 

'T 

(2-17) 

(2 -1 8) 
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The two functions F a nd f should give similar results i.n the overlap 
1 

oU 
region. This means that t he multiplication of 

V 

'T 
inside the func

U 

ti on f must have the same effect as the multiplicative term 
m 

u 
'T 

outside the functi on F 1 
In orde r to satisfy this requir e m ent . one 

has to resort to a power law. In the overlap reg ion one has 

and 

u 
u 

(X) 

u 
u 

'T 

(2-1 8) 

( 2- 20) 

However, equation (2-20) does not apply all the way to the wall . Near 

the wall, t he values of m and C 
1 

must be unity . 

2. 1. 3 Hypothetical relations - Several empirical hypothese s 

have been introduced based on some simplified model of the turbulent 

motion. The older hypotheses are sti.11 being used at the present 

despite their shortcomings. This is due to the fact that the perfect 

relation is still missing. 

Boussinesq was the first to attack the problem by introducing 

the concept of eddy viscosity . He assumed that the turbulent stresses 

act in the same way as the viscous stresses, implying that the turbu

lent stresses are proportional to the velocity gradient . The coefficient 

of proportionality was called t he ''eddy viscosity" and was defi ned by 

au 
p UV = p E 

-r ay 
(2-21) 
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The velocity profile of the turbulent boundary layer can now be 

calculated, provide d a satisfactory distr ibution of the "eddy viscosity" 

can b e assumed. 

Prandtl tried to re late the turbulent shear stress to the m ean 

velocity, using the characteristics of the turbulence . Analogous to 

the kinetic theory of gas es, Prandtl assumed t hat the coefficient of 

"eddy viscosity" was e qual to the product of a "mixing length" and 

some suitable velocity (mixing length theory). According to this 

theory, the turbulent shear stress in a turbulent boundary layer can 

now be calculated from the following expression. 

- 2 I au I au - P uv = P t ay ay ( 2-22) 

The r e lation between the eddy viscosity and the mixing length b ecomes 

(2-23) 

Again, assumptions have to be made on the distribution of the mixing 

length in the turbule nt boundary layer. Several assumptions concerning 

the dis tribution of t h e mixing l ength , I , and the eddy viscosity have 

been tabulated by Rotta (29). However, no general relation for the 

distribution of t hese parameters i s available. Th e most serious objec 

tion to the validity of these t heories is that eddy viscosity as we ll as 

mixing length d e pend solely on t he local flow conditions. 

Towns end (4 0) has pointed out tha t t he local conservation of 

turbulent kinetic energy s uppor ts these objections . Bec2 use the turbu-

lent motion cannot sustain itself. a continuous supply of e n e rgy is 
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nec e ssary to maintain the motion. The ne cessary e nergy is obta ined 

from the mean flow working against the turbulent stresses . Th e local 

ene rgy balance de pends not only on the local production and di ss ipation 

of t urbule nt energy , but also on the transport of turbulent energy to 

and from other parts of the turbulent flow. Cons equently , it can b e 

expect ed that the local turbulent shear stress depends not only on 

local flow conditions, but also on conditions at other parts of the flow. 

Prandt l assumed that t he mixing length at relatively short 

distances from the wall had to be proportional to the distance y . 

He also assumed that outside the viscous layer the viscous shear can 

be neglected, so that T = - p uv . Additionally he had to assume 

that the shear stress in this region is constant, so that T = T 
w 

Substitution of these assumptions in equation ( 2-22) leads, after inte-

gration to the well known equation for the velocity distribution, to 

u ( yU ) U- = A log --;2- + C . 
T 

( 2-24) 

This expression for the velocity is similar to the expression obtained 

by Clauser in the overlap region, where either the law of t he wall or 

t he velocity defect law correlate the data . Since equation ( 2-24) was 

derived for the region where viscous shear can b e n eglected , one may 

expe ct this equation to fail in t he immediate ne ighborhood of the wall. 

Approaching th e wall, t he logarithmic t erm t e nds to go to minus infin

ity. The same logarithmic ve locity di stribution is obtain ed when it 

is assumed that the eddy viscosity is proportional to the distance 

from the wall such that 

1 
= 

A u y 
T 

(2 -2 5) 
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2. 1. 4 Hypothetical relati.ons for the viscous sublayer - Most 

of the existing hypothetical relations cover only part of the region 

where the law of the wall is applicable. Hama ( 14) obtained a uni ver

sal relation between the dimensionless mixing length and the dimen

sionless distance from the wall . By the use of experimental results, 

the following universal relation was found, 

QU 
T 

V 
= _Y_~_T_ r (2-26) 

where a' is a numerical constant of approximately O. 1. This uni

versality seems to be valid for the entire viscous sublayer. Outside 

the viscous sublayer, Hama 's solution is connected smoothly to the 

logarithmic velocity distribution. The most complete relations for 

the turbulent velocity profile near the wall are given by van Driest ( 7) 

and Reichardt ( 28). Both authors give continuous relations for the 

mean velocity and the turbulent shear stress for the regions where 

the law of the wall is ex pected to be valid. 

Van Driest points out that the turbulence near the wall is 

expected to be damped by viscosity . This viscous effect is estimated 

by considering Stoke's second problem. This problem involves the so

lution of the Navier-Stokes equations for the flow about an infinite flat 

plate which is harmonically oscillat ed parallel to its elf in an infinite 

fluid. The solution of t his problem has the form of a damped harmonic 
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oscillation with a n amplitude of U 
-y/G 

e . 
0 

Here U 
0 

is th e 

a mpli t ude of t he os cillation of the infinite plate. Consid e r t he c a s e 

where the plate is fixed and the fluid oscillates r e lative to t he plate. 

The damping effect of the plate on t he fluid can b e ex pec ted to be of 

-y/G the form ( 1 - e ) In order to d escribe the velocity dis t ribution 

in the viscous sublaye r , Prandtl 's mixing length needs to b e modifi ed 

to 

f = 
y 
A 

or in dimensionless form 

QU 
T 

V 

yU 
T 

[ 1 exp - ( :~: ) ] 

(2-27 ) 

( 2- 2 8) 

This result can be substituted in the expression for the shear stress 

au 2 ( a
8

Yu ) 2 T =u--+pf ay ( 2- 29) 

With the assumption that T = T the following relation for the m ean 
w 

velocity distribution is obtained. 

u 
u 

T 

= Iy~T 
0 

2d ( y~T l 
(2-30 ) 

From empirical fitting of the experi m ental results . van Dri est chos e 

as magnitudes for t he constants, 
1 
A = 0. 4 and c ,:, 

yU 
For 

V 

T > 

u 
u 

T 

100 , t he above expression b eco m es 

= 5 . 24 + 5. 75 log (~ T ) 

= 26 

( 2- 31) 



For 
yU 

T 

V 

u 
u 

T 

= 

22 

< 5 the ve locity distr ibution b e come s 

yU 
T 

V 
(2 - 32) 

Therefore, this assumed d i stribution for the mix ~ng length seems to 

fit the experimental data quite well for the entire region where tlie 

law of the wall is applicable. Reichardt ( 28) points out that , approach

ing th f:: wall, the turbulent shear stress varies proportionally to y 3 

Consequently, the eddy viscosity must vary in a similar manner, 

since in the linear sublayer 
au 
ay 

is a constant_ The eddy viscosity 

should change smoothly from a third power distribution to a linear 

distribution. Reichardt, therefore, proposes to use the following 

expression 

V 
€ = 

T A 
[ y~T - y* tanh ( y~ 

7 
/ y* ) ] 

It can be shown that 

= 

T 

T 
w 

1 + 
€ 

T 

V 

By substitution and assuming that 

u 
u 

T 
1 + 

1 
A [

yvUr 

T 

TW 
= 1 

- y ,:, tanh 

( 2- 3 3) 

(2-34) 

(2-35) 

where A and y ~' are constants . Rei chard t gives A .., 2 5 and 

= 11 as the best value s for th e s e constan ts . 
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Assuming that the simplified m oment um equation ( 2- 8) is 

valid, and introducing the con ::::ept of m ixing l e ngth, one obtai ns i n 

non-dimensional form 

[ 

cl( U/U-r ) ] 
2 

yU 
a _r_ 

V 

The solution of this quadratic equation is 

u 
u 

7" 

= 
- 1 + 

= ( 2-36) 

. (2-37) 

This equation is the same as equation ( 2-30). Van Driest 's relation 

is compatible with the momentum equation for the viscous sublayer. 

However, this relation seems to fit the data also quite well in the 

region where the inertia terms can no longer be neglected . 

2, 1. 5 Distribution of the turbulent quantities - No theory is 

available for the distribution of the turbulent velocities in the boundary 

layer. Only a solution of the total energy equation can give the dis tri 

bution of the three turbulent velocity components. Measurement of 

these quantities have not led to any similarity . Usually these measure d 

turbulent velocities ar e pres ented i n the same nondi. mensional manner 

as the mean v e locity i.s pr esented in the region where the law of the 

wall is valid. Measur e m e nts by Plate and Sandborn ( 27 ) of the long i

tudinal turbulent velocity in the Army wind tunne l see m quit e i.nsensi.

tive to a variation in x dis tance. Thi. s is t rue when t he turbulent 
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velocity is plotted with respect to the local velocity instead of wi t h 

respect to free stream velocity or local shear velocity . 

The distribution of the turbulent shear stress is of importanc e , 

since this term appears in the equation of motion. The turbulent 

velocities appear only in the energy equation, and so far there has 

been no need for a hypothetical relation for these velocity components 

Only in the immediate vicinity of the wall can predictions be made 

· about the distribution of the turbulent shear stress and the turbulent 

velocity components. Rotta (29) shows, by means of the continuity 

requirement and the condition of no slip at the wall, how the term uv 
varies in this region. It is assumed that the three turbulent velocity 

components are zero at the wall. 

u = v = w = 0 , for y = 0 ( 2- 38) 

This requires that 

au 
= = oz 

av 
ax 

av 
= = oz 

ow 
ax = 

ow 
oz = 0 , for y = 0 . (2-39) 

From the continuity equation it follows that 

av au aw = - - = 0 for y = 0 ( 2-40) ay ax oz 

the derivatives 
au 

and 
aw 

and highe r orde r However, ay ay 
derivatives with respect to y have finit e value s for y = 0 . 

Therefore, the term 
a 2v 
ayz. may have a finit e value at th e wall. 

Using these requirements, it turns out that the first two d e rivativ e s 

of w with respect to y are zero at th e wall. The th irrl d e ri va tive 

au a 2v 
ay ay 2 

may have a finite value at the wall, since the t e rm 
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does not ne c es sari.ly vanish at t he wa ll. Close to t he wall, t he s h ear 

stress can b e assumed to be e qual to the wall shear st1· e ss 

T 
au 

= u. ay p UV :::.: T 
w 

(2 - 41) 

The mean velocity close to the wall can be obtained by integration of 

the above expression and the use of the assumption t hat is 

not zero for y = 0 The result is 

T WY 1 ( 3-) 4 u O UV 
(2-42) = + 24 V 

y + 
oy

3 
y=O 

.... 
u. 

The streamwise velocity fluctuation u(x , y , z , t) is assumed 

to be analytic everywhere in the flow field. Consequently, this velocity 

fluctuation may be expanded in a Taylor's series. If u(x , y , z , t) 

is expanded about a point y 
1 

close to the boundary, the fluctuation of 

u at y = 0 is , of course, z e ro. Therefore, 

Similarly for the vertical fluctuation 

a 
0 = v(x' Y1' z' t) + Y1 oy 

or 

OU 
u = Y oy 

and 

av 
V = - y 

8y 

1 z o 2 u 
y 

2 oyz 

1 y2 o2 v 
2 ayz 

. . . .. . 

- . . . . . . 

(2-4 3) 

(2-44) 

( 2- 45) 

(2-46) 
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Now in the immediate neighborhood of the wall 

2 au av 1 3 au a
2

v 
UV = y + y --2 ay ay 2 ay 

ay 

1 4 a
2

u a
2
v 

+ - y --z- -- + .. ' .. . . 4 
ay ay2 

It follows from the continuity equation that 
av 
ay 

+ 

au av a 2u av 
Therefore, the terms ~y and 

o ay ay2 ay 

1 3 a
2

u av - y -2 2 
ay 

ay 

( 2-4 7) 

= 0 for y = 0 

are zero at the 

wall. The turbulent shear stress is clearly zero at the wall, as well 

as the first and second derivative with respect to y . However, the 

third derivative may have a finite value at the wall. According to 

this scheme it turns out that 

3-a UV 

ay3 I 
y = 0 

= 9 au 
ay 

y = 0 

( 2-48) 

This result is similar to the one obtained by Retta except for the 

magnitude of the coefficient. 

As shown befor e , the s t reamwise fluctuating velocity compo

nent may be expressed as 

au 1 
u = -y---

ay 2 

2 
y 

This leads to an e xpression for the mean square of the velocity 

fluctuation in the x-direction of 

1 
+ -4 

y4 ( 3 2~ ) 2 + 

8y 

(2-49) 

. ( 2- 5 0 ) 
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The vf' loci.ty distribution a djace nt to th e wall is 

u 
u 

T 

::: 

yU 
T (2-51) 

V 

The distribution of the turbulent velocity with respect to the local 

velocity can be written as 

1 

= [fill l :~~ 1 • 'R 
OU 0 2u 1 4 .. r y ay ay2 4 

y 

+ + + 
u u4 / v2 u4 

/ V 
2 u4 / v2 

'T 'T 'T 

fi 
Therefore, at the wall the ratio Uu does not vanish . 

At the wall -~ uV ~ fi ay 
u 'T 

w 

or 

fi\ ::: -{if 
u 'T 

y =O w 
=I= 

0 

0 

(2-52) 

(2-53) 

{ 2-54) 

where t is the fluctuating part of the shear stress at the wall. 
w 

Experimental evidence given by Mitchell and Hanratty ( 24) indicates 

.... r=-;-u 2 that the ratio of the rms of the fluctuating velocity, V u ~ , and the 

mean velocity is O. 32 at the wall. 

2. 1. 6 The energy equations - In a turbulent boundary layer, 

energy must be brought into the layer to make up for the loss of energy 

due to dissipation. Th e nec essary energy is obtained from the m ean 

flow working against the shear stresses. The shear stresses a]so 

act as the en e rgy-transfer ag ent, so e n e rgy is transferred fr om the 
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outer layer of the turbulent boundary layer to the wall region. Here, 

some of this transferred m ean energy is converted into turbulent 

energy, and finally most of this energy is dissipated into heat. Some 

of the turbulent energy produced near the wall is diffused to the outer 

layer to maintain its turbulence level. The conversion and transport 

of energy in the turbulent boundary layer is necessary because the 

turbulent motion cannot sustain itself . Therefore, a continuous supply 

of turbulent energy is necessary at all parts of the turbulent boundary 

layer to maintain the turbulent motion. 

The energy balance at any point in the turbulent boundary 

layer can be discussed best by consideration of the individual terms 

in the energy equations for the mean flow and the turbulent flow. The 

mean flow energy equation for the turbulent boundary layer may be 

obtained by multiplying the boundary layer momentum equation by U 

to obtain 

u2 au + uv au = 
ax ay 

Rearranging, one obtains 

u +V~ ay 

V 

2 

au 
- UV -- + ay 

a(Uw) 
ay 

(2-55) 

(2-56) 

The first two terms represent the loss of kinetic energy of the mean 

flow due to its retardation, or the work done per unit ti me per unit 
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m a3s by the iner tia fo r ces. The t e r m uv 
au 
ay 

is th e we ll known 

pr oduction te rm . The next two ter m s r e present the t r a ns fe r of e ne r gy . 

T h e last term indicates th e dir e ct di ss i pa t i on . Near t h e wall w her e 

the in er tia terms in t he m ome ntum equa t ion can b e n eglected, t he 

mean flow en e r gy e quation reduc es to 

a(u uv) 
ay = 

-au uv-- = ay 

7' 
w 

p 
au 
ay 

(2- 5 7) 

In this reg ion, the energy r equir ed to balance the loss due to d i r e c t 

dissipation and product ion of turbulent energy has to come from t he 

outer part of the boundary layer. Outside the viscous sublaye r where 

the viscous shear stre ss in the momentu m equation can be neg le c ted, 

the m ean flow ene rgy equation reduces to 

+ V 
- au 

- UV - + 3y 
a (U uv) 

ay = 0 . (2- 5 8) 

For most of this r egion, t he production t erm is small compar ed to 

the other terms. The energy lost from t he mean flow, due to it s 

retardation, is practically all transferre d toward the wall. Closer 

to the wall this energy, transferred from the outer layer , is e ither 

converted into turbulent energy or dissipated directly into heat . 

The turbulent en e rgy equat ion can b e obta ined by multi ply ing 

th e complete Navier-Stokes equati ons for t he x , y , and z-di r ection 

by u, v, and w, r espe ctive ly . Afte r taking th e m ean va l ues a nd 

summation of the three equat ions, the follow ing e qua t ion for t he con 

servation of turb ule nt e nergy is obtaine d [ Rotta ( 2<:J ) ] 
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+ ( u z - v z) au ax + UV 
au 
ay 

+ < - V a;: ( ½ q' + V a ) = Q 

(2-59) 

where q z = u2 + v z + w z . The first two terms are indicative 

of the convective transport of turbulent energy by the mean flow. The 

next two terms are the production terms. The production terms 

- au uz -ax 
term 

and 

au 
UV -ay 

au 
ax are an order of magnitude smaller than the 

The difference of these small terms may be ne-

glected in well developed turbulent boundary layers. The term 

a 
ay 

1 2 
v- q 

2 
represents the diffusion of turbulent energy in the 

y-direction by turbulent motion. The term 
1 
p 

a(vp} 
ay 

is indicative 

of the transfer of energy under the action of pressure gradients. The 

turbulent dissipation is indicated by the term € . The last term 

represents the transport of turbulent energy in the y-direction by the 

viscous forces. The mean flow-energy equation and the turbulent 

energy equation can be added to obtain the total energy equation in 

which the production term will disappear. The total energy equation 

indicates that the loss of mean-flow energy and turbulent energy is 

transported to other parts of the boundary layer wher -:.. it is dissipated 

into heat by viscosity. 
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2. 2 T urbulent Scales and Structure 

The concept of local isotropy proposed by Kolmogoroff ( 1) 

has been generally acce pted. However, these concepts can only be 

applied to flows whose Reynolds number is large enough. Unfortu

nately, the theory does not predict when the Reynolds number is 

large enough so that local isotropy can be assumed . 

The theory of local isotropy states that the small-scale 

structure of the turbulence has statistical properties, which are 

invariant under a rotation of the coordinate system and under a 

reflection with respect to the coordinate planes. The low wave

number part of the energy spectrum consists of the energy-containing 

eddies. The structure of these eddies is determined by the mean 

flow from which they receive their energy. However, on the other 

end of the wave-number scale, the turbulence may be expected to b e 

statistically independent of the energy-containing turbulence. This 

means that t he small scale structure of the turbulence is statistically 

isotropic and approximately homogeneous in space and time. When 

this is the case, it may be assumed that local isotropy exists. So far, 

the statistical theory of turbulence has been limited to the treatment 

of homogeneous isotropic turbulence. Since no shear can be present 

in this type of turbulence, the turbulence must decay in the cours e of 

time. The basic concepts obtained from the study of homogene ous 

isotropic turbulence are introduced into t he study of turbulent s hear 

flow. 
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All of the dissipation of energy occurs in the high wave

number region of the energy spectrum. This region of the spectrum 

where the energy is dissipated contributes only a negligible amount 

to the total turbulence energy. During the decay process, the energy

containing eddies lose their energy to the smaller dissipative eddies. 

The energy of the turbulent motion is dissipated into heat through the 

action of viscosity. Due to the inertial forces, energy is passed on 

from the larger eddies to smaller bnes, and these in turn break down 

into still smaller ones, and so on. When this process takes place, 

the viscous forces become gradually more effective in dissi'pa.ting 

the energy. The effect of these two types of forces tends to bring 

about an equilibrium distribution of the energy. When the energy

containing eddies and the dissipative eddies are sufficiehtly far apart 

in size, the smaller eddies are in a state of statistical equilibrium 

and are independent of their origin. The properties of this type of 

turbulent motion can be summarized as follows: 

1. For sufficiently large Reynolds numbers, the turbulent 

motion can be locally isotropic, independent of whether the energy

containing eddies are isotropic or not. This part of the spectrum is 

called the universal equilibrium range . 

