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ABSTRACT OF DISSERTATION

ASSESSING VULNERABILITIES IN SOFTWARE SYSTEMS: A QUANTITATIVE
APPROACH

Security and reliability are two of the most important attributes of complex software 

systems. It is now common to use quantitative methods for evaluating and managing 

reliability. Software assurance requires similar quantitative assessment of software 

security, however only limited work has been done on quantitative aspects of security. 

The analogy with software reliability can help developing similar measures for software 

security. However, there are significant differences that need to be identified and 

appropriately acknowledged. This work examines the feasibility of quantitatively 

characterizing major attributes of security using its analogy with reliability. In particular, 

we investigate whether it is possible to predict the number of vulnerabilities that can 

potentially be identified in a current or future release of a software system using 

analytical modeling techniques.

Datasets from several major complex software systems have been collected and 

analyzed, they represent both open-source and proprietary software systems. They 

include most of the major operating systems, web servers, and web browsers currently in 

use. The data about vulnerabilities discovered in these software systems are analyzed to 

identify trends and the goodness of fit with the proposed models is statistically examined.

Vulnerability datasets are examined to determine if  the vulnerability density in a 

program is a practical and useful measure. We attempt to identify the quantitative 

relationship between software defects and vulnerabilities. The results indicate that
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vulnerability density is relatively stable for specific classes of systems and therefore, is a 

meaningful metric.

The dynamics of vulnerability discovery is thoroughly examined in detail with the 

hope that it may lead us to an estimate of the magnitude of the undiscovered 

vulnerabilities still present in the system. We examine the vulnerability discovery process 

to determine whether models can be developed to project future trends. The prediction 

capabilities of the proposed quantitative methods have been investigated. The results 

show good prediction accuracy when applied to several of the operating systems and 

web-servers. Finally, vulnerabilities taxonomies were considered and the quantitative 

approaches were also applied to categorized vulnerability datasets as well.

Categorized vulnerabilities analysis suggests that some vulnerabilities categories are

generally more severe. We also note that in some products, some categories include a

larger number of high severity vulnerabilities. This fact can be used as a guideline to

design better test cases that assigns a higher priority to selected categories in order to

optimize test effectiveness and reduce the cost of testing.

Omar H. O. Alhazmi 
Department of Computer Science 
Colorado State University 
Fort Collins, CO 80523 
Spring 2007
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CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

Connectivity of computing systems through the internet has brought the security of 

software systems under intense scrutiny. Until recently, much of the work on security has 

been qualitative, focused on detection and prevention of vulnerabilities in these systems. 

This study has attempted to provide a basis for developing systematic quantitative 

approaches for characterizing security. Quantitatively security can be characterized by 

factors such as the number of vulnerabilities present in a particular software system and 

the related discovery, remedy and exploitation processes. A software vulnerability may 

be defined as a “defect which enables an attacker to bypass security measures” [65], 

Alternatively, a vulnerability may be defined as a defect “which enables an attacker to 

bypass security measures,” [71]. Hence, a software system with a smaller number of 

vulnerabilities can be viewed as less risky than a software system with a larger number of 

vulnerabilities. In this study the quantitative characterization of security focuses on the 

vulnerability discovery process. The analysis starts by observing the cumulative number 

of vulnerabilities plotted against calendar time, and then appropriate models are identified 

able to capture the repeated behavior. This study has satisfactorily established the 

feasibility of quantitative characterization of security risks in terms of vulnerabilities 

present in a software system.

Several models have been in use in the field of software reliability engineering where 

the number of defects and the defect finding rate can be projected using the metrics such

1
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as the software size and the defect density, and by using the Software Reliability Growth 

models (SRGMs). We have analyzed the available vulnerability datasets for major 

security-critical software applications to identify trends to develop Vulnerability 

Discovery Models (VDMs). Fortunately, software vulnerability databases are openly 

available and are becoming more standardized. This availability of real data has helped us 

address some major questions. For example, based on available datasets, do we note any 

similarity of behavior when we observe new vulnerability discovery rates for different 

systems so that we can develop suitable models?

Researchers in software reliability engineering have developed methods that use plots 

of cumulative number of defects found against time. Methods have been developed to 

project the mean time to failure (MTTF), mean time between failures (MTBF), etc. 

[49][57] [58], Flowever, very little quantitative work has been done to characterize 

security vulnerabilities along the same lines. One major difference makes analyzing the 

vulnerability discovery rate more difficult—namely, that throughout the lifetime of the 

software after its release, it encounters a wide variation in the effort devoted to 

identifying and exploiting the vulnerabilities. Consequently, a security analysis has to 

assume that failures are caused intentionally, resulting in security failure rates that 

depend on life cycle phase of the product, its popularity, and attackers’ familiarity with 

the system. This is in contrast to the traditional dependability analysis to date, which 

usually assumes that the failures are caused by random events that cause hardware or 

software malfunction.

A new static software metric has recently been proposed that depends on the number 

of vulnerabilities, termed Vulnerability Density [63], which is analogous to defect density

2
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in software reliability engineering. In software engineering, it has been noted that for a 

given state of technology, the defect density of software systems at release tends to fall 

within a certain range [46]. This had made defect density a suitable measure for 

managing software projects. This research attempts to evaluate and examine the stability 

of the vulnerability density metric. If this metric possesses the required attributes, then it 

is potentially measurable and can be used for assessing risks in various software systems.

Quantitative methods need multiple components; here we use these two - the rate of 

vulnerability discovery and the vulnerability density metric. These two can be used to 

describe the security status of a particular software system.

In this work, we aim to establish a standard approach for assessing the security of 

software similar to the one already established in the area of software reliability 

engineering. This will allow practitioners to be able to integrate security into the phases 

of the development of software systems and during the lifetime of the software system.

The number of vulnerabilities in a software system is a key security attribute of the 

software. Unfortunately, consumers who make decisions in purchasing a new software 

system can be misled by marketing and popular views and often can not determine which 

software is likely to be more secure. The consumers need quantitative assessment tools 

to get an estimate of the number of vulnerabilities to compare and choose new software 

systems. An approach for estimating the number of vulnerabilities is proposed here and 

its feasibility is examined.

Recently a few vulnerability discovery models have been proposed, including those 

which were developed as a part of this research. The proposed models will be validated 

using several vulnerability datasets for major systems. The results of fitting the data to

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the models will be analyzed. An acceptable goodness of fit results indicates that the 

models are complying with the data; however, this does not necessarily mean good 

prediction capabilities. Therefore, the prediction capability of the vulnerability discovery 

models is separately examined.

In the initial part of this research, we treat software vulnerabilities as if they are equal. 

However, the analysis would be richer if vulnerabilities are categorized; so, the proposed 

logistic model will be validated using data obtained by partitioning the vulnerabilities 

into well defined categories. Vulnerabilities can be classified in several ways. Here, we 

classify vulnerabilities using two different attributes, using categories based on origin, 

and by the severity level. The relationship between categories and severity level was 

analyzed to see if some categories tend to be associated with specific severity levels.

The outcome of this research will allow development of guidelines for developers’ 

practices that will improve the security of their software systems by identifying the most 

vulnerable part of the software and the common mistakes introduce security faults. 

Furthermore, the results can be used to identify the types of vulnerabilities more likely to 

be encountered.

External factors that can increase or decrease risks, such as the attackers’ reward 

factor, need to be examined. By looking at changes in vulnerability discovery rates, we 

can attempt to get a good perspective on the nature of vulnerability discovery and 

exploitation, which will allow better risk assessment.

In software engineering, one cannot expect to find a single solution that is 

immediately applicable to every software system since software development and test 

environments vary in nature. The developers should choose from among a range of

4
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approaches for quantitative assessment; for each case a specific estimation approach may 

be optimal. Several software reliability growth models and application methodologies 

exist, one needs to choose the approach that is most likely to work in a specific case. In 

this research multiple models and approaches are considered and evaluated using actual 

data.

1.2 MOTIVATION

Several quantitative methods have been proposed by researchers which can be used to 

estimate the number of defects in a particular release version of software. These methods 

can be used to project the resources needed to achieve the target reliability levels by the 

release date. Quantitative characterization of vulnerabilities can be similarly used to 

develop guidelines for allocation of resources for security testing, scheduling, and 

development of security patches. Furthermore, it can be utilized by the users for assessing 

risk and estimating needed redundancy in resources and procedures to handle potential 

breaches. These measures help in determining the resources that need to be allocated to 

test a particular piece of software. It would be very valuable to create similar methods 

specifically for addressing the potential vulnerabilities present. Because the software 

system vulnerabilities—the faults associated with maintaining security requirements—are 

a special type of software defects, a similar measure for estimating security 

vulnerabilities is warranted.

Quantitative assessment ought to be integrated into the testing process as well. During 

the testing phase, estimating the number of vulnerabilities in a system will support the 

critical decision to stop testing for vulnerabilities in order to release a stable version. 

Vendors are usually faced with deadline pressures to release the new software system;

5
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consequently, a compromise between achieving a high security level and meeting the 

deadlines must be made. Research studies have confronted this issue in the past. For 

example, in [18] Beattie et al. have suggested that administrators should delay applying 

security patches to ensure a system’s stability. Clearly such decisions can be better 

arrived at by using quantitative rather than subjective methods.

Software developers have struggled with the discovery of vulnerabilities, because of 

the risk that they represent, and the effort needed to develop patches to fix newly 

discovered vulnerabilities. The developers can overestimate the resources needed to 

maintain the system’s security and allocate a too high fraction of the resources to 

maintain the system, or, alternatively, they may underestimate the risk and allocate 

insufficient resources and thus fall behind in developing patches.

In a typical situation vulnerabilities bulletin boards and databases post information 

about new vulnerabilities, and administrators review newly announced vulnerabilities. 

Typically, administrators need to decide whether to disable parts of the system that 

contains the new vulnerability and sacrifice some functionality. Alternatively, they can 

wait for new patches to be applied. Nonetheless, patches developed in haste can 

sometimes result in the instability of the system, either because the patch itself contains a 

vulnerability or because the patch conflicts with the existing configurations at certain 

locations.

Just as it is impossible to have a software system without defects, security flaws will 

inevitably be discovered after the software’s release. Consequently, developers will need 

to schedule updates and patches for fixing the software systems; carefully planning for 

this process will help in utilizing resources efficiently.

6
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1.3 CONTRIBUTIONS

This work proposes some vulnerability discovery models that model how 

vulnerabilities are discovered. The process is analyzed and discussed to identify factors 

influencing the process.

The models’ prediction capabilities are examined to predict the total number of 

vulnerabilities and vulnerability discovery rates. The vulnerabilities classified by coding 

error type and by severity are analyzed; and the applicability of the model to these 

classified datasets is evaluated.

We compare several existing vulnerability discovery models and identify the 

strengths and weaknesses of each model. The comparison identifies which is the best 

applicable model based on actual vulnerability datasets.

The work presents an novel analysis of the vulnerabilities discovery process and the 

factors impacting the vulnerabilities discovery. We go further to look into individual 

vulnerabilities classified by category and we show that there is a relationship between 

taxonomy and severity levels. The results show that some vulnerability categories of 

tends to carry more risk than other categories, a fact which can help designing effective 

test cases.

1.4 RELATED WORK AND LITERATURE REVIEW

1.4.1 B a c k g r o u n d

Traditional research in computer security has focused on topics like the security 

models (e.g. [26]), access control including encryption schemes (e.g. [67]), and intrusion 

detection systems (e.g. [35]). There have been significant advances in these and other 

related research areas of security in the past three decades. However, before applying a
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new security technique, there is a need to quantitatively assess how effective the scheme 

will be. The main focus of this work is to introduce effective, stable, and practical 

security assessment methods and tools.

Software security community admits that it is practically impossible to build a 

sizeable software system that is perfectly secure; thus, currently some research is directed 

toward fault tolerance techniques to ensure that the system survives attacks and 

malfunctions despite malicious activities [66]. Consequently, there is growing interest 

among researchers in establishing some applicable quantitative characterization of 

systems security that can quantitatively validate the efficacy of proposed system designs 

objectively.

Presently, most attempts at validation of security have been qualitative, focusing 

more on the process used to build a system that should be secure. Much of the research 

aimed at quantitative validation of security has usually been based on formal methods 

(e.g. [38]). This work differs by focusing on the process of vulnerability detection as an 

important factor for determining the risk associated with using a software system.

The analogy between security and software reliability is very useful, because the 

latter has some well established quantitative tools. Approaches to evaluate the software 

security from a reliability point of view has been suggested, for example Littlewood et al. 

in their work [23][41], have considered the relationship between reliability and security. 

At the same time, however, they have acknowledged that there are some significant 

differences between software reliability and security. Littlewood et al. have proposed the 

use of effort rather than time to characterize the accumulation of vulnerabilities, 

however, they did not specify how to assess effort. The work of Littlewood et al.
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emphasizes the importance of quantitative evaluation as an evolving area of research, 

which this research is attempting to develop.

In the following sections we shall look into related work. First, we examine different 

definitions of the term software vulnerability, then we will discuss approaches for 

quantitative assessment of security, which leads to vulnerability modeling.

1.4.2 Definition of Softw are Vulnerability

Several definitions of the term software vulnerability are available in the literature. 

Definitions can belong to one of three classes: fuzzy, access control or state based 

definitions [36]. One access control definition is offered by Schultz et al. is: “a 

vulnerability is defined as a defect which enables an attacker to bypass security 

measures” [71]. This definition is the one we prefer in this reliability and security 

context. Krusl has defined software vulnerability with respect to the security policy as 

follows: “A software vulnerability is an instance of an error in the specification, 

development, or configuration of software such that its execution can violate the security 

policy” [36]. Pfleeger has defined vulnerability as “a weakness in the security system 

that might be exploited to cause loss or harm” [65].

Some sources considered giving alternative definitions. The book The Data & 

Computer Security Dictionary o f Standards, Concepts, and Terms by Longly and Shain 

[43] defines computer vulnerability as:

• “A weakness in automated systems security procedures, administrative controls, 

internal controls, etc., that could be exploited by a threat to gain unauthorized access 

to information or to disrupt critical processing.”, or
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• “A weakness in the physical layout, organization, procedures, personnel, 

management, administration, hardware, or software that may be exploited to cause 

harm to the ADP system or activity. The presence of a vulnerability does not itself 

cause harm. A vulnerability is merely a condition or set of conditions that may allow 

the ADP system or activity to be harmed by an attack.”, or

• “A weakness or error existing in a system. The attack or harmful event, or the 

opportunity available to a threat agent to mount that attack”.

It should be kept in mind that vulnerabilities are flaws that can be counted. Thus the term 

“vulnerability”, it is not similar to “reliability” or “availability” which are probabilities 

and thus take a value between zero and one.

1.4.3 Q u a n t it a t iv e  A s s e s s m e n t  o f  S o ft w a r e  Se c u r it y

Most of the conventional security studies involving vulnerabilities have been

qualitative, with studies of how specific types of vulnerabilities impact security, such as

those critical vulnerabilities causing denial of service attacks [33], or specific types of

vulnerabilities such as those caused by buffer overflow [39]. Very little quantitative work

has been done to characterize security vulnerabilities along the same lines as general

defects. In [11] the authors propose a metric termed Software Vulnerability Index (SVI).

SVI is calculated using some predefined rules as a heuristic that can take values between

0 and 1. SVI aims to assess the vulnerability of a specific system using some preset

conditions and rules based on detailed configurations of that system. Also, some studies

have focused on operational security methodologies that can quantify the amount of

security provided by a particular system-level approach, using techniques such as attack

trees [60], Also, in [25] Dacier et al., another approach was proposed. They suggested an
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operational security evaluation in a UNIX system using Markov modeling. These are 

examples of real-time evaluation of the security of systems.

Vulnerability density, a quantitative measurement, was suggested by Ounce labs [63], 

it has referred to it as V-density; however, it is proprietary and not clearly defined. In this 

research, we define it, apply it to some software systems, and investigate its feasibility. 

Furthermore, this research studies density of defects and compares it with density of 

vulnerabilities.

Researchers in software reliability engineering have developed methods that use plots 

of the cumulative number of defects found over time. Methods have been developed to 

project the mean time to failure (MTTF) and mean time between failures MTBF, etc. 

That will result after a specific testing period [44][50][53]. Software defect density 

[49][57][58] has been a widely used metric to measure the quality of a program and is 

often used as a release criterion for a software project. Since operating system 

vulnerabilities—the faults associated with maintaining security requirements—are 

considered to be a special kind of software defect, a similar measure for estimating 

security vulnerabilities is warranted.

This work differs by focusing on the process of how vulnerabilities are detected as an 

aspect of how to look at the overall security of a software system. Hence, factors like the 

rate of vulnerability discovery is analogous to Assessment of reliability of a software 

system based on the rate of defect detection. Software Reliability Growth models 

(SRGMs) are valuable widely used tools to assess the reliability of software systems [44]. 

This analogy between security and reliability is investigated to evaluate how it could
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provide some security assessment tools; for example, by examining Vulnerability 

Discovery Models, which correspond to SRGMs.

1.4.4 M o d e l in g  V u l n e r a b il it ie s  a n d  In c id e n t s

Modeling vulnerabilities discovery process has recently attracted researchers as they 

recognize the need to analyze how the vulnerability discovery process affects the security 

of software systems and make forecasts that can be used for planning. A study by 

Rescorla has examined vulnerability discovery trends in some software systems. He has 

fitted a linear model (the linear model is considered quadratic if used with cumulative 

data) and an exponential model to vulnerability data; however, the fit was insignificant in 

both cases [69],

Anderson [14] proposed a model for a vulnerability-finding rate using a 

thermodynamics analogy. The applicability of the model proposed by Anderson [14] has 

not yet been considered, nor has any comparison of the VDMs been carried out, his 

model is examined in this thesis.

A technical report by Gopalakrishna and Spafford have studied common trends 

among vulnerabilities; however, no models were suggested [31]. Recently, in [64] 

Ozment has suggested using SRGMs as Security Growth models. The author has fitted 

some OpenBSD vulnerability data to some software growth models, namely, Musa’s 

logarithmic model, and a geometric model. Ozment has found that Musa’s logarithmic 

model was the most accurate in next point estimation.

Arbach et al. [15] and Browne et al. [20] have examined several systems using the 

incidents reported by CERT. Browne et al. examined some actual statistical data to study 

the trends occurring in incidents. They have suggested that the cumulative number of
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incidents is linearly related to the square-root of time. The rates of Exploitations were 

examined by Browne et al. in [20], where Vulnerability exploitation models (VEMs) were 

first presented; they examined the exploitation rate of some vulnerabilities, they also 

presented a modeling scheme. Shim et al. [76] have applied a software reliability growth 

model to the incidents data. The security intrusion process has also been examined by 

Johnson and Olovsson [35] and Madan et al.[45].

During this research we have identified and examined major open source and closed 

source software systems. Recently there have been a number of comparisons between the 

two paradigms [14] [58]. This is not, however, the focus of this research. Rather, our 

work is concerned with the entire process of vulnerability detection, focusing on an 

analysis that can lead to a reduction in the number of vulnerabilities in a system and a 

method to cope effectively with the existence of such vulnerabilities.

In [15], researchers have taken some common types of vulnerabilities and suggested 

to designers how to improve their techniques in order to reduce the number of 

vulnerabilities. These researchers have evaluated the ranges of defect densities typically 

encountered during different phases of the software life cycle using data from available 

sources [53]. Other researchers have focused on modeling and designing tools that make 

some security assessment possible [71].

1.5 ORGANIZATION OF THE DISSERTATION

In the next chapter, we discuss the static metric vulnerability density. In chapter 3, 

several vulnerability datasets are previewed, and then the vulnerability discovery models 

are presented. In chapter 4, the models’ goodness of fit is examined. In chapter 5, we 

present the comparison between several vulnerability discovery models. In chapter 6, the

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



prediction capabilities are measured for some of the models and some prediction 

techniques. In chapter 7, we look into categorized vulnerability datasets and we validate 

the model on them, and discuss some observations. Finally, chapter 8 concludes and 

discusses possible directions for future work.
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CHAPTER 2

VULNERABILITY DENSITY

A new metric, vulnerability density, describes one of the major aspects of security. 

Vulnerability density is a normalized measure, given by the number of vulnerabilities per 

unit of code size.

To measure the code size, we have two options. First, we can use the size of the 

installed system in bytes. The advantage of this measure is that information is readily 

available; however, this measure will vary from one installation to another. The second 

measure is the number of source lines of code. Here, we chose this measure for its 

simplicity and its correspondence to the defect density metric in the software engineering 

domain. A conceptually similar notion is defect density[46], a measurement that has been 

used for several years and that has become a common measurement in the field of 

software reliability and dependability. We now present a definition of vulnerability 

density (Vo):

Definition: Vulnerability density is the number of vulnerabilities in the unit size of a 

code.

The vulnerability density is given by
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where S  is the size of the software and V is the number of vulnerabilities in the system. 

Following the common practice in software engineering, we consider one thousand 

source lines as the unit code size. When two systems, one large and one small, have the 

same defect density, they can be regarded as having similar maturity with respect to 

dependability. In the same manner, vulnerability density allows us to compare the quality 

of programming in terms of how secure the code is. If the instruction execution rates and 

other system attributes are the same, a system with a higher defect or vulnerability 

density is likely to be compromised more often.

Estimating the exact vulnerability density would require us to know the number of all 

the vulnerabilities of the system. Consequently, we define another measure in terms of 

the known vulnerabilities.

