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A b s t r a c t  

A h igh  performance s a i l p l a n e  equipped t o  measure ozone, tempera- 
t u r e  and v e r t i c a l  v e l o c i t i e s  s t u d i e d  a 125 l a 2  a r e a  s i m u l t a n e o u s  with 
t h e  r e l e a s e  o f  a n  ozonesonde and ESSA and NASA s a t e l l i t e  o b s e r v a t i o n s .  
T h e o r e t i c a l  S c o r e r  parameter  computations compared f a v o r a b l y  w i t h  
a c t u a l  a i r c r a f t  measurements. Lee wave ampl i tude ,  wavelength a n d  ver- 
t i c a l  v e l o c i t i e s  were determined by seven  independent  t e c h n i q u e s .  One 
t e c h n i q u e  used was t o  measure t h e  s t r u c t u r e  o f  t h e  l e e  wave f r o m  an 
ozone impl ied  u n d u l a t i n g  f low p a t t e r n .  Another was t h e  measurement-llf_- - 
tJle wave v i a  s a t e l l i t e .  Unique ozone s e n s o r  f low r a t e  c a l i b r a t i o n s  
were  a l s o  conducted d u r i n g  t h e  s t u d y .  

I n  a second s t u d y ,  Boulder ,  Colorado, r e c e i v e d  e x t e n s i v e  wind  
damage from winds g r e a t e r  t h a n  56 ms-l. This  occur red  dur ing  l a r g e -  
s c a l e  descending a i r  motions t o  t h e  l e e  of  t h e  C o n t i n e n t a l  D i v i d e  on 
7 January  1969. This  chinook c o n d i t i o n  is sugges ted  t o  have b e e n  the 
r e s u l t  of  l a r g e  ampli tude l e e  waves. A i r  of  r e c e n t  s t r a t o s p h e r i c  
o r i g i n ' i s  r e f l e c t e d  i n  ozone c o n c e n t r a t i o n s  a t  t h e  s u r f a c e  i n  Boulder. 
Two mechanisms a r e  suggested by which s t r a t o s p h e r i c  a i r ,  i n  a s h o r t  
p e r i o d ,  could a r r i v e  a t  t h e  s u r f a c e .  Both mechanisms u s e  as the main 
t r a n s p o r t  p r o c e s s  t h e  orographical ly- induced g r a v i t y  wave. 
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. . In t roduct ion  

A case study was conducted during lee-waving condit ions i n  t h e  

:olorado Rockies on 10 October 1968. An a i r c r a f t  was used t o  probe the  

area using var ious  sensors.  Ozone and radiosondes were re leased from 

lear  t h e  Continental  Divide and at Denver. The a i r c r a f t  was r ada r  

:racked f o r  exact pos i t ioning.  Addi t ional  temperature and wind da ta  

ras ascer ta ined from permanent s t a t i o n s  a t  t he  Continental  Divide. A 

brief ca se  study is  presented of a high su r face  wind s i t u a t i o n  and a 

)robe conducted i n t o  i ts  poss ib le  cause. 

Ozone theory. Trace gases ( a r t i f i c i a l  and na tu ra l )  have been used 

x t e n s i v e l y  during the  l a s t  two decades t o  b e t t e r  a s c e r t a i n  l a r g e  s c a l e  

.tmospheric motions Junge and Manson, 1961; NeweZZ, 1963; Reiter, 

963a; Hering, 1966; Kruger and Miller, 1966; Machta, 1966; BreiZand, 

9681 and i n  the  l a s t  decade a t  an  ever increas ing  tempo t o  measure 

ma l l e r  s c a l e  atmospheric flows, e.g., po l lu t ion  i n  urban a r e a s  and 

pper  anhlowes-tre~e~ierts<&weZte~tiZ., 34663. - 

A t r a c e  gas recognized f o r  i ts  quasi-conservative p rope r t i e s  a t  

e r t a i n  a l t i t u d e s  and i n  c e r t a i n  regions of t he  atmosphere i s  t r i -a tomic  

xygen o r  ozone. I n  the  region of t he  troposphere and the lower 

t ra tosphere ,  due t o  the  property of recombination, ozone can gene ra l ly  

e considered a quasi-conservative e n t i t y  [~aetzoZd, 19531. 

Regener [1941] f i r s t  advanced the  theory t h a t  ozone i n  the 

roposphere or ig inated  i n  the  s t r a tosphe re .  The obvious except ion  t o  

h i s  i s  t h e  ever growing ozone production lin the  lower troposphere by 

rban complexes [~ea, 1968; LoviZZ and Miller, 19681. The s u r f a c e  i s  

ene ra l ly  a s ink  [~egener, 19573 f o r  ozone. Of more i n t e r e s t  in the  

lgher atmosphere, dust  and o the r  gases can r e s u l t  i n  t he  d e s t r u c t i o n  

E ozone [fillernth et aZ., 1960; Pittock, 19661. Dust and o t h e r  

a t e r i a l  tend t o  concentrate a t  t he  base of temperature inve r s ions  i n  

l e  troposphere and i t  would seem t h a t  ozone des t ruc t ion  would b e  a t  

:s maximum here r a t h e r  than immediately above o r  below, however s t u d i e s  

ive shown t h a t  t h e  maximum of ozone is found wi th in  the  inversion--  

2ar t h e  middle--rather than a t  the  base [~ovilZ and MiZZer, 19683. It 

e s s e n t i a l  i n  t r ac ing  t h a t  one knows t h e  source of t he  constituent 



e ing  used. Near complexes tha t  produce ozone a t  the  surface ,  o n e  must 

lake paramount consideration of the  f a c t  t ha t  the t r ace r  depends upon 

pward mixing. Above one t o  two kilometers one can r e s t r i c t  t h e  number 

f sources to ,  i n  general ,  one--that of the  s t ra tosphere .  Kroening and 

'ey El9621 suggested t h a t  ozone soundings which they conducted indicated 

i v e r s  of ozone flowing from the  s t r a tosphere  t o  the  troposphere.  A 

tudy (centered two kilometers above and below the  tropopause) indicated 

poss ib le  method of t ranspor t  from the  s t ra tosphere ,  across  t h e  tropo- 

ause,  i n t o  t h e  troposphere [ ~ o v i l l ,  19681. By de ta i l ed  observat ion of 

zone and p o t e n t i a l  temperature, the  const ruct ion of a p i c t u r e  regard- 

ng f i n e  s c a l e  s t r u c t u r e  and motions is poss ib le .  The study was con- 

erned with 21 cases at  an average height  of 18 kilometers and indicated 

h a t  i n  t h e  s t r a tosphere  were f i n i t e  l aye r s  (laminae) with h i g h e r  

lomenturn, lower po ten t i a l  temperature, and higher ozone content than 

ayers  immediately above o r  below. Even more i n t e r e s t i n g  was t h a t  i n  

he upper troposphere l aye r s  were found t h a t  had lower momentum, higher 

~ o t e n t f  a-mzture, and h f g t r e r p t - - - - s  . .- 

m e d i a t e l y  below o r  above. This paper w i l l  be concerned with using 

b e s e  "r ivers"  o r  f i laments of ozone together with i t s  quasi-conservative 

~ r o p e r t y  t o  t r a c e  atmospheric motions i n  the  middle and upper tropo- 

:phere . 

Lee wave theory. A b a r r i e r  can a f f e c t  the  hor izonta l  component of 

~ i r  perpendicular t o  i t  i n  th ree  ways: (1) t h a t  t he  a i r  w i l l  b e  forced 

:o r i s e  over the  obs tac le ,  o r  (2) t h a t  t he  a i r  w i l l  move around the  

t a r r i e r ,  o r  (3) a combination of one and two. I f  the  b a r r i e r  i s  made 

. n f i n i t e l y  long peTpe\dicii1ari-to-.the flow, -the only p o s s i b i l i t y  w i l l  

e 1 )  I n  genera l ,  p o s s i b i l i t y  (1) presents  the  b e s t  case  f o r  a wind 

.mpinging on the  genera l ly  N-S-oriented Rocky Mountains. The f i r s t  

j tudies i n t o  the  atmospheric flow pa t t e rns  produced by mountain ranges 

rere conducted by Lyra El9431 and &ueney C19471. Lyra [I9431 i n  h i s  

:heore t ica l  treatment obtained l e e  waves such t h a t  the  amplitude of the 

Jave decreases  downstream and increases  with height .  Queney [1947] 

iemonstrated, among other  th ings ,  t h a t  the v e r t i c a l  component of  the 

sa r th ' s  r o t a t i o n  and the  amount of s t a b i l i t y  d i r e c t l y  af fec ted ,  and 



contributed highly to ,  the  wave equations developed i n  h i s  theory of 

per turbat ions  i n  s t r a t i f i e d  currents .  

The solut ions  derived by Lyra and Queney suffered inadequacies 

and t h i s  was recognized by Scorer C1949, 1953, 19541 i n  d i f f e r e n t  

approaches to  the  problem. A s  a p r a c t i c a l  mat ter ,  i t  is known t h a t  the  

very long wavelengths discussed by Queney a r e  not the  typ ica l  lengths 

encountered i n  t h e  l e e  of mountains [LiZZy, 19681. It is  a l so  known 

t h a t  the  wave amplitude decreases a t  g rea t  heights i n  the  atmosphere. 

I n  deriving an equation f o r  the  stream function,  Scorer [I9491 s tud ies  

a case  t h a t  has i sen t rop ic  flow, and t h a t  is laminar, f r i c t i o n l e s s ,  

and s t a t iona ry .  I n  addi t ion ,  due t o  the  small  wavelengths involved, he 

neglects  the  ea r th ' s  ro t a t ion .  With these simplifying assumptions, the  

following equation is  derived 

shere (I = stream funct ion 

c2 = speed of sound 
1 ae B = s t a t i c  s t a b i l i t y  = -- e a~ 

U = wind speed (generally computed normal t o  the  mountain i n  the  

undisturbed a i r  stream) 

z = height measured v e r t i c a l l y  upward 

k = wave number i n  x-direction 

a2u 
= change of wind shear i n  the  v e r t i c a l .  

I n  the  above equation, Scorer neglects  a$/az implying t h a t  i t s  

i f f ec t  is small. The equation therefore  s impl i f i e s  t o  

n (2) $ - Q i s  refer red  t o  a s  t2 and cal led  the  Scorer parameter. 

t is ind ica t ive  of the  p o s s i b i l i t y  of the  formation of l e e  waves and, 

u t  of t h e o r e t i c a l  necess i ty ,  i t s  magnitude a f t e r  being high i n  the  

ower troposphere must assume lower values a t  g rea te r  he ights .  Scorer 

howed t h a t  with two l aye r s ,  the  lower of depth h, a wave can occur i f  



- 112 a210wer upper 
j unc t i on  wi th  t he  

n 2 
> . This requirement f o r  l e e  waves, i n  con- 

changes of  l2 as a func t ion  of he igh t ,  has b e e n  

d iscussed  by many r e sea rche r s  [scorer, 1949; Corby, 1954; FoZdvik, 

1962; Conover, 19641. The second term i n  t h e  Scorer  parameter ( t he  

v e r t i c a l  wind shear )  is d i f f i c u l t  t o  compute from t h e  ordinary two- 

minute i n t e rpo l a t ed  winds obtained dur ing  a radiosonde ascent .  I n  

a d d i t i o n ,  it is  r a t h e r  obvious t h a t  even a sma l l  change i n  the  U with 

h e i g h t  r e s u l t s  i n  a r a t h e r  l a r g e  f l u c t u a t i o n  of t he  a2IJ/az2. (Attempts 

were made t o  compute t h i s  term, butb they were r a t h e r  d i s appo in t i ng  and 

always s u b j e c t  t o  l a r g e  e r ro r . )  This  s tudy  w i l l  t he r e fo re  n e g l e c t  t he  

v e r t i c a l -  wind shea r  term (a  p r a c t i c e  f r equen t ly  done [see, e . g . ,  

FoZdvik, 1962; Conover, 19641). 

Orographically-produced l e e  waving can s e rve  as t h e  o r i g i n  o f  

c l e a r  a i r  turbulence  (CAT) and can be  t h e  d i r e c t  cause of t r a n s p o r t  

of s t r a t o s p h e r i c  a i r  t o  t h e  su r f ace  [ ~ e i t e r  and Hayman, 1962; Reiter ,  

1963a; Reiter and Mahhan, 1965; Reiter and FoZtz, 19671. CAT i n  the 

v i c i n i t y  o f - l e e  waves-and transpoLt ac ros s  t h e  tropopause w i l l  b e  of --- - ---- -- 
concern i n  t h i s  s tudy.  

11. Ins t rumenta t ion  

Aircraft  description. The a i r c r a f t  used i n  t h e l e e  wave s t u d y  

was a Schweitzer  232 high-performance sailplane--The Explorer. A s a i l -  

p l ane  was chosen f o r  two reasons:  (1) t h e  s a i l p l a n e ' s  forward speed  

g e n e r a l l y  remains a cons tan t  f a c t o r ;  a powered a i r c r a f t ,  on t h e  o the r  

hand, h a s  a va r i ance  of speed depending on power usage as t h e  g r o s s  

weight  changes. The s a i l p l a n e  t h e r e f o r e  comes c l o s e r  t o  f l y i n g  a t r u e  

a ir  t r a 3 e c t o r y " f h a n  "iny' o t l e r  type  of a i r c r a f t - - t he  importance of t h i s  

w i l l  be  clear l a t e r .  (2) The response r a t e  of  t he  atmospheric r e sea rch  

ins t ruments  r e q u i r e  a slow-moving a i rbo rne  p la t form i n  order  t o  o b t a i n  

t h e  b e s t  pos s ib l e  r e s u l t s  dur ing  an  experimental  s tudy  such a s  t h i s .  