2. The eddies at the high wave-number range of the spectrum 

are governed by the viscous forces. It is in this region of the spec

trum that the turbulent energy is dissipated into heat . 
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3. The eddies which lie betwe en the two e nds of the spectrum 

are not affected by viscosity. The statistical properties of this par t 

of the turbulent motion depend sole ly on the rate of energy dissipa

tion. This range in the spectrum is called the inertial subrange, 

which is the lower wave-number range of the universal equilibrium 

range. 

A three-dimensional spectral density function E(k) is defined, 

such that the total turbulent energy per unit mass is 

~ ( u 2 + v 2 + w'" ) • f: E (k) dk (2-60) 

The time rate of change of the spectral-density function, E(k) , at 

any wave number consists of two parts. The rate of energy transfer, 

which is the net transfer of energy from one wave number to another, 

is denoted by T(k) . The second term is the rate of viscous dissipa-

tion which turns out to be - 2 v k 2 E(k) 

a 
at E(k) = T(k) - 2 v k 2 E(k) 

Thus, 

(2-61) 

which is the dynamic equation for the energy-spectrum function, 

E(k) . Here is one equation with two unknowns, E and T . The 

theory of isotropic turbulence is concerned with the relationship 

between T and E Several so-called "physical" transfer theori es 

have been propos ed. On the basis of existing evid ence the eddy 

viscosity-transfer theory due to He isenb e rg ( 16) seems to be more 

successful than the other theories. H eisenbe rg 's theory is bas ed on 
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the assumption that the mechanism which is governing the energy 

transfer is similar to the one governing the viscous dissipation. Con

sider the rate of change of energy from wave numbers zero to k 

then 

a 
at f k = f ko 

0 
E(k')dk' 

k 
T(k') dk' - 2 v f O k'

2 
E(k') dk' . (2-62) 

Heisenberg argued that the motion associated with wave numbers 

from zero to k can be considered as the mean motion. This is in 

contrast with the motion associated with wave numbers from k to 

infinity which is considered to be the turbulent motion. Analogous 

to turbulent boundary-layer flow, there is transfer of energy from 

the mean motion to the turbulent motion. Continuing the analogy, 

Heisenberg assumed that there exists a turbulent kinematic viscosity 

y such that 

k 
T(k ') dk' = - 2 ~ J 

0 
k' 2 E(k') dk' (2-63) 

As was pointed out, y depends on the smaller eddies and therefore 

can be expected to be of the form of an integral over all wave num-

bers larger than k . By dimensional reasoning, Heisenberg ob

tained the following expression for the turbulent kinematic viscosity: 

,.,, Jcok y(k) = LC d k' ( 2-64) 

where a is a constant . By substitution, one obtains th P tallowing 

expression: 
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E (k") 
k, ,3 dk"] fok k' 'E(k ' ) d k'. 

(2-6 5) 

A solution for the dynamic e quation has b ee n obtaine d for the 

universal e quilibrium range. At wave numbers in this range , the 

a 
term at E(k) 

a 
at 

is small, and consequently, the term 

(X) 

Jk E(k) d k 

is negligibly small as compared to the t e rm 

a 
at 

(X) f o E (k) d k 

This is true because the tota: energy lies almost entirely in the region 

of small wave numbers . The total transfer across the entire wave-

number range is clearly equal to zero, 

Io

(X) 
T (k) d k = 0 . 

It was pointed out that 

or 

a 
at 

a 
at 

fo
k I (X) 

E (k ') d k I > > :t k E (k ') d k I 

E(k')dk'::: 

(2-66 ) 

( 2-6 7) 

(2-68) 

Sub stituting th es e assumptions in the dynamic equation, on e obtain s 
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;t J; E(k') dk' = - 2 v s; k' 2 
E(k') di:' = - < (2-69) 

where E is the total dissipation of turbulence per unit mass. Hence, 

E(k") dk"] J,k k''E(k') dk' (2-70) 
k 113 • 

0 

The solution of this equation gives the expression for the spectrum in 

the universal equilibrium range, 

( )

2/3 

E(k) = !: -5/3 
k 

8v
3 

2 
3a E 

k . 
4 ]-4/3 

The equation contains only the parameters E and v as was 

dieted by Kolmogoroff 's theory. When r 
3a2E ) 1/4 

k < < 
8v 3 

( 2- 71) 

pre-

, the 

spectrum function reduces to the appropriate form for the inertial 

subrange of the spectrum 

( 
8 l 2/ 3 

E(k) = 9a 
€2/3 k-5/3 ( 2- 7 2) 

As was predicted, this part of the energy spectrum depends solely 

on the rate of dissipation of energy per unit mass. For large wave 

k > > ( 
3a82vE3 ) 1/4 numbers when --- , the spectrum function 

reduces to 

E(k) = ( 2:2 ) 2 ,2 k -7 (2-73) 

The presence of the dissipation and the kinematic viscosity in this 

expression is in agreement with Kolmogoroff's prediction for the 

high wave-number region of the energy spectrum. 
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Since no t hree -dime ns ional e ne r gy s pectrum has been 

m eas ured, it is ne c e ssary to t r ansform t his e quation to th e one -

dimensional form. Using the the ory of i sotropic turbule nce, the s e 

two spectrum functions can b e related by the following expression: 

E(k) = 
1 
2 

a a F(k) 
ok 2 

1 
2 

k oF(k) 
ok 

(2-74) 

[ Hinze ( 17)] . F(k) is the one-dimens i onal spectrum of the longi 

tudinal velocity fluctuations and defined as 

Jo
oo 

F(k) dk = u 2 ( 2- 7 5) 

The one-dimensional spectrum function for the universal equilibrium 

range becomes 

F(k) = 18 (~)
2

/
3 

k-5/3 
55 9a [

1 + ~ k4]-4/3 

3a € 

Define a wave numbe r k , such that 
rJ 

k = ( 3c/E )1/4 
rJ 8v 3 

(2-76) 

. This 

wave numbe r li e s in the intermediate range of the spect rum wh e r e 

both the ine rtia forc es and viscosity play a role . By substitut ion, 

the one-dimensional spe ctrum function becomes 

18 ( 23~
3 r4 5 1 /4 I :J5/3 [1 + I ~~ r]-4/3 F(k) 

( € V ) 
= 

3/2 55 
a 

(2-77) 

For 
k 

< 1 F(k) 
1 8 

1 \\3 r/4 (Ev 5 / / 4 ( ~J5/3 = ( 2-7 8 k 5 5 3/2 
rJ a 
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k 
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18 ( 213 )1/4 (Ev5)1/4 
F(k) = - -- 3/2 

55 37 a 
( 2- 79) 

However, k contains the constant a , whose magnitude i.s not 
rJ 

exactly known, but is of the order of O. 5 ( 3). This constant may 

vary, depending on whether local isotropy exists or not. For the 

purpose of representing the data, the wave number k is used, 
s 

( )

1/4 

where ks = v~ , and krJ ~ O . 5 7 k . The data can be 
s 

represented in non-dimensional form using the non-dimensional 

coordinates 1 
F(k) 

5 1/4 and 
(€ V ) 

The rate of turbulent energy per unit mass in isotropic 

turbulence is given by 

E = 2 v La, k z E (k) dk (2-80) 

In terms of the longitudinal one-dimensional spectrum, F(k), this 

expression becomes 

E = 15 v Iaa, k z F(k) dk , ( 2-81) 

Taylor (38) showed how the longitudinal correlation coefficient 

and 
U F(n) 

2-y'z; 
are Fourier transforms of each other. 

F(n) 
4 {D R 

211llx = cos dx u X u ( 2-82) 

and 

R (' F(n) 21rnx 
dx = cos 

X u (2-83) 
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where F(n) is d efined s uch that J
0

00 

F(n) dn ° 1 , and R is 
X 

the longitud inal correlation coeffici e nt . The d efinition for t he m icro -

scale given by T aylor ( 37) is 

= 2 Lim ( 2- 84) 
x ... o 

Expanding cos 
27TnX 

u in a Taylor series and substituti ng in the 

expression for the micro-scale, one obtains 

Jo
a) 

n
2 

F(n) dn . (2-85) 

The rate of dissipation per unit mass for isotropic turbulence is 

!au )
2 

€ = 7 . 5 V oy (2-86) 

Taylor ( 37) showed how the micro-scale can be expressed in terms 

of turbulent velocities 

= 

Therefore, 

and 

€ = 15 V 

2 
E = 15v U 

2 
n F(n) dn . 

By introduction of the wave-number notation , suc h tha t 

and F(k) = 
u 
21T 

2 
u F(n) , one obtains 

k = 

( 2-87) 

( 2- 88) 

(2-8q) 

21rn 
u 



(000 € = 15v J 
1 

4 0 

k
2 

F(k) dk (2-90) 

This result, of course, is similar to equation (2-81), which was 

obtained through the dynamic equation for isotropic turbulence . The 

micro-scale of the turbulence can now be obtained by measuring the 

one-dimensional energy spectrum. 

2 
u 

x2 = 10
00 

k
2 

F(k) dk ( 2-91) 

The other method is to assume that Taylor's hypothesis is vali.d, so 

that 

(2-92) 

Liu and Sandborn (21) have shown that the time-derivative of the 

turbulent signal can be measured relatively, simply by means of a 

differentiating circuit. 

Taylor ( 37) defined the average size of the eddies as 

L = 
X JO

O) 

R dx 
X 

(2-93) 

where Rx is the longitudinal correlation coefficient. By the use of 

equation (2-82) and n = 0 , one obtains 

F(n)n=O = 
4 
u R dx = 

X 

4L 
X 

lJ ( 2-94) 
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In wave -numbe r notation, t he macro-scale of t urbule nc e i.s 

L = 
X 

(2- 95 ) 

To determine the magnitude of F(k)k=O , the method of extrapolat ion 

as suggested by Sandborn and Slogar ( 30) has been used. Dryden (9 ) 

,J u 2 X 
shows that, for large Re:;\. (Re:;\.= v ) , the energy spectrum 

can be expressed as 

F(n) = 

or 

F(n) = 

or 

F(k) = 

L 
X 

4 u 

F(k)k =0 

,,,. 

2 u 2 

( 2- 9 6) 

( 2- 9 7) 

(2- 9 8) 

The value of F(k)k= 0 was determined by fitting this parabolic 

equation to a faired curve through the lower wave-number region of 

the energy spectra . 
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Chapter III 

EXPERIMENTAL EQUIPMENT AND PROCEDURES 

The entire experiment was performed in the large U.S. Army 

Meteorological wind tunnel located in the Fluid Dynamics and Diffusion 

Laboratory at Colorado State University. The purpose of this experi

ment was to survey the part of the boundary layer close to the rigid 

boundary. In this region the viscous contribution to the total shear 

cannot be neglected. The experiment and procedures used for this 

study will be discussetl in the following sections. A special chapter 

will be devoted to analysis of data and corrections. 

3. 1 Wind Tunnel 

Measurements were taken in the boundary layer which was 

allowed to develop alohg the floor of the 100 foot long test section of 

the large U.S. Army Meteorological Wind Tunnel (Figure 2). The 

cross section of the tunnel is approximately 6 by 6 feet, and the ceil

ing of this facility is adjustable in order to control the streamwise 

pressure gradient. The wind tunnel is of the recirculating type, and 

the air speed in the tunnel is controlled by means of a variable speed, 

variable pitch aircraft propeller. The air temperature in the tunnel 

can be maintained at a constant level by means of an air conditioning 

system. Detailed description of this facility has been given by Plate 

and Cermak (26). Damping screens and a 3:1 entrance contraction 
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produce a low free stream turbulence intensity, fi;u This 
CX) 

turbulence intensity ranges from 0.00015 to 0. 00027 at a fre e stream 

velocity of 20 fps to 80 fps, respectively (Figure 3). All measure-

ments were made at a distance of 85 feet downstream from the inlet 

of the test section. The measurements were made in a vertical 

plane along the center of the tunnel. The boundary layers along the 

walls of the tunnel were artificially tripped by a saw tooth fence pre

ceded by a four foot section of 1/2 inch gravel fastened around the 

perimeter of the tunnel just downstream from the entrance contraction. 

The roughness at the entrance of the test section was found to thicken 

the boundary layer providing the experimenter with a thicker boundary 

layer to explore. Another advantage of inducing transition as far up

stream as possible was to have as long a period of turbulence devel

opment toward equilibrium as possible. 

3. 2 Instrumentation 

3. 2. 1 Actuator - Measuring probes were moved vertically 

through the boundary layer by means of a precision actuator 

(Figure 4). The position of the probes could be changed accurately at 

one thousandth of one inch intervals. This was achieved by means 

of a counter which was connected to the actuator movement. The 

position of the probes with respect to the tunnel floor was determined 

from the counter reading when the probes were touching the floor. 

With a set of magnifying lenses it could be determined whether the 
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probes were touching th e tunnej floor or not. The total movement of 

t he actuator was approxi m ate ly 7. 5 inches. The a ctuator was fastened 

at t he center of t h e tunnel floor, outside the tunnel , so that only th e 

measuring probes were allowed to protrude into t h e boundary layer. 

3. 2. 2 Pi tot-static tube and static -pressure tube - Mean 

velocity meas ur ements were made with a flatten ed total-head tube 

with a square cut e nd (Figure 5). This probe had a width of 0. 050 

inch, a height of 0. 0 30 inch and a wall thickness of 0. 005 inch. The 

total head tube, which was mounted directly to the actuator, could be 

moved by the actuator vertically away from the floor up to a distance 

of approximately 7 . 5 inches. The free stream velocity was measured 

by a standard 1/8 inch diameter pitot-static tube (Figure 5) at the 

axis of t he tunnel perpendicular above the position where all other 

measur ements were made. The pressure of the t otal-head tube in 

the boundary layer was measured against the pressure of the static 

openings of the pitot - static t ube in the fr ee stream. 

An attempt was mad e to m easur e t he static-pressure 

distribution in the boundary layer. For this purpose a static tube 

with a round ed nosE- and two s tatic openings ( 0 . 016 inch diameter) 

was used. Th e diameter of the static tube was 0 . 04 3 i nch a nd ~as 

1 . 5 inch Jong- ( Figurf' 5) . The· static op0nings -.,·0re lu._: ated 0 . 75 inch 

from the round ed nose, opposite fr om each other in a p la n e parall el 

to th e floor of the tu nnel . Th ,· static pressure in thE' bo u :~1a ry layer 
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was measured against the pressure of t he static openings of th e 

pitot-static tube in the free s-::ream. 

The pressure probes -.vere connected to a Trans-sonics 

Equibar Type 120B ele ctronic manomete r by means of plastic tubing. 

3. 2. 3 Hot-wire probe s - Turbulence m easureme nts were 

made by means of the hot-wire technique. The hot wir e , made of 

platinum coated tungsten with a diameter of 0. 0002 inch, was operated 

by a constant temperature hot-wire anemometer designed at Colorado 

State University by Finn and Sandborn ( 1 1). The rms of the output 

signal of the hot-wire anemometer was measured by a true rms 

meter. After appropriate amplification, the fluctuating part of the 

output of the anemometer was recorded on F. M. magnetic tape. The 

streamwise velocity fluctuati on, -V u 2 , was measured by means 

of a hot wire which was posi ioned parallel to the floor and perpendicu

lar to the axis of the tunnel. The 0. 050 inch long wire was soldered 

at each end to a support which in turn protruded from a 3/32 inch 

diameter ceramic probe (Figur e 5). The ceramic probe was placed 

in a vertical position and co uld be moved by the pre cision actuator i n 

the same manner as d e scribed before. 

A rotating single wir e of similar desc ription was us e d t o 

measure the turbulent shear stress. The wire could b e rotated 36 o0 

in a plane parallel to t he fl 9w and perpendicular to th e floor of th e 

tunnel. The moveme nt of th e rotating wire was provided by a low

speed electr ic motor, and the posit ion of th e wire was de termined 
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from the output of a 10-turn potentiometer which was rotated by the 

motor through a set of connecting gears. 

3. 2. 4 Wall shear-stress meter - The wall shear stress was 

measured by means of a pivoting-ele ment gauge (Figure 6). The wall 

shear stress which acts on the horizontal surface of the pivoting ele

ment is magnified by a lever arm. The surface on which the shear 

stress acts was mounted flush with the floor of the tunnel; its center 

coincided with the point where all other measurements were made. 

The instrument was positioned in such a way that the surface was 

only allowed to move in a streamwise direction. The shear meter is 

used as a null-reading instrument. The measurements are obtained 

only when the horizontal surface of the pivoting element is flush with 

the floor of the tunnel. The pivoting element with the horizontal sur

face is held by two strain-gauge wires each at one side of the pivoting 

element. One end of each of the strain-gauge wires is fastened to the 

pivoting element just above the point of rotation; the other ends are 

fastened to micrometer movements. The micrometers are able to 

stress or relax each wire independently. When the wall shear acts 

on the horizontal surface of t he pivoting e lement the strain-gauge 

wires are stressed accordingly. The different magnitudes o~ strain 

can be read as voltage changes from a Whea tstone bridge . The s h ear 

meter was calibrated with known we ights, · each of t hem representing 

a certain shear stress . One wire was u sed as a referen ce wire to 

determine the position of the horizontal surface. The other, called 
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the active wire, was used to determine the forc e on the horizontal 

surface . Two ''dummy" wir es of about the same length as the active 

and reference wires were mounted inside t he instrument to act as 

temperatur e compensators. The active wire and one of t he dummy 

wires made up two adjacent arms in one Wheatstone bridge; the refer 

ence wire and the other dummy wire made up two adjacent arms in 

the second Wheatstone bridge. If the two wires are identical in dimen

sions and resistance and if both wires are subjected to the same 

changes in temperature during the course of measurement, the resist

anc e changes due to temperature alone will be the same for both of 

the Wheatstone bridge arms in which the wires are located. The 

effects of temperature on the wires will cancel and will not influence 

the measurement of the stress-induced strain at the active wires. 

Sigmund Cohn #4 79 platinum alloy was used as the wir e 

material; the wire diameter was 0. 0005 inch and the resistance of 

each wire was approximately 350 ohms. The strain sensitivity of 

this type of wire was higher than that of most other materials and 

since it also had a relatively high tensile strength this type of wir e 

material made an excellent sensing element for unbounded strain 

gauges. The pivoting element was supported by means of two tungsten 

ca rbide pivots, each positioned carefully in sapphire ve e -j ewel bear

ings. The pivot s were precision ground to match the geometry of the 

bearings in orde r to obtain almost fric tion less movement. Eac h 
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Wheatstone bridge was excited by 4 volts D . C. The bridges were 

balanced with each wire in an unstressed state. 

With the pivoting element locked in the null position, the 

reference wire was stressed until an unbalance of 0. 004 volt was 

obtained. The pivoting element was then unlocked and allowed to 

move due to either the calibration weights or due to the actual wall

shear stress acting on the horizontal surface. The active wire was 

then stressed until the pivoting element had returned to the null posi

tion as indicated by a 0. 004 volt unbalance of the Wheatstone bridge 

containing the reference wire. With the pivoting element in the null 

position, the unbalance of the Wheatstone bridge containing the active 

wire was read. This voltage is indicative of the streamwise shear 

force on the horizontal surface of the pivoting element. The calibra

tion curve (Figure 7) shows a linear relationship between output 

voltage of the bridge and shear stress. The instrument was mounted 

in the wind tunnel, and shear measurements were obtained for a range 

of Reynolds numbers. 