The residual vulnerability density (Vrd) is given by:

Vrd = ^ d ~  Vkd (2)

It is actually the residual vulnerability density (depending on vulnerabilities not yet 

discovered) that contributes to the risk of potential exploitation. Other aspects of the risk 

of exploitation include the time gap between the discovery of a vulnerability and the 

release and application of a patch. Our focus is mainly on vulnerabilities and their 

discovery.

The goal is to probe the suitability of vulnerability density and vulnerabilities as 

metrics that can be used to assess and manage components of the security risk.
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2.1 APPLICATIONS OF VULNERABILITY DENSITY

Vulnerability density can be used to compare software systems within the same 

category (e.g., operating systems, web-servers, etc.). Vulnerability density can also be 

used in estimating the number of residual vulnerabilities in a newly released software 

system, given the size of the software. A newly released software system should have 

vulnerability density that is close to that of its comparable predecessor, given that it is 

designed assuming the same resources and technology. To acknowledge changes to 

improvements in the design of the new software or improvement in the attackers’ 

capabilities, a range for the vulnerability density is considered. This application of 

vulnerability density can be utilized by users to assess the risk when considering the 

purchase of a new software system. Because software systems do not come with a 

definite number showing the risks associated with the usage of the product or how 

vulnerable it is, vulnerability density gives an approximation of the number so users can 

use it as a guideline.

Developers can use vulnerability density in better planning for their testing process 

and in order to answer questions such as when to stop testing, when to release the 

software and what the risks associated with its early release are. Testing is very costly 

both in terms of resources and time needed for competition purposes. Consequently, 

when the vendor has some objective assessment of potential vulnerabilities in a software 

system, the vendor can decide that whether the system is secure enough to be released, 

and the developers can reduce the cost and be better able to compete with existing 

products.

Another application of vulnerability density is for maintenance planning. This 

integrates the use of vulnerability density with vulnerability discovery models, resulting
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in better estimations of the rate of vulnerability discovery, thereby enabling developers to 

obtain an objective estimation of the numbers of vulnerabilities that will be discovered 

within some future period of time. This is what can also be used by users and 

administrators to decide whether to use security patches or whether it is safe to delay the 

patching in order to avoid destabilizing the software system, a trade-off that has raised 

some discussion recently [24].

2.2 MEASURING VULNERABILITY DENSITY OF SOME SOFTWARE 

SYSTEMS

Table 2-1 presents values of the known defect density Dkd and known vulnerability 

density V k d  based on data from several sources [51] [56] [61] [70] [62] as of January 

2005. Windows 95, 98 and XP are three successive versions of the popular Windows 

client operating system. We also include Windows NT and Windows 2000, which are 

successive versions of the Windows server operating systems.

The known defect density values for Windows 95 and Windows 98 client operating 

systems are 0.3333 and 0.5556 per thousand lines of code, respectively. The high defect 

density for Windows XP is attributed to the fact the data belongs to the beta version of 

Windows XP. We can expect the actual released version of Windows XP has 

significantly fewer defects. The defect density values for Windows NT and 2000 are 

0.625 and 1.8, respectively.

The Known Vulnerabilities column gives a recent count of the vulnerabilities 

discovered since the release date. We note that the vulnerability densities of Win 95 and 

98 are quite close. The known vulnerability density for Win XP is 0.0022, much lower 

than the values for the two previous Windows versions. This is due to the fact that at this
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time Vkd represents only a fraction of the overall Vd. We can expect the number to go up 

significantly, perhaps to a value more comparable to that of the two previous versions.

We note that the vulnerability density for Windows NT 4.0 is about three times that 

of Win 95 or Win 98. There are two possible reasons for this. Since NT is a server, a 

larger fraction of its code involves external access, resulting in about three times the 

number of vulnerabilities. In addition, as a server operating system, it must have gone 

through more thorough testing, resulting in the discovery of more vulnerabilities. 

Windows 2000 also demonstrates nearly as many vulnerabilities as in Windows NT 4.0, 

although due to its larger size, the vulnerability density is lower than that of NT 4.0.

Table 2-1: Vulnerability density versus defect density measured for some software systems
Systems Msloc Known

Defects

Known 

Defect 

Density 

(per Ksloc)

Known

Vulnerabilities

Vkd

(per

Ksloc)

VKD/

D kd

Ratio

(%)

Release Date

Windows 95 15 5000 0.3333 50 .0033 1.00% Aug 1995

Windows 98 18 10000 0.5556 66 .0037 0.66% Jun 1998

Windows XP 40 106500 2.6625 88 .0022 0.08% Oct 2001

Windows NT 4.0 16 10000 0.625 179 .0112 1.79% Jul 1996

Win 2000 35 63000 1.80 170 .0049 0.27% Feb 2000

R H Linux 6.2 17 2096 0.12329 118 .00694 5.63% Mar 2000

R  H Linux 7.1 30 3779 0.12597 164 .00547 4.34% Apr 2001

Fedora Red Hat 76 - - 154 .00203 - Nov 2003

One significant ratio to examine is ̂ Kl)/ n  , which gives the fraction of defects that
/  KD

are vulnerabilities. Longstaff [42] hypothetically assumed that vulnerabilities may 

represent 5% of the total defects. Anderson [13] assumed a value of 1%. Our results show 

that the values of the ratio are 1.00% and 0.66% for Win95 and Win98, respectively. For
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Windows XP, the number of known defects is given for the beta version and is therefore 

higher than the actual number at release. In addition, since it was released last, a smaller 

fraction of XP vulnerabilities have been found thus far. This explains why the ratio of 

0.08% for XP is significantly lower. We believe that this should not be used in a 

comparison with other Windows versions. It is interesting to note that the ratio of 1% 

assumed by Anderson is within the range of the values shown in Table 2-1. Windows 

2000 was an update of NT, with a significant amount of added code, much of which did 

not deal with external access, thus accounting for its relatively low ratio.

In Table 2-1 [53][68], we observe that although the code size for Linux 7.1 is twice as 

large as that of Linux 6.2, the defect density and vulnerability density values are 

remarkably similar. We note that the Vkd values for the two versions of Red Hat Linux 

are significantly higher than for Windows 95 and 98, and are approximately in the same 

range as for Windows 2000. However, Vkd alone should not be used to compare the two 

competing operating system families.

It is not the discovered vulnerabilities but rather the vulnerabilities remaining 

undiscovered that form a significant component of risk. In addition, the exploitation 

patterns and the timing of the patch releases also impact the risk. The V k d  value for Red 

Hat Linux 7.1 can be expected to rise significantly in the near future, just like those of

Windows XP. It is interesting to note that the ^KD/C  ratio values for Linux are close to
/  ^  K D

the value of 5% postulated by Longstaff [42],

In systems that have been in use for a sufficient time, V k d  is probably close to V d- 

However, for newer systems we can expect that a significant number of vulnerabilities 

will be discovered in the near future. For a complete picture, we need to understand the
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process that governs the discovery of the remaining vulnerabilities, as discussed in the 

next sub-section.

2.3 CONCLUSION

Vulnerability density is discussed in this chapter as an important metric that can 

characterize vulnerabilities in a piece of software in a normalized manner, and therefore, 

it considers the size of the software. In many cases larger software systems may reflect 

more functions and features. Hence, it provides a fair base to compare risks associated 

with different software systems.

Vulnerability density can be used as a static metric to predict vulnerabilities in newly 

released system, as it can be compared to its comparable predecessor; however, other 

factors should be considered when the metric is applied such as changes in programming 

techniques, development process, and the technology used.

Table 2-1 shows that vulnerability density can be compared to defect density in many 

cases. Defect density is a well established metric used in many software engineering 

disciplines. The stability shows a strong relationship between vulnerabilities and the total 

defects population.

There are some limitations on using vulnerability density, such as that some software 

systems change consistently and, therefore, the new code added may have more 

vulnerabilities, as it has not been tested as rigorously as the older more mature code has.
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CHAPTER 3

VULNERABILITY DISCOVERY TRENDS AND VULNERABILITY DISCOVERY

MODELS

3.1 INTRODUCTION

In this chapter we plot several vulnerability datasets against time, preview the plots, 

comment, and identify common patterns and observations.

After the datasets are plotted and discussed, three vulnerability discovery models are 

presented based on observations and common patterns identified in the trends. The 

models are two time-based models (the logistic model and the linear model) and an 

effort-based model, which is an exponential model.

3.2 VULNERABILITY TRENDS

Considering vulnerability data plotted against calendar time, we consider data from 

complex software systems that are subject to connectivity challenges: Operating Systems, 

Web Servers, and Web Browsers.

The systems previewed include some open source systems, like Linux Red Hat 

versions 6.2, 7.1, and Fedora. Also, we considered Apache web server versions 1 and 2, 

and the open source browser Firefox. Also, the proprietary systems considered are 

Windows 95, 98, XP as client operating systems, some server operating systems 

Windows NT4 and Windows 2000. Also, Solaris operating systems versions 7, 8, and 9 is 

considered. Besides, propriety web server IIS 4 and IIS 5, also the Internet Explorer was 

considered as a proprietary web browser.
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As we can see these systems were selected because of the diversity in how they were 

developed, how they function and when they were released. Furthermore, the versions 

selected are versions that are stable and have gained some popularity.

3.2.1 D a t a  S o u r c e s  

Several security bulletins report, maintain, and document software vulnerabilities in

various software systems. These groups usually provide information about the

vulnerability and some of its characteristics. One of these sites is National Vulnerability

Database sponsored by NIST [61].

CERT and other databases keep track of reported vulnerabilities. The numbers of

users of the internet and the environment in which incidents take place have made

potential exploitation of vulnerabilities very attractive to criminals with suitable technical

expertise. The vulnerability discovery trends are based on data acquired from the

National Vulnerability Database [61] and data published by Mitre Corporation in [56].

The trends include several Windows systems. We should note that some systems were

designed as server operating systems (e.g., Windows NT4.0 and Windows 2000), while

others were intended for clients (Windows 95, 98 and XP).

3.2 .2  V u l n e r a b il it y  D is c o v e r y  T r e n d s  in  O p e r a t in g  Sy st e m s

Microsoft’s Windows family of operating systems has dominated the OS market for

the past decade. Records of each discovered vulnerability is available. Consequently,

these are good examples of complex systems to study.

Vulnerability data is collected from vulnerability databases and bulletins. The

cumulative vulnerabilities are distributed among various factors, such as calendar time or

equivalent effort. Observations of patterns are then analyzed with consideration of
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external factors. Several models have been suggested for capturing these patterns. The 

models will then be fitted to the data and examined using statistical goodness of fit tests.

Consecutive versions of software systems often share some vulnerabilities. So far, the 

shared vulnerabilities have not been addressed. Subsequently, the shared vulnerabilities 

need to be modeled.
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Figure 3-1. The cumulative number o f vulnerabilities of some Windows systems

The plot in Figure 3-1 shows a common pattern. The discovery of new vulnerabilities 

begins slowly and then rises with a steeper slope. Eventually they show saturation. This 

behavior serves as the basis for the logistic calendar time model presented later.

Other operating systems have shown similar behaviour which supports our analysis; 

see Red Hat Linux shown by Figure 3-2 below. Similar but less obvious behaviour can be 

observed in Red Hat Fedora (see Figure 3-3).

Cumulative vulnerabilities of Solaris operating systems versions 7, 8 and 9 shown by 

Figure 3-4 shows a slow start followed by higher discovery rate, followed by some
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slowdown; however, overall the saturation was less significant when compared with Red 

Hat Linux in Figure 3-2.
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Figure 3-2. The cumulative number of vulnerabilities o f Red Hat Linux versions 6.2 and 7.1
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Figure 3-3. The cumulative number of vulnerabilities o f Red Hat Fedora
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Figure 3-4. The cumulative number o f vulnerabilities of Solaris operating systems versions 7, 8 and 9

3.2.3 V u l n e r a b i l i t y  D i s c o v e r y  T r e n d s  in  W e b  S e r v e r s

Here we preview the data of the top two web servers in the market, Apache and IIS.

Figure 3-5 below shows the trends of two versions of Apache 1.x and 2.x. The Apache

1 .x trend has shown a slower beginning followed by a persistent vulnerability discovery

rate, then followed by a modest saturation at the end, while Apache 2 shows an

immediate steady rate that keeps its pace until August 2006. Apache 2 is still young and

will probably keep the current vulnerability discovery rate for some time to come.

Figure 3-6 shows the cumulative vulnerabilities of IIS 4 and IIS 5. Both systems have

shown a steady vulnerability discovery rate followed by saturation. Both systems have

shown a fast discovery rate from the end of 1998 to the end of 2002; then a strong

saturation appears from mid-2003 until August 2006 as the plot shows. This saturation

indicates that vulnerabilities are becoming hard to discover, and at the same time that

these two versions were replaced by IIS 6.0, which was released later.
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Figure 3-5. The cumulative number o f  vulnerabilities o f Apache versions 1 .x and 2.x.
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Figure 3-6. The cumulative number o f vulnerabilities of Microsoft IIS 4 and IIS 5 web servers

3 .2 .4  V u l n e r a b il it y  D is c o v e r y  T r e n d s  IN  WEB B r o w se r s

Figure 3-7 below shows the three successive versions of Internet Explorer web

browsers. First, the older IE 4.0, which started earlier, clearly shows that it has been

saturated and no new vulnerabilities have been discovered in the past several years. Then,

we can see that IE 5.0 shows a steady linear trend without saturation despite being on the
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market for several years, with a declining market share. However, the vulnerability data 

indicates that a significant number of the vulnerabilities discovered later in IE 5.0 are 

shared with IE 6.0, giving us an explanation of the reason behind the continuing linear 

trend. The third trend is IE 6.0, which appears as a steady linear trend showing no 

decline, which can be explained by a large pool of vulnerabilities still undiscovered, 

combined with a significant popularity and market share.
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Figure 3-7. The cumulative number o f vulnerabilities o f  Microsoft Internet Explorer versions 4, 5 and 6

3.2.5 O b s e r v a t i o n s

The figures previewed here show a general trend of starting with a slow pace,

followed by a faster accumulation rate for a significant period of time, usually ending

saturation. However, in some cases, a linear trend dominates the picture such as in

Windows XP (see Figure 3-1), and IE 6.0 (see Figure 3-7). These systems have one thing

in common; they are still being actively used without a decrease in intensity, while most

of the saturated software systems have seen some decline in popularity, making the
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market share a potential factor in the vulnerability discovery process. Hence, we need to 

look into potential models that can capture the patterns we have seen here.

3.3 VULNERABILITY DISCOVERY MODELS

To be able to understand the vulnerability discovery process, mathematical modeling 

can provide an essential solution that can enrich our understanding of how and when the 

vulnerability discovery rate changes using actual reported data. Therefore, here we 

present three vulnerability discovery models: the logistic model, the linear model, and the 

effort based model. In the following sections we will describe and illustrate each model.

3.3.1 T h e  L o g i s t i c  V u l n e r a b i l i t y  D i s c o v e r y  M o d e l

After viewing several vulnerability discovery datasets (see Figure 3-1 to Figure 3-7),

we noted certain common patterns with respect to other factors. Each software system

passes through several phases: the release of the system, increasing popularity, peak, and

stability, followed by decreasing popularity that ends with the system eventually

becoming obsolete.

During these three phases, the usage environment changes, and that impacts the 

vulnerability detection effort. In the beginning, there is a learning phase, in which the 

software testers (including malicious hackers and crackers) begin to understand the target 

system and gather the knowledge of the system needed to break into it successfully. After 

the learning phase, the new system starts to attract a significant number of users and to 

face greater challenges. This continues to increase until the operating system reaches the 

peak of its popularity. This is termed as the linear phase since the number of 

vulnerabilities tends to grow linearly. It will remain at that point for some time until the 

system begins to be replaced by a newer system. The technical support for that version

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and hence the frequency of update patches will begin to decline as users start to switch or 

upgrade to a more state-of-the-art system. At the same time, attackers will start to lose 

interest in the system because they are usually attracted to the most recent technology. 

This is termed the saturation phase.

Phase 1 Phase 2 Phase 3
(/>0)
_Q

<D_c

Time

Figure 3-8.The basic 3-phase S-shaped model

The learning phase may be very brief if the adaptation of the software system is fast, 

or if the new system is relatively similar to its predecessor. The linear phase is the most 

important phase, since this is when most of the vulnerabilities will be found. Saturation 

may not be seen if a significant number of vulnerabilities are still present and continue to 

be found.

Here, we propose a model describing the relationship between cumulative 

vulnerabilities and calendar time. This is somewhat similar to reliability growth models; 

however, we recognize that there is significant change in the effort spent in finding the 

vulnerabilities. This effort is small in the learning phase and grows as use of the software 

system becomes more common, but drops again in the saturation phase.
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In this model we assume that the rate of change in the cumulative number of 

vulnerabilities Q is governed by two factors, as given in Equation (3) below. One of the 

factors declines as the number of undetected remaining vulnerabilities declines. The other 

factor rises with time to take into account the rising share of the installed base. The 

saturation effect is modeled by the first factor.

Let us assume that the vulnerability discovery rate is given by the differential 

equation:

—  = A Q ( B  -  Q )  (3)
dt

where Q. is the cumulative number of vulnerabilities, t is the calendar time, initially t=0. 

A and B are empirical constants determined from the recorded data. By solving the 

differential equation, we obtain:

~ BCe - ABt + 1 (4)

where C is a constant introduced in solving Equation (3) . It is thus a three-parameter

model. In Equation (4), as t approaches infinity, O approaches B. Thus, the parameter B

represents the total accumulated vulnerabilities that will eventually be found. The model

given by Equation (4) will be referred to as the Alhazmi Malaiya Logistic model (AML),

which is a time-based model.

This model assumes that the vulnerabilities found in an operating system depend on 

its own usage environment. It should be noted that phase 3 may not be seen in a software 

system that has not been present for a sufficiently long time. In addition, in some cases

phase 1 may not be significant if the initial adaptation is quick due to better prior

publicity.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Alhazmi-Malaiya Logistic Model

8s
2
S32
:>

A=.008,
B=32,
C=10</

3o

Time

Figure 3-9. Alhazmi-Malaiya Logistic (AML) model

This model addresses the fact that the vulnerabilities found in an operating system 

depend on its own usage environment. It should be noted that the saturation phase may 

not be seen in a software system which has not been present for a sufficiently long time. 

Also, if the initial adaptation is quick due to better prior publicity, in some cases the early 

learning phase (when the slope rises gradually) may not be significant.

We can demonstrate that the maximum slope is given by AB2/4, which occurs at Q= 

B/2. It can be shown that the two transition points are 2.63/AB time period apart. 

Therefore, the duration of the linear phase decreases as AB grows and increases as AB 

drops. B may be obtained by noting the size of the software and using the typical 

vulnerability density values of similar software. If we regard B, the total number of 

vulnerability to be constant, we conclude that the parameter A controls the duration of the 

linear phase. An estimate of the duration between the two transition points can be 

obtained from the data from prior software systems. We will use this mathematical result 

later to constrain the range of the regression parameter values in order to have a more
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accurate long-term projection.

Parameter C impacts the location of the first transition point. As we can observe from 

Equation (4), the influence of parameter C weakens as t increases. An initial estimate of 

the curve bends at two transition points. To identify the transition points, we take the 

derivatives of Equation (4) with respect to time t.

da  _ AB3C e ABt
dt ~ (BCe~Am + 1)2 ^

From Equation (5), the highest vulnerability discovery rate occurs at the midpoint of 

Figure 3-10 at time:

1In
T_ = BC (6)

AB

The second derivative is:

d2a  2A2C2Bse (AB,f A2B4Ce-Aa
(7)dt2 (BCe~ABt +1)3 (BCe AH' + 1)2

The second derivative exhibits a maximum and a minimum. Thus two transition 

points in Figure 2 are obtained by equating the third derivative to zero. The transition 

points occur at times t equal to:

T. =  -

In

1(Ni

- I n ' 2  +  V 3 ’
B C a n d  f  - B C

AB AB
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Alhazmi-Malaiya Logistic Model
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Figure 3-10. AML model with the transition points and mid point shown

3.3 .2  T h e  L in e a r  V u l n e r a b il it y  D is c o v e r y  M o d e l

Occasionally, the learning phase may be very brief, especially if the adaptation of the

software system is fast. The linear phase is the most important phase, since this is when

most of the vulnerabilities will be found. Saturation may not be seen if a significant

number of vulnerabilities are still present and continue to be found. Consequently, a

dominating linear behavior was observed throughout a considerable percentage of the

datasets examined; therefore, the linear model can be considered in certain cases.

This model assumes a constant vulnerability discovery rate. The linear model can be

seen as an approximation to the logistic S-shaped model. The linear vulnerability model

is as follows:

Q ( t )  = ( S x t )  + k ,  (8)

where S  is the slope (i.e. vulnerability discovery rate) and k  is a constant to adjust the 

model.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



It is expected that the linear model will perform better in the presence of certain 

factors. For example, when the saturation phase has not yet been reached, especially in 

younger software systems where attackers have not lost their interest in finding new 

vulnerabilities, or when the vulnerability dataset contains a significant number of shared 

vulnerabilities with a later system. In this case, the data appeared to be a superimposition 

of two or more consecutive S-shaped models. In addition, some software systems are also 

expected to have a shorter learning phase due to some easily discovered vulnerabilities 

occurring early after the release or when there is close relationship with existing software, 

so that the learning phase is significantly shortened.