L a t e r ,  r e sea rch  using t he se  ins t ruments  can be  conducted using f a s t e r  

a i r b o r n e  platforms.  But f o r  t h e  s p e c i f i c  aim of t h i s  s tudy,  The 

Explorer  was deemed supe r io r .  

The Explorer  (Figure 1 )  was purchased by t h e  Explorers Research 

Corpora t ion  (ERC, Lowell Thomas, honorary chairman), a non-profi t  

a f f i l i a t e  of  t h e  Explorers Club of  New York. $10,000.00 of instrumen- 
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Physically,  The Explorer can withstand 12 G ' s ;  has a g l i d e  r a t i o  o f  

'5:l; i s  equipped with oxygen f o r  a l t i t u d e s  up t o  45,000 f e e t  (14 km) 

,-with a pressure s u i t  t h i s  could possibly be extended t o  80,000 feet  

25 km, 28 mb). No sa i lp l ane  i n  the  world, a t  t h i s  time, is  equipped 

:o perform a t  such high a l t i t u d e s  with such precis ion and s c i e n t i f i c  

botential  a s  The Explorer [pan Am CZipper, 19682. 
----. . - -  - -- - 

Ozone-sensor -de&pth .  The ozone sensor .used i n  the a i r c r a f t  

ras an  Elect ro  Chemical Concentration Ce l l  (ECC) designed by Komhyr 

119671. The ozonesonde (a carbon-iodide (CI) ozone sensor) was of an 

, lder  design [lfomhyr, 1964; LoviZZ, 19681. The ECC and C I  ozone sensors  

are b a s i c a l l y  of the  same i n t e r n a l  design, response r a t e ,  s i z e ,  e tc .  

rhe ECC has, however, el iminated the  use of carbon i n  the  sensor  system 

--this and other  s l i g h t  modifications a r e  described by Komhyr C19671. 

Various flow r a t e s  and sensor response a r e  described below (the 

i e s c r i p t i o n  of the  sensor i s  elaborated upon i n  the  sec t ion  descr ib ing 

the CI w - p p n n r l - e r a r d i n g  dev ice  was mounted i n  f r o n t  

2f the  meteorological observer positioned i n  the  r e a r  s e a t  (Figure 3 ) .  

r'lgure 3 .  uzone ana cemperacure recoraers  on Ane nxprorer. sue 

display  i s  s i t u a t e d  f o r  viewing by the  meteorological  observer i n  the 
r e a r  compartment. (From l e f t  t o  r igh t :  1 - ozone sensor b a t t e r y ,  2 - 
ozone sensor recorder ,  3 - temperature sensor recorder.)  Note instrument 
panel is v i s i b l e  i n  the  background. 



 his posi t ioning allowed the  observer to  have c l e a r  viewing a c c e s s  of 

the  ozone sensor recording char t  and the  temperature probe c h a r t  

(Figure 3, locat ion 2 and 3, respect ively) ,  i n  addi t ion  to  the  c o n t r o l  

panel i n  f ron t  of the  p i l o t .  The Explorer cabin i s  not  heated, and 

s ince  i t  is important f o r  the  general  performance and response r a t e  of 

the ECC sensor t o  maintain temperatures g rea te r  than O ° C ,  the  s e n s o r  

aas placed i n  a s t a t iona ry  pos i t ion  wi th in  the  observer 's  parka.  The 

:ernperature of the  sensor w a s  monitored and maintained nearly c d n s t a n t .  

;pace l i m i t a t i o n  prevented the  use of a heating cabinet .  

Before the  ozone da ta  gathering process was begun, i t  was deemed 

ecessary  to  a sce r t a in  t o  what extent  the  flow r a t e  of the  ozone sensor 

ould be af fec ted  by various a i rcraf tmaneuvers .  The type of maneuver, 

l t i t u d e ,  v e r t i c a l  ve loci ty  and flow r a t e  a r e  presented i n  Table 1. 

h i s  experiment indica ted ,  i n t e r e s t i n g l y ,  t h a t  t he  g rea te s t  change i n  

ir flow (extreme l imi t s )  was only 1.3%. A f r a c t i o n  of t h i s  c o u l d  be 

I measurement e r r o r ,  but  t h i s  was minimized by taking f i v e  c a s e s  f o r  

~ c h  set of  da ta .  The dev ia t ion  from an average value  -is approximately 

.7%, therefore  the  e r r o r  l i m i t  probably ranges from 0.5-1.0%. I n  

.most a l l  s tud ies ,  t h i s  is  we l l  within the  required accuracy of the  

: p e r b e n t .  For the  purposes of t h i s  study, the  e r r o r  was considered 

g l i g i b l e .  

Response rate. The electrochemical sensor,  while measuring ozone 

an absolute  sca le ,  does not have an instantaneous response t ime .  The 

sponse time of the  sensor used is indicated (Figure 4) from labora to ry  

sts made immediately p r i o r  to  the  f l i g h t .  The experiment was conducted 

296OK. Indicated i s  a 54% s t e p  change i n  10 seconds and a 97% change 

60 seconds. For the  a i r c r a f t  v e l o c i t i e s  of t h i s  study,  the  ozone 

isor response was we l l  wi th in  the  to l e rab le  l ag  l i m i t s .  

The temperature probe consisted of a rod thermistor and s e l f -  

~ t a i n e d  recorder u n i t  constructed a t  NCAR e spec ia l ly  f o r  the  s t u d y  

lte locat ion of the  temperature probe i n  Figure 1, t h e  ozone sensor  

ake is  positioned on the  opposite s i d e  of the  a i r c r a f t  i n  the  same 

a t ion ) .  



Table 1. Flow r a t e  under various a i r c r a f t  maneuvers. 

Type of Maneuver* Al t i tude (meters) Average Flow Rate  
(m&/min) 

on "tow" - ascending 4,850 
a t  1.3 ms-l - airspeed 
- 35 ms-1 - heading 
270". 

Descending - airspeed - 30 ms-l - heading 
270". 

Ascendin a i rspeed 
- 28 ms-f 1 30' bank - 
heading 330'. 

Zero r a t e  of climb - 3,750 
a i r speed  - 30 ms-I - 
heading 310". 

Side sliy - airspeed 2,530 
- 33 ms- - heading 270'. 

Descending at 5.5 ms'l - 2,780 
a i r speed  - 50 ms-I - 
heading 90'. 

* wind a t  4,570 meters 

270' at - 15 m s - l .  



Figure 4. Response rate of the electrochemical concentration cell 
(Komhyr Ozone Sensor). See text for elaboration. 

Surface e ~ i p m e n t  description. Radar. The positioning of the air- , 

craft was obtained by an NCAR automatic radar tracking system (modified 

T33) (see Figure 5 for location of the unit). The accuracy of the system 

at 38 kilometers is 214 meters. Exact x, y, z location was therefore 

obtained continuously. 

Figure 5. Diagram encompassing area of lee wave study. 



Ozonesonde. A carbon iodide  (Komhyr) ozonesonde was used i n  the  

;tudy (Figure 6) .  The device was chosen because of severa l  a t t r i b u t e s :  

L t  i s  simple i n  design,  l ightweight ,  compact, and capable of providing 

i a t a  on an absolute  sca le .  This device has been extensively descr ibed 

>y Komhy~ C1964, 19681 and used successful ly  i n  a study i n  C a l i f o r n i a  

:LoviZZ and MiZZer, 19681. 

Figure 6. The carbon-iodine ozonesonde ( the  e a r l i e r  model of the  
Komhyr ECC ozone sensor).  Denoted i n  the  f igure :  1 - cathode chamber, 
2 - anode chamber, 3 - sensor pump, 4 - instrument commutator, 5 - 
power supply connection, 6 - channel f o r  da ta  flow to  radiosonde trans- 
m i t t e r .  - - .. _ _. - - --- -- - ---_I _ - _  I _  I - 

The sensor anode and cathode, tubing and pump a r e  const ructed  of 

Teflon,  a substance i n e r t  t o  ozone. The C I  ozone sensor i n  t h e  ozone- 

sonde required a period of one t o  two hours of p re f l igh t  c a l i b r a t i o n  

seve ra l  days p r i o r  to  the  f l i g h t . .  Immediately before the  f l i g h t  a f i n a l  

c a l i b r a t i o n  and check w a s  conducted (Figure 7 ,  the  sensor i s  r ece iv ing  

a high concentration of ozone from a Regener generator) .  The Komhyr 



ozone sensor with dimensions of 13 by 8 by 7.6 cm proved most acceptable  

i n  the  small  space ava i l ab le  on t h e  a i r c r a f t .  

Figure 7. Cal ibra t ion  of Komhyr ozone sensor .  Figures denote: 1 - 
)zone sensor,  2 - syr inge  and needle f o r  so lu t ion  i n j e c t i o n  i n t o  cathode 
mnd anode chambers, 3 - Regener ozone generator,  4 - a i r  in take ,  5 - a i r  
ilow-rate adjustment, 6 - s h u t t e r  con t ro l  f o r  u l t r a v i o l e t  source,  7 - 
)zone o u t l e t ,  8 - drying tower, 9 - flow-rate c a l i b r a t i o n  bure t .  

Release site. The ozonesonde r e l e a s e  s i t e  was se l ec t ed  t o  be 

Brainard Lake (BLK) which i s  j u s t  t o  t he  e a s t  of t he  Continental  Divide 

a t  3141 meters a l t i t u d e  (see  Figures 5 and 8). The s i t e  was se l ec t ed  

on the  bas i s  t h a t  i t  was e a s i l y  access ib l e  and near t h e  Divide. It was 

extremely important t h a t  the  ozonesonde r e l e a s e  s i t e  be  on the  western 

boundary of the  ozone l e e  wave t r ac ing  a r e a  (shaded a rea ,  Figure 5). 

Dne of t he  goals  of t he  experiment was t o  attempt an  a i r c r a f t  rendezvous 

s i t h  the  ozonesonde ( the  f i r s t  time t h i s  has ever been accomplished 

using ozone sensors)  s eve ra l  ki lometers above and t o  the  l e e  of t he  

Brainard Lake r e l e a s e  s i t e .  This was done i n  order  t o  achieve a 



.omparison between t h e  two ins t ruments  and i n s u r e  a more a c c u r a t e  l a t e r  

. n a l y s i s .  L a t e r  a n a l y s i s  of t h e  r a d a r  p o s i t i o n i n g  of t h e  a i r c r a f t  and 

.he computed ozonesonde t r a j e c t o r y  i n d i c a t e d  t h a t  t h e  s e p a r a t i o n  d i s t a n c e  

~e tween  t h e  two s e n s o r s  was approximately 1 . 3  k i l o m e t e r s  i n  t h e  horizon- 

a 1  . 

F i g u r e  8. D e t a i l e d  topographica l  map of  C o n t i n e n t a l  Divide region 
e s t  of  Boulder .  

Tracking sites. The ozonesonde t r a c k i n g  s i t e s  were l o c a t e d  a t  

la r sha l  and Gun B a r r e l  ( s e e  F igure  5).  Two s i t e s  were provided i n  

r d e r  t o  i n s u r e  cont inuous t r a c k i n g  of t h e  ozonesonde s i n c e  l o s s  of  

i g n a l  was p o s s i b l e  due t o  t h e  d i s t a n c e  involved  between t h e  r e l e a s e  

i t e  and t h e  t r a c k i n g  s i t e .  

Error  maZgsis.  An a b s o l u t e  e r r o r  t o  t h e  95 p e r c e n t  conf idence  

i m i t  i s  i n d i c a t e d  a t  0 . 2 ' ~  f o r  t h e  t empera ture  measured by t h e  air- 

r a f t .  The probable  e r r o r  i n  a n  ozone d a t a  p o i n t  ob ta ined  by t h e  a i r -  

r a f t  i s  l e s s  than  k 5  p e r c e n t  and most l i k e l y  f 2  p e r c e n t .  While t h i s  

s t o  a c e r t a i n  e x t e n t  s u b j e c t i v e ,  i t  is none t h e  l e s s  o b j e c t i v e  t o  the 

x t e n t  t h a t  t h e  ozonesonde compared t o  -11% w i t h  t h e  Dobson Spec t ro-  

ho tometer  d a t a  and a l l  ozone d a t a  p o i n t s  on bo th  s e n s o r s  were c o r r e c t e d  

rom t h i s  b a s e  va lue .  



111. Spa t i a l  D i s t r ibu t ion  of Ozone and Po ten t i a l  Temperature Surfaces 

i n  Orographically Induced Lee Waves 

Description o f  f l i g h t  path and area of study. The a r e a  of  study 

(shaded area ,  Figure 5) extended (N-S) from a few kilometers no r th  of 

Longmont t o  a few kilometers south of Boulder and (N-E) from t h e  Front 

h n g e  (Continental Divide) t o  j u s t  west of Boulder. Data gathering - .- -. - - --- - - - - - - -- - - - . - 
gas confined t o  a smaller  area  within the  above region.  Figure 9 is  a 

riew of the $harp rise.  o f  t h e  western s lope  of the  ~ r o n t '  ~ a n ~ e l  A 

mwerful blocking ac t ion is forced upon a given air parcel  by t h i s  

;teep N-S b a r r i e r .  

F igure  9.  View (looking west) of the  sharp r i s e  of the  wes te rn  
Lope of the  Continental Divide (from The Explorer a t  7.6 km (25,000 
se t )  MSL). Denoted i n  f igure :  1 - Continental  Divide ( e l e v a t i o n  3.9- 
. 3  km (12,700-14,200 f e e t ) ) ,  2 - Middle Park a rea  (elevation 2 . 5  km 
3,300 f e e t ) ) .  