3. 2. 5 Integrator - Some mean quantities are difficult to 

establish due to the fact that these quantities are made up of a mean 

component and a fluctuating component. Therefore, it is necessary 

to employ some averaging method over a sufficient le;1gth of time so 

that a reliable average can be obtained. This can be done graphically 

or electronically. The graphic integration is not desirab ie for the 

evaluation of great quantities of data . An alternate approach is to 



4 9 

use an e lectronic integrating circuit that was d eveloped a t th e Fluid 

Dynamics and Diffusion Labor atory a t Co lorado Sta te Unive r sity 

(Figure s 8 and 9). The integr ator uses an operational amplifier t e ch

nique to insur e proper freque ncy r e spons e . The integrator can e a s ily 

be calibrated by introducing a non-fluctuating voltage from a power 

supply or a non-fluctuating output of th e transducer for the required 

period of time. The integrator was used in conjunction with mean 

velocity measurements, space correlations, and turbulence spe ctra. 

3. 2. 6 Differentiating circuit - A differentiating circuit was 

used to measure the average size of the smallest eddies. The differ-

( ~tu J 

2 

entiating circuit (Figure 10) was used to evaluate u This 

quantity was obtained indirectly from the calibration curve of the 

differentiating circuit (Figure 11). The output voltage of the differen

tiating circuit is equal to the product of a constant and the time deriva-

tive of the input voltage, 

[ d 
e t = R. C. 

OU 

e. (t)] 
1n 

dt 
( 3-1) 

The magnitude of th e constant, R. C . , depends on the magnitude of 

the resistive and capacitive e leme nts in the differentiating circuit . 

The freque ncy r e spons e of the diffe r e ntia ting circuit was b etter tha n 

2000 cps. To pr event saturation, the hot -wire s igna l from t he F. M. 

tape ha d to b e attenuate d so that th e m agni t ud e of t h e rms of t he 

signals was b e tw een 0. 01 and 0. 05 volt . 
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Chapter IV 

CALIBRATION PROCEDURES AND DATA REDUCTION 

4. 1 Mean-Velocity Measurements 

Instrumentation used to obtain measurements in a boundary 

layer especially close to the solid boundary needs to be small in 

dimensions, and the position needs to be known accurately. There 

are many uncertainties about pressure measurements in the imme 

diate neighborhood of a solid boundary. Velocity measurements 

require corrections for low Reynolds number, turbulence and velocity

gradient effects and wall proximity. For boundary-layer exploration, 

the diameter of the total-head tube needs to be small because of the 

steep velocity gradient close to the solid boundary. In order to reduce 

the dimensions of the total-head tube in the direction normal to the 

wall, the tube is flattened to a roughly rectangular shape. 

4. 1. 1 Calibration of pitot-static tube - A 1/8-inch diameter 

pitot-static tube was used as a standard throughout the entire experi

ment. It was calibrated against a temperature compensated heat

transfer device, which in turn was calibrated in a whirling-arm 

apparatus. 

The temperature compensated heat-transfer dev-i ce consists of 

two thin quartz crystals, each having a diameter of O. 5 inch. The 

crystals will resonate at their natural frequency, which d ,.- µends on 

the geometry of the crystals and the environment i n which the crystals 
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are placed. One of the crystals was provided with a resistive 

material, which acted as a heating device. A change in temperature 

will cause a comparable change in the natural frequency of the crys

tal. When the heated crystal is subjected to forced convection, the 

change in natural frequency will become a function of the velocity. 

The second crystal acts as a compensator for ambient temperature 

changes. The natural frequency of the reference crystal is subtracted 

from the natural frequency of the heated crystal. This difference in 

frequency is a function of the temperature difference between the two 

crystals. Assuming that other conditions do not alter the response 

of the crystals, their temperature difference will then be a function 

of the velocity when normal atmospheric conditions are maintained _. 

The two crystals were mounted in a holder side by side and placed in 

the whirling-arm apparatus. The heating current to the active crystal 

was kept constant at 26 milliamperes throughout the experiment. The 

crystals were placed in such a position that they were parallel to the 

path of the probe. The probe was placed at the end of a horizontal 

arm which rotated about a vertical axis. The horizontal distance 

between the vertical axis and the heated crystal was 34. 25 inches. The 

circumferential speed of the probe could be altered from 1 fps to 32 fps 

by using different pulley combinations. A set of brushes was used to 

transmit the electrical signal from the crystals to the electrical 

counter outside the whirling-arm apparatus. The horizontal arm 

rotated above a cylindrical tank. The probe rotated in the tank through 
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a narrow circular slit in the cover of the tank. Due to the motion of 

the probe, a circulatory air flow was set up in the tank, moving in the 

same direction as the probe. Two vertical baffles were placed in the 

tank to decrease the strength of this circulatory flow. Nevertheless, 

a correction for this flow had to be made. This correction was ob

tained by means of a pitot-static tube inserted horizontally through 

the side of the tank as close to the path of the heated crystals as possi

ble. The dynamic pressure due to the swirl created by the moving 

probe is plotted against the calculated speed of the probe in Figure 12. 

The probe speed was obtained by counting the number of revolutions 

of the horizontal arm in a certain time span. The radial distance at 

which the heated crystal is mounted away from the vertical axis can 

be measured. Consequently, the speed at which the heated probe is 

traveling can be obtained. The relative velocity of the heated crystal 

with respect to the air in the immediate vicinity was obtained by sub

tracting the swirl velocity from the probe speed. The calibration 

curve of the probe (Figure 1 3) shows the frequency difference as a 

function of the relative velocity of the probe. 

The next step was to calibrate the pitot-static tube against the 

crystal probe. This was done in the free stream outside the boundary 

layer in the wind tunnel. The probe was placed in the tunnel in such 

a way that the crystals were parallel to the mean flow. It was found 

that the maximum permissible error in alignment of the crystal probe 

was approximately ± 5° up to a velocity of 32 fps. This was the 
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maximum obtainable speed with the swirling arm. Trying to get 

higher speeds resulted in slippage of the belt connecting the pulleys 1 

with the result that the speed of the probe became unstable. The 

calibration of the 1/8-inch pitot-static tube against the crystal probe 

is shown in Figure 14. The results of this calibration show that the 

velocity head as measured by the pitot-static tube needed a correction 

of 1. 73 % • 

4. 1. 2 Viscous effects on total-head tubes - MacMillan ( 22) has 

pointed out that the tube Reynolds number for total-head tubes at low 

velocity may become so small that viscous effects are important. He 

found that at low speeds the pressure in the circular total-head tube 

was greater than the true total pressure. For flattened, blunt nosed 

total-head tubes, the press re in the tube is higher than the true total 

pressure as long as the tube Reynolds number based on the internal 

height is less than 15. For tube Reynolds numbers between 15 and 

800. the pressure in the tube is lower than the true total pressure. 

For tube Reynolds numbers higher than 800. the effect of viscosity on 

total-head tubes can be neglected. The total--head tube used in the 

boundary layer exploration was calibrated in the free stream against 

the standard pitot-static tube. so that this calibration takes into 

account the viscous effects. It turned out that there was no detectable 

difference between the pressure as measured by the standard pitot

static tube and the pressure differential between the total-head tube 
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and the static pressure from the standard pitot-static tube (over the 

range of velocities encountered in the boundary layer). 

The effects of shear, wall proximity and turbulence intensity on 

the velocity head readings in the boundary layer still need to be deter

mined. Calibration took place in the center of the tunnel where the 

turbulence intensity is extremely small, the shear stress is zero and 

the wall is too far away to have any effect on velocity head readings. 

4. 1. 3 The effect of shear on total-head tubes - MacMillan ( 23) 

found that the effect of shear alone could be conveniently expressed as 

a displacement d of the effective center of the tube toward the region 

of higher velocity. MacMillan found that the value of d/D was 0. 15, 

independent of Reynolds number and velocity gradient. D is defined 

as the external height of the tube, which in the present case was 

0. 0 30 inch. Therefore, the displacement of the tube toward the 

region of higher velocity is 0. 0045 inch. 

4. 1. 4 Wall proximity effects on total-head tubes - MacMillan 

( 23) gives a relation for wall effect expressed as a function of y/D . 

In this case, y is defined as the distance from the rigid boundary to 

the center of the total-head tube. When y/D < 2 , this correction 

must be applied. It is expressed as a correction u' to be added to 

the measured velocity UM . MacMillan also found that u '/UM de

pends only on y/D and is independent of a Reynolds number, the 

latter being based on the shear velocity and the external Leight of the 

tube (Figure 15). 
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4. 1. 5 Turbulence effects on total-head t ube s - Goldstei n ( 1 3) 

obtained the following expres3ion for the quantity which i s m easur ed 

by the total-head tube in a turbulent stream. 

1 2 1 (2 2 2 
pm= p + z PU ..!... z p U + V + W) ( 4-1) 

The following discussion is partly taken from the analysis 

Landweber (20) made for the effect of turbulence on total-head tubes . 

The equation of motion for a two-dimensional incompressible 

boundary layer normal to the rigid boundary can be reduced to 

avi 
ay 

= 
1 ap 
P ay 

Integration with respect to y gives 

vi = 
p 

p 
+ constant . 

( 4-2) 

( 4- 3) 

The constant of integration is determined by the condition outside the 

boundary layer, v 2 = 0 , and the local mean pressure equals the 

external pressure P . It follows then that 
CX) 

p 

p 
= 

p 
CX) 

p 
-~ (4-4) 

When this equation is introduced in the expression for the quantity 

measured by a total-head tube, one obtains the following: 

p = p 
m oo 

1 
+ 2 2 1 [- - -] p U + 2 p u 2 -v2 + w2 • ( 4-5) 
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Putting p p 1 
P u2 and substituting in the above - = 

m ro 2 m 

equation 

1 
P u2 1 p uz 1 ( u2 w 2 ) ( 4-6) = + p vz + 2 m 2 2 

or 

u u (1 uz v2 w2 
) ½ (4-7) = - U2 + 7}T" m uz 

m m m 

Assuming vz /U2 
m 

equal to w"l /U 2 

m 
, the expression for the 

effect of turbulence on a total-head tube becomes 

U = U (1 - u2 )½ 
m U 2 

m 
(4-8) 

Hinze ( 1 7) questions Goldstein's expression for the quantity 

measured by the total-head tube. In the first place, due to the finite 

dimensions of the opening of the total-head tube, deviations from 

Goldstein's relation may be expected. Goldstein's expression might 

be correct if the tube were infinitely small in dimensions so that the 

total-head opening can be considered a true point. When the dimen

sions of this opening are of the same order of magnitude as the 

lateral or the vertical scale of the turbulence, a correction must be 

made. This correction is necessary because of the resulting averag

ing that will inevitably occur. The opening of the total-head tube had 

the following dimensions: height = 0. 020 inch, width = 0. 040 inch. 

The lateral integral scale of the turbulence close to the floor was 

measured to be 0. 049 inch and 0. 030 inch at free-stream velocities 
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of 20 fps and 40 fps, respectively. These scales are of the same 

order of magnitude as the width of the opening of the total-head tube. 

However, total-head tubes, vhich are too small and too fragile, are 

impractical for use in thick boundary layers. 

Secondly, Hinze maintained that lateral and vertical velocity 

fluctuations will not produce the same effect as predicted by Goldstein. 

No systematic investigation is available concerning the effect of tube 

dimensions and the effect of turbulence on total-head tube readings. 

In view of this, and since no better method is available, the correct ion 

outlined above is applied to all the measurements with the total-head 

tube. Figure 16 shows the magnitude of the correction as applied to 

velocity measurements in the boundary layer at free-stream velocities 

of 20 fps• 30 fps, and 40 fps , respectively . 

4 . 1 , 6 Mean-velocity calculations - The mean velocities are 

obtained through the following steps: 

1 . Obtain the pressure differential in mm Hg from the 

calibration curve for the integrator output versus 

Trans-sonics reading (Figure 17) . 

2. Apply the correction for the Trans-sonics from the 

calibration curve of the Meriam micromanometer 

versus Trans-sonics (Figure 18). 

3. Apply the total-head tube correction of 1. 7 3 % , as 

obtained by calibration of total-head tube versus 

standard pitot-static tube. 
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4. Calculate the measured velocity from 

.6h = 
true 

1 
2 

uz 
P M ( 4-9) 

5. Make correction for wall proximity. Obtain y/D and 

u' 
enter into Figure 15, to obtain --V-

M 
, where u' is 

the correction for wall effect to be added to the measured 

velocity UM 

U = U + u' 
m M 

( 4-10) 

6. Correction for turbulence effects. 

( 4-11) 

7. Correction for shear effects. d = 0. 15D = 0. 0045 inch. 

This correction is made toward the region of higher 

velocity. 

4. 2 Static-Pressure Measurements 

The velocity fluctuations in a turbulent flow field go hand in 

hand with the static pressure fluctuations. The static-pressure fluc

tuations are the result of the non-linearity of the governing equations 

of motion. It has always been a difficult problem to evaluate the 

change in velocity and pressure fields due to the introduction of a 

probe in the stream. It is relatively easy to obtain relial, le pressure 

measurements in a non-turbulent uniform flow. In such a case, the 
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reading of a static-pr essure tube will depend on th e s hape of the nose 

and the dis tance of the supporting stem behind the openings. Accord

ing to Fage ( 10), the reading obtained with a static-pressure tube is 

inde pendent of the geometry of this tube as long as the followi ng 

requirements are met . The static openings must be at least 6 tube 

diameters behind the nose and the supporting stem at least 15 stem 

diameters downstream from the static openings. 

However, for turbulent flow the problem becomes much more 

complicated. Again, there is very little evidence in the literat ure of 

a systematic investigation of the effect of turbulence on the readings 

of the static-pressure tubes . Goldstein ( 13) argued that the difference 

of the measured static pressure and the true average static pressure 

is due to the effect of the impact pressure of the fluctuating cross 

velocities on the tube and its openings. This effect depends not only 

on the geometry of the tube and its openings but also on the magnitude 

and frequency of the cross velocities. Goldstein proposed that for a 

tube with a large number of small openings equally spaced around its 

periphery, the reading of the tube can be expressed as 

P = P + k p ( v 2 + wa) 
m 1 ( 4-12) 

where P is the true average static pressure and kt some coefficient. 

For isotropic turbulence, he expects kt to have a value of ¾ How-

ever, a reliable value for kt can only be obtained experimentally . 

It is also conceivable that the scale of the lateral ve locity fluc tuations 
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wi ll affec t the tub e reading. This is e spe cially t rue whe n this scale 

is of t he same orde r of magnitude a s th e tube diame t er . Ac cording 

to Hinz e , the static pr essure measured by a static-pressure tube will 

be too low. The cross turbulence affects the pressure distribution 

along the circumference of the tube. The statement that the measured 

static pressure is too low becomes evident when it is realized that 

normal flow around a cylinder gives a resultant negative pressure. 

Corcos ( 6) discussed the effect on the pressure field by the cross 

flow in a turbulent flow field. Instantaneously, the static-pressure 

probe will experience a cross flow which will cause an additional 

pressure field. The effect of the cross flow will depend on the probe 

geometry and the Reynolds number of the cross flow (based on the 

\ 

probe diameter). The instantaneous side force due to the instantane-

ous cross flow will depend on the Reynolds number of this cross flow. 

For high cross-flow Reynolds numbers, the side force is proportional 

to the area exposed, the velocity squared and the density, 

-f'i2 ~ A p ( v'! + w 2 ) 
s 1 (4-13) 

At low Reynolds numbers in the Stokesian range, the side force is 

proportional to the diameter of the probe, the viscosity, and the 

velocity, 

w 
s ( 4-14) 
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Chao ( 4) yawed his static -pressure probe , so that the pr obe could be 

subjected to a known cross flow. His probe had a diamete r of 1 / 16 

inch and four static openings of approximately 1/32 inch eac h. Th e 

openings were located at 90° inter vals a r ound the c ircumference of the 

probe. The pressure measured by the probe did not change when the 

probe was exposed to a known cross flow deliberately. Even with a 

67% increase of the lateral force due to the yawing of the probe, Chao 

did no observe any appreciable changes in static pressures. From 

Chao's experiment, it can be inferred that the static-pressure tube is 

insensitive to small errors in alignment. In view of what is mentioned 

above, there does not seem to be a reliable method to calibrate and to 

correct the measurements taken with a static-pressure tube. An 

attempt was made to measure the static pressure in the boundary 

layer with respect to the static pressure in the free stream. This 

pressure differential was too small to be measured accurately with 

the available equipment. 

4. 3 Turbulence Measurements 

4. 3. 1 Hot-wire sensitivity to velocity and angle of yaw - The 

measurement of transient velocity components was done exclusively 

by the constant - temperature hot-wire anemometer designed at 

Colorado State University by Finn and Sandborn ( 11) . 

The detecting element of a hot-wir e anemometer consists of 

a very fin e and short metal wire, whic h is heated above ambi ent 
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tempPrature by means of an electric current. By using a constant

temperature hot-wire anemometer the e lectric resistance of the wire 

and its temperature are kept constant. A slight variation in velocity 

will result in a variation in heat loss from the hot wire, which in turn 

produces an unbalance of a Wheatstone bridge. Any unbalance in the 

bridge is compensated for by means of an electronic feedback system. 

The feedback system senses the unbalance in the bridge and alters the 

current to the bridge to rebalance it. Such a feedback system operates 

almost instantaneously, and it can follow and balance the bridge for 

frequencies up to 50,000 cps or greater. 

The amount of heat transferred from the hot wire depends on: 

1. The velocity of the fluid 

2. The difference in wire temperature and the temperature 

of the fluid 

3. The physical properties of the fluid 

4. The dimensions and physical properties of the wire 

5. The orientation of the wir e in the flow field. 

The wire loses heat through conduction, free convection, forced 

convection and radiation. Generally, the effects of radiation and of 

free convection are neglected. The temperature distribution along the 

wire can be predicted by solving the steady-state problem of heat 

transfer from a finite hot wire with Joulean heating, conduction of 

heat into the wire supports and forced convection. Since we want to 

measure transient velocities rather than mean velocities, we need to 
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consider th e heat transfer from the hot wire in the transient sta te. 

The transie nt solution can be approximate d by assuming that the wir e 

responds as a first order system. In hot-wir e a ne mometry, it i s 

assumed that th e fluctuations can be evaluated from a calibration 

b e tween the wir e heat loss and the quanti ty to b e measured. The 

wir e heat loss must b e known very accurately so that the first der iva

tive of heat loss with r e spect to the quantity which changes the hea t 

loss can be obtained. 

The heat loss from a circular cylinder of infinite length has 

been found to be a funct ion of velocity, temperature, fluid properties 

and angle of attack. For this experiment, it was assumed that the 

hot wire was used in flows where temperature and fluid properties 

were conside red constant. It is assumed that the hot wire is operated 

ideally by the electronic circuit, so that problems of frequency re

sponse do not need to be considered. The problem is now to find a 

technique to obtain the turbulent velocities from the hot wir e output 

and the calibration curves. The output of the constant-temperature 

hot-wire anemometer, which is indicative of the hot-wir e heat loss, 

can now b e assumed to be a function of velocity, UTOT , and the 

angle of attack, ~ , provid ed the geometry and physical properties 

of the wir e r e main constant , 

(4-15) 
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The total v~locity seen by the hot wire at any moment is 

u TOT = -v ( u + u ) 2 + V 2 + w 2 ( 4- 16) 

The rectangular coordinate system is rotated so that the mean velocity 

U is directed in x-direction only. The angle ~ :..s the total angle 

between the direction of total velocity and the position of the hot wire. 

The angle ~ can be thought of as being made up of two angles ¢ and 

r/J . Angle ¢ is the angle t he hot wire makes with the x-axis when 

rotated in the x-y plane, and angle r/J is the angle the hot wire makes 

with the x-axis when rotated in the x-z plane (Figures 19, 20 -, and 21). 

Any combination of ¢ and r/J coincides with one , ·alue for angle ~ . 

oE 
When the wire is perfectly aligned in the x-y plane, the value of or/J 

is zero. However, the heat loss is quite sensitive to angle of yaw for 

small deviations from perfect alignment ( 32). Therefore, it is essen

tial that a wire yawed in the x-y plane is aligned exactly in this plane. 