Alternatively, the S-shaped would appear to fit most of the datasets because it 

addresses the learning, linear and saturation phases. Therefore, more mature systems are 

expected to work better with the S-shaped model.

3.3.3 T h e  E f f o r t  B a s e d  V u l n e r a b i l i t y  D i s c o v e r y  M o d e l

Vulnerabilities are usually reported using calendar time as the main factor. The

reason behind this is that it is easy to record vulnerabilities and link them to the time of 

discovery. However, this does not consider the changes occurring in the environment 

during the lifetime of the system. A major environmental factor is the number of 

installations, which depends on the share of the installed base of the specific system. It is 

much more rewarding to exploit vulnerabilities that exist in a large number of computers.

It can be expected that a larger share of the effort going into the discovery of 

vulnerabilities, both in-house and external, would go toward a system with a larger 

installed base.

Using effort as a factor was first discussed in [22] [23]. However, these researchers
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did not suggest a unit or a way to measure effort. Here, we examine the use of a measure 

termed Equivalent Effort (E), which is calculated using

where Ui is the total number of users of all systems at the period of time /, and Pi is the 

percentage of users using the system for which we are measuring its E  (see Figure 

3-11 [4][27][34]). Here, we use a month as a unit of time and thus E would be in user- 

months. Using available data [61], E  can be calculated for some versions of Windows 

operating systems.

Figure 3-11. The percentages o f installed base o f some Windows systems

Now let us use another model that uses effort as a factor to model vulnerability 

discovery. Equivalent effort reflects the effort that would have gone into finding 

vulnerabilities more accurately than time alone. This is somewhat analogous to using 

CPU time for software reliability growth models (SRGMs) [44], If we assume that the 

vulnerability detection rate with respect to effort is proportional to the fraction of 

remaining vulnerability, then we get an exponential model, just like the exponential

(9)

The percentage of the market share of O.S.
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SRGM. The model can be given as follows:

Q ( E )  = B(  \ - e ~ x"E) (10)

where Lvu is a parameter analogous to failure intensity in SRGMs and B is another 

parameter. B represents the number of vulnerabilities that will eventually be found. We 

will refer to the model given by Equation (10) as the Effort-based model. Figure 3-12 

below shows a hypothetical plot of the effort based model.

a)c
3
5
to=J
E
O

Equivalent Effort(in Millions Users Months)

Figure 3-12. Hypothetical plot of the Effort-Based Model

3.4 CONCLUSION

In this chapter we have previewed several vulnerability datasets plotted against time, 

and we have noticed a common pattern that can be referred to as a three-phase pattern 

with learning, linear, and saturation phases. The logistic model was proposed as a strong 

candidate because it considers the three phases; moreover, a linear model was proposed 

as a simplified model to fit some of the datasets that have shown linear behavior. Also, an 

equivalent effort model was presented as a model that takes into consideration the usage
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environment. Next, the models need to be fitted to the datasets and the goodness of fit 

must be evaluated to validate the models.
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CHAPTER 4

VALIDATING VULNERABILITY DISCOVERY MODELS

4.1 INTRODUCTION

Three datasets were previewed in CHAPTER 3, and three vulnerability discovery 

models were presented. Here, we use the least square fit method to fit the datasets to the 

models and chi-square (% ) is used to evaluate the goodness of fit and determine whether 

the fit is significant or not.

The following sections will preview the methodology used, then will show the fitting 

results for the models on different groups of software systems and discuss the outcome of 

the goodness of fit tests.

4.2 FITTING THE MODELS AND EVALUATING THE GOODNESS OF FIT

To fit the models, a standard statistical fitting technique is used, the least square fit, 

where the datasets are fitted to the model using regression analysis by minimizing the 

sum of squared errors:

SSE = ' £ ( o , - e l)2 , (11)
i- 1

Therefore, the regression analysis will suggest the optimal values of the model’s 

parameters. After the fit is performed, the following step is performed using chi-square 

(X ) goodness of fit test.

The goodness of fit test for the three presented models, the logistic model, the linear 

model, and the effort based model. The standard statistical goodness of fit is chi-square

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(%2). The following section briefly reviews y2, and then the three later sections show the 

goodness of fit results.

We will apply two goodness-of-flt tests. The first is the Chi-square goodness of fit 

test. The Chi-square (y2) statistic is calculated as follows:

2 " ( o . - e .)2
X = T   — . (12>,.1 e,

where o, is the observed value and e, is the model’s expected value.

For the fit to be acceptable, the Chi-square statistic should be less than the critical 

value for a given alpha level and degrees of freedom. The P-value is the probability that a 

value of the y2 statistic at least as high as the value calculated by the above formula could 

have occurred by chance. We use an alpha level of 5%; i.e., if the P-value of the Chi- 

square test is below 0.05, then the fit will be rejected. A P-value closer to 1 indicates a 

better fit. P-value is calculated by using the number of degrees of freedom of the dataset 

and the Chi-square distribution.

4.3 MODELING VULNERABILITIES IN OPERATING SYSTEMS

Operating Systems face escalating security challenges because connectivity is 

growing and the overall number of incidents is increasing. Moreover, operating systems 

are responsible for managing and protecting the critical resources and assets of any 

system. Hence, operating systems are considered a potential target for attackers, and 

studying data from operating systems can give us a clear picture of how the 

vulnerabilities are discovered and how to better analyze the discovery process.

The Microsoft’s Windows family of operating systems has dominated the OS market 

for the past decade. Records of each discovered vulnerability is available. Therefore, they
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are good examples of complex systems to study. Linux, on the other hand, represents 

open source operating systems, which makes it interesting to compare the vulnerability 

discovery process. Furthermore, we choose to include the Solaris operating system to 

look at a broader picture of a diverse group of datasets examined.

In this section we examine the data for some versions of Windows, Linux, and 

Solaris. The accumulated numbers of vulnerabilities are fitted to the Logistic model 

presented earlier. We use the Chi-square goodness of fit test for each dataset to test 

whether the fit is significant or not.

4.3.1 M o d e l i n g  O p e r a t i n g  S y s t e m s  V u l n e r a b i l i t i e s  U s in g  T h e  L o g i s t i c  M o d e l  

(AML)

In this section we apply the logistic model (AML), which is the time-based model 

proposed in Chapter 4, to several versions of Windows operating systems. The AML 

model is given by Equation (4), and the plot of Windows 95 (see Figure 4-1) shows a 

clear compliance linking the model and the actual data.

Windows 95

♦ Actual Data 
—  AML data

o

Figure 4-1. Fitting Windows 95 cumulative Vulnerabilities to the AML model
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Figure 4-2. Fitting Windows 98 cumulative Vulnerabilities to the AML model

The Windows 98 data shown in Figure 4-2 above fitted the AML model too. 

However, it is not as clear because there is a jump in the number of vulnerabilities 

reported due to vulnerabilities discovered in Windows XP and shared with Windows 98. 

This is because, some of the vulnerabilities reported for Windows 98 were actually found 

in Windows XP. So, the actual Windows 98 data is a superimposition of more than one of 

the AML models.

For Windows XP plots in Figure 4-3, there is a significant fit too; however, here we 

do not observe the complete S-shaped curve. We can only see the first half of the curve 

because Windows XP’s data are still in the linear phase and not matured yet.
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Figure 4-3. Fitting Windows XP cumulative Vulnerabilities to the AML model
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Figure 4-4. Fitting Windows 2000 cumulative Vulnerabilities to the AML model

For Windows 2000 plots in Figure 4-4 there is a significant fit; also here we do not 

observe the complete S-shaped curve; we can only see the first half of the curve, 

extended to show the beginning of the saturation phase because Windows 2000’s data are 

just leaving the linear phase. We have also observed that a number of vulnerabilities 

discovered later are actually shared with Windows XP.
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200

175

150

125

100

♦ Actual Data 

—  AML model25

Figure 4-5. Fitting Windows NT 4.0 cumulative Vulnerabilities to the AML model

Figure 4-5 above shows the Windows NT 4.0. Here we can note that there are 2 S- 

shaped patterns; the first one extends until the beginning of 2003, and the other one starts 

at that time. We note that the model can not fit if applied directly because of the 

superimposition of two consecutive models. So, in cases like this, the model applies to 

the first part, which is the actual number discovered, while the second S-shape is a result 

of shared vulnerabilities found in Windows 2000.

Figure 4-6 shows that Red Hat Linux 6.2 conforms to the model. The fit looks very 

acceptable especially during the saturation and learning phases. Moreover, Figure 4-7 

shows the vulnerabilities in Red Hat Linux 7.1. Here, too the fit is quite perfect. Despite 

the short learning phase.
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Figure 4-6. Fitting Red Flat Linux 6.2 cumulative Vulnerabilities to the AML model
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Figure 4-7. Fitting Red Hat Linux 7.1 cumulative Vulnerabilities to the AML model

Figure 4-8 shows the Red Hat Fedora. The Red Hat Fedora has 5 releases, Core 1 

through Core 5, and soon there will be Core 6, and this data includes all versions. 

Therefore, the model could also show a super imposition of more than one S-shaped
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curve and that is what might have caused the re-acceleration after some saturation in the 

year 2006 as we can notice in the actual accumulation of vulnerabilities.
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Figure 4-8. Fitting Red Hat Fedora cumulative Vulnerabilities to the AML model
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Figure 4-9. Fitting Solaris 7.0 cumulative Vulnerabilities to the AML model
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Figure 4-9 shows that Solaris 7.0 fits the model with a P-value of only 0.1759. Here 

too, there is a significant number of vulnerabilities shared with later Solaris versions 8 

and 9; however, the model has a semi-linear trend.
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Figure 4-10. Fitting Solaris 8.0 cumulative Vulnerabilities to the AML model
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Figure 4-11. Fitting Solaris 9.0 cumulative Vulnerabilities to the AML model

Other versions of Solaris are version 8.0 shown in Figure 4-10 and version 9.0 shown 

in Figure 4-11. Both versions fit the s-shaped model with a complete s-shape in the case
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of Solaris 8.0 and with an incomplete S-shape in the case of Solaris 9.0. By looking at the 

goodness of fit table (see Table 4-1) we see that all datasets fit the AML model except for 

Windows NT 4.0, and that is because of the nature of Windows NT 4.0, which seems to 

be a super imposition of more than one AML model.

Table 4-1 shows the parameter values with parameter A typically less than 0.002 

except in rare cases, while B is always close to the total number of vulnerabilities; on the 

other side parameter C ranges from 0.038595 to 1.32092.

Table 4-1: Goodness of fit test results for the logistic model (AML), showing parameter values

System A B C DF x2
V 2A, c n t i a l

(5%)
P-value Fit Result

Win 95 0.001652 49.5512 1.32092 132 45.748 159.8135 1 Significant

Win 98 0.000522 92.6789 0.10233 92 107.001 115.3898 0.135785 Significant

Win XP 0.000232 280.513 0.09994 59 54.6261 77.93052 0.637299 Significant

Win NT 4.0 0.000317 184.78 0.44439 140 267.173 168.613 0 Insignificant

Win 2000 0.0001096 391.984 0.0386 79 95.1500 100.7486 0.104079 Significant

Red Hat 
Linux 6.2 0.000855 121.235 0.13973 75 36.19688 96.21667 0.999956 Significant

Red Hat 
Linux 7.1

0.169437 166.735 0.29531 65 39.6227 84.82064 0.99456 Significant

Red Hat 
Fedora

0.002014 139.045 0.53497 31 31.81382 44.98534 0.425800 Significant

Solaris 7.0 0.000526 126.32 0.11076 95 107.701 118.7516 0.1759 Significant

Solaris 8.0 0.000961 99.815 0.26380 80 69.7045 101.8795 0.7877 Significant

Solaris 9.0 0.000528 114.25045 0.11979 52 34.964 69.83216 0.9665 Significant

4.3.2 VALIDATING THE LINEAR MODEL (LM) ON OPERATING SYSTEMS

Windows 95 dataset is strongly s-shaped; therefore, the linear model could not fit the

dataset (see Figure 4-12). However, in Windows 98, the linear model fits the data

perfectly (see Figure 4-13). Table 4-2 below clearly shows the fitting result with a P-
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value of 0.000016 for Windows 95 and a significant fit for Windows 98 with P-value of 

0.999962.
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Figure 4-12. Fitting Windows 95 cumulative Vulnerabilities to the LM model

In Figure 4-14, Windows XP fails to fit the linear model (LM) with a slightly lower 

than the critical alpha value of 0.05. In Windows XP, the P-value is only 0.026955 (see 

Table 4-2).
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Figure 4-13. Fitting Windows 98 cumulative Vulnerabilities to the LM model
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Figure 4-14. Fitting Windows XP cumulative Vulnerabilities to the LM model

225 Windows NT 4.0

200

175(/)0
150-OTO

0_crj>
0>

125

100
TO

o 50
♦ Actual Data 

 LM model

CMO O

Figure 4-15. Fitting Windows NT 4.0 cumulative Vulnerabilities to the LM model

In Figure 4-15, we can see that Windows NT 4.0 does not fit the linear model with a 

P-value of 0, shown in Table 4-2. However, the Windows 2000 fitting shown in Figure 

4-16 shows an acceptable fit, with a P-value of 0.815443, indicating a significant fit (see 

Table 4-2).
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Figure 4-16. Fitting Windows 2000 cumulative Vulnerabilities to the LM model

Red Hat Linux 6.2 strongly opposes the linear model as illustrated in Figure 4-17, 

while the Red Hat Linux 7.1 shows a linear behavior that enabled the dataset to fit the

linear model (see Figure 4-18), where P-values are 0.000002 and 1 respectively (see 

Table 4-2).
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Figure 4-17. Fitting Windows Red Hat Linux 6.2 to the linear model (LM)
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Figure 4-18. Fitting Windows Red Hat Linux 7.1 to the linear model (LM)
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Figure 4-19. Fitting W indows Red Hat Fedora to the linear model (LM)

Red Hat Fedora was unable to fit the linear model as shown in Figure 4-19. It has a 

low P-value of 0.000022(see Table 4-2).
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Figure 4-20. Fitting Solaris 7.0 cumulative Vulnerabilities to the LM model

Solaris 7.0, 8.0, and 9.0 have fitted the linear model (see Figure 4-20, Figure 4-21 and 

Figure 4-22). The plots indicate that there is a strong linear property of the trends with P- 

values of 0.79982, 0.95088, and 0.99882 respectively.
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Figure 4-21. Fitting Solaris 8.0 cumulative Vulnerabilities to the LM model
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Figure 4-22. Fitting Solaris 9.0 cumulative Vulnerabilities to the LM model

Table 4-2: Goodness o f  fit test results for linear fit (LM), showing parameter values

System Slope
(s)

k DF x2
V 2X, c r i t i a l

(5%)
P-value Fit Result

Win 95 0.49043 -2.2199 132 221.905 159.8135 0.000016 Insignificant

Win 98 0.94566 1.80963 92 47.7546 115.3898 0.999962 Significant
Win XP 2.94126 -18.3565 59 81.6803 77.93052 0.026955 Insignificant
Win NT 4.0 1.67923 -33.6284 140 416.205 168.613 0 Insignificant
Win 2000 3.13807 -7.11782 79 67.6315 100.7486 0.815443 Significant
Red Hat Linux 6.2 1.78128 9.591 75 145.462 96.21667 0.000002 Insignificant
Red Hat Linux 7.1 4.4672 -19.6343 65 16.4555 84.82065 1 Significant
Red Hat Fedora 5.8121 -21.477 27 67.979 40.11327 0.000022 Insignificant
Solaris 7.0 1.4777 1.72296 95 83.256 118.7516 0.79982 Significant
Solaris 8.0 1.5172 -4.330 80 60.301 101.8795 0.95088 Significant
Solaris 9.0 1.3069 -0.710 52 46.965 69.83216 0.99882 Significant

4.3.3 D iscussion

We statistically examined the linear model on the same sets of operating systems and 

found that the fit was significant in six datasets and insignificant in the other five 

datasets. Table 4-2 details the Chi-square test results.
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The slope results show that the value of the parameter Slope (s) varies, which 

indicates a difference in vulnerabilities discovery rates in some systems. For example, 

newer Windows systems like Windows XP and Windows 2000 show a slope of 2.94126 

and 3.13807 vulnerabilities per month, while the older systems Windows 95, Windows 

98, and Windows NT 4.0 have shown a slower rate of 0.49043, 0.94566, and 1.67923 

vulnerabilities per month respectively.

We did not constrain the slope except when k was constrained to be positive, which 

was a reasonable assumption, since the number of vulnerabilities cannot be negative at 

any time. The question was when to use linear and when to use S-shaped. Below, Figures

7.1 and 7.2 show a plot of two datasets, Red Hat Linux 7.1 and Windows XP.

Red hat Linux 6.2 Fedora Systems has a slope of 1.78128, while Red Hat Linux 7.1 

and Red Hat Fedora have shown steeper slopes of 4.4672 and 5.8121 respectively. 

Finally, the slopes of Solaris were very close to each other, ranging from 1.3069 to 

1.5172 (see Table 4-2).

The linear model is simple and can provide valuable information about the 

vulnerability discovery rate directly. However, it only fit a limited number of datasets. 

Here too, we believe that some factors change the vulnerability discovery rates which 

make the datasets basically a number of consecutive linear models, these factors include 

shared vulnerabilities, changes in market share or releasing newer version of the software 

system.

4.4 MODELING VULNERABILITIES IN WEB SERVERS

HTTP Web servers carry the vital task of communicating with clients, a task which 

puts them under increasing security challenges. Therefore, it is very rewarding to
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discover vulnerabilities in this category of software systems; the reward factor is closely 

associated with the popularity and spread of a web server. Therefore, the market share is 

one of the most significant factors impacting the effort expended in exploring potential 

vulnerabilities. Higher market share offers a greater incentive to explore and exploit 

vulnerabilities because attackers will obviously find it more profitable or satisfying to 

spend their time focusing on a software system having a greater market share.

Table 4-3. Market share, Number of vulnerabilities and release dates of some web servers

Apache IIS SJSWS
(SunOne) Zeus

First Release 1995 1995 2 0 0 2 1995
Market Share 69.7% 20.92% 2.53% 0.78%

Version 1 .x 2 .x 4.0 5.0 Up to 6.1 Up to 4.3
Vulnerabilities 60 47 86 74 3 5

Table 4-3 above present’s data obtained from NVD [61] and Netcraft [59], showing 

the current web server market share and total number of vulnerabilities found to date. As 

we can see from the table, for servers with a lower percentage of the market, such as Sun 

Java System Web Server (SJSWS) and Zeus, the total number of vulnerabilities found is 

low. This does not necessarily mean that these systems are vulnerability-free, but merely 

that only a limited effort has gone into detecting their vulnerabilities. A significant 

number of vulnerabilities have been found in both Apache and IIS, illustrating the impact 

of the market share on the motivation for exploring and finding undiscovered 

vulnerabilities.

The Apache HTTP server was first released in mid 1995. Since then it has gained 

wide popularity and is used by over 50 million web server systems. Apache dominates 

the market, probably because it is an open source system that is free. Apache may also 

have benefited from not having been exposed to serious security issues such as the Code
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Red [52], which exploited a vulnerability in IIS (described in Microsoft Security Bulletin 

MS01-033, June 18, 2001). It appeared on July 13, 2001 and soon spread world-wide in 

unpatched systems and is an example of a very critical vulnerability. Another example is 

Nimda worms that were faced by IIS in 2001.

To assure an acceptable degree of security for a web server, the developers need to 

determine how much testing for security vulnerabilities is needed. Moreover, developers 

need to be able to project the post-release vulnerability discovery rate to plan the 

maintenance and patch development effort needed. The available data can be fitted to the 

vulnerability discovery models (VDMs) to project the trend that the vulnerability 

discovery process is likely to follow.

There has been considerable discussion of the security of web servers in recent years. 

However, investigations have focused on qualitative issues related to detection and 

prevention of individual vulnerabilities. Quantitative data is sometimes cited, but without 

any significant critical analysis. Methods need to be developed to allow security related 

risks to be evaluated quantitatively in a systematic manner. A study by Ford et al. [30] 

has compared several servers, the number of vulnerabilities, and the associated severity 

levels. This study identifies a need to develop tools for estimating the risks posed by 

vulnerabilities.

The two major software components of the Internet are an HTTP (Hyper Text 

Transfer Protocol) server, also termed a web server, and the browser, which serves as the 

client. Both of these were first introduced in 1991 by Tim Bemers-Lee of CERN and they 

have now become indispensable parts of both organizational and personal interactions. 

The early web servers provided information using static HTML pages. The web server
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now provides dynamic and interactive services between the server and client using 

database queries, executable script, etc. The web server is able to support functions such 

as serving streaming media and mail. An HTTP server has thus emerged as a focal point 

for the Internet.

In this research, we examine the vulnerabilities in the two most widely-used HTTP 

servers, the Apache server, and the Microsoft IIS (Internet Information Service), both 

introduced in 1995. While Apache has a much larger overall market share, roughly 70%, 

IIS may have a higher share of the corporate websites. The market share for other servers 

is small and thus they are not examined here. IIS is the only HTTP server that is not 

open-source. Both Apache and IIS are generally comparable in features; however, IIS 

runs only under the Windows operating systems, whereas Apache supports all the major 

operating systems.