Longs Peak ( ~ i ~ u r e  10) was the  highest  b a r r i e r  to  a given p a r t i c l e  

n the  inves t iga t ion  area.  It is not a t  a l l  uncommon f o r  a s i n g l e  



Figure 10. Longs Peak (as vlewed from The Explorer a t  6 . 1  km 
:20,000 f e e t )  MSL) . Note the extremely sharp r i s e  of the s lope.  

enticular cloud (Figure 11) to  form over Longs Peak even when no v i s i -  

l e  evidence of  a l e e  wave e x i s t s  elsewhere along the Front Range. 

Figure 11. Lenticular over Longs Peak. 



lue to  its shape (Figure 10, a l s o  s e e  topography depic t ion i n  Figure 8) 

and t o  the  f a c t  t h a t  i t  is s i t u a t e d  to  the  e a s t  of a general  N-S l i n e  

>f the  Front Range, even low wind v e l o c i t i e s  tend t o  s e t  up the  mecha- 

> i s m  producing a wave. Figure 11, i n  f a c t ,  was observed with a 5-6 Ean 

iind a t  Denver of 1 3  wps. Figure 12 shows The Explorer on 10 October 

.n a wave, outs ide  of the  wave cloud i t s e l f ,  ascending a t  approximately 

.O m s - l .  The flow wi thin  the  wave i s  exceedingly smooth. 

Figure 12. I n  wave l i f t .  Taken from The Explorer a t  5.5 km (18,000 
!et)  MSL, measured v e r t i c a l  ve loc i ty  g rea te r  than 10 ms". 

No data  gathering was attempted i n s i d e  wave clouds although i t  i s  

l i t e  f eas ib le  a s  long as  radar  tracking i s  provided and the  experimen- 

11 area  i s  not i n  a busy a i r  t r a f f i c  control  area .  The Longs Peak a rea  

; a busy a i r  center  and a l l  f l y i n g  above 7.32 km (24,000 f e e t )  was 

idar tracked and radio control led  by the  FAA Denver Center located  NW 

I Longmont. 

Turbulence was encountered on occasion near r o t o r s  i n  the  eas t e rn  

.ea of the  region of study (see  Figure 5) .  Although the  turbulence 

~ s t e d  for  generally l e s s  than a minute, the  acce le ra t ion  exceeded 1 G 

i occasion. Turbulence was infrequent ly  encountered mainly due t o  the  



a c t  t h a t  the  p i l o t  of The Explorer was experienced i n  mountaLn wave 

ly ing.  This i s  not always the  s i t u a t i o n ,  and the  average p i l o t  of a 

i g h t  t o  medium weight a i r c r a f t ,  i f  not  aware, could exceed i t s  maximum 

u s t  load.  

Almost without exception, the  N-S and E-W f l i g h t  l egs  through the 

olume s tudied r e su l t ed  i n  extremely smooth f l y i n g  condit ions.  Flying 

n both t h e  ascending and descending pos i t ion  of the  l e e  waves was  

u i t e  smooth and the  flow seemingly laminar. 

Synoptic situation. On 9 October (Figure 13) ,  t he  Great Basin ,  

he Rockies and most of the Great P la ins  were under the  in f luence  of a 

a rge  ant icyclonic  c e l l .  (Immediately p r i o r  t o  t h i s  period (36 hours) 

complex f r o n t a l  system had crossed the  Colorado Rockies.) A t  500 mb 

n 9 October (Figure 14) ,  winds were W t o  NW a t  25 m s - l .  

F igure  13. Surface synoptic cha r t  f o r  12 GMT, 9 October 1968 
Erom ESSA). 

A t  the su r face  on 10 and 11 October (Figures 15 and 17) ,  a slow 

i ig ra t ion  eastward of the  l a r g e  ant icyclone,  together  with format ionof  

L weak low i n  eas t e rn  Colorado, produced a surface  wind system t h a t  



Figure 15 .  Surface synoptic chart for 12 GMT, 10 October 1968 
(from ESSA) . 



r e s u l t e d  i n  generally SW surface  winds of 5 m s - l .  A t  500 mb (Figures 

16 and 18) by the  l l t h ,  t he  flow was generally zonal throughout the 

western  United S ta t e s  with v e l o c i t i e s  of 15 m s - l  from the  WSW over  most 

of Colorado. A short-wave p a t t e r n  seemed t o  be  exhibited i n  t h e  

temperature s t r u c t u r e  over NW Colorado. 

Figure 16. 500 mb cha r t  f o r  12 CMT, 10 October 1968 (from ESSA). 

A cursory examination on the  10th  a t  00 and 12 GMT ( ~ i g u r e s  19 and 

20) of . the Grand Mction soundfngs Cupstream of the  area  of lee wave 

s tudy) ,  i nd ica te s  a wind f i e l d  above 400 mb very s imi la r  t o  t h a t  of 

Denver dur ing the same period (Figures 21 and 22) .  The s t a b l e  layer  i n  

zvidence from 310 to  300 mb a t  Grand Junction a t  00 GMT ( ~ i g u r e  19) 

; e m s  t o  have been replaced by an ad iaba t i c  l aye r  twelve hours l a t e r  

(Figure 20). 
I n  addi t ion  t o  the  p o t e n t i a l  temperature and the  r e s u l t a n t  wind, 

L t h i r d  parameter, , was obtained.  The assumption was made as 3 1 3 2 ,  0 xpla ined e a r l i e r  t h a t  - would be neglected.  I n  t h i s  form, 5 can u az 
e r e f e r r e d  t o  a s  the  Lyra o r  Scorer parameter (fi2). A fea tu re  noted 



Figure 17.  Surface synoptic char t  f o r  1 2  GMT, 11 October 1968 
(from ESSA) . 

Figure 18. 500 mb cha r t  f o r  1 2  GMT, 11 October 1968 (from ESSA). 

19 



0 40 50 ms" 

Figure 19 .  P l o t  of  Scorer parameter (shaded a r e a ) ,  p o t e n t i a l  tern- 
erature ( short ,  dashed l i n e ) ,  and r e s u l t a n t  wind v e l o c i t y  ( l o n g ,  dashed 
i n e )  f o r  Grand Junction, 00 GMT, 10 October 1968. 
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Figure 20. Same a s  Fig. 19,  except f o r  12 GMT, 10 October 1 9 6 8 .  



g e n e r a l l y  when l e e  waves a r e  observed i s  a decrease  of  magnitude of  i2 

w i t h  i n c r e a s i n g  h e i g h t  i n  t h e  t roposphere.  I n s p e c t i o n  shows t h a t  t h i s  

is  mainly due  t o  wind speed. There is a n  i n c r e a s e  i n  i2 above t h e  

t r o p o s p h e r i c  wind maximum because of  t h e  g r e a t e r  s t a b i l i t y  o f  t h e  

s t r a t o s p h e r e  and a d e c r e a s e  of wind v e l o c i t y  C~oZdvik ,  1962; Scorer, 

1949, 1953, 19541. Genera l ly  r e q u i r e d  of t h e  i2 p r o f i l e  is a l a r g e  

~ a l u e  i n  t h e  lower t roposphere.  When i2  d e c r e a s e s  by approximately a n  

mder  of  magnitude through a t h i c k  l a y e r  from i t s  v a l u e  a t  t h e  bottom 

)f t h e  l a y e r ,  Scorer  found t h a t  on ly  t h e n  would waves b e  p o s s i b l e .  

It t h e r e f o r e  appears  (F igures  1 9  and 20) t h a t  a tmospheric  con- 

. i t i o n s  were p o s s i b l e  f o r  wave format ion  a t  Grand J u n c t i o n ,  however 

Tnd components and mountain al ignment  p r o h i b i t e d  t h i s  apparen t ly .  

owever, t o  t h e  l e e  of  t h e  Fron t  Rznge (280 km west  of  Grand J u n c t i o n ) ,  

enver  and Brainard Lake soundings i n d i c a t e d  p o s s i b l e  l e e  wave format ion .  

he p o s s i b i l i t y  was v e r i f i e d  by wave c louds .  F i g u r e  23 i n d i c a t e s  bo th  

he topographic  r e l i e f  of t h e  Rocky Mountain area i n  and immediately 

~ r r o u n d i n g  Colorado and t h e  l o c a t i o n  of  Brainard Lake r e l a t i v e  t o  Grand 

i n c t i o n  and Denver. 

900i 1 I I I 1 1 J 
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F i g u r e  21. Same a s  F ig .  1 9 ,  excep t  f o r  Denver, 00 GMT, 10 October 
8. 



Analysis of soundings of Grand Junction t o  determine upstream 

:ondit ions of the  Continental  Divide indicated  l i t t l e  could be learned 

,f l e e  wave formation i n  the  l e e  of the  Front Range t h a t  couldn ' t  be 

,btained frem #e Bertver solmding, Analys is  .concerning Grand Junct ion 

r i l l  be  used only a s  per iphera l  evidence. 

The da ta  gathering por t ion  of The Explorer f l i g h t  on 10 October .- - ----- -- - -  -- 
Lasted from 1344 t o  1955 GMT, various problems r e s t r i c t e d  the  u s e  of a l l  

,f t h e d a t a  however. The da ta  t h a t  were used encompass a per iod from 
.- -----+-----,--,-..----.-- -- - .-1.. __-__I_._.__,_ -I_.., _, ---__.._ 

L700 t o  1955 GMT. Most of the  da ta  were gathered between 400-600 mbi.-""' 

f i e r e f o r e  a p a s t  h i s to ry  and loca t ion  of a i r  p a r t i c l e s  i n  t h a t  region 

z t  t he  t ime w i l l  be analyzed using a mesoscale ana lys i s  of the  Denver 

po ten t i a l  temperature and wind (Figure 24). 

Air  p a r t i c l e s  at the  top of the  a rea  of inves t igat ion (400 mb) a r e  

ind ica ted  (Figure 24) t o  have been some 60 hours e a r l i e r  a t  260 mb. 

P a r t i c l e s  a r r i v i n g  a t  400 mb a t  1830 GMT were s u f f i c i e n t l y  c l o s e  t o  the 

tropopause e a r l i e r  t o  have received higher ozone concentrations than 

usual  f o r  the  400-600 mb l eve l .  P a r t i c l e s  a r r iv ing  a t  the  600 mb l e v e l  

o r ig ina ted  e a r l i e r  a t  480 mb. I n  general ,  a i r  a r r i v i n g  at the  region 



of concentrated investigation--the 200 mb l aye r  from 600-400 mb--had 

been subsiding f o r  the  pas t  two days. The wind, i n  general ,  backed and 

decreased i n  ve loc i ty  f o r  a 36-hour period p r i o r  t o ,  and during, the  

radiosonde sounding at Denver. 

The v e r t i c a l  l2 p r o f i l e  indica ted  l e e  wave formation poss ib le  on 

the  10th a t  00 G'MT (Figure 21) and indeed, a s  indica ted ,  l e e  waves were 

v i s i b l e  during t h i s  period. The k2 p r o f i l e  12 hours l a t e r  (Figure 22) 

indicated even b e t t e r  l e e  wave f o m t i o n  t o  be poss ib le .  Around t h i s  

period--10 October a t  12 GMT--indeed v i s i b l e  l e e  wave a c t i v i t y  seemed 

most intense.  According t o  the  Denver t2 p r o f i l e s ,  the  formation of 

l e e  waves was l e s s  l i k e l y  a t  00 c3-E on 11 October (Figure 25), and even 

l e s s  l i k e l y  twelve hours l a t e r  (Figure 26). The f l i g h t  period appears 

t o  have taken place  during an  optimum tin:, although the  Denver p r o f i l e s  

ind ica te  the  d a t a  sampling period missed the  optimum formation (Figure 

22)--being a few hours l a t e .  Under weak westerly flow condit ions,  when 

l ee  waving of l i g h t  t o  moderate i n t e n s i t y  is occurring,  the  s t ronges t  

paving occurs during t h e  e a r l y  morning hours before  convective a c t i v i t y  

l a s  the  opportunity t o  d i s rup t  the  wave flow. 

Figure 23. Topographic r e l i e f  map of Colorado and surrounding 
s t e s .  (GJT = Grand Junction,  BLK = Brainard Lake, and DEN = Denver). 





Two fac to r s ,  s t rong wind sheats  and s t a b l e  l aye r s ,  a re  conducive 

o g r a v i t y  wave formation. The Denver sounding on 10 October a t  12 GMT 

Figure 22) indicates  a strong wind shear zone from 380-450 mb. A 

t a b l e  l a y e r  is indicated i n  t h i s  region. On 11 October a t  00 GMT 

Figure 25), the  only s t rong wind shear i n  the  region of i n v e s t i g a t i o n  

s between 550 and 600 mb. This corresponds t o  a nearly a d i a b a t i c  

ayer. A s t a b l e  l aye r  is observed from 470-490 mb. The data  obta ined 

rom the  Brainard Lake sounding a r e  represented by an  ozonagram (Figure 

7). Ozone is depicted a s  a function of height and p a r t i a l  p res su re  

qb 6 nanobar). From the  surface  t o  200 mb, ozone values approximate 

he 70 ng/g curve. Under nomenclature suggested previously [LoviZZ, 

,9683, t h i s  region would be denoted ozone zone number one. This  i s  

.he zone i n  which v e r t i c a l  mixing is s t rongest  through convection and 

.urbulence . 
Zone two is i n  evidence from 200-80 mb (12-17.5 km).  It is 'a zone -- 

~f weak ozone gradient.  This i s  a region of change from decreasing o r  

.sobaricTo-increasing p a r t i a l  pressure (a region.Of increasing mixing 

. a t io ) .  The height of 12 km represents the  ozone tropopause [~oviZZ, 
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Figure 25. Same a s  Fig. 1 9 ,  except f o r  Denver, 00 GMT, 11 October 



19681. It is  t h e  boundary between the  well-mixed tropospheric ozone 

and t h e  s t r a t o s p h e r i c  ozone. This zone is represented by some v e r t i -  

c a l  exchange, probably i n  t h i s  p a r t i c u l a r  case  mostly through wave 

ac t ion .  