Considering now only angles of yaw in the x-y plane, the output of the 

constant-temperature hot-wire anemometer can now be assumed to be 

a function of total velocity vector, UTOT , and the angle of attack, 

¢ 

(4-17) 

In terms of differentials, one obtains 

oE 
auTOT 

( 4- 1 8) 
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The differential of the total velocity is 

[(u + u) du+ vdv + wdw ] 

( 4-19) 

Generally, it is assumed that U >> u , v or w , so that t he above 

equation reduces simply to 

d UTOT -::::: du (4-20) 

For large magnitudes of turbulence, the complete expression of 

dUTOT must be utilized. If the fluctuations of the velocity are large 

in reference to the mean velocity, it is nearly impossible to evaluate 

the output of a hot wire anemometer. From Figure 19, it can be easily 

seen that the instantaneous angle of attack can be written as 

-1 
cf,' = cf, + tan V 

( u + u) 

Its differential may be expressed as 

d cf, = 
(U + u) dv - vdu 

(U + u) 2 + v 2 

By substitution, one obtains 

oE 
dEOUT = au 

1 

-V(u+u) 2 +v2+w2 

[ 
(U + u) dv - vdu ] 

(U+u) 2 +v 2 

( 4-21) 

(4-22) 

[ (U + u) du+ vdv + wdw] + 

(4-23) 
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The above equation is still impossibly complex, and additional 

assumptions seem necessary to obtain a less complex expressi on in 

which the terms can be evaluated. 

It is now assumed that the mean velocity U is much greater 

than the turbulent velocities (i. e . , U > > u , v or w). Substituting 

these assumptions in the above equation, one obtains the following 

relation: 

or consequently, 

8E du + 
au 

EOUT = E ( U ' q,) 

oE 
aq, dq, (4-24) 

(4-25) 

Assuming now that E(U , cf,) is analytic everywhere in the flow field, 

the above function may be expanded in a Taylor series about some 

convenient point of operation. The deviations of the velocity and 

angle from its mean values are assumed to be small and will be de-

noted by u = U' - U and ct, 1 = q, 1
- cf, , respectively . Expanding the 

output of the hot wire about U and ¢ , the following is obtained, 

E(U', ~•) 0 E(U, ¢)+(:~Lu+ (~!L ¢1 + ii (:~~Lu'+ 

( 
a aE ) 
ap-

m 
• (4-26) 

The deviation of the wire voltage from its mean is denoted by e , 

where e = E(U' , cf,') - E(U, ¢) • The partial derivatives with 
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subscript m dcnoll' tilt' <·va]ualion ol' 1 llL·s<· p:.idial derivatives a t 

the point of ope rat ion ( U , cf> ) 

Negl e cting higher order terms, t ht' expansion can be 

rewritten as 

(4-27) 

is the sensitivity of the hot wire voltage to a deviation in 

velocity from its mean, and is the sensitivity of the hot 

wire voltage to a deviation in angle from its mean. From now on, 

the subscript m of the partial derivatives of E will be omitted with 

the understanding that all partial derivatives are being evaluated at 

the mean. 

From Figure 19, it can easily be seen that 

sin <!> 1 = 

After expansion, 

q> 1 = 
V 

V(U+u) 2 +v 2 

V 

V (U + u) 2 + v 2 

1 
+ 6 

(4-28) 

] 

3 

+ ..... {4-29) 

Previously, it was assumed that the mean velocity, U , is much 

larger than the turbulent fluctuations, consequently 

e = 
oE 
au u + 

1 
u 

oE 
o<f> V 

V 

u and 

( 4- 30) 

To employ this expression, it must be written in terms of quantities 

which can be measured such as root-mean squares or mean squares 
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of fluctuating quantities . The r e for e , t he a bove equation i s squared 

and ave raged. Thi s leads to 

"? 
= i:~ r u"z" -t 2 ( ~~) ( ~ oE ) -

oc/> UV + (~ 
2 

oE) -2 . (4 -31) o<f> V 

Letting 
oE s and 

1 oE sv , one obtains = af = au u u 

( 4- 32) 

The above equation requires that the hot wire has to be 

calibrated with respect to angle and velocity in order to obtain a 

value for uv from which the turbulent shear stress in the 

x-direction can be obtained. These sensitivities themselves vary 

with angle and velocity, however, it was found that the two sensi

tivity terms SU and SV are of equal magnitude at an angle of 

q, = 40° . Based on this information and previous experiments it 

was decided to operate the hot wire at angles of plus and minus 40° 

from the x-axis in the x-y plane. For the case of q, = 90° , or 

when the wire is perpendicular to t he mean flow, the angle sensi

tivity is zero (Figure 22) and the above equation becomes 

e2 = (SU) 
2 

ua (4-33) 

From this expression, the magnitude of u 2 can be obtained when the 

wire is properly calibrated against velocity, and the mean velocity 

at the point of measurement is known. 

Knowing the magnitude of u 2 , values of ~ and uv can 

now be obtained by using the measur e ments of e2 at the wire 



positi ons of plu s a nd mi.nu~ 40 ° . Ex-1mini ng a plot (Figure 22) of 

hot wi re voltage vr r s us ungk or attaC'k , it can be seen that for posi

tive angle s of d, • SV i s a po8i.t ive qua nt ity , and for negative angle s 

of attack SV i s a negative quantity . The r efor e, two equati ons can 

now be cons tructed; one for the positive angl e of attack, 

(€2) = 
+40 

(S2 ) u2 + 
U +40 

and the other for the negative angle of attack, 

(e2) = 
-40 

4. 3, 2 Hot-wire calibrations .. All hot wires used for this 

experiment were calibrated in the free stream outside the boundary 

layer in the Army wind tunne , so that accurate values for the hot

wire voltage could be obtained . The wire which was used for the 

turbulent shear measurements was calibrated for angles of attack 

of ± 9 0° and ± 40° • In thes e positions, the output voltage from the 

hot wire was obtained for mean velocities ranging from 5 to 40 fps , 

From these results; the velocity sensitivity, SU = ;~ , was ob .. 

tained for the three different angles: 90°, + 40° 1 a nd ... 40° . In 

order to insure a high degree of a ccuracy, th e ve locity sensiti vities 

wer e obtained ir1 two differ ent mann e r s. The most s tra'ight•forward 

way is t o obtain the slope dir e ctly from t he calibrati on c urve of th e 

wire voltage ver s us ve loc ity . However I t he m ea sur em ent of the 
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velocity sensitivity in this mann(' r 1s subject to a r e lativ ('1y great 

amount of error. 

From pr e vious experiments, it was fou nd that the mean heat 

loss from hot wir e s in subsonic continuum flow was quit e well pre-

diete d by King 's Law. 

= A'+ B' VU ( 4- 36) 

In order to obtain an accurate value for the velocity sensitivity, the 

equation not only must represent the data but also give a good first 

derivative. It was found that the power of the velocity in King's Law 

varies with the wire Reynolds number. The relation between the 

mean heat loss and the mean velocity appears to be expressed best 

by the relation 

R-R 
a 

= A' + B' Um 

For constant temperature operation, one can write: 

R(R - R ) 
a 

m 
= A' + B' U 

( 4- 37) 

( 4- 38) 

If the temperature of the fluid and of the wire is constant, the term 

R(R - R ) is a constant and 
a 

E 2 = A + B Um ( 1 1 4-39) 

If for no-flow the wire voltage is E , one gets 
0 

E 2 
- E 2 = B Um 

o 1 ( 4-40) 
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Since the wire voltag e for the no-flow conditi.on can be m easur ed 

very accurately, the term E z - E z i s plotted ver s us th e velocity on 
0 

a log- l og plot. As it turns out, this plot is not quite a straight line . 

However, straight lines can be fitted for certain ranges of velocity. 

For the velocity range of 1 . 5 - 4 fps, m is usually larger than 0. 5. 

For the velocity range of 4 - 12. 5 fps, m is close to O. 5 . For 

velocities greater than 12. 5 fps, m turns out to be smaller than 0 . 5. 

The derivative of equation 4-40 with respect to U yields an 

expression from which the velocity sensitivity can be obtained. For 

each velocity range where the data can be fitted with a straight line, 

accurate values for m and B may be obtained and the velocity sen

sitivity calculated. The results for the velocity sensitivity of both 

methods are similar except for velocities below 3 fps, ln this velocity 

range, m changes so rapidly that no straight line can be fitted to the 

data . This method to obtain the velocity sensitivity was used for all 

three angles of yaw. 

For an absolutely symmetrical wire, the velocity sensitivity 

curves should be the same for + 40° and - 40° ; it turns out that 

there is a slight difference in the two curves (Figures 23 and 24) . 

Figure 25 shows the variation of velocity sensitivity with velocity for 

a wire normal to the flow. The angle sensitivity at 

cf> = + 40° and </, = - 40° was obtained by measuring the hot wir e 

voltage at seven different a gles ranging from <f, = + 35 ° to 

cf> = + 45° , and from <h = - 35° to </, = - 45° , respectively . 
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The results show that no differenc e in angl e sensitivity between the 

positive and negative angle of yaw coul d b e discerned because of the 

scatter of the data (Figur e 26). 

4. 3. 3 Calibration of the differentiating circuit - The average 

size of the smallest eddies, which are mainly respons ible for the 

turbulent energy dissipation, can be measured directly by means of 

a differentiating circuit. The size of the smallest eddies, X , 

called the micro-scale, can also be obtained from the power spectrum. 

The micro-scale is defined by Taylor ( 37) as 

1 
x2 = 2 lim 

x ➔O 

1 - R 
X 

( 
1 -y

2

Ry) = lim 
y ➔ O 

(4-41) 

For isotropic turbulence, it turns out that R = R when x = y VZ . 
X y 

The micro-scale, A , is the intercept on the y axis of a parabola of 

correct curvature drawn in such a manner that it touches the (Ry , y} 

curve at its maximum when y = 0 

1 
2 ! :; r + R = 1 - L 

y 2'. 
2 

u 

Neglecting higher order terms, 

or 

2 
= 2 u 

= 

lim 
y--t 0 

. Taylor shows that 

1 
4 ( :) r -..L 

4'. 
2 

u 
{ 4-42) 

(4-43) 

( 4 - 44) 
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Foe isotropic 1 ur·bulcnc c 

r ~~ r = ½ i :~ i, (4 -45) 

Therefore, 

= ( 4-46) 

Assuming that Taylor 1s hypothesis is valid, the previous equation 

can be written as 

A = 
u~ (4-47) 

For a wire normal to the mean flow, the instantaneous output voltage 

is related to the instantaneous velocity by 

e(t) = S u(t) 
u 

( 4-48) 

The micro-scale can now be directly expressed irt terms of the hot-

wire anemometer output voltage1 e(t) , 

A = 
u -r:; 

( 4-49) 

where v-=;:, is the rms of the signal which i.s fed into the diffe ren

' fff;:ff tiating circuit. The magnitude of Vl ~ J is obtained from the 

calibration curve ( Figure 11). 
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Assume that the inrut signal to the d iffe r ent iat ing circuit is 

a sine wave , e = A si n uJt 

this s ignal i s ~ = 
A 

vz 
Aw 

fi 

It ca n easily b e shown that th e r m s of 

Now de 
dt 

= A :.u cos wt a nd 

( 4-50) 

where w = 2 1r n Therefore, the rms of the derivative of the 

input-sine wave can be calculated when its frequency and the magni

tude of its rms are known. It is possible to obtain a calibration of 

the differentiating circuit of the output voltage, fi , versus the 

calculated value for~ (Figure 11). The micro-scale, ~ 
can be calculated sinc e all the terms in the expression for A can be 

obtained. 

4. 3. 4 Possible sources of e rror in turbulence measur e ments -

The measureme nt of turbulent v elocity components seems relatively 

easy following the previous discus sions. However, these measur e -

m e nts are subject to a great deal of uncertainty. In this section, 

the possible sources of error in turbulence measur ements will be 

pointe d out. 

a. Effect of t he solid boundary on turbulence measurements 

Whe n a hot wire is us ed c lose to a solid boundary, e rrors 

are introduc e d due to the effect of the boundary on the rate of h ea t los s 

from t he wir e . Wh e n a tungste n wir e is us ed at a n overheating ratio 
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of R/R = 1. 5 , the wire temperature is approximately 250° F. 
a 

Cons equently, when this hot wire i s us ed near a solid boundary the 

wire can be 180°F hotter than the surface . Besides losing heat to 

the air due to forced convection, the wire may lose addi ional heat to 

the surface, due to conduction . Piercy, Richardson and Winny (25) 

used pot ential-flow theory to determine the conduction-heat loss due 

to the presence of a solid surface. These results cannot be expected 

to apply to the boundary layer, since different velocity profiles are 

involved. Wills ( 42) showed the effect of the solid boundary for lami

nar flow. The air velocity at the wire was found from the known 

laminar velocity profile. Using the same channel. the boundary 

layer was allowed to become turbulent. The satne values for UT 

were used in order to maintain the same velocity gradient at the wall. 

As could be expected, the laminar correction was too big to be used 

in turbulent flow. The results indicated that close to the wall a cor

rection approximately half as big as for the laminar case was a good 

estimate. 

No exact correction for the effect of a solid surface on the 

heat transfer from a wire can be obtained, unless one resorts to 

experimental methods. The effect of the boundary on th e heat trans

fer from the hot wire for the no-flow condition is shown in Figur e 27. 

For this condition, th e effect of the surface becom es neg1igibl e when 

the wire is O. 1 inch away from this surface . For the turbulent bound

ary layer with a free stream velocity of approximat e ly 20 fps, surfac.e 
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effects were detected when the wire was within 0.01 inch of t he 

surface . At such distances from the surface, 10% discrepancies in 

estimating the clearance between the wire and the boundary exist. 

The fact that the surface is not perfectly smooth adds to this problem. 

In this experiment, data within 0. 02 inch of the surface are subject 

to these uncertaint ies. It was found that at distances greater than 

0. 0 2 inch from the surface the velocity measurements from the hot 

wire and the total-head tube coincide quite well. 

b. Effect of wire length on turbulence measurements 

When the integral scale of the turbulence in the direction 

of the hot wire is of the same order of magnitude as the length of the 

wire, the turbulence measurements are in error. Hot wires approxi

mately 0. 05 inch long were used for the turbulence measurements. 

It could very well be that velocity fluctuations on one part of the wire 

are not completely correlated with those on another part. This means 

that the dominating eddies are of the same size or smaller than the 

length of the wire. The lack of correlation causes the rms voltage to 

be reduced. This reduction depends on the falling-off of the correla

tion curve of the turbulence in the direction of the wire. This reduc

tion must be taken into account in all turbulence measurements, 

including turbulence intensity, correlations, turbulent shear and 

energy-density spectra. For maximum signal output, however, it 

is required to have a relatively long hot wire. The space resolution 
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requires a hot wi re of ze ro length . The s e tw o r equir e m ents are in 

conflic and some sort of compromise has t o b e made. 

Dryden, e t al. ( 8), Frenkie l ( 12), and Ube roi and Kovasznay 

( 41) came to the same conclusion about the spac e -resolution correct ion 

for the turbulent voltage: 

= (f - z) R ( z) dz 
z 

(4 - 51) 

where is the measured mean square of the fluctuating voltage. 

However, before an attempt is made to correct the turbulent voltage 

for space resolution, it is important to realize the influence of con

duction into the wire supports. The effective length of the wire is 

shorter than its actual length due to the drop in local temperature of 

the wire toward its supports. 

The correction for wire length was calculated using the 

measured lateral correlation coefficient, R z 
This correlation 

coefficient was measured by means of two vertical wires, each being 

approximately 0 . 01 inch long. The centers of these wires were lo

cated at a distance of 0.015 inch above the tunnel floor. The calcula-

tions were made for a free stream velocity of 40 fps. For this cas e , 

the measured lateral integral scale was O. 0 30 inch. The correction 

factor, c
1 

, was found to be 1. 15. This correction factor is defined 

by 

(4-52) 
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(Q - z) R dz 
z 

(4-53) 

For Q , the actual wir e length of 0. 05 inch was used. For 

the worst possible case, the correction for finite wire length is 15%. 

This result was obtained using the actual wire length and not a 

shorter length due to end effects. It can be expected that this lateral 

integral scale will increase rapidly with increasing distance from the 

solid boundary. This would then result in a rapid decrease in the 

correction factor C 
1 

. No turbulence measurements are considered 

accurate within 0 . 02 inch of the tunnel floor. The lateral correlation 

measurements were made with wires which were positioned verti-

cally and close to the tunnel floor . The vertical velocity gradient and 

the vertical gradient of the longitudinal velocity fluctuations are of 

large magnitude close to the solid boundary. Under such conditions, 

the measurements of hot wires seem to be exaggerated as will be 

shown later. For these reasons, and lack of reliable measurements, 

no correction for finit e wire length was made as far as the turbulence-

intensity measurements and the turbulence -shear measurements were 

concerned. 

Also the one-dimensional e nergy spectra need to b e corrected 

for wire length . The contribution to the energy by high wave-number 

turbulenc e of small scale will b e too low, due to the finite l eng th of 
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the hot wire. Betchov (2) corrected hi s results for t h e Pfkct o f the 

-7 
finite l e ngth of th e hot wire . The uncorrec ted s pec\ rum falls as k 

in th e viscous r ange. How e ve r, aft e r the correction i s m ade t Ill' 

-6 
spe ctrum falls off as k The true one -dime nsional spectrum can 

b e r ecovered from the m easur e d spectrum using th e corr l:' ction e qua -

tion give n by Uberoi and Kovasznay ( 41). 

F(k) 
F '(k ') dk I (4-54) 

where F' (k') is the measured one - dimensional spectrum which will 

approach the true one-dimensional spectrum, F(k) , when Q 

approaches zero. The correction equation is derived with the assump

tion that the temperature distribution is uniform along the wir e. If 

it is assumed that F' (k') = B k -
7 

, the true one-dimensional 

spectrum becomes 

F(k) = ~ 15 
Q 96 

-7 
k (4-55) 

-7 
This r esult shows that the spectrum function still falls off as k 

Betchov 's results after the correction showed a slope of -6 on a log 

log plot. The two m e thods of correction for finit e wire l e ngth do no t 

give similar results . 

Since the hot wire has a finit e l e ngth and does not give a point 

measurement, the recorde d signal is an integral of t h e turbulence 

ove r the wire l e ngth . For eddy sizes s everal times smaller than th e 

wir e length, it is possibl e that two or more such e ddi es st rike the 
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wi. r c s i multa n c ous ly . T h e> r e sult wo uld b e that t he ml'3.su1·L'd !)O\\'CT 

a 1 s urh hi.g h wa ve numb <' r s t e nds to h e la r ger t ha n l hl' tru l' p()wc t· . 

Pr evi o us ly , it has b een argue d that if the scal e of t he eddi.cs in t h C' 

dir ection of th e wi r e was of th e s a m e m agnitud e o r s l ; ~h tly sma ll l'r 

t han the l e ngth of th e wir e . th e rms voltage was reduc ed. 

The wir e l e ngth should be small compar ed to the wave l ength 

of a parti.cular frequency. Howe ver , it is questionable how we ll the 

wave length r e pre sents the true scale of the eddies at this particular 

frequency. The wire l e ngth (0. 05 inch) corresponds to a wave numbe r 

of 1500 feeC 1 This would indicate that the viscous regions of 

spectra measured close to the wall (y < 0. 5 inch) may need to be 

corrected. 

The effec t of wir e l e ngth may b e determined by obtaining t h e 

energy spectrum with wir e s of varying l e ngth. Extrapolation for 

zero wire length could give the proper value for the spectrum func tion 

at a given wave number. Differenc e in fogarithmic slope of t h e vis

cous r egion of th e spe c t rum was obs erved by comparing two r e cor d e d 

signals, take n unde r the same flow conditions but at diffe r e nt ti m e s. 

This would indicate that the measure m e nts take n at differ en t time s 

ar e s e ns itive to slig ht changes in behavior of th e e lec t roni c equi pm e n t . 