4.4.1 MODELING WEB SERVERS VULNERABILITIES USING THE LOGISTIC 

MODEL (AML)

In this section, we fit the vulnerability data for Apache to the Alhazmi-Malaiya 

Logistic model (AML) [4] [5][10] Vulnerability data obtained from NVD are used to test 

the models [67].

Figure 4-23 shows Apache 1.x (which includes subversions 1.0 through 1.3) 

vulnerabilities fitted to the AML, clearly showing that the AML follows the data very 

closely. Moreover, in Figure 4-24 the Apache 2.x data set is shown to fit both models 

equally well.
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Figure 4-23. Fitting Apache 1 cumulative Vulnerabilities to the AML model

Apache 2 (including sub versions through 2.1) appears to be showing the beginnings 

of saturation with after a quick learning phase and a mainly linear trend.

Despite having been on the market for several years, Apache 2 and even Apache 1 

have not yet reached a clear saturation phase, possibly because of their larger market 

share. Besides, the number of systems using the Apache web server is still increasing 

indicating that vulnerability discovery for Apache can be expected to continue at a 

significant pace in the near future.

On the other hand, the IIS 4.0 and 5.0 web servers appear to have reached a much 

clearer saturation phase. During the past several months, the vulnerability discovery rate 

for IIS has dropped to a very low point (see Figure 4-25 and Figure 4-26). A possible 

explanation for this can be that the number of IIS web servers installed appears to be 

stationary, unlike the Apache server which is still gaining in terms of new installations. 

Another possibility is that the number of remaining undiscovered vulnerabilities may 

actually have dropped significantly.
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Figure 4-24. Fitting Apache 2 cumulative Vulnerabilities to the AML model

Table 4-4 shows the data fitted to the model using the least square fit. For Chi- 

squared goodness of fit test, we chose an alpha level of 5%; % test results in the table 

show that all data sets have fitted the AML model with P-value > 0.998. The values of 

the parameter A range from 0.0008 to 0.002, and for C they range from 0.18 to 0.70. The 

parameter B corresponds approximately to the number of vulnerabilities.
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Figure 4-25 Fitting IIS 4.0 cumulative vulnerabilities to the logistic model (AML)
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The AML model fitted with P-value > 0.991. The values of the parameter A range 

from 0.000848 to 0.001860, and for C they range from 0.18498 to 0.72709. The 

parameter B  corresponds approximately to the number of vulnerabilities.

The goodness of fit for the LM model for the later versions Apache 2 and IIS 5 is 

significant, implying that the vulnerability discovery has not yet reached the saturation 

phase; whereas the data for the older versions Apache 1 and IIS 4 did not fit the LM 

model. By observing the slope parameter we can see that the rate of vulnerability 

discovery given by the LM model is higher for Apache 2 than Apache 1 and the IIS 5 rate 

is higher than IIS 4.

IIS 5.0

60_QCO<1)C
3>
CD>
JS3
E
3o

♦ Actual Data 

— AML model

OOO) CO
CD

o>
CD

CD
CD

OO OO CMO COO COO o 'St
ep

mo
.Q

COo COoCMoo o

LL LL LL LL LL LL

Figure 4-26. Fitting IIS 5.0 cumulative vulnerabilities to the logistic model (AML)

Table 4-4. Goodness o f  Fit Results for the examined web server’s datasets, fitted to the logistic model 
(AML) ____________ _________ ___________ __________________ __________ _____________

Software
System A B C DF x2 X critical P-value Significance

Apache 1.0 0.000848 63.556 0.72709 126 12.896 153.198 1 Significant
Apache 2.0 0.001860 49.886 0.18498 54 15.469 72.153 1 Significant

IIS 4.0 0.001094 84.573 0.18890 103 59.578 127.689 0.998 Significant
IIS 5.0 0.001525 72.002 0.21138 81 22.24 103.01 1 Significant
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4.4.2 MODELING WEB SERVER VULNERABILITIES USING THE LINEAR 

MODEL (LM)

In this section, we fit the vulnerability data for Apache to the linear model (LM) 

where vulnerability data obtained from NVD are used to test the models.

Figure 4-27 shows Apache 1.x (which includes subversions 1.0 through 1.3) 

vulnerabilities fitted to the linear model (LM); also, Apache 2.x (see Figure 4-28) has 

fitted the linear model even better than Apache 1.x. Apache 2 (including subversions 

through 2 .1) appears to be in the linear phase, since the number of vulnerabilities still 

appears to be growing linearly.
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Figure 4-27. Fitting Apache 1 cumulative vulnerabilities to the linear model

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Apache 2

♦ ♦

♦♦

♦ t

♦ Actual Data 

— LM model

oo o o o

Figure 4-28. Fitting Apache 2 cumulative vulnerabilities to the linear model (LM)
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Figure 4-29. Fitting IIS 4.0 cumulative vulnerabilities to the linear model (LM)
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Figure 4-30. Fitting IIS 5.0 cumulative vulnerabilities to the linear model (LM)

Figure 4-29 and Figure 4-30 show fitting plots of IIS 4.0 and 5.0 respectively. Both, 

IIS versions appear to have been saturated for a while and therefore, they were unable to 

lit the linear model. Hence, we can link this to the fact that the number of IIS web servers 

installed appears to be stationary, unlike the Apache server which is still gaining in terms 

of new installations. Another possibility is that the number of remaining undiscovered 

vulnerabilities may actually have dropped significantly.

Table 4-5 below shows the goodness of fit results indicating that both versions of 

Apache have a significant fit with P-values of 0.999 and 1; nevertheless, both IIS 

versions failed to fit the model with P-value of 0 and 0.00002, which shows that the data 

is not linear.

Table 4-5. Goodness o f  Fit Results for the examined web server’s datasets, fitted to the linear model (LM)
Software
System Slope K DF I 2

2
Z critical P-value Significance

Apache 1.0 0 .565807 -7 .6272 126 63 .7 9 3 0 128.8039 0 .999 Significant
Apache 2.0 0.91275 2 .4920 54 7 .58338 69 .83216 1 Significant

IIS 4.0 0 .900 4 4 1 4 12.6334 103 3 0 5 .2259 127.6893 0 Insignificant
IIS 5.0 0.9649051 10.1796 81 156.2788 103.0095 .00002 Insignificant
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4.4 .3  D is c u s s io n

The results presented show that The AML model has fitted all four data sets, while 

the linear model has only fitted the two of Apache’s datasets and none of the IIS’s 

datasets. This clearly shows that the logistic model applies on all datasets because of its 

ability to model the three phases: learning, linear and saturation, even though if  it is more 

visible in IIS 4.0 and 5.0 but less obvious in Apache 1.0 and 2.0. Consequently, the 

results imply that the logistic model previously examined on operating systems applies to 

web servers too. In some cases we can note that linear model is also able to fit.

4.5 MODELING VULNERABILITIES IN WEB BROWSERS

The introduction of browsers has created a powerful new medium for conducting 

business, commercial and personal activities. Potential discovery and exploitation of 

vulnerabilities has become a subject of great concern. Secure Science Corp. [37] reports 

that a single phishing group collected access information for 13,677 accounts by 

installing malicious code which exploited an unpatched vulnerability. These exploitation 

techniques and tools are no longer in the exclusive possession of experts; many of them 

are now widely available and can be relatively easy to use.

The vulnerabilities in the web browsers use a medium of spreading viruses and 

worms. For example, Nimda, which use the buffer overflow vulnerability, affects all 

Windows versions of Microsoft Internet Explorer. The vulnerability discovery rate trends 

provide a quantitative perspective of the problem and can be used to plan the effort 

needed to implement effective risk containment strategies. For example, the quantitative 

projections can be used to allocate resources needed for fast patch development.
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In this chapter we use the data for the two major web browsers, IE and Firefox, and 

determine whether the vulnerability discovery trends are described by the logistic model 

(AML) or the linear model (LM).

IE has been the most popular web browser, utilized by approximately 85% of Internet 

users. This has made it a very attractive target for exploration and exploitation by 

malicious users. The problem has been exacerbated by the integration of IE into 

Windows, unlike Firefox or Mozilla. This integration provides more functions, such as 

immediately showing web pages or pictures as the desktop wallpaper. However, security 

analysts and experts consider the integration of IE to be a security disadvantage since IE 

connects with a variety of Windows core components. Another weakness of IE is the use 

of non-standard features which do not follow the W3C standard. For example, ActiveX, 

which supports interfaces to provide a variety of functions and is offered as an add-in 

only for IE, can be used for executing arbitrary code. Even though IE is known for its 

many security flaws, numerous Internet users still prefer to use IE because many web 

sites are optimized for IE and, moreover, Windows software is marketed with IE pre

installed.

Although Firefox was released in September 2002, it did not gain significant 

recognition until 2004. Its popularity has increased because of its perceived better 

security, intuitive design and multi-tap features. Currently Firefox is more common in 

schools or public computers and is expanding its market share. However, its popularity 

has led to a rising number of discovered vulnerabilities.
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4.5.1 M o d e l in g  W e b  B r o w s e r s  V u l n e r a b il it ie s  U s in g  t h e  L o g is t ic  M o d e l  

(AML)

Figure 4-31 shows the cumulative vulnerabilities by month and the fitted AML model 

for IE 4.0. The AML model fits the data for IE 4.0 very well. At the beginning, the slope 

of the curve for IE rose linearly until mid-2002, after which the slope has saturated.

From the prospective of the three phases of the vulnerability discovery process, IE 4.0 

appears to have entered the saturation phase. IE 5.0 shown in Figure 4-32 also shows 

some saturation, while the saturation is milder than IE 4.0; because, more of the later 

vulnerabilities found in IE 5.0 are actually shared with IE 6.0.
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Figure 4-31. Fitting IE 4.0 cumulative Vulnerabilities to the AML model

IE 6.0 (see Figure 4-33) does not appear to have yet entered the saturation phase. 

Rather, IE 6.0 currently still appears to be in the linear phase, since the number of 

vulnerabilities is growing linearly in spite of the browsers having been on the market for 

several years. This may be because of its larger market share and possibly because it may 

have a higher number of potential vulnerabilities. Besides, IE 6.0 is being continually
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updated and therefore there are always new modules being introduced. Moreover, IE 6.0 

is still the current web browser without a successor, so this suggests that vulnerability 

discovery for IE 6.0 may continue at a significant pace in the near future. It is expected 

that the next release of IE (i.e. IE 7.0) will have much better security.
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Figure 4-32. Fitting IE 5.0 cumulative Vulnerabilities to the AML model

Firefox is the second most popular web browser. While there is still a considerable 

market share gap between IE and Firefox, this gap is shrinking over time. Although 

Firefox is just four years old, and its market share is just one-eighth of the market share, 

the fitted model suggests that Firefox 1.5 is still in the linear phase. Consequently, we can 

expect that more vulnerabilities will be found in the near future, and the saturation phase 

is not likely to be reached soon.
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Figure 4-33. Fitting IE 6.0 cumulative Vulnerabilities to the AML model
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Figure 4-34. Fitting Firefox 1.0 cumulative Vulnerabilities to the AML model
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Figure 4-35. Fitting Firefox 1.5 cumulative Vulnerabilities to the AML model

Table 4-6. Goodness o f  Fit Results for the examined web browsers datasets on the logistic model (AML)
Software
System A B C DF I 2 I 2

critical
P-

value Significant

IE 4.0 0.00237 58.887 1.5088 110 42.853 135.48 1 Significant
IE 5.0 0.000225 221.44 0.0462 90 67.693 113.15 0.962 Significant
IE 6.0 0.000274 249.78 0.1092 65 112.44 84.821 .0002 Insignificant

FFoxl.O 0.00831 82.573 49.312 25 50.565 37.652 0.0018 Insignificant
FFoxl.5 0.008792 85.284 8.159 11 9.488 16.919 0.577 Significant

Another browser, Mozilla, was first released at the end of 1998. However, since 

Mozilla never became very popular among Internet users, very few vulnerabilities have 

been found in Mozilla even though it was developed long before Firefox. Only 11 

vulnerabilities were found through June of 2004. A large number of vulnerabilities were 

first found in Firefox, followed by a similar rise in the discovery of Mozilla 

vulnerabilities. This is likely to be due to the fact that significant parts of code are shared 

between Firefox and Mozilla, demonstrating that market share can be a more important 

contributing factor than software age.
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4.5.2 M o d e l in g  W e b  B r o w s e r s  V u l n e r a b il it ie s  U s in g  t h e  L in e a r  M o d e l  (LM) 

The logistic model was able to fit most of the datasets examined. However, some of

the dataset have some linearity. This suggests using a linear model in these cases. IE 4.0

given by Figure 4-36 clearly contradicts the linear trend, while IE 5.0 fits the linear trend

closely (see Figure 4-37).
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Figure 4-36. Fitting IE 4 cumulative vulnerabilities to the linear model

In Figure 4-37 the linear model was able to capture the trend until a later jump in 

2006. This shows that the IE 6 is still showing an increasing rate of vulnerability 

discovery.
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Figure 4-37. Fitting IE 5 cumulative vulnerabilities to the linear model
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Figure 4-38 Fitting IE 6 cumulative vulnerabilities to the linear model

The linear model was unable to fit the Firefox 1.0 (see Figure 4-39), with P-value of 

0.00201. It seems that Firefox 1.0 has shown a saturation followed by a jump after the 

release of Firefox 1.5, due to the impact of shared vulnerabilities. On the other hand, the 

linear model has fitted the Firefox 1.5 dataset (see Figure 4-40) with a P-value of 0.47628
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as shown in Table 4-7 (Note: when calculating the chi-square value, only the positive 

part of the curve is considered, because chi-square only considers positive values).
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Figure 4-39. Fitting Firefox 1.0 cumulative vulnerabilities to the linear model
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Figure 4-40. Fitting Firefox 1.5 cumulative vulnerabilities to the linear model
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Table 4-7. Goodness o f Fit Results for the examined web browsers datasets on the linear model (LM)
Software
System Slope C DF x2

2
X critical P-value Significance

IE 4 0.620395 7.395333 110 385.0309 134.48 0 .0 0 0 0 0 Insignificant
IE 5 2.293205 3.614732 90 31.16308 113.1453 1 .0 0 0 0 0 Significant
IE 6 3.065297 -22.4779 65 94.55107 84.82065 0.00977 Insignificant

FFox 1.0 -32.27 5.5896 25 50.21824 37.65249 0.00201 Insignificant
FFox 1.5 -21.49 7.3545 11 10.61238 18.30703 0.47628 Significant

4.5.3 D is c u s s io n

We have examined the data sets to see if the discovery process tends to follow some 

specific patterns and if these patterns can be modeled. The results show that when the 

aggregate number of vulnerabilities is examined, the AML model fits the datasets well, as 

shown in Table 4-6.

The fitting was done for the classes of vulnerabilities for which the available data is 

statistically significant. It would be difficult to use such models for the types of 

vulnerabilities that occur less frequently because the data may not be sufficiently 

statistically significant to make meaningful projections.

Examining the current vulnerability discovery trends for the three web browsers, 

reveals that none all of them has reached the saturation phase except for IE 4.0 which 

show obvious saturation. Thus, the other four systems (IE 5.0, IE 6.0, Firefox 1.0, and 

Firefox 1.5) are expected to show a high rate of vulnerability discovery in the near future 

until they show some signs of saturation.

When comparing browser security, we need to keep in mind that the vulnerability 

discovery rate in near future may be more important than the vulnerabilities already 

discovered in the past. Other factors to consider include severity levels and quick 

availability of patch releases. Currently, some experts regard IE to be less secure, 

pointing to integration of IE into Windows and Active X. Secunia [74] reports that IE

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



versions have more unpatched vulnerabilities than Firefox. However, if Firefox 

popularity keeps rising, it will attract more people trying to discover its vulnerabilities. 

The new version of IE 7.0, currently in beta version, is claimed to be more secure 

because of the incorporation of new security features.

In this chapter we have examined trends in vulnerability discovery in web browsers 

and explored the applicability of quantitative models for the number of vulnerabilities. 

These models gave us an insight into the vulnerability discovery process. The results 

showed that the AML vulnerability discovery model generally tracks the available data 

well.

The results indicate that the models originally proposed and validated for operating 

systems and HTTP web servers are also applicable to web browsers. These models can be 

used to estimate vulnerability discovery rates, which can be integrated with risk 

assessment models in the future.

4.6 MODELING VULNERABILITIES USING THE EFFORT-BASED MODEL

The effort based model presented in section 3.3.3 needs monthly market share data

available in order to compute equivalent effort. The model uses equivalent effort instead 

of time as an independent variable. This model needs to be validated when the required 

data is available.

Here, we fit the data of Windows 98, Windows NT 4.0, IIS, and Apache data to the 

Effort-Based model; also, the goodness of fit is measured to determine if the fit is 

significant. The fit is done using the least square-fit method. For the Chi-square goodness 

of fit test; we chose alpha level as 5%. So, if P-value is greater than 0.05 it means that the 

fit is significant at this alpha level.
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4.6.1 V a l id a t in g  t h e  E f f o r t -B a s e d  m o d e l  o n  O p e r a t in g  S y st e m s

To examine the effort-based model given by Equation (10), we used the same

vulnerability data of Windows 98, together with the corresponding data on the share of

installed base and the number of internet users. The data fit the model, as is shown in

Figure 4-41 and Figure 4-42. Table 4-8 gives the parameter values obtained. The Chi-

square values are given in Table 4-8. The Chi-square values are less than the critical

values (this also implies that P-values are greater than 0.05) and therefore the fit is

acceptable.
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Figure 4-41. Fitting Windows 98 data (Effort-Based Model)

For the two operating systems, both models fit well. The time-based model is easier 

to use because it does not require evaluation of E. However the effort-based model 

removes the variability due to change of effort during the life-time of the OS.
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Figure 4-42. Fitting Windows NT 4.0 (Effort-Based Model)

Table 4-8. %2 Goodness o f  fit test results for fitting the Effort-Based Model to vulnerabilities o f  some 
versions o f  Windows

B A,vu x2 V 2X, c r it ic a l P-value Significance

Windows 98 37 0.000505 3.510 44.9853 1 Significant

Windows NT 4.0 108 0.00306 15.05 42.5569 0.985 Significant

4.6.2 V a l i d a t i n g  t h e  E f f o r t -B a s e d  m o d e l  o n  HTTP S e r v e r s

Figure 4-43 shows cumulative vulnerabilities by number of Apache installations in

terms of million system-months and the fitted effort-based model. This effort-based

model shows that Apache has not yet entered the saturation phase, since the number of

vulnerabilities continues to increase approximately linearly as the number of Apache

servers increases [77].
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Figure 4-43. Fitting Apache vulnerability data to the Effort Based Model

140

» 120

S  100

40  Actual Data
 The Effort-Based Model

o  o  o  o o  o  o
■ST 00 CM CD O

T- T- CM CM

o o o  o o
CO CM CO O  M -
CM CO CO M -

o o  o  o  o
CM CO O  -vT CO
lo in co co co

o
CO

o  o o
CM CO O

h -  CO

Million S y stem  Months

Figure 4-44. Fitting IIS vulnerability data to the Effort Based Model

IIS was released in the early part of 1996. IIS is a popular commercial web server 

with about 15 million installations currently. We have used the vulnerability data from 

January 1997 to May 2006.
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Figure 4-44 shows cumulative vulnerabilities for the IIS server and the effort-based 

model by million system-months [77],

Table 4-9. %2 Goodness o f  fit test results for fitting the Effort-Based Model to some HTTP servers

B Wu x2 X critical P-value Significance

Apache 112.5 .00092 23.726 61.66 .992 Significant

IIS 122 .009 46.6 103 .998 Significant

We examine the fit of the models to the data as shown in Figure 4-43 and Figure

4-44. For % goodness of fit test, we chose an alpha level of 5%. Table 4-9 gives the chi- 

square values and parameter values for both the time-based and effort-based models. The 

table shows that the chi-square values are less than the critical values; this demonstrates 

that the fit for Apache and IIS is significant. Both data sets fit both models with %2, with 

high P-values ranging from 0.992 to 0.998, indicative of the fit significance.

4 .6 .3  D isc u s s io n

The data of two operating systems, Windows 2000 and Windows 98, was fitted to the 

effort based model. This was possible because market share data for those two software 

systems is available; therefore, the equivalent effort is computable. The result shows a 

significant fit to the Effort-based model.

Moreover, the data of two of the most widely used web servers were fitted to the 

effort based model; this was also possible because market share data for those two 

software systems is available; also here, the result shows a significant fit to the Effort- 

based model.

The result suggests that when future market share data projection is available and 

accurate, we can apply the model to predict vulnerabilities more accurately because the
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model considers changes in market share and hence in the rewards associated with the 

attacks.

4.7 SHARED VULNERABILITIES IN SUCCESSIVE VERSIONS OF SOFTWARE 
SYSTEMS

Here we take a closer look at shared vulnerabilities. Shared vulnerabilities often occur 

between consecutive versions of software systems; usually the amount of shared 

vulnerabilities is strongly correlated with the size of reused code. Consequently, this can 

differently affect the goodness of fit of the AML logistic model, because they may cause 

what appears like another AML model forming just after it.