Zone th ree  i s  a l a y e r  from 80-60 mb (17.5-19.5 lan). This i s  a -- 
zone of s t rong  v e r t i c a l  ozone gradients .  Ozone mixing r a t i o s  i n c r e a s e  

r ap id ly .  Ver t i ca l  exchange i n  t h i s  region is  probably slower a n d  i s  

determined mainly by large-scale d i f f e r e n t i a l  hor izonta l  advect ion ,  

and t o  a l e s s e r  ex ten t  by molecular d i f fus ion .  

0 1 2 3 4 5 6 x 10*rn-~ 
Figure  26. Same a s  Fig.  19, except f o r  Denver, 12 GMT, 11 October 

968. 

Zone four i s  r ep resen ta t ive  of t h e  region of maximum ozone pro- -- 
luc t ion;  i t  is  a l s o  a region g r e a t l y  influenced by advection. During 

:his i n v e s t i g a t i o n  two s l i g h t  peaks a r e  indica ted  of 128 nb a t  52 mb 

i d  133 nb a t  26 mb. 

Zone f i v e  i s  t h e  region immediately above the  maximum where the 

)zone p a r t i a l  pressure  asymptotically approaches zero. This r eg ion  

represents a constant  mixing ra t io- - in  t h i s  case  10 pg/g. 



Figure 27 .  Ozonagram f o r  Brainard Lake from 1813-1936 GMT, 10 October 1968. 

i 



A model has  been suggested [ ~ o v i z z ,  19681 from which a p a r t i a l  

:xplanation of t h e  t r a n s p o r t  i n  t h e  v e r t i c a l  of  ozone (or  any o t h e r  

ltmospheric cons t i t uen t )  could be  obtained.  V e r t i c a l  mixing i n  t he  

r i c i n i t y  of  t h e  tropopause occurr ing  by means of  wave a c t i o n  produces 

i i laments of  s t r a t o s p h e r i c  a i r  t h a t  a r e  i n t e r j e c t e d  i n t o  the uppe r  

:roposphere. Tropospheric f i laments  would have high momentum, low 

j o t e n t i a l  temperature, and low ozone content  r e l a t i v e  t o  t h e i r  environ- 

lent; s t r a t o s p h e r i c  f i l amen t s  would have low momentum, h igh  p o t e n t i a l  

zemperature, and high ozone content  r e l a t i v e  t o  t h e i r  immediate 

2nvironment. Mixing by eddies  would tend t o  b l u r  t h e  t r a n s i t i o n  zone 

d o n g  t h e  edges of such laminae. 

From examination of t h e  computed Scorer  parameter ,  p o t e n t i a l  

temperature, wind v e l o c i t y  and ozone mixing r a t i o  i n  F igure  28, severa l  

Eeatures can be  noted .  The su r f ace  p r e s su re  a t  Brainard Lake o n  10 

Ic tober  was 690 mb. From t h i s  po in t  t o  670 mb a near  a d i a b a t i c  l apse  

r a t e  was v i s i b l e .  From 670 t o  650 mb, a super  a d i a b a t i c  l a y e r  was i n  

evidence-. freatediately d o v e , . f  r o m  650-6Q0 mb ,_ .adiabatic  cond i t i ons  once 

aga in  p r eva i l ed .  Most i n t e r e s t i n g  is the  100 mb l a y e r  from 500-600 mb. 

F igu re  28. P l o t  of ozone mixing r a t i o  ( s o l i d  l i n e ) ,  Scorer  param- 
e t e r  (shaded a r e a ) ,  p o t e n t i a l  temperature ( sho r t ,  dashed l i n e )  and 
r e s u l t a n t  wind v e l o c i t y  ( long,  dashed l i n e )  a t  Brainard Lake, 1813 GMT, 
10 October 1968. 



In general, the region studi.ed (400-600 mb) had a Scorer param- 

eter profile indicative of possible lee wave formation, a wind jet in 

the center, a very stable layer in the lowest level (500-600 mb), a 

nearly adiabatic layer in the upper level (400-500 mb), and several 

ozone filaments or "tongues" throughout the layer. 

Ozone a d  isentropic surfaces obtained from f i e  Explorer. The 

ozone and temperature data used for the analysis of Figure 29 were 

obtained between a point over the ozonesonde release site at Brainard 

Lake and north to a point 6 kilometers from the release site (this line, 

N-S, is from approximately Ward to a point halfway between Ward and 

Allens Park; see Figure 8). East-west the data sampling area extends 

from the Continental Divide to 25 kilometers east of the Divide. 

Figure 29. Cross-section of ozone (in rib partial pressure, solid 
.ne) and potential temperature (in K, dashed line) analysis in lee of 
~ntinental Divide, 10 October 1968. 

le area sampled equalled 125 lan2, the volume 375 km3.  Due to the 

xsible change in intensity of the lee wave at various positions 



~ o r t h  and south along the  Front Range, the da t a  gathering was k e p t  to 

:he sma l l e s t  N-S cross-section poss ib le  t h a t  s t i l l  allowed acqu i s i t i on  

of adequate da ta  f o r  a thorough ana lys i s .  

Examination of Figure 29 ind ica t e s  s eve ra l  noteworthy f ea tu res :  

:1) a waviness i s  exhibi ted  i n  both t h e  ozone p a r t i a l  pressure  su r faces  

and the  p o t e n t i a l  temperature su r faces ,  (2)  a much s t eepe r  g rad ien t  of 

,oth parameters is seen i n  the  lower volume (region one, 500-600 mb), 

( 3 ) ' l i n e s  of equal ozone p a r t i a l  pressure (isozones) have g r e a t e r  

spacing i n  t h e  upper a r e a  (region two, 400-500 mb) than i n  r e g i o n  one. 

A few ozone and temperature da t a  po in t s  have been placed o n  the 

Eigure a t  2 km hor i zon ta l  increments and random pressure  i n t e r v a l s .  

rhese d a t a  represent  only a f r a c t i o n  of t he  da t a  points  obtained during 

the  175 minute period.  While da t a  sampling i n  the  atmosphere from a i r -  

= r a f t  over a small  a r e a  (125 km2) f o r  a period of 175 minutes would 

usual ly  be subjec t  t o  t r ans i en t  e f f e c t s ,  i t  is f e l t  t h a t  t h i s  was not 

t h e  case  i n  t h i s  study.  During the  e n t i r e  six-hour f l i g h t  per iod ,  

l i t t l e ,  -if any change was- m t i c e d  i n  the phys ica l  c h a r a c t e r i s t i c s  of 

v i s i b l e  wave clouds i n  t h e  region.  An undercast  below t h e  wave clouds 

approximately 10-25 km e a s t  of t h e  Front Range appeared t o  have 

gene ra l ly  d i s s ipa t ed  near the  end of t h e  study. The l e e  wave i s  quasi- 

s t a t i o n a r y  with r e spec t  t o  a b a r r i e r  and Figure 29 seems t o  e x h i b i t  

j u s t  t h i s  (even though t h e  sampling period was long).  While t h e  genera l  

waviness of the  p o t e n t i a l  temperature and ozone su r faces  don ' t  repre- 

s e n t  s t reamlines ,  they a r e  probably suggestive of t he  s t reamline  flow. 

There can be no doubt t h a t  a l e e  wave e x i s t s ;  t o  what e x t e n t  i t  

caused the  approximate 30 mb d i f f e rence  i n  tropopause height  between 

Brainard Lake and Denver can only be speculated upon. It i s p r o b a b l e  

t h a t  t he  upward displacement of t he  tropopause a t  Brainard Lake i s  

most l i k e l y  the  r e s u l t  of g rav i ty  waves. The height  indica ted  f o r  the 

tropopause a t  Brainard Lake i s  taken from a s i n g l e  atmospheric sounding, 

and t h e  po in t  a t  which the  tropopause was penetrated i n  r e l a t i o n  t o  the 

pos i t i on ing  of the  wave t r a i n  could perhaps mean a d i f f e rence  of 30 mb. 

This poss ib l e  displacement of the  tropopause is c l e a r l y  seen i n  d a t a  

c o l l e c t e d  and analyzed i n  t h e  1968 Winter Rocky Mountain Lee Wave Study 

(Figure  30).  The wave amplitude near t he  tropopause i n  t h i s  f i g u r e  i s  

a t  l e a s t  30 mb. 





A d e t a i l e d  wind f i e l d  a n a l y s i s  on 1 0  October i s  n o t  a v a i l a b l e  

i n c e  t h e  a i r c r a f t  was n o t  equipped t o  measure h o r i z o n t a l  wind. But 

h e  s t r u c t u r e  of  t h e  wind f i e l d  d u r i n g  t h i s  s t u d y  could be s u g g e s t e d  

rom t h e  s i t u a t i o n  on 20 February 1968 (F igure  31) .  The a n a l y s i s  of 

h e  i s o t a c h s  from t h e  s e v e r a l  a i r c r a f t  a r e  p r e s e n t e d  h e r e .  The u- 

omponent on ly  is analyzed.  H o r i z o n t a l  wind speeds  decrease  i n  t h e  

. a in  wave t rough r e g i o n ;  t h i s  is t h e  s i t u a t i o n  up t o  t h e  t r o p o p a u s e .  

'he a n a l y s i s  of  t h e  20 February u-component p o i n t s  o u t  a n  i n t e r e s t i n g  

.onvergence of t h e  wind f i e l d  wes t  of t h e  t rough  a t  t h e  200 mb l e v e l  

,nd a t i ivergence of  t h e  wind f i e l d  t o  t h e  l e e  of t h e  t rough.  Just how 

: l o s e  t h i s  wind s t r u c t u r e  was t o  t h e  p r e s e n t  c a s e  under  s t u d y  o n  10 

k t o b e r  is d i f f i c u l t  t o  determine.  

Computation of wave length, amplitude and vert ical  veloci ty .  The 

.ee wave c o n d i t i o n  b e i n g  s t u d i e d  by b a l l o o n  soundings and from a i r c r a f t  

In 10 October  w a s  observed from s a t e l l i t e s  a l s o  by t h e  presence  o f  l ee  

?ave c l o u d s .  A wave system u s u a l l y  e x i s t s  when c louds  a r e  observed  t o  

:he l e e  o f  an  o b s t a c l e  i n  t h e  a i r f l o w .  As a i r  i s  l i f t e d  t o  t h e  wave 

: r e s t ,  i t  i s  a d i a b a t i c a l l y  cooled and mois ture  condenses. I n  this 

ianner  a wave c loud ,  o r  t r a i n  of c louds ,  becomes v i s i b l e .  Clouds can 

,e v i s i b l e  i n  t h e  ascending  r e g i o n  and no c louds  observed i n  t h e  sub- 

s i d i n g  air. Thus, i f  t h e  d i s t a n c e  between cloud t r a i n s  could b e  

neasured,  a wavelength could  b e  ob ta ined .  

The l e e  wave c o n d i t i o n s  under  s t u d y  by a i r c r a f t  were observed  by 

t h r e e  U.S. s a t e l l i t e s .  The NASA ATS 111 observed t h e  l e e  wave r e g i o n  

( F i g u r e  32) a t  1527 GMT; ESSA VI o b s e m e d  t h e  l e e  waving a t  1805  GMT 

( F i g u r e  33); and ESSA VII photographed t h e  s i t u a t i o n  at  1925 GMT 

( F i g u r e  34) .  The d a t a  p resen ted  i n  t h i s  s t u d y  began w i t h  a t i m e  p e r i o d  

65 minutes  a f t e r  t h e  f i r s t  s a t e l l i t e  photograph and ended 30 minutes  

a f t e r  t h e  l a s t  photograph.  

ATS 111 is p o s i t i o n e d  i n  a n  e a r t h  synchronous o r b i t  a t  22,300 m i .  

over  t h e  mouth of  t h e  Amazon River  and photographs of wes te rn  N o r t h  

America a r e  t h e r e f o r e  a t  t h e  edge o f  t h e  observed p i c t u r e .  T h i s  can 

e a s i l y  b e  s e e n  i n  F i g u r e  32. A wave phenomenon appears  t o  b e  i n  ev i -  

dence i n  t h i s  photograph,  b u t  due t o  t h e  i n a b i l i t y  t o  p r o p e r l y  r e s o l v e  
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Figure 31. East-west cross-section of isotach analysis over Colorado, 20 February 
1968. (Note region of minimum u-component to lee of Divide.) 



t he  a r e a  because of the  low s a t e l l i t e  angle,  computation of wavelengths 

w i l l  not  be attempted. 

ESSA VI observed the  area  158 minutes l a t e r  and a wave is c l e a r l y  

v i s i b l e .  

ESSA VIZ, 80 minutes l a t e r ,  photographed t h e  same area  and a wave 

t r a i n  of four  waves is now v i s i b l e .  

F igure  32. Photograph taken from NASA s a t e l l i t e  ATS 111, 1527 GMT, 
0 October 1968. 

WaveZengtb computation. From ESSA VI, a wavelength of 14.3 km was 

neasured and from ESSA VII--13.3 km. 