In vi ew of this, and sinc e no r e liable m ethod is available, no c orr ec

tion was mad e for th e e ffec t of the wir e le ngth on m ea s ur ed powe r 

spe c t ra. 
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c. Effect of v e locity gradi ent and turbule nce-intensity 

gradient on turbulence measurements 

For heat transfe r from a finite hot wire in t he steady 

state with a uniform velocity distribution normal to the wire, t he 

temperature distribution along the wire can be written as 

d 2 T 

ds 2 
- /3 T 1 

(4-56) 

In this case, 13 1 and {3
2 

are constants. However1 with a steady 

non-uniform flow normal to the wire the above equation becdmes 

more complicated. Both B 
1 

and {3
2 

now are furtcti.ons of s This 

is due to the fac t that the convective heat•transfer coefficient Vari.es 

with the velocity' distribution along the wire. The equation for the 

temperature distribution along the wire becomes 

d 2 T(s) 

ds 2 
.. T(s) {3

1 
(s) : (4-57) 

The general solution of t his differential equation does not seem to be 

expressible in terms of simple functions of 13
1 

and {3
2 

. When a 

hot wire is operated in a velocity gradient, the heat transfer along 

the wire is non-uniform. This results in a shift of the effective 

center of t he wire toward that part of the wir e with the higher h eat 

transfer. If th e wire also ex perienc es a turbulenc e -inte nsity gradi e n t 

in the direction of the wire, a mathe matical solution for the te mpe r a 

ture distribution is almost impossible tu obt a in . 
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Hot wires operating close to the solid boundary in the 

turbulent boundary layer and projected partly or completely in the 

y-direction are subject to the above mentioned gradients. When 

operated under such conditions, the measurements with a vertical 

and a horizontal hot wire positioned normal to the mean flow do not 

give the same value of turbulence intensity. Figures 28 and 29 

demonstrate the results obtained for ~/U with the horizontal and 

vertical wire. The discrepancy in results from the horizontal and 

vertical wire seems to increase with increasing Reynolds numbers . 

It is reasonable to assume that the measurements with the horizontal 

wire are more nearly correct. When this is true, it seems that the 

vertical wire is affected by a large mean-velocity gradient that exists 

along its length or possibly by the existence of a turbulence gradient 

a ~/ay . For measurements of the longitudinal turbulence inten

sity, the wire can be placed such that these large gradients are not 

present along the wire. However, for measurements of the turbulent 

shear stress, the wire must be yawed so that it is partly projected in 

the y-direction. 

Results show that total shear obtained from measurements 

with the hot wire were systematically higher than the expected values 

obtained from the mean velocity distribution. The wall-shear stress 

was obtained expe r imentally with the wall-shear stress meter and 

theoretically from the Ludwig-Tillman equation for local skin friction . 
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In th e vis cous r egi on c los e to t he s o li d bou ndary . it is possibl e to 

n eglec t the ine rtia t e rms in th e e quation o f m otion. The result i s 

that the vertical gr·adi ent in total s he::u · is ze r o if t he longitudina l 

pressure gradient is a lso ze r o . Since th e wa ll shear is known, th e 

turbulent shear in this viscous region can now be calculated by sub

tracting the viscous shear from th e tota l shear. However j the experi

mental results were systematically higher than the calculated results 

(Figures 30 and 31). Close to the wall, in the region with an appre

ciable velocity gradient, the longitudinal turbulence intensity meas

ured with the vertical wi re was generally larger in magnitude than 

the one measured with the horizontal wire. The turbulent shear 

stresses measured with the yawed wire are larger in magnitude than 

the calculated values obtained from the momentum equation. This 

leads to the conclusion that the measurements with hot wires, which 

are partly or completely exposed to velocity gradients, are gene rally 

exaggerated. Plotting § versus distance from the tunnel floor 

(Figures 32 and 3 3), it was noted that fl measured with t he verti -

cal wire alr eady diffe r e d from th e true value of~ before the 

afi 
term ay become s significant . Therefore , i t was b e li e ved 

that the m ean ve loci: y gradie nt ha d much mor e e ffe ct on t he hot wir e 

output than the gradie nt of th e longitudina l ve loci ty fluc .uati ons. 

The measur e m e nts we r e c orrected in t he foll owing m a nne r . 

The rms out put of t he ve r ti cal hot wi re was compa1·ed with ther m s 

~ calculated from th e true turbulenc e in tens ity , u , obtai n ed 
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from the measurements with the horizontal wire . For each distance 

from the floor, a ratio for the difference in rms voltage and measured 

rms voltage can be obtained. This same ratio was used to correct 

the measurements of the yawed wire. By correcting the output of 

the yawed wire it is assumed that the calculated terms uv and v 2 

are corrected for effects of velocity and turbulence gradient. 

d. Effect of turbulence on heat transfer from hot wires 

The heat transfer from cylinders placed in a turbulent 

flow is affected by the Reynolds number, the intensity of the turbu

lence and the ratio between the scale of the turbulence and the cylin

der diameter. These effects were investigated by van der Hegge 

Zijnen ( 15). The results show that for very small or very large 

magnitudes of the ratio L /D , the turbulence intensity has hardly 
X 

any effect on the heat transfer from the cylinder. When the scale of 

the turbulence is of the same order of magnitude as the cylinder diam

eter ( L /D = 1. 5), an increase in turbulence intensity will marked-
x 

ly increase the heat transfer especially for high Reynolds numbers. 

In this experiment, the wires were calibrated in the free stream with 

a very low turbulence intensity. It is possible that the heat transfer 

increases when the same wire is operated in the boundary layer at 

much higher turbulence intensity. So far, it has been assumed that 

the mean heat transfer is the same whether the turbulence intensity 

is low (free stream) or the turbulence intensity is high (boundary 
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laye r), as Jong as th L' m f-a n flow doc s no t cha nge . .;_ change in heat 

transfe 1· due to t ur bu len cc in t ens i ty would 1·es ult in ;i. cha ng e in hot 

wir e voltage . Howe ver , th e measur ed mean veloci tie s near th e 

boundary w e r e in g ood agr eem ent with th e veloc iti e s ob taine d fro m 

the hot-wir e calibr ation. This indi cate s that th e hea t trans fer frotn 

the wir e i s not affected by turbulence intensity as long as the s cale 

of the turbulence is sufficiently large with respe c t to the wire 

diameter. 

e. Effect of linearization on turbulence calculations 

The sensitivity of the hot wire anemometer t o ve locity 

fluctuations was explained in section 4. 3. 1. The expression for the 

differential of the hot wire output was too complex and additional 

as s umptions had to b e made. The classical assumption was made 

that the magnitude of the mean flow was much larger than the magni

tude of t h e fluctuations. 

By using th e expre ssion for the differ ential of the hot-wi r e 

output , it is assumed that the calibration curve of t he hot wi r e is 

linear around the point of operation. This assumpt ion tnay be ad e 

quate for small turbulence intens ities a t high mean veloc ities . But 

the assumption of t he ve locity -voltag e c urve b eing l in ear over t he 

range requi r ed by dE t ::.: e must be question ed. T he possi bl e 
OU 

e r r or due to non-l inear a ve r aging of t he hot-wir e ane m ometer was 

c he cke d gra phica lly fro m t he ca]ibrati.on curve . For a fl uc t uat ion 
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intensity of ~ /U ::; 0. 30 the maximum t' rror of 3% was found 

whe n U = 20 fps For lower velocit i es and at the same tu1·bu1f' nc (' 

int e nsity th e e rror was found to be less . Th erefore , it can b e con

cluded that for all turbulent m easur e m ents t he non-linearity of th e 

voltage versus velocity calibration curve i s unimportant. 

f. Effect of large turbulence components on hot wire 

m easurements 

In the previous section, some light was shed on the 

effect of large velocity fluctuations in the s ame direction as mean 

flow. The maximum possible error to be expected under the condi

tions encountered in this experime nt was 3%. Next to the solid 

surface, the scale of the turbulence in the longitudinal direction is 

ten times as large as either the lateral or vertical turbulence scales . 

For a wire normal t o the flow a nd parallel to the tunnel floor, the 

wire sees a re latively large fluctuation in the x-direction and a com

paratively small fluctuation in the other two directions. The maxi

mum longitudinal turbulence intensity encountered in this experiment 

was of the orde r of 0. 3 close to the wall. Therefore, one might 

expect that the intensities of t he lateral and the vertical t urbulence 

components, ~/U a nd ~/U would be of t he order of 0. 03. 

In t he region close to th e wall, the assumption t hat U > > v or w 

can t herefore be accepted without introduction of a great deal of 

error. Schraub a nd Klin e ( 33) have attempted to estimat0 the e rrors 
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due to lat·gr· t u1·bul ence f1uctua tiuns along a hoi wire . The result$ 

show that errors of t he or·der of 5 % arc possible for turbulence 

intensities of approximately 35%. The maximum value for this tur

bulence intensity, encountered in a region away from the wall was 

approximately 10%. Therefore , i.t can be concluded that the effect 

of v and w turbulence components 1s relatively small (less than 5%); 

so this effect has been ignored, 
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Cha pt e r V 

RESULTS AND DISCUSSION 

5. 1 The Nature of th e Turbulent Boundary Layer 

The presence of the gravel roughness at the e ntrance to the 

test section of the Army wind tunnel results in a large increase in 

skin friction. This increased skin friction means an increased wall -

shear stress and a higher loss in momentum. Therefore, momentum 

has to enter the boundary layer to make up for this increased loss of 

momentum. The only way for more momentum to enter the boundary 

layer is for the boundary layer to increase in thickness at a faster 

rate. Downstream from the gravel roughness, the velocity profile 

is expected to return to a "normal" boundary layer profile. The only 

difference is that the roughness has helped to develop the boundary 

layer at a much faster rate than would have been the case without the 

roughness. 

For the zero-pressure gradient turbulent boundary layer, the 

form factor, H , depends solely on the skin friction. Rotta (29) 

gives an expression for the variation of form factor with skin friction. 

1 
u 

= 1 
7' 

11 - -- ( 5- 1) H u 
CX) 

where 

(' [u\ u r dv~:J 11 = 



and 

lJ 
T 

u 
CT) 

SD 

Since the boundary-layer· thickness can lw defined in s everal ways, 
yUT 

Rotta introduces 1 he di. mensionless wall distanc e , o,:, uro 

The para meter I 
1 

can be expected to be a instead of y/o 

constant, assuming that similarity of the velocity defect exists . 

The calculated value of the parameter I 
1 

is given by Rotta as 6. 1. 

Figure 34 shows the calculated variation of form factor with skin 

friction, as well as the experimental results of Smith and Walker ( 36) 

and the results obtained in this experiment. The experimental re

sults seem to fall above the calculated curve. The same is true for 

the experimental results of Schultz-Grunow and Hama as presented 

in Figure 13. 6 of reference 29. All the velocity profiles of the Army 

wind tunnel seem to have the same value for form factor. This is in 

u 
agreement with the similarity of the profiles when - is 

Uoo 

plotted versus y/o (Figures 35 and 36). According to the theory, 

this would mean no change in skin friction. When turbulent velocity 

profiles are plotted as was done for laminar ]ayers, using U/U 
Cl) 

versus y/o , the profiles seem to become similar notwithstanding 

the change in skin friction. How ever, i t must b e noted that Reynolds 

numbers, based on th e clistancf' from th e virtua l origin, of magnitud e 

3 x 10 8 were obtained. Re ynolds numb e r· :,:; of such high mag ni tud es 

are not generally obtained in laborat ory ex pe rim ents. In Table I, 
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the important profile parameters are given for the m easured 

velocity profiles along the test section of the tunn e l. Thi s table 

includes the results from the profiles at t he station for which 

x = 85 feet. The skin friction was calculated from the empirical 

relation due to Ludwig and Tillman 

cf= 0.246 x 10-0.678H (Uoo 0/v)-0.268 ( 5-2) 

The values for the distance from the virtual origin were obtained 

by means of the resistance law due to Smith and Walker ( 36). 

The von Karman momentum-integral equation, 

C = 
f 

2 d 0 
dx 

(5- 3) 

gives values for the local skin friction which are 2. 5 to 3 times as 

large as the values obtained from the Ludwieg-Tillman equation. 

However, the Ludwieg-Tillman equation seems more reliable since 

its results agree well with the values for local skin friction as 

obtained from the shear meter (Figure 37). The momentum-integral 

equation gives exaggerated values for local skin friction as compared 

with the results obtained from the shear meter . These exaggerated 

values for local skin friction are a result of the fact that the flow in 

the tunnel is not completely two-dimensional. Due to the increased 

momentum loss in th e corners of the tunnel, more momentum has to 

be delivered by the free stream. This gives rise to the development 

of a secondary flow where high velocity fluid is transported from the 

center of the tunnel toward the corners . The necessary result is 



that s low movi ng fluid i s tr·ansportC'd 1at e r·a1ly a,\·ay f 1· om t lw cor ners 

a long the bounda r·y and finally transpor red back to till' f1 ·ce st1·ca m 

along the c enter hne of t he tunnel. Th is secondary flow te nds to 

increase th e boundary layer thickness at the center of th e t unne l. 

The mome ntum thickness increases faster than is expect ed, resulting 

in an exaggeration of t he local skin friction. 

In Chapter II, it has been pointed out that for local similarity 
au 

T 
of the outer part of the t urbulent boundary layer the term ~ has 

to vanish (when longitudinal pressure gradient is absent). Rotta ( 29) 

found the following requirements for local similarity of the turbulent 

boundary layer flow: 

d(U /U ) 
T CO 

dx 
= 0 

(5-4) 
,:, 

d ( 6 U /U ) 
CO T 

dx = constant . 

Figure 38 shows that this first requirement for local similarity is 

no: fulfilled. However, this figure shows that the shear velocity 

varies almost linearly with the x-distance. This means that the law 

of the wall applies, or that the function f (
yUV Tl is a truly universal 

function for turbulent shear flow near a smooth wall. Rott a 's second 

requir e m ent for local si mila r ity is fu lfilled, as can be seen from 



5. 2 The Flow Near the Wall at Station: x = 85 feet 

The mean velocity distributions for approximately 1/5 of the 

boundary-layer thickness are shown in Figur e s 40, 41, and 42. 

Included in these figures are the slopes of the velocity profile at the 

wall, obtained from the wall shear-stress meter. The magnitudes 

of the wall-shear stress are plotted in Figure 37. In this figure, 

the measured and calculated values for the wall-shear stress are 

plotted versus a ratio of free stream velocity and kinematic viscosity. 

The values of the wall-shear stress obtained with the Ludwieg

Tillman skin-friction formula are slightly higher than the measured 

values obtained with the shear meter. Comparing the measured 

velocity distribution with the slope of the velocity at the wall, one 

can see that the region of linear velocity distribution is limited to a 

region of O. 020 inch from the wall. The thickness of this region 

varies with the Reynolds number of the flow. 

-uv 
U2 Figure 4 3 shows the distribution of the term versus 

y/0 When these terms are plotted, one notices immediately a great 

deal of similarity . In the immediate neighborhood of the wall, equa

tions ( 2-4 2) and ( 2-4 7) lead to the following expression 

u2 
au av 

UV ay ay 
= - u2 

T 2 
w 

1 
+ -2 

y u2 

au a2v 
ay a"y2 

T 2 

w 

However, continuity requires that the term au av 
ay ay 

+ . ... . (5-5) 

is zero at the 

wall. 
UV 

Consequently, the term 'W should vanish at the wall. From 
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- UV 
t he data in Figure 43, it cannot be concluded whether t he te rm -W 

goes to zero at the wall or not. The turbulent shear stress cannot 

be measured close enough to the wall, because a yawed wire has to 

be used to make this measure ment. 

The viscous shear stress and the turbulent shear stress 

distributions are shown in Figures 44 and 45. Only in the immediate 

neighborhood of the wall is the viscous shear of any importance. For 

the case U00 :::: 40 fps, a slight positive pressure gradient was meas

ured. When the inertia terms are neglected, the equation of motion 

( 2-4) reduces to 

aP 
ax = 

a-r 
ay (5-6) 

The accuracy of the turbulent shear stress measurements is within 

± 10% . Evidence is found that difficulties are encountered when a 

hot wire is operated in a region where large mean and turbulent veloc

ity gradients exist. In this light, it is nearly impossible to expect 

that the term uv can be measured within an uncertainty level of 

less than 10%. The measurements indicate that the total shear stress 

is constant only in a relatively small region adjacent to the wall. 

Beyond this region, the inertia terms can no longer be neglected. 

Several a ttempts were made to measure the longitudinal mean-

velocity gradient, 
au 
ox . However, t his term is extremely small 

for thick boundary layers, especially in the region close to the wall . 

The results seem to indicate that there is a very small region next 
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to the wall where the velocity profile varies linearly with y . 

However, the measurements so close to the wall are not accurate 

enough to substantiate this assumption. Near the surface, the term 

a 2u 
v ayz is zero or nearly zero. Beyond this region, the viscous 

term becomes relatively large until it reaches a maximum and there-

after decreases rapidly . The term 
O UV 

ay 
follows a similar 

pattern. There is a relatively large region where both the viscous 

o2 U O UV 
term v a7 and the turbulent term ~ are relatively small. 

This is the transition region between the viscous sublayer and the 

fully turbulent part of the turbulent layer. In this transition region, 

the inertia terms are probably of the same order of magnitude as 

either the viscous term or the turbulent term of the equation of 

motion. Beyond the transition region, only the viscous term can be 

neglected from the equation of motion. 

Figure 46 shows the distribution of -r /-r w versus y/6 for 

two different free stream velocities. For y/6 > 0. 05 , the curves 

are similar. Close to the wall, the similarity breaks down due to 

the existing pressure gradient at U00 .:=:::. 40 fps. It was found that 

close to the floor the output of the vertical and yawed hot wires show 

much larger voltage excursions than the output of the horizontal wire. 

The output of the hot wire seems to oscillate about one point, then 

makes a large excursion and oscillates about anot her point. Conse

quently, it is extremely difficult to obtain a reliable average of the 
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rms of the fluctuating voltage. For the horizontal wire these 

difficulties are less severe, and a better average can be obtained. 

A change in rms voltage of less than 5% may result in completely 

erroneous results of the terms uv and v 2 • This is another 

reason why the measurements of the turbulent shear stress close to 

the wall are subject to a great deal of uncertainty. The large fluc

tuations in rms voltage from yawed hot wires can possibly be related 

to the streaky structure of the turbulence near the wall ( 33). 

"\h' 
The distributions of the longitudinal turbulence intensity U 

are given in Figure 47. At the wall, this ratio should not vanish but 

must have a finite value (equation (2-53) ). According to the data, 

this finite value could be O. 30 or slightly higher. This is in agree-

ment with the results of Mitchell and Hanratty ( 24), who claim a 

~ value of O. 32 for the rat io U when y = 0 . In Figure 48, the 

distribution of the vertical velocity fluctuation, 'Jvf 
u , is shown. 

For the distribution near the wall, one may write from equation (2-46), 

2 
V = 

3 ov 
Y ay 

1 
+ 4 

4 (o 2vj 2 

y 2 + .... 
ay 

. (5-7) 

However, at the wall the first two terms to the right of the equal sign 

ov 
are zero. The term oy = O at the wall, as is required by the 

'Jvf continuity equation. Consequently, one may expect the ratio u 
to vanish at the wall . The distribution of U near the wall is given 

by equation (2-42). The data in Figure 4 8 indeed indicate that ~ 
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tends t o zero near the wall. Figures 49 and 50 show the co m par i son 

of the longitudinal and the vertical turbul e nt intensiti e s. The two 

intensities are of the same order of magnitud e except for t he region 

extremely clos e to t he wall. Kl e banoff 's results ( 19) indicate that 

the lateral turbulent intensity falls between the longitudinal and verti

cal turbulent intensities. The results from this experiment indicate 

that the three turbulent intensities are much closer in magnitude than 

those encountered by Klebanoff. This observation may be attributed 

to the fact that the flow in this experiment had more time to develop 

than in Klebanoff 's boundary layer. Due to the action of the correla-

tions 
au 

p ax 
av 

Pay and 
aw 

p az , energy is transferred from 

the larger turbulence components to the smaller ones (29). There

fore, the turbulence tends to become more isotropic. The three 

turbulence components must have the same magnitude when the flow 

is completely isotropic. 