Figure 4-45 below shows that the new vulnerabilities of Windows NT 4.0 discovered 

after June 2004 are vulnerabilities shared with Windows 2000 since those two curves are 

parallel.
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Figure 4-45. Plot o f  the Vulnerabilities o f  Windows NT 4.0 and Windows 2000 showing shared 
vulnerabilities
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Figure 4-46. Plot o f  the Vulnerabilities o f  Fire Fox web browser versions 1.0 and 1.5 showing shared 
vulnerabilities

Figure 4-46 above shows the shared vulnerabilities between Fire Fox browsers 

version 1.0 and 1.5. We can notice that for Fire Fox 1.0 the data started to saturate for a 

few months, then after version 1.5 became available, a jump in the number of 

vulnerabilities occurred. This jump consists of shared vulnerabilities as the figure shows. 

The figure shows that both shared vulnerabilities and vulnerabilities of Fire Fox 1.0 are 

parallel for the latter part.

Figure 4-47 below shows the vulnerabilities shared between Apache 1.x and 2.x. It 

shows the AML fitted to both datasets. In this example, the number of shared 

vulnerabilities is less significant than observed in earlier plots. The reason behind this is 

that Apache 1.3 and Apache 2.0 are being developed independently as they took different 

tracks; therefore, they do not fit the definition of the typical successive versions. 

However, they still share some code and shared vulnerabilities are found but not in large 

numbers.
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Figure 4-47. Plot o f  the Vulnerabilities o f  Fire Fox web browser versions 1.0 and 1.5 showing shared 
vulnerabilities

4.8 CONCLUSION

This chapter has examined the goodness of fit of several datasets to the three models. 

Generally, for practical reasons, Vulnerability discovery models assume that each 

specific release of an operating system is independent and can be separately modeled. 

However, in practice, a significant sharing of the code occurs between successive 

releases.

The results have shown that the Alhazmi-Malaiya Logistic model has fitted the vast 

majority of the datasets; however, it did not fit in some exceptional cases. The Alhazmi- 

Malaiya Logistic model did not fit when some factors are presents; here are two examples 

where the AML model show insignificant fit:

1. There is a case of super imposition of more than one logistic model in the data. 

For example, when there are consistent changes applied to the software system; 

consequently, when the new modules are introduced, they themselves are not
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thoroughly tested; therefore, they will keep the so trend from saturation 

artificially. Here, if data were to be separated for smaller periods of time, more 

than one model can be fitted, and it is expected that these smaller models applied 

to those datasets would fit significantly 

2. There are a significant number of vulnerabilities which are shared with a

successive version. So, for example, a system that has a declining small market 

share, and still showing high vulnerability discovery rate, it is most likely that 

these new vulnerabilities are actually being discovered in another version that has 

a larger market share and shares some source code with it.

The linear model has shown to fit in a number of cases to some of the datasets. 

Because the linear model was able-in some cases- to neutralize some factors affecting the 

data, it was found especially applicable in the following cases:

1. The software is still young or in mid-life, so it is in the linear phase of its life.

2. The software is growing, by adding new modules and patches that themselves 

keep the dataset trend go linear. So, the linear model will take advantage of the 

linear behavior that occurs when there is superimposition of more than one AML 

model.

3. There is a significant proportion of shared code with a successive version.

The effort based model has shown to fit all examined datasets; however, it requires 

some market share data, and therefore, there is limitations on using the model on software 

systems market share is unavailable or not properly filtered.

Overall, the AML model and the Effort-based model were the most successful, 

followed by the linear model.
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CHAPTER 5

COMPARING VULNERABILITY DISCOVERY MODELS

5.1 INTRODUCTION

Software reliability growth models [44][55] have been used for characterizing the 

defect-finding process. Such models are used to assess the test resources needed to 

achieve the desired reliability level by the target date and are needed for evaluating the 

level of reliability achieved. They can also be used to estimate the number of residual 

defects that are likely to be present. With the presence of a more than one vulnerability 

discovery model there is a need to compare existing models.

In the security field, vulnerability exploitation models (VEMs) were the first to be 

considered. Browne et al. [20] have examined the exploitation of some specific 

vulnerabilities and have presented a modeling scheme. Some researchers have recently 

examined investigations on the modeling of the vulnerability finding process 

[4][13] [14][64] [69]. We examine and evaluate these models, termed vulnerability 

discovery models (VDMs), in this chapter. An evaluation of the risk would involve both 

characterizations of vulnerability discovery process as well as its potential exploitation. 

This evaluation of the risk involves both VEMs and VDMs.

The first VDM model proposed by Anderson [14] is here termed the Anderson 

Thermodynamic (AT) model. The second, termed the AML model, is a logistic model 

proposed by Alhazmi and Malaiya in [4] and investigated in [5]; its prediction 

capabilities were examined in [7]. Two trend models were examined by Rescola in [69] , 

a quadratic model and an exponential model; these are termed RQ and RE respectively.
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In addition, we examine an LP model which is an application of a traditional Logarithmic 

Poisson reliability growth model [54] proposed by Musa and Okumoto. Additionally, we 

test a simple linear model as an approximation of the AML model. All of these can be 

termed time-based models since they consider calendar time as the main factor. An 

effort-based model has also been proposed by Alhazmi and Malaiya in [4], It will not be 

considered in this context since it utilizes a different approach that attempts to use test- 

effort as the main factor rather than calendar time. In this research, we briefly examine 

the basis of the proposed models and evaluate the applicability of these models using 

actual vulnerability data.

Just as static models for defect density and fault exposure ratio can assist in the use of 

SRGMs, the metric vulnerability density and vulnerability/defect ratio can be applied to 

complement and support VDMs. Alhazmi and Malaiya [4] have shown that for similar 

systems, the values of these attributes tend to fall within a range. Static metrics can be 

used to constrain parameter estimation during fitting [5].

This chapter previews some of the existing models and presents a comparison of the 

models’ adequacy using actual data for vulnerabilities in four major operating systems. 

The statistical goodness of fit test is used to examine how well models track the actual 

discovery process. The Akaiki information criterion is used to measure the adequacy of 

the models for the purpose of comparison. In the next section, we discuss the proposed 

models. Then, we explain the comparison methodology, and finally, we fit the datasets to 

the models and present the comparison results in plots and in tables. Finally, the results 

are discussed and we conclude.
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5.2 PREVIEW OF VULNERABILITY DISCOVERY MODELS

In this section all models are previewed; however, the logistic model will be 

previewed briefly, because it was already previewed in section 3.3.1 (The logistic model 

will be referred to as Alhazmi-Malaiya Logistic model (AML)).

5.2.1 Anderson  Therm odynam ic  Model (AT)

This model was originally proposed for software reliability in [21]. Later, in [14], 

Anderson applied it to vulnerabilities. Figure 5-1 shows a hypothetical plot of the AT 

model for different values of k/y and C. Let us suppose that there are N(t) vulnerabilities 

left after t tests, and let the probability that a test fails be The model assumes that 

encountering a vulnerability causes it to be removed and also that no bugs are re

introduced.

Anderson's Thermodynamic Model
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Figure 5-1. Hypothetical plots o f the Anderson Thermodynamic (AT) model

Using an analogy from thermodynamics, Anderson argues that co(t) < k / 1, where k  is 

a constant. Arguing that equality should be a reasonable approximation, he finally arrives 

at the model
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where y  is a factor that takes into account the lower failure rate during beta testing by the 

users compared to alpha testing. Because we want to compare cumulative models, we 

integrate Equation (13) to obtain the model in terms of the cumulative number of 

vulnerabilities given by the function Q(t) as follows:

where C is a constant introduced by the integration. Note that this Q(t) in this model is 

not defined when t=0; hence, we will only consider its applicability when t>l. As t 

grows, Q(t) grows with logarithmic increase. It should be noted that this model has a 

relationship to the well-known Logarithmic Poisson SRGM and the failure rate bound 

proposed Bishop and Bloomfield [19].

5.2.2 A lhazmi-Malaiya  Logistic Model (AML)

This model was proposed by Alhazmi and Malaiya in[4]. The AML model is based

on the observation that the attention given to an operating system increases after its

introduction, peaks at some time and then drops because of the introduction of a newer

competing version. Thus, the vulnerability discovery rate increases at the beginning,

\ y t )

k  f  k
- l n ( 0 +  - I n  (C )r U

where — ln(C) represents the integration constant. By simplifying we obtain,
Vr )

a i t )  =  - i n ( c o
r (14)
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reaches a steady rate and then starts declining. The cumulative number of vulnerabilities 

thus shows an increasing rate at the beginning as the system starts attracting an increasing 

share of the installed base. After some time, a steady rate of vulnerability finding yields a 

linear curve. Eventually, as the vulnerability discovery rate starts dropping, there is 

saturation due both to reduced attention and a smaller pool of remaining vulnerabilities.

Q (0  = -------4*-----  (15)
B C e - AB‘ + 1  v '

It is a three-parameter model given by the logistic function (15). The equation shows that 

as t approaches infinity, y approaches B. Thus, the parameter B represents the total 

number of accumulated vulnerabilities that will eventually be found (see Figure 5-2). 

(For more details about the AML model see section 3.3.1).
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Figure 5-2. Hypothetical plots o f  the Alhazmi-Malaiya Logistic (AML) model

5.2.3 R e s c o l a  Q u a d r a t i c  M o d e l  (RQ)

Rescola has attempted to identify trends in the vulnerability discovery data by 

applying some statistical tests. We here refer to these tests as the linear model and
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exponential model [69] . Figure 5-3 shows a hypothetical plot of the RQ model for 

various values of B and K.

First, rather than using the cumulative data, Rescorla has fitted a basic linear model to 

the vulnerability finding rate. In his approach, vulnerabilities were grouped in three- 

month time periods. The linear fit for the failure rate co(t) implies the model:

where B is the slope and K is a constant, while both are regression coefficients. The 

cumulative vulnerability discovery model can be derived by integrating Equation (16):

where the integration constant is taken to be zero to allow Q(t) to be zero at t =0. In this 

model, as t grows, Q, grows polynomially, as given by the squared term.

0)(t) =  Bt + K  , (16)

(17)

Rescorla Quadratic Model

Time

Figure 5-3. Hypothetical plot o f  the Rescorla Quadratic (RQ) model
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5.2.4 R e s c o l a  E x p o n e n t i a l  M o d e l  (RE)

Rescorla [69] has also used Goel-Okumoto SRGM [28] to fit the data. This 

exponential model can be given as:

co(t) -  NXe}\  (18)

where N  is the total number of vulnerabilities in the system and A, is a rate constant.

Again, we here integrate (18) to get the cumulative number of vulnerabilities. Figure 5-4

shows some plots of RE model for different values of A, and N.

Q(t) = jN/le^* dt = N -  Ne-At

Q (t)= N (  (19)

where the integration constant has been equated to N to allow the initial value of Q to be

zero. As time grows, Q approaches N.

Rescorla Exponential Model
A=-.13,N=45

Time

Figure 5-4. Hypothetical o f  the Rescorla exponential (RE) model
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5 .2 .5  L o g a r it h m ic  P o is s o n  M o d e l  (L P )

This model is also known as the Musa-Okomoto model [54], A physical

interpretation of the model and its parameters is complex. An interpretation in terms of

the variability of the fault exposure ratio is given in [48]. Figure 5-5 shows various plots

of the LP model for different values of p 0 and Pi.

Q (0  = A>ln( i + A O ,  (20)

where po and Pi are regression coefficients. At t=0, Q(t) = 0; £2 (t) grows indefinitely as 

the system ages with logarithmic growth. In spite of the fact that the parameters have a 

complex interpretation, in many cases the model has been found to be among the better 

fitting SRGMs.

Logarithmic Poisson Model

Time

Figure 5-5. Hypothetical plots o f  the Logarithmic Poisson (LP) model

Some of the models are somewhat related. The AT and LP models are given by rather 

similar expressions, with the significant difference that AT is undefined at t = 0. It can be 

shown that RE and LP may yield similar short term projections, but they differ 

significantly for very large values of t.
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5 .2 .6  T h e  L in e a r  M o d e l  (L M )

This model is a basic linear model; it is suggested as an approximation to the logistic 

model. It has shown good performance when the learning phase is short and when there is 

a number of shared vulnerabilities with a successor version. The equation below shows 

the linear model:

Q,(t) = vt + u ,  (21)

where v and u are regression coefficients. At t=0, Q(t)= 0; Q(t) grows indefinitely as the 

system ages with a linear growth in spite of the fact that the parameters have a complex 

interpretation.

5.3 COMPARING THE MODELS

Here, we discuss how the data was collected and prepared for fitting, and then we 

describe how the goodness of fit was evaluated.

5.3.1 T h e  d a t a  s o u r c e s  

Compared to data that has been used for SRGMS in the past, the vulnerability data

available has some different characteristics. One of the main differences is that generally

no information is available concerning the faults in SRGM data, whereas for

vulnerabilities the databases identify the specific vulnerability. The vulnerability data

comes from several well-known products, since the data for every operating system and

server, both commercial and open-source, are available. The SRGM data comes only

from some selected projects where the management has permitted disclosure of the data.

On the other hand, vulnerability data has some limitations—namely, that it comes from a

limited number of sources, and the number of vulnerabilities typically represents only a

small fraction of the total number of defects.
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In our analysis, we have used the data sets for four different operating systems [5] [12] 

[61][51][56] [59] shown in Table 5-1. The vulnerability data of Windows 95 is for a 

client operating system that has existed for several years. It has gone through nearly a 

complete life cycle and its remaining installed base is now very small. The data set for 

Windows XP represents a relatively new operating system, which may be near the peak 

of its popularity. We have also included data for Linux Red Hat 6.2, which represents an 

open-source operating system. Some of the key attributes of the four systems are given in 

Table 5-1. The vulnerability density is the number of discovered vulnerabilities per 

thousand source lines of code (Ksloc). Windows XP is much larger than Windows 95; 

however, its vulnerability density is comparable. It is likely that a significant number of 

thus far undiscovered vulnerabilities are present in Windows XP. The higher number of 

vulnerabilities in Red Hat Linux 6.2 may be because a larger fraction of its code is 

devoted to access control. Fedora is a relatively new version of Linux.

Table 5-1. Some attributes o f  the examined operating systems

Operating
Systems

Millions of 
Lines of 

source code
OS Type

Known
Vulnerabilities

Vulnerability 
Density 

(per Ksloc)

Release
Date

Windows
95 15 Commercial

client 51 0.0034 Aug 1995

Windows
XP 40 Commercial

client 173 0.0043 Oct 2001

R H Linux 
6.2 17 Open-source

server 118 0.00694 Mar 2000

R H Fedora 76 Open-source
server 154 0.00203 Nov 2003

Vulnerability data needs to be manually extracted from databases. Our major sources 

of data are the Mitre Corporation [56] website and the National Vulnerabilities Database
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(NVD) [61] metabase. NVD is an easily searchable database with the option of 

downloading an ACCESS database.

5.3 .2  E v a l u a t io n  o f  g o o d n e s s  o f  f it

To evaluate goodness we will apply the chi-square goodness of fit test. The chi-square

(X2) statistic is calculated as follows:

2 X'1 (Pi ~ )
X = E -  (22)

For fit to be acceptable, the chi-square statistic should be less than the critical value for 

a given alpha level and degrees of freedom. The P-value represents the probability that a

value of the x2 statistic at least as high as the value calculated by the above formula could

have occurred by chance. We use an alpha level of 5%; i.e., if the P-value of the chi- 

square test is below 0.05, then the fit will be rejected. A P-value closer to 1 indicates a 

better fit. The P-value is calculated by using the number of degrees of freedom of the data 

set and chi-square distribution.

5.3.3 M o d e l s  A d e q u a c y  C r it e r ia

For model adequacy testing, Akaike Information Criteria (AIC) [2] is also frequently

used to make a fair comparison between models. AIC is formally defined as

AIC = -2  log liklihood + 2 M  

An equivalent way to compute AIC is:

AIC = T. H R S S )  + 2 M  (23)

where M  is the number of free parameters of the examined model, T  is the number of

observations, and RSS is the residual sum of squares. In Equation (23), we use the

formulation of AIC given by Akaike.
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Other variation of AIC is AICc is better than AIC when sample size, n, is small. The 

formula for AICc is:

(24)n - k - 1

5.4 FITTING THE DATA SETS TO THE MODELS

The results of fitting the models to the data is presented graphically in the plots given 

in Figures 6-9, which show the fitted plots together with actual cumulative data. For 

convenience in viewing, the plots for each operating system are shown in two separate 

figures given side by side. In addition, the parameter values obtained during the fit, and 

the corresponding measures of goodness of fit for the four operating systems’ sets, are 

given in Tables 2-5. First, we discuss the results for each dataset; we then present 

observations for each of the models.

Windows 95

A ctu a l
•AML
R E
R Q

Figure 5-6. Fitted VDM s with actual Windows 95 data
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Figure 5-7.Fitted VDM s with actual W indows 95 data

Table 5-2. Goodness o f  Fit and AIC results for Windows 95 goodness o f fit

Model Parameters 7C -test RSS AIC
x2 P-Value

*AT K/y C 226.46 0 7992.3 1082.35
18 2.36

LP Po Pi 178.18 .00036 3974.4 998.52
69.00863716 1.08E-02

*LM u V 202.44 .000003 5313.9 1033.37
1.690 0.5032016

RE X N 181.47 .0002 5359.95 1034.41
.000094 5629.743

RQ S K 169.96 .0015 3429.55 980.82
-0.00249 0.749276

AML A B C 46.93 1 422.9 731.65
0.002 49.37396 1.358819937

*Chi-square test was applied to the positive values of the AT and LM models

The Windows 95 data (Figure 5-6 and Figure 5-13) has a distinct s-shape because 

vulnerability detection reached saturation in 2003. As we would expect, the AML model 

fits quite well. The fitted RE, RQ, LP and LM models give plots that look linear and thus 

show considerable divergence at the end. The fitted AT model gives negative values at 

the beginning and significantly diverges from the actual data except near the end, which
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is why its chi-square value is significantly higher than the other models. The AML model 

has the lowest AIC, namely, 731.65, followed by RQ with 980.82, and then by other 

models ranging from 998.52 to 1082.35.

The Linux Red Hat 6.2 data (see Figure 5-8 and Figure 5-9) shows a milder s-shape. 

This allows two models, AML and RQ, to fit the data. The AML model shows a 

significant fit with P-value=T. The RQ model was able to fit the data with a P-value of 

0.261 (see Table 5-3) because the data has just entered the saturation phase and thus, 

unlike other models, RQ was able to bend with the saturation. On the AIC scale, AML 

gave the best AIC test score, 558.82, followed by RQ, which gives 648.42, while the 

other models yielded higher numbers.

160 Red Hat Linux 6.2
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Figure 5-8. Fitted VDMs with actual Red Hat Linux 6.2 data
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Figure 5-9. Fitted VDMs with actual Red Hat Linux 6.2 data

The data for Windows XP (shown in Figure 5-10 and Figure 5-11) shows a very linear 

trend, allowing RQ to fit quite well with the P-value of 0.971, leaving AML with a P- 

value of only 0.147 (see Table 5-4). This shows a less significant fit than RQ because the 

data for Windows XP does not yet have a strong S-shape. Windows XP is a relatively 

new operating system and the saturation phase had not been reached yet; consequently, 

the AML model does not yield the best fit. Other models were unable to provide a 

significant fit. On the AIC scale, RQ has shown a better AIC of only 492.10 compared to 

511.47 of AML; other models have yielded higher AIC values ranging from 661.80 to 

745.20. By this measure, also, the other models provided a poor fit.

In Red Hat Fedora (see Figure 5-12 and Figure 5-13), AML fit with 0.426 (see Table

5-3), while other models were unable to fit the data. This shows that Red Hat Fedora has 

begun to assume the s-shape but it is still in an early stage, allowing AML model to fit; 

furthermore, it can be expected as Red Hat Fedora data starts to mature further, the P-
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value will eventually go up. Additionally, AML has AIC of 347.68, while other models’ 

AIC ranged from 388.08 to 449.90.

Table 5-3. Goodness o f  Fit and AIC results for Red Hat Linux 6.2

Model Parameters / 2-test RSS AIC
x2 P-Value

*AT K/y C 199.35 0 19469.39 744.7540.7745502 9.438709877

*LM u V 144.087 0 10635.6 699.3979.591 1.7812802

LP Po Pi 131.02 0 12073.63 708.916999.939 2.84E-04

RE I N 130.24 0 12009.071 708.51
0.000354 5628.812

RQ S K 81.35 0.261 5389.545 648.42
-0.01504 2.823606

AML A 3 C 35.52 1 1589.1 558.82
0.000855 121.235 0.139727427

*Chi-square test was applied to the positive values of the AT and LM models

The Anderson Thermodynamic (AT) model did not fit any of the data; it exhibited the 

highest AIC scores and lowest P-values. For the Windows 95 data, its AIC of 1082.35 is 

48 points away from the nearest model. For Linux 6.2, it yields an AIC of 744.75, which 

is 36 points higher than the nearest model. For Windows XP and Red Hat Fedora, AIC 

scores were also significantly higher than the nearest model.

The Rescorla Quadratic (RQ) model was able to fit two out of four of the datasets 

under consideration. However, the RQ was not able to fit either the Windows 95 or Red 

Hat Fedora datasets (see Figure 5-12 and Figure 5-13 below) due to the strong S-shaped 

trend of the data; although the model yielded an arc-shaped curve with the ability to show 

saturation at the end. Thus, for both datasets it scored poorly in the chi-square test with a 

P-value of close to zero, whereas it should have been at least 0.05 to be acceptable. For
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Windows XP data, it achieved a P-value of 0.971, which is a very good fit. It fit the 

Linux 6.2 data with a P-value of 0.261.