An examination of Figure 29 ( the  ozone cross-section) ind ica ted  i n  

the lower region (500-600 mb) a wavelength of 10.0 and i n  the upper 

region a wavelength of 10.5 la. The shor t e s t  wavelength measured was 

3.5 km. The po ten t i a l  temperature surfaces  indicated  a somewhat s i m i l a r  

~ a v e l e n g t h  . 
As indicated  e a r l i e r ,  The Explorer was continuously tracked by 

radar t o  obta in  exact  posit ioning.  Figure 35 dep ic t s  the percent  of 







Lime spent by The Explorer i n  a p a r t i c u l a r  region during the  inves t i -  

gation. The blocks a r e  50 mb i n  the  v e r t i c a l  and 1 lan i n  the  horizon- 

sal. This f i g u r e  was constructed t o  v e r i f y  the  wavelengths determined 

Irom the  ozone and temperature data.  The Explorer spent the  majori ty 

~f the  f l i g h t  time i n  a reas  of ascending motion, therefore  the  l a r g e s t  

f igu re  i n  t h e  "sum of columns" row would represent  the  area  of maximum 

rave l i f t .  For example, i n  the  row t i t l e d  "sum of columns", the  

Largest f i g u r e  l i s t e d  is  16.46. This ind ica te s  t h a t  The Explorer spent 

.16% of the  th ree  hour period i n  the  region 22 t o  23 km e a s t  of the  

lont inenta l  Divide. The number i n  the  extreme upper l e f t  por t ion  of 

:he f igu re ,  4.35, ind ica te s  t h a t  g rea te r  than 4% of the  inves t iga t ion  

:ime was spent i n  the  region between 400 and 450 mb a t  2 t o  3 lan e a s t  

,f the  Divide. 

By measuring the  hor izonta l  d is tance  between the  h ighes t  numbers 

In the  "sum of columns" row, one ind i rec t ly  determines the  wavelength. 

h o  wavelengths f o r  the  l e e  waves were determined i n  t h i s  manner. *One 

ravelength measured 8.0 km, the  o ther  11.8 km. The average is 9.9 lan. 

From The Explorer, the  average cloud wavelength was estimated t o  

) e  on the  order of 10 lan. 

Foldvik [1962] has noted t h a t  theore t i ca l ly  the  wavelength of the  

; ravi ty  wave must be > 2n/R Using t h i s  c r i t e r i o n ,  the  minimum 
max ' 

~ o s s i b l e  wavelength i n  the  region of inves t iga t ion  was computed using 

:he Rmax from Figure 28. The r e su l t ing  wavelength was 4.6 km. 

Corby [1957] gives a r e l a t ionsh ip  between wavelength and mean 

';1:i5 , where A = wavelength :ropospheric wind. This r e l a t i o n  is: A = - 
.n lao, U = wind ve loc i ty  i n  knots. From t he  Brainard Lake sounding the  

lean wind was computed t o  be 20 m s - l .  A check on t h i s  wind could be 

tbtained by an  ana lys i s  of the  Niwot Ridge wind (Figure 36) during the  

i l ight  period. This might be a b e t t e r  ind ica t ion  than the  few minutes 

)f wind da ta  obtained from the  ozonesonde. Niwot Ridge is a t  an eleva- 

:ion of 12,284 f t .  It i s  3.7 km NE of North Arapaho Peak (see Figure 8) 

mnd -5 km SW of Brainard Lake. During the  f l i g h t ,  gusts were recorded 

LS high a s  35 ms'l, however the  mean wind was q u i t e  a b i t  l e s s .  The 

lean wind from 12 t o  22 GMT indicated a slow decrease i n  in t ens i ty .  

lowever, during the  inves t igat ion,  from 17 t o  20 GMT, an  increased 





i n t e n s i t y  w a s  observed. The mean wind f o r  the  period was 20 ms-l , 
compatible with t h a t  measured by the  ozonesonde. The temperature from 

Niwot Ridge served a s  an  addi t ional  check on the  ozonesonde and a i r -  

c r a f t  temperature element. 

Using a mean tropospheric wind speed of 20 ms-l, t he  ca lcula ted  

wavelength, using Corby's c r i t e r i o n ,  was 8.7 km. 

10 OCT. I I OCT. 

40 
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Figure 36. Niwot Ridge wind da ta  10 and 11 October, 1968. Heavy 
ine represents  mean hourly wind, long dashed l i n e ,  the  maximum wind, 
xsh-dot l i n e ,  the  minimum wind, and the  dotted l i n e ,  the  temperature. 
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Another technique t o  ca lcu la t e  the  wavelength would be an i n d i r e c t  

Letermination by means of v e r t i c a l  v e l o c i t i e s  obtained from the  ozone- 

-onde mean ascension r a t e .  Departures from the  mean ascension r a t e  of 

he ozonesonde were determined and a r e  indicated a t  the  bottom of 

' igure 35. The magnitude of the  v e r t i c a l  v e l o c i t i e s  i s  p lo t t ed  hori-  

on ta l ly ,  a s  the  balloon t r a j ec to ry  ca r r i ed  the  ozonesonde t o  the  e a s t .  

egions of ascending and descending motions could thus be defined i n  

e t  another manner. Analysis of these areas  indicated  an average 

i s t ance  of 9.2 km from one a rea  of maximum ascending motion t o  another.  



Thus, t h e  wavelength may be determined by seven d i f f e r e n t  t e c h -  

l iques.  The average of a l l  techniques,  with exception of t he  s a t e l l i t e  

l a t a ,  i nd i ca t e s  a wavelength of 9.9 lan. This compares t o  a n  average of 

L3.8 km f o r  t h e  s a t e l l i t e - - a  d i f f e r ence  of only 3.9 km. 

Scorer [1949, 1953, 19541, i t  should be  noted,  t heo r i ze s  t h a t  the 

ravelength is determined e n t i r e l y  by phys ica l  atmospheric parameters 

ind no t  by the  dimensions of t h e  d i s tu rb ing  obs tac le .  

It i s  notewokthy t o  mention t h a t  an undercast  below a wave cloud 

:an prevent  d i s ce rn ing  of t h e  wave cloud i n  a s a t e l l i t e  photograph. 

Cn c e r t a i n  po r t i ons  of t he  wave region  t h i s  was t r u e  on 10 October.  

Che wave clouds and undercast  cloud a r e  seen i n  Figure 37. 

F igu re  37. Photograph of l e e  waves and o the r  cloud forms ( t aken  
rom The Explorer  a t  6.1 km (20,000 f e e t )  MSL). (See t e x t  f o r  elabora-  
ion)  

Using ~ o l t z ' s  c r i t e r i a  f o r  degree of c l e a r  a i r  turbulence and 

computing w a s  suggested [FoZ~Z, 19671, l i g h t  turbulence should have 

been experienced on t h i s  da t e .  During t h e  six-hour period of f l i g h t  

i n  t h e  lee waves, t h i s  seemed t o  be a r e a l i s t i c  es t imate .  



PmpZitude. One attempt was made t o  ca lcu la t e  the  l e e  wave ampli- 

tude. Measured amplitudes from the  ozone surfaces  i n  Figure 29 indica- 

ted  amplitudes from 0.5 t o  '1.1 km. The 1.1 km amplitude was estimated 

because the  wave cresf  had not been reached when the  da ta  terminated 

i n  the  eas t e rn  por t ion  of the  f l i g h t  area.  A s imi l a r  amplitude was 

indicated from the  p o t e n t i a l  temperature surfaces .  

Visually (determined from wave clouds viewed from The Explorer), 

t he  amplitude ranged from approximately 112 t o  1 Ian. 

VerticaZ veloci t ies .  Ver t i ca l  v e l o c i t i e s  were determined by 

seve ra l  methods. The hor izonta l  wind from 400-600 mb (calculated from 

Brainard Lake sounding) was used i n  conjunction with the  shape of the  

ozone p a r t i a l  pressure surfaces  (Figure 29) t o  determine v e r t i c a l  

ve loci ty .  This was ca lcula ted  t o  be -1-2 ms-l . 
A s  mentioned e a r l i e r ,  v e r t i c a l  v e l o c i t i e s  could be obtained from 

the  ozonesonde f l i g h t  cha rac te r i s t i c s  (Figure 3 ). Calculated i n  t h i s  

manner were  maximum pos i t ive  (upward) v e r t i c a l  v e l o c i t i e s  of 1.3 ms-I 

and maximum negative (downward) v e r t i c a l  v e l o c i t i e s  of 1.1 m s - l .  

I n  addi t ion  t o  the  two above-mentioned techniques of determining 

v e r t i c a l  v e l o c i t i e s  i n  the  l e e  wave, The Explorer was equipped with 

two r a t e  of climb indicators .  A t  26-30,000 f e e t  (7.9-9.1 km = 300-360 

mb) , upward v e l o c i t i e s  were 0.5-1.0 m s - l .  A t  18-26,000 f e e t  (5.5-7.9 km 

or  360-500 mb) , the  average pos i t ive  l i f t  was -1.5-2.5 m s - l .  As  low as  

11,500 f e e t  (3.5 km o r  660 mb), l i f t  moved The Explorer upward a t  5.2 

m s - l .  The maximum v e r t i c a l  v e l o c i t i e s  measured by The Explorer occurred 

a t  t h ree  sepa ra te  times and each l a s t e d  1-3 minutes. The maximum ver- 

t i c a l  v e l o c i t i e s  were encountered a t  15-18,000 f e e t  (4.6-5.5 km o r  

500-570 mb) and were >10 ms- l .  

It is l o g i c a l  t h a t  an instantaneous v e r t i c a l  ve loc i ty  a s  measured 

by a sa i lp l ane  w i l l  be considerably g rea te r  than v e r t i c a l  v e l o c i t i e s  

averaged over a period of time and over seve ra l  waves. Indeed, the  

average v e r t i c a l  ve loci ty  a s  determined by ozone and po ten t i a l  tempera- 

tu re  surfaces  and by ozonesonde ascent  r a t e s  averaged 1.4 ms-'. A 

subject ive  ana lys i s  of the  average l i f t  of The Explorer places the  l i f t  

Eor the  400-600 mb layer  a t  1-2 m s - l .  The th ree  techniques agree 



remarkably w e l l  i n  ind ica t ing  a v e r t i c a l  l i f t  i n  the  average l e e  wave 

during the  study as -1.5 m s - l .  A summary of wave amplitude, wavelength 

and v e r t i c a l  v e l o c i t i e s  is given i n  Table 2 .  

Table 2. Magnitude of wavelength, amplitude and v e r t i c a l  

ve loci ty  a s  determined by methods below (see t e x t  f o r  

e labora t ion) .  

Method of Wavelength Amplitude Ver t i ca l  Veloci ty  

Determination (am) (km) (ms-') 

1. S a t e l l i t e  

ESSA V I  

ESSA V I I  

2.  Ozone Data 

3. Po ten t i a l  - - - - - - . - - - 

Temperature 

Data 

4. Radar Data 

5. Theoret ica l  

Computation 8.7  

6. Ozonesonde 

Wind Data 9.2 

7.  Subjective 

Determination 

from Explorer 10 0.5 - 1.0 0.5 - >10 

Average = 1 - 2 

FoZdvik 119621 has shown t h a t  t h e  height a t  which the  v e r t i c a l  

ve loc i ty  is a maximum is not a funct ion of the  height o r  shape of  the  

mountain p r o f i l e ,  however on the  seve ra l  f l i g h t s  i n  l e e  waves d u r i n g  

t h e  f a l l  of 1968 i n  the  same genera l  area  a s  t h i s  study, maximum 



v e r t i c a l  l i f t  was u sua l ly  obtained at  4.5-6.0 km. 

tV. Mountain-Induced Lee Waves and the  1.5 Mi l l i on  Dol lar  Des t ruc t ion  

i n  Boulder, Colorado, 7 January 1969 

The home exhib i ted  i n  Figure 38 is bu t  a  smal l  sample of t h e  

i e s t r u c t i o n  brought about by -extremely high winds t h a t  s t ruck  t h e  

loulder community a t  3 p.m. (22 GMT) on 7 January 1969. The scene  i n  

F igu re  38. Photograph of destroyed home immediately a f t e r  h i g h  
~d condi t ions  i n  Boulder ( see  t e x t  f o r  e labora t ion) .  

.gure 38 was repeated dozens of times i n  more o r  l e s s  s e v e r i t y  through- 

~t west  Boulder and p a r t i c u l a r l y  s o  i n  t he  Table Mesa a r ea  nea r  t he  

l t i ona l  Center f o r  Atmospheric Research building.  The tremendous 

srce necessary t o  l i f t  an  e n t i r e  roof from a house and depos i t  i t  many 

e t  away c e r t a i n l y  deserves i nves t iga t ion .  