The large excursions seen by the vertical and yawed hot wires 

close to the wall can possibly be related to the observations made by 

Schraub and Kline ( 33). They found that the pattern of flow appears 

to consist of an array of "islands of hesitation". Longitudinal vortices 

are formed at the edge of these "islands of hesitation". After the 

vortex has been carried away from the wall, it will break up into un

oriented turbulence. The "islands of hesitation" are interspersed 

with areas of faster moving fluid. An attempt was made to do similar 
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stucli e s in air. Schra ub a nd Kline did t he ir obs e rvat ions in water 

boundary layers, with t he h e lp of dye a nd t he hyd rogen-bubble te ch

nique. A "mammoth" hot wir e wa s placed nor mal to th e flo w and 

close to the wall. In order to make observations, a Schlie r en method 

was used. Close to the wall, darke r line s interspe rsed with lighter 

lines w ere shed from the heated wire . This indicates that density 

gradients exist in a direction normal to the flow. The spacing of 

these lines seems to vary with the Reynolds number of the flow. For 

higher Reynolds numbers, the distance between streaks is smaller 

than for the lower Reynolds numbers. This agr ees with the observa

tions of Kline and Schraub ( 33). When the "mammoth" hot wire was 

plac ed in the same direction, but away from the wall, these streaks 

were no longer observed. The fact that density gradients exist 

across the flow, downstream from the wire, when the latter is placed 

close to the wall, indicates that the heat transfer from the wir e is 

not constant along the wire . This can be interpreted as a passage of 

alternate fast and slow moving air past the wire. However, the den

sity gradients are small and cons equently, the contrast between light 

and dark areas is small. It was difficult to obtain photographs from 

whi ch m easurements could b e made . Rough e stimates show that th e 
A'U 

T 
parameter 

V 
i s of the ord er of 100. He r e A' i s th e 

average spacing of the str eaks. The r e s ults of Sc hr aub a nd Kline 

indicate the value of A ,:, = 10 2 ± 10 Th is s ugges ts t hat t he 
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instability which produces the streaks d e pends on wall shear stress 

and viscosity. 

The similarity law for flow near the wall, 

U: 0 

f r:T) 
seems to be valid. When the coordinates and 

yU 
T 

V 

(5-8) 

are 

used, either in a linear or in a semilogarithmic plot, the data col

lapse to one curve (Figures 51 and 52). The solid line in the linear 

plot is the semilogarithmic velocity distribution as was obtained by 

van Driest (7). The semilogarithmic law fits the data quite well in 
yU 

the range 40 < __ T < 1000 . The semilogarithmic law was 
V 

first derived by Prandtl using the mixing length theory. He had to 

assume that the mixing length was proportional to the distance from 

the wall and that the shear stress is constant, so that T = T 
w 

However, for the region where the semilogarithmic velocity distri-

bution fits the data the ratio 
T 

TW 
decreases from 1 to about 0. 7 

or O. 8, depending on the Reynolds number of the flow. Therefore, 

the assumption made by Prandtl is subject to a 20 % to 30% error in 

this case. The reason why Prandtl did not make a serious error 

with this assumption can be obtained from equation ( 2-1 3). The 

assumption of constant shear stress leads to the similarity law for 

the flow near the wall. Clauser (5) arrives at the logarithmic veloc

ity distribution by assuming that near the wall, the law of the wall , 

and for the outer flow the velocity defect law is valid. However , the 
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assumption of the law of the wall leads to the requirement that 

au 
T 

u ax is at least a constant. The term is extremely small, 

which implies that !~ is almost zero. 

The relation given by van Driest fits the data quite well for 
yU 

the range 0 < --2 < 1000 Possibly there is a Reynolds num-
v 

ber effect . The high Reynolds-number data are best fit by Rama's 
yU 

curve in the region 5 < __ T_ < 40 . 
V 

Reichardt 's curve and 
yU 

van Driest 's curve are identical for the region T < 40 0 < 
V 

For high values of 
yU 

T 

V 

u U == 5. 25 + 5. 5 log 
T 

, Reichardt 's expression reduces to 
yU 

T 

V 
. Van Driest 's constants in the 

semilogarithmic . expression for the velocity distribution are 5 . 24 

and 5. 75, respectively. Reichardt fixed his relation for the turbu

lent shear stress such that the term uv varied proportionally to y 3 

in the immediate neighborhood of the wall. This is in agreement with 

equation (2-48). Away from the wall, the Reynolds shear stress 

gradually changes to a linear distribution. Van Driest 's relation 

allows the turbulent shear stress to vanish at the wall with the fourth 

power of y . Similarly, using Rama's relation, the turbulent shear 

stress vanishes like y4 at the wall. In Figure 5 3, the relations for 

the mixing length given by Rama and van Driest are compared with 

the measured data. The assumption of a linear distribution for the 
yU 

mixing length is valid in the range 40 < __ T_ < 400 . Within 
V 

the viscous sublayer, Rama's relation for the mixing le ngth see m s 
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adequate. Th e data also indicat e that is a functi on of 
V V 

in the region wh ere th e law of f h e wall is valid. 

The semilogarithmic velocity dis tr ibution fit s the data best 

yUT 
in the range 40 < < 1000 

V 
Th e linear sublayer can be 

expected in the range 
yU 

0 T . 4 < -- <._ Th e viscous sublayer 

Beyond the viscous 
yU 

T 
extends from = 

V U 
y T 

O to ~ 60 
V V 

sublayer, the inertia terms can no longer be neglected. All terms 

in the equation of motion are of the same order of magnitude. Only 

the viscous term can be measured with any degree of accuracy. The 

other terms are either difficult to measure or are subject to error. 

The balance of the mean energy equation (2-56) is difficult to 

obtain. The terms include the loss of kinetic energy of the mean flow 

due to its retardation. The term, 
au 
ox , was too small to be meas-

ured accurately in thick boundary layers, especially near the surface. 

The energy transfer term 
o(U uv) 

ay is a difficult term to measure. 

The distribution of the turbulent shear stress is subject to error. 

This means that the y-derivative of the term U uv becomes very 

unreliable. In order to show the order of magnitude of the terms in 
T 

equation (2-58), it was assumed that _.:!!... -
p 

au 
V oy = - UV • Know-

ing the wall-shear stress and the mean velocity distribution, t he tur

bulent shear stress can be obtained. In the viscous sublayer, the 

mean energy equation becomes 

- UV 
au + 
ay 

a(u uv) 
ay 

V 

2 (5 - 9) 
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a(u uv) 
ay UV 

au 
ay 
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= 0 (5 -10 ) 

Figure 54 shows the distribution of the direct dissipation, t h e transfe r 

of energy due to viscous diffusion and the work done by the viscous 

shear per unit time. The latter term is balanced by the first two 

terms. The distribution of the terms appearing in equation (5-10) is 

shown in Figure 55. Close to the wall, the dissipation due to the 

mean velocity gradient is more important than the turbulent energy 

dissipation. The flow is almost completely viscous. However, 

within a short distance the effect of viscosity becomes relatively 

unimportant . From here on, the turbulent energy dissipation domi

nates the total dissipation. In the region away from the wall, the 

kinetic energy, lost by the mean motion due to its retardation is 

mostly transferred to the wall region by the term 
a(u uv) 

ay (Figure 

13. 12 of reference 29). In the outer region, this last term is rela

tively large but of opposite sign when compared to the viscous sub

layer. The total dissipation in the viscous sublayer is large compared 

to the dissipation in the oute r layer. Most of the e nergy which is 

dissipated into heat comes from the outer layer due to t h e t ransfer 

of the energy which was taken away from t he mean flow. According 

to Schubauer ( 35), 40 % of the en e rgy lost by t he mean flow is directly 

dissipate d into heat , without going through the stage of turbul e nc e . 

The r emaining 6 0% of e nergy lost by the mean flow is t ransfe rred 
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into turbulent e nergy. The maxi mum rate of tur bulenc e pn>duction 

takes place just outside the laye r where the ve locity profile is linear . 

The t e rms in the turbul e nt en e rgy equation a r e d :fficult to measur e . 

The turbulent dis s ipation, E , has b een obtained from th e turbulence 

spectra, assuming local isotropy. The results will be discussed in 

the next section. 

5. 3 Energy Spectra and Turbulence Scales at Station: x = 85 feet 

Further insight into the characteristics of turbulence in the 

boundary layer can be obtained by examining the spectral distribution 

of turbulent energy. Energy enters the spectrum through the large 

eddies and is then transferred through the spectrum to the smaller 

eddies where it is finally dissipated. Chapter II shows how the theory 

of local isotropy leads to expressions for the distribution of the one

dimensional spectrum function (equation ( 2-77) ) . In turbulent shear 

flow, it is not known how the one-dimensional spectrum function is 

related to the three-dimensional spectrum function. However, it is 

assumed that the one-dimensional spectrum function is still an inte

gral effect of the t hree-dimensional spectrum function. In spite of 

these and other experimental difficulties, the study of the energy 

spectra may lead to very interesting conclusions. 

In order to test the spectra for similarity, the data should be 

F(k) 
presented with 

(E v5) 1/4 

a number of spe ctra of the 

k 
and ks as coordinates. In Figure 56, 

longitudinal turbulent velocity are 
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represented in non-dimensional form. Included in this plot is the 

non-dimensional form of the one-dimensional energy spectrum fun c 

tion as was obtained by Heisenberg ( equation ( 2- 77) ) . The results 

show that equation (2-77) is a similarity law for the longitudinal 

energy spectra. Each spectrum branches away from Heisenberg's 

theoretical formula at a different point, depending on the size of the 

large scale eddies. In the region 10-i < kk < 1 , the experi-
s 

mental values of the non-dimensional spectrum seem to fall below 

the values predicted by Heisenberg. At the high frequency end of the 

spectra, the scatter of the data is appreciable. This is partly due 

to the fact that the spectra at 0. 005 inch and 0. 003 inch from the wall 

can no longer be predicted by Heisenberg's theoretical formula. The 

spectra at varying distances from the wall show varying extents of 

the inertial subrange, depending on the size of the large scale eddies. 

For example, the spectrum at y = 0. 022 inch and U
00 

= 20 fps 

joins with Heisenberg's expression at the end of the inertial subrange . 

Consequently, 

region where 

the spectrum at this point will show only a very small 

-5/3 
F(k) varies as k . The spectrum at a point 

where the Reynolds number of the flow is much higher, for instance 

the spectrum at y = 7. 0 inches and U
00 

= 40 fps, shows an appreci-

. -5/3 
able region where F(k) varies as k . Sandborn and Marshall ( 31) 

have compared the spectra taken in the Army wind tunnel wit h spectra 

taken in flows with extremely high Reynolds numbers. These flows 
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included flow in an oc ean ti da l C' ha nne l, a nd the fl ow of th e atmospher e 

ove r water waves . The s e high R eynold s -numbe r flows s how a st ill 

-S/ 3 
larger region whe r e F(k) vari e s as k . 

The que s tion is, what ar e the cri t eria for a t urbule nt s hear 

flow t o be conside red locally isotropic? The theory does not pr edict 

when the turbulence may be considered to be locally isotropic . 

Bradshaw ( 3) compared the factor of proportionality, K , of 

equation (5-13) for powe r spectra obtained from grid turbulence and 

from turbulent shear flow. He found that the value of K in the spec-

2/ 3 -5/3 . 
trum formula F(k) = K € k 1s constant for homogene ous 

grid turbulence as well as for turbulent shear flow. The constancy of 

the factor K is true as long as the micro-scale Reynolds number, 

Re A , is not smaller than 100. A necessary condition for local 

isotropy to exist is the requirement k >> _1_ 
LX 

. Here, L is 
X 

the longitudinal integral scale of the turbulence as is defined in 

equation ( 2-9 3) . The results of Figure 56 indicate the existence of 

the ine rtial subrange up to : = 0. 1. The lower limit of the iner-
s 

tial subrange depends on the magnitude of the integral scale L 
X 

According to Figure 56, the 
5 

3 r egion of the energy spectrum 

shrinks to zero at about Re A = 25 The magnitudes for the 

micro-scale we re obtained from the wave number spe c tra using 

equation ( 2-91). Bradshaw ( 3) points out that it is possible for the 

e ne rgy spect ra to obe y the local-i sotrop ic r e lati ons in spite of the 
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fact the shear-stress spectra do not. The requirement for local 

similarity could follow from Kolmogoroff 's postulate that in the 

inertial subrange the energy spectra depend on k and E only. This 

leads to the similarity of the energy spectra when the data are pre-

sented using and 
F(k) 

as coordinates. 

Figures 57 and 58 show the distribution of the macro-scales 

and the micro-scales. The scales decrease to zero at the surface, 

as might be expected, and seem to become constant in the fully tur

bulent part of the boundary layer. The macro-scales were determined 

by the use of equation (2-98). The micro-scales were determined 

either by using equation (2-91) or by use of equation (2-92). The 

results obtained by the method of integration of the second moment 

of the energy spectra seem to be more reliable than the results 

obtained from the differentiating circuit. The results show that the 

micro-scale obtained by the differentiation method are consistently 

higher. Based on the comparison of the magnitude of the turbulent 

dissipation with the magnitude of the production of turbulent energy, 

it can be concluded that the method of integration g ·ves more reliable 

results. 

Figures 59 and 60 show the distribution of t e turbulent 

production and the turbulent dissipation. The turbulent dissipation 

was obtained by the use of equation (2-90). The ne cessary assumption 

of local isotropy seems to hold beyond the viscous sublayer. Th e 
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dissipation measurements are subject to a great deal of unc e r taint y . 

In equation ( 2-90), the major contribution comes from the inertial 

subrange. The energy spectrum, F(k), rapidly decreases in this 

range; on the other hand the square of the wave number increases 

rapidly. The product, k z F(k) , is therefore subject to a great 

deal of uncertainty, and consequently so are the values for the turbu

lent dissipation. Any conclusions concerning the validity of local 

isotropy in the relation for the turbulent dissipation are difficult to 

draw. First, reliable measurements are difficult to obtain espe

cially close to the solid boundary. It is in this region where the bulk 

of the turbulent dissipation takes place. Secondly, it is not known 

how the production, diffusion and convection of turbulence affects the 

assumption of locally isotropic turbulence. Thirdly, only the one

dimensional spectrum can be measured. For isotropic turbulence 

this is no problem since the three-dimensional spectrum function can 

be expressed in terms of the one-dimensional spectrum function 

( equation ( 2- 74) ) . Whether or not this expression is valid for turbu

lent shear flow is still an unanswered question. 

Figures 59 and 60 show the distribution of he turbulent 

production and the turbulent dissipation. Since the turbulent convec

tion and diffusion are small terms, one expects the production to be 

of the same order of magnitude as the turbulent dissipation. For 

U 
00 

= 20 fps, the two terms are of the same order of magnitude in 
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> 30 . For Um = 40 fp s , thv produc t i.on a nd 

di.ssipat ion arc of t he same order of m agni t ud c in t he r a nge 
yU 

T 

V 
> 1 30 . The assumpti.on of loc a lly isotropic turbulence 

seems valid outside the viscous sublayer. The criterion for validity 

of this assumption will depend also on t he Reynolds numb e r of the 

flow. When the flow has more time to develop, the turbulence will 

tend to become more isotropic. In this experiment, the boundary 

layer has developed for 85 feet. This is considerably longer than 

the 10. 5 feet in Klebanoff's experiment. In Figure 6 t, the produc

tion term and the direct dissipation term are compared with 

Klebanoff 's results. When plotted in dimensionless terms, a great 

deal of similarity can be observed. Figure 62 shows the comparison 

of the production term a nd the turbulent dissipation term with 

Klebanoff 's data. The distributions of the dimensionless production 

term show excellent similarity. The turbulent dissipation term 

shows some scatter. However, since the turbulent dissipation is a 

difficult term to m easur e it probably falls well within the uncertain--: y 

limits . 

Heisenb erg's t he oretical expression which fits the data 

( Figure 56) is 
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For the inertial s ubrange on e has 

or 

F(k) l
- 5/ 3 

C O. 481 :S 

F(k) = 0.48 E
2/ 3 k- 5 / 3 (5-13) 

Consequently, all spectra which can be represented by Heisenberg's 

theoretical expression must yield a proportionality factor, K , of 

0. 48. Bradshaw found from several sets of experimental data a value 

of O. 5. He used the following formula for the turbulent dissipation: 

E = 

3 

u 
T 

L 
(5-14) 

Here, L is the d i ssipation length parameter, and is represented as 

L = 1 y = 0. 4 y , for the inner part of the turbulent boundary 

layer. In dimensionless form, equation (5-14) becomes: 

VE 

u4 
T 

= 
2.5 

yU /v 
T 

(5-15) 

This expression for the turbulent dissipation shows a remarkable 

similarity with Klebanoff's data (Figure 62), in the range 

10 < 
yU 

T 

V 
<. 2000 . Table II gives the parameters calculated 

from the energy spectra using the relations for isotropic turbulence. 

In Figure 6 3, the one-dimensional e nergy spectra are plotted 

for different values of y . The plot shows how, for small distances 

of y , more energy is contained at h igher wave numbers . At larger 
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distanc es away from t hC' wall (y = 0 . S inch), less e n e rgy is 

yUT 
contained at high wave numbers. For > 120 , the value of 

V 

E changes ve ry little as compare d to t he value of E in the range 
yU 

T 

V 
< 120 (Figur e 6 2). 

energy spectra in the range 

Cons e que ntly , the one-dimensional 
yU 

T 

V 
> 120 tend to become similar 

(equation (5-13) ). Table III gives the numerical values of F(k)/'uz 

for all measured spectra . 

As mentioned before, measurements were made of the latera l 

velocity correlation coefficients. The results are shown in Figures 

64 and 65. These measurements were made with two vertical wires, 

parallel to each other and positioned as close to the wall as possible . 

It was estimated that the centers of the wires were approximately 

0.015 inch from the wall. From these measurements, the lateral 

int~gral scale of the eddies close to the wall can be measured. It is 

obs~ry ed that the lateral correlation coefficient becomes negative for 

larger separation distances. This is similar to the results of corre -
,(1,.' 

lation measureme nts mad e by Willmarth and Tu ( 4 3). These author s 

give a model for the turbulence structure in the immediate neighbor

hood of the wall. Vortex lines which are originally parallel to th e 

wall in the z-direction are bent and stretched in the direction of the 

flow at some angle to the wall. This model explains why, clos e to 

the wall, areas of fast er moving fluid are alternated with areas of 

slower moving flu id. This phenomenon was observed by Schraub and 
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Kline ( 33), and also in t he present experiment with the "mammoth" 

hot wire in the wind tunnel . 
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CONC r ,tJSJC:NS 

Th e turbulent boundary layer C'cln be co nsid e red to lw divid c ct 

into three regions . The first region is in the imme diate neighbor hooct 

of the wall, where the inertia terms in the equation of motion arc 

small compared to the other terms. The second region makes up the 

largest part of the boundary laye r, wh e re the flow is fully turbulent . 

In this region, the viscous term in the equation of motion is small 

compared to the other terms. Between these two regions exists a 

transition region where all the terms in the equation of motion are 

small, but of the same ord e r of magnitude. The present study was 

carried out to e valuate the flow quantities in the wall region of the 

turbulent boundary layer. While the concepts of a constant shear layer 

have b een discuss e d in t he literatur e , no detailed measure m ents for 

this region are available. 

The existe nc e of local similarity clos e to the wall and in th e 

outer portion of the turbulent boundary layer has been experimentally 

justified in this 

pointed out that 

ex perime nt as well as many others. 
au 

It has b een 

T 

ax has to be inde pe ndent of x in orde r that th e 
au 

law of the wall is a similarity law. T 
Similarly, ax has to vanish 

in order that th e velocity d efect law is a similarity law. Experimental 

data have indicated that both m ethods of corr elation overlap in a r e 

gion outside th e viscous sublayer. Therefore, it ca n b e concluded 
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that 
au 

T 

a;;- " 0 is a requirement for local similarity. When the 

similarity law, 

motion it can be 
au 

u 
u 

T 

concluded that 
OT 
ay 

is introduced into the e quation of 

=- 0 , since it is required that 

__ r = 0 . This means that for boundary layer flow with zero presox 
sure gradient, a constant shear layer must exist in the region where 

the law of the wall is valid. Experimental evidence shows that the law 
yU 

of the wall is valid in the region 0 < _r_ < 1000 . Consequently, 
V 

one may exp ct the constant shear layer to exist in the same region. 