The fit was judged to be poor for the chi-square test with P-values within 0 to 0.0002, 

which is significantly less than the acceptable P-value of 0.05. Moreover, RE scores were 

generally among the highest except if compared with AT.
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Figure 5-10. Fitted VDM s with actual Windows XP data
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Figure 5-11. Fitted VDM s with actual Windows XP data
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The Linear Model (LM) was unable to fit any of the datasets. However, its AIC score 

was better than RE and AT most of the time. Nonetheless, the Alhazmi-Malaiya Logistic 

Model (AML) was the only model that fit all four datasets. The fit was especially 

superior for the Windows 95 and Linux Red Hat 6.2 datasets. However, the fit was not as 

good for Red Hat Fedora and Windows XP where the P-values were 0.426 and 0.147, 

respectively. Moreover, the AML model showed significantly better AIC scores for all 

datasets, except for Windows XP where it was the second only to RQ.

The other four models failed the goodness of fit test for Windows 95, since they 

generated unacceptably high chi-square values and consequently low P-values below 

0.02, although the Windows XP data is expected to saturate eventually. The results show 

that AML is the most consistent model for the four data sets.

Table 5-4. Goodness o f  Fit and AIC results for Windows XP

Model Parameters y2 -test RSS AIC
x2 P-Value

*AT K/y C 524.59 0 54178.7 745.20
49.251 9.186

*LM u V 127.18 0.006916 8928.76 622.67
-20.412 3.0779474

LP Po B, 243.04 0 16018.76 662.34
11757.872 0.0002234

RE X N 241.42 0 15890.74 661.80
6.9301E-05 37790.660

RQ S K 36.86 0.971 1655.98 492.10
0.044 0.734

AML A B C 65.99 0.147 1691.58 511.47
0.0003 288.7025 0.1206

*Chi-square test was applied to the positive values o f  the AT and LM models

The Logarithmic Poisson (LP) model was unable to fit all four examined datasets, with 

p-values ranging from 0 to .00036.
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We note here that LP, RE and even RQ can perform better if  only partial data is used 

before onset of saturation, when we expect the data to be somewhat linear, and hence 

models such as LP, RE, RQ and LM can easily fit the data [6].
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Figure 5-13. Fitted VDM s with actual Fedora data
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Table 5-5. Goodness of Fit and AIC results for Red Hat Fedora

Model Parameters y2-test RSS AIC
I 2 P-Value

*AT
K/y C

234.036 0 20108.948 449.90
55.496 16.214

*LM u V 66.423 0.00002 3592.179 372.39
-21.477 5.8120967

LP Po P i 178.986 0 7065.290 402.83
9188.010 0.0005244

RE I N 178.051 0 7013.404 402.50
0.000127 37790.59

RQ S K 96.84 0 5090.857 388.08
0.070 3.131

AML A 3 C 32.195 0.426 1984.343 347.69
0.00201 139.045 0.535

^Chi-square test was applied to the positive values of the AT and M  models

5.5 CONCLUSIONS

Several vulnerability discovery models were examined using Akaike Information 

Criteria (AIC) and chi-square (%2) tests. The evaluation found that the AML model is 

generally best for the longer term, performing better for systems such as Windows 95, 

Red Hat Linux 6.2, and Red Hat Fedora. Since it captures the S-shape pattern in the data, 

it has better fit as determined by using AIC and the chi-square test. RQ has shown very 

good fit for Windows XP, a system that has not yet shown signs of saturation. This can 

be attributed to the fact that the model can fit trends that are largely linear with slight 

saturation. LM, LP, and RE were not able to fit any of the datasets because of the lack of 

a semi-linear trend. The AT model considered did not perform well in general; it has 

shown significant diversion from the datasets. Three of the models, RQ, RE and LP, 

appear to do a good job of following the shorter-term trends when the cumulative 

vulnerabilities show a linear trend. The AML model often provides the best fit since it 

can follow the S-shaped trend that is often observed.
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We also note that the AML model uses three parameters, while the other five models 

are two-parameter models. However, AIC takes the number of parameters into account 

and thus provides a fair basis for comparison.

Among the five models, the parameters of the RE and AML models have some simple 

interpretations. One of the parameters in both is related to the total number of 

vulnerabilities present in the software. If the expected range of vulnerability density 

values can be estimated based on past experience, a preliminary estimate of the total 

number of vulnerabilities may be empirically obtained [5] [6] However, empirical 

estimation of other parameters requires further investigation.

Finding vulnerabilities in a widely installed system should be more rewarding to 

internal testers, as well as to external experts and hackers. Thus, the testing effort changes 

with changes in the market share of software systems. This variability of effort has been 

addressed in [4] by developing an equivalent effort model. The model addresses changes 

in the usage environment, which affects the discovery process by considering the 

cumulative time spent by the workstations using the software systems. Although the 

equivalent effort model fit very well, the model requires data that can be very hard to 

collect. The AML model attempts to implicitly model the effort variation.

Vulnerability discovery models assume that each specific release of an operating 

system is independent and can be separately modeled. In practice, a significant sharing of 

the code occurs between successive releases. Thus, a vulnerability detected in a particular 

version may also exist in previous versions. Further research is needed to model the 

impact of such shared codes.

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In a recent work [7], the prediction capabilities of two of the VDM models were 

examined, and the results showed a good prediction capability that improves as more data 

becomes available. The prediction capability testing showed that putting some constraints 

on the model’s parameters based on previous observations significantly improves the 

prediction capability. Metrics such as vulnerability density and vulnerability/defect ratios 

[4] can be used to check the projections made using VDMs during early phases when the 

available data is insufficient, or when a VDM is known to have some specific limitations. 

Examination of the prediction capabilities of the other models is still needed to give a 

broader comparison with the other vulnerability discovery models.

Both the developers and the user community can use vulnerability discovery models. 

Developers can assess the product readiness by projecting upcoming vulnerability 

discovery trends. Developers need to allocate security maintenance resources to detect 

vulnerabilities, preferably before others do, and to release security patches as soon as 

possible. The users also need to assess the risk due to vulnerabilities before patches are 

applied. A patch may need to be tested for stability before it is applied, as discussed by 

Brykczynski et al. [24] and Beattie et al. [18] An organization’s effective security policy 

requires both time and resources, and vulnerability discovery models can be used to 

quantitatively guide such policies.
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CHAPTER 6

ESTIMATING THE NUMBER OF VULNERABILITIES

6.1 INTRODUCTION

One way to evaluate the soundness of any model would be to see how well it fits the 

available data [5]. Vulnerability Discovery Models have been proposed and examined 

using vulnerability data and goodness of fit tests. For example, the logistic model (AML) 

has been shown to fit the data; however, the models’ ability to predict the number of 

vulnerabilities has not yet been investigated. Nevertheless, a manager may often be 

interested in making projections when only part of the data is available. To evaluate 

prediction capability, we need to examine the accuracy of prediction using early partial 

data compared with later data.

In the software reliability engineering field, several researchers have investigated the 

predictive capability of a number of reliability growth models [47] [54], Generally, two of 

the measures of interest are average magnitude of error, and the average bias which 

measures the tendency of the model to overestimate or underestimate the number of 

vulnerabilities [47]. We will examine the prediction capability of vulnerability discovery 

models using a similar two-component predictability measure. The prediction capability 

of the VDMs will be examined by using actual data from major software systems and 

plotting the error in estimated values. This will allow us to compare different schemes, 

identify procedures that are likely to keep the error small, and assess the accuracy of 

projections [8][9].
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The approach will consider applying the model under consideration for n number of 

times (tj, t2, t3... tn) with equal calendar time intervals between estimations. For each t„ 

the partial data at t, is fitted to the model at the best fit, using regression analysis to 

determine the best values for the parameters. At each test f, each model’s parameters are 

used to plot the complete prediction curve to obtain the estimated number of 

vulnerabilities (£?,•). These estimated numbers of vulnerabilities (Q/ Q2, 0 3... Qn) are 

compared to the in-hand actual number of vulnerabilities (Q) to determine the normalized 

estimation error ( Q i- Q ) ! Q .  Then the average of the normalized error magnitude values is 

computed to obtain the measure of average error (AE). Average bias (AB) is similarly 

obtained when the sign of the error is also considered [47], The average error (AE) and 

average bias (AB) are defined as:

1 n
AE = - Y  

n 1=1

Q, -Q
Q (25)

i « o . -  q
AB <26) 

where Q is the actual number of vulnerabilities, while Qt is the number of vulnerabilities 

predicted at time t{.

An alternative approach in evaluating the next step prediction is that the data up to tt 

is used to estimate the value at ti+i [1][22]. However, in cases where models are needed 

to make longer term projections, predictive capability for a variable period are also 

needed, and AE and AB are more appropriate measures.

Next, the estimation approaches will be previewed and the predictive capability of 

these approaches will be evaluated for some operating systems and HTTP web servers. 

The models’ ability to predict will be examined to identify their estimation accuracy. The
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approach used for testing prediction capability is to have a complete vulnerability dataset. 

A subset of the data (i.e., the first 12 months) is used, and then the subset of data is fitted 

to the model with the best fit, and the rest of the curve will be plotted to make an 

estimation. The dataset is then extended gradually and the results are recorded for 

comparison with the real result. Thus, the estimations’ deviation from the real result is 

measured.

We also gather data related to other attributes of the software systems (size, number 

of defects, etc.) to suggest some metrics such as the vulnerability density metric. We then 

compare vulnerability density to defect density to determine a relationship.

6.2 EVALUATING THE PREDICTION CAPABILITY OF THE VULNERABILITY 

DISCOVERY MODELS

We examine three approaches for estimating the number of vulnerabilities. These 

approaches are the static approach, which uses the program size as the static metric. The 

dynamic approach uses the vulnerability discovery models (VDMs). The third approach 

combines the dynamic capabilities with the static estimation to filter out the extreme 

estimations.

6.2.1 The Static Approach

This approach requires the knowledge of the vulnerability density of comparable 

software systems. Vulnerability density [5] is defined as the number of vulnerabilities per 

thousand lines of code. The knowledge of vulnerability density of at least one previous 

software system is a requirement of the static approach. Such previous software systems 

should preferably have been developed in a comparable manner—i.e., developed by a 

similar team in the same organization. Then, assuming that the vulnerability density is
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close to the older system, we will have an error range that can be predetermined for 

addressing factors such as better development practices, more thorough testing before 

release, fraction of code that is access-related, etc.

The static approach has a major advantage, which is that it is usable on the date of 

release, while modeling requires some partial data to be available. Furthermore, the static 

estimation can be used to improve the estimation of the model’s parameters (e.g. 

parameter B in the Alhazmi-Malaiya model (AML)) [8][9].

6.2.2 T h e  D y n a m ic  A p p r o a c h

We have used two different implementations of the AML model in addition to the

LM model.

• Unconstrained AML: This approach does not place any prior constraints on the 

parameters; rather, the AML model given by Equation (4) is directly applied. The 

three parameters are estimated using iterative computation utilizing a least squares fit.

• AML constrained (AML-C): We chose to apply the constraint that the duration 

between the two transition points is obliged to be within a certain limit. The duration 

has been shown to be 2.63/AB for the AML model. Hence, we can limit 2.63/AB 

between some certain minimum and maximum values. The choice of the minimum 

and maximum values is determined by the values from the previous software systems. 

This constraint assumes that the transition points are within the time-frame of the 

expected lifetime of the software, thus enforcing the S-shape and anticipating the two 

transition points [8][9].

• Linear (LM): The linear LM model is given by Equation (10). The parameters values 

are determined simply by linear regression analysis.
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6.2.3 T h e  C o m b in e d  D y n a m ic /S t a t ic  A p p r o a c h

The dynamic vulnerability discovery estimation approaches, (AML), (AML-C) and

(LM), are applied to estimate the total number of vulnerabilities. However, when the 

dynamic model is applied and some extreme estimation occurs due to certain bumps that 

appear early in the vulnerability datasets, we can also use the static approach to estimate 

ceiling and floor values. This would require the use of vulnerability density data from 

previous similar systems. In AML and AML-C, the static estimation was used to obtain 

the bounds of the parameter B [8] [9],

6.3 PREDICTION CAPABILITIES FOR ESTIMATING VULNERABILITIES IN 

OPERATING SYSTEMS

We applied the estimation approaches mentioned above to estimate the number of 

vulnerabilities in three systems: Windows 98, Windows 2000, and Linux 7.1. Because 

the use of static methods and constraints requires the use of prior data, operating systems 

such as Windows 95 and Windows NT 4.0 could not be used due to lack of data from 

previous applicable versions.

Table 6-1 illustrates the use of prior data for the three systems. The vulnerability data 

was obtained in April 2005 [5][56][61]. The static approach is able to give estimates only 

for the final point as a whole figure, but not estimates for different points of time. From 

Table 6-1, we note that the vulnerability densities for Windows 98 and Linux 7.1 do lie 

within ±25% of the value of their respective predecessors. However, the vulnerability 

density for Windows 2000 is outside ±25% of the value of its predecessor, Windows NT 

4.0. This may be due to the fact that Windows 2000 contains a larger fraction of non- 

access related code compared to NT 4.0.
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Figure 6-1 to Figure 6-3 show the normalized error in estimations at different times 

for the three systems. The time scale is given as a percentage of the total time period 

considered. As expected, projections made using AML or LM closer to the end time 

exhibit less error. The shaded region in these figures shows where ceiling and floor 

values would be if Q was estimated using the static approach, assuming the defect density 

to be within ±25% of the predecessor.

Table 6-1: Estimating the number o f  vulnerabilities using the static approach

Software Systems Comparable VD Code Size 
(Msloc)

Est. £2 
(Vulns.
)

With
±25%

Actual £2 
(Vulns.)

Windows 98* 0.0033 (Win95) 18 60 45 to 75 66

Windows 2000* 0.0112 (Win NT 4.0) 35 392 294 to 490 172

RH Linux 7.1* 0.00694 (RHL 6.2) 30 208 156 to 260 164
*Data as o f  April 2005

The plot for AML error for Red Flad Linux 7.1 (Figure 6-3) demonstrates that the 

fitted model first shows underestimation up to approximately 45% of the time, after 

which it shows overestimation. In about 65% of the time, the projection stabilizes and is 

reasonably accurate. Use of constraints during the parameter value search can cut out 

such swings. For Windows 98 (Figure 6-1), AML generally underestimates while AML- 

C overestimates. For Windows 2000, both AML and AML-C underestimate. In all cases, 

the error reduces significantly as we approach the latter part of the system’s lifetime.
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Figure 6-1. Estimation error values for W indows 98

The first constraint on B assumed a 25% range (Table 6-1). This constraint had to be 

dropped for Windows 2000. The second constraint on Windows 98 and Windows 2000 

was chosen to be 24< (2.63/AB) <48. However, for Red Hat Linux 7.1, the constraint was 

18< (2.63/AB) <36, since Linux versions tend to have a shorter lifetime than Windows. 

The figures show improvements in the accuracy of estimations for the AML model. The 

improvement over the earlier estimations is quite significant, as the impact of extreme 

projections is minimized by applying the two constraints.

Table 6-2 shows the average error (AE) and the average bias (AB) given by 

Equations (25) and (26), calculated for the three datasets. We note significant 

improvement in both AE and AB when the constraint is used in AML.
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Figure 6-3. Estimation error values for Red Flat Linux 7.1

Table 6-2: The Average Error (AE) and Average Bias (AB) for estimations using the dynamic approach

Approach 
Operating SysteiTr——

AML AML with constraints Linear (LM)
AE AB AE AB AE AB

Windows 98 43.8% -43.8% 20.1% -20.1% 29.1% 29.1%
Windows 2000 29.2% -29.8% 16.8% -15.5% 4.6% 4.6%

Red Hat Linux 7.1 37.9% -5.3% 15.4% 6.3% 19.2% -4.0%
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It is interesting to note that LM actually does a good job for Windows 2000 and RH 

Linux 7.1. This is because a noticeable saturation in vulnerability discovery for these two 

systems has not yet occurred.

From Figure 6-1 to Figure 6-3, we can observe that a combination of static and 

dynamic approaches can improve prediction capability. This gives the estimator more 

flexibility in estimating the number of vulnerabilities in a system; moreover, if more than 

one approach is used, the estimator can have more confidence in the estimation results 

[8],

6.4 PREDICTION CAPABILITIES FOR ESTIMATING VULNERABILITIES IN 

WEB SERVERS

The security of systems connected to the Internet depends on several components of 

the system. These include the operating systems, the HTTP servers, and the browsers. 

Some of the major security compromises arise because of vulnerabilities in the HTTP 

servers. The databases for the vulnerabilities are maintained by organizations such as the 

National Vulnerabilities Database [61], MITRE [56], and Bugzilla [3] BugTraq [75] as 

well as by the developers of the software.

The exploitations of some of the server vulnerabilities are well known. The Code Red 

worm [52], which exploited a vulnerability in IIS (described in Microsoft Security 

Bulletin MS01-033, June 18, 2001), appeared on July 13, 2001, and soon spread world

wide in unpatched systems.

There have been many studies attempting to identify causes of vulnerabilities and 

potential counter-measures; nonetheless, the development of systematic quantitative 

methods to characterize security has begun only recently. There has been considerable

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



debate comparing the security attributes of open source and commercial software [14]. 

However, for a careful interpretation of the data, rigorous quantitative modeling methods 

are needed. The likelihood of a system being compromised depends on the probability 

that a newly discovered vulnerability will be exploited. Thus, the risk is better 

represented by the not yet discovered vulnerabilities and the vulnerability discovery rate 

rather than by the vulnerabilities that have been discovered in the past and remedied by 

patches.

Possible approaches for a quantitative perspective of exploitation trends are discussed 

in [23][32], Probabilistic examinations of intrusions have been presented by several 

researchers [20], In [69], Rescorla has studied vulnerabilities in open source servers. The 

vulnerability discovery process in operating systems has just recently been examined by 

Rescorla [69] and by Alhazmi and Malaiya [4][5][6].

Servers are very attractive targets for malicious attacks because they represent the 

first line of defense that, if bypassed, can compromise the integrity, confidentiality and 

availability attributes of the enterprise security. Thus, it is essential to understand the 

threat posed by both undiscovered vulnerabilities and recently discovered vulnerabilities 

for which a patch has not been developed or applied. In this chapter we address questions 

such as: How can we predict the vulnerabilities not yet discovered? How accurate are 

these estimations? We also consider methods for enhancement of the prediction 

capabilities.

At this time, despite the significance of security in the HTTP servers, very little 

quantitative work has been done to model the vulnerability discovery process for the 

servers. Such work would permit the developers and the users to better estimate future
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vulnerability discovery rates. Use of reliability growth models is now common in 

software reliability engineering [44] [55]. SRGMs take into account the fact that as bugs 

are found and removed, fewer bugs remain. Therefore, the bug finding rate gradually 

drops and the cumulative number of bugs eventually approaches saturation. Such growth 

models are used to determine when a software system is ready to be released and what 

future failure rates can be expected.

Some vulnerability discovery models were recently proposed by Anderson [14], 

Rescorla [69] , and Alhazmi and Malaiya [4], The applicability of these models to several 

operating systems was examined in [4] [7] [8]. The results show that while some of the 

models fit the data for most operating systems, others either do not fit well or provide a 

good fit only during a specific phase.

In the following sections we will evaluate the prediction capabilities for long term 

projection (i.e. the total number of vulnerabilities in a software system) and short term 

projection (i.e. vulnerabilities expected to be discovered within the next year) using those 

datasets and examine some enhancements that can improve the accuracy of predictions. 

Lastly, we discuss some of the major observations.

6.4.1 L o n g  T e r m  P r e d ic t io n

The analysis in the previous section shows that the AML model fits all datasets while 

the LM model has fitted only some of them. However, we should really judge the models 

by examining the accuracy of future projections about the vulnerabilities using the data 

available at hand. A model with good predictive capabilities can be used to estimate the 

resources needed for maintenance and the risk associated with a particular web server [9].
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We examine the accuracy of the predictions made using three approaches, AML, 

AML-C, and LM. AML-C is the AML model with the constraint (21<2.63/AB<42) used 

during numerical parameter estimation. The constraint restricts the linear phase to be 

within 21 to 42 months, which enforces the S-shaped characteristic of the AML model. 

The constraint was able to help in avoiding extreme parameter values during estimation 

using AML, especially when the available dataset was still small [7], The constraint is 

generally automatically satisfied when the dataset gets larger.

Next, the plots of normalized error values are given against normalized time in Figure 

6-4 to Figure 6-11. The x-axis gives time as the percentage of the overall time, and the y- 

axis give the normalized error.

6.4 .2  LONG TERM PREDICTION ACCURACY TEST

The normalized error values for the estimates of the total number of vulnerabilities 

for Apache 1 are shown in Figure 6-4. AML-C shows significant improvement over 

AML by avoiding extreme values during the early part. LM has shown stable 

performance.
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Figure 6-4. Accuracy o f  the models in estimating Apache 1.x vulnerabilities data

The error values for Apache 2 illustrated by Figure 6-5 shows that LM has performed 

well, followed by AML-C, then AML. Table 6-3 summarizes the Average error and 

Average bias of the estimations.
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39% 4 52% 59% 65% 72% 78% 98%- 10%

- 2 0 %

-30%
 AML
♦ — AML-C 
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-40%

-50% J Percent Time

Figure 6-5. Accuracy o f  the models to estimate Apache 2 .x  vulnerabilities data

IIS 4 and 5 estimation errors, illustrated by Figure 6-6 and Figure 6-7 respectively, 

show that AML-C has the most accurate estimations, followed by AML. LM was
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generally shown to have the higher average error in most cases (see Table 6-3). This 

suggests that the LM model was unable to model the saturation phase for the 

vulnerabilities in IIS datasets.