Synoptic pattern. Alof t  a t  500 mb, an  in t ense  cyclone moved i n t o  

r thwestern  Canada on 27 December. By 29 December i t  was the  dominant  



:eature i n  t h e  upper a i r  p a t t e r n  over a l l  of North America. The 

:yclone progressed eastward, and by 2 January it was j u s t  nor th  of 

lova Sco t i a .  A t  t h i s  p o i n t ,  l i t t l e  movement was indica ted  over t he  

lex t  twelve-hour period.  However by 3 January,  i t  was obvious t h a t  i t  

gas indeed re t rograding .  By 7 January, r e t rog re s s ion  had b rough t  t he  

:rough westward t o  longi tude  85 W. At t h i s  p o i n t ,  a deep t rough was 

mbedded i n  t h e  flow extending from nor thern  Canada i n t o  t he  Gu l f  of 

lexico (see Figures 39, 40, 41).  The high-level  r e t rog re s s ion  o f  t h i s  

:yclone has  been discussed a t  l eng th  because i t  is, i n  e f f e c t ,  t h e  

iea ture  t h a t  set up a blocking s i t u a t i o n ,  such t h a t  f o r  near ly  two 

reeks p r i o r  t o  7 January t h e  su r f ace  systems over t he  United S t a t e s  

snd p a r t i c u l a r l y  over Colorado were s tagnant .  A s u r f a c e  f r o n t a l  system 

:hat had entered  Colorado on 23 December had meandered slowly b a c k  and 

ior th  ac ros s  t he  s t a t e .  A trough a t  t he  su r f ace  remained i n  evidence  

:o t h e  l e e  of t h e  Rockies. This was the  synopt ic  s i t u a t i o n  f o r  two 

reeks p r i o r  t o  7 January and again  t h e  s i t u a t i o n  a s  seen i n  F i g u r e  42 

>n 7 January. - - -  

F i g u r e  39. 500 mb i so t ach  a n a l y s i s ,  12  GMT, 7 January 1969.  
[sotach (ms-l) - s o l i d  l i n e ,  temperature ('12) - dashed l i n e ,  con tou r s  
ne ters ;  f i rs t  d i g i t  omitted f o r  500 and 300 mb, f i r s t  two d i g i t s  f o r  
10 mb) - dot ted  l i n e . )  (Shaded a reas  > 45 ms-l) 



Figure 40. Same as Fig .  39 except 300 mb i s o t a c h  a n a l y s i s .  (Light 
haded area > 55 m s - I ,  heavy shaded area > 75 ms-I.) 

-.--. t 

Figure 41.  Same a s  F i g .  39, except  200 mb i s o t a c h  a n a l y s i s .  (Light 
aded area > 55 ms-l,  heavy shaded area > 75 ms-I.) 
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On t h i s  day, a deepening trough is evident along the  l e e  of the 

Xockies. The f r o n t  associated with the  trough was located  j u s t  a few 

si lometers e a s t  of Denver i n  Figure 4 2 .  (This w i l l  e a s i l y  be s e e n  from 

~ v i d e n c e  presented l a t e r . )  

I 

Figure 4 2 .  Surface synoptic cha r t  f o r  1 2  GMT, 7 January 1969 (from 
SSA) . 

The pressure  gradient at the  su r face  was steepened fu r the r  by an 

ant icyclone over western Colorado. A t  500 mb (Figure 39), the  su r face  

ant icyclones  (Figure 42) i n  Cal i fornia  and western Colorado were re-  

f l e c t e d  weakly i n  the  temperature f i e l d .  Most dominant a t  500 mb is 

t h e  bottom of the  high-level j e t  enter ing the  United S ta t e s  i n  t h e  

P a c i f i c  Northwest and penet ra t ing  as f a r  a s  c e n t r a l  Wyoming with 50 m s - l  

winds. At 300 and 200 mb (Figures 40 and 41) , t he  j e t  s trearn is 

not iceably  r e f l ec ted  i n  the  i sotach analys is .  Flow a t  300 and 200 mb 

(9 and 1 2  km respect ively)  is  northwesterly from the  Great Basin t o  the 

Miss iss ippi .  A 75 ms- l  j e t  stream maximum is centered over Washington 

and nor thern  Idaho a t  both l eve l s .  



On 8 January the  upper l e v e l  s i t u a t i o n  changed d r a s t i c a l l y .  The 

trough, t h a t  had been moving slowly westward f o r  about a week and t h a t  

had been located a t  8 0 ' ~  on 7 January a t  12 GMT, moved rapidly  eas t -  

ward, and on 8 January at 12 GMT was a t  65OW. The d i r e c t  r e s u l t  was 

t h a t  systems a t  the  surface  were allowed t o  move rapidly  southeastward. 

Alof t ,  the  j e t  stream had moved some 600 km southeastward by 12 GMT on 

8 January. The j e t  core  was centered over northern Colorado and 

southern Wyoming as indicated a t  300 and 200 mb (Figures 43 and 44). 

The leading edge of the  j e t  over eas t e rn  Colorado and Nebraska exh ib i t s  

a s l i g h t  "fingery" s t r u c t u r e  (not shown i n  the  analys is )  a t  both the  

300 and 200 mb l e v e l  s imi l a r  t o  s p l i t t i n g  noted by Reiter [1963b]. 

The leading edge of the  j e t  a t  300 mb (7,000 meters over Colorado), with 

winds of 75 m s - l ,  is located over the  Boulder area .  

Flgure 43. Same a s  Fig. 39, except 300 mb i so tach  ana lys i s ,  12 GMT, 
January 1969. (Light shaded a rea  > 55 ms'l, heavy shaded a rea  > 75 

5-1.1 

A t  5QQ mb (Figure 45), a broad a r e a  of 45 ms'l winds f s  indicated 

,y the i sotach analys is .  Quite not iceable  is  a very s t rong trough i n  



t he  isotherm f i e l d  along the  eas t e rn  s lopes  of the  Rocky Mountains. 

A t  t h e  surface ,  t he  trough t o  the  l e e  of the  Rockies had in t en -  

s i f i e d  by 20 mb i n  24 hours. By 12 GMT on 8 January, Figure 46 indi -  

c a t e s  the  f r o n t a l  system had j u s t  moved through the  Boulder a r e a .  

Figure 44. Same a s  Fig.  39, except 200 mb isotach a n a l y s i s ,  12 M T ,  
I January 1969. (Light shaded a rea  > 55 ms-I, heavy shaded a r e a  > 75 
1s-I. 1 

i3iscussion of the Denver and Grand Junotion soundings i n  relation 

to possibte atmospheric conditions over BouZder on '7 and 8 January. 

Figures 47-52, f o r  7 and 8 January, dep ic t  r e s u l t a n t  winds, p o t e n t i a l  

temperatures, and t h e  Scorer parameter with the  reservat ions  t h a t  
1 a2u - - is  t o  be neglected. The 7 January, 00 GMT (Figure 47), k2 indi- u az 
c a t e s  t h e  b e s t  poss ib le  formation region f o r  l e e  waves a t  Denver to  be 

near the  250 mb l eve l .  A t  t h i s  time, i t  should be noted t h a t  ne i the r  

were gusty winds recorded i n  Boulder nor were l e e  waves v i s i b l e  i n  the 

form of wave clouds. The simultaneous sounding f o r  Grand Junct ion 

(Figure 48) indicated  a q u i t e  s imi l a r  11' p r o f i l e  i n  the  v e r t i c a l .  

Twenty-four hours p r i o r  to  the high winds i n  Boulder both s t a t i o n s  



Figure 45. Same as Fig.  39, except 500 mb isotach analys is ,  12 GKC, 
8 January 1969. 

Figure 46. Surface synoptic chart for 12 GMT, 8 January 1969 
(from ESSA) . 



r e p o r t  s u f f i c i e n t  condit ions favorable f o r  l e e  wave formation, bu t  no 

v i s i b l e  wave w a s  observed. It should be noted t h a t  an inadequate 

r e s o l u t i o n  of the  current  upper a i r  network makes the  study of meso- 

s c a l e  phenomena d i f f i c u l t ,  bu t  not impossible. 

F igure  47. Same a s  Fig. 19, except f o r  Denver, 00 GNT, 7 January 
)69. 

Twelve hours l a t e r  (7 January, 12  GFlT) the  Denver k2 (Figure 49) 

ndicated s l i g h t l y  more favorable l e e  wave formation conditions a t  620 

b ,  410 mb, 320 mb, and again around 250 mb. A t  t h i s  time no l e e  

aving was noticed i n  cloud formations and surface  winds a t  Boulder 

nd Denver averaged l e s s  than 3 ms'l. A very t h i n  s t a b l e  layer  (200 

e t e r s  th i ck )  of a i r  is seen immediately off  the  surface  a t  Denver 

Figure 49) .  From the  height of t h i s  l aye r  (810 mb) t o  the  tropopause, 

l e  l a p s e  r a t e  i s  near ad iaba t i c .  A low l e v e l  j e t  of 31 ms- l  is noted 

m e  1700 meters off  the  surface.  

Ten hours a f t e r  the  j u s t  discussed sounding, the  wind increased 

l a rp ly  a t  Boulder (22 GMT, 7 January) . At 00 GMT, 8 January, a 



Figure 48. Same as Fig. 19, except for Grand Junction, 00 GMT, 7 
anuary 1969. 



sounding was taken a t  Denver (Figure 50) and i t  revealed s e v e r a l  

i n t e r e s t i n g  s t ruc tu res  i n  the  v e r t i c a l :  The Scorer parameter indica ted  

the  most favorable l e e  wave condit ions i n  the  p a s t  72 hours. The 

Scorer parameter c r i t e r i o n  was b e s t  s a t i s f i e d  at 560 mb. Although a 

t h i n  s t a b l e  l aye r  e x i s t s  f o r  100 meters off  the  surface  ( the  winds were 

only 5 m s - l  a t  the  surface) ,  a deep l aye r  of ad iaba t i ca l ly  mixed a i r  

e x i s t s  up t o  the  630 mb l eve l .  The wind maximum of 31 ms'l a t  630 mb 

twelve hours previous, increased to 42 meq1, and moved up t o  t h e  500 mb 

l e v e l .  The simultaneous Grand Junction sounding (Figure 51) i n d i c a t e s  

most favorable l e e  wave fprmations above 500 mb. 

Figure 50. Same a s  Fig. 19,  except fo r  Denver, 00 GMT, 8 January  
969. 

A t  1 2  GMT on 8 January (six hours a f t e r  the  h ighes t  winds i n  

Boulder had been recorded), the  Denver temperature p r o f i l e  (F igure  52) 

indicated a deep ad iaba t i c  l aye r  of dry a i r  i n  the  lower troposphere 

( su r face  t o  540 mb). This i s  qu i t e  c h a r a c t e r i s t i c  of a chinook cu r ren t  

iescending along the  eas t e rn  s lope  of the  Rocky Mountains [ ~ e i t e r  and 



fahtman, 19651. Winds at t h i s  time averaged 16 ms-I a t  the  surface  

md were gusty a t  Denver. Before l imi t ing  angles forced the  termina- 

:ion of wind ca lcula t ions ,  a veloci ty  of 64 ms-l was recorded a t  380 mb 

Figure 51. Same a s  Fig. 19 ,  except f o r  Grand Junction,  00 GMT, 8 
Snuary 1969. 

Figures 53 and 54 present a v o r t i c i t y  and s t a b i l i t y  d isplay  simul- 

:aneously. Figure 53 ind ica te s  l i t t le  v o r t i c i t y  gradient over Colorado 

)n 7 January. Figure 54, however, reveals  t h a t  by 8 January a t  12 GMT 

:he region was under the  influence of a v o r t i c i t y  maximum. I n  addi t ion ,  

i t  should be noted t h a t  the  Showalter s t a b i l i t y  index indicated  an 

werage f o r  Colorado of +10 on 7 January a t  12 GMT, by 12 GMT on 8 

January the  average was +4.5, and only +2 a t  Denver. This was the  

Least s t a b l e  a r e a  i n  the  United S ta t e s  with exception of western 

lontana . 

Chinook conditions i n  the Zee of the E'ront Range. The eas t e rn  

slopes of the  Front Range, p a r t i c u l a r l y  near Boulder, were under the  



Figure 52.  Same a s  Fig. 19 ,  except f o r  Denver, 12 GMT, 8 January 
-969. 

. -- - -- -- - - -- - - - 

Figure 53. V o r t i c i t y  (10-5s-1) and s t a b i l i t y  (from Showalter stab 
C l i t y  index) a n a l y s i s  f o r  12 GMT, 7 January 1969.  



inf luence  of a chinook from approximately 18 GMT on 7 January t o  12 

GMT t h e  next day. This i s  seen i n  Figures 50 and 52. This chinook 

e f f e c t  is e a s i l y  seen along the  eas t e rn  slope when Figure 55 i s  analyzed 

This f i g u r e  indicates  a temperature gradient  f i e l d  such t h a t  each l i n e  

represents  a f i v e  degree temperature (OF) depar ture  from the  base tem- 

pe ra tu re  [21°c ( 6 g 0 ~ ) ]  a t  s t a t i o n s  along the  eas t e rn  s lope  a t  21 GMT 

(15 MDT) . 

2 

Ffgure 54. Same a s  Fig. 53, except f o r  12 GMT, 8 January 1969. 

From an examination of Figure 55, r ea l i z ing  t h a t  a l l  s t a t i o n s  

i t h i n  the  O 0  isotherm were repor t ing gusty winds and l a rge  dew po in t  

?reads, i t  appears l i k e l y  t h a t  descending a i r  motions on a l a r g e  s c a l e  

2re occurring along the  eas t e rn  s lopes  of the  Rocky Mountains i n  a 

xong chinook current .  Even a casual  examination of Figure 55 i n d i -  

t tes  very l a rge  temperature d i f ferences  e a s t  of the  region immediately 

1 the  l e e  of the  Rockies. A temperature d i f ference  of 6 0 ' ~  ( 3 3 O ~ )  i s  

!en from the  main chinook a rea  t o  a region 800 la t o  the  ENE. From 



the chinook a rea  t o  a point  105 km t o  the  e a s t  a temperature d i f f e rence  

3f 30°F (17OC) is observed. This gradient points  e f f ec t ive ly  t o  a 

remarkably sharp contras t  between a pool of  cold a i r  advected from 

Canada at t h e  surface  over the  eas tern  Plains and a warm region r e s u l t -  

ing from a s t rong subsiding current  t o  t h e  l e e  o f  the  Rockies. 