The experimental results indicate that a constant shear layer 
yU 

exists in the region 0 < __ r_ < 60 . This, in spite of the fact that 
V yU 

the law of the wall correlates the data in the region 0 < __ r_ < 1000 
V 

It was found that turbulent shear-stress measurements can be subject 

to considerable error. In order to investigate this problem, measure

ments were made for "R with a hot wire in a horizontal and aver

tical position. The results from the vertical wire showed a definite 

increase in the magnitude of~ , especially near the surface. It 

was concluded that in this region the measurements from the vertical 

wire were influenced by the gradient of the mean velocity in the 

y-direction. The result was that the heat transfer along the wire was 

not uniform, and incorrect values for the rms voltage were obtained. 

The measurements with the yawed hot wire were corrected for the 

effect of velocity gradient using the results from the vertical and 
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horiz onta1 wir e . :\ft e r t hese corr ect ions we rl' m a de . t he t ur b u lc nt 

shear s tr e s s c ould be obtaine d wi thin a n unce r taint y range o f ± 10% . 

Th e lo cal similarity o f th e flow n ear th e wall \•\'as es ta blished 

experimentally. The s e milogarithmic e xpression for th e ve loci ty dis

tributi on is derived for the r egion wher e the law of the wall and th e 

velocity defect law overlap. The semilogarithmic velocity distributi on 
yU 

fits th e data best in the range 40 < --
7
- < 1000 For th e outer 

V 

layer, a great deal of similarity is observed when 
u 

u 
(X) 

and a r e 

used as coordinates. For boundary layers with a Reynolds number of 

the order of 10 
8 to 1 o9 , the local skin-friction coefficient vari es 

very little with x , and similarity of the above mentioned form is 

observed . 

Van Driest 's relation for the velocity distribution in th e region 

where the law of the wall is 
yu,, 

valid fits the data quite well. In th e 

region 40 < -- < 1000 
V 

, van Driest 's expression become s 

u 
u 

T 

= 5.24 + 5.75 log 
yU 

T 

V 

tribution for th e mixing length is 

yU,, 
in the range 40 , -- < 400 

V 

The assumption of a linear dis -

in agreement with the measureme nts 

In the viscous sublaye r, Hama 's 

r e lation for th e mixing l e ngth coinc ide s quite w e ll with th e 

measureme nts " 

It was difficult t o obtain a r e liable ave rag e of the rms vol tag e 

from a ho t wire whi c h \',,' a s pa rtl y or co m pkt e ly p1·o j c c tcd i n th<' 

y -dir e:e ti o n . Thi s i .:-:; l' s r1e c·ia lly tni e fo r· nwas ur e m c n t s clo s e to 1 he 

wall. Th e i d ea was c onc ci vcd that thi s o b st'l'Va t ion c ou ld be nda tc·d 
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to the "streaky" structure of the turbulence near the surface as was 

observed by Schraub and Kline. A Schlieren image from a "mammoth" 

hot wire normal to the flow and close to the wall of the wind tunnel 

showed alternating areas of fast and slow moving fluid. The distance 

between these areas varied with the magnitude of the Reynolds number 

of the flow. Measurements of the lateral velocity correlation coeffi

cient are in agreement with these observations. 

The energy density spectra of the longitudinal turbulence 

component show a great deal of similarity when plotted in non

dimensional form. Exe ept for spectra of points within O . 010 inch of 

the wall, Heisenberg's expression correlates the data quite well. 

However, this does not include the low wave-number range. Although 

the data correlate well with Heisenberg's expression it cannot there-

fore be concluded that the turbulence is locally isotropic everywhere 

in the turbulent boundary layer . The term 
1/4 

E appears in 

Heisenberg's expression; consequently, this expression is insensitive 

to changes in E . The existence of the inertial subrange where the 

-5/3 
spectrum falls off as k is also an inconclusive argument for the 

f 1 1 · E . -5/ 3 existence o oca isotropy. very spectrum varies as k at 

some point. A better way to decide whether or not local isotropy 

exists is to check the magnitude of the factor of proportionality, K , 

2/3 -5/3 
in the spectrum formula F(k) = KE k . This expression is 

more sensitive to changes in E than Heisenberg's equation . The 

most reliable way to check the existence of local isotropy is to 
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measure the individual terms in the expression for the turbule nt 

dissipation by means of hot-wire anemometry, and to compare 

these results with the calculated values from the expression 

< = 15 v I: k' F( k) dk , 

The conclusions can be summarized as follows: 

1. The 

u 
u 

T 

existence of local similarity of the form 

= f I y~ T ) demands the existence of a 

constant shear layer. 

2. Experimental results show that the constant shear 
yU 

layer exists only in the region O < __ -r < 60 
V 

3. Turbulent shear measurements are usually too 

high close to the wall where large mean velocity 

gradients occur. 

4. The existence of local similarity was well established 

for high Reynolds number boundary layers. 

5. The "streaky" structure of the turbulence close to th e 

wall as described by Schraub and Kline was confirmed. 

6. The longitudinal and vertical turbulence components 

are much closer in magnitude than previous publishe d 

results would indicate. 

7. Local isotropy seems to exist outside the viscous 

sublayer of turbulent boundary layers whose Reynold s 

numbers are sufficiently large . 
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APPENDIX 

COMMERCIAL INSTRUMENTATION 

Pressure Transducer 

A Trans-sonics Type 120B Equibar pressur e m ete r was used 

to obtain pressure measurements. The instrument is a portable 

differential micromanometer which operates over a total pressure 

range of O - 30 mm Hg in eight full-scale ranges. The pressure 

sensor is a differential capacitance device consisting of a stretched 

diaphragm clamped between two glass discs. Capacitor electrodes 

are formed on the concave surfaces of the discs, adjacent to the dia

phragm. These two capacitances form two arms of an A. C. bridge. 

Any pressure differential causes an unbalance of the bridge. This 

signal is amplified and fed to a detector circuit, which provides a 

voltage to the meter and to the D. C. output terminals. The D. C. out

put varies from O - 30 millivolts ± 2%, proportional to the pressure 

differential. This output is the same for each scale range . The accu

racy of the meter reading is listed as 3% full scale of each selected 

range. Since the kinetic pressure measurements in the turbulent 

boundary layer were subject to a great deal of fluctuati on, it was 

necessary to integrate the output of the Trans-son: cs over a suitable 

period of time in order to obtain an accurate measur e ment. The D. C. 

output of the Trans-sonics was first amplified one hundred times hy 
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means of a D. C. amplifier, and the n int egrated ove r a ti m e span of 

200 seconds. A calibration curve (Figur e 17) of pr essur e in mm Hg 

versus integrator output voltage was obtained for each scale range of 

the Trans-sonics. Since the D. C. output of the Trans-sonics vari e d 

from O - 30 millivolts for each scale setting, these calibration curve s 

were all similar when plotted on the proper scale. A Meriam Model 

34FB2TM micromanometer was used as standard to calibrate the 

Trans-sonics electronic manometer. A calibration curve (Figure 18) 

for each scale range was obtained. 

True R. M. S. Voltmeter 

In order to measure the A. C. output of the constant temperature 

hot-wire anemometer, a Bruel and Kjear electronic voltmeter type 

2416 was used. This instrument is able to make A.C. voltage meas

urements in the frequency range of 2 cps to 200,000 cps and has 

eleven voltage ranges varying from 10 millivolts to 1, 000 volts full 

scale deflection in 10 db steps. 

A two-stage amplifier is followed by rectifying and squaring 

circuits for rms, average and peak measurements, and a moving coil 

meter. A large capacitor can be conne cted across the meter to obtain 

accurate readings. Since th e amplifi e r is provid ed with an output 

jack, the instrument can be used as a calibrated amplifi e r having a 

maximum gain of 60 db. The fr e que ncy respons e of th e instrume nt i s 

linear within 2% rms from 2 cps to ZOO, 000 cps. T he a cc ur ac y of th e 
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metE'r sca]e is listed as bE't1er than 1% of th1:' full scah' defl e ction. 

This instrument was us e d as an .implifiPr f'or th (• A . C. signal from 

the hot -win: anemometer b efore:' it was r·ecorded on F. M . magnetic 

tape. 

Wave Analyzer 

The spectra of the turbulence signals from the hot-wire 

anemometer were determined from magnetic tape and analyzed by 

means of a Technical Products Company wave-analyzer system. A 

signal of approximately 1. 0 volts rms from the magnetic tape was fed 

in the input of the T. P. -627 analyzer. The second input to the T. P. 

-627 analyzer came from the T . P. -626 oscillator which provided the 

heterodyne signal for the analyzer. The T. P. -627 analyzer was used 

with a filter having an effective band width of 1. 12 cps. The output of 

the filter will be the power in the 1. 12 cps filter band at the frequency 

to which the T. P . -626 oscillator is tuned. This output was fed to the 

T. P. -6 33 power integrator where the signal was squared. Additional 

circuitry in the T. P. -6 3 3 power integrator provides the functions of 

integrating over a certain time period up to 100 seconds and multi.ply

i ng the signal by the reciprocal of the integrating ti. me. After the 

T. P. -6 33 power integrator performs the necessary func tions to obtain 

the power spectrum, the output can eith er be fed to an X-Y recorder or 

the output can be read immediately on a built-in meter . 
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In order to obtain accurat e r eadings, th e output of t he T. P. 

-6 3 3 was integrate d for two minut e s by m e ans of th e integ ra tor cir

cuit . Occasionally, the results of th e Technical Products Company 

wave analyzer w e r e che cke d against the results of a spectrum analyz er 

type 2109, manufact ured by Bruel and Kjear . These passive filters 

were of the octave type , varying in band width approximately propor

tional to the center frequency. 

Multiplier 

For the two point lateral-space correlation, a Philbrick 

multiplier was used . The output of the multiplier is a D. C. voltage 

which was fed into the integrator in order to obtain accurate results . 

The correlation coefficient can be written as 

R = 
z 

The multiplier was calibrated in such a way that the correlation 

coefficient could be obtained from 

R = 
25 Eout 

where E out is the D. C. output of the multiplier. Since th e s e nsi ti vity 

coefficients cancel, the required velocity correlation coe ffici e nt can 

be obtained dir e ctly from th e m easured voltage s. 
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TABLES 



TABLE I - TURBULENT BOUNDARY-LAYER PARAMETERS 

X u u cf Tw 0 o* 0 H Re x' V 
CX) T X 

ft fps fps lbs/ft 2 inches inches inches ft n 2 / sec. 

12 30.30 1. 011 2, 228 X 10 
-3 

1. 900 X 10 
-3 

11. 04 1. 66 1. 22 1. 37 2. 23 X 10 
-7 

155 
-4 

2. 10 x ltJ 
22 29.35 0.995 2. 299 X 1. 836 X 14.70 2.10 1. 61 1. 30 1. 73 X 124 2, 10 X 

32 29.56 0.967 2.139x 1. 731 X 18.77 2.61 1. 99 1. 31 3. 14 X 223 2, 10 X 

42 29.50 0.948 2, 063 X 1. 658 X 22.10 3.02 2.30 1. 31 4. 30 X 308 2, 11 X 

52 29.33 0.916 1. 952 X 1. 551 X 24.12 3.59 2.72 1. 32 6. 80 X 490 2. 12 X 

62 29.44 0.897 1. 859 X 1. 489 X 27.06 3.95 2. 96 1. 34 1.03 X 10- 8 737 2. 11 X 
..... 
N 

72 29.47 0.889 1. 822 X 1. 463 X 30.14 4.41 3.32 1. 33 1. 21 X 864 2. 11 X -J 

85 30.84 0.903 1.713x 1. 564 X 33.75 4.86 3.64 1. 33 2. 14 X 1377 1. 99 X 

85 20.25 0.610 1. 817 X 0. 715 X 35.04 4.59 3.44 1.34 1. 24 X 1216 1. 99 X 

85 41.40 1. 186 1. 642 X 2.701 X 32.46 4. 57 3. 46 1. 32 3. 10 X 1487 1. 99 X 
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TABLE II - PARAME T ~HS OBTAI NE D FROM 
SP E CT HUM CAL CULATIONS 
u ~ 20 fps 

00 

y yUr ;\. L x E fl°A 
inches V inche s inche s ft 2/se c 3 

V 

0.005 1. 21 0.028 o. 090 20.2 2.7 
0.008 1. 94 0.034 0.156 32.5 4.3 
0.010 2.42 0.043 0.207 32.4 6.8 
0.014 3.39 0.058 0.302 32.2 12.5 
0.022 5.33 0.071 0.339 47.6 22.7 
0.032 7.66 0.092 0.471 50.7 39. 1 
0.050 12. 1 o. 110 0.660 53.1 57.5 
0.150 36.4 0.129 o.754 34. 2 62.7 
0.200 48.5 0.135 0.905 28.5 63.1 
0.300 72.7 0.133 1.093 25.7 58.2 
o. 400 97.0 0.152 1. 206 19.0 65.5 
0.500 121 0.163 1. 320 16. 3 69.4 

o.5oo 121 0.224 1.282 9.32 93.5 
1. 0 242 0.259 1. 357 6.70 106 
1.5 364 0.297 1.494 4.66 116 
2.0 485 0.324 1. 847 3.66 123 
3.0 727 0.361 2.074 2.63 129 
4.0 970 0.383 2.167 2.25 134 
5.0 1212 0.393 2.357 2.19 139 
6.0 1454 0.427 2.357 1.87 152 
7.0 1697 0.437 2. 431 1. 79 156 
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TABLE II - PARAMETERS OBTAINED FROM 
SPECTRUM CALCULATIONS- Cont'd. 
u ~ 40 fps 

00 

v';'2 
y yUT ;\ Lx € ;\ 

inches V inches inches ft2 / sec3 
V 

0.003 1. 40 0.017 o. 132 286 3.2 
0.007 3.27 0.040 o. 198 26l1 16.6 
0.010 4.67 0.056 0.358 253 31. 
0.013 6.07 0.070 0.452 255 47. 
0.018 8. 41 · 0.088 0.490 246 76. 
0.023 10.7 0.106 0.603 212 98. 
0.028 13. 1 o. 117 0.754 195 122. 
0.058 27. 1 0.142 0.905 141 155. 
0.108 50.4 0.164 1.06 96.7 171. 
0.208 97.2 o. 191 1. 32 71. 3 201. 
0.308 144 0.217 1. 47 55.0 227. 
o. 408 191 0.239 1. 62 44.7 247. 
0.508 237 0.261 1.89 37.3 270. 

0.5 234 0.202 2.45 65.0 200. 
1.0 467 0.244 2.83 40. 7 231. 
1.5 701 0.265 2.92 32.0 242. 
2.0 934 0.296 3.20 23.9 260. 
3.0 1400 0.329 3. 30 17.4 275. 
4.0 1868 0.360 3.58 13.7 292. 
5.0 2335 0.388 3.77 10.8 302. 
6.0 2802 0.395 3.96 9.52 293. 
7.0 3270 0.401 4.15 8.48 306. 
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TABL .. ; lII - NUMJ ; IU('/\1. 1/J\1.Ul•;s OJ•' Ml•: /\SllUl·:1> ONl•:-u1M1•:NSIONAI. SPl•:C"THUM !-'UNC.:TIONS uw ::: 40 Cµi. 

y = u. 003 inch 

lo'(k)/:;i 

y 0, 11117 i11d1 

17. :1 
25. 9 
:14, 6 
43,2 
51. 9 
60. 5 
69. l 
86. 4 

108.0 
138 
173 
216 
277 
346 
432 
540 
691 
864 

1060 
1383 
1729 
2161 
2766 
3457 
4321 
5402 
6914 
8643 

7.02x 10- :t 1 . :12 
6, 20 11,U 
5, HI 14 . Ii 
4. 10 18. ;J 
J. 78 n .o 
3.46 :U,,li 
:1,05 2U. :I 
2. ta :rn. ti 
2,24 45,8 
1. 87 58. 6 
1.6'7 7:t.2 
1. 42 9 1. 5 
1.16 117 
8, 49 X to• 4 146 

5.87 I 18:l 3. 82 22!1 
2. 54 2!)3 
1,56 :166 
1. 00 458 
6,30x 10· 5 586 

... 03 I 732 
2.83 !H5 
2.04 1171 
9, 16 X 10-6 1464 
}, 60 X 10•6 1830 
3. 65 X t0·? 2288 
8. 18 X to•B 2920 
], 56 X 10° 8 3661 

t,'(k)/~ 

!I, !I X HJ. ;t 

1.02 x 10· 2 

!I, 11 x to•:I 

8. 41i 
6. 48 
6, fi l 
5, 87 
5. !J:t 

4. 7!1 
4. 41 
:1. 5 1 
z. 87 
2.H 
1. 82 
I. 4ft 
1.1:1 
7.:14 X 111· 4 

5. ID I :,s , Z!I 

z. o:t 
I. 27 
7. !"12" 10- 5 

4. 14 I 
1.08 
2. :t2 X 10- 6 

fi.:tQ X 10- 7 

1.25" 10- 7 

4,05 X 10- 8 

y = 0, 028 inc h 

F(k)/~ 

y 0. 058 inch 

t-'(kt/J 

2. 10 
3. 14 
4. 19 
s. 24 
6, 2!.I 
7. :t ◄ 
8. 39 

tn . s 
13. 1 
16. 8 
21.0 
26. 2 
33. 5 
41. ti 
52. 4 
65. 5 
8 :t. !1 

IH. 8 
i:JI 
168 
210 
:l62 
:J:ts 
41!1 
524 
65[") 
8:t !J 

1048 

:t. 87 X 11)- 2 

:1. 27 
:1.20 
2. 80 
2. 42 
2. 15 
l. 95 
1. 68 
I. 46 
J. 22 
1.02 
8. 5 X ] l l_ ;J 

6 , 68 

5, ◄ I 
4. 2 !J 
:t. 48 
2, 7 t l 

2, 24 
2,115 
t. 47 
1.00 
5.811xltt · 4 

).:l2 1t 10-! 
:,. :14 X w ••I 

7. f> X JO_(l 
:.!.O s Ju-Ii 
4. U X 111- 7 

1.08 x w- 7 

1. 60 
2. 411 
:,. 20 
◄. no 
4, 80 

5. 6U 
6. 411 
8,Un 

lU . II 
12. 8 
16. II 
20,tl 

2!">.fi 
:12 . II 
40.11 

so. 0 

64,U 

811. II 
IUD 
128 
J611 
:.!118 
:.!51i 
:,20 
40l) 

:ioo 
li-10 
KOO 

-I. lib x 1()-Z 

:1. 82 
:1. :rn 
:1. 25 
i. 85 
2. 5fi 
2. IK 
l.!lli 

I. 71 
1. 4 5 
I. 22 
!l.!12 x. w- :I 

1. 11:1 
Ii. 41 
!",. 21; 

-1. :t i 
:t, -17 
.I. :.!8 
2.1:t 
2. Ill 
:.!. Ull 
Ii.Kl; i,; 10--I 

!: ~!II: :::::. 

i,.:,2 s ltl-fi 

2. 70 x 111- 1; 

!", .72 :,,. 111- 1 

I. !I I x l!l- 7 

y u. 010 l11d1 

!"1. ll 

7. fi7 
10. 2 
12. 8 
15. :t 
17 . !I 
20. 4 
25. Ii 
:U.!J 
-&O .!J 
51. 1 
fi:t.!t 