Table 6-4 below shows the average error and average bias values calculated when at 

least 65% of the data was available for making the projections. After about 65% of the 

time, the AE value drops to single digits in many cases. This table demonstrates that LM 

projections still result in high error values for the two IIS versions. The AML-C results 

are generally the best with AE ranging from 2.1 to 10.4%, whereas LM can result in AE 

values of 41% for the two IIS versions.

The AB values in the tables suggest that the projections are biased. In the next 

subsection, an adaptive estimation technique which attempts to reduce the bias is 

discussed and evaluated.
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LVD
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P ercen t Tim e

Figure 6-6. Accuracy o f  the models for estimating IIS 4.0 vulnerability data
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Figure 6-7. Accuracy o f  the models for estimating IIS 5.0 vulnerability data

Table 6-3. Average Error and Average Bias for Prediction o f  Q
^"M odel

S e r v e r ' ' - ' - ^
AML AML-C LM
AE AB AE AB AE AB

Apache 1.0 52.5% 8.3% 29.8% -29.8% 29.9% -29.1%
Apache 2.0 25.2% -25.2% 16.3% -10.7% 8.2% . 8.2%
IIS 4.0 20.3% -20.3% 18.9% -18.9% 60% 60%
IIS 5.0 17.4% -17.1% 17.4% -17% 47% 47%

Table 6-4. Average Error and Average Bias for Prediction After 65% of Time Elapsed
^"M oslel

S e r v e r ' " ' - ^
AML AML-C LM
AE AB AE AB AE AB

Apache 1.0 8.4% 8.4% 6.2% -6.2% 4.7% -2.4%
Apache 2.0 11% -11% 10.4% -10.4% 4.4% 4.4%
IIS 4.0 3.2% -3.2% 3.2% -3.2% 41.2% 41.2%
IIS 5.0 2.1% -1.4% 2.1% -1.4% 41.8% 41.8%

6.4.3 A d a p t iv e  l o n g - t e r m  p r e d ic t io n  a c c u r a c y  t e s t  

Adaptive techniques or recalibration have been applied to software reliability growth 

models [40] in order to improve prediction. The approaches adjust the predictions by 

observing the errors of past estimations. This adaptive technique also referred to as 

recalibrating, was found to improve the accuracy of the estimations of software reliability 

growth models.
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Figure 6-9. Accuracy o f  the adaptive models in estimating Apache 2.x vulnerabilities data

With adaptive techniques the differences among the models tend to get smaller. One 

main consideration in the adaptive technique is finding the optimal size of prediction 

error to eliminate by subtraction or division. There is a trade-off in choosing a larger or a 

smaller error value used for correction. Larger error corrections can give better results 

when there is a consistent bias in estimation; however, the model often loses its
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characteristics. Whereas, choosing smaller error can preserve the overall model 

characteristic and the overall improvement would be smaller.

Figure 6-8 to Figure 6-11 show errors in estimations using adaptive techniques, they 

demonstrate significant improvement over the original estimations shown in Figure 6-4 to 

Figure 6-7.

The recalibration was done by calculating the ratio between observed and estimated 

values for the past three quarters, and then dividing the next estimate by that ratio to 

adjust it. Recalibration can be done by using several alternative approaches; the 

effectiveness of recalibration can vary depending on the size of adjustments used.

The resulting plots shown in Figure 6-8 to Figure 6-11 and summarized in Table 6-5 and 

Table 6-6 demonstrate some modest improvements over the non-adaptive results.
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Figure 6-10. Accuracy o f  the adaptive models in estimating IIS 4.0 vulnerability data 

Table 6-5. Average Error and Average Bias for Prediction o f  Q (Adaptive Estimation)
A1ML AMI,-C LM

ServeT'~'-^ AE AB AE AB AE AB
Apache 1.0 56.1% 12.1% 27.2% -12% 26.1% -17.7%
Apache 2.0 19.1% -26.1% 15.3% -10% 10.5% 5.6%

IIS 4.0 16.1% -15.6% 32.9% -20% 50.8% 50.8%
IIS 5.0 16.9% -14.7% 21.1% 0.1% 40.9% 40.9%
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Table 6-6. Average Error and Average Bias for Prediction o f  Q. after use o f  65% o f  the Data Is Used  
(Adaptive Estimation) ________________________ ________________________ ______________________

^^AVLodel
Server

A]VIL AML-C LM
AE AB AE AB AE AB

Apache 1.0 6.8% 6.7% 3.7% -2.4% 9.7% 9.7%
Apache 2.0 1.9% -1.2% 8.2% -2.5% 5.5% 4.3%

IIS 4.0 0.6% 0.3% 0.6% 0.3% 19% 19%
IIS 5.0 3.9% -1.9% 3.9% -1.9% 24.4% 24.4%

Table 6-6 above gives the error values when the projections are made after only 65% 

of the data has become available. The errors in general are small for AML and AML-C, 

ranging from 0.6% to 8.2% and from 5.5% to 24.4% for the LM model.

6 .4 .4  E s t im a t in g  V u l n e r a b il it ie s  f o r  t h e  F o l l o w in g  Y e a r

In the previous section, we have seen that the AML models and the LM Model can be 

used to predict the total number of vulnerabilities with good accuracy, especially when 

suitable methods are used to enhance the predictive capability. However, many 

applications, such as risk assessment applications, require the estimation of the 

vulnerability discovery rate for a shorter period of time in the near future. It is therefore 

essential to test the accuracy of the shorter term estimations so a practitioner can predict
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the number of vulnerabilities expected, say during the next year, and be aware of any 

limitations of the estimates made.

Similar to the methodology used for the long term projections, here the projection has 

been made at each of the n instances (tj, t2 , 1 3 ... t„) with three months intervals. For each 

ti, the partial data up to tt has been used to fit the model using regression analysis to 

determine the best values for the parameters. The parameters are used to project the 

number of vulnerabilities 6  A expected to be discovered within the next year and then 

compared with the actual number of vulnerabilities (0,) to determine the estimation error 

(di-Qi '). We then take the average of the error values to obtain the measure of the absolute 

average error (AAE) and the absolute average bias (AAB) which are defined as follows:

A A B =  - f y r O ] ,  (28)
n j=1

Note that it is not possible to normalize the AAE and AAB measures because in the 

later periods, the actual value can sometimes be zero, causing the division by zero error if 

normalization is used.

Next, the estimation approaches will be previewed and the predictive capabilities of 

these approaches will be evaluated. In this section we suggest an alteration to the direct 

application of the models in order to improve the accuracy of prediction. Estimations can 

be done using direct model estimation, or using an adaptive approach. The remainder of 

this section discusses details and measures accuracy.
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6.4.5 E s t i m a t i n g  t h e  f o l l o w i n g  y e a r ’s  v u l n e r a b i l i t i e s  b y  d i r e c t  m o d e l

APPLICATION

In this approach, the prediction is done using a subset of the data to fit the model 

using the least square method, and then the actual number of vulnerabilities of the 

following year is compared to the predicted number of vulnerabilities.

The results are shown in Figure 6-12 to Figure 6-15 and the average values are given 

in Table 6-7. AML and AML-C have been shown to have a higher accuracy than LM in 

IIS, while LM has shown better accuracy for Apache 2, possibly because the Apache 2 

dataset was very linear. For IIS 5, LM accuracy is close to AML and AML-C. All of the 

models performed close to each other in terms of average error, although it is observed 

that AML and AML-C did slightly better for the IIS data sets and LM did slightly better 

for the Apache data sets. This difference in applicability of models can be explained by 

the fact that AML and AML-C model the saturation effect whereas LM may fits data well 

when saturation has not occurred.
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Figure 6-12. Estimations o f  vulnerabilities for the following year (quarterly)
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Figure 6-14. Estimations o f  vulnerabilities for the following year (quarterly)
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Figure 6-15. Estimations o f  vulnerabilities for the following year (quarterly)

Table 6-7. Absolute Average Error and Absolute Average Bias for Non-Adaptive Short Term Prediction (in 
vulnerabilities per year) ________________________ ________________________________ _______________

Server
AML AML-C LM

AAE AAB AAE AAB AAE AAB
Apache 1.0 2.16 .11 2.48 -1.57 3.42 -2.51
Apache 2.0 7.32 -7.32 11.57 7.89 4.01 4.01
IIS 4.0 6.51 -6.43 5.57 -4.4 9.7 8.13
IIS 5.0 8.15 -1.97 7.15 -2.87 8.45 -7.13

6.4.6 E s t i m a t i n g  t h e  f o l l o w i n g  y e a r ’s  v u l n e r a b i l i t i e s  b y  m o d e l

APPLICATION W ITH A D APT AT IO N

Here the prediction takes place using a subset of the data to fit the model using least 

squared method similar to the direct approach; however, half of the error of previous 

estimations is subtracted from the estimation and a window of the past three errors is 

used.

Figure 6-16 and Figure 6-17 show the enhancements achieved by using adaptive 

techniques. The error was chosen to be the average of the past three errors for the LM 

model. The same was used with AML and AML-C, however, with one difference: the
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error size was divided by 2 to make it milder. Table 6-8 below shows improvements over 

Table 6-7 by showing smaller AAE and AAB numbers. Further improvements in finding 

an optimal choice of error size may yield better estimation accuracy.
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Figure 6-16. Adaptive estimations o f  vulnerabilities for the following year (quarterly)
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Figure 6-17. Adaptive estimations o f  vulnerabilities for the following year (quarterly)
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Table 6-8. Absolute Average Error and Average Bias for Adaptive Short Term Prediction (in vulnerabilities 
per year)_____________________________________________________________________________________________

^ ~̂~~'---JModel
Server

AML AML-C LM
AAE AAB AAE AAB AAE AAB

Apache 1.0 2.27 0.12 2.53 -1.4 3.09 -1.4
Apache 2.0 6.54 -6.54 7.31 11.59 3.76 3.76

IIS 4.0 5.98 -5.82 5.24 -3.69 6.57 3.96
IIS 5.0 8.30 -1.74 7.1 -2.42 8.05 6.18

6.5 DISCUSSION

Goodness of fit results for the three-phase AML model show significant fit to all 

datasets. When using the model for long term predictions, adding a constraint to AML 

was found to be useful in filtering early extreme estimations. However, the constraint 

does not significantly improve the estimation of the number of vulnerabilities expected in 

the next year. Overall, the long term prediction for AML-C has proved to be the most 

accurate. Moreover, the accuracy of AML/AML-C improves significantly as more data is 

available, especially with about 65% or more of the data. Recalibration has improved the 

estimations for both long term prediction and short term prediction. However, in this 

study, the recalibration adjustment was kept small because sometimes there was no 

consistent pattern in the bias and, therefore, larger adjustment would make the 

estimations unstable.

Goodness of fit results for LM show that LM fits when the data set is less mature, 

suggesting that LM can be better in short term prediction than long term prediction. 

However, results for LM for the next year’s estimation show that overall performance is 

close to AML and AML-C. For long term prediction LM has larger Average Error; it 

demonstrates consistent bias, underestimation for the Apache data and overestimation for 

IIS. For the next year’s prediction, heavier recalibration has improved LM performance
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better than milder recalibration. The overall results suggest that recalibration improves 

the estimations for all models. The results are similar to those for software reliability 

growth models [47].

6.6 CONCLUSION

This chapter examines the applicability of two vulnerability discovery models, AML 

and LM, to the data for two separate versions of Apache and IIS each. The fit of the 

models was evaluated by computing goodness of fit for each case. The fit was always 

significant for the AML model. However for LM, the fit was not significant in some of 

the cases.

The chapter also examines the prediction capability which was tested for both long 

term predictions (total number of vulnerabilities) and for short term predictions (number 

of vulnerabilities that will be discovered in the next year). For long term prediction, an 

adaptive technique was shown to improve estimations. After 65% of the data, the 

prediction error becomes small. The best results were observed with the AML-C 

approach, which uses a more stable estimate of the parameter values. For short term 

prediction, the models were applied directly using recalibration. Recalibration again 

showed some improvement over direct model application.

AML and LM models can be integrated into the development process to create more 

secure software systems [73], An approach recently proposed by Sahinoglu [72] needs 

such an assessment of the vulnerabilities for estimating risk and the cost of loss. Short 

term prediction can be used to evaluate the estimated vulnerability discovery rates which 

would become part of the risk evaluation.
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Further work is needed to improve and optimize the adaptive technique. Also, it may 

be possible to utilize the vulnerability density as a static measure to improve estimation 

accuracy by stabilizing some of the parameter values.
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CHAPTER 7

TAXONOMIZED VULNERABILITIES: ANALYSIS AND MODELING

7.1 INTRODUCTION

Earlier, we have been studying, modeling, and analyzing vulnerabilities, with the 

assumption that all vulnerabilities are equal. However, vulnerabilities vary in category 

and severity; some vulnerabilities compromise the system totally, while others have some 

minimal impact on the system’s security. Thus, it would be helpful to take a closer look 

into categorized vulnerabilities and test if  Vulnerability Discovery Models (VDMs) apply 

to the categorized datasets too. Consequently, we would like to apply some of the 

proposed models and test the goodness of fit and the adequacy of the models.

Next, we will preview the taxonomy that will be used for our analysis in order to look 

into how vulnerabilities are classified by category; then, we will look into severity level 

classification; then, the datasets will be fitted to the models and the goodness of fit will 

be tested. Finally, the relationship between vulnerabilities category and severity level will 

be analyzed.

7.2 VULNERABILITY CLASSIFICATIONS BY CATEGORY

Vulnerability taxonomy is still an evolving area of research. A number of 

vulnerability taxonomies exist, such as Aslam’s and Krusl’s taxonomies. An ideal 

taxonomy should have desirable properties such as mutual exclusiveness, clear and 

unique definition, repeatability, and coverage of all software vulnerabilities. These 

qualities will provide an unambiguous taxonomy. There is a taxonomy that is close to
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Aslam’s and Krusl taxonomies, that has gained recognition from organizations such as 

MITRE Corporation and the NIST NVD which has shown to be acceptable.

Vulnerabilities can be classified using schemes based on cause, severity, impact, 

source, etc. In this analysis, we use the classification scheme employed by the National 

Vulnerability Database of the National Institute of Standards and Technology. This 

classification is based on coding errors and this classification is almost compatible with 

Aslam’s taxonomy[16]. The eight classes are as follows:

• Input Validation Error (IVE) (Boundary condition error (BCE), Buffer overflow 

(BOF)): Such types of vulnerabilities include failure to verify the incorrect input and 

read/write involving an invalid memory address.

• Access Validation Error (AVE): These vulnerabilities cause failure in enforcing the 

correct privilege for a user.

• Exceptional Condition Error Handling (ECHE): These vulnerabilities arise due to 

failures in responding to unexpected data or conditions.

• Environmental Error (EE): These vulnerabilities are triggered by specific conditions 

of the computational environment.

• Configuration Error (CE): These vulnerabilities result from improper system settings.

• Race Condition Error (RC): These are caused by the improper serialization of the 

sequences of processes.

• Design Error (DE): These are caused by improper design of the software structure.

• Others: Includes vulnerabilities that do not belong to the types listed above, 

sometimes referred to as nonstandard.

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Unfortunately, the eight classes are not completely mutually exclusive. A proportion 

of vulnerabilities can belong to more than one category, because a vulnerability can 

belong to more than one category, the summation of all categories for a single software 

system may add up to more than the total number of vulnerabilities. Nonetheless, usually 

most vulnerabilities fall under one category only.

7.3 VULNERABILITY CLASSIFICATIONS BY SEVERITY

In this section we present an important taxonomy which classifies vulnerabilities by 

their severity. Here, also where many attempts have been made to provide objective 

classifications. A heuristic-based classification looks at several attributes of the 

vulnerability with Common Vulnerabilities Scoring System (CVSS) [29].

CVSS is being adapted by the NIST NVD and it provides a standard for vulnerability 

severity classification. The system gives each vulnerability a value from 1-10, the higher 

the number, the more severe the vulnerability. The range 1-3.99 corresponds to low 

severity, 4-6.99 to medium severity and 7-10 to high severity; The National Vulnerability 

Database of the National Institute of Standards and Technology describes the severity 

levels, as follows [61]:

• High Severity (CVSS 7 to 10): These vulnerabilities allow remote attackers to violate 

the security protection or permit a local attack to gain complete control of a system, 

or if it is important enough to have an associated CERT/CC advisory or US-CERT 

alert.

• Medium Severity (CVSS 4 to 6.99): This does not meet the definition of either “high” 

or “low” severity.
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• Low Severity (CVSS 1 to 3.99): The vulnerability typically does not yield valuable 

information or control over a system but rather gives the attacker knowledge or 

provides the attacker with information that may help him find and exploit other 

vulnerabilities, or we feel that the vulnerability is inconsequential for most 

organizations.

7.4 MODELING VULNERABILITIES CLASSIFIED BY CATEGORY

In this section we examine the applicability of the Alhazmi-Malaiya vulnerability 

discovery models on the datasets for individual vulnerability type or severity level. If the 

model is applicable to individual categories, it could be expected that estimations for 

future vulnerabilities of a specific category are possible, giving estimators better details 

about vulnerability estimation. Furthermore, if  the model applies to severity levels, it can 

also be possible to predict the severity levels of future vulnerabilities [9].

6 0 Windows XPo  AVE  
x  E C H E  
+  BO F  
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Figure 7-1. The plots for individual vulnerability categories data fitted to the models for Windows XP
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Figure 7-2. The plots for individual vulnerability categories data fitted to the models for W indows 2000

Figure 7-1 and Figure 7-2 show how the model fits the datasets for Windows XP and

• • • 2Windows 2000 for the major individual vulnerability categories; the % goodness of fit

test results in it basically show that there is a significant fit of P-value> .99448 (a P-value 

closer to 1 indicates a good fit, a P-value less than 0.05 indicates that there is no fit at 

(<x=0.05)).

Table 7-1. Windows XP Goodness o f  fit results
Vulnerability

Type
Parameters X2

A B C P-value X2 X C ritical

AVE 0.001035 63.595 2.0119 1 17.70871

67.50ECHE 0.000700 92.864 0.674 1 12.10664
BOF 0.000808 93.578 0.348 1 14.82454
DE 0.002854 28.984 0.1958 1 13.08505

Table 7-2. W indows 2000 Goodness o f  fit results

Vulnerability
Type

Parameters X2
A B C P-value X2 X C ritical

AVE 0.002121 23.181 0.279309 1 25.5528

92.81ECHE 0.001026 51.954 0.189765 0.99956 38.63088
BOF 0.000676 93.862 0.495049 1 19.62047
DE 0.001791 54.358 0.343025 0.99448 45.14116
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In this goodness of fit test, we have examined Access Validation Error (AVE), 

Exceptional Control Handling Error (ECHE), Buffer Overflow (BOF), and Design Error 

(DE) vulnerabilities. Other vulnerabilities are not statistically significant; therefore, we 

can not accurately test the goodness of fit for these vulnerabilities (i.e. Race Condition, 

Environmental Error, etc.).

50
45
40

Red Hat Fedora
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Figure 7-3. Plots for individual vulnerability categories data fitted to the models for Red Hat Fedora

Table 7-3. Red Hat Fedora Goodness o f  fit results

Vulnerability
Type

Parameters X2
A B C P-value X2 X C ritical

AVE 0.100153 6.3065 172.35 1 3.50293

44.99ECHE 0.006401 25.7204 0.927 0.90505 21.2541
BOF 0.0099606 42.1905 3.778 0.99902 12.1771
DE 0.00753 37.4380 2.1773 0.988797 15.86836

Figure 7-3 above shows how the AML model fits individual vulnerability categories 

for Red Hat Fedora; Table 7-3 shows the % goodness of fit test results; it shows a 

significant fit for all vulnerability categories examined. Similarly here, we have only 

examined vulnerabilities with statistically significant data.
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Figure 7-4 and Figure 7-5 present the AML model fitting of each web browsers’ 

vulnerabilities by category. We only consider two major categories, design errors, and 

input validation errors, since other categories have too few vulnerabilities to fit to the 

model. In Figure 7-4 and Figure 7-5 the bold lines indicate the fitted AML model for 

each category, and other dotted lines and thin lines indicate cumulative vulnerability data 

for each category.

Figure 7-4 shows the AML model fitting for categorized IE vulnerabilities. From the 

beginning until now, the AML model and the cumulative data demonstrate that design 

errors have been found more frequently than input validation errors, and the gap between 

design error and input validation error is widening [78].

100
x  Input Validation 

♦ Design Error

80

60

40 -

20  -

Figure 7-4. Fitting Internet Explorer’s Vulnerabilities by Category to AML

Figure 7-5 shows the AML model fitting for categorized Firefox vulnerabilities. 

Categorized Firefox vulnerabilities show a similar pattern to categorized IE 

vulnerabilities; design errors have been found more frequently than input validation 

errors, and the gap between design error and input validation error is widening.
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Figure 7-5. Fitting Firefox’s Vulnerabilities by Category to AML

Table 7-4 below shows the chi-square goodness of fit tests for IE and Firefox models

2 2by category. For each category, the % value is less than % critical* and the P-values are close 

to 1. Thus the fit for the two categories is significant for the AML model. It is interesting 

to note that the fit for the aggregate IE vulnerabilities considered in the previous section 

was not significant with respect to the significance level chosen.