Figure 55. Temperature gradient f i e l d  f o r  Rocky Mountain and surround- 
ng s t a t e s  f o r  21 GXT, 7 January 1969. (Base isotherm (OF) e n c i r c l e s  
oulder  t o  the  north and Trinidad t o  the  south.) (Figures r ep resen t  
epa r tu res  from temperature wi th in  0 l i n e  a t  21 GMT.) 

Figure 55 shows t h a t  the s t rongest  dynamic heat ing by subsidence 

is  from Boulder southward t o  Trinidad,  Colorado, with a l e s s e r  e f f ec t  

over a l a r g e r  a rea  from Fort  Col l ins  i n t o  nor theas tern  New Mexico. 

From Boulder westward t o  the  Continental Divide a s t rong g rad ien t  

seemed t o  e x i s t .  The data  to  provide t h i s  ana lys i s  were obtained from 

a permanent s t a t i o n  a top the  Continental  Divide a t  3,808 meters 

(12,493 f e e t )  and from a s t a t i o n  l e s s  than 5 km t o  its w e s t  a t  3,449 

meters (11,316 f e e t ) .  The s t a t i o n  atop the  Continental  Divide is a t  

Colorado Mines Peak (46 km southwest of Boulder). The lower s t a t i o n  

is  located  a t  Berthoud Pass. Figure 56 gives a view of the  a r e a  taken 



Figure  56. Photograph of Continental Divide anL ,-----..---, 
ea tu res  from The Explorer a t  7.6 km (25,000 f e e t )  MSL. (Denoted i n  
igure :  Colorado Mines Peak (M) ;  Berthoud Pass (B); a l s o  note ski a rea ,  
ower r i g h t . )  

. .  . - 

rom The Explorer a t  7.6 km (25,000 f e e t )  MSL. Mines Peak (denoted M in 

igure 56) is a very exposed area .  It is  here  and a t  Niwot Ridge (dis- 

lssed e a r l i e r )  t h a t  the  h ighes t  surface  winds i n  Colorado a r e  u s u a l l y  

.corded. The Berthoud Pass s t a t i o n  (denoted B i n  Figure 56) is more 

i e l t e red  than Mines Peak. The data  obtained from these two s t a t i o n s  

re presented i n  Figure 57. Only a wind recording system is a v a i l a b l e  

r the  peak, however a temperature and barograph u n i t ,  i n  a d d i t i o n  t o  a 

ind system, are located i n  the pass s t a t i o n .  

According t o  Figure 57, the  temperature a t  21 GMT was +l.g°C and a t  

! GMT, +2.B0c. These temperatures were the  h ighes t  recorded in  recen t  

ieks a t  t he  pass and the  2 . 8 ' ~  temperature was only 1.6OC l e s s  than the  

.ghest ever recorded i n  January based on s ix teen  years of records  a t  

re 3,449 meter s t a t i o n .  So, even with almost record maximum tempera- 

Ires on the  Continental  Divide, a 20°c ( 3 5 ' ~ )  temperature g rad ien t  

: i s ted  between Boulder and mountain top l eve l .  This gradient  was main- 

lined mainly because many s t a t i o n s  to  the  l e e  of the  Front Range were 

!cording the  h ighes t  January temperature i n  years--in f a c t ,  many 



s t a t i o n s  s e t  record maxima f o r  the  date .  

Gusty winds were highest  near t h e  base of the  Front Range a n d  dew 

point  spreads a s  mentioned e a r l i e r  were qu i t e  large .  Most dew point  

spreads within the  O°F gradient f i e l d  t o  the  immediate l e e  of t h e  moun- 

t a i n s  (Figure 55) were g rea te r  than 2S°C (4S°F). 

BouMer and Mines Peak data. Figure 58 presents  various d a t a  a t  

Boulder near t h e  time of the  high wind event. The Boulder d a t a  a r e  

obtained from a loca t ion  a top the  NCAR building s i t u a t e d  on Table  Mesa 

i n  SW Boulder a t  a height of approximately 1.89 km. Even a c a s u a l  

examination of Figure 58 r e s u l t s  i n  seve ra l  s t r i k i n g  fea tures :  Wind 

gusts  2 56 ms- l  were recorded f o r  a two-houk period. During t h e  e n t i r e  

period of very gusty winds, the  minimum veloci ty  always r e tu rned  t o  

near ly  0 m s - l .  There was only a period of one hour during which sus- 

ta ined winds were a b l e  t o  maintain a speed g rea te r  than 20 m s - l .  

A more d e t a i l e d  examination of the  Boulder d a t a  reveals  t h e  following. 
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Figure  57. P l o t  of wind, temperature, and pressure  a t  Mines Peak 
(3808 meters)  and Berthoud Pass (3449 meters) 7 and 8 January 1969 .  
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A t  21 GMT a t  the  Table Mesa s i t e ,  the  average wind veloci ty  (mean hourly 

r e s u l t a n t ,  u + v-components) was l e s s  than 3 ms-I with gusts o f  only 

11 ms'l .  I n  the  next hour, while the  average ve loc i ty  was o n l y  7 m s - l ,  

gus t s  of 34 ms-I were occurring.  By 00 GMT, 8 January, the  peak gus t s  

obtained a magnitude g rea te r  than the  NCAR recording system could  dep ic t  

(>56 m s - l  o r  125 mph). By 0130 GMT the  average r e s u l t a n t  and u-component 

wind was 25 ms'l with gus t s  256 m s - l .  From 01-04 GMT, there  were  41 

occasions on which the  r e s u l t a n t  wind gusts  were 45 ms-I and 1 9  occasions 

wi th  >50 m s - l .  

High winds were i n  evidence elsewhere during t h i s  period, pa r t i cu -  

l a r l y  s o  a t  Mines Peak (Figure 57). The average wind (mean hour ly  

u-component) a t  Mines Peak and Berthoud Pass reached maxima a t  01 and 

09 GMT. The u-component was determined because i t  gives a b e t t e r  e s t i -  

mate of v e l o c i t i e s  i n  the  l e e  wave. This component during most of t h e  

period was q u i t e  c lose  t o  t h e  r e su l t an t  wind ( the  flow a t  the  t o p  of t h e  

Continental  Divide va r i ed  from 260'-280°). The u-component 0 . 5  km below 

the  peak-at B e r t h e d  Pass averaged -8 ms-I less.  The highes t  g u s t s  a t  

the  Divide were >56 ms-I (Figure 57).  

The f i r s t  wind maximum a t  Mines Peak appeared t o  coincide wi th in  

one hour of the  Boulder maximum and, in t e res t ing ly ,  the  average v e l o c i t y  

a t  both s i t e s  was the  same. The high wind at the  Divide seems, t o  a 

ze r t a in  extent ,  t o  be r e f l ec ted  a t  the  Boulder l e v e l  a s  strong chinook, 

t ransferred  from the  4 km l e v e l  i n  l e e  waves. 

Concentrating our a t t e n t i o n  on Boulder during the  hours t h a t  wind 

gusts exceeded hurricane force  (32.6 ms-l) , we f i n d  t h i s  period t o  l a s t  

irom 2330 GMT on 7 January t o  0615, 8 January. Of the  many g u s t s  du r ing  

:he seven-hour period,  almost a l l  were immediately followed by a wind 

~f l i t t l e  o r  no veloci ty .  (The response time of a wind magnitude 

~easur ing  system i s . n o t  instantaneous;  the re  i s  a l ag  on the  o r d e r  of a 

ew seconds.) A typ ica l  example of the  rapid v a r i a t i o n  i n  magnitude 

ould i n d i c a t e  a p r a c t i c a l l y  calm condit ion followed approximately one 

i n u t e  l a t e r  by a ve loc i ty  of 50-55 m s - l .  This condit ion might repeat  

t s e l f  f i v e  t i m e s  i n  10 minutes. The tremendous fo rce  exerted i n  more 

han an order  of magnitude change over a n  i n t e r v a l  of only one minute 

as one cause of the  des t ruct ion i n  Boulder. The other was the  



sopography of  t h e  a r ea .  The most s eve re  damage was i n  SW Boulder i n  

:he Table Mesa a r ea .  (Insurance companies p l ace  t h e  l o s s  a t  over  1.5 

l i l l i o n  d o l l a r s .  Two persons were k i l l e d  i n  t h e  Boulder a r ea  as a 

i i r e c t  r e s u l t  of t h e  wind, and many were i n j u r e d  by t h e  thousands of  

rindows sha t t e r ed . )  A c e r t a i n  amount of  channeling is e f f e c t e d  by t h e  

anyons immediately t o  t h e  west of Boulder. It appears  t h a t  t h e  s t rong  

ownslope winds throughout t h e  l e e  of t he  Front  Range toge ther  w i th  t h e  

t r ong  channeling e f f e c t  of  canyons r e s u l t e d  i n  p r e f e r r ed  r eg ions  of 

xtremely gus ty  winds--probably i n  c e r t a i n  a r e a s  exceeding 65 m s - l .  

t h e r  areas i n  t h e  immediate l e e  of t h e  Front  Range d i d  r epo r t  s e v e r e  

amage and es t imates  of  winds of 150 mph (67 ms-l),  bu t  i n  a l l  cases the  

zgions were only t h i n l y  populated and t h e  t o t a l  damage kept  low com- 

2red t o  t h a t  of Boulder. 

The gus ty  downslope winds decreased 50% by 06 GMT a t  Boulder. 

rrong winds from 8-16 GMT appeared t o  be  more pre-  and p o s t - f r o n t a l  

Ian downslope. The f r o n t a l  passage was r a t h e r  dramatic a t  bo th  t h e  

a e s  Peak l o c a t i o n  and a t  Boulder..  Trough passage appeared e v i d e n t  

. Mines Peak (Figure 57) a t  09 GMT. At t h i s  p o i n t ,  t h e  lowest p r e s s u r e  

.s obta ined  (979 mb), mean wind and g u s t s  decreased ,  and t he  tempera- 

re g radua l ly  began t o  f a l l .  This  appeared t o  be  t h e  approximate 

s s age  t ime a t  Boulder a l s o .  The dry ,  warm downslope condi t ion  appeared 

mple te ly  ended a t  15  GMT when t h e  temperature dropped 7OC i n  a b o u t  

112 minutes.  

The Transpor t  of S t r a to sphe r i c  Air  t o  t he  Surface  by Orographica l  

E f f e c t s  

Cmbined mechanisms. Figure  59 is a mesoscale dep i c t i on  of t h e  

r t i c a l  s t r u c t u r e  of p o t e n t i a l  temperature s u r f a c e s  a t  Denver. A 

rusa l  of  t h e  t ime s e c t i o n  i n d i c a t e s  subs id ing  motion a t  a l l  l e v e l s  

.ow 175 mb beginning a f t e r  1 2  mP1: on 7 January.  The 333 K s u r f a c e  

l i c a t e s  i s e n t r o p i c  motion from t h e  195 mb l e v e l  a t  12 GMT t o  the 305 

l e v e l  twelve hours later. By adoption of t h e  proposed model f o r  

lnsport  a c r o s s  t h e  tropopause,  as mentioned e a r l i e r ,  involving narrow 

iinae of s t a b l e ,  s t r a t i f i e d  air i n t e r j e c t e d  i n t o  t h e  t r oposphe re  from 

s t r a t o s p h e r e  by wave a c t i o n  a t  t he  boundary, i t  is q u i t e  p o s s 5 b l e  





t ha t  air with s t r a tospher i c  c h a r a c t e r i s t i c s  could be found some 25-50 mb 

>elow the  tropopause without evidence of the  t ranspor t  being r e f l e c t e d  

in a po ten t i a l  temperature f i e l d  on a synoptic sca le .  It is  a l s o  

~ o s s i b l e  fo r  quan t i t i e s  of s t r a tospher i c  a i r  t o  be associa ted  with 

.ayers immediately below t h e  tropopause, placed the re  by simple down- 

lard mixing i n  turbulent  eddies i n  the  high wind shear l aye r s .  Whether 

he s t r a tospher i c  a i r  a r r ived  a t  t he  195 mb l e v e l  (some 35 mb below the  

ropopause) by laminar flow o r  eddies ,  o r  a combination of both ,  a t  

r e fe r red  times, once the  a i r  pa rce l  is  a t  t h i s  l e v e l ,  continued down- 

a rd  t ranspor t  i s  ava i l ab le  t o  the  300 mb surface .  Once a t  t h i s  l e v e l ,  

ownward t ranspor t  of momentum is ava i l ab le  t o  the  surface  by g r a v i t y  

aves . [~rom a t h e o r e t i c a l  consideration,  l e e  wave formation was l i k e l y  

t t h i s  time (see Figure 60 which dep ic t s  a time sec t ion  of the  va r i a -  

Lon with height of the Scorer parameter; note the  downward s l o p e  of the  

.-adient of the  11' value with increasing time) and indeed, wave clouds 

? r e  v i s i b l e  during t h i s  period.] Once the  a i r  was i n  the  wave t rans-  

)rt t o  t h e  surface  was i nev i t ab le  i n  the  powerful chincok c u r r e n t  

!scending the  l e e  slopes. 