81, 8 
102 
128 

IGO 
204 
2:t6 
:tl!J 

◄OU 
511 
n:rn 
818 

1022 
1278 
15!17 
2044 
2555 

2 F(k)/u 

rn X 1

1

1)-2 

l , OIJ 
•1.211,.. w- 1 

!I, 2 1 

1. 8:t 
7.05 
Ii. 11 6 

s. uu 
4.0li 
:t. :rn 
2, 52 
l,!IH 
1. 68 
1, 11!1 
8 . -l !) X 10- 4 

::~~ I 
1.01 
4, 86 X 10- 5 

I , 14 x 10- 5 

J,0 X 10• 6 
5 . 28x 10- 7 

I, 24 X 10- 7 

4. n x 10-8 

y II. HIN ind1 

F(k)/~ 

I. -1"4 
2, Iii 

2. 88 
:1. HO 
4. :t:.! 
!;, 11-1 
!",. 7fi 
1. :w 
!J.1111 

11,!'l 

I -1. -I 
IK.n 
:,ti.II 
28. 8 
:w.n 
-l!",.11 

!"17 . Ii 

72.11 
!111,11 

11 !"1 

IH 
IK7 
:nu 
:!NII 
:H iO 

-l !"1tl 

!",71, 

no 

!"1 , HI x w- 2 

-1, !"1h 

4. 12 
:l.<l!I 
:i. :.!li 
2 , HK 
2. !"18 

2. u:• I 
I."' 
1.48 j 
1.:.!I 
1.01; 
U.7-1 x IU .. :t 
7.1111 
li , t1 !"1 

-1 .!lfi 

-I, -Ill 
-1.0!I 
:1, :11; 

:.!. !"18 
1. 112 I 
!1,0 X ltl--1 
2, Jf i X 10•-I 
7 . 12 x io-!", 

1. t , 111 - !"i 

1. 21i, 111-li 

li, :lli, 111-7 

I. '.Hi, I0- 7 

.Y 0, 013 ind~ 

F(k)/u2 

:1, !1:1 
!"1, !Ill 

7, 87 
!I. 84 

I J. 8 
1:t. 8 
15. 7 
JU. 7 
24, Ii 
:11.r. 
:rn. :t 
4!1, 2 
6:t, 11 
78 , 7 
!18. 4 

12:t 
157 
1!17 

24Ci 
:ua 
:rn:t 
4!12 
n:w 
787 
!J84 

12:rn 
1574 
l!Hi7 
245!1 

2,08 x 10-2 
1. 87 
l. 64 
I. :rn 
1. 2:t 
1.02 
I. 10 
!J.11 X 10-J 
8. O!J 
6, !J8 
6,06 
5. 25 
4. 26 
:t .J!) 
2. 42 
1. 84 
1.-50 
1. 14 
8.:J7 X 10- 4 

5. 67 I 
:t.'12 
2.05 
5. !JS x 10-5 

1, 60 X 10- 5 

3,0 X 10-G 
S,SOxl0- 7 

},:t7 X 10- 7 

6, 51 X 10- 8 

4, 4(; X 10-S 

y ti , 208 ind~~ 

1-'(k)/:i 

I , :111 
I , !15 
:.:! . lill 
:t.:.!!i 
:i,!Jl 

4. :tfi 
!"1. :.!I 
1; , 51 

H. 14 
JU. "4 
1:1. 0 
lli. :I 
211.8 
:w.u 
:l:.! . fi 

-I0 . 7 
:,2 .1 
li!'l.J 

81. -I 
111-1 
nu 
11;i 1 

2UK 
2fiO 

Hfi 

"4117 
!"111 
fi !"1l 

111 ·1 

6, 7!J x 10-2 
6, :rn 
Ii.OU 

5. 21 
4. 47 
·1. 8 5 
:t. -&5 
:.:!. 7fi 
2.-4:1 
2.02 
l . li:i 

I. 27 
!J, ;t7 X JU- :I 

7 • .,. I Ii • .!!I 

!", . 02 
-1 . IIK 
:1. 18 

2. 7!", I 
1.1!"1 

I . !",n 

·L 87 x 111--I 

!: ~~: :::::. 
1.112 x 10- :-, 
2. 17 X 111-1, 

!",. !:i -.; 111 - 7 

1. -11, 
I . !"ut 

y = O. 018 inch 

2, 115 
4. 28 
!">.71 

7, 14 
8. !:ti 
fJ. S,!) 

11, 4 
14. :t 
17, ~ 
22. I:! 
28. !: 
:ts. 1 
45. 7 
57. 1 
71. 4 
8!J, 2 

114 
10 
178 
228 
285 
357 
457 
571 
714 
8t12 

1142 
1427 

F(k)/~ 

2 , 4!) X J0- 2 

2. 33 
2.00 
l, !JO 
1. 65 
1. 4!J 
1. 40 
1. 22 

!:~: X 10-J 

8. 11 
6, 97 
5. 85 
4. 52 
3. 62 
2. 95 
2. 30 
1. 76 
1. 12 
1. 10 
7,98 X 10 .. 4 

J, 99 X 10- 4 

8. 83 x 10- 5 

2, 38 X 10- 5 

3, 99 X 10• 6 

8 , 89 X 10- 7 

2. 37 X 10- 7 

9, 84 X 10• 8 

, ,. o. :me inc hes 

F(kl/~ 

I, 23 
I.IS 
2. 47 
:,. 08 

:1. 70 
4. :1 2 
4. !:t 
6. l 7 
7. i" I 
!I. 87 

12. :t 
15, ◄ 
l!f. 7 
24. 7 
ii0,8 

:18. G 
4!J. :-I 

lil.7 
77. I 
!ltJ,';' 

1:u 
Ifill 

1!17 
1-11 
:1n11 
:t Hli 

-1'•.I 

7 . 49 X 10- 2 

6, 54 
6.00 
s. 5:1 
4. 98 
4 , 62 
:t .!k) 
:1. 54 
2. 71 
i. :.:!2 
1. 70 
1. :16 
I. 12 
8. 8H X w-3 
7. 16 
4. !1-l 
-1.1 :1 
:t. 75 
:,. 07 

2. 51i 
I. 87 
-1. !IJ )( 111 -" 
I. !",-1 x 10--I 
:I . -l!I X 111_ !') 
!l.O --.; 10- li 

I. 7 8 -.; 1u- 1i 
-1 . jH "\; J\1- 7 

y : o. 02:1 in<'h 

~'(k)/~ 

2, S6 

3, 54 
4. 72 
5. !10 
7. 08 
8, 26 
9, 44 

11. 8 
14 •. 7 
18, 9 
23. 6 
29. 5 
37, 7 
47. 2 
59. 0 
73 , 7 
04. 4 

11_8 
147 
189 
23~ 
295 
377 
472 
500 
737 
944 

1180 
1475 

2, 83 X to-2 
2, SJ 
2. 17 
1. 98 
1. 65 
1. 73 
1. 61 
1, 40 
1. 24 
1.04 
9, 13 x 10-3 
7. 51 
6. 37 
5. 36 
4. 39 
3. 41 
2. 63 
2.08 
1. 69 
1. 27 
0. 75 X 10• 4 

4. 23 J 

!:~:x 10- 5 

◄, 55 X 10- 6 

!J, 10 X 10- 7 

2, 54 X 10• 7 

8 , 13 • 10 - : 
s. 20 • 10-

y .. 0, 408 inches 

F(k)/~ 

I , 19 
I. 78 

.2. :J S 
2. tl7 
:1. 56 
◄. 16 
4. 75 
5. tl4 
7 . -&2 
ti. so 

II. ti 
14 . 8 
l!l. ll 
2:, . 8 
20. 7 
:11.1 
"47 . 5 
5!1. -I 
14.:l 
!15. II 

11!1 

I S-I 
1!10 
2:,u 
2!17 
:111 
-17!", 

;"1: q 

8.30xto- 2 

7. 66 
7. 04 
6. 42 
5, 75 
4. 62 
4. :u 
:t. 42 
:.:! . tl l 
2. 43 
2. 05 
1. 62 
1. 26 
!J , ;i4 X 10• 3 

6. 5 1 
4 . 71 
3 . !J!I 
:t. 43 
:1.0·> 

2. 57 
I. 8!1 
-1.110 X )1)-t 

1.2-1" w-" 
z.H x rn· 5 
!"1. U:i X to- 6 

1, Ht x 10-fo 

·',• :.!Ii :,,_ l•I: ~ 
:.. I-I x I t) 
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TABLE Ill - NUM.t:HICAL VALUES OF Mt-;ASU HED ONE-DIMENSIONAL SPECTRU~ f'UNCTIONS U
00 

~ -Ill fps - Cont'd. 

y = 0. 508 inch 

F(k) 1:1 

1. 15 
1. 73 
2 . 31 
2. 89 
3. 48 
4,04 
4. 82 
5. 77 
7. 22 
9.24 

11 . 5 
14, 4 
18 . 5 
23 . l 
28. 9 
38. 1 
46, 2 
5 7. 7 
72. 2 
9 2, 4 

115 
144 
185 
231 
289 
381 
452 
~77 

9.36 X 1)-2 

8. 69 
7. 36 
6. 19 
5. 35 
4. 8 5 
4. 35 
3. 68 
3.09 
2. 34 
1. 84 
1, 37 
1. 07 
8, 02 X 10.J 
8. 68 
5. 51 
3. 85 
3 . 09 
2. 76 
2. 04 
1.00 
5 , 85 X 10· 4 

1. 27 X 10' 4 

2,51 X 10-S 
6, 69 X 10 ' 6 

1, 32 X 10 .fi 
2.68x 10 · 7 

1. 09 X 10' 7 

y = O. 50 in<'h 

F(kl/:2" 

1, 15 
1. 73 
2. 3 1 
2. 88 
3. 46 
4. 0 4 
4. 6 1 
5, 77 
7 . 2 1 
9. 23 

11. 5 
14. 4 
18. 5 
23 . 1 
28. 8 
36.0 
46. 1 
57, 7 
72. 1 
92. 3 

115 
144 
185 
231 
288 
360 
461 
577 
721 
9 23 

1153 

1. 25x rn· 1 

1. 22 I 
1,08 
1. 01 
7 ,62 X 10' 2 

6. 90 
5. 66 
4. 55 
3, 6 7 
2. 68 
2.04 
1. 63 
1. 12 
8. 34 X l Q' J 

~: ~~ I 2. 66 
1. 71 
1. 41 
9, 92 X 10' 4 

8.16 I s. 39 
2. 78 
I. 41 
8.6::ix 10 · 5 

2. ,o I 
1, ?. 7 - 6 
6, 58 X IQ 
2.22x10· 6 

7. 77 X 10''1 
5, }J X 10' 7 

y = 4. 00 inches 

F(kl/~ 

o. 882 
I. 32 
1. 76 
l. , l.O 
2. 65 
3.09 
3. 53 
4 . 4 1 
5, 51 
7.05 
8. 82 

11.0 
14, 1 
17. 6 
22 . 0 
27 , 6 
35. 3 
44. 1 
55, I 
70. 5 
88, 2 

110 
141 
176 
220 
276 
353 
HI 
55 1 
705 

1. 81 x 10-l 

:: :: I 1. 31 
I. 14 
1.06 
8. 36 X 10' 2 

6. 35 I 4. 65 
3. 22 
2, 20 
1.44 
9, 90 X 10-3 

6, 64 
4. 19 
2. 89 
1. 87 
l. 60 
1. 36 
8. 9 1 X 10' 4 

~: :~ I 
1.74 
1.02 
4. 44 X 10'~ 
2 , 0 1 X 10 -
8 , 40 X 10· 6 

3 , 54 X 10 ' 6 

1.09 X 10° 6 

5 , ti X 10· 7 

y = I 00 inch 

F(k)/:a 

1.115 
1. 57 
2. 10 
2, 62 
l. 15 
3 . 67 
4. 19 
s. 24 
6 . 55 
8. 39 

I D, 5 
13. 1 
16. 8 
2 1. 0 
26. 2 
32. 8 
41. 9 
52, 4 
65. 5 
83. 9 

105 
13 1 
168 
210 
262 
328 
419 
52 4 
6$5 
839 

1048 

I. 46 x 10-l 

I. 26 I 
1.09 
9.06 X 10-:l 
8. 98 
7. 24 
6. 51 
4. 77 
4. 14 
J.01 
2. 06 
1. 57 
1.03 

I 

~: !~ X 1

1

0.
3 

J. 33 
2, 28 
l. 53 
1. 37 

~:;; X 1

1

0"
4 

4. 32 
2. 57 

!: !! X 10· 5 

2. 51 l 
!: !! X 10· 6 

l.80x 10· 6 

7 , 00 X 10· 7 

5,33x10· 7 

y = 5. 00 inchea 

o. 859 
1, 29 
1. 72 
2, 15 
2. 58 
3.0 1 
3. 44 
4. 30 
5. 37 
6. 87 
8. 59 

10 . 7 
13. 8 
17 . 2 
21. 5 
26. 9 
14. 4 
43.0 
53. 7 
68. 7 
85, !I 

107 
1:rn 
172 
2 15 
26!.I 
H4 
4JU 
537 

F(kl/-:1 

1, 76 x 10-l 

1. 88 I 1. 54 
1.37 
1. 09 
1. 06 
8, 15 X 10" 2 

6 . 41 
4. 63 
2. 96 
2. 33 
1. 46 
I. 02 
6. 81 X }0° 3 

!: ~; I 2. 09 
I 1. 69 
! I. 27 

8, 58 X 10• 4 

: ~: !~ I 
I. 78 

I !J .!Jl x w· 5 
·t, 87 X JO'S 
2,U8 x 10· 5 

8, 75 X 10· 6 

·t. 1 l x 10· 6 

1.wx 1w 6 

y = 1. 50 inc h 

0. 09:J 
1. 49 
I . 99 
2 . 48 
2, 98 
:J. 48 
3. 97 
4. 97 
6. 21 
7. 95 
9. 93 

12, 4 
15. 9 
19. 9 
24. 8 
3 1. 0 
39. 7 
49. 7 
62. 1 
79. 5 
99. 3 

124 
159 
199 
248 
310 
397 
497 
82 1 
795 

F(k)/~ 

::t11o•l 
1.02 
1.02 
8, 32 X 10- 2 

7. 75 
6. 2 1 
4, 32 
3, 21 
2. 17 
1, 56 
I. 18 
8 , 20 X 10 • 3 

!: :: I 2. 71 
1. 42 
1, 34 
9 , 84 X 10' 4 

:: :: I 
2. 72 

!: !! X 10' 5 

2. 45 I 
1.05 
4 , 62 X 10 • 8 

1.84 X to• 6 

7,22x10· 7 

y = 6. 00 inches 

F(k)/~ 

0. 843 
1. 26 
1. 69 
2. 11 
2. 53 
2. 95 
3. 37 
4. 21 
5. 27 
6. 74 
8. 43 

10. 5 
13. 5 
16. 9 
21. 1 
26. 3 
3:1. 7 
42. I 
52. 7 
67. 4 
84. 3 

105 
1:15 
16!) 
2 11 
2t;:1 

U7 
421 
527 
67' 

2.oox10· 1 

,. 94 I 1, 56 
1. 45 
1. 12 
1. 12 
9,23 x 10· 2 

6, 22 
4, 41 
3. 42 
2. 3 4 
1. 80 
1.02 
6,80 X 10° 3 

•• 76 I 3. 30 
2,06 
1, 83 
1.21 
8. 9 4 X 10' 4 

5... I 
3 . 72 
1. 82 
9. 3 7 x 10· 5 

4 . 92 I 
1.H 
8 . lG x IU - 6 

:J . J 7 x 10· 6 

1. 06 X J\) · 6 

4. 86 x Ill- 7 

y = 2.00 inch 

F(k)/~ 

0. 958 
1. 44 
1. 92 
2. 39 
2. 8 7 
3. 35 
3. 83 
4. 79 
5. 99 
7. 86 
9. 58 

12.0 
15. 3 
19. 2 
23. 9 
29. 9 
38. 3 
47, 9 
59. 9 
78. 6 
95. 8 

120 
153 
192 
239 
299 
383 
479 
599 
786 

t.69x10 · 1 

1. 54 I 

!: ~: l 
9, 43 X 10· 2 

7 . 82 
6 . 89 
6. 26 
4, 20 
3. 0 1 
2. 22 
1. 61 

!:~~ X 10' 3 

!: :: l 2. 62 
1. 87 
1. 29 · 
9, 50 X 10' 4 

~: :; j 
2. 38 
1. 17 
5,JfiK 10' 5 

,. 46 l 
1. 01 
4,32x 10:: 
1, 30 X 10 
6 , 37 X 10• 7 

y • 7,00 inche1 

F(k)/-:1 

0 . 829 
l, 24 
l. 86 
2.0 7 
2. 49 
2. 90 
3. 32 
4. 15 
5. 18 
6, 64 
8. 29 

10, 4 
13.J 
16. 6 
20 . 7 

25, 9 
33 . 2 
•U.S 
51. 8 
fi6. 4 
82. 9 

104 
133 
166 
207 
25& 
1J2 
'15 
518 
660 

2,19xl0" 1 

2. 03 
l. 80 
I. 58 
1, 20 
1. 10 
1.02 
7,0 1 X 10- 2 

:: ~: I 2. 15 
1. 58 
1. 04 
7. 96 X 10° 3 

~: ~~ I 2. 06 
1. 74 
I . 29 
8. 45 ,c 10· 4 

5. ,1 I 
~: !~ I . 
9. 46 x w· 0 

5. 29 x 10· 5 

1, !,.'7 X !l)' 5 

7, 77 X l,1 · 6 

J, 58 X IU ' 6 

I. 26 X J ll - 6 

6, n X 1••· 7 

y * 3.00 inch 

F(kl/-:1 

o. 911 
1. 37 
1. 82 
2. 28 
2. 73 
3. 19 
3. 65 
4, 56 
5. 70 
7 . 29 
9. 11 

11. 4 
14. 6 
18. 2 
22. 8 
28. 5 
36. 5 
45 . 6 
57. 0 
7 2. 9 
91. 1 

114 
146 
182 
228 
285 
365 
456 
570 
729 

I. 66 X IJ• l 

:: :! I 
1. 15 

!:!! X 10' 2 

8. 71 
6. 62 

" · 63 
3. 30 
2. 08 
1. 67 
1.05 
7.93 X 10· 3 

~: :~ I 2. 52 
1. 68 
1. 32 
8 , 80 X J0· 4 ;: ;: l 
2. 27 
1, 08 
5.22 X 10· 5 

1,95x 10· 5 

9, 0 2 X 10 • 6 

3, 55 X IQ-& 
1, 26 X 10° 6 

6, 13 X 10' 7 
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TABLE [U - NUMERICAL V/\l.Ul•;s OF Ml=:ASUHEU ONE-DIMf-~NSlONAL SPECTRUM .FUNCTIONS u(I):: 2~ rps· Cont'd. 

y: 0.001 inch 

F(k)/~ 

199. 5 
299 
399 
489 
598 
698 
798 
997 

1247 
1598 
1995 
2494 
3192 
3990 
4987 
6234 
7980 
9975 

12470 
15960 
19950 
25930 
31920 

8.46 ir: 10· 4 

7. 90 
6. 87 
8.0) 
5. 66 
4. 97 
4.J5 
3. 63 
2. 99 
3. JI 
I. 78 
I. 19 
6. 34 x 10-S 

4. 67 I 
2.05 
1.03 
4. 80 X to•6 

2.06 I 
!: ~! X 10• 7 

1.32 X lQ•~ 

:: ~: : !~=8 

y = 0. 0 14 inch 

F(k)/~ 

13. 4 
20. I 
26, 8 
33. 5 
40. 2 
48. 9 
53. 6 
67.0 
63. 8 

107 
134 
168 
214 
268 
335 
419 
536 
670 
838 

1072 
1340 
1742 
2144 
2680 

J, 51 X to•2 

:: !~ I 
I . 21 

!: :: X 10• 3 
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Figure 1 . Definition sketch of the boundary layer 
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Figure 3 . Turbulence intensity in the free stream at the entrance to the t e st s e ction 
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Figure 4. Precision actuator 
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Figure 5. Probes 
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Figure 6. Schematic drawing of wall shear-stress meter (not to scale) 

1 . Floor of tunnel 
2 . Shear surface of pi voting element 
3. Micrometer movements 
4. Active strain wire 
5. Reference strain wire 
6. Pivots and vee-jewel bearings 
7. Locking mechanism 
8. Position for calibration weights 
9. Housing for pivoting element and micrometers 
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