Table 7-4 Goodness o f  Fit Test Results for Total Number o f  Vulnerabilities o f  categorized vulnerabilities

Browser Category A B C ** A  c r i t i c a l P-value

IE Input Validation 0.00059 89.7 0.984 43.9 135.4 0.99
Design Error 0.00062 110.9 0.895 47.2 135.4 0.99

Firefox Input Validation 0.0089 35 0.849 6.5 32.6 0.99
Design Error 0.0042 65.1 0.278 9.1 32.6 0.98

We adapted the AML model to two major vulnerability categories to determine 

whether there are observable patterns at the level of individual classes. Since we noted a 

similar pattern for the uncategorized vulnerabilities, a possible fit was examined. These 

individual classes reflect their own total number of vulnerabilities.
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7.5 MODELING VULNERABILITIES CLASSIFIED BY SEVERITY LEVEL

Figure 7-6 and Figure 7-7 show how the AML model fits data separated by severity 

level. The figures clearly show s-shaped curves with different parameter values, showing 

that low severity vulnerabilities are discovered at a faster rate. It also opens the 

possibility of future prediction of vulnerabilities and their severity level.
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Figure 7-6. Apache by severity level vulnerabilities fitted to the AML
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Figure 7-7. IIS by severity level vulnerabilities fitted to the AML
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Table 7-5 shows that the fit was significant in all of the cases at (a=.05) with P-values 

larger than or equal to .999; with the %2 value significantly higher than the critical % in 

both web servers [77].

Table 7-5 .Web servers vulnerability Goodness o f  fit results for data classified by severity fitted to the AML
Web

server Vulnerability
Type

Parameters x2

A B C P-value x2
2X Critical

IIS High .00176 38 .999 1 28.2
133.2Low .00127 77.9 1.21 .999 53.5

Apache High .00156 27.00 1.00 1 42.1 144.3
Low .00248 18.00 1.76 1 15.7
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Figure 7-8. Vulnerabilities o f  Internet Explorer classified by severity level

We apply the AML model to the two web browsers. Figure 7-8 and Figure 7-9 show 

the results of fitting the AML model to the three severity classes. The fit is significant for 

all cases[78].

Table 7-6 shows that the severity-classified datasets for Internet Explorer and Firefox 

fit the AML model. In all cases, the chi-square values were less than the chi-square 

critical shown in the tables, and the P-values were larger than 0.12.

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 7-9. Vulnerabilities o f Firefox classified by severity level

Table 7-6. Goodness o f  fit results for IE, and Firefox and datasets classified by severity level fitted to the 
AML

Browser Severity A B C / critical P-value

IE
High 0.0006 110 1.255 40.23 135.4 1

Medium 0.0057 25.1 12.47 46.38 135.4 0.99
Low 0.00049 122.2 0.325 107.42 135.4 0.12

Firefox
High 0.0057 44.1 0.447 8.83 32.6 0.98

Medium 0.0206 11.3 2.56 4.02 32.6 0.99
Low 0.0046 67.6 0.36 12.1 32.6 0.91

7.6 ANALYZING THE LINK BETWEEN VULNERABILITY CATEGORIES AND 

VULNERABILITY SEVERITY LEVELS

Figure 7-10 compares vulnerability distributions in three web browsers. More than

60% of found vulnerabilities are related to design or input validation error. When

comparing web browsers to web servers (Apache and IIS) and operating systems

(Windows 2000 and XP), we find a comparable pattern.
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Figure 7-10: Vulnerabilities by category in Internet Explorer, Firefox and M ozella

Usually web server and operating systems have a greater number of vulnerabilities in 

input validation error than in design error. Except for these two categories, other classes 

show the following priority order: exceptional condition error, access validation error, 

configuration error and other classified errors.

The goal of this analysis is to determine which vulnerabilities are more severe so 

testers can target vulnerabilities of high severity. We can identify the most severe 

vulnerability categories, so testers can design tests targeting a specific category of 

vulnerabilities.

The analysis will include the following diverse group of software systems: Windows 

98, Windows XP, Windows 2000, Red Hat Fedora, Apache, and IIS web Servers. The 

vulnerability data are from the National Vulnerabilities Database maintained by NIST. 

The market share data from Netcraft [59] used shows that high severity vulnerabilities 

constitute half the number of vulnerabilities, making them the most common
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vulnerabilities. A significant number of high severity vulnerabilities in Windows 2000 

are buffer overflow then design error and boundary condition.

Boundary condition errors (IVE-BCE) have shown to be of high severity only in 

Windows systems (see Tables 8 and 9) while it is not so in Fedora, IIS and Apache see 

Tables 10-12. This possibly indicates that there is a common flaw in Windows regarding 

boundary testing.

Table 7-7 to Table 7-10 show a common observation that exceptional control 

handling error (ECHE) is associated with low severity vulnerabilities. This observation is 

common in all examined datasets. The tables show that race condition errors, 

environmental errors, and configuration errors are very few, which makes it hard to link 

them to a particular severity level.

Table 7-10 below shows that only 35 Apache vulnerabilities are of high severity, 

about half of which are Input validation errors with some buffer overflows and general 

input validation error. Design errors count for 23 vulnerabilities in total with only 5 high 

severity vulnerabilities.

Table 7-9 shows Red Hat Fedora vulnerabilities. The table shows that about 41.3% of 

vulnerabilities are of high severity, the majority being buffer overflow. Here we can 

observe a similarity to both Windows systems in the dominance of buffer overflow and 

other input validation errors. This may be due to using C programming language, which 

does not have memory management features. Furthermore, design errors accounts for 

fifteen high severity vulnerabilities which represents a significant proportion number. 

Exceptional condition handling errors are mostly low severity vulnerabilities, similar to 

Windows systems.
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Table 1- 1 . Vulnerabilities Type vs. Severity for Windows 2000

AVE DE ECHE IVE-
BOF

IVE-
BCE

IVE-
other RC EE CE other Total

High 10 29 12 52 18 7 1 2 4 1 135
Medium 6 15 2 5 0 2 0 0 2 1 33
Low 6 26 32 9 3 16 1 2 3 1 100
Total 22 70 46 66 21 25 2 4 9 3 268

Table 7-8. Vulnerabilities Ty )e vs. Severity for Windows XP

AVE DE ECHE IVE-
BOF

IVE-
BCE

IVE-
other RC EE CE other Total

High 8 11 7 47 16 5 1 1 0 2 98
Medium 0 4 2 5 0 3 0 0 0 2 16
Low 3 15 19 4 1 12 1 1 2 0 58
Total 11 30 28 56 17 20 2 2 2 4 172

Table 7-9. Vulnerabilities Ty je vs. Severity for Red Hat Fedora

AVE DE ECHE IVE-
BOF

IVE-
BCE

IVE-
other RC EE CE other Total

High 2 15 4 33 6 9 3 0 1 1 74
Medium 1 4 0 3 2 2 0 0 0 1 13
Low 3 30 19 9 9 17 0 2 1 2 92
Total 6 49 23 45 17 28 3 2 2 4 179

Table 7-11 below shows that 85 of IIS vulnerabilities are of low severity, while 41 

are of high severity. Most high severity vulnerabilities belong to Input Validation Error 

vulnerabilities and most of them are buffer overflow. Design error vulnerabilities account 

for twenty-six vulnerabilities, only ten of which are highly severe, showing some errors 

with the design of IIS. However, IIS has matured over the years and has not shown new 

vulnerabilities in some time now.

From Table 7-10 and Table 7-11 the distributions of the severities of the Apache and 

IIS vulnerabilities show similarity. About 60% of total vulnerabilities have low severity, 

followed by about 30% with high severity, with very few vulnerabilities of medium 

severity.
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Table 7-10. Vulnerabilities Type vs. Severity for Apache\ AVE DE ECHE IVE-
BOF

IVE-
BCE

IVE-
other RC EE CE other Total

High 3 5 3 7 1 10 0 3 2 1 35
Medium 0 1 1 3 0 0 1 0 0 0 6
Low 3 17 12 3 1 14 1 1 12 4 68
Total 6 23 16 13 2 24 2 4 14 5 109

Table 7-11. Vulnerabilities Type vs. Severity for IIS

AVE DE ECHE IVE-
BOF

IVE-
BCE

IVE-
other RC EE CE other Total

High 3 10 2 13 1 8 0 0 3 1 41
Medium 0 1 0 1 0 0 0 0 1 0 3
Low 14 15 13 4 8 22 1 3 2 3 85
Total 17 26 15 18 9 30 1 3 6 4 129

Table 7-10 and Table 7-11 illustrate how severity level correlates with error 

classification. It is noticeable that Exceptional control handling error constituted the 

majority among low severity vulnerabilities for both Apache and IIS. In IIS, Buffer 

overflow vulnerabilities are associated with high severity. A relatively smaller fraction of 

exceptional condition errors are of high severity. In IIS as well, the exceptional condition 

errors tend to be from among the vulnerabilities with low severity. For IIS, most 

configuration errors are of medium severity. Table 7-11 shows that Input Validation 

Errors other than Buffer overflow and Boundary Condition Error are likely to be of low 

severity.

7.7 CONCLUSIONS

In the past, security vulnerabilities often have been either studied as individual 

vulnerabilities or as an aggregate number. This chapter examines categories of 

vulnerabilities. It explores the applicability of quantitative models for the number of 

vulnerabilities and vulnerability discovery rates for some open source and commercial
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operating systems and web servers. The results show that individual vulnerability 

categories and severity level datasets conform to the AML vulnerability discovery 

models. This work can be extended by examining the prediction capabilities of the 

models for individual categories and severity level.

A limitation of using the model with vulnerability categories and severity level is that 

some categories and severity levels could not be modeled because the number of 

vulnerabilities in those categories is statistically insignificant.

The vulnerability categories-severities analysis was able to link Buffer overflow to 

high severity vulnerabilities, and exceptional control handling error to low severity 

vulnerabilities. Input Validation errors other than Buffer overflow and boundary 

condition error have also shown to be linked to low severity vulnerabilities.

Design Error vulnerabilities were found to be a significant category of which a 

significant proportion is usually of high severity. This indicates that there is a need to 

take past mistakes of those vulnerabilities into consideration when designing new 

software systems. Integrating security design into the lifecycle of the software system has 

become very important, as suggested by Seacord in[73].

A vulnerability profile is useful documentation that can assist developers to learn 

from past mistakes and highlight the weaknesses of the software. It can point to 

ineffective and wrongful practices shown to be responsible for the introduction of some 

vulnerability. Further research can investigate additional attributes of vulnerabilities 

possible patterns.
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CHAPTER 8 

CONCLUSIONS AND FUTURE WORK

8.1 SUMMARY AND CONCLUSIONS

Motivated by the need to develop quantitative measures to characterize a system’s 

security, this research considers using vulnerabilities and vulnerability discovery rate as a 

major component in a quantitative risk evaluation approach. Quantitative assessment for 

software security is needed for effective testing, maintenance, security assurance, and risk 

assessment of software systems. Vulnerabilities that are present in a software system after 

its release can represent a considerable degree of risk. This work presents solutions to 

how vulnerabilities can be used to quantitatively assess the security in software systems.

8.1.1 M o d e l in g  o f  V u l n e r a b il it ie s

In this research, vulnerabilities discovered plotted over calendar time trends were

analyzed, to determine the major factors impacting vulnerability detectection. Plots 

showing the cumulative number of vulnerabilities over calendar time for a number of 

software systems are given. New vulnerability discovery models (VDMs) analogous to 

Software Reliability Growth Models (SRGMs) are proposed. Just as SRGMs use defects 

to describe reliability; VDMs use vulnerabilities instead.

A logistic model named Alhazmi-Malaiya Logistic Model (AML) was proposed and 

found to be conforms to typical vulnerability trends. The logistic model given by 

Equation (4) is fitted to vulnerability data for a number of software systems and the fit is 

found to be statistically significant in almost all cases. We also observe that the code 

shared by a new and hence a competing version of the operating system can impact the
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vulnerability discovery rate in a previous version. The results show that the proposed 

models fit the actual vulnerability discovery process very well. Also, a simplification of 

the AML model, a linear model (LM) was suggested and has shown to fit some datasets 

in certain situations. An effort-based model that uses the installed-base share data has 

been proposed and fitted to the data and has shown a significant fit in all tested cases.

The research shows a strong correlation between traditional defects and 

vulnerabilities. However, there are some fundamental differences between testing for 

traditional defects and testing for vulnerabilities. For example, systematic software 

testing in a software development organization occurs prior to release and the bugs are 

found internally in the developing organization; on the other hand, vulnerability 

discovery occurs throughout the product lifetime and the vulnerabilities are found both 

internally and externally. Moreover, compared with ordinary defects, the number of 

vulnerabilities is very small. The initial growth rate in the number of cumulative 

vulnerabilities at the release time is small but subsequently accelerates. Generally the 

plots show a linear trend for a significant period. Eventually these plots tend to show 

some saturation, often followed by abrupt increases later. This behavior is explained by 

the variability of the effort that goes into discovering the vulnerabilities.

8.1 .2  V u l n e r a b il it y  D e n s it y

Vulnerability Density is a static measure that is defined, analyzed, and measured here

in several software systems, a conceptually similar measure was named V-Density 

measure by Ounce labs [63]. As it has been observed for software defect densities, the 

values of vulnerability densities fall within a range, and for similar products they are 

closer together. We note that the ratio of vulnerabilities to the total number of defects is
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often in the range of 1% to 5%, as was speculated to be the case by some researchers

[13][42], As we would expect, this ratio is often higher for operating systems intended to 

be servers. The results indicate that vulnerability density is a significant and useful 

metric. We can expect to gain further insight into vulnerability densities when additional 

data, together with suitable quantitative models, are available. Such models may allow 

empirical estimation of vulnerability densities along the lines of similar models for 

software cost estimation or software defect density estimation.

8.1.3 P r e d ic t io n  C a pa b il it ie s

Vulnerability discovery models have been analyzed statistically and analytically.

However, models with a good fit will not necessarily have good estimation capability, 

thus the ability of the models to estimate the future vulnerability discovery rate needed to 

be examined. Hence, the prediction capabilities of the logistic and linear models have 

been investigated by evaluating the accuracy of predictions made with partial data. In 

addition to VDMs, we consider static approaches to estimating some of the major 

attributes of the vulnerability discovery process, presenting a static approach to 

estimating the initial values of one of the VDM’s parameters. We also suggest the use of 

constraints for parameter estimation during curve-fitting. Here we develop computational 

approaches for early applications of the models and examine the predictive capability of 

the models.

Using data from Windows 98, Windows 2000, and Red Hat Linux 7.1, the impact of 

imposing a specific constraint on some parameters of the logistic model are evaluated 

using the average error and average bias measures. Prediction errors are plotted for the 

estimations taken at different times. The results demonstrate that the prediction average
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error is significantly less when a constraint based on past observations is added. It is also 

observed that the linear model may yield acceptable projections for some systems for 

which vulnerability discovery has not yet reached saturation. The results suggest that it 

may be possible to improve the prediction capability by combining static and dynamic 

approaches, or by combining different models.

The prediction capability study was expanded to include web-servers. Here also the 

AML, AML with constraints, and the LM models were considered. However, at this 

point, in addition to testing the accuracy of predicting the total number of vulnerabilities 

(which can be regarded as long term prediction), the accuracy of the prediction of 

vulnerabilities that will be discovered in the following year is also tested (we refer to this 

as short term prediction). The estimation was enhanced by utilizing on adaptive technique 

which was applied and has shown improvement in the accuracy by adjusting the error of 

estimation based on previous observations. Similar techniques were used in the past for 

testing the prediction capabilities of Software Reliability Growth models to predict 

ordinary defects.

The prediction capability test results show that with at least 65% of the data, the error 

becomes small. The best results were observed with the AML-C approach, which uses a 

more stable estimate of the parameter values. It is more accurate than the AML or LM 

approaches. For short term prediction, using adaptation, showed some improvement over 

direct model application.

8.1 .4  C o m p a r in g  V u l n e r a b il it y  D is c o v e r y  M o d e l s

A few other vulnerability discovery models have been proposed recently. A

comparative study was conducted to compare how these models fit the vulnerability
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trends. The result has shown that the logistic model is generally the most successful and 

by far the closest to actual trends observed.

Four vulnerability discovery models were examined using Akaike Information 

Criteria (AIC) and chi-square (%2) tests for several operating systems. Results show that 

the AML model is generally the best for the longer term, performing better for Windows 

95 and Linux 6.2. Because it captures the S-shape pattern in the data, it has better fit as 

determined by using AIC and the chi-square test. RQ, RE, LP and AML all show very 

good fit for Windows XP, a system that has not yet shown signs of saturation. This can 

be attributed to the fact that they can fit trends that are largely linear. The AT model 

considered did not perform well in general.

When VDMs were applied initially, all vulnerabilities were treated equally. Later, 

taxonomies were used to look at each category individually. The Logistic Alhazmi- 

Malaiya model (AML) was applied to individual categories, and it has shown to fit the 

data indicating that it is possible to estimate vulnerabilities belonging to a particular 

category.

We expect that with further research and significant data collection and analysis, it 

will be possible to develop reliable quantitative methods for security akin to those used in 

the software and hardware reliability fields.

Vulnerability discovery models can be used by both the developers and the user 

community. Developers can assess the product readiness by projecting future 

vulnerability discovery trends. Developers need to allocate security maintenance 

resources to detect vulnerabilities, preferably before others do and to release security 

patches as soon as possible. The users also need to assess the risk due to vulnerabilities
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before patches are applied. A patch may need to be tested for stability before it is applied, 

as discussed by Brykczynski et al. [24] and Beattie et al. [18]. Effective security policy at 

an organization would require time and resources. Vulnerability discovery models can be 

used to quantitatively guide such policies.

8.1.5 M o d e l in g  C a t e g o r iz e d  V u l n e r a b il it ie s  a n d  T e st in g  F o r  V u l n e r a b il it ie s  

We also studied the modeling of categorized vulnerability datasets; the AML model

was fitted to major categories of software vulnerabilities, and has shown to fit the data;

the significance of this result is that it opens the door to the prediction of specific

categories of vulnerabilities. Moreover, vulnerability datasets classified by severity level

have also shown to fit the AML model, indicating a similar conclusion that the AML

model is expected to be capable of estimating vulnerabilities of a specific severity level.

Vulnerabilities vary in their categories and severity levels; the research has shown a

link between a vulnerability category and its severity level. Therefore, it is feasible to

optimize testing to focus it on vulnerabilities with high severity levels and thus to

vulnerabilities belonging to certain categories and to design testing cases based on this

analysis.

There are two separate processes to be considered. The first is the vulnerability 

discovery process, while the second is the exploitation of individual vulnerabilities 

discovered. In this chapter, we examine modeling the first process. While the two 

processes are distinct, evaluation of the overall risk should involve a joint consideration 

of both processes. Obviously, a vulnerability needs to be discovered before it can be 

exploited. While those who attempt to exploit vulnerabilities may often be amateurs, 

those who discover vulnerabilities must have significant technical expertise.
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8.2 FUTURE WORK

The shared vulnerabilities among successive versions constitute an important 

component of vulnerability discovery process. Evaluation of their impact requires some 

analysis of the results of applying patches and code re-use because shared vulnerabilities 

are due to code overlap among consecutive versions of software systems. A suggested 

approach would be to include careful white box analysis with the available vulnerabilities 

to determine the circumstances that cause vulnerabilities in the first place. This is 

especially important because the current analysis disregards the architecture of the 

software system. This analysis assumes that vulnerabilities are found in random places 

within software systems. In some specific modules, exploiting information concerning 

the architecture of the system can focus security testing to the code with a higher chance 

of finding vulnerability, which will make security testers more efficient.

Further work is needed to enhance the adaptive technique in short term prediction, 

currently, we use error subtraction method. It has shown some improvement; however, 

using a method with artificial intelligence capability (e.g. neural networks) may improve 

the prediction accuracy.

Users need a reliable risk assessment technique that is based on vulnerabilities 

discovery models and vulnerability density could be practical combined with using real

time incidents analysis. This suggests integrating VDMs with risk assessment models that 

consider other factors into a comprehensive risk assessment prospective analogous to 

Sahinoglu’s risk assessment model [72].

This research has yielded some guidelines for testing for vulnerabilities based on the 

relationship between vulnerability categories and severity levels. However, because the
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taxonomy is not sufficiently testing-oriented, when a more testing-oriented taxonomy is 

available, better guidelines can be developed for vulnerabilities testers. Recently, a new 

testing-oriented taxonomy has been proposed [17]; however, the authors were able to 

classify only around 50% of the vulnerabilities. This is due to the lack of some essential 

low-level details because some vulnerability data is proprietary.

Further analysis of the vulnerability discovery process in needed in order to help 

create highly secure software systems. Issues like seasonality could be worthy of 

investigations, to answer questions like - are there months that are potentially risky? If 

so, what factors could contribute to this behavior? Also, the reward factor for 

vulnerability discovery needs to be analyzed; several vendors offer financial 

compensation to those finding new vulnerabilities, while in other cases the reward to 

individuals is more indirect. Such, incentives can significantly impact the vulnerability 

discovery rates.
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