Single mechanism. Another poss ib le  method by which s t r a t o s p h e r i c  

r could be transported t o  the  surface ,  and i n  a shor t e r  per iod than 

the  method j u s t  described,  could be t h e  following: A s  shown e a r l i e r  

t h e  October 1968 study, l e e  waving can d r a s t i c a l l y  a l t e r  the  h e i g h t  

the  tropopause i n  the  immediate l e e  of the  mountains, and up t o  

~ e r a l  hundred kilometers t o  the  l e e  i n  some cases .  I n  the  n e a r  l e e  

the  Front Range wi th in  t h e  f i r s t  1-3 waves, the  height of the  tropo- 

Ise  would be changed most d r a s t i c a l l y .  The October case i n d i c a t e s  

it t h i s  change may be a s  much a s  1.5-2.0 lan; t he  February 20 c a s e  

Lgure 30) a l so  indicates  t h i s  t o  be  1-2 km. The obvious problem is  

~t two s t a t i o n s  330 km apar t  (Grand Junction and Denver) a r e  m o s t  

i fu l  f o r  synoptic sca le  ana lys i s  and l e s s  so  f o r  measurement of meso- 

. l e  f luc tua t ions .  It i s  q u i t e  poss ib le  t h a t  both of these s t a t i o n s  

.Id f a i l  t o  not ice  a disturbance i n  the  Front Range, p a r t i c u l a r l y  i f  

d is turbance  was weak. (Radiosonde data  smoothed by the  cod ing  

cess  a l s o  permit small s c a l e  f ea tu res  t o  escape de ta i l ed  a n a l y s i s  



Figure  60. Mesoscale v e r t i c a l  time sec t ion  of the Scorer parameter 
from 00 GMT, 7 January t o  12  GMT, 8 January 1969. 

[~aniezsen, 19591). Large changes i n  the  tropopause he ight  over  short  

ho r i zon ta l  d is tances  would go l a rge ly  unnoticed upon inspect ion  of the 

Denver sounding. (Although l e e  wave formation was indica ted  l i k e l y  from 

t h e o r e t i c a l  t reatment of the  Denver sounding, no method was ava i l ab le  t o  

a s c e r t a i n  the  degree of tropopause undulation.)  Bas ica l ly  t h i s  mecha- 

nism sugges ts  t h a t  l e e  waves, observed i n  occasional  t h i n  wave cloud 

form during t h e  period of high su r face  winds, brought about l a r g e  undu- 

l a t i o n s  i n  the  tropopause. High winds a t  t he  top  of t he  Front Range 

b a r r i e r  would i n d i c a t e  longer wavelengths and i n  t u r n  g rea t e r  amplitude 

[?oZdvik, 19621. The high winds could a l s o  produce a breakdown of the 

b a s i c  wave flow i n t o  a more turbulent  and chao t i c  flow pa t t e rn .  Thus 

s t r a t o s p h e r i c  a i r  could b e  t ranspor ted  downward t o  the  300-350 mb level  

be fo re  00 GMT, 8 January, whi le  wind a t  mountain top l e v e l  and i n  

Boulder w a s  l e s s  than 25 ms-I. Af t e r  t h i s  period,  t ranspor t  r ap id ly  

and d i r e c t l y  t o  t h e  su r face  i n  the  l e e  of t he  Divide could be ef fec ted  

by eddy mixing i n  conjunction with t h e  o v e r a l l  s t rong  downslope chinook 

cu r ren t  along the  l e e  s lope .  



7 JAN 8 JAN 

Figure 61. P lo t  of ozone densi ty  a t  the  surface  a t  Boulder, 00 GMT, 
January t o  04 GKT, 8 January. (Dobson Spectrophotometer a t  20 GMT = 

82 m atm-cm.) 

Figure 61 shows t h a t  a i r  of recent  s t r a tospher i c  o r i g i n  ar r ived at 

le surface  along the  eas t e rn  s lope  of the  Continental  Divide. Figure 

L dep ic t s  the  f luc tua t ion  of ozone densi ty  with time. Since the  sur-  

ice serves  e f fec t ive ly  a s  a s i n k  t o  ozone, a s  described e a r l i e r ,  the  

)west ozone d e n s i t i e s  near the  su r face  would be expected t o  occur 

wing the  n ight  hours when convective a c t i v i t y  is l e a s t  and su r face  

nds a r e  weakest. This appears t o  be the  circumstance e a r l y  on 7 

.nuary. Evident is the  maintenance of low ozone d e n s i t i e s  a t  n ight  

rom 00-11 GMT). A t  11 GMT (05 MST) on 7 January, t h e  ozone densi ty  

creases rapidly  and r i s e s  some 350% by 18 GMT. Duri.ng t h i s  same 

r iod the  wind began t o  gust  a t  7-13 m s - l .  The ozone sensor s h e l t e r  

s blown over a t  04 GHT on 8 January and measurements were terminated 

t h a t  point .  But before t h i s  occurred, i t  should be noted t h a t  ozone 

lues were very high f o r  t h a t  time of the  day. I n  f a c t ,  d e n s i t i e s  

re two t o  th ree  times g rea te r  than 24 hours e a r l i e r .  Some of t h i s  

:rease could be due t o  mixing a t  the  surface .  But i t  i s  f e l t  t h a t  the  



majority of the  increase  i s  ind ica t ive  of s t r a tospher i c  ozone reaching 

t h e  su r face  a s  a r e s u l t  of one of the  mechanisms discussed e a r l i e r .  

V I .  Summary 

Structure of the lee wave (case study 10 October 1968). During 

the  f a l l  of 1968 a highly instrumented sa i lp l ane  with ozone and tempera- 

t u r e  sensors  was used t o  determine l e e  wave s t r u c t u r e  e a s t  of t h e  Con- 

t i n e n t a l  Divide i n  Colorado. One such case study is presented here.  

A new type of ozone sensor,  l ightweight and po ten t i a l ly  capable of 

measuring ozone on an  absolute  s c a l e ,  was used on the  a i r c r a f t .  Unique 

sensor  flow r a t e  f luc tua t ions  under var ious  a i r c r a f t  maneuvers were 

conducted. It was found t h a t  va r i a t ions  were negl ig ib le .  

This study f o r  the  f i r s t  time obtained a rendezvous of an ozone 

sensor  i n  an a i r c r a f t  with an ozonesonde released from the  su r face .  I n  

add i t ion ,  t h i s  was simultaneous with a photograph taken by ESSA V I .  

Addi t ional  s a t e l l i t e  da ta ,  one t o  two hours p r i o r  t o  and a f t e r  ozone- 

sonde r e l ease ,  'and -dufing- the  ' a i r c ra f t  sampling period, a r e  analyzed. 

A l e e  wave pa t t e rn  is constructed based on a wave flow suggested 

by ozone p a r t i a l  pressure  (and p o t e n t i a l  temperature) surfaces .  This 

p a t t e r n  v e r i f i e d  the  computed Scorer parameter which indicated atmos- 

phe r i c  condi t ions  s u i t a b l e  f o r  the  formation of l e e  waves. Ozone values 

were more use fu l  i n  obtaining the  l e e  wave s t r u c t u r e  than p o t e n t i a l  

temperatures under ad iaba t i c  l apse  r a t e  condit ions.  

Five  zones of d i f f e r e n t  atmospheric processes i n  the  ozonosphere 

a r e  de l inea ted  from the  v e r t i c a l  ozone s t r u c t u r e .  

From s a t e l l i t e s ,  a i r c r a f t ,  sensors,  ground-based radar,  and an 

ozonesonde, seven independent techniques were used t o  determine l e e  wave 

amplitude,  wavelength and v e r t i c a l  motion. The average wavelength from 

a l l  methods, excluding the  s a t e l l i t e  information, was 9.9 km; ESSA V I  

and V I I  indica ted  an average wavelength of 13.8 km. Amplitudes varied 

from 0.5-1.0 km. From a l l  ava i l ab le  methods the  average v e r t i c a l  veloc- 

i t y  was computed t o  be 1.5 m s - l .  Extreme magnitudes greater  t h a n  10 

ms-l were recorded. 

Surface destruction and orographicaZZy-induced transport processes 

(case s t ~ d y  of 7 January 1969). Scorer parameters computed f o r  7 and 8 



January i nd i ca t ed  t h a t  t h e  p r o b a b i l i t y  of  l e e  waves dur ing  t h e  per iod  

was q u i t e  good, p a r t i c u l a r l y  near  the  end of t he  observa t ion  per iod .  

It was q u i t e  ev ident  by temperature and dew p o i n t  ana ly s i s  i n  t h e  l e e  

of  t h e  Colorado Rockies t h a t  chinook condi t ions  were occurr ing .  Analysis  

of  wind d a t a  from t h e  top of t h e  Cont inenta l  Divide, 46 km west of 

Boulder, and from Boulder, i nd i ca t ed  near  simultaneous occurrences of  

peak winds. 

The h igh  winds i n  Boulder produced q u i t e  ex tens ive  d e s t r u c t i o n  

because of two f a c t o r s :  (1) t h e  wind was h ighly  v a r i a b l e  i n  magnitude-- 

a n  almost  calm wind would be  fol lowed a few seconds l a t e r  by a g u s t ,  a t  

t imes g r e a t e r  than 56 m s - l ;  (2) a channeling e f f e c t  by t h e  canyons t o  

t h e  west of Boulder s u b s t a n t i a l l y  increased  t h e  wind i n  c e r t a i n  a r ea s .  

An explana t ion  of t h e  high s u r f a c e  wind was suggested i n  two 

proposed mechanisms. Both mechanisms provide f o r  a r ap id  t r a n s p o r t  of  

s t r a t o s p h e r i c  a i r  t o  t h e  su r f ace .  The f i r s t  mechanism involved s e v e r a l  

Yrocesses i n  t r a n s p o r t  t o  t h e  su r f ace .  Air  was suggested t o  have been 

:ransported from t h e  lower s t r a t o s p h e r e  (west of t h e  Cont inenta l  Divide) 

:o t h e  upper t roposphere e i t h e r  by (1) a process al lowing i n t r u s i o n  of  

:hin s t a b l e  laminae, o r  (2) e ro s ion  a t  t he  tropopause (both processes 

'1) and (2) could have occurred,  each a t  p r e f e r r ed  t imes) .  Once a t  a 

eve1  a s h o r t  d i s t a n c e  below t h e  tropopause l a r g e  s c a l e  subsidence,  

bserved by a n a l y s i s  on 7 January,  would provide f o r  t r a n s p o r t  t o  lower 

e v e l s .  At t h i s  p o i n t  t r a n s p o r t  could be  provided t o  the  su r f ace  by 

a rge  s c a l e  descending a i r  motions i n  t h e  lee of t h e  Cont inenta l  Divide 

rought  about by l e e  wave-intensif ied chinook flow. The second mechanism 

uggested was t h a t  l e e  wave ampli tudes were l a r g e  enough t o  t r a n s p o r t  

t r a t o s p h e r i c  air s e v e r a l  k i lometers  downward, and from t h i s  po in t  t o  

le su r f ace  by l a r g e  s c a l e  t u rbu l en t  e f f e c t s  i n  t h e  chinook flow. 

It is c e r t a i n  t h a t  a i r  of r ecen t  s t r a t o s p h e r i c  o r i g i n  a r r i ved  a t  

ie  su r f ace  along t he  l e e  of t he  Front  Range. This  is  r e f l e c t e d  i n  

~ r f a c e  ozone concent ra t ions  a t  Boulder during t he  observa t ion  per iod .  

:I. Suggest ions f o r  Future Research 

Theo re t i ca l  models have been der ived  t h a t  i n d i c a t e  pos s ib l e  flow 

d e r  var ious  atmospheric thermal and wind s i t u a t i o n s .  However, d e t a i l e d  



~ t u d y  i n t o  the  l e e  wave phenomena using highly equipped a i r c r a f t  with 

rtmospheric t r ac ing  c a p a b i l i t i e s  i s  r a re .  More bas i c  research i n t o  the  

iormation and s t r u c t u r e  of the  l e e  wave i s  needed using techniques 

lescribed i n  t h i s  paper. Additional bas i c  research i n t o  l e e  wave 

ihenomena could show the  coupling between such waves and high surface  

~ i n d s  and chinook condit ions i n  the  lower troposphere and c l e a r  a i r  

rurbulence i n  the  upper troposphere and i n  s t r a tospher i c  regions.  I n  

rhese higher regions turbulence could have severe consequences upon 

Euture SST f l i g h t s .  
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Appendix 

Photographs of orographically formed cloud formations to the 

immediate lee of the Colorado Rockies. 



Figure  Al. Wave cloud 
formation t aken  from 
The Explorer (10 Oct. 
1968) a t  6 . 1  km 
(20,000 f e e t )  . 

Figure  A2. Rotor  clo 
near  Longs Peak, 10 0 
1968. (Motion i n  the 
r o t o r  is clockwise i n  
t h i s  p i c t u r e  - a good 
t h e o r e t i c a l  d i s cus s io  
r e l a t i v e  r o t o r s  i s  
given by Kuettner 
[1959] and Scorer 
[1967]. 

lud 
c t .  



Figure A3. Multi-layer 
968 (as the wind blows through 

lent icular  cloud near 
L ,  the cloud remains qi 

Longs Peak, 
las i -s  tation 

f a l l  
.ary) . 

Figure A 4 .  Multi-layer lenticular cloud near Hagues Peak, f a l l  
1968 (see  Figure 8 of t e x t ) .  (See comment, Figure A3) (photographed 
with 400mm l ens .  ) 





Figure A7a. B i l l o w  cloud formations near Continental Divide, 
'anuary 1969. (A good theoretical  discussion of the bil low cloud is 
;iven by Scorer [1967].) (Note: 55mm lens  used for th i s  photograph) 

Figure A7b. As Figure A7a except 200m lens .  

Figure A7c. As Figure A7a except 400mm l ens .  



Figure A8a. Wave cloud formetitm-te-eke &ee -ef -&e C e ~ t i n e n t a l  
Divide, near Longs Peak, January 1969. (Note the extremely v i v i d  lens 
shape de ta i l  (50mm l ens ) )  

Figure A8b. A s  Figure A8a except 400mrn lens .  
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